

Improving Teacher`s User

Experience in a Virtual

Learning Environment

Yannik Bauer

Master`s degree in Computer Science
Department of Computer Science, FCUP

2023

Orientador
José Paulo Leal, Assistant Professor, DCC – FCUP, CRACS – INESC TEC

Coorientador
Ricardo Queirós, Assistant Professor, uniMAD – ESMAD, CRACS – INESC TEC

“ I don’t have problems; I just have more work to do! ”

Seth Feroce

Acknowledgements

First and foremost, I sincerely thank my supervisor, José Paulo Leal, and co-supervisor,

Ricardo Queirós, for their relentless support, guidance, and valuable insights throughout

this research journey! Thank you for your time and all the interesting, funny, and enjoy-

able weekly reunions!

My appreciation also goes to the Department of Computer Science of the Faculty of

Science of the University of Porto and the entire staff for providing a great environment

for research, learning, and growth.

I am deeply grateful to INESC TEC and the ”FGPE Plus: Learning tools interoper-

ability for gamified programming education” project supported by the European Union’s

Erasmus Plus program (agreement no. 2020-1-PL01-KA226-HE-095786) and financed by

National Funds through the Portuguese funding agency, FCT - Fundação para a Ciência

e a Tecnologia, within project LA/P/0063/2020, for financing me.

I extend my gratitude to all those who participated in evaluating the proposed systems

and took the time to answer the questionnaires. Their feedback and insights were critical

to the validity and reliability of this research and also provided interesting perspectives

that enriched the depth and quality of this work.

I also deeply want to thank my colleagues and friends for the conversations, shared

laughs, and for providing a listening ear during challenging times. Their company and

moral support have made this journey a pleasure.

Without mentioning my family for their constant encouragement and support, no ac-

knowledgment would be complete. So thank you for your support.

In sum, this journey would not have been possible without the collective effort, direct

or indirect, of all those named and unnamed here. I am really grateful for the privilege of

learning from each of you.

UNIVERSIDADE DO PORTO

Abstract

Faculdade de Ciências da Universidade do Porto

Departamento de Ciência de Computadores

MSc. Computer Science

Improving Teacher’s User Experience in a Virtual Learning Environment

by Yannik BAUER

This thesis outlines the development of the teacher’s User Interface (UI) and the back-

end system for Agni, a web playground for learning JavaScript. The goal of this work is

to deliver a good User Experience (UX) to teachers through an intuitive and user-friendly

UI containing useful functionalities. Therefore, the focus shifts from the more commonly

explored research on student experiences to the teacher. To realize this goal, the initial

hypothesis was to use a headless Content Management System (CMS), Strapi. However,

it was evaluated as unintuitive and time-consuming. Consequently, the development of

a new UI became crucial, employing the headless CMS just for the Application Interface

(API) and back-end data storage. The primary concept for the developed UI was to use

the existing Agni student UI and make it editable. Also, several innovative features were

integrated, including the integration of an external exercise repository, namely AuthorKit,

the statistical analysis of student engagement, and content sequencing. Further, an exper-

iment on generating programming exercises using GPT was conducted, and GPT was

integrated into the system to assist teachers in the process of creating exercises. Finally,

the evaluation of the developed UI revealed significant enhancements compared to the

Strapi assessments, with an overall positive review. Evaluators primarily highlighted the

intuitive and simplistic nature of the UI, thereby affirming the successful realization of

the principal objective: to create a teacher’s UI that is both intuitive and user-friendly.

mailto:yannikbauer.1@gmail.com

UNIVERSIDADE DO PORTO

Resumo

Faculdade de Ciências da Universidade do Porto

Departamento de Ciência de Computadores

Mestrado em Ciência de Computadores

Melhorar a Experiência de Utilizacão do Professor num Ambiente de Aprendizagem

Virtual

por Yannik BAUER

Esta tese descreve o desenvolvimento tanto da Interface de Utilizador (UI) do pro-

fessor como do sistema de back-end para o Agni, uma plataforma web para aprender Ja-

vaScript. O objetivo principal deste trabalho é oferecer uma boa Experiência de Utilização

(UX) aos professores através de uma UI intuitiva e amigável com funcionalidades práticas.

Este foco diverge do estudo normal, que mais explora as experiências dos alunos em vez

das dos professores. Para realizar o objetivo, a hipótese inicial foi a utilização de um he-

adless Sistema de Gestão de Conteúdo (CMS), o Strapi. No entanto, Strapi foi avaliado

como não intuitivo e desafiador. Por isso, o desenvolvimento de uma nova UI tornou-se

crucial, utilizando o headless CMS apenas para Interface de Aplicação (API) e armaze-

namento de dados de back-end. O conceito principal para a UI desenvolvida foi utilizar

a UI do aluno existente do Agni e torná-la editável. Alem disso, várias funcionalidades

inovadoras foram integradas, incluindo a integração de um repositório de exercı́cios ex-

terno, nomeadamente o AuthorKit, a análise estatı́stica do envolvimento dos alunos, e

o sequenciamento dos conteúdos. Além disso, foi realizado um estudo sobre a geração

de exercı́cios de programação usando GPT, o que depois foi integrado ao sistema para

ajudar os professores na criação de exercı́cios. Finalmente, a avaliação da UI desenvol-

vida revelou melhorias significativas em comparação com a avaliação do Strapi, com um

sentimento generalemte positivo. Os avaliadores destacaram a natureza intuitiva e sim-

plicidade da UI, confirmando assim a realização bem-sucedida do principal objetivo: criar

uma UI para professores que seja tanto intuitiva quanto amigável ao utilizador.

mailto:yannikbauer.1@gmail.com

Contents

Acknowledgements iii

Abstract v

Resumo vii

Contents ix

List of Figures xiii

List of Tables xv

Acronyms xvii

1 Introduction 1
1.1 Goal and Objectives . 2
1.2 Approach . 3
1.3 Thesis Content . 4

2 State of the Art 5
2.1 User Experience . 5

2.1.1 Definitions, Concepts . 6
2.1.2 Design Strategies . 7
2.1.3 Evaluation . 8

2.2 E-learning Systems . 10
2.2.1 Architecture and Features . 10
2.2.2 System Review . 13
2.2.3 User Experience in E-learning . 16

2.3 Summary . 17

3 Background 19
3.1 Agni . 19
3.2 Strapi . 21
3.3 Vue . 22
3.4 OpenAI GPT Application Interface . 23
3.5 Summary . 24

ix

x IMPROVING TEACHER’S USER EXPERIENCE IN A VIRTUAL LEARNING ENVIRONMENT

4 System Modelling 27
4.1 System Architecture . 27
4.2 User Interface . 29
4.3 Data Model . 32
4.4 Application Interface . 34
4.5 Summary . 35

5 Implementation 37
5.1 Front-end . 37

5.1.1 Framework Selection . 38
5.1.2 Essential Libraries . 38
5.1.3 Course Component . 39
5.1.4 Responsiveness . 40
5.1.5 External Content . 41

5.2 Back-end . 42
5.2.1 Content Management System Selection 42
5.2.2 Data Model . 43
5.2.3 Customization . 44
5.2.4 Unit Tests . 46

5.3 Assisted Exercise Generation . 46
5.3.1 Experiment . 47
5.3.2 Implementation . 49

5.4 Summary . 49

6 Validation 51
6.1 Evaluation Methodology . 51
6.2 Strapi User Interface Evaluation . 52
6.3 Final User Interface Evaluation . 55
6.4 Summary . 60

7 Conclusion 61
7.1 Contributions . 62
7.2 Future Work . 63

A Agni Student User Interface 65

B Data Model 67

C Automated Exercise Generation Experiment 69
C.1 Prompts . 69
C.2 Final Prompt Responses . 71
C.3 Integrated Code Snipped . 74

D Strapi User Interface Evaluation 75
D.1 Evaluation Tasks . 75
D.2 User Interface . 76
D.3 Questionnaire . 77
D.4 Results . 79

CONTENTS xi

E Final User Interface Evaluation 81
E.1 User Interface . 81
E.2 Questionnaire . 84
E.3 Results . 85

Bibliography 89

List of Figures

3.1 Agni previous Student UI . 19
3.2 Agni previous Data Model . 20
3.3 Strapi‘s Content-Type Builder Interface . 22

4.1 Generic System Architecture Diagram . 28
4.2 Interface to create or edit a Course . 29
4.3 Generalized Data Model . 32
4.4 User Permission Roles . 35

5.1 Code for rendering the Module Name . 40
5.2 Agni Student UI (left) and Teacher UI to create a course (right) 41
5.3 Strapi Generic Data Model . 44

6.1 Strapi UI Evaluation Results Chart (ordered by score) 54
6.2 Final UI Evaluation Results Chart (ordered by score of all evaluators) 58
6.3 Comparison of the Strapi and Final UI Results (ordered by difference) . . . 59

A.1 Agni Student UI . 65

B.1 Complete Data Model . 68

D.1 Strapi Dashboard Interface . 76
D.2 Strapi Content Manager Interface . 76
D.3 Strapi Interface for creating a Course (Content Manager) 77
D.4 Strapi User Interface Evaluation Questionnaire 78
D.5 Strapi UI Evaluation Results (line chart) . 80

E.1 Teacher Interface for the Home Menu (evaluated UI) 81
E.2 Teacher Interface to manage Students (evaluated UI) 82
E.3 Teacher Interface to create and edit Occurrence (evaluated UI) 82
E.4 Teacher Interface to manage Content (evaluated UI) 83
E.5 Final User Interface Evaluation Questionnaire 84
E.6 Final UI Evaluation Results (line chart) . 85

xiii

List of Tables

2.1 E-learning System Review . 14

5.1 Results of Automated Exercise Generation with Chat GPT 48

6.1 Strapi UI Evaluation Results Table . 53
6.2 Final UI Evaluation Results Table . 57

D.1 Strapi Evaluation Detailed Results . 79

E.1 Final Evaluation Detailed Results (categories) 86
E.2 Final Evaluation Detailed Results (observations) 87

xv

Acronyms

ACD Activity-Centered Design. 7

AI Artificial Intelligence. 3, 12, 13, 15, 24, 46

API Application Interface. 4, 19–21, 23, 24, 27, 28, 34, 36, 37, 41–44, 46–50, 55

BE back-end. 2, 11, 20, 21, 24, 27, 28, 34, 37, 42–44, 49, 50, 61

CMS Content Managment System. 3, 21, 24, 27, 28, 35, 37, 42, 43, 50

DOM Document Object Model. 22

FE front-end. 21, 23, 24, 27, 28, 37, 38, 42, 44, 49, 50, 61

FGPE Framework for Gamified Programming Education. 47

GDD Goal-Directed Design. 7

GPT Generative Pre-trained Transformer. 3, 4, 19, 23, 24, 28, 35, 37, 46–50, 56, 60–64

HCI Human-Computer Interaction. 6

ISO International Organization for Standardization. 6

LMS Learning Management System. 1, 3, 10–13, 16, 17, 34, 62, 63

LTI Learning Tools Interoperability. 63

MOOC Massive Open Online Course. 10

SASSI Subjective Assessment of Speech System Interfaces. 8, 52

SUS System Usability Scale. 8

xvii

xviiiIMPROVING TEACHER’S USER EXPERIENCE IN A VIRTUAL LEARNING ENVIRONMENT

UCD User-Centered Design. 7

UEQ User Experience Questionnaire. 8, 16, 17, 52

UI User Interface. 2–5, 7, 10, 11, 15, 19–24, 27, 29–32, 34, 35, 37–40, 42, 43, 45, 49–63, 77,

84, 85

UMUX Usability Metric for User Experience. 8

UX User Experience. 1, 2, 4–10, 16, 17, 25, 29, 37, 40, 46, 51, 52, 55, 60, 61, 63

VLE Virtual Learning Environment. 10, 61, 63

Chapter 1

Introduction

Programming has emerged as an essential skill in modern proficiency. According to

LinkedIn’s annual report for 2023, software development stands out as the top hard skill

in demand, with related competencies such as SQL, Python, Java, and JavaScript also

featured in the top 10 [1]. Nevertheless, learning programming is challenging for new-

comers, as underscored by various studies [2–7]. According to Winslow [8], newcomers

can grasp basic syntax and semantics, but the challenge often lies in combining these ele-

ments into functional programs. He further observes that it takes about a decade to turn a

novice into an expert programmer. Numerous other studies [5, 9–12] emphasize practical

exercises to learn to program. This is most efficient when complemented with quick and

useful feedback. However, manually providing immediate feedback for each exercise is

impossible for teachers. This is where automated assessment systems for programming

exercises come into play, offering a learning environment for students and allowing teach-

ers to focus on students who need more individualized support.

Numerous e-learning platforms have emerged over the years, aiming to enhance the

educational experience. While several studies can be found primarily centered on stu-

dents’ experiences, concepts, and features to improve learning [9, 13–15], the teachers’

User Experience (UX) often gets overlooked. A study from I. Maslov, S. Nikou, and P.

Hansen points out that the teachers’ UX can significantly influence that of the students

[16]. When teachers find an e-learning system complex or not user-friendly, they may

not leverage its full capabilities, which subsequently can impact the quality of students’

learning experiences. A recent study revealed that only 52 percent of educators felt that

a Learning Management System (LMS) simplifies instruction [17]. These studies high-

light the need to focus not only on the student but also on measuring and enhancing the

1

2 IMPROVING TEACHER’S USER EXPERIENCE IN A VIRTUAL LEARNING ENVIRONMENT

experience of teachers in e-learning platforms. This can be done with UX evaluations

of existing systems or developing features to facilitate the teacher’s use. Therefore, e-

learning systems can be optimized to their full potential, creating an environment that

benefits teachers and students.

1.1 Goal and Objectives

This thesis tries to enrich the current research space focused on the teachers UX and fea-

tures in e-learning systems by delving into the design and development of the teacher’s

User Interface (UI) and back-end (BE) system for Agni. Agni is a web-based playground

to learn JavaScript. At the start of the project, it consisted of an interface where students

could learn through resources such as PDFs and videos and further apply their under-

standing with exercises that were assessed automatically. However, a dedicated teacher

interface to create and manage the course contents and student enrolments with a BE sys-

tem to store the data was missing. The central theme of this thesis, namely ”Improving

Teacher‘s User Experience in a Virtual Learning Environment”, is to develop this missing

part with a focus on refining the UX for teachers through an intuitive design and useful

functionalities. Ultimately, evaluating the UX of the developed system becomes a key

aspect of getting insights into external and teachers’ perspectives.

The concrete objectives for this thesis are:

1. Good Usability and Intuitiveness: The interface designed for teachers must be in-

tuitive and user-friendly. The system’s evaluations emphasize its intuitiveness and

the ease with which key tasks can be accomplished.

2. Facilitate Course Creation: The system should enable teachers to incorporate theo-

retical content such as PDFs or videos and support the creation of automated assess-

ment tools such as quizzes and automatically-evaluated programming exercises.

3. Reuse of Contents: Reusing and easily adapting contents such as courses or exer-

cises should be possible.

4. Content Sequencing: The platform should give teachers the flexibility to sequence

course content. This means they should be able to determine the order and prereq-

uisites of course resources for students, ensuring a structured learning journey and

1. INTRODUCTION 3

the possibility of creating a game-like structure where students can progress after

accomplishing a certain condition.

5. External Exercise Repositories: Teachers should be able to choose exercises from

external repositories, enhancing the range of available content.

6. Assisted Exercise Generation: Given the emergence and growth of language-based

Artificial Intelligence (AI) chatbots, such as Chat GPT, the integration of such a chat-

bot into the system to assist teachers in creating programming exercises was further

proposed.

7. Integration with Learning Management Systems: The proposed system should inte-

grate seamlessly with existing LMS platforms, facilitating easier adoption for teach-

ers.

1.2 Approach

In pursuing the project’s goals, Strapi, a headless Content Managment System (CMS), was

initially selected for data storage and content creation and management with its built-

in UI. However, a usability evaluation of Strapi showed it to be unintuitive and time-

consuming to use. As a result, while Strapi was kept for content storage purposes, the

design and development of a new interface for teachers was decided. This interface was

implemented using Vue, ensuring its alignment with the existing student UI. A research

paper, named ”Can a Content Management System Provide a Good User Experience to

Teachers”, about the Strapi evaluation, initial design, and strategies of the developed UI

was published at this stage [18]. Once the main parts of the new UI were developed, it

underwent an evaluation with the same evaluators of the first evaluation to benchmark

it against the original Strapi UI and five more professors. Compared to Strapi, the devel-

oped UI was evaluated significantly better. Also, the five professors evaluated the system

overall positively despite some more critics. Overall, the system was seen as intuitive and

simple. After that, and considering the received feedback, improvements, further refine-

ments, and implementation of features such as the integration of Generative Pre-trained

Transformer (GPT) and AuthorKit, an external exercise repository, were done.

4 IMPROVING TEACHER’S USER EXPERIENCE IN A VIRTUAL LEARNING ENVIRONMENT

1.3 Thesis Content

This thesis starts with exploring the existing research landscape in Chapter 2. The concept

of UX is reviewed in Section 2.1, encompassing its definitions, diverse concepts, design

guidelines, and various evaluation techniques. Subsequent analysis in Section 2.2 centers

on existing e-learning systems, including system features, surveys, a study of popular

e-learning systems, and a review of teachers’ UX in e-learning systems. Concluding this

chapter with a summary of the core findings in Section 2.3.

The next Chapter 3 presents key systems and metrics of this thesis. Starting with Agni

in Section 3.1, followed by Strapi in Section 3.2 and VueJS in Section 3.3. Further, Section

3.4 describes the GPT API. The chapter ends with a summary in Section 3.5.

The following Chapter 4 reveals the system modeling with a top-level view of the

concepts. Starting with a description of the system architecture in Section 4.1, which is

followed by a presentation of the UI in Section 4.2. Next, a generalized data model is

introduced in Section 4.3 followed by Section 4.4 about the Application Interface (API),

including its permission rules. The chapter concludes with a summary in Section 4.5.

The subsequent Chapter 5 details the system’s implementation. 5.1 explains the selec-

tion of Vue as the framework, the implementation of the course component, responsive-

ness, and integration of external content. Followed by 5.2, including Strapi‘s selection,

how the data model was implemented, configurations to the API, and created unit tests.

An experiment using GPT to generate programming exercises as well as its integration is

described in Section 5.3. The main gatherings are summarised in Section 5.4.

