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Abstract

Automation has become important in medical laboratories, especially in clinical chemistry

and hematology. However, microbiology laboratories still heavily rely on manual processes.

One particularly time-consuming step in microbiology labs is the culture of samples on agar

plates, followed by their manual review for microorganism identification and antibiotic pro-

file analysis. This dissertation addresses this issue by employing deep-learning methods for

detecting microbial colonies.

Divided into two parts, the first part of this dissertation focuses on training and enhancing

the accuracy of four models using the Annotated Germs for Automated Recognition (AGAR)

dataset. The models include Faster R-CNN and RetinaNet with two backbones (ResNet 50

and ResNet 101). Transfer learning and ensemble methods are employed for performance

improvement.

The second part involves creating a new dataset with 165 images of agar plates with

colonies of S. aureus, P. aeruginosa, and E. coli on various types of culture media. The same

models are trained on this dataset, and similar techniques are applied to improve performance.

Transfer learning is tested using the weights from the models trained on the AGAR dataset.

The initial training achieves a mean Average Precision (mAP) of 62 % on the AGAR

dataset, with Faster R-CNN ResNet 101 delivering the best performance. A value of 66.40 %

is achieved with the application of the ensemble method – Weight Boxes Fusion, surpassing

the results from the creators of the AGAR dataset. On the new dataset, RetinaNet ResNet

50 achieves a value of 52.40 %, improved to 56.30 % using an ensemble of the results.

In summary, this dissertation successfully enhances the performance of the AGARdataset,

introduces a new dataset, and employs various techniques to improve performance. It repre-

sents a significant step forward in applying deep learning methods to laboratory medicine.

Keywords: Microbiology; Deep Learning; Object Detection; Bacterial Colonies.

vii



viii



Resumo

A automatização tem ganho importância nos laboratórios médicos, especialmente nos

setores de química clínica e hematologia. No entanto, os laboratórios de microbiologia ainda

dependem muito de processos manuais. Um passo particularmente moroso é a cultura de

amostras em placas de agar, seguida da sua revisão manual para posterior identificação dos mi-

crorganismos e análise do perfil de antibióticos. Esta dissertação aborda esta questão através

da aplicação de métodos de deep learning para a classificação de colónias microbianas.

Dividida em duas partes, a primeira parte do projeto foca-se no treino e na melhoria da

performance de quatro modelos na base de imagens anotadas Annotated Germs for Automated

Recognition (AGAR). Os modelos são Faster R-CNN e RetinaNet, com duas arquiteturas dis-

tintas (ResNet 50 e ResNet 101). Métodos de transfer leaning e ensemble são aplicados para

melhoria da performance.

A segunda parte envolve a criação de uma nova base de imagens com 165 imagens an-

otadas de placas de agar com vários tipos de meios de cultura, com colónias de S. aureus, P.

aeruginosa e E. coli. Os mesmos modelos são treinados e são aplicadas técnicas semelhantes

para melhoria do desempenho. O transfer leaning é aplicado usando os pesos dos modelos

treinados nas imagens AGAR.

O treino inicial atinge uma precisão média (mAP) de 62 % na base de dados AGAR,

com Faster R-CNN ResNet 101 a apresentar o melhor desempenho. Um valor de mAP de

66,40 % é alcançado com a aplicação do método de ensemble Weight Boxes Fusion, superando

os resultados relatados pelos autores da base de dados AGAR. Na nova base de imagens, o

modelo RetinaNet ResNet 50 alcança um desempenho inicial de 52,40 %, que aumenta para

56,30 % através da aplicação do método de ensemble.

Em resumo, esta dissertação melhora com sucesso o desempenho na base de dados

AGAR, introduz um novo conjunto de imagens e emprega várias técnicas para melhoria do

desempenho. Este trabalho representa, assim, um passo em frente na aplicação de métodos

de deep learning no domínio da medicina laboratorial.

Palavras-chave: Microbiologia; Deep Learning; Deteção de Objetos; Colónias Bacterianas.
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Chapter 1

Introduction

This section will provide a brief introductory note regarding the dissertation. The moti-

vation behind selecting this theme, the exposition of the problem’s description, and the main

objectives will be covered in this section as a review of the existing literature on this subject.

1.1 Motivation

1.1.1 Artificial Intelligence in the Medical Field

The constant technological development that the world has been undergoing in the last

few years has affected, in some way, every aspect of our lives. Science has been evolving

fast, and the field of medicine is no different. Due to its high impact on people’s lives,

developing better medical technologies has always been a focus. When it comes to Artificial

Intelligence (AI) and Machine Learning (ML), the potential opportunities and applications

are groundbreaking (Darcy, Louie, & Roberts, 2016).

ML has been capturing the interest of medical researchers and practitioners in predictive

methods within health science andmedicine. The number of articles, publications, and overall

practical applications in this area has exponentially grown in the last ten years (Cabitza&Banfi,

2018).

In clinical laboratory medicine, it is also expected that ML methods will become more

extensively used since the laboratory is the leading supplier of quantitative, structured, and

codified data (Cabitza & Banfi, 2018).

The advancements in technology that have been occurring in laboratories have made it

possible to incorporate expert system capabilities and software applications, such as auto-

analysers and modules of laboratory information systems. Furthermore, incorporating ML

methods in medical laboratories should be supported as they can lead to better laboratory
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organisation and expand laboratory professionals’ core skills on a more significant path to

change and innovation (Cabitza & Banfi, 2018).

There are multiple examples of the possible applications of ML for data from medical

laboratories. ML has been studied for the prediction of diagnosis, risk factors, outcomes,

survival prognosis (Camaggi et al., 2010; Salah, Muhsen, Salama, Owaidah, & Hashmi, 2019),

for cancer screening (Deist et al., 2018; Ronzio, Cabitza, Barbaro, & Banfi, 2021; Surinova

et al., 2015; H.-Y. Wang et al., 2016), and also for the study of the potential tumour and

genetic markers (Kourou, Exarchos, Exarchos, Karamouzis, & Fotiadis, 2014), as well as

pharmacological targets (Dezső & Ceccarelli, 2020).

Deep Learning (DL) has also been studied and applied in different areas of medicine. The

most common and first applied areas were in radiology (McBee et al., 2018), and later also in

microscopy histologic images (S. Wang, Yang, Rong, Zhan, & Xiao, 2019).

As for DL in laboratory medicine, DL is, nowadays, a very explored tool in several studies

on proteomics (Wen et al., 2020), genomics (Zou et al., 2019), and image classification of,

for example, blood cells in hematology (Khouani, El Habib Daho, Mahmoudi, Chikh, &

Benzineb, 2020).

Microbiology, as a branch of laboratory medicine, is devoted to analysing samples through

various tests to identify and characterise the causal agents responsible for infectious diseases.

Extensive research has been dedicated to exploring the integration of DL within micro-

biology. Pritt (2020a) have conducted a review of potential applications of AI in the micro-

biology setting, emphasising its significant role as a powerful tool for the future of this area.

The authors allude to several approaches, such as the classification of chromogenic media,

the automated microscopic detection of mycobacteria in sputum samples, and the automated

detection of malaria parasites in blood smears. Moreover, there is a notable current trend

in investigation in exploring the application of DL to study genomic information sourced

from isolated bacteria, analyse metagenomic microbial findings from primary specimens, and

interpret mass spectra acquired from cultured bacterial isolates (Pritt, 2020a).

Regarding the domain of computer vision within this field, numerous instances also exist.

Ferrari, Lombardi, and Signoroni (2017) applied Convolutional Neural Networks (CNN) for

a quantitative approach, to count bacterial colonies.

Talo (2019) and Zieliński et al. (2017) proposed an approach employing CNN for the

categorisation of bacteria into distinct classes based on digital microscopy images. Another

study by Nie, Shank, and Jojic (2015) applied DL techniques for bacterial classification. How-

ever, instead of microscopy images, their approach employed a collection of images derived

from bacterial cultures grown on agar.

Savardi, Ferrari, and Signoroni (2018) have created a dataset encompassing various bac-
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terial cultures and subsequently applied DL techniques to classify and detect hemolysis, a

phenomenon exhibited by certain bacteria when cultivated on blood agar cultures.

Majchrowska, Pawłowski, et al. (2021) has developed an extensive dataset encompassing

five distinct bacterial species and yeast. This dataset includes comprehensive photographic

documentation and annotations of various bacterial culture plates. The authors then pro-

posed the application of DL for bacteria and yeast classification. Additionally, they developed

a framework for microbial objects counting (Graczyk, Pawłowski, Majchrowska, & Golan,

2022). They extended the application of DL in generating synthetic datasets of microbiologi-

cal images of Petri dishes, which add value for training DLmodels (Pawłowski, Majchrowska,

& Golan, 2022).

An alternative approach by Pritt (2020b) involved utilising CNN in digital microscopy

for intestinal parasites. In summary, the researchers developed a model trained to identify

the absence of intestinal parasites on slides, concurrently highlighting suspected parasites for

subsequent manual verification.

Some of these articles and applications will be reviewed further in the document within

the Literature Review section.

1.1.2 Automation in Microbiology Laboratories

Numerous tasks within the microbiology laboratory routine are still performed manually.

This is particularly evident when comparing it with the areas of hematology or clinical chem-

istry. In the latter, automation systems have progressively evolved and gained widespread

acceptance, becoming a big part of the daily operational routine (Antonios, Croxatto, & Cul-

breath, 2021; Bourbeau & Ledeboer, 2013; Novak & Marlowe, 2013; Williams & Trotman,

1969).

In summary, a standard day within a medical microbiology laboratory involves various

tasks, from processing samples and the maintenance of cultures to staining procedures, mi-

croorganism identification, and antimicrobial tests. While the specific techniques applied may

vary depending on the laboratory, the general workflow is similar.

The first step always involves the reception and recording of the sent samples. These

samples can be blood, urine, or other bodily fluids specimens obtained from patients. It is

important to note that the context being discussed pertains to amedical laboratory specialising

in analysing bodily fluids, which could be affiliated with a hospital or may receive samples

from diverse centers. It is worth highlighting that microbiological testing extends its scope to

numerous other domains, including assessments of water quality, food safety, and industrial

applications, which may have different routines and techniques.
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Subsequently, samples are prepared for analysis. Different preparation methods are ap-

plied based on protocols according to the specific type of sample being examined.

Most of the samples are inoculated onto culture plates containing growth media for anal-

ysis. Given that these plates will require an incubation period of at least 12 hours after inoc-

ulation, which may extend beyond 24 hours in certain instances, carrying out this step at an

early stage is imperative.

Culture media, or growth media, can exist in solid, liquid, or semi-solid forms and are

designed to support the growth of microorganism populations. There are different cultural

media types, the most common being nutrient broths or agar plates. These culture media

all share a common property: providing a nutrient-rich environment that fosters the growth

of microorganisms. What makes them different is an array of compositions and properties

that confer selective and/or differential attributes. The sample’s origin determines the choice

of culture media. For instance, respiratory samples are typically subjected to more selective

media, as the respiratory tract harbours diverse normal flora present in a healthy individual,

becoming pivotal to cultivating solely those microorganisms most likely to be pathogens.

Conversely, blood samples, characterised by their physiological sterility, are often cultivated

in richer and broader media.

Following these stages, various steps within the daily routine demand significant manual

involvement, occurring concurrently or sequentially. These encompass tasks like preparing

samples for microscopic assessment and the subsequent microscopic visualisation. Further-

more, the process entails microorganism identification and antimicrobial susceptibility testing,

which often involves a range of techniques andmay require additional manual inoculation and

subsequent rounds of incubation. Ultimately, the conclusive interpretation of all outcomes

involves validation, antibiotic selection, and the communication of findings to the medical

professional responsible for overseeing the care of the respective patient.

