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by Juan SILVA

As technology continues to evolve at an astonishing rate, current computing paradigms

are no longer effective in accommodating these innovations. In this sense, new computing

architectures are being investigated to accommodate current needs. Neuromorphic com-

puting, which simulates characteristics of the human brain, is an interesting candidate for

this research.

Extreme Learning Machines (ELM) provide a highly versatile framework for stream-

lined training and deployment in the realm of neuromorphic computing applications. In

essence, they can be characterized as a network of hidden neurons with randomly fixed

weights and biases, producing intricate behavior in response to a given input, making the

architecture appealing for physical implementations and thus suitable for neuromorphic

computing solutions. In this context, this project aims to explore distinct physical systems

that can be utilized as reservoir in physical implementations of ELMs.

We start by constructing a model using a nonlinear oscillator model, the Toda Lattice,

with the aim of understanding the potential and innerworkings of ELMs. This is achieved

by submitting the model to several numerical simulations and analyzing its performance

on common machine learning tasks, such as regression and classification. Additionally,

we apply metrics for the nonlinear dynamics of the system to understand the relation

between the nonlinear behavior and the performance of the system.

We then delve into a particular field, of optical ELMs, using as inspiration a previ-

ously developed optoelectronic machine to create a transparent and versatile framework

focused on an all-optical version of that machine. The goal is to address some of the

challenges posed by the physical implementations of these machines, particularly in the
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context of studying the application of constraints to the weights in an ELM. Finally, we

conclude by discussing some of the current challenges and proposing ways to continue

our work.
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A medida que a tecnologia continua a evoluir a um ritmo espantoso, os paradigmas

computacionais actuais deixam de ser eficazes para acomodar estas inovações. Neste

sentido, novas arquitecturas de computação estão a ser investigadas para dar resposta

às necessidades actuais. A computação neuromórfica, uma arquitetura que simula as

caracterı́sticas do cérebro humano, mostra-se como um candidato interessante para esta

pesquisa.

As Extreme Learning Machines (ELM) constituem uma estrutura altamente versátil e

simplificada para a formação e implementação de aplicações no domı́nio da computação

neuromórfica. Na sua essência, podem ser caracterizadas como uma rede de neurônios

ocultos com pesos e enviesamentos fixados aleatoriamente, produzindo um comporta-

mento complexo em resposta a uma determinada entrada, tornando esta arquitetura ape-

lativa para implementações fı́sicas e, portanto, adequada para soluções de computação

neuromórfica. Neste contexto, este projeto visa explorar distintos sistemas fı́sicos que

podem ser utilizados como reservatório em implementações fı́sicas de ELMs.

Começamos por construir um modelo com base num sistema de osciladores não linear,

a Toda Lattice, com o objetivo de compreender o potencial e o funcionamento interno das

ELMs. Para tal, o modelo é submetido a diversas simulações numéricas e é analisado o

seu desempenho em tarefas comuns de machine learning, como regressão e classificação.

Além disso, algumas métricas relacionadas as dinâmicas não lineares de sistemas para

compreender a relação entre o comportamento não linear e o desempenho do sistema

nessas situações.

Em seguida, mergulhamos num domı́nio mais especı́fico, o das ELM óticas, utilizando

como inspiração uma máquina optoelectrónica previamente desenvolvida, de modo a
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criar uma estrutura transparente e versátil centrada numa versão totalmente ótica dessa

mesma máquina. O objetivo passa por abordar alguns dos desafios colocados pelas implementações

fı́sicas destas máquinas, em particular no contexto do estudo da aplicação de restrições

aos pesos de uma ELM. Finalmente, concluı́mos discutindo alguns dos desafios actuais e

propondo formas de continuar o nosso trabalho.
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Chapter 1

Introduction

Throughout the course of human history, technology has played a critical role in shaping

the world and advancing human progress. From the earliest tools used by our ances-

tors to the latest innovations in artificial intelligence, technology has constantly evolved

and had a profound impact on the way we live and interact with the world. The evolu-

tion of computers is one of the most significant technological advancements of the past

century. Starting from room-sized machines that required a team of experts to operate,

computers have undergone a remarkable transformation. Today, most of our computers

are portable devices that can fit in the palm of our hand and are used by people of all ages

and backgrounds. The widespread availability of computers has revolutionized the way

we communicate, work, and access information. As with many technologies, they have

also become an integral part of modern life with a profound impact on society as a whole.

At the scientific and engineering level, the development of electronics, and micro and

nanotechnology has been instrumental in driving the evolution of computing since the

first day. These advancements have allowed for the miniaturization of components, mak-

ing computers smaller, more efficient, and accessible to a wider range of people. In par-

ticular, they were also fundamental in increasing the computational power of single pro-

cessors, as empirically translated into Moore’s Law, which we will discuss later in this

chapter.

But as the requirement for computing capacity grows in industries like data process-

ing, robotics, and artificial intelligence, the shortcomings of these technologies become

more apparent. In particular, with the pursuit of miniaturization towards higher process-

ing speeds and efficient wider architectures, electronic chips are now rapidly approaching

a mesoscopic scale with few atoms and electrons per transistor, making them less robust

1
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to noise. A possible workaround to such a critical obstacle may reside in exploring new

computing architectures and paradigms.

In recent years, the field of machine learning has risen at the vanguard of technological

innovation, enabling significant advances across a wide range of domains making use of

optimization paradigms to deploy data-driven solutions. Inspired by the amazing plas-

ticity of the human brain, machine learning algorithms have transformed scientific and

engineering fields such as image identification, natural language processing, and predic-

tive analytics. However, the complexity and volume of data have continued to rise at a

rate that commonly overflows the computing capacities of conventional architectures. In

this context, analog computing is now making a comeback as a possible option for in-

creased computational efficiency and scalability of such algorithms, deploying them as a

unified software-hardware solution.

Overall, this thesis is motivated by these pressing challenges and aims to seek so-

lutions by exploring possible hardware implementations of extreme learning machines,

one of the most promising and versatile approaches to machine learning. First, we will

investigate the complexities of machine learning in order to gain a comprehensive un-

derstanding of its inner workings. Then, we will focus on extreme learning machines

to investigate the potential of some physical nonlinear systems as a viable platform for

neuromorphic computing, offering enhanced computational efficiency and scalability. By

harnessing these physical systems, we aspire to present novel opportunities for the field

of computing and unlock novel trends for faster and energy-efficient neuromorphic com-

puting solutions.

1.1 Current Computing Paradigms and Limitations

Over the last 70 years, the field of computing has witnessed remarkable advancements

that have propelled human progress to unprecedented heights. The exponential growth

of data generation, coupled with the increasing demands for processing power, has high-

lighted the need for novel computing paradigms. Traditional computing architectures,

such as the widely adopted Von Neumann paradigm have reached a computational plateau

and face significant challenges in meeting such requirements. But to properly understand

the constraints of the existing computing landscape and explore potential alternatives, it

is necessary to delve into the history and evolution of general-purpose computers and

understand what has allowed the current paradigms to endure for so long.
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The year 1945 was a breakthrough point in computer history. The introduction of the

Electronic Numerical Integrator and Computer (ENIAC) [1], a pioneering programmable

computer, stunned the world with its enormous proportions and astounding capabilities.

However, physical adjustments were necessary to program the machine, limiting its abil-

ity to move quickly and effectively.

Recognizing the need for more streamlined and efficient operations, John Von Neu-

mann introduced a groundbreaking computer architecture in the same year, during the

development of the Electronic Discrete Variable Automatic Computer (EDVAC), a subse-

quent project to ENIAC. This architectural framework [2, 3] again revolutionized the field

of computing by optimizing the interplay between the central processing unit (CPU) and

memory. This concept of storing both program instructions and data in a shared memory

unit became the foundation for modern general-purpose computers, establishing it as the

dominant computing paradigm over the last seven decades. Note that at that point in his-

tory, alternative computing paradigms, such as analog computing, were already known

to offer advantages in terms of efficiency, speed and capacity, but struggled to match the

Von Neumann paradigm capabilities and versatility in general-purpose computing. Ulti-

mately, they were unable to keep pace with the rapid advancements of this architectural

paradigm.

The superiority was further solidified with the fast evolution of electronics. First, the

creation of the transistor in 1947 [4] and the subsequent emergence of the integrated cir-

cuits in 1949 [5], have taken the prevailing architecture to new heights. The transistor

revolutionized electronic devices, offering greater reliability, miniaturization, and power

efficiency. Integrated circuits, on the other hand, combined multiple transistors into a sin-

gle chip, enabling even more compact and powerful computing systems. These advance-

ments not only solidified its position but also paved the way for widespread adoption

across diverse computing applications.

The remarkable trajectory that electronics was following led to a famous observation

of Intel cofounder Gordon Moore in 1965. Later known as the Moore’s law, Moore noted

that the number of transistors on an integrated circuit doubled every two years [6, 7]. The

reduction of transistor size has been one of the key pillars supporting this rule: transistors

grown cheaper, quicker, and more energy-efficient as they got smaller.

Nevertheless, manufacturing becomes increasingly challenging as transistors get smaller

and more densely packed. The cost of building a facility to create and develop microchips
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has thus risen exponentially, and problems like power consumption, heat dissipation, and

even quantum effects have become more significant. Thus, we cannot rely on the law of

Moore to hold true in the near term [8–10]. Besides, several issues with the current archi-

tecture have come to light as a result of this problem [11]. For example, the big data era

has reemerged the old data scalability issues in the Von Neumann architecture. Indeed,

the Von Neumann bottleneck [12] is again a limiting factor, as the reliance on a shared

memory unit for both data and program instructions limits the pace at which data could

be transmitted between the CPU and memory and thus the total system performance.

These restrictions have spurred a resurgence of interest in previously discarded alter-

native computer platforms, with neuromorphic computing being one of the more promis-

ing concepts.

1.2 The brain as a computing machine

Neuromorphic computing has a unique architectural style, which is the source of its par-

ticular attraction. This computer architecture has structure and function inspired by the

brain and has been designed to work in a way that mimics the functioning of neurons and

synapses in the brain [13], allowing it to process and store information in a much more

efficient and effective way than traditional computers.