The succeeding Chapter 6 details the conducted validations, starting with a presenta-

tion of the evaluation methodology in Section 6.1, which is succeeded by the assessment

of the Strapi‘s UI in Section 6.2. The evaluation of the developed UI is subsequently pre-

sented in Section 6.3, including discussing its results both standalone and in comparison

with Strapi’s evaluation. The main conclusions of this section are compacted in the sum-

mary in Section 6.4.

In the conclusion in Chapter 7, the thesis structure and the accomplished and not

accomplished goals are reviewed. Section 7.1 then presents the contributions and main

findings of this project. Ending with the potential future work to improve the system in

Section 7.2

Chapter 2

State of the Art

This chapter reviews the current state of the research on topics related to the thesis and es-

tablishes a foundation for the analysis and development undertaken in this thesis. Start-

ing with an exploration into the domain of UX in Section 2.1, its diverse nature with

different definitions and concepts is explained in Subsection 2.1.1. This is followed by

presenting the different methodologies, principles, and strategies employed in a design

process in Subsection 2.1.2. Next, the techniques for evaluating UX are explored in Sub-

section 2.1.3. Further in the chapter in Section 2.2, the focus is shifted toward e-learning

systems. Their architecture, features, gamification, and criticism of automated assessment

tools are explained in Subsection 2.2.1. A review of popular e-learning systems and their

respective UI for teachers is presented in Subsection 2.2.2. A subsequent analysis of re-

search on UX in existing e-learning systems is conducted in Subsection 2.2.3. Concluding

this chapter with a summary of the key research and findings in Section 2.3.

2.1 User Experience

UX is a broad term with various discussions and debates regarding its definitions and

concepts, both historically and currently. These discussions are detailed in Subsection

2.1.1. While understanding these concepts offers insights into the essence of UX, there are

different methodologies and considerations for designing an optimal UX, as explored in

Subsection 2.1.2. However, a development process isn’t complete without evaluations to

measure its effectiveness or end user’s perspective and identify areas for improvement.

Subsection 2.1.3 presents these evaluation methodologies.

5

6 IMPROVING TEACHER’S USER EXPERIENCE IN A VIRTUAL LEARNING ENVIRONMENT

2.1.1 Definitions, Concepts

The concept of UX is a broad field with various definitions proposed by different scholars.

For example, the International Organization for Standardization (ISO) defined UX as ”A

person’s perceptions and responses that result from the use or anticipated use of a prod-

uct, system or service” in 9241-210. On the other hand, researchers such as Hassenzahl

and Tractinsky interpret UX as the outcome of a user’s internal state and the system’s

characteristics within a specific context of interaction [19]. Yet another definition by V.

Roto articulates UX as feelings during and after interaction with a product, system, or ob-

ject, influenced by various aspects such as user expectations, interaction conditions, and

the system’s ability to satisfy the user‘s current needs [20]. Given different authors’ varied

viewpoints and backgrounds, finding a unified definition of UX is challenging.

Diving deeper into UX, several theoretical models were presented to explore its differ-

ent aspects. Hekkert, for example, divides product experience into Aesthetic Experience,

Experience of Meaning, and Emotional Experience, referring to the interaction with a

product, the symbolic meanings attached, and the emotions invoked during the use of

the product [21]. In contrast, Hassenzahl [22] differentiates experiences into Pragmatic

and Hedonic attributes, with the Pragmatic attributes relating to usefulness and usabil-

ity and Hedonic attributes emphasizing the individual experiences such as stimulation,

identification, and evocation. Expanding the discussion further, a study by N. Tractin-

sky, A.S. Katz, and D. Ikar highlights the importance of aesthetics in interfaces [23]. They

asserted that aesthetics are intertwined with usability, significantly influencing Human-

Computer Interaction (HCI) and UX during interaction. From another standpoint, P.W.

Jordan [24] advocates for the inclusion of pleasure-based elements in the design, suggest-

ing that designs should aim to evoke joy in users. Additionally, the idea of Co-Experience

[25], which arises from the social aspect of human nature, can play a significant role in UX.

It refers to the collective creation, elaboration, and evaluation of experiences, which can

affect an individual’s interaction with a product, both positively and negatively. UX is fur-

ther considered an evolving concept, progressing through three main stages: Orientation,

Incorporation, and Identification [26]. The Orientation phase involves initial interaction

and familiarization with the product, the Incorporation phase reflects on the product’s

potential future value, and the Identification phase entails personal identification with

the product in social contexts. Additionally, it’s worth noting that while usability is an

essential aspect of UX, they are not synonymous. Usability forms part of UX but does not

2. STATE OF THE ART 7

capture the entire spectrum of experiences, including various emotional and contextual

factors [27].

Despite the difficulty of defining UX due to its multifaceted nature, it is important to

recognize the presented aspects. There is a consensus among authors that UX is a dynamic

concept that extends beyond usability to include emotions, multiple usage contexts, and

other intricate aspects, aiming to deliver a comprehensive and satisfying UX.

2.1.2 Design Strategies

Designing a product or a UI often involves considering consciously or subconsciously

different approaches. Three commonly used are User-Centered Design (UCD), Goal-

Directed Design (GDD), and Activity-Centered Design (ACD). UCD revolves around tai-

loring the product or design to suit the user’s specific needs, considering their capabilities

and limitations. GDD, on the other hand, focuses on achieving the user’s ultimate goals

through the design, defining how a product behaves based on the users’ objectives. Lastly,

ACD is centered around the activities or tasks the user undertakes, emphasizing the seam-

less integration of the product or design into the user’s workflow. Several books or articles

elaborate on the UCD process, providing detailed guidelines and insights [28, 29]. How-

ever, discussions continue about which approach is superior, with compelling arguments

on all sides [30–32].

In addition to these design approaches, there are key concepts to effective design [28].

These concepts include Memory and Attention, Affect, Cognition, Perception, and Men-

tal Models. The principle of Memory and Attention emphasizes that the UI should not

be too information-heavy, as this could overload the user’s cognitive capacity and reduce

their ability to focus. The Affect refers to creating and responding to human emotions

through design. A product or UI that can evoke positive emotions can result in a more

satisfying and engaging UX. Cognition involves understanding how users think and pro-

cess information. This understanding is crucial to developing designs that align with the

user’s cognitive abilities, improving usability and effectiveness. Perception relates to the

design’s interaction with the user’s five senses. A successful design should consider how

users perceive information visually, audibly, and even tangibly and utilize these senses

to enhance the UX. Finally, Mental Models are the user’s internal representations or be-

liefs about how a system works. These models guide user behavior and understanding.

Designers should consider Mental Models to create intuitive and user-friendly interfaces.

8 IMPROVING TEACHER’S USER EXPERIENCE IN A VIRTUAL LEARNING ENVIRONMENT

These presented concepts can help designers develop a user-friendly, engaging, and ef-

fective product.

2.1.3 Evaluation

While carefully crafted, design choices might not always produce the anticipated impact

on end users, as evidenced by various studies [33, 34]. As a result, evaluation stands

as an essential phase in product or system development. Jakob Nielsen [35] highlighted

four methods for assessing user interfaces: Automatic evaluation (computed), Empirical

evaluation (user testing), Formal evaluation (utilizing models and formulas to measure

usability), and Informal evaluation (rooted in the evaluator’s expertise and general guide-

lines). Among these, empirical methods are the most popular. They include techniques

such as Heuristic Evaluation, where usability experts analyze the system against estab-

lished criteria; Cognitive Walkthroughs, in which evaluators simulate user tasks while

interacting with designers about the product; and Pluralistic Walkthroughs, collaborative

sessions involving both users and developers to explore the system [28, 35]. Though UX

is a relatively new term, the concept of usability has existed for longer. Evaluating UX

proves more challenging because it encompasses subjective elements such as pleasure

and emotions, which are harder to quantify. On the other hand, usability, a crucial facet

of a good UX, is more mature and objective, making its evaluation more straightforward.

Consequently, many UX evaluation methodologies are built upon established usability

techniques. In practice, usability evaluation methods often serve as tools for assessing the

broader UX.

Several evaluation questionnaires are recognized in the UX field. One is the Usabil-

ity Metric for User Experience (UMUX) crafted by Kraig Finstad [36]. It uses a four-item

Likert scale to measure user perceptions of a system. This questionnaire took inspiration

from the System Usability Scale (SUS), a tool for measuring usability [37]. Another ques-

tionnaire is the User Experience Questionnaire (UEQ) [38] or AttrakDiff [39]. A study by

A. B. Kocaballi, L. Laranjo, and E. Coiera [40] categorized several UX evaluation ques-

tionnaires, including the AttrakDiff, SUS, and Subjective Assessment of Speech System

Interfaces (SASSI) [41], into distinct UX domains such as hedonic, pragmatic, and engage-

ment/flow. Their findings highlighted SASSI as the most comprehensive. Another review

assessed the application of various UX questionnaires, particularly AttrakDiff, UEQ, and

meCEU [42]. This study showed that the UEQ has gained significant popularity recently,

2. STATE OF THE ART 9

with it being the predominant choice in research papers they examined. Their analysis

also revealed that over 60% of the reviewed research employed multiple methods to as-

sess UX.

Usability, with its more objective qualities, can be assessed by analyzing user logs or

measuring the time users take to navigate a system or complete specific tasks. Further,

it can be evaluated with questionnaires. Some of them were already presented. Another

popular method is to evaluate Nielsen’s 10 Usability Heuristics [43] for user interface

design with a questionnaire.

1. Visibility of system status

2. Match between the system and the real world

3. User control and freedom

4. Consistency and standards

5. Error prevention

6. Recognition rather than recall

7. Flexibility and efficiency of use

8. Aesthetic and minimalist design

9. Helping users recognize/diagnose and recover from errors

10. Help and documentation

When using questionnaires as described, an important consideration is the number

of evaluators required to produce reliable outcomes. Nielsen found that between 3 to 5

evaluators can identify 70-99% of usability issues [44]. He highlighted the effectiveness

of several smaller evaluations rather than a singular large-scale review. Virzi’s study re-

flected this sentiment, suggesting that 4 to 5 evaluators are sufficient to uncover roughly

80% of usability challenges [45]. In contrast, Hertzum and Jacobsen proposed a higher fig-

ure, suggesting that around 13 evaluators are necessary to detect the same percentage of

problems [46]. Reviewing these and other studies, Hwang, Wonil, and Salvendy, Gavriel

summarized the data to recommend approximately 10+-2 evaluators to discover 80% of

usability issues [47].

10 IMPROVING TEACHER’S USER EXPERIENCE IN A VIRTUAL LEARNING ENVIRONMENT

2.2 E-learning Systems

E-learning systems have transformed education by introducing various digital platforms

with new features for teaching and learning. This section first explores the architecture,

features of e-learning systems, and criticism found on automated assessment tools in Sub-

section 2.2.1. This is followed by a review of well-known e-learning systems, emphasizing

their teacher UI, design, and functionalities in Subsection 2.2.2. The section concludes by

presenting research on the teachers UX within e-learning systems in Subsection 2.2.3.

To set the ground, there exist different types of e-learning systems, including LMS,

Virtual Learning Environment (VLE), and Massive Open Online Course (MOOC). LMSs,

such as Moodle, Blackboard, and Canvas, are platforms that handle the administration,

documentation, tracking, reporting, and delivery of educational courses or training pro-

grams. LMSs focus on organizing and managing courses and tracking student progress.

VLEs, such as Agni, offer digital spaces that mimic a classroom environment. They allow

teachers and students to interact, communicate, view, submit assignments, and engage

in other course-related activities. The emphasis is on course delivery and learner en-

gagement. In contrast, MOOCs such as Coursera, edX, and Udacity offer open access to

online courses. These courses allow students worldwide to engage in various subjects

at their own pace. MOOCs support large numbers of students, far exceeding the enroll-

ments of traditional classrooms or online courses within universities. They typically in-

clude recorded video lectures, readings, problem sets, and interactive user forums. While

MOOCs significantly expands access to education, they also present challenges such as

high dropout rates and the need for self-motivation and discipline.

2.2.1 Architecture and Features

Various e-learning platforms with automated assessment are presented in research, offer-

ing insides into their architectures and functionalities. One notable system is EduJudge

[14]. EduJudge supports languages such as Pascal, Java, C, and C++. The platform is built

on three pillars: the On-line Judge evaluation server, the crimsonHex exercise repository,

and the EduJudge UI, a Moodle plugin. In the UI, educators can use the exercise reposi-

tory, access Moodle’s quiz capabilities, or organize competitions via QUESTOURnament,

which allows bundling multiple exercises. This challenges students and lets them com-

pete against their peers. Another system showcased by D. Muñoz de la Peña, F. Gómez-

Estern, and S. Dormido offers similar functionalities but is tailored for C and MATLAB

2. STATE OF THE ART 11

[15]. Its teacher-centric UI allows educators to create and manage exercises and students.

On the other hand, students have a dedicated interface to receive and work on exercises.

Central to this setup is a server that stores data and evaluates student submissions. In

the BE, students’ codes are executed and composed with the instructor’s evaluation code,

allowing the teacher to write evaluation code for different kinds of exercises without be-

ing forced to input/output tests. Yet R. Queiros and J. Leal presented an approach for a

standardized integration of various systems dedicated to one e-learning system with au-

tomated evaluation of programming exercises [48]. The architecture contains a repository

for storing learning objects and exercises, an evaluation engine that assesses student so-

lutions, an LMS to provide the exercises to students, an integrated development environ-

ment for coding, and a pivotal component that ensures seamless communication across

all the modules. Lastly, Uncode is a web-based educational platform rooted in the INGIn-

ious [49]. The core objective is to deliver automated feedback on programming exercises

to students. Given its foundation in INGInious, it can be integrated with LMSs through

extensions. Various plugins have been developed to offer formative feedback, improving

students’ understanding of subjects and task execution efficacy. Uncode emphasizes for-

mative and summative feedback to give students an explanation and clarification of their

possible errors and optimize their learning strategy.

A review presented by J. Caiza and J. Del Alamo examined several automatic grading

tools for programming [50]. This included mature tools such as CourseMaker, Webcat,

and JAssess, as well as many other systems. A notable observation was that Java is pre-

dominantly supported across most systems. While some are standalone entities, others

operate as extensions or plugins for LMS. This LMS integration benefits teachers because

most universities are using LMS platforms. Commonly, the systems use various testing

methods, including test cases, unit tests, and dynamic and static testing approaches. An-

other review also analyses automatic grading tools, highlighting systems such as Course-

Maker, AutoGrader, and Mooshak [51]. The authors categorized their evaluation into

three domains: programming exercises, users, and assessment results. Within each do-

main, they outlined levels of maturity characterized by specific features. For instance, in

the programming exercises category, maturity was graded as Level 0: Manual configura-

tion of exercises; Level 1: Capabilities for import/export of exercises; Level 2: Seamless

integration with an exercise repository. Other categories had maturity levels, including

12 IMPROVING TEACHER’S USER EXPERIENCE IN A VIRTUAL LEARNING ENVIRONMENT

functionalities such as user import/export or integration into an LMS system. On mea-

suring these platforms against the maturity criteria, the review concluded that a big pro-

portion, nearly half of these systems, did not attain a 50% maturity score. Among all the

tools studied, Mooshak emerged as the frontrunner with a maturity rate of 83%.

However, despite using good e-learning platforms, learning programming is chal-

lenging, and maintaining student engagement is of essential importance. Gamification

is a method to motivate students, but it can also motivate teachers. It involves including

game-like elements in non-gaming environments, such as points, badges, leaderboards,

and progress bars. In their study, Martinha Piteira, Carlos Costa, and Manuela Apari-

cio offer a holistic framework to shape gamified courses, spanning various dimensions:

Target Audience, General Goals, Specific Objectives and Topics, Contents, Principles of

Educational Design, Game Mechanics, Cognitive Absorption, Flow, Personality [52]. An-

other study underscores how gamification mechanisms, such as points, badges, and lev-

els, have been successfully embedded into LMS such as Moodle [53]. The level mechanic

is a pivotal gamification component, which necessitates sequencing exercises and course

materials. This means setting criteria to control the order and manner in which students

access and engage with particular exercises or content. Seqins is a robust framework

designed to sequence course materials [54]. It is adaptable and can interface with any

tool compatible with the IMS LTI specification. This compatibility ensures a seamless

integration with LMSs. With Sequins, educational resources such as expositive materi-

als (PDFs and videos) and evaluative components (assignments, tests, and exercises) can

be sequenced. To further expand on the integration of systems with LMSs, J. P. Leal, R.

Queirós, P. Ferreirinha, and J. Swacha provide a roadmap detailing integrating via LTI

[55].

While automated assessment brings efficiency to the evaluation of programming exer-

cises, there have been concerns about its binary nature, which often limits feedback to cor-

rect or incorrect verdicts. A student submitting correct code doesn’t necessarily mean they

truly understand the underlying logic [56]. Students often get caught in a cycle of making

incremental changes, submitting repeatedly until they stumble upon the correct solution.

Also, despite generating a correct code, many students struggle to articulate its logic, sug-

gesting a possible disconnect between their learning process and the result [57, 58]. The

rise of AI chatbots has added another layer to this challenge. Novice programmers can

2. STATE OF THE ART 13

use AI tools to generate solutions. These chatbots are very accurate, especially with in-

troductory problems [59]. This can diminish the learning of students. Addressing that

concern, André L. Santos emphasizes the need for a more complete evaluation approach

in his talk [60]. He advocates for posing questions during or after code submission to mea-

sure and verify students’ understanding of their code. However, a challenge arises when

attempting to automate this process. Creating questions that match a student’s code can

be complicated. An alternative strategy is providing feedback and hints during the res-

olution process. With such guidance, a struggling student might not be seeking answers

externally.

2.2.2 System Review

The literature on e-learning systems predominantly focuses on student-centric features

and the overarching design of the system. While this perspective is understandable, an-

alyzing the teacher’s side is also important. Therefore, a study was undertaken on vari-

ous e-learning systems for learning programming. Given the diversity of such platforms

and different strengths and functionalities, different kinds of e-learning systems were in-

cluded. A central focus of the investigation was the content structure with expositives and

evaluatives, the evaluation of exercises, how and if sequencing content is implemented,

UI strategies, and other interesting features. Table 2.1 demonstrates the findings.