Considering the central theme of this dissertation, it becomes imperative to delve deeper

into the steps involving culture media. This elaboration serves a dual purpose: it accentuates

the motivation underlying the addressed problem and clarifies the primary objective.

Inoculating and incubating microorganisms on culture plates constitutes a crucial com-

ponent of microbiology routines. However, it is a process that demands considerable time to

be executed meticulously. The primary objective behind incubation is to foster the growth of

bacteria into discernible colonies on the plates, which serves as the foundation for subsequent

analysis.

To provide an illustrative example, let us consider again a blood sample. A blood sam-

ple from a healthy individual is a sterile specimen, meaning that no microorganisms are ex-

pected to proliferate on the plate. However, when patients have bloodstream infections, it

4



is expected that colony growth on the plates is manifested. This phenomenon is significant

because it confirms the presence of microorganisms in the individual’s blood and because

these colonies play a crucial role in providing a deeper investigation.

At an initial stage, professionals can obtain valuable and rapid insight from the macro-

scopic characteristics of the colonies. Observations regarding their shape, size, and texture

can often provide information about the group of bacteria present. Moreover, certain tests

can be promptly conducted, offering supplementary information in emergencies.

Furthermore, these colonies serve as the foundation for more advanced procedures. Spe-

cialised equipment can be utilised to identify the microorganisms at a species level. Addition-

ally, the colonies are instrumental in conducting antibiotic susceptibility testing. This assess-

ment studies the susceptibilities and resistances of the bacteria to a range of antibiotics, pro-

viding a comprehensive understanding of the patient’s infection and enabling a more suitable

therapeutic approach (Savardi et al., 2018).

The daily routine is thus highly manual-intensive to laboratory professionals, further com-

pounded by its time-intensive nature. Completion of medical reports typically takes at least

one to two days. This temporal delay can adversely affect the patient’s health as initiating

effective antimicrobial therapies gets postponed. Consequently, relying on broader-spectrum

and empirical therapies is often necessary, resulting in extended treatment duration that can

sometimes be inefficient until microbiological results are finalised.

This situation also presents drawbacks in terms of operational efficiency, costs, storage

capacity, and processing times within the laboratory setting.

While automated systems for microbiology do exist, they have yet to be widely adopted.

Implementing automation in this field can be challenging due to the heterogeneous range of

sample types, diversity of specimen processing techniques, and cost-related considerations

that laboratories need to factor in, among other factors (Antonios et al., 2021).

Some examples of existing automated systems are inoculation units, robotic incubators,

digital photography modules, and post-imaging analysis workstations (Antonios et al., 2021).

The full automation of laboratory processes inmicrobiology has only recently been recognised

as a valuable tool, but research is showing its potential benefits. Automation can lead to

greater standardisation, improved laboratory efficiency, enhanced workplace safety, and long-

term cost savings (Antonios et al., 2021).

In summary, the primary motivation for this dissertation is to address the need for au-

tomation and enhanced efficiency in clinical microbiology laboratories. By leveraging the

power of AI, this research focuses on applying DL models for classifying microbial colonies

grown on agar cultures.
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1.2 Problem Description

With the growing exploration and demand for automation in clinical microbiology lab-

oratories, the development of automated microbiological sample analysis based on AI is of

great interest.

The evolution of automated image analysis technologies for the detection and/or clas-

sification of microbial colonies would, therefore, tackle a time-consuming and error-prone

process within the microbiology routine. In great contrast to the manual procedure outlined

in the preceding section, one illustrative application of these technologies involves the util-

isation of incubators equipped to capture photographs of culture media plates while they

reside within the incubator. Subsequently, automated image analysis algorithms can execute

computer-assisted culture interpretation, enabling the successful identification and reporting

of plates exhibiting none or minimal growth, the recognition of colonies, or even efficiently

identifying the microorganisms (Antonios et al., 2021).

This approach would bring many advantages regarding the working routine, considering

the high number of plates manually analysed every single day, since many of them sometimes

even require a new inoculation and incubation process, thus delaying the report for more

hours. Combining an automated incubator that takes photographs of the plates at predefined

intervals applying the DL models would bring diverse potential benefits. The models could

quickly detect the emergence of colonies in their early stages, identify sterile plates, and cate-

gorise plates as either containing colonies from only one species (indicating a high likelihood

of it being the infecting pathogen) or mixed species colonies (suggesting contamination and

necessitating a fresh sample). Besides, the model could classify the types of colonies, trigger-

ing alerts to medical professionals about specific species and delivering many other valuable

insights.

With this, the primary objectives of this dissertation are:

• Train and evaluate object detection models for microbial colony detection on a publicly

available dataset and on a curated dataset

• Curate a new dataset with annotated images of agar plates with a diverse set of culture

media

• Assess the generalization and robustness of deep learning models with transfer learning

• Implement ensemble learning for enhanced microbial colony detection

6



By conducting this research, a significant contribution is aimed to be made to the pro-

gression of DL applications in the field of microbiology, paving the way towards automated

analysis and improvement of the efficiency within clinical laboratories.

Ultimately, this work becomes an integral part of the potential transformation in the

paradigm concerning the analysis of microbial cultures. By enabling faster and more accurate

diagnoses, this project is set to contribute to developing technology that will substantially

improve the healthcare system. Importantly, this progression is driven by the overwhelm-

ing aim of improving patient care outcomes, underlining the continuing focus of health and

technological advancements on benefiting those who matter most – the patients.
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Chapter 2

Literature Review

This section will present an overview of the existing literature on DL. Additionally, a

theoretical approach to the predominant object detection models will be exposed, including

two-stage detectors, like, for example, Region CNN, as well as one-stage models, such as

dense (RetinaNet, You Only Look Once (YOLO) and OverFeat), or sparse models (Sparse

R-CNN and Deformable End-to-End Detection Transformer (DETR)). This first segment

will be followed by an in-depth review of the current applications of DL and object detec-

tion models in medical image analysis, specifically, the existing work on their use within the

microbiology setting.

2.1 Deep Learning

DL is currently considered a subset withinML, which consists of artificial neural networks

composed of three or more layers developed to replicate the behaviour of neurons of the

human brain. These multiple hidden layers are made up of interconnected nodes placed

between the input and output layers. Each layer represents different levels of abstraction. In

summary, the model may start with the raw data, that is, the input, and each layer will apply

and learn some non-linear function that will transform this representation to an increasingly

abstract level (LeCun, Bengio, & Hinton, 2015). This is the primary differentiating factor

between classic ML and DL. While ML requires a manual engineering process and feature

extraction to transform the raw data, DL can learn directly from raw input, automating much

of the feature extraction process through a general-purpose learning method (LeCun et al.,

2015). The neural networks combine data inputs, weight, error, and bias to become accurate.

Each layer can be built upon the previous layer so it can learn some aspects and be refined,

and it can also be tuned through backpropagation. In this case, errors are calculated, and the

weight and biases may be adjusted by returning to previous layers (LeCun et al., 2015).
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There are, however, various types of deep neural networks, from CNN, Recurrent Neural

Networks, etc. CNN is the most commonly used architecture in computer vision and image

classification. When applied to visual recognition and classification, CNN has developed

state-of-the-art performance (Krizhevsky, Sutskever, & Hinton, 2017; Rawat &Wang, 2017).

2.2 Convolutional Neural Networks

As already mentioned, CNN have been considered the state-of-the-art for computer vi-

sion and image processing problems, such as image classification and segmentation, object

detection, and video processing (Khan, Sohail, Zahoora, & Qureshi, 2020). These neural

networks have been applied for visual exercises since the late 1980s (Rawat & Wang, 2017).

However, it was not until Krizhevsky et al. (2017) won a Visual Recognition Competition

by classifying around 1.2 million images into 1000 classes that CNN started dominating the

visual classification field (Khan et al., 2020; Rawat & Wang, 2017).

CNN are feedforward networks and, just like the typical artificial neural networks, were

biologically inspired by the visual cortex in brains, which are composed of alternating layers of

simple and complex layers of cells (Rawat & Wang, 2017). The basic architecture of a CNN,

proposed by LeCun et al. (2015), consists of three different types of layers and is structured as

a series of stages. These layers are convolutional, pooling or subsampling, and fully-connected

layers (Gu et al., 2018). Figure 2.1 shows a representation of a CNN pipeline.

Convolutional Layers

The convolutional layer is the main component of a CNN, and its main objective is to

detect local groups of features from previous layers. The input is presented in multiple arrays

containing pixel intensities when the input is an image. With this information, a convolutional

layer will try to learn feature representations from the input, applying several convolution

operations, or kernels, upon the input (LeCun et al., 2015). In a convolutional layer, units

are organized into feature maps. Each unit is connected to small regions in the feature maps

of the preceding layer through a set of weights (LeCun et al., 2015). The different kernels

within each layer will then be used to compute different feature maps, and the result of the

locally weighted sum will be passed through non-linear functions (Gu et al., 2018; LeCun

et al., 2015). The kernel is applied to various submatrices of the input iteratively. The size

of the kernel and the number of positions that should be shifted after each iteration are all

parameterized. All this process will promote the detection of interesting features on the input,

with local groups of values that are easily detected and distinctive because they are often highly

correlated. It will also grant invariance to location and increase efficiency while reducing the
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number of parameters with a weight-sharing mechanism, granting that a local motive can

appear anywhere within the full image (Guo et al., 2023; LeCun et al., 2015).

Pooling Layers

The pooling layers, generally placed between two convolutional layers, operate by group-

ing similar features into one, reducing the dimensions of feature maps and network parame-

ters. This provides them with the ability to achieve spatial invariance because their compu-

tations consider neighbouring pixels, decreasing overfitting, and decreasing further compu-

tational requirements (Gu et al., 2018; Khan et al., 2020; LeCun et al., 2015; Rawat & Wang,

2017). There are various ways that the layers can achieve this. The most common methods

are average pooling and max pooling aggregation layers. Max pooling is often used to extract

the most intense features, like edges, while average pooling works with a smoother approach

(Boureau, Ponce, & Lecun, 2010). There are, however, more types of pooling layers, depend-

ing on the final task, such as the overlapping, spatial pyramid, and stochastic pooling (Gu et

al., 2018; Guo et al., 2023)

Fully-Connected Layers

Several stages of convolution, non-linearity, and pooling layers are stacked to extract more

abstract feature representations throughout the network, followed by one or more fully con-

nected layers (LeCun et al., 2015; Rawat &Wang, 2017). These layers connect all the neurons

on the previous layer to process global information. They behave like a traditional neural

network, containing the majority of the parameters of a CNN. They can feed forward the

network into a vector that will then be forwarded for image classification or processing (Guo

et al., 2023). For classification problems, the softmax operator is commonly used. However,

depending on the final objective, it is possible to use different methods, such as Support

Vector Machines (SVM) combined with CNN (Rawat & Wang, 2017). The fully connected

layers require big computational power during training, thus being considered a disadvantage

of this architecture (Guo et al., 2023).

Activation Function

The activation function can learn multiple patterns. Here, the output of a convolution

is multiplied by the activation function, which adds non-linearity and creates a transformed

output (Khan et al., 2020). Typical activation functions are the sigmoid, tanh, and rectified

linear units (ReLU). The last one is the most common today, having fast convergence and not

suffering from the vanishing gradient problem. However, several variations of this function

exist that try to achieve faster and better performance. Some examples are Leaky, Parametric,

Randomized ReLU, and Exponential Linear Unit (Rawat & Wang, 2017).
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Figure 2.1: CNN pipeline

Training

Training the network consists of a global optimization problem. Similar to a classical

neural network, it is performed with a backpropagation algorithm by calculating the gradient

vector of a loss function according to weights and biases, with further adjustment of param-

eters (Rawat & Wang, 2017).

