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Abstract
Spring phytoplankton blooms play a major role in the carbon biogeochemical cycle of the Oyashio region, western

subarctic Pacific, where the seasonal biological drawdown effect on seawater pCO2 is one of the greatest among the
world’s oceans. However, the bloom often terminates before depleting macronutrients, and the initiation and magni-
tude of the bloom is heterogeneous. We conducted a high resolution taxonomic and physiological assessment of phy-
toplankton in relation to the different physicochemical water masses of Coastal Oyashio Water (COW), Oyashio
water (OYW), and modified Kuroshio water (MKW) in the Oyashio region from April to June 2007. Massive diatom
blooms were found in April. Then, chlorophyll a concentration, cell abundance of diatom taxa, and the maximum
photosystem II photochemical efficiency (Fv/Fm) were positively correlated with the mixing ratios of COW, suggest-
ing that the spring bloom in April was strongly affected by the intrusion of COW. In the OYW, intensive blooms
occurred from the middle of May under low dissolved iron (DFe) concentration (< 0.26 nM). Redundancy analysis
showed that while diatom blooms accompanied by COW were related to DFe concentration, this was not the case in
the OYW. These results indicated that diatoms in the OYW possess different iron adaptation strategies compared with
diatoms in the water masses affected by COW. This led to the spatial heterogeneity of the Oyashio spring bloom. The
results presented here demonstrate that water mass characterization with detailed assessments of phytoplankton tax-
onomy and physiological status can improve our understanding of marine ecosystems.

In the subarctic Pacific, mesoscale in situ iron (Fe) enrich-
ment experiments have revealed that iron availability influences
phytoplankton productivity and species composition both in
the western (Tsuda et al. 2003, 2007) and eastern (Boyd

et al. 2004) oceanic regions (Boyd et al. 2007). However, in
terms of the seasonal changes in natural conditions, the western
subarctic Pacific (WSP) shows high-amplitude seasonal cycles in
nutrients and plankton biomass as compared with the eastern
subarctic Pacific (the Alaskan Gyre) (Harrison et al. 1999, 2004;
Saito et al. 2002). In the Oyashio region of the WSP, which is
located off the coast of Hokkaido Island, Japan, massive diatom
blooms occur every spring (Kasai et al. 1997; Chiba et al. 2004;
Tsuda et al. 2005; Okamoto et al. 2010; Suzuki et al. 2011). The
phytoplankton assemblages during the spring bloom in the
Oyashio region possess higher light utilization efficiency of pho-
tosynthesis and primary productivity (Shiomoto 2000; Isada
et al. 2009, 2010), which contributes to the highest biological
utilization effect on seawater pCO2 in the world ocean
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(Takahashi et al. 2002; Chierici et al. 2006) and high biological
production (Taniguchi 1999; Sakurai 2007; Ikeda et al. 2008;
FAO 2016). Nosaka et al. (2017) reported that diatoms during
the spring bloom in the Oyashio region are the main producer
of transparent exopolymer particles (TEPs) that affect the effi-
ciency of the biological carbon pump. Therefore, understanding
the spatiotemporal changes in spring bloom dynamics is essen-
tial for better characterizing the biogeochemical and ecosystem
processes in the Oyashio region.

The high biological production in the Oyashio region is con-
sidered to be supported by elevated iron supply from intermedi-
ate water derived from the Sea of Okhotsk along with
atmospheric dust deposition which makes the Oyashio region
different from other high-nutrient, low-chlorophyll (HNLC)
regions in the subarctic Pacific (Nishioka et al. 2007, 2011).
Suzuki et al. (2002) and Nishioka and Obata (2017) have
reported the high-west to low-east gradients in iron concentra-
tion in the subarctic Pacific. Although the spring diatom bloom
in the Oyashio region is a regular key event of the biological pro-
duction, the bloom often terminates with incomplete depletion
of macronutrients (Saito et al. 2002), suggesting that other fac-
tors, for example, iron availability and zooplankton grazing, can
regulate spatiotemporal changes in the spring bloom. Iron is
now recognized as a limiting factor for phytoplankton growth
in not only HNLC regions but also some coastal regions
(e.g., Hutchins and Bruland 1998; Suzuki et al. 2014) where dia-
tom blooms sometimes occurs (Moore et al. 2006). Diatoms
have well evolved iron-related metabolisms (Groussman
et al. 2015; Marchetti and Maldonado 2016), for example, Fe
(and Cu) metalloprotein substitution of ferredoxin (Fd)/flavo-
doxin (Fld) and cytochrome c6/plastocyanin, and an Fe storage
capacity (ferritin). Based on immunological Fd (iron-containing
protein)/Fld (iron-free protein) assays, Hattori-Saito et al. (2010)
showed that microplankton-sized (hereafter micro-sized) dia-
toms during the spring in the Oyashio region were stressed by
iron deficiency. However, their snapshot observation was insuf-
ficient to evaluate the iron stress of diatoms through the whole
span of the spring bloom (Hattori-Saito et al. 2010).

The hydrographic structure during spring in the Oyashio
region often becomes complex, influenced by varying mixtures
of the Oyashio water (OYW), Coastal Oyashio water (COW), and
modified Kuroshio Water (MKW) with different physicochemical
properties (Kono and Sato 2010). The Oyashio is a cold western
boundary current in WSP, stemming from both the East Kam-
chatka Current and the Okhotsk Sea Mode Water (Yasuda 2003,
2004). The OYW reaches to the northeast coast of Japan, and
then mixes with warm saline water transported by the Kuroshio,
an alternative Pacific western boundary current. In the area of
converging waters from the Oyashio and Kuroshio, several meso-
scale eddies, such as Kuroshio warm-core rings, distribute
(Yasuda 2003; Itoh and Yasuda 2010). The warm core rings sepa-
rated from the Kuroshio carry the MKW with lifespans of more
than 1 yr into the Oyashio region. The COW, a water mass which
is colder and less saline than OYW, is distributed along the

southeast coast of Hokkaido, Japan from January to May (Kono
and Sato 2010; Sakamoto et al. 2010; Kusaka et al. 2013). The
COW is considered to be independent of the OYW and affected
by coastal waters from the Sea of Okhotsk (Ohtani et al. 1971).
Accordingly, the COW forms a density front to the OYW this is
10 km wide near the shelf break from winter to spring (Sakamoto
et al. 2010). Thus, the confluence of two or three dominant water
masses in the Oyashio region produces the complex oceano-
graphic conditions (Yasuda 2003, 2004; Itoh and Yasuda 2010;
Kono and Sato 2010). Furthermore, chlorophyll (Chl)
a concentration derived from ocean color remote sensing clearly
demonstrates the spatiotemporal heterogeneity of spring phyto-
plankton bloom in the Oyashio region (Okamoto et al. 2010).
However, little is known about the factors regulating phytoplank-
ton physiology and spatial heterogeneity of phytoplankton bio-
mass during the spring bloom in the Oyashio region owing to a
lack of extensive in situ observation (Yoshie et al. 2010; Shiozaki
et al. 2014). Because the spring bloom is an important event for
the biological carbon pump and supports the energy transfer to a
wide variety of commercially valuable fishes in the Oyashio
region, clarifying the factors controlling bloom heterogeneity in
relation to the mixing water masses would accelerate further
understanding of the Oyashio ecosystem.

The objectives of this study were (1) to examine iron stress
of micro-sized diatoms and (2) to clarify the factor(s) regulat-
ing the spatiotemporal heterogeneity in phytoplankton
assemblages and photophysiology in relation to the complex
water masses during the spring bloom in the Oyashio region.
To this end, we conducted high-frequency Eulerian observa-
tions at a fixed station in April 2007 followed by spatiotempo-
ral monitoring of six sampling stations from May to June
2007 in the Oyashio region.