To put things into perspective, the human brain is perhaps the most sophisticated and

complex computing device on the planet [14–16]. It can perform a wide range of tasks,

from simple reflexes to complex processes such as decision-making and problem-solving,

using only 20 watts of power, which is equivalent to the energy consumption of a small

lightbulb. For reference, modern high-performance computers require hundreds of watts

to run. Another point that draws a lot of attention is its rapid learning capacity, that is, the

brain needs a few examples to learn the most diverse tasks, as well as being able to store

all the knowledge it gains. This is possible because the brain has the ability to change and

reorganize itself in order to adapt and learn new information, known as neuroplasticity,

which also helps to recover from injury or disease. It is made up of approximately 86

billion neurons interconnected by 1015 synapses. To have a notion, each neuron can have

approximately 104 connections to other neurons through synapses [15–17]. These con-

nections allow information to be transmitted rapidly and accurately through the brain,

enabling it to perform complex processes such as decision-making, pattern recognition
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and problem-solving. Given these (and many other) extraordinary talents, it is not sur-

prising that researchers have been for long motivated to create a computer machine that

can mimic the human brain.

Thus, as seen in figure 1.1 this novel design differs significantly from the conventional

paradigm in a variety of ways. Neuromorphic computers are artificial neural networks

constructed from artificial synapses and neurons. The organization and parameters of

these components dictate the programming of the computer and govern both its memory

and processing capabilities. In contrast to traditional computing systems, this paradigm

integrates processing and memory elements on a unified architecture, operating in a dis-

tributed fashion without a clear distinction between them [18, 19]. This flexibility enables

each processing part to function as a memory element and vice versa, resulting in high

parallel processing. In addition, and unlike the sequential processing in Von Neumann

architecture, neuromorphic systems allow synapses and neurons to operate simultane-

ously.

FIGURE 1.1: Contrast between Von Neumann paradigm and neuromorphic computing.
Figure reproduced from [18].

From a distinct perspective, the integration of processing and memory elements also

enables the creation of compact and lightweight computing systems by integrating them

into a single physical device, overcoming the limitations of the Von Neumann bottleneck.

This reduction in components not only improves energy efficiency but also holds the po-

tential to reduce the carbon footprint. These inherent features make neuromorphic com-

puting intrinsically scalable, allowing the combination of individual neuromorphic chips

to form larger networks capable of handling more complex tasks.
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All of these characteristics, as well as the way this computing paradigm is structured,

make it a perfect foundation for many of the cutting-edge artificial intelligence and ma-

chine learning applications that are in great demand today.

1.3 Machine Learning as a computing paradigm

Machine learning (ML) is a sub-field of artificial intelligence (AI) that focuses on devel-

oping models and algorithms that let computers learn and anticipate the future or make

decisions on their own [20]. In conceptual terms, it gives computers the ability to unravel

and analyze enormous volumes of data, spot trends, and derive insightful knowledge,

which enhances decision-making, automation, and problem-solving abilities.

The roots of machine learning can be traced back to the 1950s when researchers be-

gan exploring ways to create computational models that could mimic human intelligence.

One influential contribution was the perceptron model by Frank Rosenblatt [21], which

can be considered the precursor of nowadays neural networks. Nevertheless, despite

considerable advancements in the years that followed, lack of computational power, in-

adequate datasets, and challenges in algorithmic optimization led to a period of relative

obscurity for machine learning, now commonly referred to as the ”AI winter” [22]. It was

at the end of the 1990s that this field started to experience radical growth. Innovations in

technology made the computational power more affordable and more diverse datasets fa-

cilitated the training of models. This subsequently led to an increase in performance and

deployment of models capable of handling more complex tasks. From models capable of

winning chess matches [23], to bots capable of generate images from simple text prompts

[24, 25], significant milestones were achieved during the years, attracting more attention

to the field and expanding its reach to various areas of study.

Over the years, researchers empirically realized that the performance of the models

was closely related to their density and complexity and began developing larger and more

robust models, requiring larger datasets for training. This observation played a significant

role in motivating and understanding models with multiple layers of interconnected neu-

rons [26, 27], which now we call deep learning.

An important breakthrough appeared in 2012, when a group of researchers from Google

Brain won the ImageNet Large-Scale Visual Recognition Challenge [28]. Their network ar-

chitecture, consisting of eight layers and approximately 62 million learnable parameters
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trained on 1.2 million samples, demonstrated unprecedented accuracy in image detec-

tion, highlighting the power of deep learning in extracting meaningful features from vast

amounts of data. As a result, a multitude of different and innovative works developed

[29, 30], surpassing prior restrictions and extending the potential in this sector. The expo-

nential expansion of model parameters has reached unprecedented magnitudes, as seen

in the figure 1.2.

FIGURE 1.2: Trend in the number of parameters in machine learning models. Figure from
[31].

But nowadays, we are immersed in the era of large-scale models, where size and com-

plexity have grown to an almost impracticable point. For example, GPT-3 [32] was re-

leased in 2020 with 175 billion trainable parameters, and GPT-4 [33] in 2023 as an esti-

mated 170 trillion parameters. In spite of their performance, important computational

obstacles have also become clearer in this process, with concerns regarding power and

memory being particularly relevant.

Some technological developments have arisen in an attempt to soften these challenges.

The adoption of new kinds of hardware such as Graphical Processing Units (GPUs), en-

abled parallel computation, lowering processing costs for deeper models. Pre-trained

models have gained popularity as a way to reduce computational strain by utilizing

already-existing information. Additionally, cloud computing has become a useful tool

for easing memory-related difficulties.

But perhaps more important towards the long term, a large amount of effort has also

focused on the physical implementation of large scale models as a possible workaround

to these bottlenecks. Neverthless, we shall note that the most typical models such as deep
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learning ones, are unsuitable for this approach. Indeed, fine-tuning a physical model with

millions or billions of parameters requires fabrication and versatility capacities which are

usually unavailable.

In this context, two types of models have recently emerged as powerful solutions:

extreme learning machines (ELM) [34–37] and reservoir computing (RC) [38–41], with re-

spective architectures represented in figure 1.3. These methods share some similarities

in structure and operation, as both rely on the projection of the information on the input

space onto an intermediate space of higher dimensionality, using a single hidden layer

commonly referred as the reservoir. In both, the training process occurs exclusively at the

end of the reservoir layer, which can be performed by a simple linear optimization proce-

dure using a given loss function. The parameters of the models are randomly initialized

and remain fixed throughout training. This strongly simplifies the learning process while

also contributes to computational efficiency, being possible to demonstrate that they can

achieve similar results in generalization performance as other kind of models. Distin-

guishing them, we shall note that while ELMs belong to the family of feed-forward neural

networks [42], which means the information only flows in one direction, RC falls into the

category of recurrent neural networks [43], making them able to retain memory of past

inputs and exhibit dynamic behavior over time.

FIGURE 1.3: Visual representation showcasing the architecture of an ELM (a) and of a RC
(b) model. Figures adapted from [44].

Other computing paradigms have been explored for hardware implementations [45,

46], but the unique properties make these models more appealing for physical imple-

mentations in the context of neuromorphic computing. Driven by this motivation, this

dissertation aims to investigate the capabilities of different physical systems as potential

reservoirs for implementing these models.
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1.4 Roadmap of the thesis

The goal of this thesis is to explore different physical systems that can be utilized as reser-

voirs for the physical implementations of extreme learning machines within the field of

neuromorphic computing. Building on previous work developed at INESC TEC, where

the team has explored the implementation of an optoelectronic setup as an Extreme Learn-

ing Machine [47], this thesis aims at two strategic objectives:

1. Explore physical systems with some degree of tunability, in order to further under-

stand the potential and innerworkings of Extreme Learning Machines;

2. Explore suitable tools to perform training of the physical systems in a transparent

manner;

With these in mind, we establish two operational objectives:

1. Explore electronic circuits as a potential toy model for deploying an Extreme Learn-

ing Machine with tunable parameters;

2. Develop a transparent and versatile training workflow and library based on Pytorch

to train and optimize an Extreme Learning Machine using a physical system, in par-

ticular, focusing on an all-optical version of the previously developed optoelectronic

machine [47].

Figure 1.4 illustrates the roadmap of the work performed. In this way, the thesis is

structured as follows: in this chapter we began by providing a historical overview of the

predominant von Neumann computing paradigm. We then introduce the motivation for

alternative approaches to traditional computing architectures and the emergence of neu-

romorphic computing as a promising solution. Subsequently, we proceeded to present an

evolution of the field of machine learning, highlighting some of the challenges and lim-

itations encountered. We highlighted some possible solutions, with particular emphasis

on ELMs, establishing the subject of the thesis and introducing our work.

In chapter 2 we delve into the theoretical foundations of machine learning, discussing

some of the fundamental principles and methodologies. We then shift focus to the mathe-

matical aspects of extreme learning machines and reservoir computing. Toward the end of

the chapter, we analyze various aspects that contribute to the effectiveness of a reservoir

for both ELMs and reservoir computing.
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Leveraging on the framework introduced, chapter 3 utilizes a nonlinear oscillator

model, the Toda Lattice, and explores its potential as a reservoir for ELM/RC implemen-

tations. We begin by introducing the system and its relevant characteristics, highlighting

why it is a suitable candidate for our study due to its tunability. Then we conduct various

numerical simulations in order to evaluate the system performance in different tasks, such

as regression and classification. Additionally, we introduce some metrics for the nonlin-

ear dynamics of the system, in order to better relate the performance with the nonlinearity

of its behavior.

In chapter 4, we change direction and delve into the field of optical extreme learning

machines. We begin by providing an overview of this field of study and conducting a re-

view of the current state of the art in OELMs. Next, we build upon a previously developed

optoelectronic machine to create a transparent and versatile framework focused on an all-

optical version of that machine. Our primary aim is to address some of the challenges

posed by the physical implementations of these machines, particularly in the context of

studying the application of constraints to the weights in an ELM. Finally, we conclude by

presenting the simulation results we have obtained and reflecting on the overall work.

In chapter 5, conclusions and future work perspectives are presented.

FIGURE 1.4: Roadmap of the thesis.
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1.5 Thesis Outputs

In the elaboration of this thesis, the author has contributed with 2 poster presentations.

