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Abstract

Human faces convey information about gender, age and ethnicity and more abstractly about a
subject’s emotions and social context. The capacity to identify and authenticate individuals based
on their facial features currently represents the most commonly used type of data in biometric
systems. Face recognition technology has evolved significantly in recent years, propelled by the
proliferation of digital image data and the rise of Artificial Intelligence, which is directly linked
with the development of Deep Learning methods. Deep Neural Networks are used on several fronts
and achieve impressive results, even when comparing to the ones achieved by humans performing
the same tasks.

The remarkable Deep Learning developments carried consequences, namely the transition
from understandable models into black box systems. The trade-off between good quantitative
results and the fairness and transparency of a model needs to be considered. Explainable Artificial
Intelligence focus on the explainability of a model and unveils certain challenges and biases that
remain present, particularly racial bias. This is a complex issue with implications on both ethical
and social dimensions, transcending the domain of technology. Although racial bias is currently
more studied, there is still little information available on the impact on the performance of face
recognition algorithms. One of the primary contributors to racial bias is the imbalance in training
data, given that many datasets are predominantly composed of images from a specific ethnic group
and lack in diversity. Therefore, one of the main efforts to mitigate racial bias includes creating
more diverse training databases, as well as developing fair algorithms. As face recognition systems
have been adopted as a powerful security tool, racial inequity can translate into social injustices
and misidentifications, raising the need for awareness on this topic.

This dissertation delves into the analysis and exploration of racial bias in face recognition
systems. The work developed commences with a background and literature review, tracing the
evolution of face recognition. The methods adopted focus on the use of race-aware databases
and we aim to evaluate if the face recognition model used performs differently with four racial
groups (Caucasian, African, Asian and Indian) under the same conditions. To investigate racial
bias, especially intra-racial bias, various experiments were performed, starting with an analysis of
the effects that image transformations have on a particular race. Moreover, gradient maps were
generated for all races in the same layers of the network, allowing an analysis of the regions of
interest in the input images. We performed practical experiments on neural network activations to
look for a possible connection between human face recognition of subjects from other races and
automatic face recognition evaluated on a race-aware dataset. As deep neural networks cannot be
evaluated over time, the analysis made focused on how data flows through the network layers in
a specific order. We calculated metrics such as mean and standard deviation from the neural net-
work activation values extracted from the network’s layers and the results were compared between
races. At last, using the neural network feature maps generated from specific layers, we tested the
separability of racial groups.
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Even though various ideas were pursued, the experiments did not present a clear and straight-
forward conclusion on racial bias and the reasoning behind it. However, it is mandatory that this
topic keeps on being studied and addressed. Moreover, in terms of future work, it may be inter-
esting to focus on some racial bias mitigation techniques and, by adding synthetic bias to the data,
measuring its quantitative impact on the tests performed in this dissertation.



Resumo

Os rostos humanos transmitem informações acerca do género, idade e etnia e, de uma forma mais
abstrata, sobre emoções e o contexto social de uma pessoa. A capacidade de identificar e autenticar
indivíduos com base nas suas características faciais atualmente representa o tipo de dados mais us-
ados em sistemas biométricos. A tecnologia de reconhecimento facial evoluiu significativamente
nos últimos anos, impulsionada pela proliferação de dados de imagens digitais e pelo apareci-
mento da inteligência artificial, que está diretamente ligada com o desenvolvimento de métodos
de Deep Learning. As Deep Neural Networks são usadas em várias frentes e têm vindo a alcançar
resultados impressionantes, mesmo quando comparadas com as capacidades humanas ao realizar
as mesmas tarefas.

Os notáveis desenvolvimentos na área de Deep Learning resultaram em consequências, nomeada-
mente a transição de modelos compreensíveis e interpretáveis para sistemas opacos (black-box).
O equilíbrio entre bons resultados quantitativos e a transparência de um modelo precisa de ser
considerada aquando do desenvolvimento de um algoritmo. A Explainable Artificial Intelligence
foca-se na capacidade de explicação e interpretação de um modelo e é responsável por desvendar
certos desafios e vieses presentes, nomeadamente o viés racial. Este é um problema complexo
com implicações em dimensões éticas e sociais, transcendendo o domínio da tecnologia. Em-
bora o viés racial seja atualmente mais estudado, há ainda pouca informação disponível acerca
das implicações desta no desempenho dos algoritmos de reconhecimento facial. Um dos princi-
pais contribuintes para o viés racial é o desequilíbrio nos dados presentes em datasets de treino,
uma vez que muitos datasets são predominantemente compostos por dados de um grupo étnico
específico e carecem em diversidade. Desta forma, um dos principais esforços dos investigadores
para mitigar o viés racial inclui a criação de bases de dados de treino mais diversificadas, bem
como o desenvolvimento de algoritmos mais justos. Uma vez que os sistemas de reconhecimento
facial têm sido adotados como uma ferramenta útil na área da segurança, a desigualdade racial
pode traduzir-se em injustiças sociais e identificações policiais erradas, o que leva à necessidade
de consciencialização sobre este tópico.

O objetivo desta dissertação é explorar a análise e estudo do viés racial em sistemas de recon-
hecimento facial. O trabalho desenvolvido começa com uma revisão de literatura e antecedentes
no tópico, traçando a evolução do reconhecimento facial até aos dias de hoje. Os métodos adotados
durante este trabalho concentram-se na utilização de bases de dados sensíveis à raça e o objetivo
é avaliar se o modelo de reconhecimento facial utilizado se comporta de maneira diferente com
algum dos quatro grupos raciais (Caucasiano, Africano, Asiático e Indiano). Para investigar o viés
racial, especialmente o viés intra-racial, foram realizadas várias experiências, começando com
uma análise dos efeitos que transformações de imagens têm numa raça específica. Além disso,
foram gerados mapas de gradiente para todas as raças nas mesmas camadas da rede neuronal,
permitindo uma análise das regiões de interesse nas imagens de input. Foram também realizadas
experiências nas ativações da rede neuronal de forma a procurar uma possível conexão entre o
reconhecimento facial humano, com uma possível ativação neuronal díspar devido à etnia dos
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sujeitos observados, e o reconhecimento facial por sistemas automáticos, avaliado à luz da dis-
criminação racial. Uma vez que as Deep Neural Networks não podem ser avaliadas ao longo
do tempo, a análise realizada focou-se na forma como os dados fluem através das camadas da
rede numa ordem específica. Métricas como a média e o desvio padrão foram calculadas a partir
dos valores extraídos das ativações da rede neural e os resultados foram comparados entre raças.
Utilizando mapas de características da rede gerados a partir de camadas específicas, testou-se a
separabilidade e classificação de grupos raciais.

Embora várias ideias tenham sido testadas, no geral, as experiências não apresentaram uma
conclusão clara e direta acerca do viés racial e a sua razão de ser. No entanto, é imperativo que
este tópico continue a ser estudado e abordado em diversas áreas de estudo. Além disso, em
termos de trabalho futuro possível, poderá ser interessante focar a atenção na mitigação do viés
racial e, adicionando viés sintético aos dados, medir o seu impacto quantitativo nos testes que
foram realizados nesta dissertação.
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Chapter 1

Introduction

1.1 Context

Each human face is unique, providing insight into a person’s identity. The human face conveys a

diverse amount of information to an observer, including information about gender, age and eth-

nicity. More than that, it gives insight into the person’s emotions and adds social context. The

majority of human faces share the same set of features, such as eyes, nose, and mouth, that are

roughly similarly arranged. The difference comes from slight and subtle variations in that exact

configuration and its form, making each person’s face distinctive [17]. The analysis of the human

face and facial behavior is an interdisciplinary research area involving psychology, neuroscience,

and engineering [13].

Biometric systems are capable of analysing and quantifying human’s physical features (e.g.

fingerprint, iris, palm print, and face) as well as behavioral traits (e.g. signature, walking, speech

patterns, and facial dynamics) [8]. Individual human characteristics are transformed into biometric

data and processed by algorithmic systems in order to verify or single out the identity of a person.

These systems are part of our daily lives and we use them to unlock our phones or to cross borders

at airports [18]. Face recognition (FR) systems use face measurements and allow for identification

and authentication [19]. Recently, facial biometrics has been one of the most used methods for

biometric data [8]. These types of systems keep improving at an incredibly fast pace, growing

in use and application [20]. This rapid evolution means more data is constantly being added,

and new users are identified and authenticated. Face recognition, in contrast to other biometric

systems, does not necessarily require the active cooperation of the subject and can be performed

unobtrusively, making it particularly suitable for surveillance applications [13].

Face recognition algorithms have benefited a lot from the growth of Deep Learning methods.

These evolved in a way that led to the systems being capable of outperforming humans in spe-

cific tasks [21]. The development of the Artificial Intelligence (AI) field is directly linked with

the improvements in Deep Learning and Deep Learning methods [13]. Deep Learning (DL) is a

technique especially valuable in nonlinear and large-scale problems that are not suited for man-

ual feature extraction, where Machine Learning would usually be applied [22]. Artificial Neural

1
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Networks (ANNs) apply multiple layers to learn data with multiple levels of feature extraction

[23]. These networks, which were initially inspired by the human neural system, consist of an

input layer of neurons, one or more hidden layers of neurons and a final output layer. As our

brain presents remarkable neural networks, granting connections between different parts of it and

making it so that face recognition comes as naturally for us as possible, researchers have shown a

significant interest in replicating these aspects through computational models [24].

Neuroscience suggests that local features are detected in earlier visual layers of the visual

human cortex and only then progress to more complex patterns in an hierarchical manner. Taking

this as inspiration, Convolutional Neural Networks (CNNs) embrace the concepts of receptive

fields (RF) and effective receptive fields (EFR). A receptive field is a local region on the output

of the previous layer that a neuron is connected to and an effective receptive field represents the

area of the original input image that can influence the activation of a network neuron. These

concepts converge for the first convolutional layer, but, as the CNN hierarchy progresses they

start to differ: the RF is equal to the filter size of the previous layer and the ERF indicates the

extent of the input image that modulates the neural activity [25]. Therefore, a parallelism in the

computational engines for both human and machine-based face recognition may be a possibility.

Both biological and artificial neural networks are nonlinear, with local convolutions executed in

cascaded layers of neurons throughout time, and both artificial neural networks and humans learn

in multiple steps [26]. Face recognition systems in applied settings such as law enforcement have

spurred comparisons between how DCNNs and humans behave when performing the recognition

task and researchers keep looking for similarities between the two.

Nonetheless, with the outstanding Deep Learning developments came consequences, the main

one being the transformation of the biometric systems into black box systems. Even though re-

searchers keep achieving incredible quantitative results, the main focus has shifted towards im-

proving the models’ fairness, transparency and explainability. More than just working on im-

proving quantitative results and the accuracy of a model, it became essential to understand the

reasoning behind a prediction and increase the user’s trust, which can be one of the main barriers

against the proliferation of smart technology through society [27]. Explainable Artificial Intelli-

gence (xAI) is the area of AI that worries about explainability and whether a particular model is

transparent and fair, making it possible for a user to understand what is happening when the model

is implemented. The aim is to provide the user with an answer to the "why?"- answered by the ex-

planation given by the model’s prediction- and "how?"- providing an understanding of the model

and the process that leads to the output [28]. Even though the current models are very accurate and

their metrics are optimized, certain challenges and biases remain present [2]. We may try to apply

reverse engineering to understand how deep networks recognize faces at a conceptual and repre-

sentational level. However, reverse engineering aims to understand how a complex system like the

human brain solves a problem such as face recognition. For that, we need to understand how the

model works before applying it [26]. When using DCNNs in an attempt to emulate human facial

perception, researchers must choose to either apply a smaller and controlled model or a larger and

uncontrolled one. The first one is easier to analyse, but it may be limited in computational power,
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performance and accurate predictions. The larger networks are closer to neural systems but may

be untraceable.

To perform automatic FR, one of the most important parts of the process lies in choosing large,

clean and diverse databases, both for training and testing. However, over time, researchers con-

cluded that the most commonly used datasets needed to be more representative of particular groups

of people, especially regarding race. Racial bias was concealed due to the biased benchmarks until

more and more people began questioning this issue and its degrading impact. Although racial bias

is now more studied and has become one of the goals to tackle in this field, it remains vacant.

There is still very little testing done and minimal information available on the topic, making it

hard to measure the consequences on the FR algorithm’s performance [29].

1.2 Motivation

Face recognition represents a very challenging problem in image analysis and computer vision,

and it has been increasingly receiving attention over the years because of its various applications

in very different domains. Some of the applications include security and surveillance, identity

verification, criminal justice systems, and video indexing (labelling faces in videos). Moreover,

traditional security solutions, such as passwords, badges, the traditional ID cards, and PINs, have

many limitations (e.g. misplacement or theft), which leads to the increased interest in biometric

systems [19].

In a more futuristic light, data-driven marketing is trying to replace conventional strategies,

and face recognition marketing has emerged as a significant tactic in the automated marketing

systems of today. The customer’s facial expressions, eye movements, blinks, pupil dilation and

head movements can be measured using a facial recognition system based on artificial intelligence

[30].

Face Recognition Technologies (FRT) offer various business opportunities for both users and

developers. A Mordor-Intelligence study revealed that the total market value of face recognition

was 4.4 billion in 2019, and it is expected that this number will increase to 10.9 billion by 2025

[13]. China became the world leader in FRT, both in use and in development and currently, it

is the country with the more eccentric and out-of-the-box use of FR systems 1 2. China’s loose

data privacy laws facilitate this situation. An example of this happened in 2017 when Yum China

partnered with the mobile payment service Alipay and came up with a "smile to pay" system.

Previously registered users could confirm a payment just by smiling, without having to use a card

or a smartphone [31].

Nevertheless, FR models’ transparency and fairness decrease as they become more complex

and accurate. People lose trust in how they work and become sceptical about their daily use. This

issue opens the door for the much needed improvement in the explainability field, changing the

focus from improving the model’s performance to increasing its transparency. Moreover, it is

1https://www.wired.com/story/china-is-the-worlds-biggest-face-recognition-dealer/
2https://www.reuters.com/technology/china-drafts-rules-using-facial-recognition-technology-2023-08-08/

https://www.wired.com/story/china-is-the-worlds-biggest-face-recognition-dealer/
https://www.reuters.com/technology/china-drafts-rules-using-facial-recognition-technology-2023-08-08/
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known that both FR algorithms and associated databases suffer from bias, namely racial bias [29].

This is an issue, given that specific groups of people are not correctly represented, which makes

models’ performance discriminatory. Our world is full of diversity, and the technology we develop

should keep up with this, including and correctly representing subjects from all ethnicity groups,

ages, genders and appearances.

1.3 Objectives

The presence of racial bias is factual and the journey to unveil the reasoning behind this issue has

long started.

Our goal with this dissertation is not only to detect, but also to explore the logic for the occur-

rence of racial bias in face recognition systems. A comprehensive investigation is carried out and

we propose to shed some light into the presence, the extent and implications of racial bias.

With this research work, we focus on the analysis of deep neural networks from different

points of view, trying to understand the way they perform racial distribution on the latent space,

analysing the gradient, identifying bias patterns and conducting evaluations on neural activations.