The analysis includes HackerRank and Coderbyte, systems for programming practice,

and technical interviews. Given their popularity in the space, Udemy and CourseMaker

were chosen for the MOOC representation. Mooshak2, a system dedicated to orchestrat-

ing programming contests and courses on the Web, was also considered. Additionally,

Khan Academy was selected, offering pre-built courses and exercises where educators

can enroll students and manage their progression. Although LMS might not have direct

functionalities for programming, they offer an environment possible to extend. To repre-

sent this category, Moodle was chosen.

Starting with the content structure, platforms that support the creation of courses

vary in their structural organization. Udemy and Moodle support a single-level struc-

ture, CourseMaker supports a two-level structure, and Mooshak2 a multilevel organiza-

tion. This means that content such as exercises or materials (PDFs) can be structured into

lessons, modules with lessons, or an infinite nested organization, as in Mooshak2.

14 IMPROVING TEACHER’S USER EXPERIENCE IN A VIRTUAL LEARNING ENVIRONMENT

Hackerrank Coderbyte Udemy CourseMaker Mooshak 2 Moodle Khan Academy

Content Structure 1 Level 2 Level Multilevel 1 Level

Ex
po

si
ti

ve

Pdf ✓ ✓ ✓ ✓

Video ✓ ✓ ✓ ✓

Article ✓ ✓

Ex
er

ci
se

s

Quiz ✓ ✓ ✓ ✓ ✓

Open Questions ✓ ✓ ✓

Programming Exercise ✓ ✓ ✓ ✓ ✓ Extensions

Exercise Rep. ✓ ✓ Own Own Questions

Import Quiz Quiz

External Ex rep.

Ev
al

ua
ti

on

Test Class ✓ ✓ ✓

Input/Output tests ✓ ✓ ✓ ✓

Test Types Dynamic Dynamic + Static Dynamic + Static Dynamic Dynamic + Static

Se
qu

en
ci

ng Time ✓ ✓ ✓

Exercise ✓ ✓

For individual Students ✓ ✓

U
I

UI Strategy form-filling form-filling form-filling form-filling form-filling Editable Student UI form-filling

Preview ✓ ✓ ✓ ✓ ✓

UI Helpers Documentation Documentation Documentation + Tips Tutorial Documentation Documentation

Others Cheating detection Cheating detection AI for generation

TABLE 2.1: E-learning System Review

Further, nearly all platforms support diverse learning material formats, including PDF

files and videos. Udemy and CourseMaker also allow the creation of custom HTML pages

or articles to display content, giving the teacher more flexibility.

Regarding exercise creation, every platform, except for CourseMaker, supports multi-

ple choice quizzes, which are naturally easy to evaluate automatically. Coderbyte, Udemy,

and Moodle also offer capabilities for open-ended questions, although without any mech-

anism for automated assessment. While all platforms support the creation of program-

ming exercises, Moodle necessitates additional system extensions. The presence of exer-

cise repositories, however, shows some variation. Platforms such as HackerRank and

Coderbyte offer repositories with pre-existing exercises and save instructors’ custom-

created exercises for future reuse. In contrast, Mooshak2 and Moodle only provide repos-

itories for exercises or questions that educators created themselves. Import functionalities

for exercises are limited, with only Moodle and Coderbyte allowing quiz imports. None

of the platforms under consideration (despite indirectly Moodle) support integrating ex-

ternal repositories, which would increase the range of resources available to teachers.

Regarding the evaluation of programming exercises, each platform has its unique ap-

proach. Udemy exclusively relies on the implementation of a test class for unit testing.

2. STATE OF THE ART 15

In contrast, HackerRank and CourseMaker streamline the test creation process by allow-

ing instructors to define input and output parameters. Mooshak2 and Coderbyte offer a

more flexible approach, allowing the option to quickly set up tests using input/output

parameters or create a test class for unit testing. Consequently, dynamic testing is always

supported. On the other hand, static tests are only supported with systems that allow

teachers to create a test class, which is not always the case.

The ability to sequence exercises, which defines when and how a student can engage

with a specific resource (an aspect of gamification), is present in platforms such as Moo-

dle, Mooshak2, and Khan Academy. Both Mooshak2 and Moodle offer sequencing based

on time or the completion status of prior exercises for the entire class. Khan Academy

provides only time-based sequencing, adjusting individual students or whole classes.

When examining the UI’s design and its help mechanisms for teachers, the primary

UI strategy across most platforms is a form-filling approach. This means teachers can in-

put the information through fields arranged on the UI. Every presented platform employs

this strategy except for Moodle. Moodle’s interface for teachers mirrors the student’s view

but in an editable format, complemented with additional configuration and buttons. To

bridge the potential disconnect where teachers might be uncertain about the student’s

view in a form-filling interface, platforms including Coderbyte, Udemy, CourseMaker,

Moodle, and Khan Academy offer a preview feature. This allows teachers to visualize

how their configurations and content will be presented to the students. As for support

mechanisms to navigate the platform, most systems provide comprehensive documen-

tation detailing usage. Udemy goes further, presenting teachers with tips on crafting

engaging and interactive courses. Mooshak2 provides a tutorial that describes the UI’s

functionalities and buttons of the currently displayed screen.

The platforms discussed also introduce a range of other interesting features. For in-

stance, both HackerRank and Coderbyte also incorporate anti-cheating mechanisms, in-

cluding detecting ChatGPT use. Leveraging advancements in AI, Udemy has introduced

an innovative feature wherein educators describe the desired programming exercise, and

the system automatically creates it using a language-based AI chatbot. HackerRank is

also venturing into AI integration, aiming to enhance the system.

In conclusion, while these e-learning platforms provide a range of features to assist ed-

ucators in content creation and management, there’s room for improvement. Specifically,

16 IMPROVING TEACHER’S USER EXPERIENCE IN A VIRTUAL LEARNING ENVIRONMENT

they could benefit from better capabilities for reusing exercises or content, importing spe-

cific content, and integrating external libraries. These improvements would expand the

platform’s utility and give teachers more options. It’s worth mentioning that although

Hackerrank and Coderbyte offer robust evaluation features, they come at a higher cost

compared to other platforms.

2.2.3 User Experience in E-learning

Many studies found in the research process explore the student’s experience with online

learning and how certain tools impact their learning [9, 13–15]. However, the teachers’

experiences with these platforms are lacking exploration. As highlighted by I. Maslov,

S. Nikou, and P. Hansen, when teachers find a platform challenging or not user-friendly,

they might not make the most of its features [16]. This can, in turn, affect students’ learn-

ing experiences. Therefore, it’s important to consider teachers and students when evalu-

ating online learning systems.

A recent study indicates mixed feelings among educators regarding LMSs [17]. While

40% found LMSs neither harder nor easier to use, just over 50% believed that LMSs sim-

plifies instruction. The Blackboard system, in particular, was spotlighted for its UX chal-

lenges in another study [61]. Many educators described it as non-intuitive due to an

overload of tools and links, leading to confusion. Meanwhile, A. Saleh, H. Abu Addous,

I. Alannsari, and O. Enaizan analyzed Moodle’s UX [62]. Using the UEQ questionnaire,

they engaged students, teachers, and experts to evaluate the system. They didn’t differ-

entiate between student and teacher feedback, but the collective sentiment was positive,

suggesting a good UX with Moodle. Lastly, another study provided an overview of the

methods used to evaluate the UX in e-learning systems [63]. Their findings showed that

over 50% of such research employed some form of inquiry, with questionnaires being the

predominant method. Additionally, 33% incorporated evaluations with hands-on tests,

and 27% leaned towards inspection-based evaluations.

Reaching a consensus on the current UX for teachers in e-learning systems is challeng-

ing. One primary reason is the lack of studies that specifically evaluate UX from the teach-

ers’ perspective. Often, results from teachers and students are aggregated, with fewer

teachers included in the study. This makes a clear understanding of teachers’ experiences

difficult. Also, the research on LMSs presents mixed findings. For instance, one study

presents a positive assessment [62], while another leans towards a neutral stance [17],

2. STATE OF THE ART 17

noting many educators don’t necessarily find LMS tools simplifying instruction. Mean-

while, another study highlights the unsatisfactory experience with Blackboard [61]. Given

these disparities, there’s a need for more research focused on teachers. Enhancing their

UX can further improve e-learning systems, benefiting both teachers and students.

2.3 Summary

This chapter described the multifaceted domain of UX. At its core, UX is a dynamic con-

cept, encompassing various elements from emotions and usability to varying usage con-

texts. When designing for UX, ensuring that the system resonates with users’ pre-existing

mental models is important [28]. Also, evaluating a developed interface is essential, as de-

sign choices don’t always produce the expected outcomes for the end user [33, 34]. Plenty

of evaluation methodologies are available, with popular ones being questionnaires such

as AttrakDiff and UEQ, as well as usability evaluations based on Jakob Nielsen’s 10 us-

ability heuristics [38, 39, 43]. Regarding the ideal number of evaluators, there exist differ-

ent studies ranging from 3-5 up to 13 evaluators to identify most usability issues [44–47].

The section about e-learning systems explores their architecture and integration with

different systems. Gamification is an interesting concept to motivate students and teach-

ers for better learning and teaching. However, criticism of the binary nature of automated

assessment tools is presented [56]. There was a disconnect between a correct solution and

the appropriate learning or understanding of students’ codes found [57, 58]. To solve this,

asking students questions about their code after having resolved exercises was proposed

as a possible solution [60]. Subsequently, a detailed review of well-known e-learning sys-

tems reveals untapped potential in reusing exercises, importing content, and integrating

external libraries. The research of teachers’ UX within e-learning systems is limited. While

the existing studies span a spectrum from negative to positive outcomes, drawing real

conclusions remains challenging [17, 61, 62]. Nevertheless, it’s important to address the

teacher’s perspectives more, as the UX for teachers can significantly influence students’

UX and learning outcomes [16].

Having reviewed the research associated with the themes of this thesis, the next Chap-

ter 3 will shift the focus to explain the systems underlying this thesis.

Chapter 3

Background

This chapter introduces the key systems used in this thesis. Each system will be explored

in detail, highlighting its intended use, features, strengths, and potential drawbacks to

provide an understanding of their roles within the broader context of this thesis. Starting

with Agni, a platform for learning JavaScript in Section 3.1. This is followed by Strapi,

a headless CMS in Section 3.2 and Vue, a framework for UI development Section 3.3.

After that, Section 3.4 explains the API and the language-based Generative Pre-trained

Transformer (GPT) model. The chapter concludes with a summary in Section 3.5.

3.1 Agni

FIGURE 3.1: Agni previous Student UI

19

20 IMPROVING TEACHER’S USER EXPERIENCE IN A VIRTUAL LEARNING ENVIRONMENT

Agni is a Web playground for learning and practicing the JavaScript language [64].

The system was developed using Vue 2 and consists of two main components: the Editor

and the Evaluator.

The Editor component UI, showcased in Figure 3.1, is an interactive learning space

for students. Designed for simplicity and ease of use, this interface facilitates learning

through materials such as PDF files and videos. It enables students to engage in practice

exercises, including quizzes and programming exercises. The data structure is illustrated

in Figure 3.2. Within this structure, a course has modules that contain resources. These

resources can be expositive materials or sheets that are a collection of exercises. Further-

more, exercises can be categorized into quizzes with questions or programming exercises

with automated evaluation tests.

The Evaluator component assesses the students’ code based on static and dynamic

analysis parameters. Dynamic analysis involves functional tests run on test cases to ver-

ify if the code is correct, efficient, and free from memory leaks. Meanwhile, static analysis

identifies syntax errors, unused variables, and potential bugs due to implicit type conver-

sion. For static analysis, Agni employs JSHint, a static code analysis tool. Importantly, all

evaluations are performed client-side, ensuring quick responses.

Its 0.7.7 version only has an interface for students, lacking functionalities for creating

new courses, modules, or resources. Only a single course was accessible, stored within

configuration files. This thesis addresses those gaps by introducing a teacher’s interface,

allowing for course and content creation and management. This addition, complemented

by an Application Interface (API) and BE system for data storage, aims to complete the

Agni platform.

Course
name

resources

…

Resource
…

ProgrammingExercise
statement

…

Test
input

expected

…

Quiz
questions

Question
…

Expositive
file

…

Sheet
exercises

…

Exercise
…

Module
…

FIGURE 3.2: Agni previous Data Model

3. BACKGROUND 21

3.2 Strapi

Strapi is a headless CMS. While traditional CMS software allows users to create, man-

age, and modify digital content on websites without deep coding expertise. It typically

connects the FE, where content is displayed, with the BE, where content is managed and

stored. This combination can lack flexibility, especially when updating the FE or using the

content across various platforms. In contrast, as suggested by its name, a headless CMS

focuses solely on the BE. The FE, or the head, is managed independently. The BE usu-

ally incorporates an API to interface with the FE. This separation allows changes to the

FE without disrupting the core content. Moreover, it facilitates content integration across

multiple platforms via the API.

Built on NodeJS, Strapi is an open-source platform with a user-friendly interface, as

shown in Figure 3.3. This interface facilitates the construction of content structures and

content creation. Users can define fields for various content types, including Collection

types, Single types, and Components. Collection and Single types represent content struc-

tures with an API endpoint. These can be created, edited, and managed independently.

On the other hand, Components are reusable structures that can be used within a Col-

lection or a Single type. The REST API supports the common CRUD operations, create,

read, update, and delete, with filtering through various parameters. To further enhance

its capabilities, Strapi allows for customizing API responses and actions through hooks.

These include Collection hooks, which modify response behavior, and Webhooks, which

can trigger subsequent requests based on predefined criteria. However, such configura-

tions necessitate manual coding. Moreover, Strapi provides a range of plugins. Among

these is a user permission or an email plugin. Its open-source nature encourages the com-

munity to develop and integrate additional features, expanding its capabilities. Strapi

defaults to SQLite for data access, allowing switching to more scalable databases such as

PostgreSQL, MySQL, or MariaSQL. Additionally, Strapi facilitates the integration of unit

tests with Jest to ensure system reliability.

Within this project’s scope, Strapi was employed for BE operations and data storage.

Initially, its UI for content creation was considered a possibility for teachers to manage

content. Yet, due to limited configurability and suboptimal results from a usability eval-

uation, detailed in Chapter 6, its role was narrowed to data storage and communication

via the API.

22 IMPROVING TEACHER’S USER EXPERIENCE IN A VIRTUAL LEARNING ENVIRONMENT

FIGURE 3.3: Strapi‘s Content-Type Builder Interface

3.3 Vue

Vue is a progressive JavaScript framework to develop UIs and single-page applications. It

was created by Evan You, a former Google engineer, in 2014, and since then, it has gained

significant popularity in the development community.

Vue is said to have a gentle learning curve, and developers can quickly build simple

applications. Its simple structure and detailed documentation make it a great choice for

beginners and experienced developers. Vue is component-based, similar to React and

Angular. This means developers can build small, self-contained, reusable components

and combine them to build complex UIs. Every component has its state, markup, and

style. This architecture makes it easier to test and maintain large applications. One of

Vue‘s unique features is its directive system, which allows developers to apply special

behaviors to the rendered Document Object Model (DOM). For example, the v-if directive

can conditionally render elements, the v-for directive can render a list of items based on

an array, and the v-model directive can create two-way data bindings on form inputs. Vue

uses a virtual DOM, which makes it extremely efficient. When a Vue application’s state

changes, instead of immediately updating the real DOM, Vue creates a copy of the DOM

(known as the virtual DOM), applies the changes there, and then compares the virtual

DOM to the actual DOM. Only the differences are then updated in the real DOM. This

process significantly improves performance.

3. BACKGROUND 23

However, Vue does not support all needed functionalities inherently. Therefore, vari-

ous libraries have been developed to extend its capabilities. The most common ones are

Vuex, Vue Router, and Vuetify. Vuex is a state management library for Vue. It acts as a

centralized store for all components in an application, ensuring a consistent management

of state data across them. Vuex facilitates the organization of states, actions, mutations,

and getters, making the development process more structured. Vue Router is the official

routing library for Vue. It allows defining routes and navigation through the applica-

tion without requiring a full page reload. Vuetify, on the other hand, is a material design

framework providing many pre-built UI components. This framework facilitates the con-

struction of the UI, allowing developers to create responsive, mobile-first projects on the

web without investing too much time in styling and design. It offers components such

as navigation bars, footers, icons, and buttons that align with Material Design principles,

providing a consistent and modern aesthetic across applications.

In conclusion, Vue’s simplicity, flexibility, and performance make it a powerful tool

for web development. Its gentle learning curve makes it accessible to beginners, while its

features and flexibility make it useful for developing complex applications. This thesis

chose Vue as the FE framework for developing the teachers UI.

3.4 OpenAI GPT Application Interface

The OpenAI API, leveraging the GPT architecture, is a tool that facilitates the generation

of contextually and human-like text. This API is trained to share information, respond

to questions, create content, and propose suggestions, making it a valuable asset for vari-

ous research domains. It can analyze and understand language constructs, allowing it to

engage in dialogues.

Using the GPT API includes costs based on the chosen model and the volume of in-

formation sent, quantified in tokens. Additionally, there are rate limits for the tokens and

the number of requests possible to send. Typically, three requests in a minute and 200

requests per day are allowed. While requesting an increase in these limits is possible, a

good argumentation with data supporting the need is required for approval.

Despite its advanced capabilities, GPT has its limitations. Due to its knowledge cut-

off in January 2022, it lacks real-time or up-to-date information. It cannot learn or store

personal user data, thereby being unable to offer personalized learning experiences or re-

call previous interactions. The inability to perceive emotions or holistically comprehend

24 IMPROVING TEACHER’S USER EXPERIENCE IN A VIRTUAL LEARNING ENVIRONMENT

human experiences restricts GPT from providing responses that require deep emotional

understanding or empathy.

Several other AI models coexist in the technological landscape, emphasizing varied

functionalities. Another language-based model, similar to GPT, is Bard, from Google. In

addition to text-based models, AI has made significant progress in the image and audio

generation fields. Models such as DALL·E by OpenAI can create images from textual

descriptions. Similarly, models such as Jukebox, also from OpenAI, have ventured into

the audio domain, synthesizing music and demonstrating the potential of AI in creating

it.

GPT and its contemporaries represent the ongoing evolution of AI, each contributing

to the exploration and application of artificial intelligence. While GPT excels in natural

language processing and generation, other models bring innovations in visual and audi-

tory domains, showcasing AI’s versatility and expansive potential. However, it’s impor-

tant to acknowledge these technologies’ limitations and ethical considerations to ensure

responsible use.