Journal Publications

1. ”All-optical Computing Framework Based on Extreme Learning Machines” - Vicente Rocha,

Tiago Ferreira, Juan Silva, Duarte Silva, Nuno A. Silva, in preparation

Poster Presentations

(a) ”Physical nonlinear systems for neuromorphic computing” - Juan Silva, Vicente

Rocha, Tiago Ferreira, Catarina Dias, Nuno A. Silva. IJUP2023 - 16th Young

Researcher Meeting of University of Porto. (2023)

(b) ”Towards All-Optical Computing with Extreme Learning Machines” - Juan Silva,

Vicente Rocha, Tiago Ferreira, Catarina Dias, Nuno A. Silva. DCE2023 - 5th

Doctoral Congress in Engineering. (2023)





Chapter 2

Framework of Extreme Learning

Machines and Reservoir

Computing

As discussed in the previous chapter, the field of machine learning is evolving at a

fast pace, attracting significant attention. Models are becoming larger and more ro-

bust, showcasing increasing capabilities. However, these advancements often come

at a price. The scale of these models is reaching absurd proportions, accompanied by

an unprecedented surge in the number of trainable parameters. This puts a strain

on our current computational and energy resources, making it challenging to im-

plement physical versions of these models, which will necessitate the fine-tuning of

millions of parameters.

Recognizing that the exponential growth of trainable parameters is a key problem,

efforts have been made to reduce this variable. New machine learning models such

as extreme learning machines (ELMs) and reservoir computing (RC) have emerged

as a result. These approaches utilize a reservoir as a hidden layer, comprising random

untrained parameters and non-linear dynamics that generate a complex response to

a given input. The only requirement is to train the output layer to perform the

desired task. These methods have demonstrated comparable performance to tradi-

tional approaches while offering significant benefits. They reduce the time required

for training these models and alleviate the computational demands, resulting in de-

creased energy consumption.

13
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In this chapter, we will delve deeper into the theory behind various machine learn-

ing approaches, explaining the most important concepts and methods of this topic.

Subsequently, we will provide a theoretical context of ELMs and RC, in order to ad-

dress some of the key characteristics that reservoirs must possess for the effective

implementation of these methods and lay the foundations for our work.

2.1 Machine Learning: how can we teach a machine to solve

problems?

Whenever we try to introduce a new concept, for example, explaining the differ-

ences between a normal car and a sports one, it is easier to provide some examples

of the case rather than giving a specific formulation that defines both cases. In the

same way, instead of codifying the knowledge into a set of logic operations for a

computer, machine learning tries to learn meaningful patterns and relationships

from examples and observations. As Arthur Samuel properly defined, ”machine

learning is the field of study that gives computers the ability to learn without being

explicitly programmed” [20].

The rapid expansion of this field makes it useful in a diverse array of contexts, align-

ing with the broader landscape of Artificial Intelligence (AI). Namely, ML aims to

be used in specific applications, such as: dynamic environments when there is con-

stantly new data arriving; complex problems that traditional techniques find hard

to solve or difficult to find some optimal solution; or scenarios with a multitude of

adjustable parameters or when to search and find about trends and patterns in large

datasets. Consequently, this field has the capacity to be applied across different do-

mains of work. Its applications range from fields as diverse as meteorology, where

it is used to forecast weather patterns over a month, to medical applications, where

it helps with cancer diagnosis, and to the creation of automated intelligent agents

that can help consumers. This capability to learn and adapt from experience is at

the core of both machine learning and AI.

AI, as a broader research field, is focused on creating machines that simulate hu-

man brain-like capabilities [48]. This concept applies to machines that can exe-

cute human-like tasks, including problem-solving and learning. Consequently, ML

emerges as a vital subset of AI, dealing specifically with the ability of machines
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to learn and improve from experience. The large number of algorithms that exist

nowadays led to the categorization of ML into different types, depending on how

the model is built and trained. Some of these foundational types of ML include: su-

pervised learning - if the model is built under ”human supervision”, unsupervised

learning - where the algorithm is allowed to learn without explicit supervision, or

reinforcement learning - where we make the model learn through interactions with

an environment. These three types provide a foundational understanding of the

field and have a more comprehensive overview in table 2.1, but the landscape is

more intricate, including other types like semi-supervised learning, online learning,

and batch learning, each designed to tackle specific scenarios.

Indeed, we can categorize the vast number of ML models under some rules: as

we already pointed out, whether they require or not human supervision; work by

detecting trends in data and making predictions, or are built by comparing new data

to old data (model-based vs instance-based learning); or it can learn more with new

data arriving (online vs batch learning) [47].

Depending on the learning task, the field offers a plenty of models, each combin-

ing different variants and specifications. Figure 2.1 showcases some of the existing

algorithms.

FIGURE 2.1: Some machine learning algorithms. Figure taken from [49]
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TABLE 2.1: Overview of some types of machine learning.

Type Description

Supervised
Learning

It is a type of ML where we train an algorithm by providing input fea-
tures and their corresponding output variables. The objective is for the
machine to learn a mapping between these two and, with the highest
possible accuracy, apply this mapping to predict outputs for unseen
data. There are two different tasks associated with this ML type, which
differ based on the type of output obtained: regression tasks, where a
numerical value is predicted by the model, such as predicting the price
of a house in some region by giving some of the house features as input;
and classification tasks, where the prediction result is a categorical class
to which the input belongs, for example, classifying handwritten digits
into numerical values (0-9).

Unsupervised
Learning

This is a type of ML where we train a machine with input data without
providing corresponding output variables. The objective is for the sys-
tem to find structural information, patterns or relationships of interest
within the input data. Some common tasks related to this type include
clustering, which involves grouping similar instances together based on
their feature similarity; dimension reduction, where we aim to reduce
the number of input features while preserving the essential information.

Reinforcement
Learning

In this type, we train a machine by providing it with an environment, a
set of actions it can take, and a reward signal. Unlike other types of ma-
chine learning, reinforcement learning does not require explicit input-
output pairs for training. The objective is for the system to learn optimal
actions to maximize cumulative rewards over time. In reinforcement
learning, an agent interacts with the environment and learns through
a trial-and-error process. The agent takes actions in the environment,
receives feedback in the form of rewards or penalties, and adjusts its be-
havior to maximize the expected rewards. The focus is on finding the
optimal policy, which determines the best action to take in a given state.

Among the existing models, artificial neural networks (ANNs) are particularly in-

teresting duet to their remarkable versatility and adaptability across all three types

of machine learning models (as outlined in table 2.1). Furthermore, putting into

perspective, they are also the closest ones to act as general-purpose computer algo-

rithms, allowing them to solve multiple tasks in multiple scenarios with the same

architectural design and inner-workings.

ANNs draw inspiration from the principles of information processing observed in

biological systems, most notably the human brain. In the same way that the human

brain is made up of a vast number of interconnected neurons that communicate
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through synapses, ANNs are constructed by the interconnection of different pro-

cessing units, the perceptrons [21]. A perceptron can be considered one of the sim-

plest machine learning models and can be defined as a single or multiple operations

y = f (wx + b), as represented in figure 2.2. Here y is the output of the percep-

tron, f is the activation function (usually a step function or similar), w represents

the weights, x represents the input values and b a bias term.

FIGURE 2.2: Perceptron learning algorithm. Figure from [50].

In general terms, these artificial neurons transmit information through signals across

multiple layers, which can be amplified or attenuated based on weights determined

during the training process. As it occurs in the human brain, information flows

through artificial neurons within ANNs, with each output of a neuron influencing

the input of a subsequent neuron. The information is only passed for the subsequent

whether the processed signals surpass a predefined threshold, determined by an ac-

tivation function specific to each artificial neuron. In this way, with such a simple

ML model as the perceptron, we forge a more potent and sophisticated model.

Speaking of architecture, ANNs are composed of key structural components, in-

cluding an input layer, that receive the information and an output layer that will

exhibit the result. Additionally, ANNS comprise an undefined number of inter-

mediate/hidden layers that will play a pivotal role in learning a mapping, whether

linear or nonlinear one, between the input and output data. Note that an ANN com-

posed of multiple intermediate layers (typically more than 3) is commonly referred

to as a Deep learning (DL) architecture. Figure 2.3 shows the different subsets of AI.

DL models demonstrated exceptional capabilities in tasks such as image recogni-

tion, natural language processing, and complex decision-making. The introduction

of DL expanded the horizon of what machine learning could achieve.
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FIGURE 2.3: Different subsest of artificial intelligence explained. Image from [51]

Besides the differences between the diverse ML models available, a common thread

unites them: the training process. Each model is characterized by a set of param-

eters w that need to be optimized for a specific problem. Focusing on the case of

supervised learning, the goal is to discover a general function f that accurately

maps the input data x with the output data y. This relationship can be expressed

as y = f (w, x). The aim of the training process is to reduce the error between the

true outputs and the predicted outputs, thus fine-tuning the model. To achieve this,

the process involves finding the optimal values for the model parameters w. This

optimization often involves maximizing or minimizing a chosen cost (also referred

as loss) function. This cost function quantifies the difference between the predicted

outputs and the real ones, offering a measure of how well the model is performing.

There are numerous types of cost functions, each with its specific application, such

as mean square error, and mean absolute error, among others. Mean absolute error

(MAE), for example, is defined as:

MAE(w) =
1
n

n

∑
i=1

| f (w, xi)− yi| (2.1)

The solutions for this optimization problem can be found in a purely analytical

manner for simple problems, with low number of input sample, such happens in

linear regression problems. Yet, most typically this process is done through iterative

methods that adjust constantly the solution to achieve a global solution, such as the

Gradient Descent or the backpropagation methods. Through the calculation of the
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derivatives of the cost function, this method adjusts the parameters in the direction

of the biggest change of the cost function towards a minimum.

At first glance, it might seem that ANNs may be a silver bullet with a solution

for every problem. However, this assumption is not entirely accurate and is of-

ten achieved by increasing the complexity, resulting in an impracticable amount of

trainable parameters. In this context, seeking simpler architecture solutions capa-

ble of delivering similar performances with less computational burden is one of the

most important ongoing directions of research in this subject.

2.2 ELM Theoretical Foundation

As previously introduced, ELMs, proposed by Guang-Bin and Qin-Yu [36] in 2006,

are a type of single-hidden layer feedforward neural networks (SLFNN) [42].

This kind of neural network leverages a non-linear mapping of input data into a

high-dimensional feature space, where the training is performed, with architecture

represented in figure 2.4.

FIGURE 2.4: Structure of an ELM. Figure adapted from [44].

To further understand its innerworkings, suppose we have a dataset (X(i),T(i)) of

size Ntrain, where X(i) ∈ RNin is the input vector and T(i) ∈ RNt denotes the targets.

For each X(i), the hidden layer of the ELM with Nout hidden neurons gives O(X(i)) ∈

RNout ,
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O(X(i)) =


g1(a1X(i), b1)

...

gNout(aNout X
(i), bNout)

 (2.2)

where aj ∈ RNin , gj(ajX(i) + bj) represents the activation function generating the

output of the hidden nodes, that in case of ELMs, it is a nonlinear one to provide

the nonlinear mapping of the system. In theory, as long as g is a nonlinear piece-

wise continuous function and a drawn from a random distribution, the universal

approximation capability theorems of the ELMs are satisfied [36, 52–54].