Material and methods
Field campaigns

Two field campaigns (Oceanic Ecosystems Comparison
Subarctic-Pacific-West: OECOS [Ikeda et al. 2010] and Bloom-
ing Plankton Succession Study in the Oyashio Marine Ecosys-
tem: BLOSSOM) were carried out in the Oyashio region of the
northwest Pacific Ocean. Regarding the OECOS cruise, the
Eulerian observations were conducted at the station (Stn.) A5
(Fig. 1) of the monitoring “A-Line” from 05 April 2007 to
01 May 2007 aboard the R/V Hakuho Maru (JAMSTEC, Japan).
In the BLOSSOM cruises, spatiotemporal monitoring was
conducted at six stations (Fig. 1: Stns. A4, A7, B1, B2, B3, and
B4) along the monitoring “A-Line” and “B-Line” during 09–21
May 2007 and 04–14 June 2007 aboard the FR/V Wakataka
Maru (Fisheries Research Agency, Japan).

Seawater sampling
OECOS

Seawater was sampled using acid-cleaned Teflon-coated
Niskin–X bottles mounted on a conductivity–temperature–
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depth carousel multi-sampler (CTD-CMS) system connected via
a titanium armored cable. First, waters samples for macronutri-
ents and Chl a concentration were obtained from nine depths
ranging from 5 m to 100 m. Samples for dissolved iron (leach-
able iron in 0.22 μm filtrate; hereafter DFe) concentration and
cell densities of diatoms were also collected from 5 m depth.
Simultaneously, samples for protein assay of ferredoxin (Fd) and
flavodoxin (Fld) in the micro-sized (20–200 μm) diatoms and
the maximum photosystem II (PSII) photochemical quantum
efficiency (Fv/Fm) of the total micro-sized (20–200 μm) phyto-
plankton including diatoms described below were obtained
from the seawater intake (ca. 5 m) of the research vessels. After
sampling at fixed depths, MER2040/2041 spectroradiometers
(Biospherical Instruments) were deployed to measure vertical
profiles of photosynthetic available radiation (PAR) and deter-
mine five optical depths (OD) (60%, 30%, 10%, 5%, and 1%
ODs of incident PAR at the surface). Next, samples for nutrient
concentration, Chl a concentration, and phytoplankton pig-
ments were taken from the surface (ca. 2–5 m depth) and
5 ODs. Samples for photosynthesis versus irradiance (PE) curve
experiments and Fv/Fm measurements of the overall phyto-
plankton assemblage were collected from the surface and 5%
OD. Sampling at fixed- and optical depths during the OECOS
cruise was conducted at ~ 9:00 and noon (local time), respec-
tively. On 12 April, water samples for phytoplankton pigments,
PE curve experiments, and Fv/Fm measurements of overall phy-
toplankton assemblage were taken only at the surface at Stn. A6
(Fig. 1). DFe data during the OECOS cruise were obtained from
Nakayama et al. (2010). Daily PAR data above the sea surface

were obtained from Isada et al. (2010). Macronutrient (nitrate
plus nitrite, phosphate, and silicate) concentrations were
measured with a continuous flow analyzer (QuAAtro, Bran +
Luebbe).

BLOSSOM
After measuring the vertical profiles of PAR with profiling

radiometers (PRR600/610, Biospherical Instruments), samples
were obtained from 5 m depth and 4–5 ODs between early
morning and noon using acid-cleaned Niskin bottles attached
to a CTD-CMS. Then, samples for Fd/Fld protein of the micro-
sized diatoms and Fv/Fm of the total micro-sized phytoplank-
ton were obtained from the seawater intake (ca. 5 m) of the
research vessels in the same manner as during OECOS as
described above. Samples for DFe analysis were collected from
ca. 10 m using an acid-cleaned Teflon-coated 10 L Niskin-X
bottle attached to Kevlar line. The DFe samples were measured
following the methods described in Obata et al. (1993) and
Nishioka et al. (2007, 2011). Daily PAR data above the sea
surface were taken from Isada et al. (2010). Macronutrient
concentrations were measured with a continuous flow ana-
lyzer (TRAACS 800, Bran + Luebbe).

Chl a concentration
Samples (150–200 mL) were filtered through glass-fiber

filters (Whatman GF/F, 25 mm diameter) under gentle vac-
uum (< 0.013 MPa). Chl a pigment was extracted by 6 mL of
N,N-dimethylformamide (DMF) in a glass tube at −20�C for
more than 24 h (Suzuki and Ishimaru 1990) on board. For the
filters during the BLOSSOM cruises, the filters were stored at
−80�C in a deep freezer or in liquid nitrogen until analysis on
land. The Chl a concentration was measured with a Turner
Designs fluorometer (model 10-AU) based on the non-
acidification method (Welschmeyer 1994).

Phytoplankton pigments and CHEMTAX analysis
Samples (250–1000 mL) were filtered onto glass-fiber filters

(Whatman GF/F, 25 mm diameter) under gentle vacuum
(< 0.013 MPa). The filters were stored in the same way as
described above for the Chl a analysis during the BLOSSOM
cruises. The frozen filters were cut into small pieces, soaked in
3 mL of DMF in an amber glass vial, and sonicated with an
ultrasonic homogenizer (SONIFIER model 250, Branson) for
30 s on ice. Phytoplankton pigments were quantified with
high-performance liquid chromatography (HPLC) following
Wright et al. (1991). Further details of the analytical procedure
are described by Suzuki et al. (2005).

To estimate phytoplankton community composition based
on HPLC pigments, chemotaxonomic analysis of phytoplank-
ton pigments was applied using the program CHEMTAX
(v1.95) with multiple starting points (Wright et al. 2009). The
seed ratio matrix provided by Suzuki et al. (2011) (Supporting
Information) was used for CHEMTAX analysis. Pigment data
were separated for three layers (surface—60% OD [n = 32],

Fig. 1. Sampling stations in the Oyashio region of the NW Pacific, super-
imposed on composite image (from 05 April 2007 to 11 April 2007) of
Chl a concentration derived from MODIS/aqua with 1 km resolution
(https://oceancolor.gsfc.nasa.gov). Star and closed white circles represent
the stations during the OECOS cruise in April 2007 and the BLOSSOM
cruises in May and June 2007, respectively. Black symbol represents the
sampling station (Stn. A6) conducted only 12 April 2007 when samples
for HPLC, PE curve experiment, and Fv/Fm measurements of overall phyto-
plankton assemblage were taken.

Isada et al. Iron availability to Oyashio spring bloom
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30–10% OD [n = 44], and 5–1% OD [n = 50]) and were ana-
lyzed respectively. A series of 60 pigment ratio matrices cre-
ated by randomly multiplying each ratio of the seed ratio
matrix was used to calculate the optimized initial matrices.
The average values of the six best output solutions were used
to determine the initial ratio matrix. Subsequently, the final
ratios matrix was calculated by CHEMTAX.

Identification and enumeration of diatoms
The seawater (500 mL) was stored in 0.2% (final concentra-

tion) neutralized paraformaldehyde at 4�C until enumeration
with scanning electron microscope (SEM, JMS-840A, JOEL) in
the laboratory on land. Preparation and analysis of samples
for SEM were carried out according to Hattori et al. (2004) and
Nosaka et al. (2017). An aliquot (5–20 mL) of the sample was
filtered through 1 μm pore size Nuclepore membrane filter
under a vacuum less than 0.026 MPa. The membrane filter
was rinsed with distilled water to remove all salt and then
dried for several hours in an oven between 40�C and 60�C.
Identification and enumeration of diatoms were made by SEM
with 1000X magnification. The half area of the membrane (>
20 mm2) was examined. However, when the number of cells
counted in the area was < 1000, the whole area was examined.
Diatoms species were identified following Tomas (1997).