Using neural feature maps extracted from face images, we perform classification by separating the

data by race. Moreover, some image transformations aim to try to evaluate the impact that said

modifications have on different ethnicity groups.

By pursuing these objectives and trying to get more insights on racial bias, ultimately we hope

to contribute to this research area.

1.4 Contributions

Regarding the presented methodologies, the main contributions are the following:

· Extensive and thorough study of the main state-of-the-art approaches in face recognition

and racial bias.

· Research on possible motives behind racial bias, with a primary emphasis on intra-racial

bias.

· Exploration of the possibility of using the human face recognition process as inspiration

in regards to neural activation, especially when it comes to neural activation as a result of

processing faces from a distinct race than ours.

· Study of the use of the results from neural network activation to classify different ethnicity

groups.
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1.5 Document Structure

This dissertation contains a total of 6 chapters. After the introduction, Chapter 2 presents a back-

ground on the relevant topics for this work. Chapter 3 consists of a literature review on the subjects

that are pertinent to the intended goals. Chapter 4 lays out the methodology and the developed

work and Chapter 5 presents the results associated with the methods described as well as a dis-

cussion of said results. Finally, Chapter 6 rounds up the work and finishes with suggestions for

possible future work.
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Chapter 2

Fundamental Concepts

2.1 Human Face Recognition

The human face reveals a lot of information to an observer, and it has been studied as a way to

identify people [32]. Human face recognition is the process by which a person judges if they

have seen a face before, and it is an impressive process in terms of speed and accuracy. Further-

more, it proceeds via various stages and unravels over time [33]. Initially, incoming visual data is

processed based on its immediate perceptual characteristics, forming a structural representation.

Subsequently, this representation is further refined into a more abstract, perspective-neutral model

of the face, facilitating comparisons with other faces stored in memory [34]. The examination

of this cognitive task within the field of psychology dates back to 1980 [32], with potential an-

tecedents preceding that period. A common research topic on face recognition is the difference

in performance across individuals and even across distinct groups of people, meaning that a wide

range of face recognition skills varies from person to person. A face is considered to be recognized

when it is familiar. On the other hand, a previously unseen face may be considered unfamiliar or

"unknown". In the human face recognition process, recognition and identification are considered

different, and one does not need to identify an individual to recognize them [35]. Notwithstanding

the variant face recognition abilities that change from individual to individual, it is known that

humans, in general, perform a lot better when recognizing a familiar or well-known face. This

continues to be true even when there are some changes in the photometric conditions, such as

illumination, or in the person’s appearance, such as changes in hair colour, natural ageing or some

form of disguise [36].

Human faces share some standard features, such as eyes, nose and mouth, that are roughly

arranged in a similar configuration. How we can differentiate faces comes from small changes

in the form and layout of these facial features, and sometimes it is a matter of analysing very

small details. Human face recognition varies with three different factors: stimulus factors, subject

factors, and photometric conditions [17]. The stimulus factors point to the fact that not all faces

are equally recognizable; some have distinctive features or a distinctive configuration, making it

easier to differentiate from others. When we consider a face unusual, it results from a judgment

7
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based on what the person considers to be the “usual” face and the average feature [37]. This

means that faces are represented in relative terms instead of absolute ones and that we encode a

face in terms of its deviation from what we consider to be the prototype face. It has been proven

that we identify better computer-based caricatures where the feature values are exaggerated and

deviate from the average values, making it easier to perform the task at hand [17]. The interaction

between stimulus and subject factors leads to the conclusion that it is unrealistic to expect that all

individuals, especially from different backgrounds and groups, share the same "average face". This

brings light to the fact that depending on where we grow up, we may have a different idea of what

is average and what is considered to be out of place or different, exclusively because of the amount

of exposure we have as infants [17] [38]. This can result in the other race effect (ORE), which

will be explored in more detail in the following point. When talking about photometric conditions,

the main focus is the change in viewpoint and illumination, given that these are also some of the

current challenges for algorithms to surpass in order to function in real-world situations [17].

After years of in-depth studies on how humans analyse and process other people’s faces, it

can be concluded that different parts of the brain are active during this task and that the part of

the brain that is used varies with the type of information conveyed. Static features related to

identity and categorical information are most likely processed in a different part of the brain than

motion information- that gives insight on social cues- and even emotional details are analysed in

another region [17]. The way humans can keep track of an enormous number of individual faces

is impressive and far greater than the number of objects from other classes that we are capable

of memorizing [39]. As previously mentioned, different people perform distinctly when it comes

to processing faces, and some possess better natural skills than others. Researchers discovered a

relation between a better performance and a more extensive activation of certain parts of the brain

[40].

The neuropsychological data on what was discovered to be a condition named prosopagnosia

helped to bring light to the possibility that processing faces is special and different from what was

seen with other classes of objects. This condition is defined as losing the ability to recognize faces

even though the person can still recognize other types of objects [41]. Moreover, there are some

cases in which someone who suffers from this condition can identify facial expressions without

being able to recognize the person behind those same expressions. It is also essential to highlight

that in these cases, recognizing is different than identifying, and the observer may be able to

quickly identify the person by their voice or another distinctive clue [42].

Prejudice is a persistent and prevalent theme associated with human cognition, and it can be

defined as a state of mind or behavior that criticizes or denigrates others on account of the group

to which the individual belongs. There are various forms of prejudice, some more extensive than

others, such as prejudice based on gender, age, sexuality, and religion. However, race-related

prejudice is the more studied form and is especially relevant to this dissertation [43]. The task

of recognizing a face can be influenced by both the race of the observer as well as the race of

the individual that we wish to recognize. As these systems are being increasingly applied in

the security field, it becomes even more crucial to understand the effects that race plays on the
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accuracy results of face recognition systems.

2.1.1 Other-Race Effect

When talking about the average face, it is highly unlikely that it is the same for all different groups

of subjects. This means that depending on where we grow up, we may have a different take

on what we consider “the average”. This accounts for the other-race effect (ORE), which states

that we recognize our own race more accurately than faces from other races [44]. This effect

results from the interaction between the stimulus and the subject experience factors, as previously

mentioned. As a possible explanation for the other-race effect, the contact hypothesis states that

an individual’s experience with a certain race affects the representation of the distinctive features

of the own-race faces, making them more detailed and accurate. However, when it comes to other-

race faces, they are not as well characterized by those features [17]. The ORE can be explained

by both the perceptual expertise model as well as the social cognitive model. The last one is

based on the fact that humans tend to perceive individuals in terms of social groups. “In-groups”

represent the group of people we consider to be similar to, and “out-groups” represent the opposite

[45]. Many studies show that own-race faces are processed configurably, whereas other-race faces

are processed with a more feature-based strategy. This effect can be measured in an experimental

scenario, where subjects of different races are put to test on their ability to distinguish faces. Given

that the other-race effect results in better face recognition capacity of same-race faces and basic

level recognition for other-race faces, it is believed that there can be an "expertise training" where

subjects are trained to better recognize and distinguish between other-race faces. This training

is expected to reduce the implicit racial bias correlated with the improvement in differentiating

other-race faces [46].

Implicit racial bias refers to the stereotypes and discriminatory behaviors based on race that

start to develop unconsciously during early childhood. This type of prejudice then perpetrates

into adulthood and affects different aspects of both the personal and social individual’s life. Even

though researchers have tried different techniques to reduce implicit racial bias, by the adult age, it

is already highly consolidated and resistant to change. This allowed psychologists to conclude that

the best approach is to try and change these behaviors during childhood. Several studies showed

that one successful approach involves perceptual individuation training, where the participants

learn how to distinguish subjects from different races thus giving them experience with other-

race faces [47]. Another way is to classify individuals by race, which is called categorization

[45]. The early discrepancy between own- versus other-race faces does not only have perceptual

consequences in terms of categorization and face recognition, but also social ones in terms of racial

bias. Children associate positively or negatively with their own- versus other-race faces because

of their asymmetric exposure during their early years. However, this implicit racial bias against

unfamiliar races can be trained and may be malleable. The perceptual-social linkage hypothesis

suggests that the appearance of implicit racial bias from an early age results from the tendency

to categorize other-race faces and form positive associations with own-race faces and, therefore,

familiar categories [48].
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Moreover, past research suggests that racial cues can affect a number of different brain areas

and their activity. Functional magnetic resonance imaging (fMRI) measures the changes in blood

flow that occur with brain activity and some studies based on this imaging technique have shown

that there are differences in brain activity due to implicit racial bias [49]. The inability to discern

differences among individuals from outside one’s own social group can have immediate and sig-

nificant real-world repercussions. These consequences range from relatively trivial occurrences,

such as mistakenly confusing two co-workers of the same ethnic background, to life-altering sit-

uations, such as incorrectly identifying an innocent person from a police lineup. These errors can

arise from inaccuracies in memory and judgment, or they may originate from the fundamental

manner in which we perceive individuals belonging to different social groups. Research demon-

strates that out-group deindividuation manifests in the early stages of facial perception, evidenced

by reduced neural sensitivity to variations in the facial features of individuals from different racial

backgrounds. It was proven that White Americans are more sensitive to perceptual differences be-

tween White faces than Black faces, and even though these perceptual mechanisms are not clear,

members from out-groups are perceived as multiple instances of the same category rather than

distinct individuals [50].

Visual neuroscience offers methodologies to investigate how face-sensitive systems respond to

intra-group variability. Extensive research underscores a fundamental aspect of brain processing:

its inclination to familiarization when repeatedly exposed to the same stimuli. Neural populations

display diminished activity following recurrent exposure to stimuli to which they are attuned, a

phenomenon referred to as neural adaptation [50].

2.2 Automatic Face Recognition

Biometrics are biological measurements of physical and behavioral characteristics that make per-

sonal identification possible. With the rapid advancements in networking and the problems faced

in the security department, there is a massive market for a reliable user authentication technique.

This comes hand-in-hand with the need to protect important and personal information, entailing

that only an authorized user should be granted access. Instead of relying on traditional security

domains, biological traits cannot be misplaced, forgotten or forged. There are several different

biometric traits, such as face, fingerprint, hand geometry, iris detection, and voice or speech recog-

nition. The most used characteristic nowadays is the face, as it promotes a non-intrusive approach

without capture delay, does not require the cooperation of the user, and can be obtained without

violating the personal private space [1] [8]. Furthermore, it does not require the use of expensive

sensors, since RGB cameras are sufficient.

Face recognition (FR) has been actively studied since the 1970s [51]. FR uses biometric data,

such as face measurements, and it is used for the purpose of identification and verification. This

technology can match a human face from a digital image or a video frame against a database

full of different faces. It can also be applied in a live scenario, as per the example of security

cameras. It is useful in a lot of different areas, such as security and surveillance, finances and
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retail, and even daily life and comfort. The most traditional approaches to face recognition based

on Machine Learning are centered on either the location or shape of some facial attributes and

the spatial relationship between them, such as eyes, eyebrows, and nose, or the overall analysis

of the face as a combination of several canonical faces. There are three main tasks that can be

distinguished on a FR system: enrollment, authentication and identification. The first step allows

the user to associate the biometric data with their identity and to save it properly in a gallery. To

authenticate, it is necessary to make a direct comparison between the biometric information from

the claimed user and the data saved in the gallery linked to this said person (1:1 comparison)-

verification. In the end, for identification, the system takes the biometric data and the information

stored in the gallery and tries to make a match (1:N comparison). If there is none, it will return

an empty array and no identity [1]. In Fig. 2.1, we can see the various components of a face

recognition system. The wide adoption of the FR systems implies that they will be used in a large

and diverse population from very different backgrounds and demographics. Consequently, these

systems must be capable of managing information from different users in an equal and fair way

[46].

From the early 2010s, FR systems have benefited from the exponential growth of Deep Learn-

ing methods. These methods are also known for excelling in other Artificial Intelligence (AI)

fields. The success associated with AI can be generally accounted for Deep Learning methods

suffering a vast improvement, the large availability of databases and the improvements in compu-

tational power (GPU cards) [28]. Around 2014, Deep Convolutional Neural Networks (DCNNs)

brought the ability to recognize faces “in the wild”, e.g. in a real world scenario. Machines started

to solve the problem of generalized face recognition. These algorithms are trained with millions

of images of thousands of different individuals captured “in the wild”, making the results more

robust. As the currently available algorithms are expected to be used very diversely, their data

must reflect such diversity [52] [53].

However, with the major improvements in performance came a significant increase in model

complexity, which led to these systems becoming more opaque. The opaqueness of a ML model is

believed to be proportional to its performance. The consequence may be the appearance of hidden

biases, privacy issues and lack of transparency. Hence, the focus of researchers has changed from

exclusively improving models’ performance to using models that are more interpretable and that

incorporate fairness. Furthermore, it is essential to develop methods that explain the reasoning

behind a prediction, helping to turn a black box system into a transparent one. One of the most

important elements when adopting a new technology is consumer trust. Consumers should know

what is happening and understand why it is happening. Users should also know that their personal

information is secured and what it is being used for [2].

In the current era of machine-based face recognition, it is important for researchers to under-

stand in which circumstances the machine performs better than humans and vice-versa. More than

that, it may be relevant to study a possible collaboration between humans and machines when

performing face recognition, given that it may result in more accurate and robust results [36].
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Figure 2.1: Face Recognition system adapted from [1].

2.2.1 Racial Bias in algorithms

Given that humans suffer from the ORE when performing face recognition, it is also expected that

face recognition algorithms should be tested on the impact that different races have on the models’

performance [46].

Differences in face recognition algorithms as a function of race have been reported since the

early 1990’s. One of the first studies to examine race bias in an algorithm [54] showed that the

model had greater identification accuracy with the race with which it had more experience with.

This was tested by training the model with either Asian faces as the minority race and Caucasian

faces as the majority race or vice-versa. During the 2000s, researchers studied the effect of race on

face recognition systems and concluded again that there were accuracy differences as a function

of race [55]. In 2011, researchers continued exploring this topic and concluded that the part of

the world where the algorithm is originated is also responsible for race bias. They compared two

algorithms, one Western and one East Asian, and concluded that the first one performed better

with Caucasian faces and the second one was more accurate for East Asian faces [46]. During

the year of 2012, Klare et al. [56] tested the effects of race, gender and age and concluded that

faces from young, female and black individuals suffered against all other demographic groups.

Additionally, it was inferred that training the algorithms with more diverse databases helped to

reduce these specific demographic biases, but did not eliminate them.

Nagpal et al. [57] presented the idea that upon limited exposure to other races, face recognition

algorithms mimic the human inclination towards own-race bias. In this work, the authors also

concluded that, similarly to human behavior, Deep Learning Networks have a tendency to focus

on selected facial regions for a particular race, which varies across different races.

As stated before, FR systems have been increasingly adopted as a strong and powerful tool for

security purposes. Racial inequity can translate into social injustices, as per the example of the
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well known case of Robert Williams [58]. This citizen was wrongfully arrested in January 2020

because of a false match performed by a FR system against the suspect’s face. A study published

by NIST [59] showed that the number of false match rates (FMR) varies between 10 to 100 times

across different demographics, and that it is more common that a system performs a false match

than a false non-match. Moreover, East African, West African and East Asian subjects have the

highest false match rates. On the other hand, Eastern Europeans have the lowest.

