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A novel model approach is proposed to estimate the spatiotemporal distribution of demand for free-floating carsharing. *e
proposed model is based on a Poisson regression model for right-censored data and estimates possibly time-varying demand rates
of small subareas of a service region based on booking data with spatiotemporal information on pickups and dropoffs of cars. *e
approach allows operators to gain insights into the spatiotemporal distribution of demand for their service and to estimate the loss
of demand due to unavailability of cars. Moreover, it can also be used as an input to improve the design of the service, through
relocation techniques or to analyze the service with macrosimulation models. In addition, the approach is applied to a case study
with real data.

1. Introduction

Carsharing is a collaborative mode of transportation that, if
used appropriately, can improve urban transport services
from a user and environmental perspective. Among the
environmental impacts that have attracted the attention of
scientists, we can include the reduction in vehicle kilometers
travelled [1], emission of pollutants (according to [2] up to
56% reduction), energy consumption [2], and congestion
[3]. Among the social impacts, it was highlighted the re-
duction of the number of privately owned vehicles
(according to [2] up to 13 vehicles could be replaced with
one shared car).

Carsharing may be classified into station-based and free-
floating systems [4]. In station-based systems, users start and
end their trip at stations distributed within the service re-
gion. In free-floating systems, in turn, users pick up a vehicle
parked near the origin of their trip using an app for booking
and end their trip by dropping the vehicle at some chosen
parking within the service region. In comparison, station-
based carsharing seems to be easier to operate because
vehicles are distributed in a few known locations, while free-

floating carsharing offers the user higher flexibility, and
therefore, vehicles are spread throughout the service region.

Due to its flexibility, free-floating carsharing often suffers
from a mismatch between the positioning of supply and the
orientation of demand; i.e., the dropoff places do not cor-
respond to where other users want to pick up the car [5].
*erefore, to operate free-floating carsharing efficiently by
positioning vehicles where demand exists, it is crucial to
know how demand is distributed across the service region.
*e contribution of this article is to develop an approach
specifically suited to estimate the spatiotemporal distribu-
tion of demand in free-floating carsharing systems.

*e challenges that carsharing research faces may be
attributable to the following three categories: (i) the defi-
nition of a transport system that is congenial to the needs of
users (trying to discover which these needs are), (ii) analysis
of the environmental impact of this service, and (iii) the
economic efficiency of the supply service (aligned with the
expected demand). Demand is a crucial input for tackling
any of these challenges, and therefore, we believe that a good
demand model estimation is essential for improving re-
search for free-floating carsharing systems.
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In this paper, we develop an approach to estimate the
spatiotemporal distribution of demand in a local free-
floating carsharing system. *ereby, we define the total
demand as the number of cars that would have been booked
in presence of an infinite number of available cars dis-
tributed across the service region, i.e., as the number of car
pickups (observed demand) plus the loss of demand due to
the unavailability of cars. However, this problem is com-
plex, as free-floating carsharing systems deal with signifi-
cant fluctuations in demand, depending on daytime and the
area of a city [6] and is stochastic since it varies even
between identical circumstances. In addition, demand can
hardly ever be measured directly. In most cases, we only
dispose of data on effective bookings, while data on pre-
maturely cancelled bookings are often unstructured or
incomplete. *erefore, the total demand needs to be es-
timated based on incomplete data, using additional as-
sumptions on how people search and decide for booking
cars and advanced statistical techniques. Our approach
requires the following four inputs, which we believe to be
available in most cases: (i) position and time of available
cars and pickup place and time, (ii) study area divided into
cells and time divided into intervals, with shape and di-
mension of the cells and the interval length being the model
inputs, (iii) assumptions on how users search and decide
for booking a car. Although our approach supports various
assumptions, we will assume that users start searching with
a preferred pickup place in mind and book only if a car is
available within a circle around that place, with the radius
of that circle being the model input, and (iv) specification of
a function for how the total demand varies across time,
including unknown parameters to be estimated from the
data. *is time function can include month, weekdays, and
daytime effects.

*e remaining part of the paper is structured as follows.
In Section 2, the relevant literature review is presented. *e
postulated statistical model to estimate the spatiotemporal
distribution of the total demand is described in Section 3. In
Section 4, the approach is tested on real data from a service
in a major city in Switzerland, and Section 5 summarizes the
work together with the conclusions.

2. Related Research

*e last 10 years of research have seen great growth in in-
terest in vehicle-sharing [7, 8], but there are still a lot of
questions that need to be addressed. *e main reason for
these unanswered questions is that vehicle sharing is still
missing flexible service strategies that can maintain a high
level of service and guarantee long-term profitability. In
addition, we summarize the literature on demand forecast
methods for vehicle-sharing services.

*is section is organized according to five approaches.
First, research that combines demand forecasting with re-
location strategies is discussed. *en, studies using multi-
agent simulation tools are described, followed by studies
based on the stated preferences of users. After, we focus on
studies that use statistical models to estimate demand, and
finally, selected research using neural networks and

techniques for censored data is presented. *e section ends
with the identification of the research gap that we try to fill
with this work.

2.1. DemandEstimationCombinedwith Relocation Strategies.
To be successful, carsharing requires the availability of re-
sources (in terms of available vehicles and available parking
spots) in the proximity of desired origin and destination of
a trip to keep the service attractive [9]. As introduced earlier,
our approach results in a loss of demand output that could
be used as an input for a free-floating user-based relocation
system, a solution for rebalancing the stochasticity of cars’
spatial distribution, orienting them towards the expected
demand. *e relocation problem is the most studied on the
carsharing’s supply side and has its first references in
[10, 11]. Further information about user-based relocation
approaches can be found in [12–16].

Some papers include both a relocation strategy and its
relative demand estimation methodology. Wang et al. [17],
for example, adapt a model of logistical inventory man-
agement, to forecast demand and relocate vehicles in a one-
way carsharing system. *is work focuses on the specific
forecasting method. Cucu et al. [18] check the balance be-
tween the stations, investigating them in relation to the time
of departure, the day of the week, the weather conditions,
and the traffic conditions associated with their addresses.
Stokkink and Geroliminis [9] develop a user-based vehicle
relocation approach through the incentivization of cus-
tomers and a predictive model for the state of the system
based on Markov chains, following the concepts of the
previous work of Repoux et al. [19]. *is approach is spe-
cifically designed for one-way station-based carsharing
systems, which are different from our free-floating case. In
this approach, the input demand for Markov chains is
computed using the approximation method described by
Raviv and Kolka [20]. Raviv’s method assumes that the
arrival processes of renters and returners are non-
homogeneous Poisson processes and estimates the rates
using an approximation of a user-defined function. Jian et al.
[21] develop a discrete choice model that includes vehicle
availability as a parameter that directly affects the user’s
mode. In this way, supply and demand are strictly linked
together. *e model aims to determine the optimal re-
location decisions to maximize the carsharing profit. *e
decisive variables are as follows: (i) number of vehicles
relocated from node i to j at time t, (ii) number of vehicles
available at node i at time t, (iii) number of users booking
one-way trips from node i to j at time t, and (iv) number of
users booking round trips from node i to j at time t. *is
work has an interesting supply-demand focus, but it is not
applied to free-floating carsharing, and as input, it also needs
the total travel demand of each origin-destination pair at
each time step (sum of demand from carsharing and other
transport services).