The method behind the training of an ELM is thus typically reduced to a linear

parameter solution. Indeed, the parameters aj and bj remain untouched during the

training process. In practice, the input vector is mapped into a random feature space

with random settings and nonlinear activation functions, being the problem solved

in this output feature space O(X(i)), thus making the training process easier to do

when compared with traditional models with trained parameters. Lets note each

prediction of the ELM is computed by applying a linear transformation

P(X(i)) = βO(X(i)) (2.3)

where β ∈ RNt×Nout are the weights,

β =


β11 . . . β1Nout

...
. . .

...

βNt1 . . . βNt Nout

 (2.4)

For all the elements of the training dataset, we can write the output space as

H =

[
O(X(1)) . . . O(X(Ntrain))

]
(2.5)

and the predictions of the ELM for all the dataset are computed applying the fol-

lowing equation

P = βH (2.6)
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In the theory of SLFNs, a network with Nout hidden nodes with activation function

g(x) can approximate Ntrain samples with zero error [54], this means, |P − T| = 0.

So there must be β such that:

T = βH (2.7)

where T is an Nt-by-Ntrain matrix representing the target values:

T =


t11 . . . t1Ntrain

... . . .
...

tNt1 . . . tNt Ntrain

 (2.8)

To find the optimal solution, we seek the least-squares solution β̂ that minimizes the

cost function of the system:

min
β

||βH − T ||2 (2.9)

It is straightforward to show that the optimal solution for this linear problem is

given by:

β̂ = H†T (2.10)

where H† is the Moore-Penrose pseudo-inverse of H. Therefore, instead of going

through a iterative adjustment of the network parameters during a lengthy training

phase, the calculation of the output weights is done by a simple mathematical trans-

formation. Figure 2.5 shows a framework of the process happening when building

an ELM.

FIGURE 2.5: ELM framework.
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Furthermore, and before advancing, we should comment some specific ideas on the

topic of ELMs[37]:

1. Generalization performance: While the pseudoinverse methodology may be the

optimal solution, it is often to employ regularization strategies using distinct

cost functions. The most common is the Ridge regression approach, which

seeks to

Minimize : ||β||σ1
p + C||βH − T ||σ2

q (2.11)

where the parameters σ1 > 0, σ2 > 0, p, q = 0, 1
2 , 1, 2, ..., ∞ correspond to the

norm type. The first term in the objective function is a regularization term

which controls the complexity of the learned model using the free parameter

C.

2. Universal approximation capability: Although feedforward neural network ar-

chitectures themselves satisfy universal approximation capability, most popu-

lar learning algorithms designed to train feedforward neural networks do not

satisfy the universal approximation capability. In most cases, network architec-

tures and their corresponding learning algorithms are inconsistent in universal

approximation capability. As presented above, ELM learning algorithms sat-

isfy universal approximation capability.

3. Learning without tuning hidden nodes: Although the existence of hidden nodes

is important and critical to learning in ELMs, these do not need to be tuned and

can be independent of training data.

4. Unified learning theory: One of the advantages of the ELM is the unified learn-

ing framework, independent of the activation function, allowing to deploy

with similar ease a solution for additive/RBF hidden nodes, multiplicative

nodes, fuzzy rules, fully complex nodes, hinging functions, high-order nodes,

ridge polynomials, wavelets, and Fourier series [36].

2.3 Reservoir Computing

Reservoir computing [38–41] shares similarities from what we saw for ELMs, as they

also aim to perform a non-linear mapping of input data into an high-dimensional
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feature space. Reservoir computing machines arise from the unification of the pow-

erful operating principles of two independent recurrent neural networks models:

liquid-state machines introduced by and Mass et al. [55] and echo-state networks

by Jaeger [56]. These machines are described as non-autonomous dynamical sys-

tems.

FIGURE 2.6: Structure of a Reservoir Computing Network. Figure adapted from [44].

The operating principles of these machines are analogous to those used for ELMs

even in the way they are built, as shown in figure 2.6. To understand the details,

let us consider a simple Recurrent Neural Network (RNN) model with a reservoir

constituted by M hidden nodes. The evolution of the hidden neuron states over time

can be described by the following equation:

u(t) = h(Wu(t − δt) + Winx(t)) (2.12)

In this equation, u(t) = [u1(t), u2(t), . . . , uM(t)]T is the state vector of the reservoir

nodes, x(t) = [x1(t), x2(t), . . . , xN(t)]T is the input vector, W is the weight matrix

capturing the recurrent connection between the hidden neurons, δt a fixed lag, and

Win represents the input weight matrix connecting the input x(t) to the reservoir.

The function h(·) is a nonlinear activation function of the reservoir units applied

element-wise to the argument. It is important to note that equation 2.12 represents a

non-autonomous dynamical system forced by the external input x(t), so it does not

represent a general case, since the form of the equation will vary depending on the

specific type of reservoir. The output is just a linear combination of the reservoir



24 HARNESSING NONLINEAR SYSTEMS FOR NEUROMORPHIC COMPUTING SOLUTIONS

activity:

o(t) = Woutu(t) = Woutu(x(t)) (2.13)

where o(t) is the output vector and Wout represents the weight matrix connecting

the reservoir to the output layer.

Typically, the connectivity matrix W and the input weight matrix Win are random

parameters that remain fixed during training. Again, note that the reservoir acts as a

high-dimensional feature generator that maps the input data to a higher-dimensional

space. The training process in RC once again only involves trying to minimize some

error function ϵ(o(t)− y(t)), where y = [y1(t), y2(t), . . . , yN(t)]T is the target vec-

tor. This require optimizing the weights Wout, which can be simply done by a linear

regression between the reservoir activity u(t) and the target vector y(t):

Wout = u†(t)y(t) (2.14)

where u†(t) the Moore-Penrose pseudo-inverse of u†(t).

2.4 What Defines a Good Reservoir

As we have seen, the reservoir plays a key part in how well the designs under in-

vestigation work. The role of the reservoir is to have the internal state perturbed by

some input. This makes the reservoir project, through a nonlinear transformation,

the input data into a higher dimensional space which hopefully renders relevant

features from the input more easily separable. Ideally, we should be able to sepa-

rate such features with a simple hyperplane that bisects this space, as illustrated in

a simple example in figure 2.7.

In the early days of RC, researchers attempted to establish theorems and conditions

for what constitutes a good reservoir (such as having the ”separation property”,

”echo state”, ”fading memory”, etc.) [55, 56]. However, practical implementations

have shown that these conditions can be less strict and many physical systems, such

as a network of springs [57], substrates and devices, for instance analogue circuits

[58] and photonic devices [59]), can function as effective reservoirs [60]. This demon-

strated that a reservoir primarily needs the ability to separate input features that
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FIGURE 2.7: A representation of the basic principles of work of the reservoir. Two classes
that originally were not linearly separable (a) become linearly separable by adding a new

dimension (b).

are meaningful for different tasks and possess dynamics that can generalize to new

data.

In a series of works, Mass et. al [61–63] explored the matrix rank of the reservoir

dynamics to study the separability, rS, and generalization, rG, capabilities. Using re-

alistic models of cortical columns with diverse dynamics as reservoirs they saw that

the system would perform better when there was a good balance between rS and rG.

This good balance shows to be dependent on the criticality of the system [64]. This

term, which has origins in the study of the brain dynamics and connectivity [65, 66],

refers to systems capable of present ordered and disordered phases (such as seen in

cellular automata [67, 68]). In the first case, activity fades aways fast and no memory

of the initial state is preserved. In contrast, the disordered phase is characterized by

chaotic dynamics with high sensitivity to input. Even slightly different initial condi-

tions lead to significant differences in the behavior of the system, making it difficult

to establish correlations between similar inputs. The optimal situation occurs when

the system resides at the ”edge of chaos”, which is the phase that separates both

behaviors. At this edge, the system achieves a balance between the stability of the

ordered phase, allowing relatively lasting steady states, and the versatile dynamics

of the disordered phase, enabling the mixing of relevant input features.
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In this manner, different metrics emerged to measure the criticality of a reservoir,

namely through study of common metrics on nonlinear physics subject such as the

bifurcation diagrams or the Lyapunov exponents [69, 70]. The first is a qualitative

approach that allows us to gain insights into the chaoticity of a system using a visual

representation of how the behavior of the system shifts and changes as a parameter

is changed. Normally this maps are constructed using the maximum and minimum

values of trajectories in the phase space, and provides a way to evaluate the stability

of the system and the formation of various dynamical regimes. On the other hand,

Lyapunov exponents provide a quantitative measure of the system sensitivity to ini-

tial conditions, indicating the level of chaos or orderliness within the dynamics. In

particular, observing a single positive Lyapunov exponent is associated with chaotic

dynamics.

FIGURE 2.8: Example of a bifurcation diagram (a) and Lyapunov exponents (b) for the
Chaotic Jerk system [71]. We can clearly note three diferent phase states of the system:
ordered for β > 0.415, chaotic for β < 0.39 and possible and edge of chaos between those
values. As we can see, a single positive Lyapunov exponent, LE1, is sufficient to tell the

system is in a chaotic state.

2.5 Concluding Remarks

In this chapter we began by reviewing some key aspects of ML, including its for-

mation, the general types it can be divided into, and various models, concluding by

offering an general overview of how models are constructed.

Next, we delved into the theoretical foundations of ELMs and RC. We essentially re-

visited their construction and training processes, which, despite appearing simple,
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are supported by strong theorems that guarantee their effectiveness. This review

also emphasized why frameworks of this kind are well-suited for physical imple-

mentations of models.

Finally, we have discussed the properties supporting a good reservoir for extreme

learning and reservoir computing frameworks. The review of the literature leads

us to the conclusion that the edge of chaos is possibly the most interesting regime

to deploy an effective physical reservoir. By looking at some metrics for nonlinear

physical systems, namely through the study of the bifurcation diagrams and Lya-

punov exponents, we hope to be able to establish some relations of the potential of

the nonlinear oscillator system utilized in the next chapter for performing complex

computational tasks in the context of ELMs.