2.3 Explainable Artificial Intelligence

Artificial Intelligence (AI) has evolved immensely in recent years, and to a point where it has been

incorporated into a wide range of services and products. With the development of AI, systems

became able to perform data-driven decisions and even compete with human performance when it

comes to certain tasks. There are numerous examples of the applicability of AI in day-to-day tasks,

such as the models that run in our smartphones and similar types of technology, and its relevance

in areas such as banking and investments, as well as in law enforcement and security. Moreover,

it has become quite essential in the medical field, helping doctors to diagnose and detect diseases,

as well as helping in the outlining of the treatment process [60, 61].

The classic and simpler ML models used to solve more straightforward and basic problems

have evolved into Deep Neural Networks (DNNs) that allow the extraction of valuable information

from complex datasets [62]. In general, and after some testing, it was concluded that a deeper

network is better at decision-making than a shallower one. However, the deeper the network, the

more parameters it has and the more complex its design becomes. As the number of learnable

variables increases, the data flow across the different network layers becomes more challenging

to examine and understand. Therefore, on numerous occasions, the outcome from these models

is quite difficult to interpret and accept by the users, given the black-box nature that became

associated with these networks. On the contrary, simpler ML models are easier to comprehend

and trust, given that a person, without much context, can try to understand the model by glancing

at the chosen parameters without needing another model to provide an explanation. Decision

trees and linear classifiers are examples of what is considered an easier-to-understand and more

transparent model, and, in general, it is simpler for humans to reason with these models’ final

decisions. These represent an example of what can be called white-box or glass-box models [2].

Consequentially, it is important to understand the underlying reason behind the decision made

by an AI algorithm, and more recently, the importance of this subject has arisen. This leads us

to the need for eXplainable AI (xAI) methods in order to answer the issue presented above and,

in general, to answer the following question: can it be explained what are the factors affecting a

model and the reasoning behind the model’s decision? It also becomes clear that it is essential to

maintain a good balance between explainability and performance. In theory, the equilibrium be-

tween these two concepts is interesting and should be kept in mind, but in real-world applications,

it becomes more challenging to set a limit and apply it [63].
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As stated before, the ultimate goal for xAI techniques is to produce models with an adequate

trade-off between explainability and performance or between interpretability and accuracy. As-

sociated with xAI, there are two main concepts: explainability and interpretability. Even though

there is an open discussion on the difference between the two, and some researchers may even con-

sider them interchangeable, in this work, they are presented as separate and are considered to have

different definitions [64]. Explainability became one of the main issues surrounding ML models,

and it is responsible for bringing light to the decision-making mechanism while building users’

trust and focusing on fairness and ethics. It is focused on the model’s final decision and tries to

present the users with the belief that AI is making a factual and non-biased decision. On the other

hand, interpretability discloses the internal properties of the model and focuses on transparency. It

is responsible for providing additional information or an explanation to help interpret the system’s

operation. Ultimately, it aids users with some knowledge to partially "open" the black-box model.

By opening up a window into a black-box model, it is possible to expose some security vulner-

abilities, create algorithms with human values and help individuals make more informed choices

[2].

There are other important concepts related to xAI, represented in Figure 2.2. The relationship

between them is also represented. Besides explainability and interpretability, other topics, such

as transparency and robustness, are relevant and should be considered when analysing a model.

Fairness is another term vastly used when diving into xAI, and it is especially relevant to this work.

It is associated with the ability of a model to make unbiased decisions without favouring a specific

population against the rest of the groups represented in the input data. Securing and maintaining

a model’s fairness is a challenge, given that in some databases and algorithms, some groups are

represented and treated unfairly [2].

Figure 2.2: Relation between xAI’s relevant concepts. [2]

Researchers came up with different ways to tackle the interpretability issue, and divided the

various techniques into pre-, in-, and post-model methods, and even categorized them into post
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hoc or not. The pre-model method focuses on the input data and the understanding of its distri-

bution, and it is quite relevant to detect biases. Analysing and understanding the data used for

training allows for increased confidence in the posterior decision. The in-model technique focuses

on the integration of interpretability into the model. However, the centre of attention towards

more accurate models has been on post-model interpretability. These techniques aim at generating

explanations for a given prediction [28].

Attribution-based xAI methods are included in the post-hoc methods. In order to explain a

model’s predictions, xAI seeks to assign attributions to each input feature (e.g. pixels in an image

input) in a way that makes their contribution clear. One example of an attribution-based method

is the gradient-based one, which generates a "saliency map" responsible for indicating the contri-

butions of each variable in the input space [2]. Researchers tried to come up with different ex-

planation visualization techniques, one of them the class activation map (CAM) [65]: a weighted

activation map generated for each image that, when generated for a specific class, discriminates

image regions employed by the CNN to identify that class. Gradient-weighted CAM (Grad-CAM)

[3] is also a visualization technique applicable to CNNs and does not require models to go through

retraining or architectural modifications. These result from the combination of the feature maps

using the gradient. The CNN layers capture both spatial information as well as high-level seman-

tics, and the final CNN layer represents the optimal composition for extracting relevant data. In a

nutshell, an importance score is attributed to each neuron by calculating the mean of the gradients

of the logits of the target class concerning the feature activation maps of the final convolutional

layer [60]. In Figure 2.3, there is a visual representation of what a gradient-weighted map may

look like.

Figure 2.3: Example of a cat and dog Grad-CAM visualization, that was modified from Figure 1
of the Grad-CAM paper [3].

2.4 Machine Learning

2.4.1 Principal Component Analysis

Principal component analysis (PCA) is a popular technique for dimensionality reduction, analysing

data containing a high number of dimensions/ features and increasing the interpretability of the

data, while preserving the maximum amount of relevant information and enabling the visualization
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of multidimensional data. This reduction is accomplished by linearly transforming the data into a

new coordinate system. The principal components are the orthogonal axes along which the data

exhibits the highest variance. These principal components are characterized by their associated

eigenvalues and eigenvectors, e.g. the first principal component corresponds to the eigenvector

with the highest eigenvalue. An eigenvector represents the direction in which data varies the most,

while the eigenvalue indicates the magnitude of variance [66].

2.4.2 t-Distributed Stochastic Neighbor Embedding

t-Distributed Stochastic Neighbor Embedding (t-SNE) is a statistical method for visualizing high-

dimensional data by giving each datapoint a location in a two or three- dimensional map. It works

by modeling each high-dimensional object by a two or three-dimensional point in a way that

similar objects are represented by nearby points and dissimilar objects by distant ones. It performs

a non-linear dimensionality reduction allowing the separation of data that can not be separated by

a straight line [67]. In Figure 2.4 there is an example of what a TSNE output plot can look like.

Figure 2.4: Example of a t-distributed stochastic neighbor embeddings on MNIST dataset.

2.4.3 Machine Learning classifiers

In machine learning, a classifier is an algorithm trained to make predictions about the class or

category of a given input. The input data is usually represented as a set of features or attributes,

and the goal of a classifier is to assign the input data to one of the predefined classes based on

these features. These algorithms are often used in supervised learning, where a training dataset

with labelled examples is provided. Each example has associated features and a corresponding

label that indicates its true class, and the classifier is able to learn from them and consequently

make predictions on new data.
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2.4.3.1 Support Vector Machine

Support Vector Machine (SVM) is one of the most popular machine learning classifiers. This

algorithm aims to find an hyperplane that separates data points of different classes in a high-

dimensional space. The data points that are closer to the hyperplane are known as support vectors.

The goal is to maximize the margin between classes while minimizing classification errors, which

means that class points should be close to each other and as far away as possible to support vectors

of each class (Figure 2.5). SVM can be used either for classification or for regression tasks.

Figure 2.5: Support Vector Machine Hyperplane illustration in a two-dimensional input space
based on margin maximization. [4]

2.4.3.2 K-nearest neighbors

This algorithm computes the distance between each training and test samples in the dataset and

returns the k-closest training samples. It classifies data points based on the majority class among

their k-nearest neighbors in the training data. Visual example in Figure 2.6.

Figure 2.6: K-Nearest Neighbors Algorithm where the predicted class is typically the class most
voted of its neighbours [5].



18 Fundamental Concepts

2.4.4 Deep Learning

Deep Learning is a sub-field of machine learning that comprises complex computational models

composed of multiple processing layers that learn data with different levels of abstraction. At

its core, deep learning involves the use of Artificial Neural Networks (ANNs) that perform tasks

that require pattern recognition and data representation. These networks draw inspiration from the

human brain regarding its structure and function, mimicking the use of interconnected layers of

neurons to model data. These models have shown an outstanding performance in various domains,

such as image and speech recognition, and are capable of handling large and complex datasets.

Deep learning networks also show an ability to learn features and patterns from raw data [68].

The more recent breakthroughs in these matters come from the availability of powerful hard-

ware (for example, GPUs), larger available datasets, and the development of innovative and more

complex neural network architectures [13].

Nonetheless, the Deep Learning field is still evolving and new models and techniques are still

emerging, adding to the wide range of neural networks architectures already existent. There are

different models tailored for specific tasks and data types, one of them being the Convolutional

Neural Networks (CNNs). CNNs are a specific class of Deep Neural Networks that are usually

used for tasks that involve grid-like data, such as images and videos. One of the key advantages

of CNNs applied to image processing is their ability to learn features in an hierarchical man-

ner, meaning that starting from simple edges and textures the network proceeds to more complex

shapes and object details.

The CNN’s architecture involves some fundamental blocks that are briefly presented here:

• Convolutional layer: the "core" building block of CNNs that extract features from the input

data. Each layer suffers a convolution between the input and a filter (or kernel) to obtain

a feature map. After this step, these are fed to the next layer as the new input data. The

filters are usually smaller than the input image and act as a sliding window over them. In

Figure 2.7 it is illustrated an example of a convolution (a) and the equivalent transposed

convolution (b) with a 3 x 3 filter kernel applied to a 4 x 4 feature map. The regions that

were used to compute the output are coloured green.

Figure 2.7: Schematic of a discrete convolution (a) and the equivalent transposed operation (b).
[6]
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• Pooling layer: non-linear down-sampling; reduces the dimensionality of the feature map,

while maintaining important information. There is Average Pooling and Max-Pooling. The

first one receives the number of values in the window of the layer, defined by a specific

value and calculates the average value. Max-Pooling outputs the maximum value instead of

the average. The representation of both can be found in Figure 2.8.

Figure 2.8: Pooling operation done by a Max-Pooling and Average Pooling. Adapted from [7].

• Rectified Linear Unit (ReLU) layer: this layer performs the activation function, returning

0 if the input value is less than 0 and the input value itself otherwise. Its purpose is to

improve the non-linearity of the image’s pixel data. Usually, in a CNN, this layer is applied

after a convolutional layer and precedes a max-pooling.

• Fully Connected Layer (FC): it is responsible for the high-level reasoning after applying

various convolutional layers and max-pooling layers. In most deep learning models, the

last layers are fully connected layers to compile the data extracted by the other layers and

compute the output.

In Figure 2.9, there is a schematic representation of a Deep Convolutional Neural Network

architecture for an example of image classification. The cat picture is the input image and the

represented layers are the ones previously described.

Figure 2.9: An example of a deep convolutional neural network architecture. From [7].
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2.5 Summary

Concluding this chapter, the main concepts to retain:

• Neural adaptation in humans shows that familiarization to a certain stimuli can happen,

resulting in a diminished neural activity. The more accustomed we are with a certain race

makes seeing faces from said race generate a lower neural activity than with faces from

other racial groups.

• A face recognition system can perform verification (1:1 comparison) or identification (1:N

comparison).

• Racial bias exists in face recognition algorithms, affecting the model’s performance in a

discriminative way.

• Face recognition systems are currently black-box systems and it is important to focus on

increasing the explainability and interpretability of models. One way to help with the inter-

pretation of a model can be the use of gradient maps to visualize the contributions of each

variable in the input space.



Chapter 3

State-of-the-Art

3.1 Automatic Face Recognition

The face recognition problematic was summed up by Jafri and Arabnia [19] as follows: "Given

both an input face image as well as a database of face images, how can it be verified the identity

of the person in the input image?". The history of face recognition dates all the way back to the

1950’s, but research on an automatic approach is considered to be from around the 1970’s. In

the preliminary works, researchers used features based on distances between the more important

regions of the face. Around the year of 1990, as a result of the development in hardware and the

increasing importance of security applications, more studies around this issue were published [8].

Wang and Deng [12] divided the progress of image-based face recognition techniques into

four main conceptual development phases: i) Holistic or appearance-based approaches that use

the face region as a whole and use both linear and non-linear methods to map the face into a lower

dimensional subspace; the work of Turk and Pentland [69, 70] represents one of the first successful

methods developed, known as Eigenfaces. Other approaches use linear subspaces [71], manifold

learning [72] and sparse representations [73]. ii) Local-feature based face recognition algorithms

that use hand-crafted features to describe the face, as per example local binary patterns and variants

[74]. iii) Methods that use learning-based local descriptors and that learn the discriminant image

filters [75]. iv) Deep Learning methods, that started to pick up popularity after the great success

of AlexNet in the ImageNet competition in 2012 [62]. These methods brought a new perspective

to the face recognition problem and lead to the achievement of performances similar to humans

on large-scale datasets [76].

Face recognition systems can be divided into two main groups: image-based or video-based

methods. The first one tries to recognize a person by the physical appearance of the face, and the

second one uses both appearance as well as changes in the dynamics of the face through time [8].

FR systems usually consist of six steps, that are represented in Figure 3.1.

As seen in the output portion of the image (Figure 3.1), face recognition can be either a identi-

fication problem or a verification one [8, 77, 78]. Face identification is viewed as a 1:N matching

issue, where the query face is placed side-by-side with all the other faces in the database of known

21
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Figure 3.1: Main steps in a Face Recognition system. Illustration from [8].

identities and the decision is made as a result of the comparison between them. On the other hand,

face verification is a 1:1 matching problem, where the identity of the face in question is either re-

jected or confirmed when compared with the data available of the claimed identity on the database

[8, 78].

In the work of Ranjan et al. [9], FR is sectioned into three modules, where the first is the

face detector, the second is responsible for performing facial landmarking and alignment of the

detected faces to normalized canonical coordinates, and, finally, the last module implements the

actual face recognition step. The system is layed out in Figure 3.2. In the FR module, face anti-

spoofing is responsible for recognizing whether the face is real and live or spoofed [79, 80]. Face

processing is used to handle variations in, per example, illumination, occlusions, poses and age.

In the training step, discriminative deep features are extracted; after, face matching is responsible

for feature classification in the testing data.

The typical pipeline of a FR system involves mapping the face after detection and alignment

into a feature vector or embedding. Two face images are compared by their relative embeddings

and the degree of identity similarity is measured. The embeddings ideally should present a small

intra-class and large inter-class variation. To achieve this goal, different solutions opted to train

Deep Neural Networks by either directly learning the embedding on the latent space (e.g. using

triplet loss) or by learning an identity classification problem (e.g. Softmax loss). Although it



3.1 Automatic Face Recognition 23

is important to understand face detection and face alignment- both the process as well as the

evolution of the applied methods-, this work mainly focus on face recognition systems.