2.3 Object Detection and Recognition

As referred before, the rise in popularity and success of CNN came after the work of

Krizhevsky et al. (2017) on the ImageNet Large Scale Visual Recognition Challenge (ILSVRC),

when millions of labelled images were used to train a large CNN. Similarly to the ILSVRC,

the PASCAL Visual Object Classes (VOC) challenge is a benchmark in visual object category

recognition and detection (Everingham, Gool, Williams, Winn, & Zisserman, 2010). Object

detection requires the solution of two main tasks: recognition, and localization. First, the

detector needs to distinguish objects from the background and classify them, and second, it

needs to locate and draw bounding boxes to each object (Sun et al., 2020).

While image classification aims to classify full images in categories (for example, correctly

classifying pictures of cats and dogs), visual recognition tries to answer slightly different ques-

tions, as such:

• Classification - Identify if an object is present in an image;

• Detection - Locate the object in the image;

• Pixel-level Segmentation - Each pixel is assigned a class label;

12



• Person layout - Identify the location of body parts in an image (as a practical example)

(Everingham et al., 2010)

The former object detection approaches did not rely on CNN (R. B. Girshick, Donahue,

Darrell, &Malik, 2013). Some first approaches were based on Histograms of Oriented Gradi-

ents (Dalal & Triggs, 2005) andDistinctive Image Features from Scale-Invariant (Lowe, 2004)

(X. Wu, Sahoo, & Hoi, 2019). Over the years, several studies applied CNN for these tasks.

However, their accuracy on small datasets, while decent, was not record-breaking. Many

authors proposed CNN with a sliding window over multiple scales; some researchers have

suggested training CNNs to directly predict the specific parameters of objects that need to be

located, such as their position relative to the viewing window or their pose; other authors have

proposed to use CNN-based segmentation for object localization, with the simplest approach

being to train the CNN to classify the central pixel of its viewing window as a boundary or

not. However, this approach required dense pixel-level labels for training (Sermanet et al.,

2013).

Larger datasets, such as the well-known ImageNet, have enabled CNN to significantly

develop the state of the art on object detection and recognition (R. B. Girshick et al., 2013;

Sermanet et al., 2013). The work of Sermanet et al. (2013) was then the first to publish a clear

explanation of how CNN can be used for localization and detecting ImageNet data. In their

work, they provided some new insight into their competition-winning framework:

• Implementing a multi-scale and sliding window approach within a CNN efficiently;

• Presenting a new DL approach for localization by training the model to predict object

boundaries;

• Demonstrating that multiple tasks can be learned simultaneously using a single shared

network;

• Publishing a feature extractor called OverFeat derived from their best model.

A short time after, R. B. Girshick et al. (2013) published a paper that proposed a new

algorithm with higher precision than the previous best result on VOC 2012 and better results

than the work of Sermanet et al. (2013). They called their method R-CNN, as in ”Regions

with CNN features” (R. B. Girshick et al., 2013). Their approach consisted of a combination

of two key elements:

• The use of high-capacity CNNs on bottom-up region proposals for object localization

and segmentation;
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• Using supervised pre-training for an auxiliary task, followed by fine-tuning for a specific

domain, resulted in a significant performance improvement when labelled training data

is scarce.

In this section, a summary of the evolution of object detection algorithms over the last few

years will be presented. The different approaches to these tasks will be described, from the

dense, dense-to-sparse, and sparse methods, as well as some examples of algorithms within

each method. The description and focus on the application of CNN for this task and how

R-CNN became a solid base with lots of development in the last few years.

2.3.1 Dense Method

As previously mentioned, one approach to object detection is using sliding windows over

scales. This method was popular for some years, but its performance reached a limit due

to the limitations of traditional feature extraction techniques (Sun et al., 2020). With the

advent of CNNs in this field, performance improved. The most common pipelines consisted

of one-stage detectors that relied on dense candidates, each directly classified and regressed.

These pipelines have some drawbacks, such as the production of redundant results and the

requirement for non-maximum suppression post-processing. The final performance was also

highly affected by the size, aspect ratio, number of anchor boxes, the density of reference

points, and proposal generation algorithms (Sun et al., 2020).

OverFeat, YOLO and RetinaNet are examples of dense methods.

Overfeat

Sermanet et al. (2013) developed a multi-scale, sliding window approach that can be used

for classification, localization, and detection. The authors proposed a CNN trained to simul-

taneously classify, locate, and detect objects in images to improve classification, localization,

and detection accuracy. In their work, Sermanet et al. (2013) introduced a new method that

accumulates predicted bounding boxes instead of suppressing them, claiming that detection

can be performed without training on background samples, avoiding complicated and time-

consuming bootstrapping training methods, while increasing detection confidence (Sermanet

et al., 2013). A new state of the art for the detection task was defined. Finally, Sermanet et

al. (2013) released a feature extractor of the best model called OverFeat. This was one of the

first modern one-stage object detectors based on deep networks (Lin, Goyal, Girshick, He,

& Dollár, 2017).

RetinaNet
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The work of Lin et al. (2017) focused on developing a single-stage model that would be

as accurate as the two-stage detectors that defined the state of the art at the time. For this,

the authors identified the main obstacle of one-stage detectors as the class imbalance present

during training. They proposed a different loss function that would tackle this issue. A new

loss function called Focal Loss was introduced, addressing the issue of class imbalance. The

loss function dynamically scales the cross-entropy loss, reducing the impact of easy examples

and emphasizing hard examples during training. This outperformed previous techniques,

such as sampling heuristics and hard example mining for training one-stage detectors. The

specific form of the focal loss is not critical, as alternative instantiations yield similar results.

To demonstrate its effectiveness, the authors presented RetinaNet, a one-stage object de-

tector that utilizes focal loss along with an efficient pyramid of features in the network and

anchor boxes, achieving high accuracy and surpassing the results of both one- and two-stage

detectors (Lin et al., 2017). RetinaNet constitutes an integrated neural network architecture

comprising a backbone network and two specialized subnetworks. The backbone produces a

convolutional feature map encompassing the entire input image based on the Feature Pyramid

Network. The first subnetwork focuses on object classification, while the second is respon-

sible for performing bounding box regression for their prediction. These subnetworks are

specifically optimized for efficient and comprehensive object detection in a single stage.

YOLO

Redmon, Divvala, Girshick, and Farhadi (2015) approached the object detection task as a

single regression problem, directly predicting the image pixels’ bounding box coordinates and

class probabilities. It uses a single CNN that simultaneously predicts multiple bounding boxes

and class probabilities for those boxes, trained on full images and directly optimizing detec-

tion performance (Redmon et al., 2015). Unlike sliding window and region proposal-based

techniques, YOLO sees the entire image during training and encodes contextual information

about classes and their appearance. Initially, YOLO lacked accuracy but represented a fast

object detection algorithm.

This method suffered several improvements over time. The main improvements on

YOLO network were the addition of several layers and steps. The original framework added

a base grid division; in future models, an anchor with K-means was added, along with a two-

stage training and full CNN, as well as the addition of a multi-scale detection (Jiang, Ergu,

Liu, Cai, & Ma, 2022).
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2.3.2 Dense-to-Sparse Method

Dense-to-sparse methods are two-stage detectors that have dominated object detection

tasks for years. The process begins by identifying a small (sparse) number of boxes that likely

contain foreground objects from a larger (dense) set of potential regions and then improves

the placement of these boxes to locate the objects more accurately. They have a region

proposal algorithm (R. B. Girshick et al., 2013; Ren, He, Girshick, & Sun, 2015), and as well

as dense methods, also need non-maximum suppression post-processing (Sun et al., 2020).

The main approach of R. B. Girshick et al. (2013) was trying to fill the gap between image

classification and object detection. Object detection requires the localization of likely many

objects within an image, unlike image classification (R. B. Girshick et al., 2013). For their

work, they considered taking localization task as a regression problem, but other authors

already stated its inefficiency or adopting a sliding window approach. However, this would

be a technical challenge due to having more convolutional layers (R. B. Girshick et al., 2013).

They instead approached the task with regional proposals. The algorithm consists of three

modules:

1. Generating a set of potential region proposals that will define candidate detections

available for the detector;

2. Fixed-length feature extraction from these regions, using a large CNN;

3. A set of class-specific linear SVM to classify and locate the objects within the region.

With this, several studies came after that tried to develop R-CNN for object detection,

with better performance and higher speeds. R. Girshick (2015) denotes some drawbacks

from the baseline R-CNN, such as being slow due to performing a CNN forward pass for

each object proposal without sharing computation, thus training to become computationally

expensive and having a greedy proposal search.

R-CNN development

With the publication of the first R-CNN article, several authors followed by developing

newmethods upon the baseline algorithm to increase performance and speed and to tackle the

bigger drawbacks. This topic presented a summary of each advancement and development

that was made until the present day.

Fast R-CNN
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Fast R-CNN brought some advantages compared to the baseline R-CNN. With higher

detection quality, less computation is required than in single-stage training. The Fast R-CNN

network inputs an entire image and a set of object proposals as input. Firstly, the whole image

is processed with several layers, and then, a fixed-length feature vector is extracted from the

feature map by a region of interest pooling layer. Each feature vector is fed into a sequence

of fully connected layers that will branch into two output layers, one producing softmax

probability estimates over determinate object classes and another layer that outputs four real-

valued numbers for each of the object classes that will serve to encode refined bounding-box

positions for one of the various classes (R. Girshick, 2015). One of the main advantages of

Fast R-CNN is that it uses a single-stage training process and can achieve almost real-time

rates when not considering the time required for proposal generation (Ren et al., 2015).

Faster R-CNN

The work of Ren et al. (2015) introduced the Region Proposal Network (RPN) as an

addition to the Fast R-CNN object detection algorithm. The RPN is a fully convolutional

network that predicts object bounds and scores at each position while sharing full-image con-

volutional features with the detection network. This allows for cost-effective region proposals

and improves the accuracy of object detection. The authors trained the RPN on the previous

Fast R-CNN. They achieved state-of-the-art object accuracy on several datasets with a limited

number of proposals (Ren et al., 2015).

Mask R-CNN

With Mask R-CNN, the authors worked on Faster R-CNN to create a flexible framework

for object instance segmentation. In this work, He, Gkioxari, Dollár, and Girshick (2017)

developed a method that detected objects while simultaneously generating a high-quality seg-

mentation mask for each instance. They added a new branch to the network responsible for

predicting a binary mask for each object instance, in addition to the existing branches for ob-

ject detection and bounding box regression. This new approach improved the performance

of object instance segmentation and outperformed all existing single-model tasks in this area

(He et al., 2017).

Cascade R-CNN

Cai and Vasconcelos (2017) developed the Cascade R-CNN framework, an extension of

the two-stage R-CNN framework for object detection. They addressed two issues with the

traditional R-CNN frameworks: the Intersection over Union (IoU) threshold for defining
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negatives and positives and overfitting due to a lack of positive samples. In summary, a low

threshold will produce noisy detections, and an increasing threshold may degrade detection

performance, and overfitting usually happens since there are exponentially vanishing positive

samples. The Cascade R-CNN framework consists of a sequence of detectors trained with

increasing IoU thresholds, which are more selective against close false positives. Additionally,

the framework uses a sequential resampling technique to reduce overfitting by ensuring all

detectors have an equivalent size set of positive examples (Cai & Vasconcelos, 2017).