Chapter 3

An Extreme Learning Machine

with a Nonlinear Oscillator Chain

In this chapter, our goal is to gain a deeper understanding of the dynamics of the

reservoir within an ELM framework, by exploring a system with tunable charac-

teristics for performing computations. In particular, we will study a nonlinear os-

cillator chain described by the Toda Lattice equation, previously introduced in the

literature in the field of RC [72]. By doing so, we aim to explore the relationship be-

tween the nonlinearity of the system and its performance in tasks such as regression

and classification.

3.1 Physical Model

In the work Reservoir Computing with Solitons [72], the authors first explored the pos-

sibility of using a soliton-chain with dynamics governed by the Toda lattice equa-

tion as a plausible reservoir for a computing system involved in the RC paradigm.

They were able to prove that the nonlinear dynamics made the system capable of

handling both regression and classification tasks.

Using this work as a supporting pillar, our work in this chapter will focus on ex-

ploring and gaining more insights about the dynamics that such a reservoir needs

to have. Thus, for our study, we will consider a nonlinear oscillator chain described

29
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by the Toda lattice equation

mẍ = a
[
e−v(xi−1−xi) − e−v(xi−xi+1)

]
(3.1)

with a, xi the amplitude and position of the i-th oscillator (of a total of N), and v a

parameter associated with the nonlinear strength of the system dynamics. Note that

in the small amplitude regime, i.e. xi − xi+1 ≈ ∆ + δi, it can be shown that the linear

oscillator chain is recovered as

mẍ = ae−v∆v (xi−1 + xi+1 − 2xi) (3.2)

making the system capable of featuring both linear and chaotic dynamics depending

on the choice of the model parameters. For small displacements and values of the

nonlinear strength, the system shall follow a linear or weak nonlinear regime, close

to the one pointed in equation 3.2. Contrary, for high displacements and nonlinear

strength values, the system shall feature richer nonlinear dynamics. So, a priori, the

system is technically a suitable reservoir in the context of ELM/RC framework, and

it can be an interesting toy-model to explore the relation between nonlinear dynam-

ics and computing performance since the strength of the nonlinear dynamics can

be easily tuned between quasi-linear and nonlinear regimes just by varying the am-

plitude of the displacements and the nonlinear strength, as demonstrated in figure

3.1

FIGURE 3.1: A representation of the evolution of an oscillator chain for different system
parameters, with initial condition x1 = 1 and xi = 0. For low nonlinearity strength
(left graph), we can see that the oscillator chain described by the toda equation closely
behaves as the it was a linear oscillator system. In the opposite way, for higher values of

nonlinearity strength, the system displays a nonlinear behaviour (right graph).
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3.2 Using the oscillator chain as an ELM

In order to use this oscillator chain as a reservoir for an ELM framework, we take

the features of each training sample of our dataset and encode them as initial dis-

placements of the Nc oscillators of the chain. For that, a possible encoding can be

the following: we re-scale each sample Xi of our dataset and multiply it by a scaling

amplitude A,

xi(t = 0) = A
Xi − mini(Xi)

maxi(Xi)− mini(Xi)
(3.3)

which will also be a parameter related to the nonlinearity of the system, i.e. higher

values of A will translate on a system with stronger nonlinear dynamics.

FIGURE 3.2: Illustration of an ELM/RC implementation using the system described in
equation 3.1.

After this step, we let the oscillator chain evolve following the dynamics described

in equation 3.1 and nonlinear dynamics depending on the variables v and A. After

the simulation time tstop is reached (see Figure 3.2), we obtain the output signal,

which contains information regarding the positions of the Nc oscillators in the chain.

This simulation is performed for the entire dataset, and the retrieved output signal,

consisting of the positions of Nc oscillators, is used for future training and testing

stages. Note that recovering the theoretical framework of ELMs, we are simply

using the reservoir to project the input state information onto a high-dimensionality

output space, given by the positions of the oscillators at tstop. The nonlinear strength

of the chain enables the separation of our data in the output space.
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To simplify the simulations, we consider that our chain is composed of equal oscil-

lators, m = 1 and a = 1. All the simulations are performed in Python.

3.3 Regression Tasks

In order to test the capabilities of our system, we first evaluate our ELM in terms

of performance for a simple univariate regression task. This allows us to assess

the ability of our system to learn by attempting to approximate a given function.

Our objective is to use the system to provide the correct predictions for the function

f (x) for N f = 64 evenly spaced points x ∈ [0, 1]. Even points are used to train the

machine, while odd points are used to test it. To encode the input data, we follow the

method described previously in equation 3.3. In this process, only the first oscillator

of our chain starts at a position equal to the encoded position.

After encoding the entire dataset, we numerically compute the evolution of the sys-

tem described by equation 3.1 and applying the fourth-order Runge-Kutta method,

allowing us to retrieve both positions and velocities of the oscillators. We collected

our output space data (the positions of oscillators) after a simulation time tstop = 50.

Then, we obtain the weight matrix through the Moore-Penrose pseudo-inverse, as

referred to in chapter 2, using the output space matrix obtained. With this weight

matrix, we were finally able to compute the predictions of f (x). This study was

performed for a typical nonlinear function f (x) = sinc(π(x − 1)).

To gain a better understanding of the capabilities of the system, we conducted sim-

ulations using different values of the model parameters. Specifically, we start by

studying how the length of the chain impacts the performance (that is, if we get

better or worse results using more oscillators in the chain). For that, we fixed the

parameters related to the nonlinearity, setting A = 1 and v = 0.25 and trained the

system for 4, 8, and 12 oscillators, as shown in figure 3.3. It is clear from the figure

that we achieve higher performance by increasing the number of oscillators in our

system. This observation is somewhat expected, as a higher number of oscillators

corresponds to a higher dimensionality of the output space, which aids the system in

learning. However, we need to be careful with this factor. As highlighted in [72], as

the dimension of the output space approaches the size of the dataset, the accuracy

of the system can decrease, a phenomenon related to overfitting effects related to
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the pseudo-inverse. To mitigate this issue, the authors suggest employing a training

method based on Ridge regression that addresses this concern. However, instead

of adopting a similar training method, we opted to limit our system to a number of

oscillators that yielded satisfactory results as we have already a good generalization

capability.

FIGURE 3.3: Numerical results for the regression task varying the number of oscillators
used and fixing the parameters of the model related to the nonlinearity, setting A = 1 and
v = 0.25. Predictions made for a chain containing a) Nc = 4, b) Nc = 8 and c) Nc = 12

oscillators.

Now, fixing the number of oscillators in our chain to 12, we performed a study of

the performance of the machine for different values of the parameters related to the

nonlinearity of the system. Precisely, we use two scaling amplitudes, A = 0.5 and

A = 2, and two values of the nonlinear strength, v = 0.1 and v = 0.5. The results

are displayed in figure 3.4.

From the simulations, we can note the effect of the nonlinearity on the performance

of the system. We observe that low nonlinearities render the model incapable of

making accurate predictions, while stronger nonlinear dynamics result in better per-

formances. Particularly, we can note that the value of v has a higher impact on the

performance of the model rather than the encoding amplitude.
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FIGURE 3.4: Numerical results for the regression task fixing the number of oscillators to
12 and varying the values of the parameters of the model related to the nonlinearity. In
a) and b) we fix A = 0.5 and perform the task for v = 0.1 and v = 0.5 respectively. For c)

and d), we fix A = 2 and perform the task again for the same values of v.

3.4 Classification Task

Until this point, we have seen that our system is capable of fitting a simple function,

indicating its capability to learn from the data. Now we aim to test its capacity

for the classification of nonlinear separable datasets, and better infer its capabilities

to generalize for unseen data. For that, we subject our machine to classifying the

classical two-class spiral dataset, where each spiral contains 500 points. For our

purposes, we used only half of the dataset, consisting of Ns = 500 points, which

contain information about both spirals. Half of the Ns points are used for training,

while the remaining half is used for testing. It is important to note that the original

dataset was shuffled to make the training more robust, while keeping a balanced

representation of each class in the training and testing datasets.

The procedure resembles the one used in the regression task. Each spiral point is en-

coded using the method described in equation 3.3. Since we now have two features

representing each data point (X(1), X(2), the ”coordinates” of the spiral), we encode
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these values as the starting positions of the first and fifth oscillators of the chain. We

let the system evolve for the same time as before, tstop = 50. As before, we start by

evaluating the performance of the machine using a different number of oscillators.

We tried for Nc = 10, 15 and 20 and fixing the others parameters, respectively A = 1

and v = 0.25. The results are displayed in figure 3.5. Once again, we increasing the

number of oscillators used led the system to achieve higher performances.

FIGURE 3.5: Numerical results for the classification task varying the number of oscillators
used and fixing the parameters of the model related to the nonlinearity, setting A = 1 and
v = 0.25. Predictions made for a chain containing a) Nc = 10, b) Nc = 15 and c) Nc = 20

oscillators using equation 3.1.

We then advance to study the performance in function with the other parameters.

We employ a chain composed of 20 oscillators. For the simulations, we used for

encoding amplitude A = 1 and A = 3, and for nonlinear strength v = 0.1 and v = 1.

To obtain the model weights for all the combinations of the system parameters, we

use the Logistic Regression function from the sklearn module. With this, we are able

to perform the classifications to test the models.

As the main quest is to test the capability of the system to generalize, we create

a squared grid of 30 × 30 points with features X(1) and X(2) ranging from -1 to 1.

We then classify each point on this grid using the trained models. This enables us

to study the decision boundaries of our system and thus infer the generalization

capabilities. The results are displayed in figure 3.6.

From the figure, we can observe similar patterns to what was previously observed

for regression tasks. Once again, the results indicate that increasing the nonlinear

dynamics of the system plays a crucial role in the accuracy of the machine. By ob-

serving the decision boundary, it becomes evident that the correct spiral-like sepa-

ration of the dataset can only occur when the system exhibits nonlinear dynamics.

Yet, comparing the results from the figure 3.5 a) with the above ones, we realize that
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FIGURE 3.6: Numerical results for the classification task fixing the number of oscillators
to 20 and varying the values of the parameters of the model related to the nonlinearity.
In a) and b) we fix A = 0.5 and perform the task for v = 0.1 and v = 0.5 respectively. For
c) and d), we fix A = 2 and perform the task again for the same values of v. In all tasks

we also classified a 30 × 30 grid to see the decision boundary.

high accuracy does not necessarily imply good generalization capability. It is neces-

sary to tune both parameters correctly to achieve optimal performance, as shown in

figure 3.6. We can conclude that the system demonstrates the capability to achieve

strong generalization performance, making it a promising candidate for handling

more complex tasks, yet it would be interesting to explore if any relation can be es-

tablished between nonlinear dynamics and performance with stronger arguments

than just qualitative observations.