3.5 Summary

This chapter presented the key systems underlying this thesis. Starting with Agni, a web

playground for learning JavaScript, was presented with its user-friendly UI for students.

It supports quizzes and programming exercises that can be assessed with dynamic and

static tests. This thesis completes Agni with a teachers UI to create and edit courses and

student enrollments and a BE system to save the contents.

Further, Strapi, a headless CMS, is presented. Its user-friendly UI, which facilitates

the creation of content structures and offers options for customizing API responses using

hooks and plugins, such as user permissions or email services, makes it a good choice for

the BE system for Agni.

Vue is a FE JavaScript framework used for developing the Student UI and the Teachers

UI of Agni. It is said to have a gentle learning curve and has a component-based archi-

tecture. Vue employs a virtual DOM, optimizing efficiency in data handling. To further

enhance its functionalities, the main libraries are Vuex for state management, Vue Router

for defining routes, and Vuetify, a material design framework.

The OpenAI API provides the use and interaction with GPT, an AI language-based

text generator. Its use is limited to a few requests and tokens per minute. It can respond

3. BACKGROUND 25

to questions, create content, and propose suggestions, making it a powerful tool. How-

ever, this comes with the limitations of a knowledge cut-off in January 2022. Despite this

limitation, it was used in this thesis to assist teachers in creating programming exercises.

After presenting the literature concerning UX and e-learning systems in the previous

Chapter 2 and outlining the foundational systems in this chapter, the basis is set to explain

the proposed system, starting with the system modeling and its concepts in Chapter 4.

Chapter 4

System Modelling

Following a presentation of the existing literature and systems underlying this thesis, this

chapter will dive into the concepts and design aspects of the proposed system. The devel-

oped teacher’s UI and a BE system, which will be presented, complete the Agni system

that previously only included a student UI. The exploration begins with the System Archi-

tecture in Section 4.1, providing an overview and detailing how each component interacts

and functions as part of the system. Subsequently, the UI in Section 4.2 is detailed. The

section explains the design concepts and interactive elements of the proposed teacher’s

UI. After that, the data model is presented in Section 4.3, including how the data is or-

ganized to provide the wanted functionalities. Finally, attention is given to the API in

Section 4.4, where its communication between the BE and FE is presented. The chapter

ends with a summary in Section 4.5, recapping the key points.

4.1 System Architecture

This section presents the proposed system’s architecture with an overview of the key com-

ponents and their interaction. It sets the stage for a deeper understanding of specific ele-

ments such as the UI in Section 4.2, Data Model in Section 4.3, and API as central role for

communication between the FE and BE in Section 4.4.

The proposed system’s architecture, as displayed in Figure 4.1, is primarily built on a

headless CMS concept, where normally the headless CMS servers for the content storage,

management and creation. The FE is separate for content display. However, the presented

architecture differs from this by having the FE with functions of managing, creating, and

27

28 IMPROVING TEACHER’S USER EXPERIENCE IN A VIRTUAL LEARNING ENVIRONMENT

<<component>>
Back end

<<component>>
Headless CMS

<<component>>
Database

SQL

Headless

CMS API

<<component>>
Front end

<<component>>
Student

<<component>>
Teacher

<<component>>
VueJS App

Login

<<component>>
Back end

<<component>>
Strapi

<<component>>
Database

<<component>>
Hooks

API Postgres

<<component>>
Front end

<<component>>
Student

<<component>>
Teacher

<<component>>
External Exercise Repositories

<<component>>
AuthorKit

API

<<component>>
External Exercise

Repository
...

more external
repositories

<<component>>
Chat GPT

OpenAI API

FIGURE 4.1: Generic System Architecture Diagram

displaying content. The system’s FE can be divided into two parts, one designed for stu-

dents and another for teachers. The student-oriented interface displays course content

and supplies students with practice exercises. Contrarily, the teacher-oriented interface

serves to manage and create course content, thus expanding the conventional role of the

FE beyond just content display. The BE, akin to a headless CMS, incorporates the CMS

and a database for content storage. It communicates with the FE through its API, head-

less CMS API in the displayed figure. Additionally, in line with the project objectives, the

FE can interface with external services, allowing the integration of exercises from external

repositories. The use and integration of GPT have costs and credentials associated. There-

fore, a direct interaction between the FE and OpenAI API is avoided due to a higher risk

of exposing these credentials to attackers. To interact with GPT, the FE sends a request to

the BE API, which then sends a request to the OpenAI API.

This architecture leverages the benefits of a headless CMS, specifically decoupling

the FE, and allows for easy updates and modifications to the FE without necessitating

a system-wide alteration. Furthermore, the BE’s configuration with its API and data stor-

age enable potential data usage by other services, mirroring how the FE interacts with

external services.

4. SYSTEM MODELLING 29

4.2 User Interface

This section explores the design principles and patterns in developing the teacher’s UI.

The UI is a critical bridge between teachers and the system, significantly shaping the UX.

A well-structured UI can simplify complex tasks, reduce cognitive burden, and boost user

satisfaction. In the proposed system, significant effort has been dedicated to creating a UI

that enhances usability and intuitiveness.

FIGURE 4.2: Interface to create or edit a Course

The designed UI, displayed in Figure 4.2, follows a three-part layout. It includes a

menu on the left for main navigation, a top bar for additional tasks and information, and

a large central area for most activities. This design is common in web applications, there-

fore trying to fit users’ mental models, helping them feel familiar and navigate the system

more easily based on their previous experiences with other websites. The design uses a

clean, simple style with blue, gray, and white colors. Red and green indicate errors or

deletions and successful actions, respectively. A focus was also placed on icon use, pro-

moting quick recognition over textual explanations. Further, it was tried not to overload

30 IMPROVING TEACHER’S USER EXPERIENCE IN A VIRTUAL LEARNING ENVIRONMENT

the user with functionalities and text so that key buttons can quickly be recognized and

the overall structure is rapidly understood.

The system’s UI has two primary functionalities:

• Student managing: The creation of occurrences with classes and students and re-

viewing their progress.

• Content managing: The creation and adaptation of courses, expositives, evaluatives,

and questions.

For managing students, the UI distinguishes past, current, and future occurrences

wherein students enroll in classes. The current occurrences are made more visible for

rapid and easy access. Teachers can create, delete, and import students and classes, asso-

ciate them with a course, and visualize the course layout in the defined time interval. As

explained in more detail in the data model Section 4.3, a course has modules and lessons

that can be sequenced based on time or exercise completeness conditions. Therefore, for

teachers to easily understand the layout of their selected course, it can be displayed in

two ways:

1. Using a calendar to display when a student can assess a certain module or lesson.

This is appropriate for courses that are mostly sequenced by time-based conditions.

2. Visualizing all the modules, lessons, expositives, and evaluatives in a tree view,

showcasing currently available resources with different colors.

Furthermore, statistics can be displayed to better understand the student’s progress in

a course. Three primary metrics were declared: percentage of correct exercises, engage-

ment, and overall performance.

1. Percentage of Correct Exercises:

To calculate the percentage of correct exercises done by a student, the number of ex-

ercises the student has completed with a grade of 100% is considered. This number

is divided by the total number of exercises available in the course.

• c: The number of exercises with a grade of 100% (correctly solved).

• t: The total number of accessible exercises.

4. SYSTEM MODELLING 31

The equation for the percentage of correct exercises (P) is given by:

P =
c
t
× 100% (4.1)

2. Engagement:

Engagement is based on the student’s progress in the recent two lessons. For this,

the sum of all grades of the exercises from these two lessons is divided by the total

number of exercises in these lessons. The grade of an exercise is on a scale from 0 to

100, with 100 being the perfect score. ’

• g: The sum of grades of all exercises from the last two lessons.

• n: The number of exercises in these last two lessons.

The equation for engagement (E) is:

E =
g
n

(4.2)

3. Performance:

The performance metric averages the percentage of correct exercises and engage-

ment. Therefore, the two mentioned metrics are summed and then divided by 2 to

get the performance.

The equation for performance (F) is:

F =
P + E

2
(4.3)

Further, the exercises and the percentage of students that resolved them correctly can

be seen, as well as the submitted solutions of each student.

For managing pedagogical content, the UI differentiates by course, expositive, evalua-

tive, and question, displayed in tables in the content dashboard. The interface for creating

or editing mirrors the student-facing UI, as shown in Figure 3.1 and the teacher’s UI in

Figure 4.2. For the teacher’s version, text fields are converted into input fields, with ad-

ditional interactive elements such as buttons or icons for adding or deleting modules,

lessons, or exercises. This approach lets teachers see a live preview of how modifications

will appear to the student, improving intuitiveness and ease of use. The same principle

applies when creating individual expositives, evaluatives, or questions. Teachers also can

view, reuse, and adapt content from other authors.

32 IMPROVING TEACHER’S USER EXPERIENCE IN A VIRTUAL LEARNING ENVIRONMENT

Additional UI features have been introduced to assist teachers. A search function in

the top bar allows teachers to easily locate various elements such as exercises, students,

modules, and course goals, which then directly access the specific interfaces, whether a

course from a module or an occurrence from a student. Both a light and dark mode have

been incorporated for individual preferences. Furthermore, teachers can upload a profile

picture to personalize their profiles.

4.3 Data Model

This section explains a generalized data model to understand how the data is structured

and the key classes to support the wanted functionalities.

Occurrence
startDate

…

Course
…

Module
…

Class
delay

…

Student
delay

…

Status
code

…

ProgrammingExercise
statement

solution

…

Test
input

expected

…

Quiz
questions

Question
…

1-*

Expositive
file

…

Evaluative
…

Lesson
…

Condition
afterWeek

afterPercDone

FIGURE 4.3: Generalized Data Model

In Section 3.1 was presented the previous data model of Agni in Figure 3.2. The course,

which was only one at the beginning, was stored in configuration files. Some alterations

and additions to this model were made to complete and refine its structure. A general-

ization of the new data model with the key classes and only a view fields is displayed in

Figure 4.3. It can be divided into two parts: one for managing the students, in orange,

which teachers can access in the student management navigation, and the other for man-

aging courses and their contents, in yellow, which teachers can access in the respective

content management navigation.

4. SYSTEM MODELLING 33

Starting with the content management part, which consists of a Course, that is com-

posed of Modules, which contain Lessons. Previously, rather than Lessons, Agni di-

rectly had Resources, either Expositions or Exercise sheets. Recognizing the struc-

ture of school or university courses, which provide both instructional content and hands-

on learning opportunities within most lessons. The decision was made to transition to

a lesson-based format. Within this structure, each Lesson can have multiple expository

materials, PDFs, or videos with exercises for students to test their understanding in pro-

gramming exercises or quizzes. The programming exercises further can have Tests with

input, expected output, type (log, expression, metric, function), and subtype (error for

expression, occurrences, and lines for metric) parameters. This gives teachers a quick

way to create different types of tests, including dynamic and static tests, without having

to write full code for unit tests. To sequence, which was one of the declared objectives,

Modules and Lessons contain conditions with fields named afterWeek to specify after

which week the student can work on a Module or Lesson, and afterPercDone to define a

percentage of completed exercises after which the student can progress.

The afterWeek condition works on the lessons and modules. At the module level,

afterWeek represents the specific week after a module becomes available. This ensures

learners follow a structured timeline, preventing them from advancing too rapidly. Once

this time-based threshold is met, the lessons within that module become candidates for

access. However, individual lessons can also have their own afterWeek" conditions. This

offers a more refined sequence for lesson availability. For example, a module might be-

come available in the third week, but a specific lesson within it might be set to the fifth

week. The afterPercDone condition focuses on a learner’s progression by evaluating the

percentage of correct exercises, meaning with a grade of 100. At the module level, the

availability of a new module requires learners to finish a predetermined percentage of

exercises from the preceding module. For instance, if a module has an afterPercDone set

at 80%, it implies that a learner must have correctly submitted 80% of the exercises from

the prior module to unlock the subsequent one. Lessons also can have a afterPercDone

condition. To unlock a new lesson, a student must complete the defined percentage of

exercises from the lesson before it. When dealing with the first lesson in a module, this

condition references the completion rate of exercises from the final lesson of the preceding

module.

34 IMPROVING TEACHER’S USER EXPERIENCE IN A VIRTUAL LEARNING ENVIRONMENT

Occurrences, Classes, Students, and Statuses form the structure for managing stu-

dents, which didn’t exist in the previous version of Agni. Occurrences are linked to a

Course and have a start date, determining when students can start accessing the Course.

The afterWeek condition for Modules and Lessons is based on this start date. Classes

and Students have fields for declaring delays that may occur during the year. The delays

work summative, meaning that in a case of associating a delay of 2 weeks to a class, all

students in that class with no delay associated will have a delay of 2 weeks. Students with

a delay of 1 week associated will then have a delay of 3 weeks. Further, the grades and

solutions to exercises done by the student are saved in the Status.

With this data model, a structured course can be created and sequenced. Further,

different learning materials and the two main automated evaluation exercises, quizzes,

and programming exercises are supported. Also, organizing classes and students in a

similar structure to universities will make it easy to import and integrate the systems with

university or LMSs. As a consequence of the alterations in the data model, the student

UI underwent modifications, as displayed in slightly alternated UI in Appendix A and

previous UI in Figure 3.1.

4.4 Application Interface

Having detailed the UI, in Section 4.2, and the data model, in Section 4.3, stored in the BE.

This section presents the API, the component for communication between the BE and the

UI.

Therefore, a API is required that supports CRUD (Create, Read, Update, and Delete)

operations. These operations should apply to the key classes, namely Course, Exposi-

tives, Evaluatives, Occurrence, Students, and Statuses, for easy reuse, individual alter-

ations, and visualizations. Additionally, query parameters such as pagination, filtering,

search, etc., need to be incorporated into the API, facilitating the retrieval of specific con-

tent variations. This ensures a more organized and efficient content search. Moreover, a

complete search feature enabling a search across all content categories, including courses,

materials, students, and occurrences, is necessary.

The system’s BE has both students and teachers who will interact with the API to get

and post data. Therefore, the definition of permissions for interaction is a key aspect. Two

main roles are defined: Student and Teacher, as shown in Figure 4.4. Further, the role

of Teacher can be divided into Author and Viewer. Students are provided with access

4. SYSTEM MODELLING 35

Roles

Student Teacher

Author Viewer

FIGURE 4.4: User Permission Roles

to their assigned courses. The content visibility is dependent on their progress and the

course timeline. Additionally, students can update their exercise progress, necessitating

PUT requests to status. The role of Teacher, as explained, can be further defined as Author

or Viewer. Regardless of their categorization, all teachers can create all classes visible in

the data model. However, their update privileges are limited to the objects they have

created. They can access all content classes, which include their exercises and expositives,

as well as those published by their peers. For occurrences, classes, students, and statuses,

teachers can only retrieve those they have personally created. This approach ensures

student privacy and enables teachers to view and clone course content or exercises created

by other teachers.

4.5 Summary

This chapter offered a bird’s-eye view of the developed system, introducing key designs

and foundational concepts. The architecture is similar to a headless CMS concept. How-

ever, it is complemented by a custom UI for content creation and management. Also,

external services such as external exercise repositories and chat GPT are integrated.

The UI section showcased a common three-part structure consisting of a primary

menu on the left, an app bar for secondary tasks, and a main area for content display

and interaction. A central concept was transforming the student UI of Agni into an ed-

itable format, enabling a user-friendly and intuitive approach to course creation. Also, the

intention is not to overload the interface and use icons or images for faster recognition.

Additionally, features such as the display of the course layout and the statistics that teach-

ers can see with defined metrics such as percentage of correct exercises, engagement, and

performance are presented.

36 IMPROVING TEACHER’S USER EXPERIENCE IN A VIRTUAL LEARNING ENVIRONMENT

A generalized data model was introduced with the two parts of student and content

parts. It supported features, such as sequencing modules and lessons by time or exercise

completion constraints.

The API requirements for good communication were outlined, including CRUD op-

erations and query parameters such as pagination, filtering, and search. Further, the user

permission roles consist of students and teachers, which can be subdivided into author

and viewer. Students can get their courses and submit exercise progress. Teachers can

create all described classes of the data model. However, they can only update their own

and not get other teachers’ occurrences, classes, students, and statuses.

Having obtained an understanding of the system’s architecture, concepts, and require-

ments, the focus shifts to its implementation. Detailing decisions, specific implementa-

tions, challenges encountered, and resolutions in the subsequent Chapter 5.

Chapter 5

Implementation

Transitioning from the top-level overview in the previous Chapter 4, this chapter explains

the system and its implementation. In Section 5.1, the adoption of Vue as the front-end

(FE) framework is highlighted. Essential libraries, the course component, a responsive

design, and the integration with external repositories are detailed. The chapter then pro-

gresses to the back-end (BE) in Section 5.2. The choice of Strapi as the CMS framework is

explained, along with insights into the implementation of the data model, API configura-

tions, and unit testing. Section 5.3 then describes an experiment undertaken to generate

programming exercises using Chat GPT and the integration of Chat GPT into the system

to assist teachers with creating programming exercises. This chapter’s main points and

findings are summarised in Section 5.4.

5.1 Front-end

This section presents the implementation of the FE. It starts with the reasons and moti-

vations for using Vue as the FE framework for the teacher’s UI, explored in Subsection

5.1.1. Subsection 5.1.2 presents the supplementary frameworks and extensions required

during development. This is followed by Subsection 5.1.3, which explains how the course

component was implemented, supporting the three roles of student, author, and viewer.

The Subsection 5.1.4 presents the challenges faced in ensuring a responsive UX across di-

verse devices. Concluding the section, Subsection 5.1.5 provides insights into integrating

external content. The import of JSON and CSV files with data such as student enrollments

and the integration of AuthorKit, a repository of programming exercises, is explained.

37

38 IMPROVING TEACHER’S USER EXPERIENCE IN A VIRTUAL LEARNING ENVIRONMENT

5.1.1 Framework Selection

The web development ecosystem has experienced substantial growth in the number of

tools and frameworks available for developers. Among the most prominent JavaScript

frameworks for FE development are React, Angular, and Vue. Each offers a distinct ap-

proach to building web applications and has strengths and challenges.

Vue offers a set of methods, properties, components, and a design structure that’s easy

to grasp, making it an excellent choice for those new to framework-based development.