2.3.3 Sparse Method

While both previous methods relied upon dense object candidates, such as having a pre-

determined number of anchor boxes on every grid of the image feature map as the first stage,

sparse methods aim to eliminate those types of dense candidate designs. Sun et al. (2020)

and Zhu et al. (2020) have developed full sparse object detection pipelines that fully removed

the need for the hundreds of thousands of hand-designed object candidates, achieving ex-

ceptional performance and accuracy.

Sparse R-CNN

The authors Sun et al. (2020) proposed a new approach to the object detection task called

Sparse R-CNN. They believe that the sparse property should exist in two places: sparse boxes,

meaning that a small number of starting boxes is enough to predict every object in an image,

and sparse features, meaning that the feature of each box does not need to interact with every

other feature over the image.

Their method aimed to eliminate the need for thousands of candidates by choosing object

candidates with a fixed small set of learnable bounding boxes instead of predicted ones from

the Region Proposal Network from Faster R-CNN. They also introduced two new concepts

that followed the sparse ideals: proposal feature, consisting of a high-dimension latent vector

that is expected to encode rich instance characteristics and generate customized parameters

for recognition, and proposal boxes, which are randomly initialized and optimized along with

the other parameters in the network (Sun et al., 2020). Sparse R-CNN is a full sparse method

in which the initial input is a sparse set of proposal boxes and features, altogether with the

one-to-one dynamic instance interaction, eliminating the need for dense candidates and the

global feature interaction in the pipeline (Sun et al., 2020).

Deformable DETR

Carion et al. (2020) proposed DETR, which aims to eliminate the need for hand-designed

components in object detection tasks while maintaining high performance. DETR combines
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CNN and Transformer encoder-decoders to replace hand-crafted rules. However, DETR

had some issues, such as long training times, being slower than Faster R-CNN, and having

low performance detecting small objects (Zhu et al., 2020). To address these issues, Zhu et

al. (2020) proposed Deformable DETR, which combines the sparse sampling of deformable

convolution with the relation modelling capability of Transformers. A deformable attention

module attends to a small set of sampling locations as a pre-filter for prominent key ele-

ments. It can be extended to multi-scale aggregation without requiring Feature Pyramidal

Networks. An iterative bounding box refinement mechanism was used to improve detec-

tion performance, as well as a two-stage Deformable DETR, where a variant of Deformable

DETR generates the region proposals, and then fed into the decoder for iterative bounding

box refinement (Zhu et al., 2020).

2.4 Deep Learning in Medical Microbiology

In this section, the existing literature on this specific topic will be discussed. There are few

studies regarding using DL in microbiology, even less for colony detection and classification.

Some studies approached the issue by developing algorithms to classify the colonies, while

others tried to create methods for colony counting. Other authors applied DL methods for

image generation of synthetic colonies and plates upon an existing dataset. Although not upon

culture media colonies, some authors researched microscopic images of microorganisms as a

means to enhance image recognition in the microbiology area.

Majchrowska, Pawłowski, et al. (2021) developed a whole dataset on images of microbial

cultures cultured on an agar plate. Named the Annotated Germs for Automated Recognition

(AGAR), this dataset comprises around 18 thousand photos of five different microorganisms.

The main objective of the authors was to create and publish a dataset that would serve for

the future development of ML models for the microbiology field.

Majchrowska, Pawłowski, et al. (2021) evaluated the performance of the AGAR dataset

for building DL models for image-based microorganism recognition by testing two architec-

tures for object detection (Faster R-CNN and Cascade R-CNN) with four different back-

bones (ResNet-50, ResNet-101, ResNeXt-101, and HRNet). They found that the AGAR

dataset can be used to build robust models and is well suited for real data collected in various

acquisition setups. The best-performing model was the Cascade R-CNN with the HRNet

backbone, with a counting error of 4.92 % on the higher-resolution subset and 3.81 % on

the lower-resolution subset. For detection, the mean average precision (mAP) scores ranged

from 49.3 % to 59.4 % for different detectors.

On a different paper, Majchrowska, Pawlowski, et al. (2021) evaluated the performance
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of various object detection methods, that included Faster R-CNN, Cascade R-CNN, Libra

R-CNN, CBNetv2, YOLOv4, EfficientDet-D2, and Deformable DETR with different back-

bones (ResNet-50, CSPDarknet53, EfficientNet-B2, and XCiT-T12) on the higher resolution

subset of the AGAR dataset. The authors found that the results did not vary greatly between

the different architectures, with mAP values ranging from 0.49 % to 0.53 %. Regarding ac-

curacy and speed, YOLOv4 performed the best, while two-stage architectures performed

moderately. Transformer-based architectures achieved the worst results.

Pawłowski et al. (2022) developed a strategy to generate an annotated synthetic dataset

of microbiological images of Petri dishes using the AGAR dataset. This dataset can train DL

models in a fully supervised fashion, utilizing traditional computer vision methods and neural

style transfer techniques.

Graczyk et al. (2022) also used the AGAR dataset to study a density map approach for

colony counting. They proposed a self-normalization module in the network called a Self-

Normalized Density Map, which improves the model’s accuracy by correcting the output

density map. However, the efficiency of this approach was similar to that of detector-based

models such as Faster R-CNN and Cascade R-CNN.

Ferrari et al. (2017) have also created a dataset of pictures of blood agar plates with

hemolytic and non-hemolytic colonies taken under different lighting conditions. The team

then used this dataset to test two different ML methods for counting colonies. The first

method involved extracting a set of hand-crafted morphometric and radiometric features

and using them in a SVM. The second method involved using a CNN. The team also tested

different ways of enhancing the dataset to improve performance. They found that the CNN

approach performed better than the hand-crafted method.

Savardi et al. (2018) developed a method to detect and classify diagnostically relevant

hemolysis effects associated with specific bacteria growing on blood agar plates. The authors

used feature evaluation and SVM classification to detect and distinguish between different

types of hemolysis on both a single colony and whole plate setups. They reported good results

but highlighted that different lighting conditions and plate alignment were major challenges

for hemolysis detection.

In the study conducted by Nie et al. (2015), colony classification was approached using

unsupervised methods. The goal was to segment and classify bacterial images across differ-

ent growth phases and environmental contexts. The authors employed Convolutional Deep

Belief Networks to provide a deep representation of small image patches. Afterwards, a SVM

was trained to classify foreground and background patches accurately. Once the foreground

patches were identified, a supervised CNN was trained to predict which bacterial colonies

from the pool occurred in a query image. These predictions were then aggregated through a
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voting scheme to predict the likely species in the image. As a result of this study, the authors

concluded that this method outperformed the more commonly used image segmentation and

classification methods.

Liu, Huang, Liu, Lin, and Zou (2022) and Whipp and Dong (2022) explored various

methods for colony counting to improve the task.

In their study, Liu et al. (2022) aimed to address the problem of limited labelled data

and poor performance on new data sources in the colony counting task. They proposed a

blending-based augmentation strategy to increase the amount of data and incorporate mul-

tiple targets within a single sample to enhance learning complexity. They used a two-stage

framework, where data from multiple sources was first processed through a CNN for feature

extraction and then trained in a second stage. The authors found that their approach outper-

formed other methods, such as OpenCFU, TLCC, Mask R-CNN, and CenterNet, due to the

novel augmentation technique.

Whipp andDong (2022) created and evaluated several DLmodels for automatic microbial

colony counting using the YOLO framework, specifically using images of S. aureus from the

AGAR dataset. They compared different versions of the YOLOV5 model and evaluated the

effect of varying image resolutions. They found that more complex models did not improve

performance significantly but significantly increased the time required for training.

Andreini, Bonechi, Bianchini, Mecocci, and Scarselli (2020) addressed the challenge of

limited data availability by developing image-generation models. They used a CNN to sepa-

rate colonies from backgrounds and to overcome the lack of annotated images. They designed

a generative adversarial network to generate synthetic data that captures the typical distribu-

tion of bacterial colonies on agar plates. They then superimposed these generated colony

patches on existing background images, considering the background’s local appearance and

the colonies’ opacity. They used a style transfer algorithm to improve visual realism.

Different from the focus on colonies on culture media, the studies by Talo (2019) and

Zieliński et al. (2017) used DL techniques on digital microscopy images.

Zieliński et al. (2017) created the Digital Images of Bacteria Species (DIBaS) dataset, a

collection of microscopic images that includes 33 different bacteria species, each represented

by 20 images. These samples were stained using the Gram method and captured with a

100x objective under oil immersion. They then applied Dense SIFT and CNN techniques to

classify bacteria species using this dataset.

Talo (2019) applied a pre-trained ResNet-50 CNN architecture to classify digital bacteria

images into 33 categories using the DIBaS dataset. They used a transfer learning technique

to speed up the training process of the network and enhance its classification performance.

The proposed method achieved an average classification accuracy of 99.2 %.
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This dissertation seeks to advance the application of neural networks for the classification

of bacterial colonies through various approaches. These approaches include improving the

models’ performance on the AGAR dataset by employing techniques like transfer learning

and ensemble methods. Additionally, the dissertation aims to gain a deeper understanding

of how different background types impact model performance. This is accomplished by

dividing the dataset into subsets based on background characteristics and training the models

accordingly.

Secondly, this project includes the creation of a small dataset consisting of annotated im-

ages of agar plates with bacterial colonies, encompassing a diversity of culture media. Existing

datasets primarily focus on a single type of culture media. For instance, the AGAR dataset

features plates with Trypticase Soy Agar (TSA), while the dataset in Savardi et al. (2018) cen-

ters on colonies inoculated on plates with blood Agar. As such, this project aims to curate a

dataset that encompasses plates with a diverse array of culture media, including blood agar,

chocolate agar, MacConkey agar, and Mannitol agar. Besides its creation, the main objec-

tive is to utilize this dataset for training and subsequently enhancing the performance of the

models. This enhancement will be achieved through the application of the aforementioned

methods, including transfer learning and ensemble techniques.
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Chapter 3

Methodology

This chapter delineates the methodologies adopted for this project, providing an exposi-

tion on data description, training workflow, and the chosen ensemble method. Additionally,

it offers insight into the rationale behind incorporating transfer learning and the metrics em-

ployed for evaluation.

The dissertation is divided into two parts.

Part 1: Training on the AGAR Dataset

In this part, the primary aim is to comprehensively assess accuracy across each back-

ground type within the dataset and implement transfer learning and ensemble methods to

enhance accuracy.

Part 2: Training on the curated dataset

In the second segment, a dataset was curated by capturing photographs of real plates

within the laboratory setting. While the bacterial species remained consistent with those uti-

lized in the first phase, there was a variation in the culture media of the plates on which they

were inoculated. Initially, a foundational training process establishes a baseline accuracy level.

Subsequently, to enhance performance, transfer learning was applied to leverage the insights

gained from the models trained on the AGAR dataset, and ensemble methods were imple-

mented.

This project is focused on answering some key questions, such as:

• Which models are better suited for this task?

• How do different background types influence the performance of the models on the

AGAR dataset?
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• Are there variations in model performance across different bacterial species within

both datasets?

• What is the impact of transfer learning on model performance?

• How does the generalization process, where AGAR dataset weights are applied using

transfer learning, affect the training of the curated dataset?

• Which combination of models in the ensemble method produces the best results in

both datasets?
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3.1 Data Description

3.1.1 AGAR dataset

The first part of this project was developed upon the AGAR dataset that was provided by

Majchrowska, Pawłowski, et al. (2021). The authors’ main objective for creating this dataset

was to have a diverse dataset upon which the broader research community could build and

advance the field of neural networks in microbiology. The AGAR dataset comprises 18

thousand annotated photographs of Petri dishes, with over 330 thousand labelled micro-

bial colonies. It includes colonies belonging to four different bacterial species (Staphylococcus

aureus, Bacillus subtilis, Pseudomonas aeruginosa,Escherichia coli), alongside one yeast strain (Candida

albicans) (Majchrowska, Pawłowski, et al., 2021). These photographs are categorized into two

major groups: high-resolution and low-resolution images. The first group is further divided

into three subgroups based on lightning conditions: bright, dark, and vague. The distinction

between these subgroups is derived from the colour of the plexiglass employed: white for

the bright and black for the dark subgroups. The vague subgroup was exposed to ambient

lighting, giving away to low-contrast images (Majchrowska, Pawłowski, et al., 2021). Figure

3.1 illustrates the various background settings for this dataset.