2.2. Activity-BasedMultiagent Simulations. A big fraction of
current platforms, used for demand estimation of new one-
way carsharing systems, is based on activity-based

2 Journal of Advanced Transportation



multiagent simulations, i.e., microscale computational
models for simulating the actions and interactions of au-
tonomous agents [22] that allowmodelling the interaction of
supply and demand. For station-based operators, Benarbia
et al. [23] propose an agent-based relocation strategy based
on real-time inventory control within the framework of
generalized stochastic Petri nets (PNs) and a discrete event
simulation. *e work of Balac et al. [24], using a multiagent
simulation tool (MATSim), investigates the effects of supply
on the demand of the existing round-trip carsharing (also
implemented in the one-way station-based). *e use of
MATSim with relocation agents is described by Paschke
et al. [25]. MATSim was also used by Ciari et al. [26] to
estimate the demand for one-way carsharing in the urban
area of Zurich. *is type of solution needs complex inputs,
such as the entire transport network (including public transit
scheduling) and population data, with which the daily plans
of each user will be generated. *is methodology analyses in
detail the convenience of carsharing for each user, shows the
potential demand for this service, and is useful for analyzing
the possible impact of new policies and new services. On the
other hand, however, it does not allow analyzing the posi-
tioning of the vehicles with respect to the users who actually
use the service. *e analysis tool is therefore more com-
plicated to set up than the one we will propose, and the goal
is slightly different. Furthermore, this type of demand es-
timation has not yet been carried out for free-floating
Carsharing.

2.3. Stated Preference Technique. Many of the initial studies
aimed at understanding the potential demand of station-
based carsharing in the urban modal split. For example,
Catalano et al. [27] calibrate a modal split model, by stating
the preference technique (SP). An overview of the literature
addressed until 2013 can be found in Jorge and Correia [28].
Until that time, demand estimation had been developed
almost exclusively for round-trip station-based carsharing.
Stated preferences technique is still used to catch behav-
ioural patterns, related to specific location. Recent examples
can be found in [29, 30]. Lately, Zhou et al. [31] have also
adopted a stated preference methodology to elicit con-
sumers’ valuation of vehicle self-driving capability, a factor
rarely examined in the literature. Regressionmodels indicate
that latent demand for this new technology is associated with
respondents’ travel patterns, demographics, values, lifestyles,
and environmental concern [32]. Stated preference tech-
niques provide real choice data on some individuals and can
then be translated to a larger scale of the same environment,
on the basis of a series of hypotheses. However, these
methods require time to assess the service, they are not
adaptable to territories with different characteristics, and
they do not provide information on the latent demand
related to vehicles’ positioning.

2.4. Regression Models. Descriptive statistics or regression
models may also be used for demand estimation. For ex-
ample, Wagner et al. [13] predict future demand for free-
floating carsharing, using neighbourhood data and point of

interest (POI) data.*e technique includes zero-inflated and
geographically weighted regression models, from which they
derive indicators for the area’s attractiveness. Willing et al.
[33] extend that approach, by additionally including daytime
and weekday effects in the model. Within this family of
methodologies, but without regression models, Gammelli
et al. [34] predict shared mobility demand by incorporating
the censored likelihood within a Gaussian process model,
with a censored likelihood function capable of handling
time-varying supply. Finally, Negahban [35] propose
a methodology that combines simulation, bootstrapping,
and subset selection to estimate the true demand in a bike-
sharing service. Between these approaches, only the last two
take into account how supply and demand are inter-
connected. Compared to the neural network approaches
listed as follows, they may also be less accurate to predict
future demand but easier to be applied in different scenarios.

2.5. Demand Forecasting Using Neural Networks. Neural
networks can provide accurate forecasts for future demand
but require a large number of parameters and context
validation to be set up. Furthermore, loss of demand due to
the unavailability of cars is rarely taken into account by
practical implementations. Wang et al. [36] study relevant
indicators affecting carsharing service’s demand at the op-
erational level and construct a microdemand forecasting
model for one-way electric carsharing systems, combining
long short-term memory networks with the Granger cau-
sality test [37]. Yu et al. [38] propose a new approach based
on deep learning techniques to assess the operation of
a station-based carsharing system. *ey employed long
short-termmemory (LSTM) structure to forecast short-term
future vehicle uses. Alencar et al. [39] evaluate seven state-
of-the-art forecasting models on a given free-floating car-
sharing service, highlighting the potential of each technique.
*e assessedmodels include ARIMA and SARIMA, prophet,
variants of boosting algorithms, and long short-term
memory (LSTM). Guidon et al. [40] apply Cox
proportional-hazards model and random survival forests to
a free-floating E-bike-sharing system, using locational
characteristics, weather, day of the week, and bikes in the
vicinity to predict the time to pick up for each zone. Huttel
et al. [41], instead, have addressed the problem of censored
mobility demand and proposed to estimate the entire dis-
tribution of latent mobility demand via multioutput cen-
sored quantile regression neural networks. *ese methods
try to model the reality but need parameterization and
a context-specific initial study.

2.6. Supply-Demand Interaction in the Analyzed Literature.
Many of the abovementioned studies ignore situations
where there are not enough vehicles available, in which case
a part of the demand is lost. Vehicle availability is a key
factor to attract new users for a carsharing service, and for
this reason, low availability can limit the creation of new
demand [42]. Demand for carsharing is difficult to model
since the availability of vehicles is intrinsically dependent on
the number of trips and vice versa [28]. *e supply-demand
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interaction for shared cars is illustrated by Li et al. [43], who
analyze a free-floating carsharing in a dynamic user equi-
librium model. Among the abovementioned studies, Stok-
kink and Geroliminis [9] and Repoux et al. [19] focus on the
loss of demand, Raviv et al. [20, 21, 24, 26] focus on how
supply influences demand, doing a step over the simple
supply-demand balance. Finally, Negahban [35]; Gammelli
et al. [34]; and Huttel et al. [41] (together with our work)
model the relationship between supply and demand, taking
into consideration the supply influence on the demand: they
do it by treating the number of pickups (the observed de-
mand) as a censored measurement of the total demand (the
number of pickups plus the loss of demand due to un-
availability of cars).