Figure 3.2: Deep FR system with face detector (a) and alignment (b). The last module, FR (c) is
the subject of this work. Illustration from [9].

3.1.1 Face detection

Face detection is an essential step in a FR system, and it is responsible for estimating the bounding-

box of the face (or faces) in an image or video-frame. This step should be able to deal with changes

in pose, illumination and scale, and should also act as indifferent to the background of the image

as possible. The cropped image that results from the detection aids the model to find and extract

the essential features to make an accurate prediction [8].

The Viola-Jones [81] is a widely used face detector algorithm, specially on frontal face images.

It is based on Haar-like features, and while it works in real-time, it presented problems dealing

with occlusions and significant pose variations. It was considered state-of-the-art for many years,

and it remains relevant to this day when dealing with RGB images. Most early works focused on

designing robust features and training effective classifiers. Besides the Haar-like features used in

the Viola-Jones case [81], the features could also be pixel-based, and researchers used relations

between adjacent pixels to find the boundaries of faces [82]. Moreover, statistics-based features

were also used: from spatial histograms (LBP-based) [83], to a combination of histogram oriented

gradients and local binary patterns (HOG-LBP) [84], or even edge orientation [85]. Nevertheless,

these face detection algorithms relied on hand-crafted features and on the separate optimization of

each component involved, making the face detection step less than optimal.

There are other relevant approaches, but recently the focus has been on Deep Learning based

methods, that present extremely good results [9]. Some of these methods where initially used for

object detection, e.g. the single shot detector (SSD) [86], as it has been considered that face recog-

nition is a more specific case of object recognition, where the object in question is not rigid, but

rather variable [19]. Convolutional Neural Networks (CNNs) are specially pertinent, with remark-

able successes in image classification and object detection. As CNNs are built to learn invariant
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representations of images, they became fit to deal with pose variations, changes in illumination,

different angles and occlusions. Ultimately, these models use their layers to extract features with-

out having to manually define where to look. Consequently, these new and powerful algorithms

surpassed the performance of the traditional models and quickly became state-of-the-art [8].

3.1.2 Facial Landmarking and Alignment

Following the FR pipeline, after face detection follows the estimation of certain landmarks, such

as the corners of the eyes, eyebrows, and mouth. These represent the most relevant points of the

face to perform face alignment, which has been proven to be beneficial for face recognition. The

aim is to estimate these landmarks in order to align the face into a canonical position [8].

As with face detection, there are various methods that were researched for performing face

alignment and facial landmarking. The studies on facial landmarking are summarized in various

survey papers [87] [88] [89]. Aiming to evaluate the landmark localization performance, in [88]

two different metrics were used: the ground truth based localization error and task-oriented per-

formance. As expected, due to the most recent advances in Deep Learning, the performance of

facial landmarking methods improved and evolved [8].

Face alignment consists of locating semantic facial landmarks such as eyes, nose, and mouth,

and is essential for tasks like face recognition, face animation and 3D face modeling [90]. The

classic face alignment methods, e.g., Active Shape Model (ASM) [91] [92] or Active Appearance

Model (AAM) [93] [94] search for landmarks based on the global shape models. The latter uses

an appearance model to reconstruct the entire face and estimates its shape by minimizing the

texture residual. However, the learned appearance models have limited power to capture complex

and subtle face image variations in pose, expression, and illumination, which may not work on

unseen faces. Regression-based methods learn a regression function that maps image appearance

to the target output [90]. In the work of Cristinacce and Cootes [92], learned regressors are used

for individual landmarking. As only local image patches are used for training and there is no

exploitation between landmarks, these learned regressors can be considered weak and have trouble

handling pose variations. Figure 3.3 illustrates the results of face alignment by cascaded regression

[10].

Figure 3.3: Illustration from [10] with the results of face alignment in different stages of cascaded
regression. The shape estimate is initialized and later, iteratively, updated through a cascade of
regression trees: (a) is the initial shape estimate and (b) to (f) are estimations at different stages.
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The work of Sun et al. [95] was pioneer in trying to apply Deep Convolutional Networks to

the face alignment task. Afterwards, with the work of Zhang et al. [96], deep CNNs started being

widely exploited. Methods capable of performing multi-task learning- which can combine face

detection and landmark localization with other tasks, such as pose estimation-, became relevant.

One approach to multi-task learning is the MTCNN- "Joint Face Detection and Alignment Using

Multitask Cascaded Convolutional Networks" [11]-, which uses multitask cascaded convolutional

networks. The model is divided into 3 main parts: (1) a fully CNN by the name of Proposal

Network (P-Net) that aims to find the bounding box for the detection, (2) a refine network (R-

Net), that is another CNN whose goal is to reject a large number of false candidates, and the last

stage, stage (3) that is similar to the previous one, but that presents a special focus on identifying

face regions with more supervision. The visual illustration of the architecture can be found in

Figure 3.4. This model reaches a performance of 99.83% in the Labeled Faces in the Wild (LFW)

dataset [97], surpassing the human performance for this same dataset: 97.53%.

Figure 3.4: Architecture of P-Net, R-Net, and O-Net from the MTCNN. In the image "MP" stands
for max pooling and "conv" for convolution. Illustration from [11].

3.1.3 Network architecture and Training loss

Since the very early stages of FR, the mainstream network architectures have always followed

those of object classification, as per the example of the well known case of AlexNet [62]. This

algorithm achieved the SOTA recognition accuracy during the ImageNet large-scale visual recog-

nition competition (ILSVRC) in the year of 2012, and in summary consists of five convolutional

layers and three fully connected layers.

In 2014, VGGNet [98] presented a standard network that consisted of small convolutional

filters throughout and doubled the number of features maps after pooling. This work increased the

flexibility to learn progressive nonlinear mappings. In contrast with this network of 16-19 weight

layers, GoogleNet [99] came up with a 22-layer network, and its main trademark is the improved

utilization of computing resources. Both the depth and the width of the network were increased

while keeping the computational cost constant.
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In 2016, ResNet [23] became known for proposing layers that learn a residual mapping with

reference to the layer inputs, easing the training needed for deeper networks. ResNet, short for

Residual Network, was introduced to try and solve the vanishing gradient problem: when there

are multiple layers in a network, as the gradient is backpropagated to earlier layers, the repeated

multiplication process makes the gradient infinitely small. There are many variants of the ResNet

architecture as per the ResNet-18, ResNet-34, ResNet-50, and ResNet-100 [5]. By 2017, SENet

[100] surpassed the previous SOTA recognition accuracy and won the ImageNet large-scale visual

recognition competition (ILSVRC). The novelty laid in a "Squeeze-and-Excitation" (SE) block,

that could be integrated with other architectures, such as ResNet, improving them. This SE block

adaptively recalibrates feature responses by modelling interdependencies between channels. In

Figure 3.5, it can be found a chronological representation of the most influential architectures in

deep FR that were previously described.

Figure 3.5: The top row shows the typical network architectures, and the bottom row presents
the well-known FR algorithms that use the above architectures. The algorithms that use the same
architecture have the same color block. Illustration from [12].

A schematic representation (Figure 3.6) of the previously presented networks shows the net-

work architecture for AlexNet, VGGNet, GoogleNet, ResNet and SENet.

One way to improve the generalized performance of face recognition is to include as many

identities as possible in the training set. For example, both Facebook and Google have a deep

FR system trained by a gigantic number of IDs: around 106- 107. However, these very complex

datasets are not accessible for the general public, which means that researchers have to look for

other ways to make deep features more discriminative. Therefore, in order to significantly improve

FR methods, there have been great efforts to develop different loss functions that can enhance the

discriminative power [101]. The solutions to train Deep Neural Networks can be either by directly

learning the embedding or by learning an identity classification problem. The former is associated

with Triplet loss and the latter with Softmax loss [15].

After the development of AlexNet [62], that used cross-entropy based softmax loss for feature

learning, both DeepFace [76] as well as Deep ID [102] adopted this same method. However,

researchers realized that this approach to calculate loss is not sufficient to learn discriminative

features. As a result, the possibility to come up with a novel loss function became the focus of the

research in FR.

Before the year of 2017, Euclidean-distance-based loss [103] played a very important role in

loss functions. It is a metric learning method, that embeds images into Euclidean space, and tries
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Figure 3.6: Different network architectures. Illustration from [12].

to reduce intra-variance and enlarge inter-variance [12]. The contrastive loss and triplet loss are

the loss functions usually associated. The first one requires face images pairs, pulling together

the positive ones and pushing apart the negative pairs, considering the absolute distances of the

matching and non-matching pairs. The contrastive loss function can be calculated by applying

the following equation, where yi j = 1 means xi and x j are matching samples and yi j = 0 means

non-matching, f (.) represents the feature embedding, and ε+ and ε− control the margins of the

matching and non-matching pairs respectively [12]:

L = yi jmax(0, || f (xi)− f (x j)||2 − ε
+)+(1− yi j)max(0,ε−−|| f (xi)− f (x j)||2) (3.1)

The work behind DeepID2 [104] combined softmax for face identification as well as con-

trastive loss for face verification. Moreover, joint Bayesian (JB) was applied as a way of obtaining

a robust embedding space. Both DeepID2+ [105] as well as DeepID3 [106] were extensions of

DeepID2 [104], and represented a introduction to VGGNet and GoogleNet. However, the main

problem with using contrastive loss is that the margin parameters are very difficult to choose.

On the contrary, triplet loss considers the relative difference of the distance between matching

and non-matching pairs. Google proposed FaceNet [53]: a GoogleNet trained in a large private

dataset that achieved a performance of 99.63%. It requires face triplets, minimizing the distance

between an anchor and a positive sample of the same identity and maximizing the distance between

the anchor and a negative sample of a different identity. FaceNet used || f (xa
i )− f (xp

i )||22 +α <
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−|| f (xa
i )− f (xn

i )||22, with xa
i , xp

i , and xn
i as the anchor, positive and negative samples respectively;

α is a margin. Due to training instability when using triplet loss, researchers kept looking for

other alternatives, such as center loss and variants. Center loss learned a center for each class and

penalized the distances between deep features and corresponding class centers [12].

Therefore, around the year of 2017, angular/ cosine-margin-based loss became popular, as well

as feature and weight normalization. The softmax loss, that uses (W1 −W2)x+b1 −b2 = 0 as the

decision boundary, with x as the feature vector, Wi as the weights, and bi as bias, was reformulated

into a large-margin softmax loss (L-Softmax) [107]. In L-Softmax b1 = b2 = 0, which means

that the decision boundaries for classes 1 and 2 become ||x||(||W1||cos(mθ1)−||W2||cos(θ2)) = 0

and ||x||(||W1|| ||W2||cos(θ1)− cos(mθ2)) = 0, respectively, where m is a positive integer that

introduces an angular margin, and θi is the angle between Wi and x. Fixed on L-Softmax [107], A-

Softmax [108] loss normalizes the weight W to a greater extent, in a way that makes the normalized

vector to be able to lie on an hypersphere. Consequently, the discriminative face features can be

learned on the hypersphere manifold with an angular margin. SphereNet [109] was introduced as

a deep hyperspherical convolution network that adopts an angular-margin-based loss. However, to

try to overcome the optimization issue in both L-Softmax as well as A-Softmax, which incorporate

the angular margin in a multiplicative manner, ArcFace [101] and CosFace [110] use an additive

angular/cosine margin. The general angular margin penalty-based loss (LAML) is defined as follows

[15]:

LAML =
1
N ∑

i∈N
− log

es(cos(m1θyi+m2)−m3)

es(cos(m1θyi+m2)−m3) +∑
c
j=1, j ̸=yi

es(cos(θ j))
, (3.2)

where m1,m2 and m3 are the margin penalty parameters for SphereFace [108], ArcFace [101]

and CosFace [110], respectively. CosFace proposed m1 = 1, m2 = 0, and m3 = α(0 < α < 1−
cos(π

4 )), making its decision boundary cos(θyi)− cos(θ j)−m3 = 0. Later, ArcFace setted up

m1 = 1, m2 = α , and m3 = 0(0 < α < 1.0). Therefore, its decision boundary is cos(θyi +m2)−
cos(θ j) = 0.

Both the work of FairLoss [111] and AdaptiveFace [112] proposed further adjusted margins in

order to address the problem of unbalanced data. Even though angular/cosine-margin-based loss

adds discriminative constraints on a hypershpere manifold and achieves good results on a clean

dataset, it still shows some vulnerability to noise and performs worse than center loss or softmax

in a high-noise region [113].

As stated previously, during 2017 some works focused on trying to improve model perfor-

mance by normalizing the features and weights in loss functions. Normface [114] explained the

need for this normalization, both analytically as well as geometrically.

In Table 3.1, we can see the difference in accuracy of various methods evaluated on the LFW

dataset (described in more detail in the following section), with information on the loss function

as well.



3.2 Databases 29

Table 3.1: The accuracy of different methods evaluated on the LFW dataset. Adapted from [12]

Method Public. Time Loss Architecture Number
of Networks

Training Set Accuracy±Std (%)

DeepFace [76] 2014 softmax AlexNet 3 Facebook (4.4M, 4K) 97.35 ± 0.25

DeepID3 [106] 2015 contrastive loss VGGNet-10 50 CelebFaces+ (0.2M, 10K) 99.53± 0.10

FaceNet [53] 2015 triplet loss GoogleNet-24 1 Google (500M, 10M) 99.63 ± 0.09

VGGface [115] 2015 triplet loss VGGNet-16 1 VGGface (2.6M, 2.6K) 98.95

L- softmax [107] 2016 L- softmax VGGNet-18 1 CASIA-WebFace (0.49M, 10k) 98.71

L2- softmax [116] 2017 L2- softmax ResNet-101 1 MS- Celeb- 1M (3.7 M, 58K) 99.78

SphereFace [108] 2017 A- softmax ResNet-64 1 CASIA-WebFace (0.49M, 10k) 99.42

CosFace [110] 2018 cosface ResNet-64 1 CASIA-WebFace (0.49M, 10k) 99.33

ArcFace [101] 2018 arcface ResNet-100 1 MS- Celeb- 1M (3.8 M, 85K) 99.83

3.2 Databases

Early facial recognition research relied on relatively small databases that were compiled in care-

fully controlled lab settings, as per the example of ORL [117]: one of the first image-based

databases that contained 400 images from 10 subjects. Some samples taken from the ORL can

be seen in Figure 3.7. Alongside this, one of the first ever video-based face databases was released

in 1997, and included 70 videos from 40 subjects.

Figure 3.7: Samples from the Olivetti Research Laboratory database. Illustration from [13].

Through the years, databases have become progressively larger with millions of images or

videos captured under uncontrolled conditions. The development of more complex databases

facilitates the research in FR and aids the field’s evolution, given that some of the more simple

databases have became saturated, e.g. Labeled Faces in the Wild (LFW) [97]. LFW was first

introduced in 2007 and marks the beginning of FR performed on images under unconstrained

conditions (Figure 3.8).

Figure 3.8: Samples from the Labeled Faces in the Wild database. Illustration from [13].