Figure 3.1: Background settings: a) Bright, b) Dark, c) Vague, d) Low Resolution

The dataset comprises images featuring countable colonies, images depicting empty plates,

and images showcasing uncountable colonies, where the enumeration of individual colonies

is unfeasible.

Figure 3.2 illustrates the distribution of empty, countable, and uncountable plates across

various background types and species-specific annotation counts. These graphs are taken

from Majchrowska, Pawłowski, et al. (2021).

For this project, only images containing colonies of S. aureus, P. aeruginosa, and E. coli

were utilized. This selection was primarily driven by the greater balance observed across the
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Figure 3.2: Samples distribution in the original dataset: (a) across different microbial species,

and (b) among different acquisition setup subgroups.

dataset within these categories but also due to the higher clinical significance those three bac-

teria represent as prevalent pathogenic agents in human infections. Consequently, from the

complete dataset, images that featured annotations of B. subtilis, C. albicans, ”Contamination,”

or ”Defect” were excluded. Furthermore, images containing uncountable colonies were also

removed, as well as images that contained more than 100 annotations, for simplification.

Figure 3.3: distribution of the dataset according to the background type.
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With all this, the resultant dataset employed in the project comprises a total of 9851

images, 182864 annotations, and three categories (S. aureus, P. aeruginosa and E. coli).

Out of these, 1217 images featured empty plates, while the remaining images included

annotations spanning the three categories. Each image had the potential to encompass one

or more of these categories. The distribution of empty and countable plates is illustrated in

the Appendix, in Figure A.1.

Approximately 62 % of the dataset comprised high-resolution images, predominantly

concentrated within the dark background category. This distribution is visually presented in

more detail in Figure 3.3.

The relative frequency of each class across the entire dataset and within each background

subgroup was computed, illustrated in Figures 3.4 and 3.5, respectively. The entire dataset

is relatively well-balanced. Class P. aeruginosa makes up the fewest annotations, accounting

for approximately 27 % of the total. Within each subgroup, dark background images dis-

play the highest degree of balance. Conversely, the most imbalanced subgroup is the vague

background. The distribution of class instances is relatively consistent, except for the vague

background subgroup, where pronounced discrepancies are observed.

Finally, concerning the distribution of classes and annotations, Figures A.2 and A.3 graph-

ically depict the number of images based on the number of annotations they contain for the

entire dataset and across each subgroup. The majority of images contain twenty annotations

or less, while only a few have more than fifty annotations.

Figure 3.4: Distribution of classes across the entire dataset.
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Figure 3.5: Distribution of classes within each background.

3.1.2 New dataset

The second segment of the dissertation started with creating a compact dataset of an-

notated images by utilizing colonies inoculated on laboratory plates. In order to sustain the

continuity of the classification task, the bacterial species inoculated remained consistent with

those addressed in the first part, namely S. aureus, P. aeruginosa, and E. coli. Conversely, the

plates employed for inoculation diverged from those utilized in the AGAR dataset. The

authors opted for plates containing TSA culture media, a nutrient-rich but non-selective and

non-differential medium. In this particular dataset, the decision wasmade to introduce greater

diversity in culture media, involving four distinct types of agar: blood agar (Figure 3.6 a), and

chocolate agar (Figure 3.6 b) (both enriched and non-selective), MacConkey agar (Figure 3.6 c)

(a selective and differentiating medium that exclusively supports the growth of gram-negative

bacterial species – such as E. coli and P. aeruginosa), and Mannitol salt agar (Figure 3.6 d) (a

selective and differential medium used to isolate and identify S. aureus). The distribution of

the type of culture media on the dataset is illustrated on Figure A.4

The various culture media exhibit distinct colours, and the bacteria react differently based

on the specific medium in which they were inoculated. Furthermore, even within the same

species, there can be slight variations in morphology due to the type of medium utilized. This

introduces a layer of diversity and complexity, establishing a dataset to simulate a medical

laboratory scenario more faithfully.
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Figure 3.6: Different culture media: a) Blood agar, b) Chocolate agar, c) MacConkey agar,

d) Mannitol salt agar.

Figures 3.7 to 3.9 are dedicated to illustrating the different morphologic characteristics

exhibited by colonies of different species when inoculated in diverse culture media. Notably,

images a) within each figure pertains examples to the AGAR dataset, while the remaining

images are from the new dataset.

Colonies of S. aureus are typically circular, smooth, raised, and exhibit a glistening appear-

ance. When cultivated on Mannitol salt agar (Figure 3.7 c and d), they manifest an opaque

texture and often display a golden-yellow pigmentation. Conversely, TSA (a) and blood agar

(b) are characterized by an opaque, greyish-to-yellow hue.

Figure 3.7: S. aureus colonies: a) AGAR dataset, b) Blood agar, c) Mannitol salt agar, d)

Mannitol salt agar.

E. coli colonies are large, circular, and possess a grey appearance on TSA, blood, and

chocolate agar (Figure 3.8 a, c, and d). When cultivated on MacConkey agar (b), they acquire

a pink colour due to lactose fermentation.

P. aeruginosa colonies are larger in size, circular, flat, and have irregular margins. On blood

and chocolate agar (Figure 3.9 b and d), they showcase a greyish pigmentation, whereas on

TSA (a), they appear paler. In the case of MacConkey agar (c), the colonies are colourless, as
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Figure 3.8: E. coli colonies: a) AGAR dataset, b) MacConkey agar, c) Chocolate agar, d)

Blood agar.

they do not undergo lactose fermentation, unlike E. coli.

Figure 3.9: P. aeruginosa colonies: a) AGAR dataset, b) Blood agar, c) MacConkey agar, d)

Chocolate agar.

To the extent of our awareness, this constitutes the first dataset for a deep learning project

that incorporates such a broad spectrum of culture media diversity.

The dataset was generated through the capture of photographs using an iPhone 13 mini.

These images were obtained under consistent lighting conditions, although without special-

ized equipment for light control. Given the variation in transparency across different media,

photographs of thosemedia were primarily taken against a dark background. The images were

cropped so that only the plates were visible, after which they were uploaded and annotated

using the Roboflow app.

The dataset is thus composed of 165 images and 1801 annotations. The distribution of

the classes is illustrated in Figure 3.10. Among these are four images featuring empty plates,

while other images encompass a mixture of multiple species within a single plate. Figure A.4

depicts the distribution of distinct culture media types. Notably, the least represented is the

Mannitol media. This occurrence can be attributed to the specificity of this media for a single

species, S. aureus, while the other media can support the growth of multiple species. In this
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case, most of the images contain twenty or fewer annotations. The image with the highest

number of annotations contains 42 annotations, as depicted in Figures A.5 and A.6.

Figure 3.10: Class distribution on the new dataset.
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3.2 Training Workflow

The workflow was executed on Google Colab Pro, using a GPU T4 provided by the

service. The training of models was accomplished using the Detectron2 framework (Y. Wu,

Kirillov, Massa, Lo, & Girshick, 2019), an open-source library developed by Facebook AI

Research for tasks related to object detection with bounding boxes, instance segmentation

masks, and human pose prediction. This framework is implemented using PyTorch and

provides a range of models, including Faster R-CNN, Mask R-CNN, RetinaNet, Cascade

R-CNN, Panoptic FPN, and TensorMask.

As previously mentioned, the AGAR dataset was divided based on the background cate-

gories, resulting in four distinct subsets that underwent separate training: bright, vague, dark,

and low-resolution subsets. Furthermore, the complete dataset was also subjected to com-

prehensive training.

For the second part, training is conducted solely on the complete dataset rather than

being performed for each distinct media type. This decision is primarily driven by the limited

quantity of images within the new dataset, as well as the specialized nature of the media. The

latter factor would lead to variations in the number of categories for each classification task.

Each dataset was divided into three subsets for training (60 %), validation (20 %), and

testing (20 %). The first two sets played a role during the learning phase, serving for training

and per-epoch evaluation, including validation loss computation. At the end of each training

cycle, the training and validation losses and the Mean Average Precision (mAP) of the valida-

tion set were plotted. This aimed to help visualize the training process’s progress and identify

potential overfitting instances. The test set was left unseen by the model during the learning

process, only to be employed for evaluation subsequent to the completion of the training.

For the AGAR dataset, the models underwent training for 10 epochs, in batches of 8

images. The new dataset underwent training cycles of 100 epochs due to the low number of

images. Augmentations, such as random rotation, adjustments to brightness and exposure,

blurring, and introducing noise, were applied to the images. The training process was also

performed on the original dataset, which remained unaltered by any augmentation techniques.

Regarding the optimizer, the training process employed the Stochastic Gradient Descent opti-

mizer with a momentum of 0.9. The initial learning rate was set at 0.0005, with the first epoch

devoted to a linear warm-up factor. Subsequently, after every three epochs, the learning rate

was reduced by 1/10.

Two object detection models were selected for this project: the two-stage Faster R-CNN

and the single-stage RetinaNet. Each model was then trained utilizing two underlying archi-

tectures: ResNet50 and ResNet101. For the initialization of the models, pre-trained weights
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from ImageNet were utilized, a common approach within the field.

3.3 Evaluation Metrics

The metrics established for the Common Objects in Context (COCO) dataset in Lin et

al. (2015) were adopted for the classification task. Specifically, the mAP was employed, with

a focus on evaluating the mAP across various Intersection over Union (IoU) thresholds.

The most common metric used in object detection tasks is the calculation of mAP. To

achieve this, defining a true positive for the task is essential. The object detection task differs

from the classical image classification problem in that it takes the model to accurately predict

the correct class and precisely identify the object’s position.

To assess the position and the class of a predicted bounding box, the IoU between the

ground truth box and the predicted box is calculated. As the name suggests, the IoU rep-

resents the proportion of the area where both bounding boxes intersect relative to the total

area of both boxes. This is calculated with the Jaccard similarity coefficient by the following

formula:

JaccardIndex =
|A ∩B|
|A ∪B|

A higher the IoU corresponds to a better prediction, meaning that a perfect prediction

would result in an IoU of 100%.

Subsequently, the localization problem is approached as a binary classification problem,

where the positive class signifies the correct detection of the object. With that, the precision

and the recall are computed. The first measures the relevancy or correctness of the predicted

items. It calculates the ratio of true positive and false positive predictions to the sum of true

positive and false positive predictions. Precision answers the question: ”Out of the items

predicted as positive, how many are actually positive?”.

Precision =
CorrectPredictions

TotalPredictions
=

TruePositives

TruePositives+ FalsePositives

Conversely, recall assesses the completeness or coverage of the predicted items. It calcu-

lates the ratio of the true positive predictions to the sum of true positive and false negative

predictions. Recall answers the question: ”Out of all the positive items, how many were cor-
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rectly identified?”.

Recall =
CorrectPredictions

TotalGroundTruth
=

TruePositives

TruePositives+ FalseNegatives

In a multi-class classification problem, the model assigns conditional probabilities to each

class for a given bounding box. These probabilities represent the likelihood of the bounding

box belonging to a specific class. The bounding box is classified accordingly by comparing

these probabilities against a defined threshold. This implies that higher probabilities indicate

a greater chance of the bounding box corresponding to that specific class.