2.7. Related Research Conclusions. Data detail, accessibility
and reliability, high computational time, calibration, and
validation still remain major challenges for travel demand
estimation for carsharing systems [22]. Local characteristics
make it complex to standardize many of the listed methods.
For this reason, we tried to develop a method that is easy to
apply and ductile, keeping high reliability. *is ductility
allows future integration with an origin-destination com-
muting matrix (including the estimate of its carsharing
modal split). Between the listed methods, some are more
easily transferable than others, but we believe that ours
reaches a higher level of reapplication easiness, maintaining
convincing results. *is transferability does not limit high-
detail spatial and temporal analysis. Finally, this is also one
of the first carsharing demand estimation methods suited for
a free-floating service.

Carsharing with shared autonomous vehicles can pro-
vide the combined benefits of autonomous driving tech-
nology and access-based consumption [44]. *e advent of
self-driving vehicles will address carsharing’s problems re-
lated to parking and noncompetitive access times. Solving
these problems will make carsharing a service that will be
almost equal to the automated-vehicles taxi service. In these
future scenarios, users will not need to walk to pick a car that
is parked far from them, because the car will go towards their
position. *is means that the latent demand connected to
vehicles’ positioning (related to accessibility) will be highly
reduced, but it will still remain important to properly dis-
tribute cars following the expected demand, to further re-
duce the time from the request and the start of the trip.

*e problem that we reviewed does not have a resolution
methodology that is universally optimal, but a series of
parallel methodologies, to be used on the basis of the
characteristics and constraints of the analyzed service, the
availability of data, and the granularity and logic of the
desired outputs. *e methodology that we are presenting,
compared to the state of the art, brings together different
characteristics and allows making demand forecasts with
high resolution on free-floating carsharing services, using
few data as inputs. When total origin-destination demand
data is available, some of the analyzed works, such as the
study by Jian et al. [21], could also be used to integrate our
method and refine our output. To summarise the gap that we

want to fill, our methodology for carsharing total-demand
estimation covers the following four strengths: (1) suitability
(and application) of the model on a free-floating carsharing
system, (2) high temporal and spatial resolution, (3)
transferability due to a low amount of local-geography-
related inputs, and (4) computation of the loss of demand,
given a certain supply configuration. As far as we know,
previous studies never used methodologies that allowed
focusing in parallel on all of the four listed targets. We
believe that this combination of strengths makes the pro-
posed methodology a valuable tool for transportation re-
search, especially for contexts that require an agile
application and do not allow for time-consuming data
preparation.

3. Space-Time Model

We postulate and implement a statistical model to estimate
the total demand for cars of a free-floating carsharing system
at a given time and location within a service region. For this,
the service region is divided into a grid of disjoint, bounded,
and equally sized cells i � 1, 2, . . . , I and time is divided in
discrete, consecutive, and equally long intervals t � 1, . . . , T.
*e index i refers to a 2-dimensional square-shaped cell
defined by center coordinates (e.g., 47∘33′17″N 07∘35′26″E)
and a common side length (e.g., 250m) and t to the interval
[τt, τt + ∆t] with τt the time stamp (e.g., June 16, 2022, 08:00:
00) and ∆t the interval length (e.g., 1 hour). For illustration,
Figure 1 shows a discretization of a major city in Switzerland
into 222 adjacent cells with 500m side length.

Square-shaped cells are chosen for simplicity and be-
cause they can be scaled up easily to any region. *e model,
however, can use any other shaped cells, such as hexagons or
other shaped cells better adapted to the service region. *e
size of the cells should be chosen just small enough to allow
precise conclusions about the spatial distribution of the total
demand, but not smaller as smaller cell sizes will increase the
number of parameters and therewith the expected com-
putational complexity. For square-shaped cells, we recom-
mend to set the side lengths between 50m and 500m. *e
duration of the intervals, ∆t, should be as large as the total
demand can be assumed to be constant within the intervals,
which will be an implicit model assumption. Setting ∆t to
1 hour, as in our case study of Section 4, may be a good rule
of thumb.

*e variable of interest is the total demand for booking
a free-floating vehicle. Let Dit be a random variable for the
number of users considering booking a car at cell i and time
interval t. We assume that Dit is Poisson distributed with
rate λit∆t, so that Dit has the density f(dit) � (λit

∆t)
de− λit ∆t /d! and consequently the expectation

E(Dit) � λit ∆t. Note that, throughout this document, ran-
dom variables are denoted with capital letters and associated
observations with small letters.

*e total demand Dit is not directly observable, as when
vehicles are not available, the system does not register any
information of users looking for a vehicle. We try to estimate
the abovementioned rate λit based on the number of cars
available for rent, denoted by C and the number of pickups
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observed, denoted by P, in the proximity of cell i at interval t.
*e model accounts for four situations and is built se-
quentially: first, we formulate a model that predicts pickups
of available cars by linear combinations of the total demand
rates λit. Second, we extend that model by allowing the rates
λit to vary across time.*ird, we take into account situations
where the number of available cars was potentially in-
sufficient to satisfy the total demand. Fourth, a smoothing
approach is proposed to consider that neighboring cells are
expected to have a similar total demand and to simplify the
parameter estimation.

To build up the model, we first discuss specific small case
examples to outline the logic of how the model spatially links
the total demand rates with the observable pickups, and how
the model can deal with time-varying total demand. Af-
terwards, the model is generalized to any grid and extended
to situations where not enough cars are available.

3.1. Spatially Linking the Total Demand and Pickups. A
picked car at cell i and interval t (that is, pit � 1) does not
necessarily imply that the demand originates from cell i. It is
also possible that the user would have preferred to pickup
the car from an adjacent cell, where there was no car
available at the time. To model the number of pickups P as
a function of the total demand rates λit, we assume that users
have a preferred pickup cell (i.e., the origin of the demand)
but choose with equal probability any car standing in a cell
not further away than rmax (e.g., 500m) from that origin cell,
as measured by the distance between the centers of the cells.
If no car is close enough, the demand gets lost. Note that rmax
becomes operative only if the center-to-center distances of
neighboring cells are smaller than rmax, otherwise a pickup is
simply linked to the demand from the same cell.