3.5 Relating Nonlinear Dynamics with Performance

So far we have demonstrated the capability of our system to handle both regression

and classification tasks. In both situations we observed the effects of the nonlin-

earity on the performance of the system, noting qualitatively that higher nonlinear
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dynamics lead to higher performances. Our current objective is to gain a deeper un-

derstanding of these dynamics within the system in a more quantitative manner. As

mentioned in chapter 2, two common metrics can be used to analyze the chaoticity

of a dynamical system: bifurcation diagrams and Lyapunov exponents.

We start our analysis by examining the bifurcation diagrams. To construct these

graphs, we follow a specific approach (represented also in figure 3.7): first, we sim-

ulate a chain of oscillators for a given value of the parameter we wish to analyze

(A or v). We allow the simulation to run for an extended period to ensure that the

system has adequately adapted to the imposed conditions. Next, select one oscilla-

tor from the chain to analyze, and record all the maximum points of that particular

oscillator. However, we only consider the maxima points starting from a designated

time, tdropout. This choice is made since some systems exhibit transient behaviour

before reaching a steady state or exhibiting periodic/chaotic behavior, letting us fo-

cus on the behavior after the system has settled into its long-term dynamics. Finally

we repeat this process for other values of the parameter we are analyzing, which

enables us to construct a bifurcation diagram by plotting the collected data points.

FIGURE 3.7: Illustration of the procedure to construct a bifurcation diagram.

We made this process by analyzing the first oscillator of the chain and first, setting

v = 0.25 and for 200 equally spaced values of A between 0.1 and 14. Secondly we

fixed A = 1 and simulated for 100 equally spaced values of v between 0.1 and 4.

The numerical stability is lost when we try to simulate a chain with any of the val-

ues below 0.1. The results obtained are displayed in figure 3.8. The graphics show

a high concentration of points corresponding to the system dynamics change. The

continuous changes of the system suggest it lives in a continuously chaotic state

regardless of the parameters imposed. No clear transitions between different states
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(such as linear, edge of chaos and chaotic) were observed. This suggests that the sys-

tem may remain consistently in a chaotic regime without exhibiting distinct phases

or transitions. It is possible that the chosen parameter ranges and values did not

fully capture the transitions or specific dynamics of the system. Additionally, other

factors, such as the initial conditions or the specific form of the Toda lattice equation

used, could contribute to the observed continuous chaotic behavior. Yet for further

analysis, we need to apply additional metrics.

FIGURE 3.8: Bifurcation diagrams for the system analysing a) the influence of the scaling
amplitude A and b) the influence of the nonlinear strength.

For this, we advance by calculating the Lyapunov exponents (LEs). As mentioned

earlier, this metric represents the rate of separation between infinitesimally close

trajectories. So in order to obtain the LEs for our model, we performed simulations

using different values of the parameters related with the nonlinear dynamics for a

chain of Nc = 20 oscillators. First, we fixed v = 0.1 and simulated the system for

25 equally spaced values of A ∈ [0.1, 6]. Then, we fixed A = 3 and simulated the

system for 25 equally spaced values of v ∈ [0.01, 2]. It is worth noting that we are

only interested in the maximum LE, as having a single positive exponent indicates

chaotic behavior in the system. Therefore in each simulation, we only retrieved the

maximum LE obtained. This value was obtained using the nolds library for python.

To further infer the relation between performance and chaoticity we must then com-

pare the accuracy of the system on a specific task with the maximum LE. As referred

previously from the literature on RC, we expect that the performance of a system im-

proves with increasing nonlinear dynamics, until it gets into a chaotic stage where

the performance may plateau or even deteriorate. The region closest to the chaotic

stage - ”edge of chaos”- is where we anticipate the system to exhibit the highest
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performances. So, in order to study this phenomenon, for each simulation we also

retrieve the performance of the system for the determined task. In order to study

this phenomenon, we evaluated the performance of the system on a classification

task using the spiral dataset, similar to our previous experiments. For each set of

parameters, we calculated the accuracy for five different random datasets. Figure

3.9 shows the results obtained.

FIGURE 3.9: Lyapunov expontents for the system analysing a) the influence of the scaling
amplitude A and b) the influence of the nonlinear strength (the LE are shown by the
green and yellow dots). In the graphs we also show the accuracy (red and blue dots)
obtained also for training and testing datasets. The shaded regions corresponds for the
maximum and minimum accuracy values obtained for five different datasets. Note that
for encoding amplitude we simulated the system also for higher values, but the trend

remained the same as observed.

Examining the figure, we observe that in both cases, the LE value typically increases

with the increase of the respective parameter being analyzed. The results obtained

align with the bifurcation diagrams obtained. Yet, the maximum LE is always pos-

itive suggesting that, in theory, the system is intrinsically chaotic, making it highly

sensitive to initial conditions. Looking now for each particular case. In the encod-

ing amplitude analysis, we notice an improvement in performance as A increases,

until it reaches the value A = 2, where the performance stagnate. This behavior is

likely related to a transition from a linear to a nonlinear stage. However, as men-

tioned before, since the maximum LE is positive, the system should be in a chaotic

stage. Since the values obtained are in order of 10−2, we can consider that the system

could still be edging the chaos and not in chaotic stage, supported for the lack of the

drop in performance expected that usually indicates the chaotic behaviour. For the

nonlinearity strength v, we observe a sharp increase in performance until v = 0.9,

where the performance reaches its peak. Meanwhile, the maximum LE values re-

main below 0.05. Again, we can consider this as an indication that the system is
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operating at the edge of chaos, transitioning to a chaotic state for values of v higher

than 0.9. More importantly, we witness a continuous decline in performance beyond

this threshold. This analysis highlights the significant impact of v on the nonlinear

dynamics of the system compared to A. Finally, we can conclude that the system is

very sensible to the choice of these parameters, with the system intrinsically living

in the edge of chaos and chaotic stages.

3.6 Final Remarks

In this chapter, we proposed the use of a nonlinear oscillator chain described by

the Toda lattice equation to serve as reservoir for an ELM models. We conducted

various simulations to evaluate the performance of the system on both regression

and classification tasks, demonstrating the effectiveness of the framework. Addi-

tionally, we delve deeper into the dynamics of the system to gain more knowledge

about its innerworkings and understand if a possible relation between chaoticity

and performance could be achieved. The results are promising, and could stimulate

us to pursue further investigations on the subject. Yet, the fact that the system does

not feature a clear non-chaotic to chaotic transistion together with the constraints

and difficulties in obtaining a physical system that could effectively realize the sug-

gested model led us to shift our focus tow alternative systems for the experimental

part of the dissertation.



Chapter 4

All Optical ELM

After exploring the innerworkings of an ELM, we focused our attention in the chal-

lenges of the implementation of these systems, seeking to support ongoing efforts

at INESC TEC for the physical implementation of an ELM. This chapter begins by

providing an overview of the work conducted at the center in the field of optoelec-

tronic ELMs. We will describe the experimental setup used, and showcase some of

the obtained results, highlighting also significant limitations. Specifically, in typical

training procedures, the optimal weights may have negative and positive values,

which can be challenging to implement with all-optical strategies. In this context,

we investigate potential solutions to overcome that problem, focusing on the devel-

opment of novel training procedures, capable of accepting some constraints in the

optimization pipeline toward optimal solutions.

4.1 Towards an Optical ELM

Looking for different ways for the physical implementations of extreme learning

machines, we come across optical extreme learning machines (OELMs).

OELMs are a promising new approach to ELM physical implementation that ex-

ploits the unique properties of light. Indeed, OELM takes advantage of the non-

interacting nature of the photons, enabling highly parallelizable and energy-efficient

information processing. Also, the vast bandwidth of light further enhances their ca-

pabilities. In this way, OELMs offer a compelling alternative with faster processing

speeds and efficient utilization of resources compared with electronics.

41



42 HARNESSING NONLINEAR SYSTEMS FOR NEUROMORPHIC COMPUTING SOLUTIONS

The field of OELM research is still in its early stages, but it has attracted growing at-

tention in recent years due to its unique properties. One of the first implementations

of OELMs was made by Saade et al. [73]. In their work, Saade et al. propose a new

method for performing random projections using optical scattering of a complex

optical medium (semitransparent ”scattering” material). This material refracts the

laser light passing through it, generating a statistically random speckle pattern at its

output, a needed requirement of a hidden layer of an ELM. Finally, a digital camera

is used, with pixels acting as output channels that convert the speckle pattern to an

intensity pattern, with the measurement and saturation of the camera ensuring the

nonlinearity needed.

Through the course of the years that followed, numerous works in this area have

been published, contributing significantly to the advancement of the field. Exam-

ples include works that explored the OELM implementations through multimode

fibers [74], free-space propagation [75, 76], or similar to Saade et al., involving a

scattering media [77], and even time [78–80] and frequency multiplexing [81–83].

We have to note that while a great part of the works have been conducted in the

context of Reservoir Computing, the conclusions are equally applicable to the realm

of Extreme Learning Machines due to the resemblance of both architectures.

Despite the great enthusiasm in the area, however, the works seem to lack the un-

derstanding of the computing architecture and some mathematical foundation that

could describe the learning capabilities of these machines. In this context, recent

works from our research group [47] took inspiration from the work performed by

Saade et al. and aimed to develop a mathematical framework capable of explaining

the inner-workings of this kind of machines and make inferences about the types

of problems that align with the capabilities of the machine. For that, it was devel-

oped a mathematical model based on the transmission matrix formalism. In this

framework, an optical input field propagates through some linear media, carrying

the information encoded in the amplitude and/or phase modulation.

With this framework, it is possible to establish some basic rules relating the dimen-

sion of the output space with the number of input encoded fields. The team then

advanced towards an experimental implementation of this optical extreme learn-

ing machine, performing regression and classification tasks, in order to ensure the

viability of his theoretical framework, illustrated in figure 4.1. The setup used to
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carry out both tasks makes use of various optical components (first a Spatial Light

Modulator, then a Digital Micromirror Device (DMD)) to encode the data and ob-

tain the corresponding speckle patterns. With the data recovered at the camera, the

final layer is computed using numerical tools from the well-known Python package

scikit-learn.

FIGURE 4.1: Example of the OELM framework used by Silva.