The following step consists of calculating the Average Precision (AP), and its execution

has varied among different authors. For this project, the COCO evaluator was adopted.

The COCO dataset employs a method to calculate the AP in object detection by generat-

ing precision-recall curves for each category. This involves the variation of the confidence

threshold of model predictions. It incorporates 101-point interpolation, where precision is

calculated across 101 recall thresholds that range from 0 to 1 with increments of 0.01 (Lin et

al., 2015). In the equation below, p denotes precision, and r represents recall.

AP =
1

101

1.0∑
r=0.0
step 0.01

p(r)

AP is computed individually for each class. Subsequently, mAP is determined by averag-

ing the AP values across all the relevant classes. In the equation below, mAP is calculated as

the mean of the AP values across all k classes.

mAP =
1

k

1.0∑
i

APi

The COCO dataset ultimately performs these calculations at different IoU thresholds,

typically ranging from 0.5 to 0.95 with increments of 0.05. The final mAP is then calculated

as the mean of the mAP values at different thresholds.

The COCO mAP is often used due to its capacity for the detailed assessment of models

across different IoU thresholds, thus enabling a more fine-grained evaluation process (Terven

& Cordova-Esparza, 2023).

Mean Average Recall (mAR) is also reported alongside mAP, to simultaneously measure

both proposal recall and localisation accuracy. mAR reflects the recall of each model for
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different IoU thresholds (from 0.5 to 1), summarising and rewarding both a high recall and a

good localisation of the objects detected by the models (Hosang, Benenson, Dollár, & Schiele,

2015).

3.4 Transfer Learning

The reasoning behind transfer learning is using the overall knowledge acquired by a model

trained on a larger dataset to enhance performance on a task with a smaller data fraction.

In practice, the initial training procedure applied to this data and most object detection

tasks is founded on the concept of transfer learning. This implies starting the learning pro-

cess with the weights of pre-trained models, which have been trained on datasets like the

well-known ImageNet. Datasets like ImageNet are built upon millions of images. The mod-

els trained on these extensive datasets encompass thousands of diverse classes, requiring the

models to make predictions across a large number of classes. Thus, the models are well

trained to proficiently learn the feature extraction from photographs, allowing them to per-

form effectively on a given problem.

Working with images of Petri dishes containing bacterial colonies in this project represents

a highly specialized task. Consequently, exploring the feasibility of training the most compact

and least performing subsets using the weights of a model initially trained on the complete

dataset is of great interest. This approach, known as transfer learning, or fine-tuning, aims to

optimize the network to improve performance.

The rationale behind utilizing transfer learning as a fine-tuning approach in the first part

of the project focused on the AGAR dataset involved a sequence of steps. After the ini-

tial training, the models exhibiting the weakest performance or those belonging to subsets

with fewer images were selected, along with the model with the highest performance. Sub-

sequently, the weights from the latter model were employed to retrain the models with the

poorest performance. Lastly, the retrained models were subjected to a subsequent round of

evaluation.

In the second part, the new dataset underwent an initial training phase, which was sub-

sequently succeeded by a second training stage utilizing the weights derived from the top-

performing model trained upon the AGAR dataset. As the new dataset does not have sub-

sets, it would not make sense to repeat the training performed on the same entire dataset.

Therefore, in this part, the aim was to assess how the knowledge from models trained on a

different dataset, specifically a larger scale dataset like AGAR, would affect the results on the

new dataset.
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3.5 Ensemble of models

Ensemble techniques aim to enhance the performance of a single model by combining

multiple algorithms. This combination can mitigate the bias or variance associated with a

single model. Although most ensemble methods increase computational time during training

or prediction, they provide an effective approach for advancing the state-of-the-art (Vilhelm,

Limbert, Audebert, & Ceillier, 2022).

A range of ensemble methods is available, each offering distinct benefits.

• One approach involves data transformations, such as creating sub-samples from the

original dataset (bagging or bootstrap aggregating) or applying augmentations to the

training data.

• Another method combines models through hyperparameter variations, such as modi-

fying loss functions and optimizers. This approach also contributes to improved out-

comes. These two techniques extend the training time while enhancing model perfor-

mance.

• Additionally, ensemble techniques can involve transforming and combining predic-

tions. This can be achieved by merging predictions or introducing augmentations dur-

ing testing. This, on the other hand, will consequently increase the prediction time

rather than the training time.

Ensemble models, due to their nature, are widely used in applications in scenarios where

real-time inference is not a primary concern. As a result, they serve as a favourable option

for augmenting the performance of the models in this project.

In this project, having trained multiple models and generated multiple predictions, the

chosen approach involved ensemble techniques that focused on combining diverse predic-

tions. Weighted Boxes Fusion (WBF) employs the confidence scores from all proposed

bounding boxes to formulate average boxes (Solovyev, Wang, & Gabruseva, 2021). During

this stage, a grid search procedure was executed to identify the optimal model combination

and determine the most suitable parameters for the WBF ensemble method.
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Chapter 4

Results

This chapter outlines the findings derived from evaluating the test sets of both datasets.

It commences with assessing the performance of the foundational object detection models

across various datasets, including subsets of the AGAR dataset. Subsequently, an analysis of

the impact of transfer learning and WBF ensemble method on model performance is con-

ducted.

The results are presented in terms of key metrics, including mAP, mAR, and specific class

detection mAP values for S. aureus, P. aeruginosa, and E. coli.

4.1 First part results

4.1.1 Base models evaluation

The comprehensive results for the various subsets of the AGAR dataset, as well as the

dataset in its entirety, are presented in Tables 4.1 through 4.5.

When assessed in terms of the mAP metrics, the model that consistently outperforms

others across different subsets and the entire dataset is Faster R-CNN with ResNet 101 ar-

chitecture. Its performance spans from 51.09 % to 62.39 % mAP across subsets, with the

bright subset yielding the lowest mAP, and the dark subset achieving the highest mAP.

On the other hand, RetinaNet models exhibit overall weaker performance. The archi-

tectural variations within the same model type generally yield minimal differences in per-

formance. For instance, RetinaNet ResNet 50 performs better with the bright subset than

RetinaNet ResNet 101, achieving mAP values of 38.23 % and 32.25 %, respectively. In con-

trast, ResNet 101 performs slightly better within the low-resolution subset than RetinaNet

ResNet 50 (55.53 % versus 54.62 %). These differences are, however, marginal.

The mAR results closely mirror the mAP findings, with slightly higher values.
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When analyzing the performance for each class, it becomes evident that the class with the

most consistent and overall better results is E. coli. Its performance ranges from a low mAP

value of 54.75 % in the bright subset, using the RetinaNet ResNet 101 model, to a high mAP

of 71.18 % in the low-resolution subset, where this subset consistently demonstrates the best

performances.

For the classification of P. aeruginosa colonies, the models perform relatively poorly in the

bright subset, with mAP values ranging from 30.48 % to 43.19 %. Across the remaining

subsets, the performance remains consistent within the different models, with the best result

of 65.32 % achieved in the low-resolution subset using the Faster R-CNN 101 model.

The classification of S. aureus colonies showcase a higher level of inconsistency and greater

variations between different model architectures. This class also tends to yield poorer results

overall. Notably, the performance of the RetinaNet model for the classification of S. aureus is

notably poor, particularly evident in the bright subset, where it achieves a mere 11.52 %mAP.

Even in its best-performing scenario in the dark subset, the RetinaNet model results reach

only 39.15 % mAP. In contrast, Faster R-CNN with ResNet 50 performs well, achieving a

mAP of 55.30 % in the dark subset.

In summary, Faster R-CNN models demonstrate superior performance, particularly in

subsets with darker backgrounds or images with lower resolutions. Training models using

the entire dataset also results in notable achievements.

Model Backbone mAP mAR S. aureus P. aeruginosa E. coli

Faster R-CNN
ResNet 50 47.86 53.80 49.76 38.56 55.27

ResNet 101 51.09 56.80 50.43 43.19 59.66

RetinaNet
ResNet 50 38.23 47.60 17.89 38.46 57.34

ResNet 101 32.25 39.90 11.52 30.48 54.75

Table 4.1: Bright subset (%)
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Model Backbone mAP mAR S. aureus P. aeruginosa E. coli

Faster R-CNN
ResNet 50 51.89 59.60 40.31 50.27 65.09

ResNet 101 52.25 60.00 40.10 51.82 64.82

RetinaNet
ResNet 50 47.04 56.00 23.16 52.10 65.86

ResNet 101 46.80 55.70 21.82 50.41 68.18

Table 4.2: Vague subset (%)

Model Backbone mAP mAR S. aureus P. aeruginosa E. coli

Faster R-CNN
ResNet 50 62.10 68.30 55.30 63.36 67.65

ResNet 101 62.39 68.70 54.02 64.66 68.51

RetinaNet
ResNet 50 56.26 65.20 39.15 61.64 68.00

ResNet 101 55.36 64.60 37.38 61.13 67.58

Table 4.3: Dark subset (%)

Model Backbone mAP mAR S. aureus P. aeruginosa E. coli

Faster R-CNN
ResNet 50 62.08 67.90 52.00 64.47 70.07

ResNet 101 62.18 68.00 50.56 65.32 70.36

RetinaNet
ResNet 50 54.62 62.40 30.22 63.47 70.18

ResNet 101 55.53 63.20 32.26 63.14 71.18

Table 4.4: Low Resolution subset (%)

Model Backbone mAP mAR S. aureus P. aeruginosa E. coli

Faster R-CNN
ResNet 50 61.63 67.70 53.22 63.47 68.21

ResNet 101 62.10 68.00 53.00 63.75 69.56

RetinaNet
ResNet 50 54.49 63.40 34.30 61.21 67.96

ResNet 101 54.34 62.40 34.30 60.98 67.76

Table 4.5: Total dataset (%)
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4.1.2 Transfer Learning Results

The transfer learning process was carried out as previously described in the methods

section. This step was conducted based on the outcomes presented in the evaluation process

of the test sets for each subset and the entire dataset. After the evaluation process outlined in

the earlier subsection, subsets that exhibited poorer results were selected for further training.

This additional training phase involved employing the pre-trained weights of the model that

demonstrated the best overall performance.

Consequently, the bright, vague, and low-resolution subsets underwent retraining using

the Faster R-CNN model with ResNet 101 architecture. However, this time, the retraining

was performed using the weights obtained from the initial training process conducted by the

same model on the entire dataset.

The outcomes obtained from the evaluation process of the retrainedmodels are presented

in Table 4.6. The table includes mAP and mAR values, along with per-class mAP scores.

Additionally, the table features the percentage point difference between the results of the

retrained models and the original results of the same model as presented in Tables 4.1, 4.2,

and 4.4. Although the initial results from the low-resolution subset were quite satisfactory,

this retraining process illustrated how transfer learning could benefit both worst-performing

and also well-performing models.

The results of the new training process have proven to be highly satisfactory, particularly

for the subsets that initially displayed poorer results.

The bright subset had the most significant improvement in its mAP and mAR values,

achieving an overall mAP of 58.36 %, which is approximately 7 percentage points higher

than the baseline. Moreover, the performance in the classification of P. aeruginosa colonies,

which originally had the lowest performance within this architecture, had the highest increase

of 14.29 percentage points, resulting in a mAP of 57.47 %. Although the results for the other

classes also exhibited improvement, the impact was not as pronounced.