*e rmax assumption is used for its simplicity, while the
following model can accept other assumptions better suited
for the considered problem. For example, rmax may be set to
different values across sections of the service region. *e
prerequisite for an alternative assumption is that it defines
for each cell i an according set of cells that could be the origin
of demand for a pickup from cell i. In practice, rmax is

generally unknown andmay be determined by using the rule
of thumb of Seign and Bogenberger [45] of about
300− 500m, by conducting a survey or by choosing rmax such
that a goodness of fit measure (such as the likelihood cri-
terion) is optimized.

Figure 2 shows a square grid with 5×5 cells and only one
car (or more than one) at cell 18. As an example, we ar-
bitrarily set rmax such that a picked up car can be assigned to
a demand from cell 18 or cells around. We call the corre-
sponding set of cells, which is highlighted in yellow in
Figure 2, as the demand area for cars in cell 18. If we assume
temporarily that the rate parameters do not vary over time
(i.e., λit ≡ λi) and the number of cars available in cell 18 is
higher than necessary to satisfy the total demand for cars
(i.e., C18,t >i∈ 12,13,...,24{ }Dit), then the expected number of
pickups from cell 18 is equal to the sum of the expected total
demand of the individual cells.

E P18,t  � E D12,t  + E D13,t  + . . . + E D24,t 

� λ12 + λ13 + . . . + λ24( ∆t.
(1)

Since the right hand of the above equation is a sum of
Poisson distributed random variables, P18,t is also Poisson
distributed with parameter (λ12 + λ13 + . . . + λ24)∆t (see
e.g., [46] Exercise 4.40). Given that the rmax assumption
holds, this equation collects all relevant information for
estimating the parameters λi for the situation shown in
Figure 2. *e demand of cells further away than rmax from
cell 18 cannot be served because there is no car in proximity,
and therefore, the situation does not provide information on
the corresponding parameters λit. In order to get estimates
for each of the parameters λit, we need to have several data of
various moments in time where each cell is part of a demand
area of a standing car. Otherwise, if a cell i is never part of
a demand area, then the corresponding parameters λit

cannot be identified.
In reality, users might have more than one vehicle in

their proximity. For example, Figure 3 presents a situation
where two cars are available, one at cell 9 and another at cell
18. Here, the demand areas around cells 9 and 18 overlap at
cells 13 and 14. To handle such situations, the total demand
rates from cells which have more than one vehicle at reach
(i.e., closer than rmax distance) may be split in half, such that
each of the two cells with vehicles obtains half of the total
demand rates. *is results in the following two equations for
the expected number of pickups:

E P9,t  �
λ3 + . . . + λ10 + λ13
2 + λ14/2 + λ15

 ∆t,

E P18,t  �
λ12 + λ13/2 + λ14
2 + λ17 + . . . + λ24

 ∆t.

(2)

Alternative rules for dividing cells of intersections of
demand areas could be considered. For example, if we be-
lieve that users always pick up the closest car, then we would
assign λ13,t to the cars of cell 18 and λ14,t to the cars of cell 9.
*erewith,

47.52°N

47.54°N

47.56°N

47.58°N

47.60°N

7.60°E 7.65°E7.55°E

Figure 1: Discretization of a service region in adjacent cells with
500m side length.
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E P9,t  � λ3 + . . . + λ10 + λ14 + λ15( ∆t,

E P18,t  � λ12 + λ13 + λ17 + . . . + λ24( ∆t.
(3)

It is not always possible to fully separate the demand
areas with the closest car rule. If, for example, the car of cell
18 in Figure 3 is moved to cell 17, then cell 13 has the same
distance to both cars. In these cases we split cell 13 in half as
in equation (2).

*e second step of the model accounts for total demand
variation across time. For example, total demand may
change between mornings and evenings and weekdays or
seasons. To account for these variations, we adapt the
equations from above with further parameters. For example,
suppose that the rates vary between weekdays (Monday–
Friday) and weekends (Saturday-Sunday) so that the total
demand rate of cell i is λi at weekdays and λi + β at weekends.
Let vt be an indicator with value 1 if time interval t cor-
responds to a weekend, and otherwise 0. Equation (2) for
pickups of cars from cell 9 with an additional weekend effect
extends to

E P9,t  �
λ3 + vtβ(  + . . . + λ10 + vtβ(  + λ13 + vtβ( 

2 + λ14 + vtβ( /2 + λ15 + vtβ( 
 ∆t

�
λ3 + . . . + λ10 + λ13
2 + λ14/2 + λ15

 ∆t + 8vtβ∆t.

(4)

3.2. Basic Model. Equation (4) refers to a specific situation for
the considered 5×5 grid and a simple specification for time
effects. For general situations, grids, and specifications for time
effects, we relate the total demand for available cars in some cell
j and time t with a linear combination of the expected total
demand of the individual cells at some at a chosen reference
time interval and a linear combination of further parameters
multiplied with time-related variables Z, as follows:

E Pjt  � 
I

i�1
ujtiE Dit(  � xT

jt λ + zT
jt β. (5)

Elements ujti indicate the share of the total demand rate
of cell i that is assigned to cars standing in cell j. *ey take
values between 0 and 1, and the sum over all cells j with
vehicles must be 1 (i.e., jujti � 1). *e linear predictor on
the right of equation (5) has two components. xjt and λ are
design and parameter vectors of length I (number of cells)
to predict the expected number of pickups of cars from cell
j for some reference time interval, and zjt and β are design
and parameter vectors of length P that take into account
time effects towards the reference time. For example,
expressing equations (4) with equation (5) yields
xT

jt � (0, 0,∆t,∆t, ∆t,∆t,∆t,∆t, 0, 0,∆t/2,Δt/2,∆t, 0, . . . , 0)

and zT
jt � 8vt∆t.

*e proposed model is quite flexible to estimate how
total demand is spatially distributed and which time effects
are taken into account. *e main restriction is that the
dependencies between the expected pickups and the possibly
time-varying total demand rates have to be linear regarding
the unknown parameters. *e linearity restriction is not as
limiting as it might appear at first sight. Nonlinear evolution
along time may be modeled using dummy variables or
polynomials that are still linear in its parameters. Section 4
presents a case study with real data to provide a hands-on
specification.