For the context of this work, we will focus our attention on the final section of the

work of ref. [47]. That segment describes the latest attempts of our group to cre-

ate an all-OELM only utilizing optical devices to carry out all of the mathemati-

cal operations found in an ELM, namely nonlinear function, matrix multiplication,

and learning algorithm, without the need for sophisticated electronics to deploy the

models. By harnessing the power of DMDs, multimode fibers, and lenses, Duarte

Silva et al. were capable of performing totally analog computations, testing this ma-

chine on a regression task that involved a nonlinear function f (x) =
∣∣∣ sinc(x)

x

∣∣∣. This

represented a significant step forward in research toward the realization of a fully

analog computer.

Given this success in regression tasks, our objective is to assess the performance of

the machine in classification tasks. Since the bulk of our work will draw inspira-

tion from the experimental setup existing at the Center for Applied Photonics, the

following section will delve into the techniques used for encoding information and

generating speckles.
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4.2 Information Encoding and Speckle Generation

Since our work leverages the setup implemented by Silva, we shall start with an

overview of this apparatus, depicted in figure 4.2. For the sake of simplicity, we

present the amplitude modulation case, but keep in mind that with a small modifi-

cation to the system it can also support phase modulation.

FIGURE 4.2: Setup used by Silva employing amplitude modulation. Figure from [47].

The experimental apparatus is illustrated in figure 4.2. For the light source, we used

a 50 mW laser at 532 nm. The laser beam is directed onto the surface of a DMD after

being expanded through the use of a converging lens. Then it is reflected in a spatial

filtering stage, in order to filter out the higher orders of diffraction. This enables us

to encode our information in the amplitude profile of the incident wavefront. The

laser light is then coupled to the multimode fiber, collecting at the output the speckle

pattern obtained, imaged through a 10x objective onto the camera.

Following the flow of information, we can better describe the system by reviewing

the function of each component.

Digital Micromirror Device

A DMD is an optical electromechanical system that contains at its surface an ar-

ray of micromirrors that can be used to encode the input information as amplitude

modulation into the optical beam wavefront. Each mirror represents a pixel on the
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projection surface and can be tilted in a ±12◦ angle with respect to the axis of rota-

tion, corresponding to two configurations, ”on” and ”off” state. The DMD utilized

is the model Vialux V-7000 Hi-Speed module, with a Discovery 4100 DLP chip.

FIGURE 4.3: Digital micromirror device. Image taken from [84].

The DMD is a device that allows only binary amplitude modulation but discrete

amplitude modulation can be achieved by grouping pixels into a set of macropixels.

Each macropixel is formed by groups of many pixels, which can either be on or off.

To avoid grating effects, the pixels that are on in each macro-pixel are randomly

chosen.

Multimode Fiber

The multimode fiber warrants the random weights of the hidden layer acting on the

input information. In the experimental setup, we utilized a silica step-index fiber

with a core of 50 µm, corresponding to a V number of 50.4, resulting in approxi-

mately M≈2540 modes. The fiber has a numerical aperture of 0.171 for light with a

wavelength of 532 nm.

4.3 Current Challenges

In order to implement an analog machine for performing regression tasks, Silva

[47] adapted the optoelectronic setup shown in figure 4.2. In short, the modified

configuration allowed light to pass through the DMD twice. In the first pass, it uses

only half of the DMD screen to encode information. The speckle pattern, generated

after collimation by a 10x objective and passing through a multimode fiber, is then

directed to the unused portion of the DMD screen during the second pass. The

objective of the second pass is to perform the weight matrix multiplication, fully
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emulating the operations that occur in an ELM. However, two principal problems

arise in this process.

The first one is related to the number of output channels. For simulation purposes,

this was simply done by downscaling the image captured by the camera. To address

this, it was opted for a method that emulates an array of large photodiodes. Before

acquiring data, it was applied a series of binary amplitude masks to the DMD, de-

pending on the desired number of output channels. Nevertheless, the control in this

case is not stable as the speckle tends to vary much within these amplitude masks.

The second problem consists of the calculation of the weight matrix. As we saw

previously, the challenge when constructing an ELM model is reduced to a linear

optimization situation, which only requires finding the optimal weight matrix so-

lution. Generally, this optimal solution encompasses both positive and negative

weights. However, it is not possible to implement negative weights in the setup,

so it is needed to find solutions that overcome this barrier. Initially, an attempt was

made to redefine β in a way that would make the predictions of the machine a scaled

version of the original ones but was unsuccessful when tested experimentally. The

alternative solution involved applying constraints in the optimization algorithms,

so the machine searched for the solution in the positive domain only. Yet, the results

obtained were not optimal nor the training pipeline versatile enough to be general-

ized to other applications such as classification tasks.

4.4 Deploying a New Training Framework

Taking into consideration these challenges, we consider an adapted version of the

apparatus as illustrated in figure 4.4. In particular, note that we substituted the

second pass on the DMD by a single passage on a trainable SLM. Our primary goal

is to create a framework that emulates the proposed setup and allows to train the

SLM layer.

To achieve this, we made use of a versatile Python library called Pytorch, known

for its capacity for building machine learning models. Pytorch is a Python library

that facilitates the creation of machine-learning models. The choice of this library

was mainly based on the fact that Pytorch provided us with enhanced freedom and

flexibility in building our ELM, enabling us to explore a wide range of options and
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customization possibilities. From the way we can define the different layers used, to

the choice and treatment of the different parameters/optimization methods applied,

Pytorch stands out as the package more aligned with our objective.

FIGURE 4.4: Proposed setup for an All-OELM implementation.

Figure 4.5 represents the PyTorch pipeline we have constructed to train our model.

In this pipeline, we have used the speckle patterns as the input data. Prior to enter-

ing the core model (indicated by a red dashed box in figure 4.5), we subject the data

to some preprocessing steps.

The original speckle patterns are images with dimensions of 165×165 pixels. We

start by reducing the number of channels presented in these patterns through the

creation of macropixels. This step mimics the limitations of the experimental setup

since the camera cannot detect the high resolution of the original pattern. This chan-

nel reduction also enhances the performance of the model by reducing the influence

of external noise, like scattering due to dust particles. The patterns are then fed

into the model, which comprises two layers: a saturation layer, and an output layer.

The saturation layer introduces a saturation term to the images and corresponds to

the possible saturation in the camera or detector. On the other hand, the output

layer performs a summation of all the macropixels to obtain a prediction value, thus

corresponding to the total intensity summed at the camera.

The output layer employ a linear transformation to the data, y = βx + b, where

β are the weights, x the input, and b a bias term. Throughout all the stages, we

opted for a null bias term since there is no need to add bias to the images in the
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FIGURE 4.5: Workflow of the model implemented in Pytorch. Points 1, 2, and 3 show in
which stage of the setup in figure 4.4 is performed the step represented.

setup. In Pytorch, weight initialization typically involves drawing values from a

uniform distribution U (−k, k), where k = 1
input dimension . In our model, we want to

use only positive weights, so we modified the initialization process so that weights

are now sampled from a uniform distribution U (0, k). Despite this adjustment, the

optimization process tended to search for optimal weights towards the negative do-

main. Many constrictions in the optimization process were applied, such as clamp-

ing, manually changing, or giving some kind of penalization term to the negative

weights, but consistently yielded poor results.

The solution we implemented involved a modification to the weights applied in the

linear transformations. Initially, we allow the weights to initialize with negative

values, permitting the optimization process to explore the negative weight domain.

However, an alteration is made to the linear transformations applied in the output

layer. Instead of using the raw weights β in these transformations, we introduce a

scaled version of the weights. Specifically, we apply the same transformation as be-

fore y = βx, but in this case, β is defined as β = eβ′
, where β′ represents the optimal

weights found in the optimization process. With this adjustment, the transforma-

tions applied in the layer only employ parameters in the positive domain. This

modification allows us to integrate these transformations into the setup, facilitating

the use of an SLM to perform the weight matrix multiplication in our all-OELM.
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The last important aspect to discuss is how to obtain prediction values. Instead of

employing the most common methods used in classification tasks, such as applying

a nonlinear activation function at the output layer, like a sigmoid or ReLU function,

we have chosen a different approach to ease the implementation with an optical

architecture. As referred before, the output layer performs the sum of all macropix-

els of the final image, which returns a value within the range of 0 to 1. To obtain

the final predicted value, we apply a simple threshold operation with a threshold

value of 0.5 for a binary classification task. For a different task, such as the classifi-

cation of more complex datasets like the MNIST dataset, some adjustments should

be performed, but nevertheless a similar methodology can still be employed.

4.5 Results

Two speckles datasets were collected for our study, one containing information re-

lated to a spiral dataset, and another about a circular dataset (total of samples equal

to 1000 for each case, 500 for each). Initially, we made some exploration using the

spiral dataset. However, due to the complexity of this dataset, the task proved to

be harder to solve using only amplitude modulation, with models achieving accu-

racies of about 80%. As a result, we shifted our focus to the circular dataset, which

presented a simpler problem, facilitating our progress toward the deployment of

the new training framework which was ultimately our main objective. Figure 4.6

shows a visual representation of the problem and dataset, illustrating an example

of a typical speckle pattern obtained for a point in the feature space, and the result

after the creation of macropixels.

As said, the circular dataset contains 1000 samples, 500 per class. To train and test

the performance of our approach in a robust manner, we split the dataset, using

75% for training the model and 25% for testing purposes. Finally, to understand the

generalization capabilities of our model, we classified a rectangular grid of 40×40

equally spaced points across the respective domain of our original data.

We begin by performing a sweep through various values of the Isat parameter to

find the optimal parameter. Note that in the physical setup, this is equivalent to the

increase of the exposure time. The results are shown in figure 4.7. We can see that

small values for Isat result in the model not being able to train correctly if the number
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FIGURE 4.6: Circular dataset used to build the framework. We also showcase a speckle
(165×165 pixels) obtained from one of the points of the circular dataset, with coordinates
f1 = 0.51, f2 = 0.51, as well as the speckle after transforming it to an image of 20×20

macropixels.

of training epochs is not high enough. High Isat values guarantee good results. For

the subsequent research, it was decided to use Isat = 255.

FIGURE 4.7: Training accuracies for different saturation values

Using the value determined for Isat we obtained the results depicted in figure 4.8.

As can be seen, the proposed training procedure allows us to achieve good perfor-

mances in the classification task, with accuracies of 92% on the training set and 96%

on the testing set. However, we can observe from the figure that the model encoun-

ters certain challenges in achieving a perfect performance, which could be attributed

to suboptimal hyperparameter choices and the inherent difficulty of adapting to the

imposed constraints.