Its reactive data binding and component-based architecture provide developers with the

tools to create dynamic web applications. However, Vue is competing with more estab-

lished competitors in the field. React, supported by Facebook, and Angular, backed by

Google, have larger communities, resulting in more available resources, third-party li-

braries, and community-driven solutions. That said, Vue, with its growing community, is

steadily trying to close this gap.

The choice of Vue for the Agni project came down to several factors. First and fore-

most, consistency was significant. With the student UI of Agni already using Vue, it made

logical sense to ensure that both the student and teacher interfaces operated under the

same framework. This not only ensures a unified experience but also streamlines the

development process. Reusing components, logic, or styles from the student UI when

building the teacher UI reduces redundancy and speeds up development.

Two main development strategies were under consideration: creating separate appli-

cations for the student and teacher UI or integrating both into a single application. The

decision leaned towards developing one application for the entire FE. The reasons for this

were twofold. Firstly, it simplified using and modifying the Agni student UI for teacher

use. Secondly, the system wasn’t large enough to necessitate two separate applications.

Moreover, certain structures and data storage functions of the student UI could be reused

for the teachers’ UI.

5.1.2 Essential Libraries

When considering a FE framework, it’s important to not just focus on the main devel-

opment framework but also on the auxiliary tools that enhance and facilitate its use. As

the core FE framework, Vue needs complementary libraries to realize its full potential.

Vuetify, a popular Material Design component library, offers pre-built components that

simplify development and ensure a consistent look and feel. However, Vuetify is also

5. IMPLEMENTATION 39

limited and sometimes can’t satisfy an application’s diverse requirements. Some func-

tionalities, such as video display components, needed additional specialized libraries.

This mixed approach, which combined Vuetify’s component library with niche, special-

ized libraries, granted the flexibility to pick the best tool for each task.

Moreover, state management is a cornerstone of any dynamic application. The seam-

less interaction, data flow, and reactivity users expect from modern web applications can

be attributed to adept state management. Vue Store (Vuex) is the official state manage-

ment pattern and library for Vue applications. Vuex maintains a centralized store at its

core, acting as a ”single source of truth” for the application. This ensures that any data,

once changed, reflects uniformly across components, eliminating discrepancies and po-

tential data conflicts. For this project, Vuex played an important role in managing all kinds

of data, such as user credentials, course data, and style configurations, which helped with

the responsive design.

5.1.3 Course Component

An important concept highlighted in Section 4.2 was reusing the Agni student UI for

teachers as an editable version. This approach allows teachers to preview edits in real

time and offers an intuitive course creation and content modification interface. There-

fore, the course component was refined to offer authors, viewers, and students different

views. The general structure was kept, only modifying small elements, such as ”spans” or

”divs” containing texts, additional buttons, or icons. With the user login, the role, either

as a student or teacher, is registered in the store. For teachers, this role is further updated

into an author or a viewer when content is accessed and displayed in the UI. The differ-

ent views of the course were implemented using Vue’s ”v-if” directive that conditionally

renders an element based on the truthiness of its expression. If the expression for ”v-if”

evaluates to true, the element is rendered; if the expression evaluates to false, the element

is not rendered. Figure 5.1 shows a code snipped of how a module’s name is displayed

in the header. Using the v-if directive, it is checked if the user is a student, viewer, or

author, and depending on it, a div element with the computed name of the module or an

editable component to write the module name is displayed. This approach preserves the

core structure while displaying user-specific alterations.

40 IMPROVING TEACHER’S USER EXPERIENCE IN A VIRTUAL LEARNING ENVIRONMENT

<v-list -item -title :class =" getTitleClass">

<div v-if=" isStudent || isViewer">

{{ getModuleByResourceId(resource.id, resource.contentType). internalId }}.

{{ getModuleByResourceId(resource.id, resource.contentType).name }}

</div >

<Editable

v-if=" isAuthor"

type=" module"

field="name"

placeholder =" Module Name"

:value=" getModuleByResourceId(resource.id , resource.contentType).name"

:id=" getModuleByResourceId(resource.id, resource.contentType).id"

@input =" editableInput"

/>

</v-list -item -title >

FIGURE 5.1: Code for rendering the Module Name

5.1.4 Responsiveness

The Agni student UI exhibited several responsive issues at the project’s beginning despite

using Vuetify. For instance, buttons overlapped, and text sizes didn’t adjust. Considering

the variability of today’s digital user base, ensuring that the interface is responsive to dif-

ferent screen sizes, from laptops and tablets to smartphones, was important. The goal was

not just aesthetics; an interface that doesn’t adjust properly can frustrate users, leading to

a worse UX.

Vuetify inherently offers functionalities to make components responsive. The grid sys-

tem employs a 12-point grid layout, with structured containers housing rows and adapt-

able columns. These columns are arranged to vary in size from mobile screens to expan-

sive desktop monitors. With features such as breakpoints, offset, order, and auto-sizing,

Vuetify offers developers a toolkit for responsive design. Further, breakpoints are cus-

tomizable, allowing developers to tweak and adapt styles as required. These features

were used in most of the teachers UI. However, the course component posed a unique

challenge. While spanning the entirety of the student UI, this component only displays a

segment of the screen in the teacher UI. The interfaces of the student and the teacher while

creating a course can be seen in Figure 5.2. Therefore, directly making the component re-

sponsive to the overall screen size wasn’t possible. To overcome this, the component’s

width is dynamically computed when the course component or sub-components are ren-

dered or undergo a screen size change. This width is then captured in a variable stored

within the Vuex Store module. Within this module, functions were defined to return style

configurations based on the computed width. These functions are subsequently called to

determine the style of the presented components. This approach ensures that the course

5. IMPLEMENTATION 41

component fluidly adapts its dimensions concerning the screen width, guaranteeing an

optimal viewing experience across different devices.

FIGURE 5.2: Agni Student UI (left) and Teacher UI to create a course (right)

5.1.5 External Content

This subsection explores the functionalities implemented to integrate external content. It

includes importing students or classes via CSV or JSON files, eliminating manual entry,

and facilitating the setup of classes for teachers. Moreover, a key objective of this thesis

was to integrate external repositories to increase the number of available exercises and

connect the system with other tools in the ecosystem.

Importing data, such as students and classes, simplifies a teacher’s workflow, elim-

inating the need to create each element from scratch. The system supports importing

student and class data with JSON and CSV files. While the system recognizes standard

keys such as ”studentName” or ”className”, the variability in key naming across dif-

ferent CSV and JSON files poses a challenge. Acknowledging this, after selecting a file,

the system displays its native keys and those detected in the uploaded file in a dropdown

selector for the teacher to match or verify them. Therefore, importing different formatted

files is possible, avoiding manually creating each student and saving teachers time.

Shifting to the integration of external repositories to further broaden the resources

available for teachers. AuthorKit, a tool for creating gamified programming exercises,

was integrated into the system to enhance the range of available programming exercises.

The choice of AuthorKit was driven by its big repository supporting many different kinds

of exercises and easy, free accessibility. Its API provides the bridge for the integration. In

AuthorKit, various information and configurations can be saved with an exercise. The

42 IMPROVING TEACHER’S USER EXPERIENCE IN A VIRTUAL LEARNING ENVIRONMENT

integration prioritizes overlapping data, such as the exercise’s name, statement, solution,

and tests. Also, the import of only JavaScript exercises is possible. Further, AuthorKit

normally contains dynamic input-output tests, which, depending on the solution of the

exercise, were transformed into tests of type ”log” if the solution returns an output with

”console.log” or of type ”func”, if a function is contained in the solution. Given the flexi-

bility offered by AuthorKit in exercise creation, the system can’t cover every unique case.

Therefore, after importing, the tests are run on the solution to verify its correctness and

show the teacher possible errors. Moreover, exercises aren’t immediately stored in the BE.

Instead, they’re held in the FE, for instance, within a course lesson. Only when the course

is saved are the exercises stored in the BE.

5.2 Back-end

This section explores the BE and its implementation. It involves server-side responsi-

bilities such as data management, processing, task execution, and system logic. Strapi, a

headless CMS, was selected for this role. The section starts with discussing the reasons for

choosing Strapi in Subsection 5.2.1. This is followed by exploring the implementation of

the Data Model, aligned with Strapi’s data structure in Subsection 5.2.2. Subsequent Sub-

section 5.2.3 explains customizations done to the API for guaranteeing wanted features

and a better performance. The section ends by presenting the unit tests that reinforce key

functionalities in Subsection 5.2.4.

5.2.1 Content Management System Selection

The creation of a BE system for a project presents numerous options. It could involve a

full development process using BE frameworks such as Node.js with Express.js, NestJS,

or Python with Django or Flask. Alternatively, Backend as a Service (BaaS) services such

as Firebase, Parse, or Back4App could be employed. Another option is a headless CMS

such as Strapi, Contentful, or Prismic.

A headless CMS has several advantages compared to other options. It provides a

quick and minimal coding setup of a BE system with key features such as user authenti-

cation oftentimes included. It also has a built-in user interface for creating and managing

content. It also provides an API for integrating an UI to display or even manage and create

5. IMPLEMENTATION 43

content. Nevertheless, using a headless CMS has drawbacks. These include limited con-

trol over the BE logic and UI for content creation. Further, potential cost implications are

associated with some CMS platforms. Despite these drawbacks, the benefits outweighed

the cons, leading to selecting a headless CMS as the BE service.

Several headless CMS options are available, including Contentful, Sanity, Ghost, Pris-

mic, and Strapi. In comparison to its counterparts, Strapi presents a few challenges. It

has a relatively younger community and may lack some features provided by more ma-

ture CMS platforms. Furthermore, being built on Node.js could impact its performance

in large-scale, high-traffic applications compared to CMSs developed in more efficient

languages. However, Strapi also offers advantages. As an open-source platform, it is

freely available. It is easy to set up and developer-friendly, making it an attractive choice.

Moreover, it offers the customization of the API. Considering these advantages and the

challenges, using Strapi for the BE service was also predetermined.

5.2.2 Data Model

Strapi‘s data structure can be categorized into three distinct types: collection type, single

type, and component, as previously detailed in Section 3.1. To briefly refresh, Single and

Collection types are independent, each with its own API endpoint. While Single types are

limited to one instance, Collection types can manifest in multiple instances. Components,

on the other hand, are reusable entities that exist within either a collection or a single type.

A generalized data model and its intentions were detailed in Section 4.3. Figure 5.3

translates the data model into the Strapi data structures, highlighting its principal classes.

The complete BE data model is shown in Appendix B. The distinctions between green

Components and blue Collection types are displayed. For the content aspect, Course,

Expositive, Evaluative, and Question have been implemented as Collection Types. This

allows educators to access, create, and edit them individually, making them easy to reuse.

Similarly, Occurrence, Class, Student, and Status have been selected as Collection Types

for easier creation and accessibility. The other entities, such as Modules Lessons etc.,

which are nested within courses, are categorized as Components since there’s no need to

create or modify them individually.

This data model was implemented using the built-in UI of Strapi to create a data struc-

ture, as shown in Figure 3.3.

44 IMPROVING TEACHER’S USER EXPERIENCE IN A VIRTUAL LEARNING ENVIRONMENT

Occurrence
startDate

…

Course
…

Module
…

Class
delay

…

Student
delay

…

Status
code

…

ProgrammingExercise
statement

solution

…

Test
input

expected

…

Quiz
questions

Question
…

1-*

Expositive
file

…

Evaluative
…

Lesson
…

Condition
afterWeek

afterPercDone

FIGURE 5.3: Strapi Generic Data Model

5.2.3 Customization

Some modifications had to be made to Strapi to facilitate interaction between API and

improve data management performance. Including the implementation of hooks to cus-

tomize the response of certain requests, a new endpoint to search in all collection types,

and the change of the database management system to PostgreSQL.

Strapi’s default configuration only allows the creation of a single collection type with

one request. Given this limitation, creating a complete course with other collection types

such as Expositives, Evaluative, and Questions would have required multiple individual re-

quests. To address this issue, collection hooks were employed. In essence, implementing

a hook customizes the standard behavior of requests. Therefore, creating an entire course,

evaluatives, occurrences, and classes was implemented. For instance, when creating a

course and introducing a new quiz, all relevant data is submitted to the course endpoint

via a singular post request. Following this, a hook for the course calls the evaluative hook

with the respective data, which, for a quiz with new questions, subsequently triggers the

question hook to create that question. This chain of internal calls significantly reduces the

number of requests between the FE and BE. Beyond this, creating multiple instances of

each collection type with a single request, making content creation more efficient, was im-

plemented. Other functionalities, such as cloning a course with the flexibility for teachers

to specify modules, lessons, and evaluatives or expositives they wish to replicate, have

been implemented using collection hooks.

The roles of Student and Teacher, which can be further defined as Author and Viewer,

5. IMPLEMENTATION 45

were implemented in two different ways. The distinction between Student and Teacher

is made with the user-permissions plugin supported by Strapi. When creating a user,

the specific role is saved with him. These roles and the respective permissions of which

requests one can do were configured using the UI of Strapi. Whenever a collection type is

created, the author is saved. This is implemented through the collection hooks. When a

teacher requests data or wants to update content, it is verified whether the request comes

from the author or a viewer (non-author). Different responses are triggered depending on

it, such as differences in the data returned or denying the request.

A custom endpoint named ”content” was introduced to provide a complete search

functionality across all entities. Therefore, teachers can search across various collection

types by text, including courses, exercises, students, and more. It delves into different

fields, searching through goals, module names, exercise titles, etc. The results from these

collection types are then aggregated and returned in a single response. Moreover, the end-

point allows for a specialized search highlighting the latest published content, spanning

courses, expositions, evaluations, and questions. This provides teachers with updates and

new content they can check out in the home menu.

Strapi’s default configuration for database management is SQLite. Its simplicity makes

it suitable for quick prototyping. However, SQLite’s limitations became apparent as

the project grew in complexity. In particular, its struggles with scalability and inability

to efficiently handle write operations posed a problem. When considering alternatives,

three relational database management systems (RDBMS) supported by Strapi emerged as

contenders: MySQL, MariaDB, and PostgreSQL. MySQL, one of the most popular open-

source databases, is known for its speed and reliability. Its wide user base provides good

community support. However, when it comes to certain features, such as support for

JSON fields or handling transactions efficiently, MySQL has its limitations. MariaDB, an

evolution of MySQL, is designed to maintain compatibility with its predecessor while in-

troducing new features and enhancements. While having improvements over MySQL,

MariaDB carries many of MySQL’s inherent structural and performance characteristics.

PostgreSQL stood out due to its extensibility and robust handling of relational databases.

Its native support for JSON, advanced data types, and reputation for managing relational

data models effectively made it the preferred choice. The migration from SQLite to Post-

greSQL in Strapi is easily handled by changing and adding some configurations. In prac-

tice with PostgreSQL, operations such as updating or creating a small course, which took

46 IMPROVING TEACHER’S USER EXPERIENCE IN A VIRTUAL LEARNING ENVIRONMENT

about 1-2 minutes with SQLite, were reduced to a few seconds. This change was crucial

in ensuring sufficient speed in handling important requests.

5.2.4 Unit Tests

For the fundamental functionalities, as well as most of the implemented hooks, unit tests

were incorporated. Unit tests play an important role in software development, ensuring

that individual units of the software work as designed. Their primary purpose is to val-

idate the smallest parts of the application in isolation, guaranteeing that they function

correctly under various scenarios. Jest, a standard tool for integrating unit tests in Strapi,

was used for this purpose. When writing these unit tests, attention was set to testing the

customization and collection hooks implemented and verifying key functionalities of the

system. Both positive tests, which checked for expected outcomes, and negative tests, de-

signed to induce and handle errors, were developed to offer a full spectrum of validation

scenarios. During the testing phase, a separate empty database is created. This allows

real data to be created, read, updated, and deleted, offering a testing scenario while con-

firming that stored data remains unaffected. Unit tests were specifically developed to

evaluate the creation, updating, reading, and deletion processes for all elements in the

system. These include courses, expositives, evaluatives, questions, occurrences, classes,

students, and statuses. While it’s always possible to encounter issues within the API,

these unit tests provide a robust assurance of system functionality under normal condi-

tions. They validate the reliability of the implemented features and ensure the system

operates as expected, enhancing its overall integrity.

5.3 Assisted Exercise Generation

Creating exercises is an important but time-consuming and error-prone task when it comes

to developing learning content for programming. Therefore, one way to enhance the UX

for teachers is to create tools that assist them in this task. AI language-based generative

models, such as chat GPT, have created an opportunity to do this.

This section focuses on assisted exercise generation using GPT. It starts with Subsec-

tion 5.3.1, which describes an experiment of automatically generation programming exer-

cises using GPT. Subsection 5.3.2 then explains its integration into the proposed system.

5. IMPLEMENTATION 47

5.3.1 Experiment

An experiment was conducted to create programming exercises using the GPT-3.5 API by

OpenAI. This experiment was done within the project Framework for Gamified Program-

ming Education (FGPE)+ with the objective of generating 120 programming exercises for

AuthorKit. AuthorKit allows for the definition of many different parameters for an ex-

ercise. For the experiment, the desired parameters for each exercise were title, difficulty,

context, task, input description, output description, example, solution language, solution

code, and five input/output tests. To experiment more with GPT‘s capabilities and as

the project FGPE+ involves universities of different countries, the generation of these pa-

rameters in different languages, including Portuguese, English, Italian, and Polish, was

decided. The generated exercises should then be converted into the appropriate format

of AuthorKit, YAPExIL, and added to the repository. The GPT-3.5 model was tasked with

inventing the exercises independently, without relying on external descriptions.

The experiment posed significant challenges, particularly in generating consistent and

reliable responses that contained the specified parameters and could be automatically

converted. The initial attempt involved a simple prompt, instructing the model to gener-

ate programming exercises considering the desired parameters. In the Appendix C Sec-

tion C.1 can be seen the first prompt. However, this simple prompt got a huge incon-

sistency in responses, such as variations in the use of code fields, headers, subheaders,

list, markdown, or table formations, and alterations in parameter names, which made

automatic conversion impossible. Several modifications were explored to mitigate these

issues, including providing explicit instructions to the model on unwanted formats and

presenting examples of the desired ”key: value \n” structure. Despite these modifica-

tions, the differences in format and key names continued. The most effective resolution

found was to instruct the GPT-3.5 model to answer in a JSON format, accompanied by

a format example. This strategy delivered the most consistent answers and uniform key

names. The final prompt to generate the exercises can be seen in the Appendix C Section

C.1.