If we assume that the number of cars is always sufficient
to satisfy the total demand of the corresponding demand
areas, then the parameters λ and β can be estimated using
tools for Poisson regression models, such as maximum
likelihood estimation. For some cell j with cars at interval t,
the probability of the observed number of pickups pjt is as
follows:

P Pjt � pjt  �
xT

jt λ + zT
jt β 

pjte− xT
jt
λ+zT

jt
β 

pjt!
, (6)
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Figure 2: Example situation in a 5 × 5 grid with cars at cell 18 and
the according demand area (yellow).
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Figure 3: Example situation in a 5 × 5 grid with cars at cells 9 and
18 and the according demand areas (orange and yellow).
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and λ and β can be estimated by maximizing


T
t�1j∈ i | cit > 0{ }P(Pjt � pjt), with cit the number of cars

available for booking in cell i and interval t.
*e assumption that the number of cars available is

always sufficient to satisfy the total demand from the
according demand areas may be realistic if ∆t is chosen small
enough to not expect more than one pickup within the time
intervals. In general, however, this assumption does not
hold, e.g., when two users want to book the same and only
car available practically at the same time. Moreover,
bypassing the assumption by decreasing ∆t blows up the data
volume and therewith increases the already considerable
computational effort for estimation even more.

Using a Poisson model for right censored data [47]
allows to account for situations where the total demand
possibly exceeded the number of available cars.*e censored
Poisson model assigns different probabilities depending on
whether the number of pickups is smaller or equal to the
number of available cars: In the first case, we assume that the
demand was fully satisfied and compute its probability using
the Poisson density function. In the second case, where the
number of picked cars equals the number of available cars,
we assume that the number of picked cars is right censored,
i.e., could have been larger if there were more cars available.
*erefore, we compute its probability as the cumulative
Poisson density function from the number of picked cars to
infinity. Expressed mathematically,

P Pjt � pjt  �

P 
I

i�1
ujtiDit

⎡⎣ ⎤⎦ � pjt
⎛⎝ ⎞⎠ �

xT
jtλ + zT

jtβ 
pjte− xT

jt
λ+zT

jt
β 

pjt!
, if cit >pit,

P 
I

i�1
ujtiDit

⎡⎣ ⎤⎦≥pjt
⎛⎝ ⎞⎠ � 1 − 

pjt − 1

b�0

xT
jtλ + zT

jtβ 
b
e− xT

jt
λ+zT

jt
β 

b!
, otherwise.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(7)

Estimations for λ and β can be obtained by maximizing
the log-likelihood,

l(λ, β) � 
T

t�1


j∈ i cit| >0{ }

log
xT

jtλ + zT
jtβ 

pjte− xT
jt
λ+zT

jt
β 

pjt!

⎛⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎠

1 cit>pit( )

+ 1 − 

pjt − 1

b�0

xT
jtλ + zT

jtβ 
b
e− xT

jt
λ+zT

jt
β 

b!

⎛⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎠

1 cit�pit( )
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (8)

Since no closed form solution exists to maximize
equation (8), we developed a gradient-based imple-
mentation in R [48] based on the optimizer function
nlminb() [49]. *e implementation allows the parameters
λ (and possibly β) to be log-transformed to avoid negative
estimates for rate parameters and automatically drops λi

parameters associated with cells that never were in a de-
mand area and therefore cannot be assessed. *e esti-
mating equations and the developed R functions are
available on request.

3.3. Smoothing. *e postulated model does not assume any
relationship between total demand rates from adjacent cells.
In general, it is reasonable to think that adjacent cells might
have similar rates, or that the spatial distribution of these
parameters should change smoothly across the service re-
gion. Only in particular cases, like geographical circum-
stances (e.g., a river) or other demand singularities (e.g.,
location of a big demand attractor), the total demand rate
parameters might experience an abrupt spatial change.

We propose to use a kernel smoothing approach (e.g.,
[50] Chapter 6) to construct dependencies between the total
demand rate parameters. *e idea is to estimate “pseudo”
total demand rates λk for K< I chosen supporting points,
and calculate the total demand rates λi of the I cells as
weighted sums of these λk, that is,

λi � 
K

k�1
wik

λk � wi
λ,with 

K

k�1
wik � 1. (9)

Figure 4 shows as an example the use of K � 9 nine
supporting points for a grid with 5×5 cells. *e supporting
points are located at the edges of the cells, which is not
a requirement.

Any kernel function can be used to compute the weights
wik, such as the Epanechnikov [51] or the Gaussian kernel.
We propose an implementation that uses higher weights if
a supporting point is closer to cell i: let rik be the euclidean
distance between the center coordinates of cell i and the
support point k. Using the standard Gaussian kernel, the wik

are computed as follows:
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wik �
ϕ rik( 


K
k�1 ϕ rik( 

,

ϕ rik(  �
e− r2

ik
/2

���
2 π

√ .

(10)

Now, we can rewrite the linear predictor of our model to
the following equation:

xT
jt λ + zT

jt β � xT
jt W λ + zT

jt β,withW �

wT
1

⋮

wT
I

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, (11)

which is again linear in its parameters λ and β and can be
estimated with the previously described tools.

*e simulation studies in the Appendix show that es-
timates for λ from the smoothing approach can have lower
variance than those from the original model, due to the
smaller number of unknown parameters involved. *e
downsides of this are potential biases for the λis, which can
also be seen in the Appendix.

*e smoothing approach involves specifying the location
and the number of supporting points. An equally-spaced
grid is used most frequently, for simplicity reasons. More
supporting points allow capturing demand distributions
with finer structures [52] but decrease the wiggliness and
increase the computational effort. A practical imple-
mentation is provided in Section 4.

4. Case Study

We consider data provided by the Swiss commercial com-
pany Mobility (https://www.mobility.ch) from their so-
called Mobility-Go free-floating carsharing service in
a major city of Switzerland during 2021, where the service
was operated with about 128 cars. *e raw data consisted of
28,682 records on individual rentals without service trips
and include information on the vehicle number, co-
ordinates, and time stamps of the pickup and dropoff. To

discretize space and time, each record was assigned to one of
747 cells of 250m side length, based on the pickup co-
ordinates, and to one of 8,759 hourly intervals (e.g., June 16,
8 to 9 o’clock) based on the pickup time. *e number of cars
available for an interval was computed as the number of cars
at the beginning of that interval plus the number of cars
dropped during the interval.

4.1. Descriptive Analysis. To provide an overview of the used
data, we divided Basel into nine equally sized districts, di-
vided according to the cardinal direction from the center of
the city. Figure 5 shows the average number of pickups per
hour along daytime, weekdays, and months for each area,
together with the average of the nine districts.