Finally, figure 4.9 represents an example of how the input data changes after passing

through the output layer. We can also observe how the weight distribution changes
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FIGURE 4.8: Simulation results of the framework for the classification task on the train
and test datasets, as well as the generalization capacity after training the model: a) 0

epochs, b) 20 epochs, and c) 100 epochs.

for the trainable layer (the output layer) during the training procedure in figure 4.11.

It is noticeable that the optimization process tends in the direction of the negative

domain, but finds the optimal solution in the positive domain, without the need

to further explore, with figure 4.10 showing the final weight profile applied at the

trainable layer. The optimal solution remaining in the positive domain suggests that

there might exist a way to use only positive weights without performing any kind

of transformation.
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FIGURE 4.9: Transformations performed by saturation layer of the framework on the data
after training the model for 200 epochs.Looking at the range of intensities in each image,
we can see that the saturation of the camera resembles the application of normalisation to
the image. Both images look similar, which can cause some confusion, but this happens

because the software used to display the images re-scales the range of intensities.

FIGURE 4.10: Optimal weight profile before and after scaling, being β the weights ob-
tained though the optimization process and the β′ the weight ”image” we want to apply

on SLM in the implementation.

FIGURE 4.11: Weight distribution over the training epochs for the output layer.
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4.6 Final remarks and future work

In this chapter, we explored a previously developed optical implementation of an

ELM in order to provide research support to the team by developing a transparent

and versatile training pipeline. The framework constructed in PyTorch has shown

its ability to overcome one of the challenges encountered in the physical implemen-

tations of the optical ELMs, specifically the limitation associated with implement-

ing matrix multiplication operations using physical devices due to their inability to

handle negative weight values. By forcing the model to perform optimization using

only positive weights, the model exhibited acceptable results in classification tasks.

This success paves the way to pursue the construction of an all-optical ELM in the

near future and apply it to more significant application scenarios.





Chapter 5

Conclusions

Machine learning has emerged as an important auxiliary tool in various fields in

recent years. However, the evolution of models has led to their enlargement. On

the upside, this resulted in an improved performance, but on the downside, this

brought an increase in the number of parameters that need to be trained, necessi-

tating higher computational capacity. Adding complexity to this scenario are the

constraints imposed by Moore’s Law and the associated energy-related challenges.

As a result, the attention has turned towards the search for specialized hardware to

implement machine learning models, further developing such models to require a

smaller number of parameters to ease the physical implementation.

This context set the starting point and motivation for the present thesis, which ex-

plored solutions based on a new emerging neural network architecture known as

ELM. In short, ELMs promise a more simplified ML model capable of capturing

complex dynamics while being fast and energy-efficient. To achieve this, we exam-

ine potential approaches for the physical implementation of such models.

In this way, we start in chapter 2 by conducting a review of the state of the art

in machine learning, with specific focus on the mathematical foundations behind

ELMs. Additionally, we delve into an examination of the necessary aspects that

substrates must possess to be applicable for the physical implementations of ELMs,

as well as defining certain metrics aimed at the analysis of these attributes.

In chapter 3, we present a system based on nonlinear oscillators defined by the Toda

Lattice equation. We conduct numerical simulations to assess the capabilities of this

system in both regression and classification tasks. Our findings indicate that the

55
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system effectively handles both tasks, achieving outstanding performance. We con-

clude the chapter by applying the metrics previously defined to study the substrate

and determine its highly chaotic behavior, which poses challenges for physical im-

plementation solutions.

In chapter 4, we start by providing an overview of the state of the art in the field

of optical ELMs. We take the opportunity to showcase the work performed in this

field by a colleague. Building on his system as a source of inspiration, we develop

a framework aimed at simulating a potential solution to the challenges associated

with the physical implementations of optical ELM. Through simulations where we

constrain the weights to the positive domain, we achieve notably positive results

when testing the framework on a circular dataset. This leads us to the conclusion

that this approach could potentially overcome the challenges encountered in optical

ELM implementations.

5.1 Future work

Taking into consideration the work done, and recovering the strategic objectives of

this thesis, namely:

(a) Explore physical systems with some degree of tunability, in order to further

understand the potential and inner-workings of Extreme Learning Machines;

(b) Explore suitable tools to perform training of the physical systems in a transpar-

ent manner;

we can discuss the future work and perspectives in two distinct directions.

On one hand, regarding the first topic, the first part of this work has focused on un-

derstanding how the physical reservoir dynamics affect the performance of extreme

learning machines. In particular, our goal was to study the role of chaotic dynam-

ics using for this purpose a physical system with tunable properties. Our findings

align with the relation between best performance and the edge of chaos limit which is

well-known for the reservoir computing community but that remains unexplored in

the context of ELMs. In this sense, the work presented establishes some interesting

preliminary conclusions that may support further research in this topic, provided a
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suitable physical system - both in terms of chaoticity and ease of deployment at the

experimental level - is found.

On the other hand, and more focused on the second topic, the second part of our

work focused on the development of a transparent training framework of an all-

optical implementation of an ELM architecture. In particular, we have deployed a

Python-based prototype exploring the Pytorch libraries that feature a high degree

of versatility and that can handle the restrictions
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[39] M. Lukoševičius, H. Jaeger, and B. Schrauwen, “Reservoir computing trends,”

KI-Künstliche Intelligenz, vol. 26, pp. 365–371, 2012.

[40] G. Van der Sande, D. Brunner, and M. C. Soriano, “Advances in photonic reser-

voir computing,” Nanophotonics, vol. 6, no. 3, pp. 561–576, 2017.

[41] D. Verstraeten, B. Schrauwen, M. D’Haene, and D. Stroobandt, “An

experimental unification of reservoir computing methods,” Neural Networks,

vol. 20, no. 3, pp. 391–403, 2007, echo State Networks and Liquid

State Machines. [Online]. Available: https://www.sciencedirect.com/science/

article/pii/S089360800700038X [Cited on pages 8 and 22.]

[42] J. Schmidhuber, “Deep learning in neural networks: An overview,”

Neural Networks, vol. 61, pp. 85–117, 2015. [Online]. Available: https:

//www.sciencedirect.com/science/article/pii/S0893608014002135 [Cited on

pages 8 and 19.]

[43] D. Mandic and J. Chambers, Recurrent neural networks for prediction: learning

algorithms, architectures and stability. Wiley, 2001. [Cited on page 8.]

[44] J. Guo, X. Li, Z. Lao, Y. Luo, J. Wu, and S. Zhang, “Fault diagnosis

of industrial robot reducer by an extreme learning machine with a

level-based learning swarm optimizer,” Advances in Mechanical Engineering,

vol. 13, no. 5, p. 16878140211019540, 2021. [Online]. Available: https:

//doi.org/10.1177/16878140211019540 [Cited on pages ix, 8, 19, and 23.]

[45] A. Afifi, A. Ayatollahi, and F. Raissi, “Cmol implementation of spiking

neurons and spike-timing dependent plasticity,” International Journal of Circuit

Theory and Applications, vol. 39, no. 4, pp. 357–372. [Online]. Available:

https://onlinelibrary.wiley.com/doi/abs/10.1002/cta.638 [Cited on page 8.]

[46] F. Salam, Y. Wang, and H.-J. Oh, “A 50-neuron cmos analog chip with on-chip

digital learning: design, development, and experiments,” Computers Electrical

Engineering, vol. 25, no. 5, pp. 357–378, 1999. [Online]. Available: https:

//www.sciencedirect.com/science/article/pii/S0045790699000178 [Cited on

page 8.]

https://www.sciencedirect.com/science/article/pii/S0893608019300784
https://www.sciencedirect.com/science/article/pii/S0893608019300784
https://www.sciencedirect.com/science/article/pii/S089360800700038X
https://www.sciencedirect.com/science/article/pii/S089360800700038X
https://www.sciencedirect.com/science/article/pii/S0893608014002135
https://www.sciencedirect.com/science/article/pii/S0893608014002135
https://doi.org/10.1177/16878140211019540
https://doi.org/10.1177/16878140211019540
https://onlinelibrary.wiley.com/doi/abs/10.1002/cta.638
https://www.sciencedirect.com/science/article/pii/S0045790699000178
https://www.sciencedirect.com/science/article/pii/S0045790699000178


64 HARNESSING NONLINEAR SYSTEMS FOR NEUROMORPHIC COMPUTING SOLUTIONS

[47] D. J. F. da Silva, “Optical extreme learning machines: a new trend in optical

computing,” 2022. [Cited on pages x, 9, 15, 42, 43, 44, and 45.]

[48] P. P. Shinde and S. Shah, “A review of machine learning and deep learning

applications,” in 2018 Fourth international conference on computing communication

control and automation (ICCUBEA). IEEE, 2018, pp. 1–6. [Cited on page 14.]

[49] [Online]. Available: https://www.ttheall.top/ProductDetail.aspx?iid=

1087135333&amp;pr=39.88 [Cited on pages ix and 15.]

[50] M. Banoula, “What is perceptron? a beginners guide for 2023: Simplilearn,”

May 2023. [Online]. Available: https://www.simplilearn.com/tutorials/deep-

learning-tutorial/perceptron [Cited on pages ix and 17.]

[51] Mattab, “Artificial intelligence, enough of the hype! what is it?” [Online].

Available: https://community.hpe.com/t5/hpe-blog-uk-ireland-middle-

east/artificial-intelligence-enough-of-the-hype-what-is-it/ba-p/7046672

[Cited on pages ix and 18.]

[52] G.-B. Huang and L. Chen, “Convex incremental extreme learning machine,”

Neurocomputing, vol. 70, no. 16, pp. 3056–3062, 2007, neural Network Applica-

tions in Electrical Engineering Selected papers from the 3rd International Work-

Conference on Artificial Neural Networks (IWANN 2005). [Online]. Avail-

able: https://www.sciencedirect.com/science/article/pii/S0925231207000677

[Cited on page 20.]

[53] ——, “Enhanced random search based incremental extreme learning machine,”

Neurocomputing, vol. 71, no. 16, pp. 3460–3468, 2008, advances in Neural

Information Processing (ICONIP 2006) / Brazilian Symposium on Neural

Networks (SBRN 2006). [Online]. Available: https://www.sciencedirect.com/

science/article/pii/S0925231207003633

[54] G.-B. Huang, Q.-Y. Zhu, and C. Siew, “Extreme learning machine: A new learn-

ing scheme of feedforward neural networks,” vol. 2, 08 2004, pp. 985 – 990 vol.2.

[Cited on pages 20 and 21.]
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