Using this prompt, the desired 120 programming exercises were generated. Each re-

sponse was then automatically converted into an object to test the validity of the JSON for-

mat and the input/output tests with the solution code. Multiple errors were encountered

throughout the process, such as JSON errors indicating an invalid format and code errors

appearing when an input/output test failed. When an error emerged, another prompt

48 IMPROVING TEACHER’S USER EXPERIENCE IN A VIRTUAL LEARNING ENVIRONMENT

was sent to describe the type of error and ask GPT to resolve it. Example responses of a

correct exercise and exercises with JSON and code errors are displayed in the Appendix

C Section C.2.

Total % of Total Resolvable % of resolved
Correct Exercises 120 21%
JSON Errors 199 35% 23 12%
Code Errors 245 44% 3 1%
Total 562 100%

TABLE 5.1: Results of Automated Exercise Generation with Chat GPT

Table 5.1 outlines the results of generating the 120 exercises. To obtain these, it was

necessary to generate 564 exercises. Therefore, only 21% were correct. 199 exercises (35%)

contained JSON formatting errors, such as missing commas or brackets. 12% of these,

amounting to 23 exercises, could be corrected by pointing out the issues to GPT. Further-

more, 245 exercises (43%) presented code errors, implying errors either in the solution

code or the input/output tests. However, only 1% of these, specifically three exercises,

could be corrected with the assistance of GPT. Correct exercises were manually verified if

the generated parameters fit together. Thereby, no discrepancies were found.

These results point to several issues, starting with the high occurrence of JSON errors.

As previously discussed, establishing a consistent format posed a considerable challenge.

Despite asking for the answer in a JSON format, GPT struggled to create it correctly. The

same issue was found by other programmers mentioned in the community forum of Ope-

nAI [65]. Therefore, it points to a general limitation of GPT. Furthermore, the fact that

43% of the generated exercises contained errors in input and output tests or in the solution

code underscores the difficulties GPT faces in generating fully correct code. A possible so-

lution to mitigate these issues could be to generate the parameters step-by-step through a

conversational approach with GPT. It is said by multiple websites that a step-by-step ap-

proach should lead to better results [66, 67]. However, when using the API, the number of

requests per minute is limited to 3, which was why this method was not pursued. Other

improvements could be by providing more context and a specific role to GPT, which is

said to have a positive impact.

A possible limitation of this experiment could have been the use of GPT version 3.5.

Version 4.0 was already available but was not chosen in this context because of the higher

cost. This experiment handled the creation of exercises invented by GPT. The feature

integrated into the proposed system gives teachers the ability to describe the exercise

5. IMPLEMENTATION 49

they want to generate, therefore not being the exact same situation. However, due to the

consistency between the generated parameters of an exercise, this should not significantly

change the results obtained from this experiment.

This study shows GPT’s limitations with generating code and a consistent JSON for-

mat. 35% and 44% of JSON and code errors are significant. Despite the mixed results,

the integration of GPT was seen as an innovative addition to the system. However, the

approach needs to be improved to get more resistant results.

5.3.2 Implementation

The implemented feature allows teachers to write brief descriptions of programming ex-

ercises they want to be generated. Therefore, a text area is displayed in the interface for

creating a programming exercise. The description will be sent to the BE, where another

request, including the specific prompt, is sent to the OpenAI API to generate the exercise.

For the generation, GPT-3.5 was used due to its reduced cost. Also, adjustments were

made to the methodology presented in Subsection 5.3.1. The approach recommended by

Joseph Martinez [68] was followed. Instead of specifying a JSON format in the prompt

and providing an example, a JSON schema is passed as parameters to define the desired

response format. Additionally, the role of a teacher wanting to assist the user has been as-

signed to GPT. The parameters wanted in the generation are an exercise name, statement,

solution, and 3 test cases. The code for sending the prompt is displayed in the Appendix

C Section C.3.

Using this approach, the responses are more consistent with valid JSON formats. Nev-

ertheless, it is being verified, and if successful, the parameters are written into the UI. The

exercise, with its tests, is automatically run in the FE to identify and show potential prob-

lems with the solution code or test cases. With the high percentage of code errors found

using GPT in the previous subsection, the feature is only an assistant for the teacher and

cannot be handled as completely reliable.

5.4 Summary

This chapter delved into the implementation of the system and its features. The chapter

starts with the FE, describing the decision to use Vue. This choice primarily aligned the

teacher and student UI for Agni with the same framework. Key libraries such as Vuetify2

50 IMPROVING TEACHER’S USER EXPERIENCE IN A VIRTUAL LEARNING ENVIRONMENT

and VueStore streamlined the implementation. Subsequently, the approach to use the stu-

dent UI and transform it into an editable interface is detailed. While the main component

structure remained, Vue’s ”v-if” directive defined different views. This course compo-

nent, visible to teachers and students with different occupations on the screen, created

a new challenge of making it responsive. The solution was a dynamic computation of

the component’s size, on which style configurations were based. Lastly, importing data

from files, such as CSVs or JSON, or integrating AuthorKit to enrich the exercise pool was

implemented.

Next, the focus shifted to the BE, discussing the selection of Strapi. Its main reason

is flexibility, cost-effectiveness, and ease of use as a headless CMS. The implementation

of the data model in Strapi is also elaborated on, shedding light on the use of content

structures such as collections and components. The decision on which data structure to

use was influenced by whether a class required independent creation, updating, deletion,

and an API endpoint. The use of collection hooks to reduce the number of requests when

creating a course is presented, and the significant change from SQLite to PostgreSQL sig-

nificantly improved the system’s speed. Finally, the section concludes by discussing the

implementation of unit tests on the Strapi API. These tests ensure the functionality and

enhance the system’s integrity.

The last section of this chapter presents the assisted exercise generation using the GPT

model. An experiment of creating a programming exercise with GPT-3.5 showed its limi-

tations in creating valid JSON formats and fully correct programming exercises where the

solution and test cases provided are correct. To solve the JSON errors, the integrated sys-

tem followed a different approach of detailing the wanted response format in the request

parameters in a JSON schema. Further, when receiving a valid exercise, its solution is run

on the test cases in the FE to notify the teacher if errors occur.

Having detailed in the preceding two chapters, the system’s architecture, concepts,

and implementation, as well as the pivotal decisions and challenges addressed in the pro-

cess of developing the proposed system. The subsequent Chapter 6 will explain the eval-

uations conducted on both the Strapi UI and the developed UI, examining and discussing

the outcomes.

Chapter 6

Validation

This chapter explores the validation of the main goal of this thesis to propose a system

with a good UX. During the project, two evaluations were undertaken. The first assess-

ment targeted Strapi’s UI, measuring the UX when using it to complete teacher tasks.

The unsatisfactory results led to developing a new UI. This UI, including the key func-

tionalities such as content and student management, underwent another evaluation. The

chapter begins by explaining the chosen evaluation methodology, as outlined in Section

6.1. It then presents the evaluation of the Strapi’s UI, encompassing the findings, a discus-

sion, and conclusions in Section 6.2. The following Section 6.3 explores the evaluation of

the developed UI. The results are presented, discussed, and compared to the results of the

first evaluation. The chapter ends with a recap, presenting the discoveries and takeaways

from the evaluations in Section 6.4.

6.1 Evaluation Methodology

Before presenting the two evaluations of this thesis, it’s essential to understand the ratio-

nale for selecting a questionnaire grounded on Jakob Nielsen’s usability heuristics.

Several methods are available for evaluating the UI, ranging from expert evaluations

and task-based performance measures to questionnaires. In this context, questionnaires

were chosen as the primary evaluation tool to get insights into external users’ opinions.

While the developers have their perspective on the system, often, there exists a divergence

between these views. Furthermore, questionnaires ensure respondent anonymity, thereby

encouraging honest feedback. Compared to in-person usability testing or expert evalua-

tions, they are a more economical and scalable choice, free from the needed equipment or

51

52 IMPROVING TEACHER’S USER EXPERIENCE IN A VIRTUAL LEARNING ENVIRONMENT

venues. Questionnaires allow participants to provide feedback at their own pace, which

can, on the one hand, lead to good responses but also to a poorer quality of responses if it

is not taken seriously.

There are different questionnaires, as detailed in Subsection 2.1.3. Among the most

popular ones are AttrakDiff, UEQ, and SASSI for UX evaluation. There are also usabil-

ity questionnaires anchored on Jakob Nielsen’s 10 usability heuristics for user interface

design. Given this project’s emphasis on crafting an intuitive UI and wanting more in-

sights into the possible usability problems and improvements, further not having many

evaluators available, Nielsen’s approach and a questionnaire based on his 10 usability

heuristics were chosen. To these heuristics were added easiness, speed, and reliability of

key functions. Each category contains two to four questions with the answer possibili-

ties ranging from ”Never” to ”Always” with the apart option of ”not applicable”. For

example, questions for the heuristic Aesthetic were:

A Is the information on the screen just what I need?

B Does the information on the screen stand out from the background?

C Aesthetically, is the system pleasant in terms of: colors, brightness, etc.?

The questionnaire further contains a system classification, graded from ”Bad” to ”Very

Good”. After that, respondents can answer open-ended questions about the system’s

strengths, weaknesses, and improvement suggestions. Before answering the question-

naire, respondents executed standard teacher tasks, such as course creation, material

reuse, and class creation, ensuring they had hands-on experience with the system’s func-

tionalities. These tasks are displayed in the Appendix D Section D.1. The questionnaires

for the two evaluations can be seen in Section D.3 and E.2 of Appendix D and E, with

slight differences in the questions regarding Reliability.

6.2 Strapi User Interface Evaluation

This section explores the evaluation of the Strapi UI, including its results, discussion, and

conclusions. The purpose of evaluating the Strapi UI was to determine its sufficiency

in delivering a satisfactory UX. For this assessment, the evaluators were five master’s

students, aged between 20 and 25, from the University of Porto. These individuals are

enrolled in courses related to informatics, such as computer science, data science, and

6. VALIDATION 53

statistical analysis, and include two women and three men. They were assigned typical

teacher tasks and later responded to a questionnaire, shown in Appendix B Section D.3.

The UI of Strapi version 4.4.5 was evaluated, including the implemented data struc-

ture of Section 4.3. Example images of this UI can be seen in Appendix B Section D.2.

Category % Mean
1. Visibility 80 3.25
2. Compatibility 90 3.17
3. Freedom 70 3.14
4. Consistency 80 3.94
5. Prevention 45 3.11
6. Emphasis 70 3.93
7. Flexibility 67 2.00
8. Aesthetics 80 3.25
9. Help to Users 67 3.20
10. Help with documentation 53 3.25
11. Easiness 80 2.25
12. Speed 50 4.20
13. Reliability 100 2.91
14. Classification 100 2.80

TABLE 6.1: Strapi UI Evaluation Results Table

Table 6.1 displays the evaluated heuristics, with the percentage of questions answered

by the respondents and the mean score of their responses. In the Appendix Section D.4,

the responses by every respondent to all questions, with their percentage of answers and

score, are displayed. Figure 6.1 visualizes the score of every metric with a bar chart or-

dered decreasingly. As mentioned in Section 6.1, the respondents answered with ”Never”,

”Almost Never”, ”Regular”, ”Almost Always”, and ”Always”, which were transformed

into 1 to 5 to calculate the scores.

Analyzing the results, it can be noted that most of the heuristics were evaluated pos-

itively. Especially Speed, Consistency, and Emphasis, with a score of about 4, were the

highest. However, Speed with a 4.20 score had only 50% of questions answered, mean-

ing many of them were thought to be not applicable. On the other hand, Flexibility,

Easiness, Reliability, and Classification, with a score of 2, 2.2, 2.9, and 2.8, respec-

tively, were evaluated negatively. Flexibility also had a relatively low percentage of

questions answered, 67%. Help with documentation and Prevention had a low per-

centage of questions answered, specifically 53% and 45%. As strong points of the system

were mentioned, the easy creation of a course with modules and lessons, excluding ex-

positives and evaluatives, which were mentioned as a weak point. The need to create

54 IMPROVING TEACHER’S USER EXPERIENCE IN A VIRTUAL LEARNING ENVIRONMENT

collection types such as courses, expositives, evaluatives, and questions individually and

only after that being able to associate them with each other was seen as unintuitive and

time-consuming. Another strong point was the generally easy-to-use and fast UI. Further

weak points were a lack of a help system, a landing page without helpful information, and

the lack of explanation of some fields. A tutorial was often mentioned as an improvement

suggestion.

1 2 3 4 5

7. Flexibility
11. Easiness

14. Classification

13. Reliability
5. Prevention

3. Freedom

2. Compatability
9. Help to Users

10. Help with documentation
8. Aestehtics

1. Visibility
6. Emphasis

4. Consistency
12. Speed 4.20

3.94
3.93

3.25
3.25
3.25

3.20
3.17
3.14
3.11

2.91
2.80

2.25
2.00

1 2 3 4 5

FIGURE 6.1: Strapi UI Evaluation Results Chart (ordered by score)

The overall more positive evaluation of the 10 usability heuristics for Strapi‘s UI was

expected due to the UI being one of the positive aspects of why people use Strapi. Strapi

is very fast in all operations, and with intern evaluations and a design team behind the

UI of Strapi, the positive evaluation of Speed, Consistency, and Emphasis seems congru-

ent. Aesthetics, as is of a subjective quality, also seems appropriate, with a 3.25 score.

With no real help and explanations in the main menu, some confusion of the evaluators

on how to use the system, as well as no tutorial or guide on how to use the system, the

more neutral evaluation of Visibility, Help with documentation, Help to users, and

Compatibility can be reasoned. However, the evaluation of Freedom and Prevention

seems lower than expected. Strapi validates all operations and prevents users from mak-

ing errors. Also, it gives users the freedom to interrupt and continue actions. The diffi-

culties found in creating a whole course with each collection type separately explain the

6. VALIDATION 55

more negative scores in Reliability and Easiness. Flexibility, with the lowest score

of 2.00, also seems understandable due to Strapi not having options for customization.

This validation has limitations derived from the evaluator’s profile and their number.

While student participants provided valuable feedback on the UX, teachers were the pre-

tended choice for evaluators. Due to certain issues, they couldn’t be included. Teachers

have a deeper understanding of the specific needs and demands associated with their

roles within such systems. Moreover, the evaluation was conducted with only five eval-

uators. While Jacob Nielsen points out that this number is sufficient to identify most us-

ability issues, there are counterarguments, as discussed in Subsection 2.1.3. Some studies

question Nielsen’s method, proposing that a group of 10 evaluators might be more effec-

tive. Engaging 10 participants instead of 5 could enhance the study’s robustness without

undermining reliability. It’s also important to note that the evaluators’ familiarity with

the author might have introduced some bias.

Despite the mentioned limitations, the study highlighted that Strapi’s UI, in managing

course content and facilitating student interactions, is not intuitive. This is especially

shown in the low Reliability, Classification, and Easiness scores. Given its non-

customizable nature, refining its UI is impossible. As a result, the decision was made to

develop a new UI for teachers while retaining Strapi’s API and content storage for back-

end operations.

6.3 Final User Interface Evaluation

This section presents the evaluation of the final UI, containing the key features but not

all other described ones. The same five students from the initial assessment participated,

joined by five professors from ESMAD P.Porto and the University of Porto, who have ex-

perience with e-learning systems as educators. These five professors include one woman

and four men between the ages of 30 and 60. The students, familiar with the initial eval-

uation, were reminded to compare the new UI with the Strapi UI. They were allowed to

revisit the Strapi UI for reference, facilitating a direct comparison with the newly devel-

oped UI. They were also provided with their initial responses to ensure continuity in their

assessment. Meanwhile, the five professors centered their evaluation solely on the new

UI, without the backdrop of the initial assessment. All the evaluators were given the same

56 IMPROVING TEACHER’S USER EXPERIENCE IN A VIRTUAL LEARNING ENVIRONMENT

tasks as in the first evaluation with a slightly different questionnaire. Some questions un-

suitable to the final UI were removed from the reliability. The complete questionnaire can

be seen in the Appendix Section E.2.

As stated before, the evaluated UI didn’t include all features described in this thesis.

It supported only student and course management. It didn’t include statistics, course

layouts, features to import files, or integration with AuthorKit or GPT. The search through

all collection types, the settings, and the account menu, with logout and dark mode, were

also not yet included. Screenshots of the interfaces of the evaluated UI can be seen in

Appendix C Section E.1.

Table 6.2 shows the evaluation results by category. It displays the overall results, high-

lighting the percentage of questions answered and the score. These metrics are broken

down into the groups of students and teachers. As in the previous section, response

options ”Never,” ”Almost never,” ”Regular,” ”Almost always,” and ”Always” were nu-

merically converted, ranging from 1 to 5. For a visualization of the data, Figure 6.2 shows

the scores by students, teachers and all evaluatores. Looking at the overall scores, all

categories, except Help with documentation and Flexibility, are around and above

4. Help with documentation and Flexibility are more neutral evaluated around 3.

Speed, Consistency, and the Classification having the top 3 overall scores. The chart

also shows the difference between the students’ and teachers’ scores, with the teachers

always evaluating the system worse than the students. The biggest disparity is in the

Classification, Easiness, and Flexibility. Flexibility was also only evaluated

with 37% of the questions. Teachers’ worst evaluated categories were Easiness, Help

with documentation, and Flexibility. In contrast, students worst evaluated categories

were Flexibility, Help to users, and Help with documentation. In the open-ended

questions, evaluators frequently highlighted the system’s simplicity and intuitiveness as

its strengths. However, they also pointed out weak areas, including initial challenges

faced during usage, occasional errors, and the absence of confirmations and customiza-

tion options. For improvements, suggestions included introducing a tutorial, revisiting

the testing and refinement process, improving the onboarding experience, enabling the

import of CSV or JSON files, and incorporating auto-save and hotkey features.