Daytime presents a classical temporal demand pattern
with few demands during night period (below 0.2 PU/h per
district), a first strong increase in the morning between 7:00
and 9:00, and a moderated continuous increase until the
daily peak at 19:30 in the afternoon. *e values are higher in
the afternoon because the graph also includes nonworking
days. If we only consider working days, this daytime profile
is much more balanced between morning and afternoon.

Regarding the days of the week, we can see that, as
expected, Saturday is the busiest day with about 0.45 pickups
per hour and area, followed by Friday and Sunday. For
workdays, we see a slight growth fromMonday to*ursday,
while we could have expected a flat profile for these days.
Along the months, we see a tendency of higher values in cold
months and lower values during summer. *e relative
maximum in May is not self-explicative, but it is important
to remember that from this graph, we can extrapolate little
information, considering that we have a one-time pattern
and not a pattern that was repeated many times, such as the
daily profile. *e pattern along the months could have been
influenced by factors such as pricing, policies, information
campaigns, or the COVID-19 pandemic that was still rel-
evant in 2021.

*e nine districts into which we divided the city differ in
some cases from the average profile, both in terms of fre-
quency and in terms of profile shape. Readers can examine
Figure 5 to understand differences between the districts.

As mentioned above (Section 2), some relocation models
(classified as nonpredictive) rely on few indicators to
characterize the demand. Reiss and Bogenberger [53] used
three indicators for each district to detect the attractiveness
of a district: demand factor, origin-destination factor, and
idle times. Here, we check the balance between supply and
demand in the nine districts by using their demand factor,
which is defined as the ratio between rentals and vehicles in
a district.

In Table 1, we can consider the demand factor as a pa-
rameter to evaluate where relocation should be carried out
(from the districts with many cars and low demand factor to
the districts with a high demand factor). We note that the
south-west and north-west districts have higher availabilities
of cars than the center, despite having a considerably lower
number of pickups. Candidates for receiving cars through
relocation are the center and the north districts, exhibiting

Figure 4: Example of K � 9 supporting points (red) for a grid with
5 × 5 cells.
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with 84% and 77% the highest ratios between pickups made
and car availability. On the contrary, the south-east district
has, in average, twice as much cars available than car pickups
and is therefore the best candidate to take cars away for
relocation. Here, the demand factor is applied on a large
scale but could give further information if applied to smaller
districts. Similar conclusions on relocation can be obtained
from the proposed modelling approach applied in the
subsequent analyses, which uses a much more detailed
spatial resolution by design.

4.2. Spatio-Temporal Model Specifications. In this section,
a spatiotemporal model is estimated based on the previously
described data. Based on Seign and Bogenberger [45] sug-
gesting that cars should be available within 300− 500m
walking distance, we set rmax � 500m for all models. *is
implies that users book a car only if they find an available
vehicle not further away than 500m from the preferred cell,
as measured by the distance between the centers of the cells.
Furthermore, we assumed the total demand rates to vary
across months (Jan, Feb, . . ., Dec), weekdays (Mon, Tue, . . .,
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Figure 5: Average number of car pickups per hour for the mobility-go data 2021, along daytime, weekday, and month and separately by
9 self-defined districts of the city (south-west). *e black line represents the average of the 9 colored lines.

Table 1: Daily average of the number of pickups (P), number of cars available (C) for rent, and demand factor (P/C) by district and average
over the districts.

South-west West North-west South Center North South-east East North-east All-district
average

Pickups 7.24 11.24 9.17 13.62 10.79 7.71 5.87 7.28 3.82 8.53
Cars 13.69 16.27 12.85 19.67 12.77 9.95 11.99 10.79 6.93 12.77
Pickups/cars 0.53 0.69 0.71 0.69 0.84 0.77 0.49 0.67 0.55 0.66
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Sun), and day intervals (night: [0–6), morning: [6–12), af-
ternoon: [12–18), and evening: [18–24)). Such time effects
were implemented with dummy variables, where the ref-
erence categories (September, Monday, and night) refer to
the interval with the lowest average number of pickups.
Using the dummy variable specification allows to deal with
nonlinear evolution across time, which can be identified
from Figure 5.

We implemented four specifications of the proposed
model (M1 to M4), which differ by how overlaps of demand
areas treated (cf. Section 3, Spatially linking the total demand
and pickups), and whether or not smoothing (cf. Section 3,
smoothing) was applied. *e models M1 and M2 use
overlapping demand areas (total demand rates from cells
which have more than one vehicle at reach are distributed
evenly across the intersecting demand areas), whereas M3
and M4 use the closest car demand areas (total demand rates
are assigned, whenever possible, to the demand area of the
closest car). Smoothing was applied only on the models M2
and M4. A grid of 81 uniformly spread supporting points
was used for smoothing, reducing the total number of
unknown parameters from 767 to 101.

To estimate the models, corresponding design vectors xjt

and zjt had to be prepared based on the stated assumptions
for the demand areas around cars and time effects.
Smoothing additionally required the preparation of the
weights w, see equation (11).

*e number of unknown parameters is 767 for basic
models (747 one for each zone and 20 temporal parameters)
and 101 for smoothing models. For estimation, all param-
eters λ and β were estimated on the log scale. *is ensures
the estimated total demand rates to be always larger
than zero.

4.3. Spatial Distribution of the Total Demand Rates.
Figure 6 shows the estimated λ coefficients, which refer to
the estimated total demand rates (per hour) at a Monday in
September 2021 from 0 to 6 o’clock AM.Most obvious is that
basic models result a patchwork of estimated rates, while
smoothing models do not. Comparing the two basic models,
it can be seen that overlapping demand areas result in more
peaks than the closest car demand areas. *is may be related
to our findings from the simulation studies in the Appendix,
pursuant to which the total demand rate estimates of
overlapping demand areas have higher variance, see
Figure 7.

Figure 3 exhibits that the basic models may not be able to
estimate the total demand rates for all cells, see the black
squares in the north-east. *is is because there was never
a car available for rent within circle rmax around these cells.
Smoothing results estimates for these cells; however, these
estimates should be interpreted carefully since kernel
smoothing approaches are known for boundary bias (e.g.,
[50] Sec. 6.1).