Especially in the early works, deep FR algorithms were trained on private training datasets.

Internet giants such as Google and Facebook presented FaceNet [53], a model trained on 200 M

images of 3 M subjects; and DeepFace [76], a model trained on 4 M images of 4 K subjects,
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respectively. Even though there were some relevant results from both of these, researchers are not

able to reproduce or even compare their methods without access to a public training dataset. With

this issue in mind, CASIA-Webface [118] offered the first widely-used public training dataset for

deep model training. It comprises of 0.5 M images of 10 K celebrities gathered from the web, and

it is a good resource for academic comparisons, given its moderate size and easy usage. However,

when it comes to advanced deep learning algorithms, it is not sufficient in terms of data and ID

size. Celeb-1 M [119], VGGface2 [120] and MegaFace [121] are three datasets with over 1 M

images that became relevant for large-scale training. There are some samples taken from the

VGGFace2 dataset represented in Figure 3.9. In Table 3.2, the main image-based databases used

to perform FR are presented.

Figure 3.9: Samples from the VGGFace2 database. Illustration from [13].

When speaking about face databases, it came to researcher’s attention that it may be pertinent

to look for a good trade-off between the depth and the breadth of the dataset. While the depth of a

database addresses a wide range intra-class variation, such as changes in lighting, age, and pose,

the breadth ensures that the trained model covers a sufficiently variable appearance of various

subjects. VGGface2 [120] includes a large-scale training dataset with depth, containing a limited

number of subjects, but many images for each one of them. On the other hand, MS-Celeb-1 M

[119] and MegaFace [121] represent good examples of large-scale training datasets with breadth,

covering many subjects, but with limited images per subject. The work of Cao et al. [120] revealed

that it may be beneficial to use a model that was first trained on MS-Celeb-1 M [119] and after on

VGGface2 [120], which is representative of focusing first on breadth and then depth.

Another important factor to a large, clean and meaningful database is the data noise that results

from the data source and collecting strategies. In large-scale datasets, it is expected that label noise

may be present. In the research work followed by Wang et al. [113] the noise percentage increases

along the data scale, which means that more data reflects in more noise. Moreover, label flip noise

affects the performance of a model, especially if the model uses A-softmax [108] for the loss. One

of the approaches to solve this issue was presented by Deng et al. [101] and starts by cleaning

the noise found in MS-Celeb-1 M [119] before making the new clean dataset public (MS1MV2).

Another approach [128] shifted the focus from noise clearance to adding more unlabeled data.
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3.2.1 Data bias

As per the example of CASIA-WebFace [118] and MS-Celeb-1 M [119], large-scale training

datasets are usually a result of images obtained from websites and Google Images. Most of the im-

ages consist of celebrities in formal settings- smiling, with make-up, young and well put together-,

given that there is easy access to them on-line. These types of databases are very different from

the ones that try to include images captured in the daily life, e.g. MegaFace [121]. The present

biases can be attributed to outside factors in the data collection process, such as cameras, lighting,

and different backgrounds.

Dataset biases negatively impact cross-dataset generalization, which means that the perfor-

mance of a model that was trained on a certain dataset drops significantly when switched to another

one [129].

When it comes to demographic bias, especially related to race/ethnicity, gender and age, it is

consensual that it is a universal and a very urgent issue that needs to be solved. It is very common

that in databases used for training and testing Deep Learning models, the male, White and middle-

aged subject appears more frequently. The model replicates and may even amplify the biases,

which influences heavily its performance and accuracy results when applied to other demographic

groups [12]. Some previous works on this matter [130] [131] showed that the female, Black,

and younger subgroup of the mainly-used databases are usually more difficult to recognize when

applying a FR system. Phillips et al. [132] presented a work where they evaluated FR algorithms

on the FRVT 2006 [133] images and concluded that these performed better on natives. Another

similar study [56] collected mug shots of White, Black and Hispanic subjects and concluded that

the Black cohorts are more difficult to recognize. Moreover, the commonly-used databases for

deep FR, as LFW [97], do not include significant racial diversity. This issue is visually represented

in Table 3.3.

Table 3.3: Statistical demographic information of the most commonly-used training and testing
datasets. From [12].

Train/ Test Database Race(%) Gender(%)

Caucasian Asian Indian African Female Male

train

CASIA-WebFace [118] 84.5 2.6 1.6 11.3 41.1 58.9

VGGFace2 [120] 74.2 6 4 15.8 40.7 59.3

MS-Celeb-1M [119] 76.3 6.6 2.6 14.5 - -

BUPT-Balancedface [29] 25 25 25 25 - -

BUPT-Globalface [29] 38 31 18 13 - -

test
LFW [97] 69.9 13.2 2.9 14 25.8 74.2

IJB-A [134] 66 9.8 7.2 17 - -

RFW [14] 25.9 21.8 26.1 26.2 - -



3.2 Databases 33

Therefore, as a way to try and tackle racial bias, an issue that has not been thoroughly studied

yet, and prove that the SOTA algorithms work unequally with different races, Wang et. al [14]

presented a Racial Faces in the Wild (RFW) dataset. Some examples of images from the RFW

dataset can be found in Figure 3.10.

Figure 3.10: In rows, from the top to bottom: Caucasian, Indian, Asian, African. Illustration from
[14].

It is a race-balanced training database, where all four represented races- Caucasian, African,

Asian, and Indian-, have the same number of images (each one has 25% of all the images in the

dataset). The images were collected from the MS-Celeb-1 M [119] database, and the "Nationality"

attribute was used to collect the images for Asians and Indians. When it comes to Caucasians and

Africans, the Face++ API was used to estimate the subject’s race, and the images with a low

confidence estimation score were manually checked [14]. In Table 3.4 the different values for face

verification accuracies on the RFW database are presented. These results confirm the existence of

racial bias in recognition APIs and FR algorithms.

Table 3.4: Racial bias in FR algorithms. Face verification accuracies (%) on the RFW database.
Adapted from [12].

Model LFW RFW

Caucasian Indian Asian African

Microsoft 98.22 87.60 82.83 79.67 75.83

Face++ 97.03 93.90 88.55 92.47 87.50

Center-loss [135] 98.75 87.18 81.92 79.32 78.00

Sphereface [108] 99.27 90.80 87.02 82.95 82.28

Arcface [101] 99.40 92.15 88.00 83.98 84.93

VGGface2 [120] 99.30 89.90 86.13 84.93 83.38

The presence of such bias may result in mistreatment of certain demographic groups, exposing

them to a higher risk of fraud or making their access to services more difficult. This led to the FR
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community to agree that addressing these data bias and enhancing fairness in FR systems is urgent

and necessary. Consequently, collecting balanced data to train a fair model or even trying to design

a unbiased algorithm should be the way to go [12].

3.3 Summary

This chapter presents a literature review of both face recognition algorithms as well as databases

associated with face recognition. There are different network architectures and training loss meth-

ods presented and proposed through the years. Regarding databases, the focus is the introduction

of a race-aware dataset: RFW.



Chapter 4

Methodology

4.1 Developed Strategy

This chapter will detail the work developed towards accomplishing the established objectives.

All the work carried out and portrayed in this dissertation was, from the start, very exploratory

and based on an investigative approach. Accordingly, the various practical tests performed were

designed as the experiment work progressed and their results led us towards certain directions.

We started by defining the model to be studied and present the motivation behind this choice.

We further explored the model properties and the databases used to benchmark said model. Addi-

tionally, the model was benchmarked on a database designed to assess race bias.

Afterwards, different tests were conducted on the images of the chosen datasets, aiming to

assess the influence of certain alterations (e.g. changes in contrast and illumination, rotation and

grayscaling) had in the method’s performance and, therefore, test which alterations affected more

a particular race. By performing incremental changes to the illumination of an image, per example,

the goal was to evaluate if one of the four racial groups felt these modifications more prominently

than the others.

In order to try and understand what the model considered to be the most relevant spatial ar-

eas used to construct a face embedding in each image for each race, mean gradient maps were

extracted in three specific layers of the network- first layer, mid-layer and last layer. The idea

behind this step was to enable comparisons between the regions of interest on images from the

same layer, but belonging to different ethnicity groups. Differences in patterns may also indicate

different levels of neural activation, which allowed the transition for the following steps.

The next part of the work focused on the idea that there could be a parallelism between the

human face recognition process and an automatic FR system. Regarding how different brain

regions are activated through time with different intensities, the goal was to look for similarities in

the FR model’s network pipeline and how the data flows throughout the layers in a specific order.

The values for all the layers’ neural activations were retrieved and these results were analysed in

order to look for a sequential layout similar to the neural activations in the human brain. Metrics

such as the mean and standard deviation were calculated for all the network’s layers and analysed

35
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to try to evaluate differences across racial groups. Furthermore, it allows us to study if the bias

is already identifiable with these statistics, e.g. a lower performance means less discriminative

power, which can be caused by a lower STD value in a specific group.

At this point, there was an interest to test the influence that the network architecture used had

in the results, especially given that the chosen algorithm was based on a ResNet-100 trained on the

MS1MV2 dataset, and some of the images on RFW can be found in both databases (data leakage).

Therefore, we further explored three instances of a smaller network (ResNet-34), trained on three

different databases [136]. The ResNet-34 trained on MS1MV2 was retained as a way to perform

comparisons with ResNet-100 on the same data, ensuring that we would only be studying the

impact of the architecture change. We replicated previous experiments on these networks.

Finally, the last section of this dissertation aims to show that the bias on face recognition is

related to intra-race samples and not inter-race. As such, we show that there is a progressive

separability of ethnicity groups across the layers of the network.

4.2 Algorithm Selection

The first step was to select the algorithm that would be used throughout the entire duration of the

practical experiments. As previously highlighted in Chapter 3, there were various options for good

FR-performing models that could have been chosen.

The Additive Angular Margin Loss is intended to improve the discriminative power of a model

and add stabilization to the training process, however, as stated before, the main challenge in

loss functions such as ArcFace [101], CosFace [110] and SphereFace [108] is selecting the ideal

margin penalty value. In these three methods, the margin was selected through trial and error and

the authors lay on the assumption that the samples are equally distributed on the geodesic space

around the class centers. Given that this assumption could not be held with largely different intra-

class variations between the samples in the training dataset, Boutros et al. proposed ElasticFace

[15]. ElasticFace brings a looser single margin value by deploying a random margin drawn from a

normal distribution, aiming to improve face recognition accuracy by targeting enhanced intra-class

compactness and inter-class discrepancy.

For the present work, it needs to be highlighted that, even though ArcFace could be considered

as a possible algorithm option, the results for the pre-trained model weights are not available in Py-

Torch [137], meaning that there is no checkpoint associated for easy use of the pre-trained model.

This is a relevant factor to consider, given that there is a preference on using this deep learning

library to implement the model. ElasticFace’s repository on GitHub 1 includes checkpoints for

all the available models, making testing easier by having official pre-trained versions. Moreover,

when comparing the results from ElasticFace with fixed margin penalty methods and recent state-

of-the-art, the former enhanced the face recognition accuracy and increased performance on seven

out of the nine benchmarks used [15].

1https://github.com/fdbtrs/ElasticFace

https://github.com/fdbtrs/ElasticFace
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ElasticFace random margin penalty can also be integrated into the angular margin-based soft-

max losses, e.g. CosFace and ArcFace, and it is extended over the angular margin by deploying

random values from a Gaussian distribution. The probability density function of a normal distri-

bution is defined as:

f (x) =
1

σ
√

2π
e−

1
2(

x−µ

σ )
2

, (4.1)

where µ is the mean and σ is its standard deviation. To demonstrate the elastic margin,

the authors integrated the randomized margin penalty in ArcFace (ElasticFace-Arc) and CosFace

(ElasticFace-Cos).

ElasticFace-Arc (LEArc) can be defined as:

LEArc =
1
N ∑

i∈N
− log

es(cos(θyi+E(m,σ)))

es(cos(θyi+E(m,σ))) +∑
c
j=1, j ̸=yi

es(cos(θ j))
(4.2)

ElasticFace-Cos (LEArc) can be defined as:

LECos =
1
N ∑

i∈N
− log

es(cos(θyi)−E(m,σ))

es(cos(θyi)−E(m,σ)) +∑
c
j=1, j ̸=yi

es(cos(θ j))
, (4.3)

where E(m,σ) is a normal function that returns a random value from a Gaussian distribution

with mean m and standard deviation σ . From the above equations, the decision boundaries for

these two methods can be concluded to be: cos(θyi +E(m,σ))−cos(θ j) = 0 for ElasticFace-Arc

and cos(θyi)− cos(θ j)−E(m,σ) = 0 for ElasticFace-Cos. It is worth noting that when σ is 0

the ElasticFace-Arc is equivalent to ArcFace and the same happens for the ElasticFace-Cos and

CosFace.

In Figure 4.1, there is an illustration of the decision boundaries of ArcFace, ElasticFace-Arc,

CosFace and ElasticFace-Cos.

Figure 4.1: Illustration taken from the ElasticFace paper [15]. Decision boundary of (a) ArcFace,
(b) ElasticFace-Arc, (c) CosFace, and (d) ElasticFace-Cos for binary classification.

Given that the goal was not the algorithm itself but rather to use it to get insights on the influ-

ence of race, the ElasticFace algorithm used had been trained already and it was only implemented.

Essentially, it was only used as a tool for the performed tasks. The algorithm selection proceeded
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to a careful analysis of the work already developed and published on the author’s GitHub 2. The

training settings in the original work were mostly unchanged: the network architecture used (in

the beginning stages of this work) was the ResNet-100 [23], the scale parameter s was set to 64,

and the mini-batch size to 512. Moreover, all the models were trained with the Stochastic Gradi-

ent Descent (SGD) optimizer with a learning rate of 1e−1. The momentum was set to 0.9 and the

weight decay to 5e−4. Random horizontal flipping with a probability of 0.5 for data augmentation

was used during training. The images used have 112 x 112 x 3 size and produce 512- d feature

embeddings. Additionally, these are aligned and cropped with the Multi-task Cascaded Convolu-

tional Network (MTCNN) [11] that was presented in Chapter 3 and all of the images’ pixels are

normalized to values between -1 and 1.

The dataset used to train the original ElasticFace model was the MS1MV2 [101], which is

a refined version of the MS-Celeb-1M [119] and contains 5.8M images of 85K identities. Most

of the recent works in the FR area [101], [138] [139] [140] have been trained on this dataset,

meaning that by following the trend, direct comparisons between ElasticFace and state-of-the-art

were enabled. There are nine benchmarks of diverse nature used in the work of Boutros et al. [15]

and they make comparisons on FR accuracy possible. The benchmarks are Labeled Faces in the

Wild (LFW) [97], AgeDB-30 [141], Cross-age LFW (CALFW) [142], Cross-Pose LFW (CPLFW)

[126], Celebreties in Frontal-Profile in the Wild (CFP-FP) [125], IARPA Janus Benchmark-B (IJB-

B) [143], IARPA Janus Benchmark-C (IJB-C) [144], MegaFace [121] and MegaFace (R) [101].

The verification accuracy was based on the performance results of LFW, AgeDB-30, CALFW,

CPLFW and CFP-FP.