Subset mAP (∆) mAR (∆) S. aureus (∆) P. aeruginosa (∆) E. coli (∆)

Bright 58.36 (+7.27) 63.30 (+6.50) 53.07 (+2.64) 57.47 (+14.29) 64.54 (+4.88)

Vague 56.32 (+4.08) 63.20 (+3.20) 41.77 (+1.66) 58.61 (+6.79) 68.59 (+3.77)

Low Res 63.91 (+1.73) 69.60 (+1.60) 53.53 (+2.97) 66.32 (+1.01) 71.88 (+1.52)

Table 4.6: Results after applying Transfer Learning for the bright, vague and low-resolution

subsets (%) and the difference to the best baseline model results (percentage points)
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The vague subset also experienced consistent improvement from the retraining process,

although it ultimately achieved an overall mAP lower than the bright subset. In the base-

line evaluation, the vague subset had a slightly better result than the bright subset, but the

retraining process had a greater impact on the bright subset’s performance.

The low-resolution subset, despite starting with a good baseline result, also experienced

improvements ranging from 1.01 to 2.97 percentage points. Despite the relatively small dif-

ferences, the mAP for the low-resolution subset surpassed the overall best result from the

baseline testing, which was 62.39 % for the dark subset. Here, the low-resolution subset

achieved an overall mAP of 63.91 %.
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4.1.3 Ensemble Results

Applying ensemble methods involves various strategies, such as training a combination

of different models with different parameters or creating sub-samples within the dataset.

Ensemble methods can also involve creating augmentations on the test set during evaluation

or combining results obtained from different trained models.

In this project, the WBF ensemble method was applied, where the results obtained from

the various evaluation processes were combined to enhance the final performance. A grid

search strategy was employed to identify the best combination of models and parameters for

WBF, including IoU and skip IoU thresholds. The results presented in Table 4.7 reflect the

outcomes of combining all models, including the results from transfer learning models for

the respective subsets.

It is important to note that each model was given different weights based on performance.

The optimal combination of parameters for WBF was determined to be an IoU threshold of

0.75 and a skip IoU threshold of 0.01.

Upon applying the ensemble method, the performance of every subset experienced an

increase. Once again, the bright subset displayed the higthest improvement, as observed in

the transfer learning process, achieving a mAP of 60 %. Ultimately, the subset with the best

performance was the low-resolution subset, which achieved a mAP of 66,40 %, a 4.22-point

increase compared to the baseline model. Conversely, the vague subset was the least im-

proved, achieving a mAP of 57.90 %. Similarly to the transfer learning process, fine-tuning

methods appeared to have less impact on the vague subset than the bright subset.

Subset mAP (∆) mAR (∆) S. aureus (∆) P. aeruginosa (∆) E. coli (∆)

Bright 60.00 (+8.91) 67.20 (+10.40) 56.60 (+6.17) 57.20 (+14.01) 66.10 (+6.45)

Vague 57.90 (+5.65) 66.40 (+6.40) 43.90 (+3.80) 59.20 (+7.38) 70.50 (+5.68)

Dark 66.20 (+3.81) 72.80 (+4.10) 59.00 (+4.98) 67.60 (+2.94) 72.00 (+3.49)

Low Res 66.40 (+4.22) 72.70 (+4.70) 57.30 (+6.74) 68.40 (+3.09) 73.30 (+2.94)

Total 65.10 (+3.00) 71.70 (+3.70) 56.20 (+3.20) 67.30 (+3.55) 71.60 (+2.04)

Table 4.7: Results after applying WBF for each subset (%) and the difference to the best

baseline model results (percentage points)

The ensemble approach also significantly improved the per-class performance. S. aureus

continued to be the most challenging class to classify, particularly within the vague subset. For

P. aeruginosa, the bright subset exhibited the lowest performance at 57.20 %, but this subset
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also experienced the most substantial improvement, with an increase of 14 percentage points.

The classification of E. coli remained the most consistent across subsets, achieving the best

performance among the three classes.
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4.2 Second part results

4.2.1 Base models evaluation

The results obtained from evaluating the newly created dataset are presented in Table 4.8.

The same models and backbone architectures from the first part of the project were used.

In contrast to the results from the AGAR dataset, the best-performing model in this

scenario was RetinaNet with ResNet 101 architecture, achieving a mAP of 52.40 %. On the

other hand, the worst performer was Faster R-CNN ResNet 101 model, achieving a mAP of

47.94 %, almost five percentage points lower than the top-performing RetinaNet model.

Similar to the previous part, the classification of E. coli colonies demonstrated the best

results among the three classes. Conversely, P. aeruginosa species proved to be the most chal-

lenging to classify, with the worst results across the models. Notably, unlike the AGAR

dataset, the RetinaNet models did not struggle in classifying S. aureus. In the first part of the

project, RetinaNet exhibited the lowest results for classifying this species. However, with the

newly created dataset, RetinaNet achieved the best results, attaining a value of 52.20 % mAP.

Model Backbone mAP mAR S. aureus P. aeruginosa E. coli

Faster R-CNN
ResNet 50 48.59 55.80 46.39 43.78 55.61

ResNet 101 47.94 55.40 45.16 43.88 54.77

RetinaNet
ResNet 50 52.40 59.40 52.20 47.77 57.23

ResNet 101 51.92 58.60 51.39 46.67 57.71

Table 4.8: New dataset (%)
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4.2.2 Transfer Learning Results

Continuing with a similar structure as in the first part, the dataset was retrained, utilizing

the weights of the previously trained models in the new training process. This step had a slight

difference compared to the first part. In this phase, the weights of the pre-trainedmodels were

taken from the models trained on the AGAR dataset. Several training cycles were performed

for this part, using the weights from the different models trained on the entire AGAR dataset

and the weights of the models trained on the different subsets. The objective was to observe

how the transfer of knowledge from the models trained on the AGAR dataset would impact

the performance of the new dataset.

Having trained the new dataset using the multiple models trained on the AGAR dataset

and its subsets, it was concluded that the use of the weights from themodel RetinaNet ResNet

50 trained on the entirety of the AGAR dataset resulted in the best performance. These results

are illustrated in Table 4.9.

There was a small increase in the overall mAP and mAR metrics, of 0.79 and 0.50 per-

centage points, respectively. Similarly, the performance for the classification of each class

also saw a slight increase, with the classification of E. coli and S. aureus showing the most

improvement, both by around 1 percentage point.

Since the improvements in the results from the other models were lower than the ones

mentioned, those results are not illustrated here.

Subset mAP (∆) mAR (∆) S. aureus (∆) P. aeruginosa (∆) E. coli (∆)

New

Dataset
53.19 (+0.79) 59.90 (+0.50) 53.24 (+1.04) 48.07 (+0.30) 58.28 (+1.05)

Table 4.9: Results after applying Transfer Learning for the dataset (%) and the difference to

the the best baseline model results (percentage points)
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4.2.3 Ensemble Results

Similar to the first part, various results were assembled using the WBF method. Again,

a grid search strategy was adopted to find the best parameter combination, and the mod-

els’ results were weighted based on their performance. As in the previous part, the optimal

threshold values were 0.75 for the IoU threshold and 0.01 for the skip IoU threshold.

In Table 4.10, it is evident that this ensemble method showed a better improvement than

transfer learning. However, the use of transfer learningmodels’ results contributed to enhanc-

ing the performance. When the ensemble was performed solely with the baseline models, the

performance was generally lower by approximately one percentage point compared to the

illustrated results.

The WBF method increased almost four percentage points in the overall mAP value,

leading to the highest value of 56.30 %. On a per-class basis, the results were increased for

every class, with improvements ranging from 3 to 4 percentage points. P. aeruginosa remained

the class with the lowest classification performance, achieving a mAP of 51.80 %, while E.

coli had the best classification performance with a value of 60.50 %.

Subset mAP (∆) mAR (∆) S. aureus (∆) P. aeruginosa (∆) E. coli (∆)

New

Dataset
56.30 (+3.90) 62.90 (+3.50) 56.50 (+4.30) 51.80 (+4.03) 60.50 (+3.27)

Table 4.10: Results after applying WBF for the dataset (%) and the difference to the the best

baseline model results (percentage points)
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Chapter 5

Conclusion

This dissertation employed various deep-learning models designed for object detection

to classify bacterial colonies inoculated in culture media using two distinct datasets. The first

dataset, made publicly available by Majchrowska, Pawłowski, et al. (2021), consists of thou-

sands of annotated high-resolution images of Petri dishes with TSA culture media with five

different species. The second dataset was created during this project, containing 165 anno-

tated images with three species inoculated in various types of culture media.

This study was conducted in two distinct parts. The first part involved utilising the

AGAR dataset to classify E. coli, S. aureus, and P. aeruginosa colonies. In this phase, differ-

ent approaches, such as transfer learning and ensemble methods, were applied to improve

the performance reported in the literature.

The second part of the study encompassed the creation and annotation of a smaller dataset

containing images to classify the same bacterial species. This dataset included a variety of cul-

ture media, such as blood agar and chocolate agar, as well as more specific agars where the

bacteria were inoculated. This section aimed to enhance the baseline performance of the

models trained in this dataset by employing transfer learning techniques using the weights

from models trained on the first dataset. Additionally, the ensemble of results was applied to

enhance the classification outcomes further.

As mentioned earlier, the dataset created and presented by Majchrowska, Pawłowski, et

al. (2021) served as the foundation for this study. They established the dataset and conducted

training using several models for colony classification and counting. Among the models em-

ployed were Faster R-CNN with various architectures, including ResNet 50 and 101, also

used in this project. Additionally, they explored other models such as Cascade R-CNN, one-

stage detectors like YOLOv4, and transformer-based models (Majchrowska, Pawlowski, et

47



al., 2021).

The authors divided their dataset into two subsets for training. One subset consisted of

high-resolution images (excluding the vague subset), while the other contained low-resolution

images. Their reported results in terms of mAP varied from 49.3 % to 52.3 % for the high-

resolution subset and from 56 % to 59.4 % for the low-resolution subset. Notably, the Cas-

cade R-CNN model yielded the best outcomes among their tested models, although it was

not applied in this project. Furthermore, when assessing per class mAP values, the class S.

aureus was the one for which the models achieved the most favourable results.

In this project, the highest performing model on this dataset was Faster R-CNN with

ResNet 101 backbone. Notably, there are distinctions between this project and the work

conducted by Majchrowska, Pawłowski, et al. (2021). In the present study, an intentional

decision was made to focus on only three species, accompanied by the exclusion of images

with over 100 annotations. This selection led to a reduction in the dataset size by more than

8000 images. This process was primarily motivated by the clinical relevance of S. aureus, E.

coli, and P. aeruginosa as prominent pathogenic agents in human infections. Conversely, B.

subtilis lacks substantial clinical significance, and C. albicans, while prevalent, was excluded due

to its classification as a yeast rather than a bacterium.

Furthermore, instead of categorising the dataset into subsets based on high and low reso-

lution, this project divided it according to different background types: bright, dark, vague, and

a subset containing low-resolution images, given that images with varying backgrounds were

high-resolution. Additionally, the entire dataset was used for training. This was performed to

gain insights into the models’ performance across different luminosity backgrounds. Notably,

the subset that yielded the best results was the dark subset, achieving 62.39 %. Additionally,

the low-resolution subset, which can be compared with the one used by the authors, achieved

a mAP of 62.18 %, surpassing the authors’ result of 57.3 % on the same model. On the other

hand, in the high-resolution subset examined by the authors, encompassing both the dark

and bright subsets, they managed to achieve approximately 50% mAP using both Faster R-

CNN models and reached 52,3% with Cascade R-CNN ResNeXt101. In comparison, in this

project, the bright and dark subsets yielded 51.09 % and 62.39 % respectively.

These discrepancies in results can be attributed to the reduction in the number of classes

and annotations in this study. Furthermore, limited computational resources prevented the

replication of the pre-processing and augmentations employed by the authors during their

training process, which contributed to the divergence in outcomes.