In terms of model fit, we found that the log-likelihood,
the Akaike information criterion [54], the root mean
squared error (RMSE), and the mean absolute error (MAE)
of the basic models are slightly superior to smoothing, see

Table 2. While the superiority of the basic model regarding
the log-likelihood, RMSE, and MAE was expected because
the smoothing models are merely restricted submodels with
fewer parameters, the superiority regarding the AIC in-
dicates that the smoothing is too strong and should be
improved, e.g., by adding supporting points or placing them
more efficiently. Furthermore, the models M1 and M2 with
overlapping demand areas perform insignificantly better
than the according models M3 and M4 with closest car
demand areas regarding the log-likelihood, AIC, and RMSE,
but insignificantly worse regarding the MAE.

Figure 8 shows the estimated total demand rates of the
model M2 with overlapping demand areas and smoothing,
which is the best among the smoothing models according
to the log-likelihood. Figure 8 is identical to the top right
plot of Figure 6, but with a finer color scale to facilitate
closer examinations. *e plot highlights two regions with
higher total demand within the center of the service re-
gion, which can be attributed to regions close of the train
station and the old town, and two local peaks at north-east
and south-east.

Figures 6 and 8 present the estimated distribution of the
total demand rates for the reference time Monday in Sep-
tember 2021 from 0 to 6 o’clock AM. *e time effects
discussed as follows allow total demand rates to vary over
time, e.g., because the demand might vary across weekdays.
However, because the considered models assume that time
effects are constant across the whole service region, the
estimated spatial distribution will not change and only the
rates will be increased in every cell by the same factor.

4.4. Temporal Distribution of Total Demand Rates.
Figure 9 shows the estimates of the four models regarding
the three considered types of time effects. *e shape of the
coefficients along time is very similar between the four
models. *e plot on month effects on the top left reveals that
the total demand was highest in January, and there was
a temporary peak in May–June. We expect this pattern to be
related to the COVID-19 pandemic and to not be repeated in
2022. Estimates for weekday and daytime effects can better
accommodate the expected: We find a clear peak for total
demand on Saturdays, and higher total demand at afternoon
and evenings than at night and mornings.

Some coefficients almost reach value zero, which is the
lowest possible value due to estimating the coefficients on
the log scale. *is is especially notable for month effects
where the estimates indicate that the total demand of July,
August, October, and November was practically the same as
in the reference month September. To find out if those
estimates with values close to 0 relate to convergence dif-
ficulties, we used different optimizer routines and applied
a number of small model modifications, such as changing
the reference categories and the side lengths of the cells.
However, the optimizer routines reported to converge, and
the model modifications did neither clear out the close-
to-zero coefficients nor change the findings for time effects
fundamentally. Moreover, the order of the estimated time
effects is consistent with the results from the descriptive
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analyses, cf. Figure 9. For these reasons, we assume that the
estimated coefficients are reliable.

4.5. Loss of Demand. *e estimated models may be used to
estimate the loss of demand. In line with our model, we
distinguish between the following two types of loss of
demand:

(1) No cars in proximity: In situations where there is no
offer, the entire demand gets lost. For some cell i and
time interval t that is further away than rmax from the
nearest cell with cars, we estimate this type of loss of
demand as l

(1)

it � λi + zT
it

β, i.e., as the estimated total
demand at the baseline setting (in our case: Mondays
in September 2021, 0 to 6 o’clock AM) plus the
estimated time effect for interval t.

(2) Not enough cars in proximity: In situations where all
available cares are picked up, loss of demand occurs
because more cars could have been rented with
a larger offer. Consider some cell j with cjt > 0 cars

and pjt � cjt pickups at time t. *e conditional
expectation for the total demand Djt is in this
situation

E Djt Djt

 ≥pjt  �

∞
k�pjt

k · P Djt � k 

P Djt ≥pjt 
, (12)

(3) where the model estimate for P(Djt � k) is
P(Djt � k) � (xT

jt
λ + zT

jt
β)ke− (xT

jt
λ+zT

jt
β)/k!. *erefore,

we estimate this type of loss of demand as
l

(2)

jt � E(Djt | Djt ≥pjt) − pjt, i.e., the estimated
conditional expectation minus the number of
pickups. *e peculiarity of this type of loss of de-
mand is that our model implies that it cannot solely
be attributed to cell j, but to all cells not further away
than rmax from cell j. However, we did not find an
analytical formula of how to divide l

(2)

jt to the
neighboring cells, and therefore, they are attributed

M1 : Overlapping demand areas, basic M2 : Overlapping demand areas, smoothing

M3 : Closest car demand areas, basic M4 : Closest car demand areas, smoothing
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Figure 6: Estimated spatial distribution of total demand rates per hour for renting cars at the baseline setting (Mondays in September 2021,
0 to 6 o’clock AM) from the different models M1 to M4.
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to the cell j car in the following results. It should be
noted that in the presented case study this second
type of loss of demand is practically negligible
compared to the first type.

*e two proposed estimates for loss of demand above
refer to the number of cars not rented by the carsharing
system compared to the same system with the same demand
but an infinite number of cars available. *e following re-
sults on the estimated loss of demand are based on model
M2 (overlapping demand areas and smoothing) and the
2021 data used for estimating the model.

For the entire service region, we estimated an average
loss of demand of 14.2 cars per day, thereof 12.9 because
there were no cars in proximity, and 1.31 because there were
not enough cars in proximity. Compared to the average
number of pickups per day of 77.0, this means that the
number of rentals could be increased by about 18.5% by
providing an unlimited number of cars, assuming that in-
creased offer would not increase the demand.

To detect the loss of demand locally, Figure 10 shows the
spatial distribution of the average loss of demand per day,
based on the model M2. According to Figure 10, loss of
demand is especially pronounced in the center of the city
and not exactly at the total demand peaks situated on the left
and bottom of the center, see Figure 8 (Figure 10).
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Figure 7: Simulation results on comparing the baseline with alternative scenarios (smoothing and specification of demand areas): estimated
parameters (boxplots) and according true values (red).

Table 2: Goodness of fit measures of the models M1 to M4.