Immunological assays for ferredoxin and flavodoxin
Samples were pre-filtered using 200 μm nylon mesh to

remove larger plankton and subsequently concentrated using
a 20 μm nylon mesh plankton net. Next, cells were filtered
onto 5 μm nylon mesh under low vacuum (< 0.0065 MPa),
rinsed from the nylon mesh with Whatman GF/F-filtered sea-
water, and centrifuged to concentrate into a pellet. Cell pellet
were stored in a deep freezer (−80�C) or in liquid nitrogen
until analysis on land. Fd and Fld proteins of micro-sized dia-
toms were analyzed following Suzuki et al. (2009, 2014) and
Hattori-Saito et al. (2010). The intensity of flavodoxin in each
band was normalized to that of the positive control for flavo-
doxin, which was derived from an Fe-deficient centric diatom
Thalassiosira nordenskioeldii isolated from the NW subarctic
Pacific (Suzuki et al. 2009).

Pulse amplitude modulation (PAM) fluorometry
measurement

Seawater samples (ca. 50 mL) of the entire phytoplankton
assemblages were dispensed into acid-cleaned amber polyeth-
ylene bottles to protect them from light and stored in the dark
at the sea surface temperature for ca. 30 min. Regarding sam-
ples for the total micro-sized phytoplankton, the cell pellets
collected in the same way as described above for immunologi-
cal Fd/Fld assay were suspended with Whatman GF/F-filtered
seawater and then transferred into acid-cleaned amber poly-
ethylene bottles. The minimum (F0) and maximum (Fm) fluo-
rescence of the samples was measured with a pulse amplitude
modulated fluorometer (Water-PAM, Heinz Walz GmbH). F0

and Fm were measured by the measuring light (peaking at
650 nm) and saturation pulse with the light intensity of
ca. 4000 μmol photons m−2 s−1 for 0.8 ms (peaking at
660 nm) of the PAM with red LEDs to estimate Fv/Fm. The
values of F0, Fm, and Fv/Fm were obtained with WinControl
software. The measurements were conducted two to four times
in each sample, and the obtained values were averaged accord-
ing to the methods of Suzuki et al. (2014).

Photosynthesis versus irradiance (PE) curve experiment
Incubation for examining PE parameters of the entire phyto-

plankton assemblage was performed using the 13C labeling
method (Hama et al. 1983). Seawater sampling, incubation, and
measurement of the particulate organic carbon (POC) and the
isotope ratio of 12C and 13C abundance of the sample using
mass spectrometer coupled with elemental analyzer (EA-MS)
were conducted following the procedures described by Isada
et al. (2013). Seawater samples dispended into 10 acid clean
polystyrene bottles (275 mL) were exposed to light intensities
ranging from 2 μmol photons m−2 s−1 to 3400 μmol photons
m−2 s−1 for surface samples and from 1 μmol photons m−2 s−1 to
380 μmol photons m−2 s−1 for the 5% OD samples over a 2 h
period at the sea surface temperature. Total dissolved inorganic
carbon (DIC) used to calculate the photosynthetic rates was
measured with a CO2 coulometer (CM5012, UIC) (Isada
et al. 2010). The photosynthetic rates were calculated according
to the method of Hama et al. (1983) and were normalized to the
Chl a concentration measured with HPLC. The calculated values
were fitted by the negative exponential function with photoin-
hibition proposed by Platt et al. (1980). Curve fitting was con-
ducted with the R software v. 3.5.0 (R Core Team 2018) using
the phytotools (Silsbe and Kromkamp 2012; Silsbe and Malkin
2015) package to obtain the Chl a specific maximum photosyn-
thetic rate (PBmax, mg C mg Chl a−1 h−1) and the initial slope of
the curve (αB, (mg C mg Chl a−1 h−1) (μmol photons m−2 s−1)−1)
Additionally, the light saturation index (Ek, μmol photons
m−2 s−1) and the maximum quantum yield for carbon fixation
(Φcmax, mol C mol photons−1) were calculated (i.e., Ek = PBmax/
αB and Φcmax = 0.0231αB/�a*ph). For the Φcmax calculation, the
spectrally weighted Chl a specific absorption coefficient of
phytoplankton at the wavelengths from 400 to 700 nm, �a*ph
(m2 mg Chl a−1), was calculated from the relative spectral irradi-
ance of the incubator lamp and the Chl a specific phytoplank-
ton absorption coefficient (a*ph(λ)), which was obtained from
Isada et al. (2010).

Water mass classification
To clarify the temporal changes in contributions of the

OYW, COW, and MKW to each water mass observed at Stn.
A5 during the OECOS cruise, the mixing ratio proposed by
Kono and Sato (2010) was calculated using the potential tem-
perature and salinity of these water masses (OYW: 0.994�C,
33.168, COW: 1.21�C, 32.847, MKW: 8.655�C, 33.837) as end-
members. However, the method cannot be applied to an
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observed water mass when temperature and salinity of the
observed water mass is not within the triangle created with
the end-members in a temperature–salinity (T–S) scatter
diagram (see Figs. 2–3) because of negative values of the ratio.
Then, water masses were simply categorized into OYW
(temperature < 7�C, salinity 33.0–33.7), COW (temperature <
2�C, salinity < 33.0), or MKW following Hanawa and Mitsu-
dera (1987) and Kusaka et al. (2013).

Statistical analyses
Shannon Wiener diversity index (H0) values were estimated

for the diatom species identified by SEM. Additionally, a hierar-
chical cluster analysis was used to categorize the diatom species
into specific groups. In this study, the cluster analysis based on
the diatoms abundance was performed using Bray–Curtis dis-
similarity and unweighted pair group method using arithmetic
averages (UPGMA). Redundancy analysis (RDA) was also per-
formed to examine the relationships between the cell concen-
trations of each diatom and the environmental variables at the
surface. Cell concentrations of each diatom species were used
as biotic variables. The environmental variables included tem-
perature, salinity, nitrate, phosphate, silicate, DFe, and mixed
layer depth (MLD) which was estimated using the threshold
values of potential density (Δσθ = 0.125) relative to those at
10 m depth (Levitus 1982; Suga et al. 2004). To eliminate the
effect of extreme data on ordination scores, all of these data
were log (x + 1) transformed before analysis. Kendall rank corre-
lation coefficient was calculated to examine the relationships
between biotic parameters (Chl a concentration, total diatom
abundance, cell concentrations of each diatom species, photo-
synthetic parameters, and flavodoxin (Fld) and environmental
variables including the mixing ratio. All statistical analyses were
conducted with the R software v. 3.5.0 (R Core Team 2018)
with psych (Revelle 2018) and vegan (Oksanen et al. 2018)
packages.