In the per-class analysis, the authors exclusively reported results for the model trained on

the high-resolution subset, employing Faster R-CNN ResNet50 and Cascade R-CNN HR-

Net. Notably, their outcomes favoured classifying smaller-sized colonies like S. aureus. This
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contrasts with the findings in this dissertation, where the classification of S. aureus colonies

proved to be themost challenging across all subsets, except for the bright subset, where Faster

R-CNN models exhibited greater difficulty with P. aeruginosa colonies.

This divergence in results can be attributed to the pre-processing strategy adopted by the

authors, which involved dividing images into multiple lower-resolution patches. In contrast,

the images in this study were not segmented in this manner, leading to the resizing of the

images by the models. Consequently, smaller colonies became more intricate for the models

to detect and classify, particularly noticeable in the case of RetinaNet models. These models

exhibited notably lower performance compared to the two-stage models.

Carrying out object detection predictions for small objects proves to be a significant chal-

lenge, particularly when employing one-stage models like RetinaNet, in contrast to the perfor-

mance of two-stage models (Zhou, Li, Peng, Wang, & Du, 2021). Despite often possessing

higher inference speeds, single-stage models typically approach the entire network as a re-

gression problem, making simultaneous predictions for object location and category. These

models tend to generate many candidate bounding boxes, particularly negative examples cor-

responding to background or non-object regions. These models need help to effectively

handle the challenge posed by the class imbalance between negative and positive regions

containing actual objects (Zhou et al., 2021).

In summary, single-stage models such as RetinaNet do not appear to be the most suit-

able solution for tasks involving the detection of small objects. This holds true unless some

pre-processing is applied to the images or adjustments are made to the model architecture.

Notably, other one-stage models like the YOLOmodels mentioned earlier in the dissertation

have demonstrated impressive results across a range of object detection tasks. While not ex-

plored in this project, these models hold the potential for achieving enhanced performance

and fast inference speed.

The lower performance observed in the bright subset can be attributed to reduced con-

trast and colour similarity between colonies and the background. Within this subset, the

classification of P. aeruginosa exhibits the weakest performance. This is potentially due to the

heterogeneous nature of their colonies, which are often transparent and flat, possess irregular

shapes, and tend to aggregate closely with other colonies. These characteristics, visible in

Figure 3.9 a), make them challenging for the model to discern accurately. The vague subset

similarly exhibited suboptimal performance. The authors characterise this subset as com-

prising images captured under existing ambient lighting conditions, resulting in low-contrast

images that proved challenging to annotate even for a skilled microbiologist. Additionally,

the distribution of classes within this subset is imbalanced, as depicted in Figure 3.5, further

contributing to less effective model performance.
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However, retraining the models using these two underperforming subsets yielded promis-

ing results. The transfer of knowledge from themodel trained on the complete dataset proved

highly beneficial. Fine-tuning models using the weights of that comprehensive model sig-

nificantly enhanced performance, particularly for the bright subset and the detection of P.

aeruginosa, leading to a great increase of 14 percentage points.

The ensemble method also significantly enhanced overall performance across all subsets,

with notable improvements once again observed in the bright subset, particularly in the de-

tection of P. aeruginosa. It is worth emphasising that this ensemble approach is not entirely

independent of the transfer learning technique, as it leverages the results from those retrained

models. While various combinations were experimented with, the inclusion of the RetinaNet

models, despite their lower performances, proved beneficial to the ensemble’s final perfor-

mance. Their inclusion was essential in achieving the elevated results presented.

The dataset for the second part of this project was generated using agar plates from the

microbiology laboratory at my institute. Bacterial cultures were inoculated onto agar plates

containing various types of culture media. It is crucial to note that the inoculation process

for this dataset did not adhere to the standardised protocols typically used in the clinical

setting. Instead, it was designed to produce well-separated colonies for this project. In clinical

routine, colonies from real patient samples are inoculated using specific techniques that vary

depending on the sample type. To maximise the visibility and facilitate the identification of

pathogenic microorganisms, colonies in real samples often grow in high numbers and need to

be better separated. Following the real clinical protocols for inoculation was not feasible for

the annotation process in this project due to the high colony density. Many colonies would

not be individually discernible in such cases, making the annotation and model training very

challenging.

After the inoculation and incubation of the plates, images were captured. To enhance

contrast between colonies and the background, a deliberate effort was made to take pho-

tographs with darker background settings. This was particularly important for agar plates

containing MacConkey and Mannitol culture media, as they are transparent and allow the

background colour to be visible. However, it is essential to mention that lighting conditions

could not be standardised, and there was no designated photography area. Despite efforts to

minimise them, some images may contain reflections.

With this dataset, RetinaNet with a ResNet 50 backbone emerged as the top-performing

model, in contrast to the first part, where Faster R-CNN with ResNet 101 was superior.

However, the performance difference between models was relatively small, with RetinaNet

outperforming the lowest-performing model by only about 4.5 percentage points.
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Similar to the first part, the classification of P. aeruginosa proved to be the most challenging

for the models. This difficulty can be attributed to the specific morphology of these colonies.

Additionally, both S. aureus and E. coli exhibit distinct characteristics in certain culture media.

For instance, S. aureus colonies had a rounded shape and a goldish colour, which caused

the background around them to turn yellow in Mannitol agar. E. coli colonies displayed a

distinctive purple colour inMacConkey agar, making them stand out compared to P. aeruginosa.

In contrast, P. aeruginosa colonies typically had a flat, irregular shape, were transparent, and

often had a colour similar to the background. They also reflect some light, sometimes having

a shiny appearance, which makes them more challenging to detect.

Various training processes were applied, including different pre-processing and augmen-

tation techniques. However, the best results were achieved with a training process that did

not involve pre-processing or augmentations of the images. This dataset is relatively small,

consisting of only 165 images, and exhibits considerable variability in background colours and

colony morphology. Augmentations may have introduced additional variability, potentially

obscuring patterns the models needed to learn.

The process of generalisation, tested by fine-tuning a model trained on the second dataset

using weights previously trained on the entire AGAR dataset, had a small impact on perfor-

mance. This can be attributed to the substantial differences between the two datasets. While

they share the same bacterial classes, they represent them differently. The images in the

AGAR dataset have significantly higher resolutions and exhibit consistent inoculation cul-

ture media, resulting in uniform colony morphology. In contrast, the new dataset features

a lower resolution and is considerably smaller. Additionally, it encompasses a much wider

diversity in terms of background colours and colony characteristics.

To conclude, the WBF method is a crucial asset in improving model performance. It de-

livers a substantial average increase of 4 percentage points across all metric aspects, signifying

a notable enhancement in performance. Similar to the first part, combining results from all

trained models, including those from transfer learning, proved to be the most effective ap-

proach in achieving the best results.

While not providing a comprehensive explanation, some examples of errors made by

the models in the dataset are presented in Figure 5.1. These include, as suspected, false

identification of light reflections (Figure 5.1 d), as well as artifacts on the media (Figure 5.1 b)

being misclassified as colonies, failures to recognise colonies when they are nearby or form

a mesh (Figure 5.1 a and c) (although this can also be challenging for a human annotator at

times), as well as some misclassifications of colonies if they have a different morphology than

the others. As previously mentioned, better classification tends to occur for colonies with
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more distinctive characteristics, such as the purple E. coli and golden S. aureus.

Figure 5.1: Some examples of classification errors.

Interestingly, there are no significant differences in performance when using different

object detection models. The models employed in this study vary in depth and the overall

architecture of the neural networks, but they all exhibit fairly similar performance on the

datasets. However, it is important to note that while the overall performance may be similar,

it does not necessarily mean that the models rely on the same image features for classification.

Ensembling proved to be a valuable approach for improving the baseline models. How-

ever, achieving these improvements required training multiple models and applying transfer

learning and model retraining. These are two techniques for enhancing performance: the

training process and the transfer of knowledge from one model to another, and the ensem-

ble method involving the aggregation of knowledge from the results of previously trained

models during the inference process. In addition to performance improvements, these tech-

niques also have implications for their task type. In the context of this dissertation, achieving

better performance was prioritised over faster inference speed. This is because the incuba-

tion periods in a laboratory setting are typically hours long, and real-time identification and

classification of colonies are not a strict requirement. While training multiple models can be

time-consuming, ensembling the inference results of various models is a feasible and effective

way to achieve superior results, even if it comes at the cost of some inference speed.

The ensemble method tested in this project involved combining the various results and

fusing them based on probability scores and weights to formulate average boxes. However,

other approaches to ensembling could be considered, such as applying ensemble techniques

during the training process, where multiple models and parameters are combined. This ap-

proach can lead to even better results butmay require significantlymore computational power.

This study represents the first instance of utilising a dataset encompassing various cul-

ture media, consequently incorporating distinct morphological characteristics within the same

species. Furthermore, this study is also the first in its approach to encompass the training of
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two distinct datasets to enhance the performance of the second dataset, as well as in the utili-

sation ofWBF ensemble, specifically within the domain of colony detection and classification.

However, this project has several limitations that should be acknowledged. First, the

created dataset needs further improvement regarding the number of images and their quality.

Establishing designated areas with better lighting conditions would be beneficial to avoid

artifacts in the images. Additionally, using better camera settings, such as standardised vertical

distance to the plates, avoiding angles, and capturing higher resolution images, could enhance

the dataset’s quality. Moreover, exploring more advanced approaches for object detection on

high-resolution images can be advantageous.

Another limitation is that this project’s inoculation process differs from the clinical set-

ting. Future work should focus on developing models that closely mimic the conditions en-

countered in clinical microbiology laboratories. However, it is worth noting that the trained

models perform reasonably well on real examples of microbiology analysis, effectively de-

tecting and classifying individualised colonies (Figure 5.2). Additionally, since the annotation

process for this task is labour-intensive, these models can serve as valuable tools to assist in

the annotation process.

Figure 5.2: Inference on a plate from the work routine.
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Furthermore, other models can be trained for this task as part of future work. For in-

stance, Mask R-CNN, commonly used for segmentation tasks instead of bounding boxes, may

be beneficial for detecting colonies with irregular shapes, such as P. aeruginosa. Other mod-

els like the one-stage YOLO family, which are currently achieving impressive performance

benchmarks with newer versions like YOLOv8 (Jocher, Chaurasia, & Qiu, 2023), YOLO-

NAS (Aharon et al., 2021), and others, could also be explored. Additionally, more complex

pre-processing techniques and advanced ensemble models can be tested further to improve

the performance of colony detection and classification.

In conclusion, this project successfully achieved all of its proposed objectives. It signif-

icantly improved the performance of models on the AGAR dataset through various tech-

niques. Creating a dataset with unique characteristics encompassing diverse culture media,

is unprecedented to the best of my knowledge. Moreover, this work explored the generali-

sation of models and provided valuable insights into the suitability of different models and

techniques for various tasks.

Ultimately, this project is now part of a journey towards developing tools that will con-

tribute to advancing the medical and health field.
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Appendix A

Appendix

Figure A.1: Distribution of countable and empty images on the whole dataset and within

each Background group.
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Figure A.2: Distribution of Annotations per Image: number of images based on their anno-

tations for the entire dataset and across each subgroup.
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Figure A.3: Distribution of Annotations per Image for Each Annotation Class: number of

images based on the number of annotations they contain for each class of annotations.
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Figure A.4: Distribution of culture media.

Figure A.5: Distribution of Annotations per Image: number of images based on the number

of annotations they contain for the new dataset.
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Figure A.6: Distribution of Annotations per Image for Each Annotation Class: number of

images based on the number of annotations they contain for each class of annotations.
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