The results from the mentioned benchmarks are layed-out in Table 4.1, both from some state-

of-the-art works as well as the results from ElasticFace.

Table 4.1: Achieved results on the LFW, AgeDB-30, CALFW, CPLFW, and CFP-FP benchmarks.
ElasticFace outer-performs 7 out of the 9 benchmarks, scoring very closely to the SOTA on LFW
and CALFW. The top performances are bold and are noted with rank numbers from 1 to 3. Table
adapted from [15].

Method Training Dataset LFW AgeDB-30 CALFW CPLFW CFP-FP
Accuracy (%) Accuracy (%) Accuracy (%) Accuracy (%) Accuracy (%)

ArcFace [101] (CVPR2019) MS1MV2 [7], [4] 99.82(3) 98.15 95.45 92.08 98.27
CosFace [110] (CVPR2018) private 99.73 - - - -

GroupFace [145] (CVPR2020) clean MS1M [7], [4] 99.85(1) 98.28(3) 96.20(1) 93.17 98.63
CurricularFace [139] (CVPR2020) MS1MV2 [7], [4] 99.80 98.32(2) 96.20(1) 93.13 98.37

MagFace [140] (CVPR2021) MS1MV2 [7], [4] 99.83(2) 98.17 96.15 92.87 98.46
Partial-FC-ArcFace [138] (ICCVW2021) MS1MV2 [7], [4] 99.83(2) 98.20 96.18(2) 93.00 98.45
Partial-FC-CosFace [138] (ICCVW2021) MS1MV2 [7], [4] 99.83(2) 98.03 96.20(1) 93.10 98.51

ElasticFace-Arc [15] MS1MV2 [7], [4] 99.80 98.35(1) 96.17(3) 93.27(2) 98.67(2)
ElasticFace-Cos [15] MS1MV2 [7], [4] 99.82(3) 98.27 96.03 93.17 98.61(3)

ElasticFace-Arc+ [15] MS1MV2 [7], [4] 99.82(3) 98.35(1) 96.17(3) 93.28 (1) 98.60
ElasticFace-Cos+ [15] MS1MV2 [7], [4] 99.80 98.28(3) 96.18(2) 93.23(3) 98.73(1)

During the practical experiments, the specific model used from the four available (ElasticFace-

Arc, ElasticFace-Cos, ElasticFace-Arc+ and ElasticFace-Cos+) was the ElasticFace-Arc and for

setting up the model the parameters that needed to be changed were the loss function and the

2https://github.com/fdbtrs/ElasticFace

https://github.com/fdbtrs/ElasticFace
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configured output, that needed to be the path for the pre-trained model weights. The file with the

weights was downloaded directly from the ElasticFace’s GitHub 3.

4.3 Databases

Initially, the datasets used for evaluation of the pre-trained model were the same as the ones al-

ready described as benchmarks- LFW, AgeDB-30, CALFW, CPLFW and CFP-FP. These are of

an heterogeneous nature, representing some known vulnerabilities of face recognition.

The AgeDB-30 benchmark includes images with large age gaps, making its intra-user variation

very large. AgeDB contains 16,488 images of celebrities and every one of those images has

annotations with respect to identity, age and gender. There is a total of 568 subjects and the

average of images per subject is 29. The frontal-to-profile face verification benchmark (CFP-

FP) also shows a large intra-user variation. Both Cross-Age LFW (CALFW) and Cross-Pose

LFW (CPLFW) are renovations from the Labeled Faces in the Wild (LFW), aiming to establish

databases more complex to evaluate the performance of real world conditions on face recognition.

The former considers specially age gaps and the latter pose variations. In Figure 4.2 it can be

found some examples of images taken from these 4 benchmarks.

Figure 4.2: Examples of images from (a) CFP-FP (b) CPLFW (c) CALFW (d) AgeDB-30. Image
from [16].

As the main focus of this work is to analyse the effects that race plays on a FR model’s

performance, it is important to use a racially-balanced dataset. Racial Faces in the Wild (RFW)

[14] is a testing database that was developed for studying racial bias in face recognition, as has

been previously mentioned in Chapter 3. There are four subsets: Caucasian, Asian, Indian, and

African, each one of them with between 2400-3000 individuals and 9688 to 10415 images, which

are combined into 6000 image pairs of genuine and impostor samples for face verification (Table

4.2 shows the number of subjects and images per race).

3https://github.com/fdbtrs/ElasticFace

https://github.com/fdbtrs/ElasticFace
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Table 4.2: Number of identities and images in RFW. Table from the original RFW website
(http://www.whdeng.cn/RFW/testing.html).

RFW # Subjects # Images
Caucasian 2959 10196

Indian 2984 10308
Asian 2492 9688

African 2995 10415

In the RFW paper [14], the authors present the average face for each race from their database of

images. We replicated this task and in Figure 4.3, the image on the left, composed of two columns,

belongs to the RFW original paper [14], and represents the mean faces from the four races, in rows

from top to bottom: Caucasian, Indian, Asian and African. The right portion of the same Figure,

shows the results we obtained, with the mean faces from each race occupying the equivalent row

from the image on the left. These average faces were obtained by summing the pixels of all the

12000 images from each race subset and calculating the average value. It is important to mention

that this dataset is not balanced with respect to gender, so there are more male samples across all

races 4, which justifies the image results for the average face of each race (images on the right of

Figure 4.3) being primarily masculine. This database was essential throughout the practical work

and it will be mentioned in the following sections when presenting the various tests made.

Figure 4.3: On the left, average faces for each race taken from an adapted image from [14]. On
the right, average faces resulting from the evaluation process performed on ElasticFace with the
RFW database. From the top row to the bottom row: Caucasian, Indian, Asian and African.

Alongside with this database, Wang et al. [29] also presented four training databases to try

and bring social awareness to the presence of racial bias on training data, allowing the study of

facial bias and fair performance. From the four, two of them were especially relevant for the work
4http://www.whdeng.cn/RFW/index.html

http://www.whdeng.cn/RFW/index.html
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presented further on this dissertation: BUPT-Globalface and BUPT-Balancedface. Globalface

consists of 2M images from 38K celebrities and its racial distribution is 38% Caucasian, 18%

Indian, 31% Asian and 13% African. This distribution is approximately the same as that of the

world’s population at the time of its development. Balancedface is formed with an equal number

of identities from each one of the four races (each represents 25% of the whole database), meaning

that it is balanced.

4.4 Image transformation

The practical experiments started on the basis of simple transformations applied to the input im-

ages to see the effects that these modifications had on the model’s performance. For this, a Python

library was used- Albumentations 5. This library is compatible with PyTorch and of simple im-

plementation and application. It acts at the pixel level and includes a vast amount of possible

transformations.

Initially, the datasets tested were the benchmarks used for verification on ElasticFace-Arc

- LFW, AgeDB-30, CALFW, CPLFW and CFP-FP. The transformations were a 180º rotation,

obtaining the grayscaled and the negative images, and changing the brightness and contrast of the

images. These last two modifications are colour augmentation functions and work by altering the

pixel values from an image. Changing the brightness results in a darker or lighter image compared

to the original: when the value is set to zero it refers to a completely black image and one to

a completely white image. On the other hand, contrast is the degree of separation between the

darkest and brightest areas of an image.

We applied changes both in brightness and contrast at the same time. The parameters were

set for various values as a way of testing different ranges; moreover, all the transformations were

applied to all of the images.

After these initial experiments, the same process with the same transformations was performed

on RFW to try and test if a specific ethnicity could be more affected by the applied modifications.

These alterations may be especially relevant when dealing with over or under-exposed images and

when testing the degree of influence that a change in brightness or contrast may have in a specific

race.

4.5 Grad-CAM Visualizations

As it was previously stated in Chapter 3, explainability is a field of AI that gained a lot of attention

and researchers keep trying to implement methods that focus on increasing the level of trans-

parency and interpretability of DL models. Visual explanation techniques are attribution-based

methods that help to understand a model’s prediction by assigning attributions to each input fea-

ture. The "saliency maps" are gradient-based and indicate the contribution of each input variable,

5https://github.com/albumentations-team/albumentations/

https://github.com/albumentations-team/albumentations/
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and in this case these variables are pixels from the input images. The goal of this set of experi-

ments was to visually try to analyse the way that the model processes images from different racial

groups and observe the regions of interest highlighted in the maps. Throughout the network the

maps also change, given that firstly the model focuses on a more broader context and it increases

its attention to details as the pipeline progresses.

The visualization technique used was the Gradient-weighted Cam (Grad-CAM [3]), where the

final map results from the combination of feature maps that use the gradient. The premise was to

select three layers from distinct points on the network’s pipeline and generate the corresponding

mean gradient map. The three more logical points to attain the Grad-CAM output images were

the first convolutional layer, an intermediate layer and the second batch normalization layer, cor-

responding with the beginning, middle and end of the network, respectively. We obtained these

maps for a subset of each ethnicity group on the RFW dataset. In the end of this process, there

were three maps for each race, allowing a direct comparison between them. The library used

for generating the maps was MONAI 6 which is known from being implemented in the Medical

Imaging field.

The generated maps help to pinpoint the regions that were relevant to the network’s decision

and help to understand where the model focuses its attention, e.g the object or features of interest.

Furthermore, the Grad-CAM should also aid to visualize neural activation, highlighting the parts

of the input image that contributed the most for the produced embedding. Again, to get insights

on the influence of race on a FR algorithm, the comparison of the maps from the same layers for

each race could help bring light to the main distinctions between them in the model’s perspective,

and possibly show different visual patterns.

As previously mentioned, the algorithm selected, ElasticFace-Arc, uses a ResNet-100 back-

bone. This network was trained on the MS1MV2 database. Aforesaid, there are some issues

associated with the use of this dataset combined with RFW, e.g. data leakage, as there are some

images that are simultaneously on both databases. Therefore, the idea to only change the type of

network would allow to test for the impact of this alteration alone, as the new network implemented

would also be trained on the MS1MV2. Thus, a ResNet-34 already trained on MS1MV2 was im-

plemented. The gradient maps were generated following the same conditions as before, with the

only difference being the network architecture. Furthermore, this experiment of changing the net-

work architecture was extended to another two databases already mentioned: BUPT-Globalface

and BUPT-Balancedface. The ResNet-34 had already been trained on both of them as well [136]

and again the goal was to only implement and analyse the results. These two databases were par-

ticularly important and used for the remaining tests given that the Globalface reflects pre-existent

bias mirroring the distribution of the four ethnic groups in the world, and the Balancedface is

equalized.

6https://monai.io/

https://monai.io/
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4.6 Neural Activation in FR systems

In the very beginning of this dissertation, we introduced the notion that researchers have long

shown an interest in attempting to come up with a parallelism between the human face recognition

process and an automatic FR system, especially when it comes to taking inspiration from the

human biological approach and applying it on artificial models.

The human face recognition task develops over time, even if this period of time is incredibly

small, and different regions of the brain are activated throughout, with the neurons of these same

regions following the activation process. Additionally, there is the hypothesis presented in Chapter

2 in the "Other-race effect" section, that the human brain shows higher neural activation when

seeing faces from other races, meaning that observing a face from a different race than ours or

different from the race we grew up surrounded by, may induce more neurons to be activated.

This hypothesis was the starting point for what may be considered the focal aspect of the

experimental work on this dissertation: the interest in pursuing an investigation that possibly shows

a parallelism between human neural activation and deep neural networks, when both perform the

task of face recognition with focus on the influence of race and racial bias. Therefore, and given

that a deep neural network can not be evaluated through time, as it is very difficult to analyse

which or how many neurons are activated in a very specific point in time, the approach to try

and perform a comparison was to focus on the structural development of models: the progressive

activation of consecutive layers. Thus, even though networks do not work in a chronological order,

their architecture has a premeditated sequence and the model follows a pipeline.

4.6.1 Layer neural activation

Starting for acquiring the activation values for each layer, from the first convolutional layer to one

of the last linear ones (in total, there were six layers used for the experiments), the focus was to

obtain some informative statistics: the mean and the standard deviation of the neural activation

in each layer. These statistical values were calculated for all four subsets on RFW. The use of

the mean in this case aims to allow a inter-racial analysis, given that the mean values can give

insights into the separability of the ethnicity groups. On the other hand, the standard deviation

values extracted may help to study intra-racial bias: higher values might indicate high variance or

discriminative power inside classes. Globally, the aim of this task was to see if there was some

kind of pattern in the results and if there was anything notoriously different for any of the races.

Additionally, using exclusively the final network layer with 12000 images and 512 features,

the mean value for these features was calculated, leaving the output with the dimension of 12000

x 1. Afterwards, with this output, it was calculated the standard deviation. Again, the process was

repeated for all four races. For this task, the motivation was to compare this approach with the

simple extraction of the STD values. This experiment did not lead to any conclusions, so it was

not included in the Results Chapter 5.

Using PCA to perform a dimension reduction in the last layer, the same metrics described

in the beginning of this subsection were also retracted. Before performing the PCA, the input
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variables had to be normalized, so that they were scale independent and stable, and each point is

transformed by subtracting the mean of the data and dividing it by the data’s standard deviation.

With this dimension reduction of the neural activation output of the linear layer, the goal was to use

only one dimension for these new metric calculations, while providing a more insightful dimension

reduction strategy when compared with the average. Therefore, instead of 512 different values,

the PCA uses a representative value of all these features, while keeping the maximum amount of

information possible. Again, as the experiment did not lead to any relevant conclusions, the results

were not included as well.

As in the prior section, all the steps were repeated and the activation values were also obtained

with the ResNet-34 trained on the MS1MV2, BUPT-Globalface and Balancedface.

4.6.2 Race classification

RFW was proposed as a race-aware database and it was expected that the model would be able

to separate and detect differences between races, having a good inter-racial performance. Like

humans, that show an ability to easily distinguish subjects from their own race, but have a harder

time setting apart subjects from another race, automatic FR models can also show liabilities in this

task. This dissertation had a special focus on intra-racial bias analysis. For a model to be able to

distinguish between subjects from the same race, the distance between their embeddings needs to

be a compromise: low enough that they do not increase intra-ethnicity errors, but still distant so

that the embeddings are not misjudged as being equal, e.g. same person.

To test the ability of a ML classifier to correctly assign the race of a subject just by analysing an

image’s neural activation matrix in a specific layer of the network, these activation matrices were

extracted from the beginning, middle and end of the network of the ElasticFace tested on RFW.

The two ML classifiers used were the K-Nearest Neighbor (KNN) and Support Vector Machine

(SVM). For all the layers, for the KNN, different values of K were tested out: 5, 7 and 9. Similarly,

in all the layers, the parameters for SVM were the same: the kernel value, the c and gamma were

set as the default values of the function (c=1, kernel= ’rbf’ and gamma=’scale’).