Results
Hydrography

Hydrographic condition, satellite images of SST and Chl
a concentration, and both macronutrient and iron concentra-
tions during the OECOS cruise are detailed in Kono and Sato
(2010), Nakayama et al. (2010), and Sugie et al. (2010) and
therefore are only briefly mentioned here. The hydrography
observed at the fixed station (Stn) A5 of the A-Line during
OECOS was not a consistent water mass (Table 1; Fig. 2). In the
beginning of OECOS cruise during 06 April 2007–12 April
2007, water masses at Stn. A5 were mainly occupied by COW.
Then, higher Chl a concentrations with the maximum 39 mg
m−3 and dissolved iron (DFe) concentrations were found within
the mixed layer, and the euphotic depth (Zeu) was shallow dur-
ing 06 April–07 April (Table 1; Fig. 2b). After that, the MKW flo-
wed into Stn. A5, and lower Chl a concentrations were found
especially between 13 April and 19 April. Subsequently, the

COW with higher Chl a concentrations was dominant again
between 20 April and 26 April. The MKW was encountered
again from 30 April to 01 May at the end of OECOS cruise
when Chl a levels were low, but macronutrients concentrations
were relatively high. The average value of DFe concentration
during OECOS was 0.31 � 0.11 nM (Table 1). The average of
daily photosynthetically available radiation (PAR) on deck dur-
ing OECOS was 38.3 � 9.9 mol photons m−2 d−1. Throughout
the OECOS cruise, Chl a levels were negatively correlated with
temperature (τ = −0.76, p < 0.001, n = 17), salinity (τ = −0.67,
p < 0.01, n = 17), and MLD (τ = −0.51, p < 0.05, n = 17). As a
result, Chl a concentrations were positively and negatively cor-
related with the contribution of COW and MKW to the
observed water masses, respectively (Table 3).

During the BLOSSOM cruises in May and June 2007, tem-
perature and salinity values of the observed water masses in the
surface layer (from the surface to ca. 50 m) were located outside
the triangle of three water masses in the T–S scatter diagram
(Fig. 3), indicating that water masses during BLOSSOM were
clearly distinct from those during OECOS and that the mixing
ratio analysis was not applicable to BLOSSOM data. Therefore,
water masses during BLOSSOM were classified following
Hanawa and Mitsudera (1987) and Kusaka et al. (2013). As a
result, all stations except at Stns. A4-6 in June and B4-4 in May
were categorized into the OYW (Table 1). Water mass at Stns.
A4-6 and B4-4 possessed higher temperature and salinity
values, so that those were categorized as MKW. Of stations cate-
gorized into the OYW, water masses at Stns. B1 and B2 (Fig. 3b,
c) in the eastern part of the Oyashio region were a consistent
water mass of OYW with relatively high surface temperatures
(Table 1). Chl a concentrations at these stations were relatively
low in early May 2007 (i.e., Stns. B1-4 and B2-4, Table 1),
although ample macronutrients were found. However, the Chl
a concentrations dramatically increased at these stations
(i.e., Stns. B1-5 and B2-5) after 5 d from the first observation,
despite almost the same hydrographic properties of OYW with
lower DFe concentrations (< 0.26 nM) at each station (Table 1).
At Stn. A4-4 of OYW in May, macronutrient concentrations
were equivalent to those at Stn. A5 during OECOS in April, but
Chl a and DFe concentrations were low. At Stns. B3-4 and B3-5
of OYW in May, macronutrient levels were relatively high, but
DFe concentrations were low.

Phytoplankton assemblages based on HPLC-CHEMTAX
analysis

Our HPLC–CHEMTAX results (Fig. 4) showed that diatoms
were the major phytoplankton group during OECOS. Contri-
butions of cryptophytes to the Chl a biomass during OECOS
were relatively high (ca. 10%) at both the surface and 5% OD
in 16 April–19 April and 29 April to 01 May when the station
was occupied by the MKW. Dinoflagellates tended to increase
gradually over time during OECOS. Phytoplankton composi-
tions during BLOSSOM differed from those during OECOS
(Fig. 4). Although diatoms were widely distributed at Stns. B1
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and B2 of a consistent water mass of OYW at both the surface
and 5% OD in May (i.e., Stns. B1-4, B1-5, B2-4, and B2-5), the
contributions to Chl a biomass of phytoplankton groups other
than diatoms increased at the surface in June. As revealed
from the pigment signatures, cyanobacteria occurred at all sta-
tions observed in June regardless of different water masses
(i.e., Stns. B1-6, B1-7, B2-6, B2-7, and A4-6).

Abundance and diversity of diatoms
At least 85 diatom species were identified by SEM in this

study (Table 2). Centric diatoms were predominant in this
study, compared with pennate diatoms (Fig. 5a,b). Higher cell
abundance was measured from 06 April 2007 to 08 April 2007
and 12 April 2007 at Stn. A5 during OECOS, when the COW
occupied the water mass. The sum of Thalasiossira anguste-

(a) (b)

(e) (f)

(c) (d)

Fig. 2. Temporal changes in (a) the vertical profiles of temperature and salinity measured by CTD and (b) the vertical profiles of Chl a concentrations
measured by fluorometry and the euphotic layer depth (Zeu) at Stn. A5 during the OECOS cruise from 05 April to 01 May 2007. Dashed lines in (a) and
black symbols in (b) represent salinity in intervals of 0.2 and Zeu, respectively. (c–f) Temperature–salinity diagrams from the surface to 100 m depth at
Stn. A5 during the OECOS cruise. Triangles with dashed line represent the definition area of the mixing ratio analysis using three water mass (OYW,
Oyashio water; COW, Coastal Oyashio water, and MKW, modified Kuroshio Water) proposed by Kono and Sato (2010).
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lineata, T. hyalina, T. nordenskioeldii, T. pacifica, and Thalasios-
sira spp. abundance accounted for ca. 40% of the total
diatoms during OECOS (Fig. 6a). Similarly, the relative
abundances of summed Chaetoceros compressus, C. debilis,
C. diadema, C. radicans, and Chaetoceros spp. accounted for
another ca. 40% of the total diatoms during OECOS. However,
the contribution of C. radicans to the total diatom abundance
was > 46% from 25 April to 01 May. The relative abundance
of Fragilariopsis spp. was somewhat enhanced in the MKW-
dominated waters in 13 April and 17 April. Throughout the
OECOS cruise, total diatom abundance and cell densities of
C. diadema and T. nordenskioeldii were positively correlated
with the composition of COW to the observed water masses
and negatively correlated with both MLD and the composi-
tion of MKW to the observed water masses (Table 3).

During BLOSSOM, abundance and composition of diatom
species dramatically varied spatially and temporally (Fig. 5b).
At Stns. B1 and B2 of a consistent water mass of OYW, diatom
cell abundance was relatively low in the first half of May
(Table 1). However, after 5 d of observations at these sites,

diatom abundance increased. Especially, the contribution of
Thalasiossira species to the total diatoms increased with values
reaching values similar to those in the beginning of OECOS
cruise. After that, higher abundances of diatoms were found at
these stations in June (Stns. B1-7 and B2-7). The values were
comparable to or higher than those observed in 06 April–08
April of the OECOS cruise, but the compositions of diatoms
between April and June were clearly distinct. C. debilis was
predominant among the diatom community at these stations
in June (Fig. 6b). Generally, Chaetoceros species became pre-
dominant at other stations of OYW (Stns. A4-4, A7-4, B3-4,
and B3-5) and at Stn. A4-7 and B4-4 of MKW (Fig. 6b).

Values of H0 for the diatoms species tended to decrease over
time during OECOS (Fig. 5c). Lower values were found in the
end of the cruise where the diatoms mainly consisted of
C. radicans. During BLOSSOM, the index values varied, rang-
ing from 0.8 to 2.6 (Fig. 5d). The values were low especially at
Stns. A7-4, B2-7 and B3-5 of OYW and at Stns. A4-6 and B4-4
of MKW where C. radicans and/or C. debilis principally domi-
nated diatoms abundance.