Upon examining Figure 6.2, a noticeable disparity between the assessments of teach-

ers and students immediately stands out. This could be attributed to students being in-

structed to compare the developed UI with the Strapi UI, which they previously critiqued

6. VALIDATION 57

All Students Teachers
Category % Mean % Mean % Mean
1. Visibility 93 3.95 85 4.41 100 3.55
2. Compatibility 100 4.20 100 4.60 100 3.80
3. Freedom 60 3.96 55 4.18 65 3.77
4. Consistency 80 4.50 80 4.88 80 4.13
5. Prevention 65 3.85 60 4.42 70 3.36
6. Emphasis 85 4.06 75 4.53 85 3.68
7. Flexibility 37 2.82 27 4.25 47 2.00
8. Aesthetics 100 4.27 100 4.53 100 4.00
9. Help to Users 90 3.96 87 4.15 93 3.79
10. Help with documentation 73 3.14 73 3.55 73 2.73
11. Easiness 100 3.95 100 4.70 100 3.20
12. Speed 80 4.63 90 4.89 70 4.29
13. Reliability 99 4.30 100 4.71 98 3.89
14. Classification 100 4.40 100 5.00 100 3.80

TABLE 6.2: Final UI Evaluation Results Table

as lacking. Teachers also have a clearer understanding of their needs and are more expe-

rienced with such systems, having a more critical eye. The categories of Flexibility and

Help with documentation received the lowest scores. This is understandable, consider-

ing the evaluated system did not offer tools for interface customization or user assistance

at that stage. A big difference in perception between students and teachers emerged in the

areas of classification, Easiness, and Flexibility. Teachers found the system more

challenging to grasp than students, who provided notably favorable evaluations for both

Easiness and Classification. Further, the disparity in Easiness could come from the

students considering the time-consuming and unintuitive way of creating courses with

Strapi. Their major critics of having to create exercises and expositives independently

and having no organization of the collection types were resolved. Teachers also identified

issues with Visibility and Error prevention compared to the other categories, likely

reflecting the system’s initial lack of data verification. Speed and Consistency were the

highest-rated categories, with the shift from SQLite to PostgreSQL majorly contributing to

the positive rating on Speed. The three-part design structure and the consistent appear-

ance achieved using Vuetify might have boosted the Consistency scores. Interestingly,

one teacher’s evaluation stood out as an outlier. This teacher found the system counterin-

tuitive and rated many criteria unfavorably. Such evaluations underscore the challenges

of designing a UI that pleases everyone. While the general sentiment is positive, it’s cru-

cial to acknowledge critical feedback. This can help pinpoint improvement areas and

58 IMPROVING TEACHER’S USER EXPERIENCE IN A VIRTUAL LEARNING ENVIRONMENT

accommodate the broadest range of users.

1 2 3 4 5

7. Flexibility

10. Help with documentation

5. Prevention

1. Visibility

11. Easiness

9. Help to Users

3. Freedom

6. Emphasis

2. Compatability

8. Aestehtics

13. Reliability

14. Classification

4. Consistency

12. Speed

Students; All; Teachers;

1 2 3 4 5

FIGURE 6.2: Final UI Evaluation Results Chart (ordered by score of all evaluators)

Previously, the Strapi evaluation was conducted with five students, who later assessed

the developed UI. These students were reminded about their previous evaluation and

provided with their earlier feedback on the Strapi UI. They were encouraged to keep the

Strapi UI in mind while evaluating the new Agni UI. Figure 6.3 contrasts the evaluations

of the Strapi UI and the developed UI by the same students. In the figure, the red bars

represent the Strapi UI scores, while the blue bars denote the scores for the developed UI.

Categories are arranged in descending order based on the score difference between the fi-

nal UI and the Strapi UI. At first glance, the developed UI outperforms the Strapi UI across

all categories, indicating significant UI advancements. Categories such as Flexibility,

Easiness, Reliability, and Classification show improvements by roughly 2 points.

The students’ earlier criticism of the Strapi UI’s unintuitive collection type creation pro-

cess was addressed, introducing the reuse of the Angi student UI in an editable version.

6. VALIDATION 59

1 2 3 4 5

10. Help with documentation
6. Emphasis

12. Speed
4. Consistency

9. Help to Users
3. Freedom

1. Visibility
8. Aestehtics

5. Prevention

2. Compatability
13. Reliability

14. Classification

7. Flexibility
11. Easiness

Final UI (Students); Strapi UI

1 2 3 4 5

FIGURE 6.3: Comparison of the Strapi and Final UI Results (ordered by difference)

The newly introduced hierarchical structure with content and student management seems

to have enhanced the system’s navigability. These enhancements appear to be successful,

especially since the strengths of the second evaluation include intuitiveness and simplic-

ity, areas once described as weak points in the Strapi assessment. Other areas, such as

Compatibility, Prevention, Aesthetics, Visibility, Freedom, User Assistance, and

Consistency, also show marked improvement, albeit with lesser differences. While Strapi

had superior error prevention mechanisms, the overall improvement in scores could be

reasoned by the higher easiness of use, improving the satisfaction with the developed UI,

which might account for its uniformly better scores across all categories. The smallest

disparities in scores were found in Speed, Emphasis, and Help with Documentation. The

similar scores in Help with Documentation between the two systems can be explained,

given that neither system substantially aids users with guidance or support features.

The shortcomings of the initial evaluation, especially the lack of teacher participants,

were addressed in the second study, which also expanded the size of the evaluator pool.

However, the potential bias arising from the author’s familiarity with the five student

evaluators remained consistent in both evaluations.

Despite certain limitations, there’s a significant progression from the Strapi UI to the

60 IMPROVING TEACHER’S USER EXPERIENCE IN A VIRTUAL LEARNING ENVIRONMENT

developed UI. This is particularly evident in key areas such as easiness, classification, and

the reliability of critical functions. Although more critical, including teacher feedback still

casts the developed system positively. Implemented enhancements, such as the ability

to import classes and students using JSON or CSV files, address specific suggestions for

improvement. Errors identified have been fixed, and the interface has been subtly refined,

particularly in the appbar’s display. Other improvement suggestions and weak points

were resolved, and missing features, including the integration of Authorkit and GPT, the

addition of statistics, and a general search function, among others, were implemented.

6.4 Summary

This section presents an important aspect of UI development: the validation. The se-

lected validation methodology was a questionnaire rooted in Jakob Nielsen’s 10 usability

heuristics, selected for its good insights into usability, potential issues, and points for en-

hancement.

Initially, the Strapi UI underwent evaluation, revealing unsatisfactory results. It was

perceived as time-consuming and unintuitive. Notably, Flexibility, Classification,

Easiness, and Reliability were highlighted as significant weak points, with three of

them being identified as pivotal. The resolution to design a new UI emerged from these

results and Strapi’s customization limitations.

Subsequently, an evaluation of the developed, albeit not final, UI was undertaken.

The evaluated UI contained the key functionalities. The same evaluators of the Strapi

assessment found the developed system significantly better and outperformed it in ev-

ery category. Flexibility, Easiness, Classification, and Reliability were areas that

were evaluated negatively in the Strapi evaluation and showed the highest improvement

in scores. Incorporating the perspectives of the teachers further strengthened the credi-

bility of the findings. While these teachers approached the system more critically, their

overall assessment was still favorable, suggesting that the developed system provides a

positive UX.

Chapter 7

Conclusion

This thesis focused on enhancing the UX for teachers in a VLE. Specifically, it presents

the evolution and completion of the Agni Web Playground, with the missing part of a

teacher’s UI and a back-end system to process and store data. The study began by sur-

veying the current UX and e-learning systems research landscape in Section 2.1, 2.2. Sub-

sequently, in Section 4.1, 4.2, 4.3, and 4.4 concepts and strategies related to the UI design,

Data Modeling, and API construction were outlined to provide an insight into the sys-

tem’s architecture. This was followed by a presentation of the system’s FE and BE im-

plementations with the exploration of an experiment conducted to create programming

exercises using the GPT model and further the integration of GPT into the system. These

Sections 5.1, 5.2, and 5.3 shed light on the chosen technologies, specific methodologies,

and encountered challenges. To validate the system’s effectiveness, two evaluations were

conducted. The first assessed the UX of the Strapi UI to conclude unsatisfactory results,

while the second analyzed the UX of the developed UI with the key functionalities and

an overall positive assessment in the Sections 6.2 and 6.3.

At the beginning of the project, several objectives were outlined. The primary and

most important one was the development of an intuitive UI with good usability. The eval-

uation of the developed UI showed significant improvements regarding Strapi. Overall,

the respondents evaluated the system positively, with one of the major strong points men-

tioning the intuitiveness and simplicity of the system. Therefore, the objective of having

an intuitive UI with good usability was achieved. However, it is important to mention

that despite an overall positive evaluation, there is always room for improvement.

The system effectively incorporated the reuse of the Agni Student UI in an editable

61

62 IMPROVING TEACHER’S USER EXPERIENCE IN A VIRTUAL LEARNING ENVIRONMENT

version for course creation with expositive and evaluative contents. Moreover, the sys-

tem enables the reusability of courses, expositives, evaluatives, and questions, allowing

teachers to selectively clone courses by choosing specific modules, lessons, expositives,

and evaluatives. It also provides the flexibility to sequence content for better course align-

ment by time-based and exercise completeness conditions, offering integrated gamifica-

tion opportunities. Further, the time-based sequencing can be individualized with delays

for classes or students. These three mentioned objectives were successfully achieved.

As for system extensions, although the primary aim was to incorporate a variety of

external repositories, only Authorkit was integrated. This integration is an interesting

milestone as it’s a feature nearly not found in other e-learning systems. The assisted exer-

cise generation with the GPT model also succeeded. Despite its presented limitations with

generating completely correct code with matching test cases, it is an interesting function-

ality that can assist teachers in creating programming exercises. An unfulfilled objective

is the system’s integration with an LMS, which would have simplified its use for teachers.

7.1 Contributions

The major contributions and findings of this thesis were:

• The system: One of the major contributions is the system developed, which can be

used in classes and is available online*

• Published Paper: A paper was published with the title ”Can a headless CMS pro-

vide a good UX to teachers?”, detailing the evaluation of Strapi and the first ap-

proaches to the developed UI [18].

• Editable Agni Student UI: Using the student UI of Agni and making it editable was

one of the key concepts of the UI. Showcasing the teacher’s edits in real-time and

how it affects what the students see was expected to be an intuitive concept. The

evaluation and general positive consent with specific feedback describing the sys-

tem as simple and intuitive approves this.

*https://agni.dcc.fc.up.pt/

https://agni.dcc.fc.up.pt/

7. CONCLUSION 63

• AuthorKit integration: The systems integration of an external exercises repository,

namely AuthorKit, is a rarely found feature. Despite its rareness, it brings two sys-

tems together, making them improve from each other. These features should be im-

plemented in more VLE to enhance the exercise landscape available to the teacher.

• Exercise generation with GPT: The experiment showcased limitations of the GPT

model, which are the generation of valid JSON formats and difficulties in generating

an exercise solution with correct test cases. Therefore, an alternative approach to

pass a JSON schema within the parameters was presented, which was integrated

into the system to assist teachers in generating programming exercises.

• Teacher as Focus: As explained in the first chapters, most research regarding e-

learning focuses on students. This thesis instead highlights the development of the

teachers UI with interesting features and evaluations to ensure good usability and

insights into the user’s perspectives. This enrichens a lacking research landscape.

7.2 Future Work

Despite the positive evaluation of the system, there is always room for improvement and

more detailed analysis.

A major point for future work is integrating the system with an LMS. This would

facilitate teachers’ use in their universities, where most use LMSs. The integration would

be done through Learning Tools Interoperability (LTI) following the roadmap provided

by J. P. Leal, R. Queirós, P. Ferreirinha, and J. Swacha [55].

Further evaluation of the system with an UX evaluation tool would give more insights

into the UX and possible other improvement opportunities. The evaluations conducted

during the project were executed outside an actual classroom setting, focusing primarily

on system usability. A more holistic assessment would entail deploying the system within

real classroom environments. This would allow educators to delve deeper into its features

and pinpoint areas for potential improvements. To get a better understanding of the UX

of teachers, questionnaires such as AttrakDiff, UEQ, and SASSIS could be used. Subse-

quently, three evaluations at different times could be interesting to capture the evolution

over time. The initial assessment would be conducted in the first or second week after the

system’s integration. This measures educators’ first impressions and identifies immediate

usability concerns as they set up courses and onboard students. A mid-semester review

64 IMPROVING TEACHER’S USER EXPERIENCE IN A VIRTUAL LEARNING ENVIRONMENT

could offer insights into the system’s performance during the semester, highlighting both

its strengths and areas of contention. Lastly, an end-of-semester evaluation would reveal

if sustained use addresses initial concerns or if new challenges arise with time.

Besides a more in-depth evaluation, some features could be enhanced or integrated to

improve the system’s capabilities further. Starting with integrating more external exercise

repositories to broaden the resources available for educators. Gamification features could

also significantly boost user engagement. For students, earning points, badges, or achiev-

ing levels can make learning more engaging. On the teacher side, a comparative analysis

showcasing student progress against other classes from other teachers or historical data

could motivate teachers to better their classes to beat their peers or last occurrences. A

more diverse array of exercise types would be another possibility to enhance the sys-

tem. The current offering could be augmented with assignments, open-ended questions,

and mechanisms for more qualitative feedback. Given the described criticism about au-

tomated assessments, the system could allow teachers to pose questions during or post-

submission. This can validate the understanding and prevent rote learning. While the

platform is presently JS-centric, there’s a clear need to accommodate exercises with HTML

and CSS. Over time, adding languages such as Python and Java would make the system

more complete and usable in a broader context. A communicative bridge between ed-

ucators and learners can be further interesting. Features such as a chat system or Q&A

forum, with options for public or private exchanges, can encourage a collaborative and

supportive learning environment.

This thesis presented an experiment and the integration of the GPT model to assist

teachers in creating programming exercises. To validate the chosen approach of passing

a JSON schema in the parameters, the experiment of generating 120 exercises could be

replicated using this approach. Therefore validating its use and finding possible limita-

tions. Despite generating programming exercises with a given description of the teacher,

teachers could select existing exercises and generate new ones based on the selected ones.

Another possibility would be the generation of quizzes or a whole course. However, these

language-based models can not only generate text. They can also analyze it and give sug-

gestions. This could be leveraged as a fictive person or animal that, while the teacher

creates his course, can analyze it and give feedback and improvement suggestions.

Appendix A

Agni Student User Interface

FIGURE A.1: Agni Student UI

65

Appendix B

Data Model

67

68 IMPROVING TEACHER’S USER EXPERIENCE IN A VIRTUAL LEARNING ENVIRONMENT

O
ccurrence

<<C
ollection>>

year : N
um

ber - integer

startD
ate: D

ate - D
ate

endD
ate: D

ate - D
ate

courses : R
elation w

ith C
ourse

classes : R
elation w

ith C
lass

author: R
elation w

ith U
ser

C
ourse

<<C
ollection>>

nam
e : Text - short Text

type: E
num

eration

goals : C
om

ponent (repeatable) - G
oal

m
odules : C

om
ponent (repeatable) - M

odule

O
ccurrence: R

elation w
ith O

ccurrence

author: R
elation w

ith U
ser

M
odule

<<C
om

ponent>>

nam
e : Text - short Text

lessons : C
om

ponent (repeatable) - Lesson

C
lass

<<C
ollection>>

nam
e : Text - short Text

delay : N
um

ber - float

occurrence : R
elation w

ith O
ccurrence

students : R
elation w

ith S
tudent

author: R
elation w

ith U
ser

Student
<<C

ollection>>

nam
e : Text - short Text

delay : N
um

ber - float

class : R
elation w

ith C
lass

statuses : R
elation w

ith S
tatus

author: R
elation w

ith U
ser

user: R
elation w

ith U
ser

Status
<<C

ollection>>

grade : N
um

ber - float

start : D
ate - D

atetim
e

end : D
ate - D

atetim
e

student : R
elation w

ith S
tudent

evaluative : R
elation w

ith evaluative

answ
er: D

ynam
ic zone - code &

 quiz

M
ilestone

<<C
om

ponent>>

fram
e : Text - short Text

label : Text - short Text

Program
m
ingExercise

<<C
om

ponent>>

type : E
num

eration

language : E
num

eration

statem
ent : R

ich text

contexts : C
om

ponent (repeatable) - C
ontest

skeleton : Text - long Text

solution : Text - long Text

tests : C
om

ponent (repeatable) - Test

Test
<<C

om
ponent>>

input : Text - short Text

output : Text - short Text

expected : Text - short Text

type : E
num

eration

subtype : E
num

eration

show
: boolean

Q
uiz

<<C
om

ponent>>

questions : R
elation w

ith Q
uestion

Q
uestion

<<C
ollection>>

question : R
ich text

im
age : M

edia - single M
edia

correctA
nsw

er : N
um

ber - integer

answ
ers : C

om
ponent (repeatable) - A

nsw
er

author: R
elation w

ith U
ser

1-*

0-1

1-*

1-*

1-*

1-*

1-*

1-*

Expositive
<<C

ollection>>

nam
e : Text - short Text

type : E
num

eration

file : M
edia - single M

edia

m
ilestones : C

om
ponent (repeatable)

 - M
ilestone

author: R
elation w

ith U
ser

0-*

A
nsw

er
<<C

om
ponent>>

answ
er : Text - short Text

2-*

Evaluative
<<C

ollection>>

nam
e : Text - short Text

content : D
ynam

ic zone -
Q

uiz &
 P

rogram
m

ingE
xercise

statuses: R
elation w

ith S
tatus

author: R
elation w

ith U
ser

Lesson
<<C

om
ponent>>

nam
e : Text - short Text

description : Text - long Text

expositives : R
elation w

ith E
xpositives

evaluatives : R
elation w

ith E
valuatives

1-*

G
oal

<<C
om

ponent>>

goal : Text - short Text

1-*

0-*
0-*

C
ontext

<<C
om

ponent>>

form
at : E

num
eration

nam
e : Text - short Text

text : Text - long Text

show
: boolean

C
ondition

<<C
om

ponent>>

type : E
num

eration

afterW
eek : N

um
ber - float

afterP
ercD

one : N
um

ber - percentage

C
ode

<<C
om

ponent>>

code : Text - long Text

Q
uiz

<<C
om

ponent>>

questions : C
om

ponent (repeatable) - Q
uestion

Q
uestion

<<C
om

ponent>>

answ
er : Text - short Text

question: R
elation w

ith Q
uestion

1-*

1-*

0-*
U
ser

<<C
ollection>>

usernam
e : Text - short Text

em
ail : Text - short Text

passw
ord : Text - short Text

role : E
num

eration (S
tudent, Teacher)

student: R
elation w

ith S
tudent

R
elaton w

ith collection types that w
ere authored

from
 this user

FIGURE B.1: Complete Data Model

Appendix C

Automated Exercise Generation

Experiment

C.1 Prompts

First prompt used to generate programming exercises:

Create a programming exercise with the parameters: title,

difficulty, context, task, input description, output description,

example, solution language, solution code, and 5 input output

tests.