The values for the neural activations of the Caucasian subset in one of the final layers of

the network (from the linear portion) were extracted. Given that it was a layer from the end of

the network, after all the applied convolutions, the output activations corresponded to the final

512 features, putting the output dimensions at 12000 images per 512 features (12000, 512). The

activation values were concatenated into a vector. Afterwards, the same process was applied to the

African subset of the database and its activation values were also extracted and saved in another

vector. The same goes for the remaining two races: Asian and Indian. Simultaneously, as each

vector with the results from the images of one race was saved, there was another vector, of the

same length, that was created. As it was necessary to apply a true label to each activation matrix

(each row in the first described vectors), this new vector would hold the indexes of the future

classes. Four different ethnicity groups meant that there should be four indexes/classes:

• Class 0: Caucasian
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• Class 1: African

• Class 2: Asian

• Class 3: Indian

In the end, there were 4 pairs of 2 vectors: for each race, one of them containing the results

of the neural activations of the desired layer and the other vector would be of the same length, but

would only have the correspondent index to that specific race. For example, the first row of the

vector containing the activation results for Caucasians would correspond to a 0 in the same row of

the other vector.

Afterwards, as the goal was to join all the activation results into one big vector before per-

forming the classification, the four sub-vectors with the activation matrices were concatenated as

well as the other four holding the respective indexes. With 12000 input images per race, con-

catenating the four sub-vectors meant that the final one presented 48000 images per 512 features.

After making sure that these two final vectors were properly shuffled, and keeping in mind that

the rows should be swapped in pairs as a way of assuring that a certain item in the first vector

would maintain its true label even after shuffling, these were splitted into train and test data. It is

common that the training subset represents 80% of the entire data, leaving the remaining 20% for

testing. Therefore, 38400 images were used as the training data. Following a normalization of the

training data, the classification with the two chosen methods- KNN and SVM-, was performed.

Besides the results for the test and training accuracy, confusion matrices and classification reports

were obtained.

Going up the network, the activation matrices outputted for each image enlarge in dimension.

The same process for obtaining the activation matrices and the two final vectors for classification

was implemented, however as it was necessary that the input data for these ML classifiers had only

two dimensions maximum, it was required to apply a type of dimension reduction. The middle

layer used had, after concatenating and shuffling the vectors with the four races, the following

dimensions: (48000, 256, 14, 14). Therefore, firstly a simple mean performed in each one of the

256 channels was carried out, resulting in a vector of 48000 per 256. Besides the calculation of

the mean, there was another approach tested, to try and possibly improve the classification results

and allow a comparison: a reshape of the matrix that would result in the product of the three last

dimensions (48000, 256 x 14 x 14). After these steps, the classification proceeded in the same way

as previously explained: a split between training and testing data, followed by a normalization of

the training data and the classification itself.

At last, race classification was carried out in the first layer. Again, it was expected that in the

first convolutional layer, before performing all the convolutions and max-poolings, the dimensions

of the matrices would be greater, as there is a lot more information/ features being extracted.

Given that each subset has 12000 images, which is a significant amount of data to be processed,

when trying to perform the extraction of the activation matrices for the first layer there was a

clear increase in the computational memory required to perform the same task. These hardware
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setbacks meant that as the embeddings were too large with (12000, 64, 112, 112), it was necessary

to calculate the mean of the two last dimensions right after acquiring each activation matrix. This

was performed in each one of the 12000 iterations, and before appending the results from each

iteration to a vector. This approach allowed the stacking of the four race sub-vectors into a single

one, as described for the other layers. As a result of the mean applied right after the extraction of

the activation matrix, the final vector with all the data was two-dimensional already. Without the

need for another reshape or extra processing, the KNN and SVM were applied.

4.7 Summary

This chapter presented the various steps of the work and the reasoning behind them. In the De-

veloped Strategy section, there is a workflow layout that introduces each method. Besides image

transformations and the generation of activation maps with Grad-CAM, the rest of the work was

based on neural network activation and the information that these values can convey in relation

to race. Focusing on intra-racial bias analysis, the classification task aims to look for a progres-

sive separability between racial groups across the network pipeline. The direction of the practical

experiments was adapted throughout time and some tasks that were performed to reach a specific

goal or conclusion did not present the desired information.
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Results and Discussion

This chapter aims to present the most relevant results regarding the various stages of the executed

work, namely the image transformations, the gradient maps, the network layer activation and the

classification process with the activation matrices. Additionally, these results are discussed and

associated limitations are described.

5.1 Image Transformation

We have computed the accuracy values for all the benchmark databases mentioned in the Elastic-

Face paper. Moreover, histograms with the positive and negative distances were generated and can

be found in Figure 5.1. The positive and negative, in green and red, respectively, resulted from

the verification process performed by the model. As introduced in Chapter 2, a verification is a

1:1 comparison, where two faces are directly compared. In ElasticFace-Arc, the model considers

a positive verification if there is a match: the euclidean distance is computed for two embeddings

(the vectors containing facial features from two images) and this value must be lower than an es-

tablished threshold. On the contrary, a negative example corresponds to two embeddings that are

further away than an established distance, meaning that the features vectored are not similar, e.g.

the two images do not belong to the same person.

Looking at the histograms of the five datasets (Figure 5.1), there is a convergence zone in all

of them besides LFW, where the green and red portions are very well separated. The overlay in

the remaining datasets is represented by a darker red and shows the instances where the model had

difficulties in clearly telling a positive from a negative verification.

After analysing these graphs of the distribution of the datasets, some alterations were per-

formed similarly in all of them: an inversion of the image (a 180º rotation), grayscaling and

applying the negative, and testing changes in brightness and contrast on the original images. The

accuracy results for all the modifications can be seen in Table 5.1, where the first column shows the

results for the accuracy of the original/unchanged images, allowing for a direct comparison with

the results from the transformations. Moreover, as mentioned during the last chapter (Chapter 4),

the brightness and contrast can be changed simultaneously, with the variables being independent.

47
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Figure 5.1: Histograms representing the positive and negative verifications performed on LFW,
CALFW, AgeDB-30, CFP-FP and CPLFW.

After applying a small (0.2) and later on a big (0.8) change to both variables, there was also an in-

terest to see the consequences of applying only one of the operations, meaning that only the value

of either the brightness or contrast would be different from 0. Two columns on Table 5.1 under

the brightness and contrast portion have the results from the experiments first described (columns

1 and 3), where the same value is applied for both variables. The other two remaining columns

under this same section of the table present the results for only one of the variables being tested:

in the second column, brightness was set to 0 and the value of contrast was increased and in the

last column this same logic was implemented in the other way around. It is important to highlight

the fact that as it was concluded that applying a change in the 0.2 order did not altered the final

performance in a considerable amount, for these last experiments, where only one of the variables

was changed, it was only used the value 0.8.

Table 5.1: Accuracy results of the verification for the image transformations performed on LFW,
CALFW, AgeDB-30, CFP-FP and CPLFW.

Brightness and Contrast

Normal Rotation GrayScaled Negative 0.2 brightness= 0 , contrast=0.8 0.8 brightness= 0.8 , contrast=0

LFW 0.998 0.725 0.998 0.813 0.998 0.998 0.845 0.919

CALFW 0.960 0.620 0.957 0.703 0.961 0.960 0.821 0.893

AgeDB-30 0.984 0.507 0.975 0.658 0.982 0.976 0.820 0.888

CFP-FP 0.986 0.534 0.971 0.666 0.985 0.978 0.823 0.884

CPLFW 0.932 0.541 0.915 0.648 0.929 0.925 0.773 0.835
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After applying the transformations the same histograms were generated, to visualize the impact

on the verification process. As an example of these histograms, Figure 5.2 presents two plots from

the CPLFW database where it is notorious the overlap between positive and negative.

Figure 5.2: Histograms from CPLFW: on the left, after applying rotation and on the right, after
applying the negative.

Analysing these accuracy values and knowing the individual details about each one of the

databases (reported in the previous Chapter 4 in the databases section 4.3), a debate on possible

motives behind the results may become adequate. After performing all transformations, the best

accuracy all around belongs to LFW. A small increase in the same degree in both brightness and

contrast, corresponding to the 0.2 column, shows that the impact on the model’s performance is

minimal. On the other hand, when increasing the brightness and contrast for a higher value (0.8),

all databases suffer a considerable drop in performance. It can be concluded that a change in

brightness impacts more the model’s performance than a change in contrast, even when talking

about an alteration within the same range. The last four databases are especially impacted by an

increase in the image brightness and contrast, which is relevant to notice when considering their

constitution, that is more complex and heterogeneous than LFW. CPLFW was the database that

presented the worst results in accuracy, excluding only the rotation experiment.

As presented in Section 4.4, the performed alterations were experimental and their main goal

was to see if one of the datasets was especially affected when comparing to the others. Again,

as the focus of this dissertation is investigating racial bias, the same exact transformations were

performed on a race-conscious database (RFW). The goal was to obtain the results from these

modifications applied on RFW and analysing them, looking for the possibility that one of the

races may be more affected by the alterations than the others and, therefore, indicate the presence

of racial bias.

The histograms of the four ethnicities (Figure 5.3) show a visual representation of the verifi-

cation process performed and the positive and negative examples.

Afterwards, the image modifications were applied with the same values for the brightness and

contrast tests. The accuracy results can be found in Table 5.2. Again, the independency between



50 Results and Discussion

Figure 5.3: Histograms representing the positive and negative verifications performed on RFW:
Caucasian, African, Asian and Indian.

contrast and brightness was tested, aiming to verify if altering the value of only one had a bigger

impact on a particular race.

Table 5.2: Accuracy results for the image transformations performed in RFW: African, Asian,
Caucasian and Indian.

Brightness and Contrast

Normal Rotation Grayscaled Negative 0.2 brightness= 0 , contrast=0.8 0.8 brightness= 0.8 , contrast=0

African 0.993 0.534 0.983 0.612 0.989 0.990 0.781 0.797

Asian 0.988 0.579 0.967 0.623 0.985 0.973 0.776 0.841

Caucasian 0.995 0.593 0.985 0.669 0.994 0.989 0.799 0.860

Indian 0.990 0.589 0.978 0.616 0.989 0.980 0.790 0.848

As expected, the Caucasian subset was the least affected by any of the transformations. Per-

forming a rotation of the face, as with the databases tested previously, had an extensive effect on

the accuracy all around. Moreover, the results showed that applying a small change in brightness

and contrast simultaneously (0.2) did not have a relevant impact on accuracy. The same happened

when altering only the contrast value using 0.8. For the implementation of the same modification

in both variables (0.8), the accuracy values were, as expected, more affected. Looking at the last

column, where there was an increase of illumination without changing the degree of separation

between the dark and light pixels, the accuracy result of the African subset was the lowest out of

all the races. This was specially relevant given that in the other colour augmentation tests, this

subset was the second with the highest accuracy, following Caucasian. This result points to the

fact that this race may be more affected by an increase in brightness than the others, being more
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susceptible to light changes.

5.2 Grad-CAM Visualizations

The mean gradient maps were generated as a way of visualizing the model’s regions of interest

in the input images. As described, three layers were selected for the generation process and these

should represent different moments on the network, analysing the evolution of the features of

interest. Therefore, the chosen layers were the first convolutional layer, one of the middle layers

and the second batch normalization layer. In theory, the heat-map of the first convolutional layer

should display the most accurate visual explanation of the classified object, e.g. the mean face for

each race. The middle layers tend to capture textures at a higher level of abstraction, and the final

layers tend to focus on semantic information. The produced heat-maps were overlayed over the

original images so there was a better visual understanding of the results. The colour map used can

be interpreted in the following way: the more vivid/ darker the colours on the map, the larger is

the corresponding absolute value of activation.

The gradient maps are constituted from top to bottom and from left to right in the following

way:

1. The first row represents the mean gradient maps from the first convolutional layer where (a)

Caucasian (b) African (c) Asian (d) Indian

2. The second row presents the mean gradient maps outputted from an intermediate layer with

(e) Caucasian (f) African (g) Asian (h) Indian

3. The last row shows the mean Grad-CAM visualizations for the second batch normalization

layer, after all the convolutions with (i) Caucasian (j) African (k) Asian (l) Indian.

The first maps were generated with the ResNet-100 from ElasticFace (trained on MS1MV2)

and evaluated on RFW. These can be found in Figure 5.4.

Regarding the first row of Figure 5.4, it portrays the idea presented above, displaying the most

accurate visual representation of the objects of interest. Given that these maps were generated by

calculating the mean of the attributions for each layer, the faces in the first row can be interpreted as

a portrayal of the mean faces for each race, with mean features. Moreover, in the first convolutional

layer the amount of information was bigger, with more features, so it was expected that the output

gradient map would be the most similar to the input images. Following the network architecture,

the amount of features reduces as we descend, until it reaches the output layer with 512 features.

As it was previously introduced on Chapter 4, the network associated with the ElasticFace

model (ResNet-100) was switched for a ResNet-34 also trained on MS1MV2. Again, this portion

of the practical work was inspired by the desire to assess what would be the impact on the results

by only changing the network architecture. The resulting Grad-CAM output images can be seen

in Figure 5.5.
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Figure 5.4: Grad-CAMs generated with a ResNet-100 network trained on MS1MV2.

Figure 5.5: Grad-CAMs generated with a ResNet-34 network trained on MS1MV2.

Observing the Grad-CAM images from both networks there is not a notorious difference,

meaning that in general the results seem to be pretty similar. Nonetheless, in the final layer, it is

possible to observe that using the ResNet-34 the blue regions are a little less intense, pointing to

lower values of activation when compared to the results from Figure 5.4 per example.
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Extending the experiments, besides testing exclusively switching the backbone, there was also

an interest in using ResNet-34 trained on two race-aware databases: BUPT-Globalface and BUPT-

Balancedface. Figures 5.6 and 5.7 show the results for each one of them respectively.

Figure 5.6: Grad-CAMs generated with a ResNet-34 network trained on BUPT-Globalface.

Figure 5.7: Grad-CAMs generated with a ResNet-34 network trained on BUPT-Balancedface.

Analysing the images from Figure 5.6, the last row presents the biggest differences. The last
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layer map for both Asian and Indian (third and fourth columns) present very light demarcated

regions and less disperse when compared to the previous maps.

Lastly, the results from the ResNet-34 Balanced (Figure 5.7) show that the last layer has less

vivid demarcated regions when compared to Figure 5.4, per example.

5.3 Neural Activation in a FR system

5.3.1 Layer activation

Regarding the neural activation in different layers of the network, two important metrics were

calculated: mean and standard deviation. Once more, the goal was to see an evolution throughout

the layers, while being able to analyse if race played a part on these values. The six layers used start

with the Parameterized ReLU, before the first convolutional layer, and end in the linear portion

of the architecture. These follow the network’s pipeline from start to end (left to right on Table

5.3). The results from this table correspond to the activation mean of the 12000 images from each

subset.

Table 5.3: Mean values for neural activation from ResNet-100 trained on MS1MV2.

Pre-Relu Layer1 Layer2 Layer3 Layer4 Linear

Caucasian 0.00978 0.01899 0.03450 0.02325 0.00797 0.01348

African 0.00998 0.01897 0.03454 0.02395 0.00836 0.01343

Asian 0.00996 0.01928 0.03402 0.02317 0.00863 0.01334

Indian 0.00988 0.01966 0.03466 0.02334 0.00846 0.01352

In Table 5.4, the values for the standard deviation of each layer in each race are represented.

Table 5.4: Standard deviation (std) values from ResNet-100 activation trained on MS1MV2.