(a) (b)

(c) (d)

Fig. 3. Temperature–salinity diagrams at Stns. (a) both A4 and A7, (b) B1, (c) B2, and (d) both B3 and B4 during the BLOSSOM cruises in May and June
2007. Triangles are as in Fig. 2.
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Table 1. Summary of hydrographic data, Chl a concentration measured by fluorescence, mixing ratios of OYW, COW, and MKW to
the observed water masses during OECOS, and water mass classification based on Hanawa and Mitsudera (1987) during BLOSSOM at
5 m depth. Note that mixing ratios during OECOS were calculated with the data at 10 m depth to avoid the spikes of the CTD data
above the depth following Kono and Sato (2010) and dissolved iron (DFe) concentrations during the BLOSSOM cruise were obtained
from 10 m depth. Temp, temperature; MLD, mixed layer depth; Zeu, the euphotic layer depth; daily PAR, daily photosynthetically avail-
able radiation; NO3 + NO2, nitrite + nitrate; PO4, phosphate; Si(OH)4, silicate; Chl a, chlorophyll a concentration; OYW, Oyashio water;
COW, coastal Oyashio water; MKW, modified Kuroshio water.

Date

Temp Salinity MLD Zeu Daily PAR NO3 + NO2 PO4 Si(OH)4 DFe Chl a OYW COW MKW

(�C) (m) (m) (mol photons m−2 d−1) (μM) (μM) (μM) (nM) (mg m−3) (%) (%) (%)

OECOS (A5)

06 April 1.7 33.03 44 12 43.0 8.92 0.69 19.03 0.44 19.85 35.5 56.5 7.9

07 April 2.2 33.00 24 10 31.7 2.04 0.26 5.08 0.44 19.85 0.0 83.9 16.1

08 April 2.0 32.96 46 19 34.1 2.12 0.29 2.45 0.53 18.85 10.0 78.2 11.8

09 April 4.1 33.23 34 17 41.5 5.47 0.82 5.14 - 2.64 0.0 60.1 39.9

10 April 4.2 33.31 88 19 44.0 5.71 0.35 3.87 0.38 4.65 14.9 44.8 40.3

12 April 2.8 33.14 62 - 28.3 13.19 0.80 18.68 0.22 8.18 14.8 57.4 27.8

13 April 4.9 33.38 81 25 40.3 4.99 0.25 1.96 0.29 3.50 12.3 38.1 49.5

16 April 5.4 33.50 137 26 43.6 8.67 0.46 9.78 0.26 1.76 27.6 15.4 57.0

17 April 5.9 33.61 127 28 40.7 10.45 0.55 14.45 0.20 1.55 37.5 1.1 61.5

18 April 5.6 33.54 104 29 48.9 8.85 0.42 10.26 0.47 3.18 32.8 6.9 60.3

19 April 5.5 33.51 103 26 49.8 8.79 0.40 9.53 0.19 2.27 29.1 12.6 58.3

20 April 3.6 33.24 82 24 36.2 9.95 0.53 11.00 0.18 3.91 21.5 44.8 33.7

23 April 2.6 33.01 49 - 32.1 4.15 0.30 5.11 0.35 9.26 0.0 80.9 19.1

25 April 4.0 33.22 67 23 12.9 7.48 0.40 5.35 0.26 3.83 3.2 58.2 38.6

26 April 4.2 33.23 65 30 45.1 6.72 0.33 3.47 0.24 2.50 0.0 61.7 38.3

30 April 4.9 33.38 76 28 53.5 10.42 0.55 10.69 0.26 2.30 15.5 34.4 50.1

01 May 4.6 33.31 60 28 41.2 9.86 0.53 8.43 0.17 2.28 6.5 46.9 46.6

Station
(Date)

Temp Salinity MLD Zeu Daily PAR NO3 + NO2 PO4 Si(OH)4 DFe Chl a

Water mass
classification(�C) (m) (m)

(mol
photons
m−2 d−1) (μM) (μM) (μM) (nM) (mg m−3)

BLOSSOM2&3

A4-4 (13 May) 5.7 33.105 76 42 24.7 9.9 1.03 8.0 0.20 0.90 OYW

A4-6 (08 June) 14.4 33.959 10 45 39.0 0.1 0.16 0.7 0.11 0.78 MKW

A7-4 (12 May) 5.8 33.157 57 27 25.0 4.1 0.62 4.0 0.44 4.84 OYW

B1-4 (12 May) 2.5 33.060 70 43 25.0 23.3 1.93 44.8 0.26 1.20 OYW

B1-5 (17 May) 4.2 33.044 62 45 19.2 19.1 1.61 42.2 0.26 7.44 OYW

B1-6 (7 June) 6.1 33.011 14 21 36.4 18.0 1.59 37.7 0.15 2.82 OYW

B1-7 (12 June) 8.1 32.980 12 20 42.3 5.0 0.62 12.4 0.12 9.41 OYW

B2-4 (11 May) 4.6 33.163 36 25 10.3 19.3 1.67 36.3 0.16 1.82 OYW

B2-5 (16 May) 3.6 33.031 53 42 34.6 19.6 1.71 43.1 0.16 7.00 OYW

B2-6 (6 June) 7.0 33.375 20 38 52.9 19.3 1.71 39.1 0.20 0.95 OYW

B2-7 (12 June) 11.5 33.001 11 - 42.3 10.0 0.89 21.5 0.08 5.51 OYW

B3-4 (10 May) 4.8 33.395 44 47 12.0 20.2 1.73 38.7 0.17 1.06 OYW

B3-5 (17 May) 5.5 32.313 37 27 19.2 14.0 1.17 19.0 0.09 2.93 OYW

B4-4 (19 May) 11.9 33.308 44 35 11.3 4.9 0.45 9.6 0.12 2.67 MKW
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Cluster analysis (Fig. 7a) based on the diatom species
observed by SEM mainly classified the data set into the
OECOS and BLOSSOM groups. Of the OECOS cruise, data
obtained in 06 April–08 April and 12 April was categorized
into the same group. Data at Stns. B1-5 and B2-5 of OYW in
the middle of May during BLOSSOM were grouped with the
OECOS cluster because of the predominance of Thalassiosira
species. In the Redundancy analysis (RDA) for investigating
relationships between the abundance of each diatom species

and environmental factors (Fig. 7b), the first and second axes
explained 45% and 16% of the variation, respectively. Tem-
perature and DFe concentrations were the main environmen-
tal factors contributing to the formation of the first axis. The
second axis was mainly affected by MLD and salinity. During
OECOS, the diatom community was mainly affected by water
masses with lower temperatures and higher DFe concentra-
tions, especially in 06 April–08 April and 12 April, correspond-
ing with the high contribution of COW to the observed water

Table 3. Kendall rank correlations coefficients (τ) between the contributions of OYW, COW, and MKW to the observed water masses
as well as MLD and Chl a concentration, total cell density of diatoms, cell concentrations of the major diatom species described in Fig. 6a
during the OECOS cruise.

Chl a
Total cell
density C. compressus C. debilis C. diadema C. radicans

T. anguste
lineata T. hyalina T. nordenskioeldii T. pacifica

OYW −0.31 −0.31 −0.08 −0.28 −0.46 −0.40 0.01 −0.05 −0.27 −0.03
0.25 0.24 0.78 0.29 0.07 0.13 0.98 0.85 0.31 0.90

COW 0.59 0.57 0.42 0.49 0.71 0.50 0.22 0.31 0.56 0.33

p < 0.05 p < 0.05 0.10 0.06 p < 0.01 p < 0.05 0.42 0.24 p < 0.05 0.22

MKW −0.76 −0.65 −0.62 −0.52 −0.73 −0.45 −0.33 −0.44 −0.76 −0.44
p < 0.001 p < 0.01 p < 0.05 p < 0.05 p < 0.01 0.08 0.21 0.09 p < 0.001 0.09

MLD −0.59 −0.60 −0.60 −0.55 −0.68 −0.53 −0.22 −0.39 −0.61 −0.33
p < 0.05 p < 0.05 p < 0.05 p < 0.05 p < 0.01 p < 0.05 0.21 0.09 p < 0.05 0.09

Table 2. List of diatom species identified by SEM at 5 m during the OECOS and BLOSSOM cruises.