Models # Parameters Log-likelihood AIC RMSE MAE
M1: overlapping, basic 754 − 117605 236719 0.032080 0.06298
M2: overlapping, smooth 101 − 117612 236732 0.032214 0.06316
M3: closest car, basic 754 − 118920 238043 0.032084 0.06294
M4: closest car, smoothing 101 − 119030 238261 0.032222 0.06313
*e RMSE and the MAE were computed using the differences between the observed and the expected number of pickups for each cell and interval with cars,
pjt − EM

(Pjt | cjt).
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Figure 8: Estimated spatial distribution of total demand rates per
hour for renting cars at the baseline setting (Mondays in September
2021, 0 to 6 o’clock AM). Same as top right panel in Figure 6, but
with adjusted color scale.
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M1: Overlapping, basic
M2: Overlapping, smooth

M3: Closest car, basic
M4: Closest car, smoothing
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Figure 11: Used total demand rates for the simulation study. (a) Spatial distribution of the demand rates on weekdays between 0 and 18
o’clock. (b) *e same demand rates along the cell numbers and effects for evenings (time.eve) and weekend days (time.we).
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Figure 12: Simulation results for the baseline scenario: estimated parameters (boxplots, black) and according true values (red).
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5. Summary and Conclusions

*is article proposes a novel model approach to estimate the
spatial and temporal distribution of total demand rates for
free-floating carsharing. *e proposed model is based on
a Poisson regression model for right censored data and
estimates possibly time-varying demand rates of discrete
cells of the service region based on booking data with
spatiotemporal information on pickups and dropoffs of cars.
*e model is quite flexible as it can accommodate various
shapes of cells of selectable size and different temporal ef-
fects. *e model was successfully applied for a case study in
a major city of Switzerland with data from year 2021.

*e proposed model is useful for the following purposes:
first, the model provides insights to operators on how total
demand was spatially distributed and evolved over time.*is
insight can hardly be gained using simple descriptive sta-
tistics, because total demand is often not directly observable
and therefore must be estimated using auxiliary variables
such as the number of pickups, and an advanced modelling
technique such as regression. Second, themodel may be used
to estimate the loss of demand due to unavailability of cars.
*ese insights may prove useful to designate convenient
dropoff places in incentive schemes for user-based re-
locations or to extract input parameters for macrosimulation
models.

5.1. Limitations. *e total demand rates estimated with our
approach refer to the free-floating carsharing service that
provided the data. *erefore, for competitive situations with
multiple services, they cannot be interpreted as the global
demand rates of the considered service region. If global

demand rates are of interest, the model must be estimated
using data that combine the competing services. Moreover,
the estimated total demand rates do not take into account for
other transport services such as public transport. *erefore,
they refer to a given split of available transport services and
may be sensitive towards launches or discontinuations of
other transport services.

5.2. Future Work. Further investigations could focus on
practical aspects of the model. Implementations for larger
and more frequented service regions would help to define
the scope of our approach and to improve guidelines for
model specification. Furthermore, operators may be in-
terested into forecasting future total demand. Forecasting
involves extrapolation and has yet not been elaborated with
our model approach, partly because it seemed difficult to be
implemented for data from the COVID-19 era. A forecasting
approach should additionally take into account for auxiliary
predictor variables such as weather and should be able to
deal with temporal correlation (e.g., by using a model with
autoregressive errors) to provide reliable prediction
intervals.

Appendix

To validate our method, we performed a simulation study
using a 5 × 5 grid of square-shaped cells with side lengths
0.2. *e total demand rates of the cells were proportional to
a multivariate normal distribution centered at the center cell
13 and varying between 0.05 and 0.3 cars per hour. To
include time effects, the individual total demand rates were
increased at evenings (18–24 o’clock) by 0.1 on weekend days
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Figure 13: Simulation results on comparing the baseline with alternative scenarios (car rate, misspecification of dmax and data size):
estimated parameters (boxplots) and according true values (red). For reasons of clarity, only the parameters for the cells 1 (lowest total
demand rate) and 13 (highest total demand rate) are shown.
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by 0.2. Figure 11 illustrates the specified total demand rates
by a map and a scatterplot.

We generated pickups for independent hourly intervals.
For this, we first generated for each interval and cell the
number of cars available using a Poisson distribution with
a common rate for all cells, and then generated the corre-
sponding pickups based on our postulated model (equation
(6)) and the specified total demand rates. Simulations were
performed for six scenarios regarding data generation and
model specification. Each scenario was replicated 512 times,
resulting 512 estimated models per scenario.

For the baseline scenario, we used a car rate per cell of
0.16, which corresponds to the average of the total demand
rates on weekdays between 0 and 18 o’clock used in this
simulation study. Demand areas, which need to be found to
construct the vectors xjt of the postulated model, included
adjacent and diagonally adjacent cells of the cells with cars
(rmax �

������
2 · 0.22

√
≈ 0.28). Data for 4,321 hourly intervals

were generated, which corresponds to the number of hours
of the first half year of 2021 (including summer time
changeover). Fitted models from the baseline scenario are
correctly specified and therefore should identify the data
generating total demand rates.

For the alternative scenarios, we halved and doubled the
car rate, misspecified the rmax parameter for estimation
(rmax � 0.2 and rmax � 0.4 instead of rmax � 0.28), halved
and doubled the number of time intervals, used the
smoothing approach with 3×3 supporting points and con-
sidered demand areas that include all adjacent or diagonally
adjacent cells including cells have a closer car
somewhere else.

A. Results

Figure 12 shows the distribution of the estimated parameters
for the baseline scenario. *e estimates vary around the
predefined total demand rates, suggesting that the estima-
tion procedure is able to identify the data generating total
demand rates if the model is correctly specified.

Figure 13 compares the estimated parameters for cells 1
(lowest total demand rate) and 13 (highest total demand
rate) between the baseline and three alternative scenarios.
*e top left panel shows the effect of increasing the number
of cars available. It can be seen that increasing the number of
cars increases the accuracy of the estimates. Interestingly, the
accuracy of the estimates for fewer cars is about the same or
slightly better than for the baseline scenario.

*e middle panel of Figure 13 shows the effect of
misspecifying the parameter rmax, i.e. the maximum de-
viation users would accept from the preferred pick up cell.
While misspecifying rmax seems not to affect the estimation
of the total demand rate of cell 1, it does for cell 13. Spe-
cifically, choosing rmax too small results a upward bias, and
choosing rmax to large a downward bias.*is seems plausible
because increasing rmax implies that the total demand is
spread over more cells.

*e right panel of Figure 13 shows the effect of de-
creasing or increasing the number of observations. As ex-
pected, the accuracy improves with an increasing data size.

*e left hand of Figure 7 compares parameter estimates
between the baseline scenario and a smoothed estimation
with 9 supporting points, which were evenly distributed
within the surface of the 5 × 5 grid. As could have been
expected, the smoothing approach decreases the variance of
the estimates; however, in case cell 1, it introduces a bias by
overestimating the total demand rate.

*e right hand of Figure 7 compares the parameter
estimates between the overlapping and the closest car de-
mand areas. In both cases the estimates vary around the data
generating total demand rates. *e estimates for the over-
lapping areas around cars have slightly higher variance.
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