Pre-Relu Layer1 Layer2 Layer3 Layer4 Linear

Caucasian 0.00889 0.01062 0.01611 0.01043 0.00430 0.00511

African 0.00942 0.01074 0.01617 0.01089 0.00465 0.00511

Asian 0.00919 0.0109 0.01589 0.01054 0.00489 0.00508

Indian 0.00908 0.01097 0.01612 0.01051 0.00466 0.00514

Once more, the network was switched for a ResNet-34 trained on the same database than the

one used in ResNet-100, in order to evaluate the impact of the network itself. Tables 5.5 and 5.6

show the mean and the standard deviation values, respectively.
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Table 5.5: Mean values for neural activation from ResNet-34 trained on MS1MV2.

Pre-Relu Layer1 Layer2 Layer3 Layer4 Linear

Caucasian 0.00297 0.00563 0.00514 0.00414 0.00157 0.00200

African 0.00299 0.00562 0.00507 0.00416 0.00173 0.00207

Asian 0.00303 0.00569 0.00512 0.00410 0.00169 0.00202

Indian 0.00303 0.00581 0.00519 0.00415 0.00169 0.00208

Table 5.6: Standard deviation (std) values from ResNet-34 activation trained on MS1MV2.

Pre-Relu Layer1 Layer2 Layer3 Layer4 Linear

Caucasian 0.00519 0.00619 0.00489 0.00374 0.00165 0.00152

African 0.00520 0.00624 0.00487 0.00377 0.00189 0.00157

Asian 0.00535 0.00631 0.0049 0.00371 0.00187 0.00153

Indian 0.00533 0.00639 0.00494 0.00376 0.00184 0.00158

Later on, with the switch to ResNet-34 trained on either Globalface or Balancedface, there

could be a possible analysis of the impact of race distribution. The following two tables (Table 5.7

and Table 5.8) show the results for the mean and std for Globalface and the following two for the

same statistics but with Balancedface (Table 5.9 and Table 5.10).

Table 5.7: Mean values for neural activation from ResNet-34 trained on Globalface.

Pre-Relu Layer1 Layer2 Layer3 Layer4 Linear

Caucasian 0.00671 0.01142 0.0114 0.0095 0.00452 0.00675

African 0.00647 0.01135 0.01122 0.00944 0.00496 0.00733

Asian 0.00677 0.01151 0.01138 0.00943 0.00453 0.00713

Indian 0.00674 0.01177 0.01156 0.00955 0.00461 0.00718

Table 5.8: Standard deviation (std) values from ResNet-34 activation trained on Globalface.

Pre-Relu Layer1 Layer2 Layer3 Layer4 Linear

Caucasian 0.00918 0.01120 0.01000 0.00795 0.00439 0.00513

African 0.00954 0.01122 0.00986 0.00795 0.00494 0.00557

Asian 0.00945 0.01140 0.01003 0.00790 0.00453 0.00542

Indian 0.00933 0.01157 0.01016 0.00802 0.00452 0.00545
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Table 5.9: Mean values for neural activation from ResNet-34 trained on Balancedface.

Pre-Relu Layer1 Layer2 Layer3 Layer4 Linear

Caucasian 0.01039 0.01699 0.01658 0.01409 0.00697 0.01391

African 0.00985 0.01681 0.01639 0.01399 0.00732 0.0147

Asian 0.01049 0.01711 0.01659 0.01392 0.00695 0.01395

Indian 0.01047 0.01747 0.01685 0.01414 0.00697 0.01442

Table 5.10: Standard deviation (std) values from ResNet-34 activation trained on Balancedface.

Pre-Relu Layer1 Layer2 Layer3 Layer4 Linear

Caucasian 0.01175 0.01564 0.01435 0.01154 0.00647 0.01055

African 0.01123 0.01558 0.01421 0.01151 0.00698 0.01115

Asian 0.01204 0.01587 0.01443 0.01142 0.00657 0.01061

Indian 0.01196 0.01608 0.01461 0.01164 0.00644 0.01093

To draw meaningful conclusions on these results, the mean and std values were examined

across different layers and racial groups, and even different networks trained on different databases

(with variable race distributions). Looking at the tables presented, there is not a clear pattern that

may lead to a conclusion on the implication of race on layer activation. Moreover, there is not a

discrepancy or outlier that helps to reach an interpretation on the behavior of the overall network

behavior and potentially identify the source of bias. As it was previously pointed out, the use of the

mean was directed towards the analysis of the racial separation (inter-racial). On the other hand,

the calculation of the standard deviation in this case aimed to study the separation in the same

ethnicity, e.g. an intra-racial analysis. The focus of this work was on this intra-racial analysis,

however as there is not a prominent pattern in the std tables that may indicate the presence of bias,

there is not a direct conclusion on this topic.

In Table 5.11, the values for the model’s performance using each one of the presented networks

evaluated on RFW are layed out. Moreover, the last two rows show the values for the standard

deviation (std) and the skewed error ratio (SER) between the four races in each network. The

skewed error ratio is calculated using the following expression:

SER =
100−min(acc)
100−max(acc)

(5.1)

The standard deviation aims to evaluate the variance between the accuracy values. The lower

std values for the two networks trained on MS1MV2, suggest that the system’s performance is

more consistent and it is not significantly affected by the racial group. On the other hand, the

higher std value for the ResNet-34 trained on Globalface may indicate the opposite. As for the

SER values, this variable measures the relative difference in error rates between different groups.

In an ideal system, fair and unbiased, it would be expected for the SER results to be closer to 1 for

all racial subsets.
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Table 5.11: Accuracy results in percentage (%) for each one of the networks used with the respec-
tive training dataset, standard deviation (std) and skewed error ratio (ser).

ResNet-100 ResNet-34 ResNet-34 ResNet-34
MS1MV2 GLOBAL BALANCED MS1MV2

Caucasian 99.52 97.67 96.60 99.12

African 99.33 93.87 93.37 98.05

Asian 98.80 94.15 94.03 97.27

Indian 99.03 95.52 94.50 98.10

STD 0.32 1.73 1.40 0.76

SER 2.48 2.63 1.95 3.10

5.3.2 Race classification

Regarding the classification process described in the previous chapter, the 2D separation between

classes was obtained by applying TSNE to each one of the layers used. This method was employed

for visual purposes only, so that there was a representation of the four classes and their interaction

and dispersion in a 2D space.

The four classes correspond to the four subsets in RFW:

Class 0: Caucasian Class 1: African Class 2: Asian Class 3: Indian

There are 3 Figures: Figure 5.8, Figure 5.9 and Figure 5.10 that correspond to the class distri-

bution on the first, middle and last layer, respectively.

Figure 5.8: Visual representation of class distribution on the first layer of the network. Red-
Caucasian ; Green- African ; Blue- Asian; Purple- Indian
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Figure 5.9: Visual representation of class distribution on the middle layer of the network. Red:
Caucasian ; Green: African ; Blue: Asian; Purple: Indian

Figure 5.10: Visual representation of class distribution on the final layer of the network. Red:
Caucasian ; Green: African ; Blue: Asian; Purple: Indian

These images show that, in the beginning, the class distribution was very random and disperse

(Figure 5.8); in Figure 5.9 the classes start to form clusters and become more organized. Lastly,

the last plot (Figure 5.10) shows that the majority of the instances in the African, Asian and

Indian classes formed a cluster pretty well separated from the others. On the other hand, class 0,

represented in red, is more disperse and in the center of the other classes.

These 2D plots of the race classification process help to visually understand that in the last

layer the classes follow a pattern and are aggregated in a way that allows for separation between

them. On the contrary, the initial layer presents a mixture of instances from the 4 classes, clearly

more difficult to classify and separate.
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5.3.2.1 Last layer

As it was already pointed out in the last chapter, in the last layer of the network (in the linear

portion) the amount of information is the smallest out of all the layers. As the network tapers

as we go through the layers, the amount of features diminishes. Therefore, in the last layer, the

activation matrices extracted had only 512 features.

Following the methodology from chapter 4, both KNN and SVM were performed.The results

for both the training and the test accuracy are shown in Table 5.12.

Table 5.12: Accuracy results for KNN and SVM in the last layer.

KNN SVM

K -

5 7 9 -

Training accuracy 0.988 0.978 0.967 0.996

Test accuracy 0.957 0.943 0.935 0.982

Comparing the KNN performance results, for all values of K, with the SVM, it can be con-

cluded that this last classifier works best at separating the activation matrices into classes.

A confusion matrix was generated in order to evaluate the performance of the classification

algorithms, providing a detailed breakdown of the model’s predictions versus the actual outcomes.

In the first diagonal of the confusion matrices are the correct predictions made by the algorithm.

The confusion matrix that follows (Figure 5.11) is the one generated as a result of KNN (k=5)

and it is used as a visual example taken from the options generated for this layer, in order to

comprehend this tool.

Figure 5.11: Confusion Matrix for the KNN with k=5 performed in the last layer.

As it can be seen in Figure 5.11, the highest number of incorrect predictions was 123 and

reflects the number of subjects that were predicted as Asians instead of the true label of the class

0 (Caucasians).
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5.3.2.2 Middle layer

Regarding the middle layer, it has already been presented the issue faced with the matrix dimen-

sions. Two options were established in order to approach this issue: the use of the mean and a

reshape of the matrices. The results correspondent with these two options for performing KNN

are presented in Table 5.13. For SVM the method used was only the mean, so there is only one

column with the accuracy values for this classifier.

Table 5.13: Accuracy results for KNN (with both the mean and reshape methods) and SVM in the
intermediate layer (with just the mean).

KNN (Mean) KNN (Reshape) SVM

K K -

5 7 9 5 7 9 -

Training accuracy 0.920 0.912 0.908 0.950 0.944 0.941 0.982

Test accuracy 0.867 0.873 0.877 0.912 0.916 0.919 0.958

The best accuracy value was also obtained with SVM, as in the last layer. Moreover, as it

was expected, the performance values in general are lower than in the linear layer, as a result of

the increase in features that are extracted, which makes the classification process more complex.

Again, a confusion matrix was extracted (Figure 5.12).

Figure 5.12: Confusion Matrix for KNN with k=9 performed in the middle layer using a reshape
of the activation matrices.

Analysing the confusion matrix above, the highest value for a false prediction corresponds

to the case in which the true label was Caucasian and the model predicted the label as Indian.

As it was the case for Figure 5.11, where the model had the highest value for false predictions

associated with the Caucasian as the true label, it can be concluded that even though the model

can successfully distinguish between races, the races more easily misclassified in these two layers

were a result of possible similarities between the activation matrices from Asians and Indians

when compared with Caucasians.
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5.3.2.3 Initial Layer

Lastly, the classification was performed on the initial layer of the network. In the precedent section,

Chapter 4, it was justified the need to perform the mean for each activation matrix extracted before

even compiling the data from all the races into one training vector.

In Table 5.14, the results for the training and testing accuracies with KNN and SVM are layed

out.

Table 5.14: Accuracy results for KNN and SVM in the initial layer.

KNN SVM

K -

5 7 9 -

Training accuracy 0.628 0.588 0.564 0.486

Test accuracy 0.460 0.453 0.460 0.480

These results are very low when compared to the other two layers, resulting from the high

level of feature abstraction, making it harder to distinguish between races at the beginning of the

network. Moreover, the dimension reduction performed in the beginning stages could also be a

playing factor in these results, given that there could be a loss of a lot of relevant information.

5.4 Summary

Closing this chapter, the results that should be highlighted are:

• In the image transformations, the increase in brightness affects the African subset more than

the other racial groups.

• The gradient maps obtained for the four networks (ResNet-100 trained on MS1MV2 and

ResNet-34 trained on MS1MV2, Globalface and Balancedface) show that in the first layer

they represent an accurate visual representation of the classified object, the mid-layer shows

levels of higher abstraction and the last layer even more. The bigger differences in the maps

across networks was in the last layers.

• The extraction of the mean and standard deviation of the neural network activation values

did not lead to any relevant conclusions.

• Analysing the results of the classification performance, there is a progressive level of sepa-

rability of races across the layers of the network.
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Chapter 6

Conclusions and Future Work

6.1 Conclusion

In this dissertation, the aim was to investigate, analyze and try to comprehend the presence and

implications of racial bias in face recognition systems. This topic is a complex and critical issue

within Deep Neural Networks and through some experiments and presented methodologies some

conclusions were reached:

1. Existence of racial bias

• Even though this issue is already well established and its existence is undeniable, the

work performed led to the observation and confirmation on how this type of bias can

be manifested in the form of differential accuracy values, error rates and metrics, and

system performance across racial groups. The analysis of the image transformation

results allowed to detect specific modifications that were more impactful on one of the

races, while enabling to verify that distinct databases with different content perform

differently.

2. Interpretability

• Grad-CAM visuals were generated for 3 layers of different networks and it is visible

that there are variances in the output, especially in the linear layer where the most

detail-oriented features are.

3. Disparities among racial groups (inter-racial and intra-racial)

• The analysis of standardized metrics such as standard deviation, mean, skewed error

ratios and confusion matrices allowed to gain an insight on the concepts of inter-racial

and intra-racial bias. However, when it came to look for patterns on the way these

metrics appear in different races, there was not a straightforward conclusion and the

results of the experiments performed were ultimately inconclusive. The focus was try-

ing to analyse intra-racial bias using standard deviation and the results of the euclidean

distances calculated, but a conclusion was not achieved.

63
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4. Race classification using network activation matrices

• The results of the experiments for race classification using activation matrices from 3

layers of the network allowed to conclude that it is possible for classification models

to separate races by their neural activation matrices. However, in the first layer of the

network, where there is more information and the features are more abstract, this task

is not very successful. The performance values presented for the middle layer and final

layer agreed with the idea that as we go through the network pipeline it becomes easier

to focus on more specific characteristics, helping to set races apart.

5. Call for fairness and impact on society

• As it was mentioned during this thesis, racial bias is a complex and important topic

that needs attention from researchers in different areas of study. The implications of

the issue extend beyond automatic systems and can lead to potential human rights vi-

olations, privacy issues and perpetuation of inequities. In face recognition technology,

there is the urgent need for a fairness-aware solution, implementing bias mitigation

and following with the ethical guidelines.

6.2 Future Work

Again, as this research topic is very complex and still very vacant, future studies should be carried

out to gain more insight on it. There are some practical tasks that could be of interest for future

testing, namely:

• The race classification task was performed by using the totality of the activation matrices,

with all the activation values. In the future, it could be interesting to try to use some specific

metrics from each matrix to perform the classification: the use of the maximum activation

value, the minimum, and a vector with the mean, STD, maximum and minimum. This

could lead to some different results for the performances and possibly help to reach more

conclusions.

• In order to tackle the mitigation of racial bias, there could be more experiments on some

bias mitigation techniques: evaluation of pre-existent algorithms, data collection strategies

and pre-processing methods.

• Focus more on the possibility of a collaboration between different areas of science (e.g.

computer science and neuroscience), encouraging interdisciplinary approaches and includ-

ing some practical experiments that involve both of them.

• Try to force racial bias in the experiments and then measure the quantitative impact of it.

This could be implemented in the neural activation experiments made by adding some bias

on purpose and see the effects in the results.
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