Centric diatoms Pennate diatoms

Actinoptychus senarius C. simplex Skeletonema costatum Cylindrotheca closterium

Asteromphalus elegans C. socialis Stephanopixis nipponica Fragilariopsis atlantica

A. flabellatus C. tenuissimus Stephanopyxis turris F. antarctica

A. hookeri Chaetoceros spp. Thalassiosira allenii F. cylindrus

A. hyalms Corethron criophilum T. anguste-lineata F. oceanica

Bacteriosira bathyomphala Coscinodiscus alboranii T. antarctica v. borealis Fragilariopsis spp.

Bacteriastrum comosum Cos. Granii T. eccentrica Nitzschia distans

B. delicatulum Cos. Gigas T. gracilis N. pelagica

B. hyalinum Dactyliosolen fragilissimus T. gravida Nitzschia spp.

Chaetoceros atlanticus Eucampia zodiacus T. hyalina Navicula spp.

C. compressus Eucampia sp. T. kushirensis Neodelphineis pelagica

C. concavicornis Hemiaulus hauckii T. lineata Neodenticula seminae

C. convolutus Lauderia annulata T. nordenskioeldii Pseudo-nitzschia delicatissima

C. curvisetus Leptocylindrus sp. T. osteropii Pseudo-nitzschia granii

C. debilis Minidiscus comicus T. pacifica Pseudo-nitzschia seriata

C. decipiens Odontella aurita T. rotula Pseudo-nitzschia spp.

C. diadema Proboscia alata T. trifulta Thalassiothrix longissima

C. dydimus Prosira gracilis Thalassiosira spp. Thalassionema nitzschioides

C. furcellatus Prosira pentaportula Thalassionema pseudonitzchioides

C. laciniosus Rhizosolenia hebetata Thalassionema sp.

C. neglectus R. hebetata, semispia

C. radicans R. acicularis

C. pseudocurvisetus Rhizosolenia sp.

C. similis
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masses. The rest of OECOS data were associated with higher
MLD and salinity. In contrast, the diatom assemblages
observed in the BLOSSOM cruises were not ordinated close to
the DFe vector.

Fd and Fld accumulation in micro-sized diatoms and Fv/Fm

in micro-sized phytoplankton
Ferredoxin (Fd, an iron-containing photosynthetic protein)

in micro-sized diatoms was not detected during both OECOS
and BLOSSOM cruises. Rather, flavodoxin (Fld, iron-free pro-
tein) was detected in these diatoms throughout the study
period except for the observations at Stns. A4-4 and A7-4 of
OYW in May (Fig. 8). Accumulation of Fld was high especially
in the middle of May (Stn. B1-5 and B2-5). A remarkable
decline in Fv/Fm of the micro-sized phytoplankton community
(Fv/Fm_Micro) was found from 06 April to 10 April during
OECOS. Then, the values of Fv/Fm_Micro fluctuated until

20 April and were consistently high after 23 April. During the
BLOSSOM cruises in May and June, higher Fv/Fm_Micro values
were found at Stns. B1 and B2 of a consistent water mass of
OYW in May (i.e., Stns. B1-4, B1-5, B2-4, and B2-5). Kendall
rank correlation coefficients using all data sets and the data set
of each cruise showed no significant relationship between Fld
and Fv/Fm_Micro and that none of the environmental variables
(temperature, salinity, macro-nutrients, and DFe) were statisti-
cally correlated to Fld or Fv/Fm_Micro.

PE parameters
Values of PBmax and αB showed approximately fourfold and

sixfold variations throughout the field campaigns, respectively
(Fig. 9a,b,e,f ). During OECOS, the parallel changes in PBmax

and αB were found at both the surface (R = 0.71, p < 0.01,
n = 15) and 5% OD (R = 0.84, p < 0.001, n = 13). As a result,
the variations in Ek at both depths were constant (surface;

(a)

(b)

Fig. 4. Composition of each phytoplankton group to Chl a concentration as estimated by HPLC-CHEMTAX analysis at (a) the surface and (b) 5% optical
depth (OD). Note that samples at Stns. A4-7, B2-7, B3-4, and B3-5 were taken from 10 m depth. COW and OYW with dashed lines in the x-axis indicate
the COW- and OYW dominant waters during the OECOS and BLOSSOM cruises, respectively. Blanks represent the MKW-dominated waters.
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115 � 31 μmol photons m−2 s−1, 5%LD; 77 � 13 μmol pho-
tons m−2 s−1), indicating Ek-independent variability of PE
parameters (Behrenfeld et al. 2008; Milligan et al. 2015). The
changes in PBmax and Ek showed a typical pattern of higher
PBmax and Ek values at the surface than those at 5% OD due to
photoacclimation (Wilcoxon signed rank test: PBmax, p < 0.01,
n = 23; Ek, p < 0.001, n = 23). The values of Fv/Fm for the over-
all phytoplankton assemblage and Φcmax at the surface also
varied widely (Fig. 9c,d,g,h). The values of Φcmax were high in
07 April and 12 April during OECOS and at Stns. B1-4 and
B2-4 in May during BLOSSOM. The lower Fv/Fm and Φcmax

values at the surface than at 5% OD were found during the
OECOS cruise (Wilcoxon signed rank test: Fv/Fm, p < 0.
05, n = 13; Φcmax, p < 0.01, n = 13). However, the differences
in Fv/Fm and Φcmax between the surface and 5% OD were not
statistically significant during the BLOSSOM cruises. Kendall
rank correlation coefficients showed significant relationships
between Fv/Fm and temperature or salinity at the surface (tem-
perature; τ = −0.65, p < 0.01, n = 16, salinity; τ = −0.53,
p < 0.05, n = 16) during OECOS. Consequently, the values of
Fv/Fm were positively and negatively correlated with the mix-
ing ratios of COW (τ = 0.57, p < 0.05, n = 16) and MKW
(τ = −0.60, p < 0.05, n = 16) during OECOS, respectively.
Other photosynthetic parameters during OECOS were not sig-
nificantly correlated with the environmental variables and
mixing ratios. During BLOSSOM, a significant relationship
between Φcmax and temperature at the surface (τ = −0.64,
p < 0.05, n = 10) was found. Variations in Fv/Fm and Φcmax as
well as �a*ph were significantly correlated with temperature
throughout the whole observations (Fv/Fm; τ = −0.50,
p < 0.01, n = 26, Φcmax; τ = −0.58, p < 0.01, n = 25, �a*ph;
τ = 0.56, p < 0.01, n = 25).

Discussion
Diatom community and Fe stress of large diatoms during
the spring bloom in the Oyashio region

Massive spring blooms (> 5 mg m−3 in Chl a biomass) were
found at Stn. A5 in April 2007 during the Eularian survey of
OECOS and at Stns. B1 and B2 from the middle of May to
June 2007 during spatiotemporal monitoring through the
BLOSSOM cruises. Our CHEMTAX results showed that dia-
toms were the major constituent of the populations through-
out our study period. The diatom species identified by SEM
consisted of a mixture of Thalassiosira and Chaetoceros species.
Previous studies also showed that these species were co-
dominant during the spring bloom in the Oyashio region
(Chiba et al. 2004; Tsuda et al. 2005; Hattori-Saito et al. 2010;
Suzuki et al. 2011; Nosaka et al. 2017). However, our high-
frequency observations revealed diatom taxa succession from
Thalassiosira spp. or a mixture of Thalassiosira and Chaetoceros
spp. to dominance by Chaetoceros spp. during both the OECOS
and BLOSSOM cruises from April to June 2007 (Fig. 6).
Shannon-Wiener index values for diatom taxa clearly

decreased from 25 April to 01 May during OECOS and were
relatively low at Stns. A4-6, A7-4, B2-7, B3-5, and B4-4 during
BLOSSOM (Fig. 5c,d). A common characteristic of these
stations was that Chaetoceros radicans and/or Chaetoceros debilis
were predominant among diatoms.

The relative abundance of cryptophytes and cyanobacteria
to the total phytoplankton increased post bloom, which is
consistent with previous studies based on CHEMTAX analysis
(Isada et al. 2009; Suzuki et al. 2011). During OECOS, contri-
bution of cryptophytes to the Chl a levels as estimated with
CHEMTAX were relatively high in high proportion of MKW
(Fig. 4), which was in good agreement with the cell abundance
of cryptophytes measured by flow cytometry from data taken
during OECOS (Sato and Furuya 2010).

Our extensive observations with an immunological Fd/Fld
assay showed flavodoxin accumulation without ferredoxin
detection throughout the spring bloom from April to June
2007 in all water masses observed in this study. Mesoscale
iron fertilization experiments in the eastern (SERIES) and west-
ern (SEEDS II) subarctic Pacific also showed that only flavo-
doxin was detected even after iron additions (Boyd et al. 2005;
Suzuki et al. 2009). Previous studies both in the field
(La Roche et al. 1996) and in laboratory experiments with cul-
tures (McKay et al. 1997; Davey and Geider 2001; Whitney
et al. 2011) demonstrate that Fld is expressed as an early-stage
response to Fe stress. Boyd et al. (1999) showed that the Fld
accumulation was remarkably alleviated at > ca. 1 nM DFe
concentration. During OECOS, although water masses affected
by the COW have higher DFe concentrations (Table 1) and
macro-nutrients were not depleted, DFe concentrations did
not exceed 0.53 nM. Nishioka et al. (2011) showed that the
COW during the winter season had higher DFe concentration
(up to 2.8 nM) compared with the OYW and MKW. Addition-
ally, Hattori-Saito et al. (2010) showed the accumulation of Fd
in micro-sized diatoms under high DFe concentration
(6.37 nM) at Stn. A4 before the spring bloom in 2005. There-
fore, our results suggested that the growth of micro-sized dia-
toms might be iron limited during spring bloom in the
Oyashio region. However, Marchetti et al. (2012) showed
based on comparative metatranscriptomics for identifying
iron-activated gene expression of diatoms at Ocean Station
Papa in the NE Pacific Ocean that transcription linked with
Fld gene expression were abundant in all libraries even after
iron addition, indicating that some or all diatoms continued
to use Fld for the photosynthetic electron transport (PET)
chain rather than transitioning fully to Fd. They suggested
that chronically iron-limited diatom communities do not use
ferredoxin or may have lost the gene for ferredoxin to adapt
to low Fe conditions. Additionally, Carradec et al. (2018)
investigated eukaryotic genes in the world ocean and found a
more constitutive expression of Fld for diatoms under all iron
conditions, suggesting that in contrast to other phytoplank-
ton groups (e.g., chlorophytes, haptophytes, and pelago-
phytes) with the flexible switching strategy of Fd/Fld, diatoms
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may be permanently adapted to use Fld. More information is
needed to evaluate whether micro-sized diatoms were stressed
or limited by iron deficiency in the Oyashio region.

Although significant relationships between Fld and both
photosynthetic parameters and environmental variables were
not found in this study, Fv/Fm and Φcmax gradually decreased
toward the end of the OECOS cruise (Fig. 9c,g), despite
hydrography showing that macro-nutrients were not depleted.
The decreases in Fv/Fm under macronutrient-replete, but possi-
bly iron limiting conditions during OECOS may be a conse-
quence of disconnected light-harvesting complexes (DLHCs)
acting in a photoprotective manner (Behrenfeld et al. 2006;
Behrenfeld and Milligan 2013). The DLHCs contain chloro-
phyll but are functionally disconnected from PSII, so that the
presence of these complexes should decrease apparent
assimilation efficiencies in measurements of productivity. The
DLHCs effect is expressed through Ek-independent variability
of PE parameters (Behrenfeld and Milligan 2013). Accordingly,
our Ek-independent variability observed during OECOS (see
“PE parameters” section) could be a consequence of iron stress
in the phytoplankton community. Similarly, previous studies
(Isada et al. 2009; Yoshie et al. 2010) showed Ek-independent
variability during the spring bloom in the Oyashio region. It is
known that the variability is accompanied by the allocation of
adenosine triphosphate (ATP) and nicotinamide adenine dinu-
cleotide phosphate (NADPH) made by PET chain in a coordi-
nated fashion to regulate the supply of photosynthate to the

Calvin-Benson cycle (Behrenfeld et al. 2008; Halsey
et al. 2010). Therefore, our results showing Ek-independent
variability during OECOS were consistent with an acclimation
strategy of diatoms for iron deficiency during the spring
bloom in the Oyashio region. However, Ek-independent
behavior does not necessarily result from DLHCs only. The
variability is largely affected by growth rate (Halsey
et al. 2010). Therefore, further study for evaluating iron-stress
of diatoms during spring bloom in the Oyashio region is
required.

The abundances of Fld during BLOSSOM were highly vari-
able. Low or zero Fld values at Stn. A4-4 of OYW and at Stn.
A4-6 and A7-4 of MKW could be related with the cross-
reactivity of the antibodies among diatom species (Hattori-
Saito et al. 2010). Pico- and nano-sized phytoplankton groups
were predominant at Stn. A4 during BLOSSOM (Isada
et al. 2010). Our CHEMTAX results (Fig. 4) also showed higher
contributions of phytoplankton other than diatoms to the
Chl a biomass during BLOSSOM. The abundances of Fld at
Stns. B1 and B2 of a consistent water mass of OYW (Figs. 3, 8)
from May to June 2007 were highly variable under low DFe
conditions (< 0.26 nM), but a strong significant relationship
between Fv/Fm and Φcmax at the surface was identified
(Fig. 10). These results indicated that the phytoplankton
assemblages regulated photosynthesis for acclimating to
changing environmental conditions as the bloom progressed,
possibly by changing allocation of electron flow to maintain

(a) (b)

(c) (d)

(e) (f)

Fig. 5. Changes in cell density of (a, b) centric and (c, d) pennate diatoms measured by a scanning electron microscope (SEM) and (e, f) Shannon
Weiner index (H0) during the OECOS and BLOSSOM cruises. COW and OYW with dashed lines are as in Fig. 4.
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optimal photosynthetic performance (Halsey et al. 2013; Law-
renz et al. 2013; Halsey and Jones 2015).

Spatial heterogeneity of the spring bloom in the Oyashio
region

Our high frequency sea observations also revealed spatio-
temporal heterogeneity of the spring diatom bloom in the
Oyashio region during 2007 (Table 1; Fig. 1). Although mas-
sive spring diatom blooms were found at Stn. A5 especially in
early April 2007, diatom blooms at Stns. B1 and B2 of OYW in
the eastern part of Oyashio region had not initiated until the
middle of May 2007. Generally, the spring bloom occurred
from April to May guided by the water-column stratification,
but magnitude and timing of the bloom varies from year to
year (Kasai et al. 1997; Saito et al. 2002; Okamoto et al. 2010;
Shiozaki et al. 2014).

Water properties at Stn. A5 during OECOS were highly
complex owing to varying contributions of COW, OYW, and
MKW (Table 1; Fig. 2, Kono and Sato 2010). We found that
Chl a concentration, total cell density of diatoms, and the
abundances of T. nordenskioeldii and C. diadema were posi-
tively and negatively correlated with the contribution of

COW and MKW to the observed water masses, respectively
(Table 3). Of the photosynthetic parameters we measured in
this study, Fv/Fm values for the total phytoplankton assem-
blages were positively and negatively correlated with the rela-
tive composition of COW and MKW, respectively (see “PE
parameters” section). Shinada et al. (1999a,b) showed the pre-
dominance of Thalassiosira spp. at the beginning of the spring
bloom in COW. Therefore, our results suggested that the mag-
nitude of the spring bloom in the Oyashio region in “April”
was strongly affected by intrusion of COW into offshore
region of the Oyashio region and was potentially diluted by
MKW. In fact, the distribution of the composite image of Chl
a concentration derived from MODIS/Aqua during 05 April
2007–11 April 2007 (Fig. 1) showed a southbound water mass
and elongated filaments with high Chl a level. Okamoto
et al. (2010) also showed, using 10-yr satellite ocean color and
altimeter data from 1998 to 2007, the southbound coastal
water having high Chl a concentration along the edges associ-
ated with mesoscale eddies. The sub-mesoscale processes can
affect physical and chemical dynamics (e.g., the intensity of
mixed layer depth, formation of fronts, and advection of
nutrients from the bottom), thereby influencing the

(a)

(b)

Fig. 6. Composition of major diatom species measured by SEM to total diatom cell density during the (a) OECOS and (b) BLOSSOM cruises. COW and
OYW with dashed lines are as in Fig. 4.
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patchiness of Chl a distribution and phytoplankton produc-
tivity (Falkowski et al. 1991; Gruber et al. 2011; Mahadevan
2016). Additionally, we found the negative correlations
between MLD and Chl a concentration, total cell density of
diatoms, and the abundances of T. nordenskioeldii and
C. diadema (Table 3). RDA results (Fig. 7b) also showed that
MLD was associated with the OECOS diatom species composi-
tion except for the water masses strongly affected by COW

(6, 7, 8, 12, and 23 April). Therefore, our results also suggested
that the elongated COW having higher Chl a concentrations
associated with mesoscale eddies was diluted by an encounter
with MKW having the deep MLD.

While the massive diatom bloom accompanied by COW
dynamics occurred at Stn. A5 in April 2007, intensive blooms
at Stns. B1 and B2 of OYW in the eastern part of the Oyashio
region were not found until the middle of May 2007. Our

(a) (b)

Fig. 7. (a) Result of cluster analysis with Bary–Curtis dissimilarity and UPGMA based on diatom species measured by SEM and (b) redundancy analysis
(RDA) ordination diagram relative to cell density of diatom species measured by SEM at the surface. Arrows in (b) refer to environmental variables (temp,
sea temperature; Sal, salinity; N, nitrate; P, phosphate; Si, silicate; DFe, dissolved iron, MLD; mixed layer depth). Numbers in (b) represent days in April
2007 during the OECOS cruise.

(a) (b)

Fig. 8. Changes in Fv/Fm of micro-sized phytoplankton and abundances of flavodoxin (Fld) of micro-sized diatoms at ca. 5 m depth during the (a)
OECOS and (b) BLOSSOM cruises. COW and OYW with dashed lines are as in Fig. 4.
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results were consistent with Argo float data collected during
the same period (Okamoto et al. 2010). The Argo data showed
that there was no bloom (< 1.5 mg m−3) in the eastern part of
Oyashio region during April 2007, but Chl a concentration
almost increased twofold from winter, explained by the criti-
cal depth hypothesis (Sverdrup 1953). However, from the mid-
dle of May to June 2007, we found that diatoms flourished

under low DFe concentrations (Table 1) at Stns. B1 and B2 of
OYW in the eastern part of Oyashio region. Interestingly,
although cluster analysis (Fig. 7a) based on diatom taxa
mainly classified Stns. B1-5 and B2-5 of OYW in the middle of
May into the OECOS group because of the predominance of
Thalassiosira species, our RDA results (Fig. 7b) indicated that
the different environmental factors were associated with the

(a) (b)

(c) (d)

(e) (f)

(g) (h)

Fig. 9. Changes in (a, b and e, f) maximum photosynthetic rate (PBmax), initial slope (αB) of the PE curve, the light saturation index (Ek), (c, d and g, h)
maximum photochemical efficiency (Fv/Fm) of the algal PSII and maximum quantum yield of carbon fixation in photosynthesis (Φcmax) at (a–d) the sur-
face and (e–h) 5% optical depth (OD) in this study. COW and OYW with dashed lines are as in Fig. 4.
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OECOS and BLOSSOM diatom species composition. Higher
DFe concentrations and lower temperatures, corresponding
with the high contribution of COW to the observed water
masses, affected the diatom community during OECOS,
especially on 06 April–08 April and 12 April. In contrast, the
diatom assemblages observed during BLOSSOM including
Stns. B1-5 and B2-5 of OYW were not correlated with DFe con-
centrations. These results indicated that diatoms in the OYW
possess different adaptation strategies for low iron conditions
as compared with diatoms in the water masses affected by
COW. Our findings suggested that iron mainly controls the
remarkable east–west contrast of Chl a concentration within
the Oyashio region and that both iron and other environmen-
tal factors affected the initiation of the spring bloom in the
eastern part of the Oyashio region. However, the main factors
regulating the initiation of the bloom in the eastern part of
the Oyashio region are still unclear because hydrographic
conditions of OYW at Stns. B1 and B2 in May 2007 were quite
similar before and after the intensive bloom (Table 1).

Conclusions
Our study highlights the importance of high resolution

water mass characterization in conjunction with detailed taxo-
nomic and physiological assessments of phytoplankton for
further understanding of marine ecosystems. High frequency
observations during spring in the Oyashio region showed that
a massive diatom bloom occurred in the water mass influ-
enced by the COW in April, whereas an intensive bloom was
not found until the middle of May in the OYW in the eastern
part of the Oyashio region. This was probably due to lower
DFe concentration in the OYW than in the COW. Other envi-
ronmental factors such as light availability (Saito and Tsuda
2003) and vertical dilution by winter mixing (Yoshie
et al. 2003) could also delay the intensive bloom initiation in
the eastern part of the Oyashio region where the influence of
coastal Oyashio water is small. This in turn led to the spatial

heterogeneity of the spring bloom in the Oyashio region.
Additionally, the spatial heterogeneity of the Oyashio spring
bloom could be related to different adaptive strategies to miti-
gate iron deficiency between diatom assemblages of the COW
and OYW. It is known that trace metals requirements are dis-
tinct between coastal and oceanic diatoms (Strzepek and
Harrison 2004; Peers and Price 2006). However, our immuno-
logical Fd/Fld assay could not be used as a diagnostic of Fe
deficiency in micro-sized diatoms during the spring bloom in
the Oyashio region. Recently, Chappell et al. (2015) proposed
alternative methods for evaluating iron limitation using the
genes encoding flavodoxin (FLDA1) and Fe-starvation induced
protein 3 (ISIP3). Marchetti et al. (2017) also proposed a new
index, the Pseudo-nitzschia Iron Limitation Index (Ps-n ILI),
based on a comparative transcriptomic approach using gene
sequences of ferritin (FTN), encoding the iron storage protein,
and iron-starvation-induced protein 2a (ISIP2a), encoding an
iron-concentrating protein. They suggested that chronically
iron-limited diatom communities do not use ferredoxin or
may have lost the gene for ferredoxin to adapt to low Fe con-
ditions. These approaches may lead to better understanding
for adaptation strategies of diatoms to variable Fe conditions
in the COW and OYW. Our results also emphasize the neces-
sity for further studying the seasonal and annual changes in
physicochemical properties and the composition and photo-
synthetic features of phytoplankton in the COW and OYW to
better understand blooming dynamics of the Oyashio
ecosystem.
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