69

70 IMPROVING TEACHER’S USER EXPERIENCE IN A VIRTUAL LEARNING ENVIRONMENT

Final prompt to generate the 120 programming exercises:

Create a new programming exercise. It has to be solvable in

various programming languages

Define:

title (in english, portugues, italian and polish),

difficulty ("beginner", "easy", "average", "hard", "master"),

context (you can make a detailed description which refers to a

real situation) (in english, portugues, italian and polish),

task (in english, portugues, italian and polish),

input description (in english, portugues, italian and polish),

output description (in english, portugues, italian and polish),

a basic example of input and output,

solution language,

solution code (which has to be a function without calling the

function with "input()"),

at least 5 tests with input output that cover the corner cases

(if the function has two or more parameters, the input should

look like: input:"parameter1;parameter2")

write it in a json file in the following format:

{"title": {"english":...,...}, "difficulty": ...,

"context": {"english": ...,...}, "task": {"english":

...,...}, "input description": {"english": ...,...},

"output description": {"english": ...,...}, "example":

{"input": ...,"output": ...}, "solution language": ...,

"solution code": ..., "tests": [{"input": ...,"output":

...},...]}

C. AUTOMATED EXERCISE GENERATION EXPERIMENT 71

C.2 Final Prompt Responses

{

"title": {

"english ":" Vowels Counter",

"portugues ":" Contador de Vogais",

"italian ":" Contatore di vocali",

"polish ":" Licznik samoglosek"

},

"difficulty ":" beginner",

"context ": {

"english ":"You are asked to create a program that reads a text

input and returns the number of vowels found in it.",

...

},

"task": {

"english ":" Create a function that receives a string and returns the

number of vowels in it.",

"portugues ":"..." ,

...

},

"input_description ": {

"english ":"A string of characters",

"portugues ":"Uma string de caracteres",

...

},

"output_description ": {

"english ":"An integer with the count of vowels in the input string",

"portugues ":"..." ,

...

},

"example ":{" input ":" hello world","output ":3},

"solution_language ":" Python",

"solution_code ":"def count_vowels(s):\n vowels = [’a’, ’e’, ’i’, ’o’, ’u’]\n

count = 0\n for c in s:\n if c.lower() in vowels :\n count += 1\n return count",

"tests": [

{"input ":"the quick brown fox jumps over the lazy dog","output ":11} ,

{"input ":" antidisestablishmentarianism ","output ":11},

{"input ":" aeiou","output ":5},

{"input ":" rhythm","output ":0},

{"input ":" Supercalifragilisticexpialidocious ","output ":16}

]

}

LISTING C.1: Correct generated Exercise

72 IMPROVING TEACHER’S USER EXPERIENCE IN A VIRTUAL LEARNING ENVIRONMENT

{

"title": {

"english ": "Largest Word Finder",

"portuguese ": "Encontrador da Maior Palavra",

"italian ": "Trovatore della Parola Piu Lunga",

"polish ": "Znajdz Najdluzsze Slowo"

},

"difficulty ": "easy",

"context ": {

"english ": "You are tasked to find the largest word in a given sentence.",

...

},

"task": {

"english ": "Create a function that receives a sentence and returns the largest

word in it. If there are multiple words with the same length , return the

first one in the sentence.",

...

},

"input_description ": {

"english ": "A string representing a sentence.",

...

},

"output_description ": {

"english ": "A string with the largest word in the sentence.",

...

},

"example ": {

"input": "The quick brown fox jumps over the lazy dog",

"output ": "quick"

},

"solution_language ": "Python",

"solution_code ": "def largest_word(sentence):\n words = sentence.split ()\n

largest = ’’\n for word in words :\n if len(word) > len(largest):\n

largest = word\n return largest",

"tests": [

{ "input ": "Hello , world!", "output ": "world" },

{

"input": "I am a developer. What is your profession ?",

"output ": "profession ?"

},

{ "input ": "Mathematics is not a spectator sport.", "output ": "Mathematics" },

...

]

}

LISTING C.2: Code Error (first test case)

C. AUTOMATED EXERCISE GENERATION EXPERIMENT 73

{

"title ":{

"english ":" FizzBuzz problem with a twist",

"portugues ":" Problema FizzBuzz com um toque especial",

"italian ":" Problema FizzBuzz con un tocco speciale",

"polish ":" Problemat FizzBuzz z niespodzianka"

},

"difficulty ":" easy",

"context ":{

"english ":" FizzBuzz is a classic coding problem where you need to print numbers

from 1 to n. If the number is divisible by 3, you should print ’Fizz ’. If the

number is divisible by 5, you should print ’Buzz ’. If the number is divisible

by both 3 and 5, you should print ’FizzBuzz ’. Now , what if we add another

condition? Let ’s say , if the number is a multiple of 7, you should print

’Bang ’. If the number is divisible by both 5 and 7, you should print

’BuzzBang ’. If the number is divisible by 3, 5, and 7, you should print

’FizzBuzzBang ’.",

...

},

"task ":{

"english ":" Write a function that given n, prints the FizzBuzzBang output

from 1 to n",

...

},

"input_description ":{

"english ":"An integer n (1 <= n <= 10^6)" ,

...

},

"output_description ":{

"english ":" Print the FizzBuzzBang output from 1 to n, each on a new line.",

...

},

"example ":{ ... },

"solution_language ":" Python",

"solution_code ":"def fizz_buzz_bang(n):\n result = []\n for i in range(1, n+1):\n

temp = ’’\n if i % 3 == 0:\n temp += ’Fizz ’\n if i % 5 == 0:\n temp += ’Buzz ’\n

if i % 7 == 0:\n temp += ’Bang ’\n if not temp:\n temp = str(i)\n

result.append(temp)\n return ’\\n’.join(result)",

"tests ":[

{"input ":"15" ," output ":"..."} ,

{"input ":"30" ," output ":"..."} ,

{"input ":"1" ," output ":"1"} ,

{"input ":"7" ," output ":"1\n2\nFizz\n4\nBuzz\nFizz\nBang "}

LISTING C.3: JSON Error (missing brackets at the end)

74 IMPROVING TEACHER’S USER EXPERIENCE IN A VIRTUAL LEARNING ENVIRONMENT

C.3 Integrated Code Snipped

let prompt = "Create a JavaScript programming exercise with the description: "

+ data.description

const schema = {

"type": "object",

"properties ": {

"name": { "type": "string", "description ": "Name of the exercise" },

"statement ": {

"type": "string",

"description ": "Statement for the exercise"

},

"solution ": {

"type": "string",

"description ": "Solution code for the exercise in JavaScript"

},

"tests": {

"type": "array",

"description ": "Input , output tests to verify the student ’s solution",

"minItems ": 3,

"items": {

"type": "object",

"properties: {

"input": { "type": "string", "description ": "input for the test" },

"expected ": {

"type": "string",

"description ": "expected output for the test"

}

},

"required ": [" input", "expected "]

}

}

},

"required ": ["name", "statement", "solution", "tests"]

}

const chatCompletion = await openai.chat.completions.create ({

model: "gpt -3.5-turbo -0613" ,

messages: [

{ role: "assistant", content: "I am a teacher to help you create JavaScript

programming exercises" },

{ role: "user", content: prompt}],

functions: [{ name: "set_exercise", parameters: schema }],

function_call: {name: "set_exercise "}

})

LISTING C.4: Code to generate Programming Exercises by the Teacher

Appendix D

Strapi User Interface Evaluation

D.1 Evaluation Tasks

Task 1 Creation of a Course:

Create a course with 4 Modules.

The first Module should have 2 Lessons.

The first Lesson should contain a pdf file of your choice.

The second lesson should contain another pdf File of your choice and one Quiz, and

2 Programming exercises.

The Quiz should have 4 questions, each of them having 4 possible answers.

One of the Programming exercises should be a basic “Hello World!” exercise, and

the second one the creation of a “sum” function with two parameters. You should

create these exercises on your own and not reuse already created ones.

After that, choose one of the already created programming exercises and create a

new programming exercise based on it, only changing the name.

Add this programming exercise to the second Lesson.

Now, clone the course that you created and change the “Hello World!” exercise so

that the student has to return “Hello my friends!” without changing anything in the

first created course with its “Hello World!” exercise.

Task 2 Creation of the students:

Create an Occurrence for the year 2023 with one Class and 5 Students.

Associate the Course that you created in task 1 to this occurrence.

(i) All information, such as names, descriptions, . . . are of your choice.

75

76 IMPROVING TEACHER’S USER EXPERIENCE IN A VIRTUAL LEARNING ENVIRONMENT

D.2 User Interface

FIGURE D.1: Strapi Dashboard Interface

FIGURE D.2: Strapi Content Manager Interface

D. STRAPI USER INTERFACE EVALUATION 77

FIGURE D.3: Strapi Interface for creating a Course (Content Manager)

D.3 Questionnaire

Figure D.4 displays the questions within their heuristic category asked to the evalua-

tors for the evaluation of the Strapi UI. The heuristics 1-13 had the possible choices of

”Never”, ”Almost never”, ”Regular”, ”Almost always”, ”Always”, and ”Not applicable”.

For the classification, the possible options were ”Very Good”, ”Good”, ”Sufficient”, ”In-

sufficient”, and ”Bad”. Finally, the answers for the observations were in long text format.

78 IMPROVING TEACHER’S USER EXPERIENCE IN A VIRTUAL LEARNING ENVIRONMENT

1. Visibility: Visibility of system state (appropriate feedback in reason-
able time)

A. When I ask the system for help, is the answer clear?

B. When I execute a task, does the system inform me about
what is happening?

C. Are the buttons used to perform the most important tasks
clearly identified?

D. Is the status of the buttons (selected/unselected) clearly in-
dicated?

2. Compatibility: Compatibility between the system and the real world
(language familiar to the user)

A. When I try to run a task, do I quickly find the desired but-
ton?

B. Is the order of the buttons in a familiar sequence?

C. When I press a button, is the result expected?

D. Do the commands grouped in a menu all belong to the cate-
gory indicated by the button text of that menu?

3. Freedom: User freedom and control (it must be possible for the user
to undo or redo operations)

A. When I make a mistake, does the system allow me to go
back?

B. Can I interrupt an action and resume it at any time?

C. Can I cancel an operation that is in progress?

D. Can I delete any changes that were made and go back to the
previous state?

4. Consistency: Consistency and standards (the system must be clearly
understood and follow known conventions)

A. Is the location of buttons and windows maintained when I
switch screens?

B. Do the buttons always have the same meaning when I
switch the screen?

C. Is the meaning of the color code consistent?

D. Is it possible to use scroll in all windows?

5. Prevention: Error prevention (avoid them)

A. Does the system notify me when data entry problems occur,
before I run validation?

B. When I do a validation, does the system give an error mes-
sage if the data format is not what I expected?

C. Am I warned by the system if I am about to make a serious
mistake?

D. Is there a clear separation between the buttons that allow the
occurrence of serious errors and the remaining buttons?

6. Emphasis: Emphasis on recognition (minimize user memory effort by
making objects, actions and options always present)

A. Do the colors used in the texts conform to accepted conven-
tions for their meaning?

B. Does the text contained in each button convey the idea of
what is expected?

C. Is the information on the screen available where I expect it?

D. Are the items grouped by gender in different logical zones?

7. Flexibility: Flexibility and efficiency in use (the user should be al-
lowed to customize or schedule frequent actions - e.g. create short-
cuts)

A. Can I configure the screen?

B. Are there shortcut keys to perform commonly used func-
tions?

C. Can I temporarily disable some functions?

8. Aesthetics: Aesthetics and minimalist design (only essential informa-
tion)

A. Is the information on the screen just what I need?

B. Does the information on the screen stand out from the back-
ground?

C. Aesthetically, is the system pleasant in terms of: colors,
brightness, etc.?

9. Help to Users: Helps users recognize, diagnose and recover from er-
rors (error messages must be clear and suggest solutions)

A. Are the error/help messages clear and appropriate?

B. Do the error messages accurately indicate the problem?

C. Are the messages short and to the point?

10. Help and documentation: Help and documentation (documentation
always available)

A. Can I easily search for information?

B. Is the help function clearly visible?

C. Is the information accurate, complete and understandable?

11. Easiness: Easiness of learning

A. Is the system intuitive (I understand it easily)?

B. Do I find it easy to learn to work with the system?

12. Speed: System response speed

A. Is the response time for the operations carried out suffi-
ciently short?

B. Is the response time on switching tasks short enough (Ex-
ample: you are seeing ”pending” and change it to ”im-
pressions”) (ex: está a ver ”pendentes” e altera para ”im-
pressões”) ?

13. Reliability: Reliability of your functions (how often do functions
work without issues?)

A. Creating a Course with Modules and Lessons?

B. Creating expositive content?

C. Creating a Programming Exercise?

D. Creating a Quiz?

E. Creating Questions?

F. Associating Questions to a Quiz?

G. Associating expositive or evaluative content to a Lesson?

H. Creating a programming exercise based on an existing one?

I. Cloning an existing course with a small change in one exer-
cise?

J. Creating an Occurrence, Class or Students?

K. Associating a Course to an Occurrence or Students to a
Course?

14. Classification

A. Given all the parameters you analysed how would you clas-
sify Strapi?

15. Observations: Strong points and weak points

A. Strong points?

B. Weak points?

B. Improvement suggestions?

FIGURE D.4: Strapi User Interface Evaluation Questionnaire

D. STRAPI USER INTERFACE EVALUATION 79

D.4 Results

S1 S2 S3 S4 S5 % Mean
1. 80 3.25

A 4 2 40 3.00
B 3 2 4 3 5 100 3.40
C 3 2 2 3 4 100 2.80
D 5 4 2 4 80 3.75

2. 90 3.17
A 3 2 3 3 5 100 3.20
B 4 2 2 1 80 2.25
C 5 3 3 3 5 100 3.80
D 4 3 3 3 80 3.25

3. 70 3.14
A 4 4 4 3 80 3.75
B 3 2 3 1 80 2.25
C 5 3 40 4.00
D 3 2 3 4 80 3.00

4. 80 3.94
A 4 2 3 5 80 3.50
B 5 3 5 4 80 4.25
C 5 4 4 4 80 4.25
D 5 2 4 4 80 3.75

5. 45 3.11
A 4 4 4 60 4.00
B 4 2 3 60 3.00
C 3 2 40 2.50
D 2 20 2.00

6. 70 3.93
A 5 3 3 5 80 4.00
B 4 4 4 5 80 4.25
C 5 3 3 4 80 3.75
D 4 3 40 3.50

7. 67 2.00
A 4 1 3 3 80 2.75
B 1 2 1 60 1.33
C 3 1 1 60 1.67

S1 S2 S3 S4 S5 % Mean
8. 80 3.25

A 4 3 2 2 80 2.75
B 4 3 4 3 80 3.50
C 4 3 3 4 80 3.50

9. 67 3.20
A 2 2 4 60 2.67
B 4 3 3 60 3.33
C 4 3 4 3 80 3.50

10. 53 3.25
A 4 3 2 60 3.00
B 4 5 2 60 3.67
C 4 2 40 3.00

11. 80 2.25
A 4 1 2 1 80 2.00
B 4 2 3 1 80 2.50

12. 50 4.20
A 5 3 5 4 80 4.25
B 4 20 4.00

13. 100 2.91
A 2 2 5 2 5 100 3.20
B 2 2 3 2 5 100 2.80
C 2 1 2 1 4 100 2.00
D 2 3 2 1 5 100 2.60
E 3 2 2 2 5 100 2.80
F 1 4 3 3 5 100 3.20
G 3 1 4 3 5 100 3.20
H 2 4 4 2 5 100 3.40
I 2 3 3 1 5 100 2.80
J 2 3 4 2 5 100 3.20
K 3 2 2 2 5 100 2.80

14.
A 3 2 3 2 4 100 2.80

Strong points
S1 General easy to use and good UI
S2 Fast and responsive
S3 Easy creation of course, modules, and lessons
S4 Good general UI
S5 Easy creation of course, modules, and lessons

Weak points
S1 Not all of the specifications are clearly defined
S2 Bad abstraction and separation of concepts, lack of shortcuts. Having to create exercises and expositives

separately of a lesson
S3 Poor collection types structure (for instance, the course should be bigger). Poor ID association. Having to create

exercises and expositives separately of a lesson
S4 Confusing
S5 Difficult to search for information/help

Improvement suggestions
S1 Tutorial to explain the UI
S2 Resolve weak points
S3 Resolve weak points
S4 Tutorial to explain the UI
S5 /

TABLE D.1: Strapi Evaluation Detailed Results

80 IMPROVING TEACHER’S USER EXPERIENCE IN A VIRTUAL LEARNING ENVIRONMENT

1.V
isibility

2.C
om

patability
3.Freedom
4.C

onsistency
5.Prevention
6.Em

phasis
7.Flexibility
8.A

estehtics
9.H

elp
to

U
sers

10.H
elp

w
ith

docum
entation

11.Easiness
12.Speed
13.R

eliability
14.C

lassification

Never/Bad: 1

Almost Never/Insufficient: 2

Regular/Sufficient: 3

Almost Always/Good: 4

Always/Very Good: 5

S1
S2
S3
S4
S5

Overall

FIGURE D.5: Strapi UI Evaluation Results (line chart)

Appendix E

Final User Interface Evaluation

E.1 User Interface

FIGURE E.1: Teacher Interface for the Home Menu (evaluated UI)

81

82 IMPROVING TEACHER’S USER EXPERIENCE IN A VIRTUAL LEARNING ENVIRONMENT

FIGURE E.2: Teacher Interface to manage Students (evaluated UI)

FIGURE E.3: Teacher Interface to create and edit Occurrence (evaluated UI)

E. FINAL USER INTERFACE EVALUATION 83

FIGURE E.4: Teacher Interface to manage Content (evaluated UI)

84 IMPROVING TEACHER’S USER EXPERIENCE IN A VIRTUAL LEARNING ENVIRONMENT

E.2 Questionnaire

1. Visibility: Visibility of system state (appropriate feedback in reason-
able time)

A. When I ask the system for help, is the answer clear?

B. When I execute a task, does the system inform me about
what is happening?

C. Are the buttons used to perform the most important tasks
clearly identified?

D. Is the status of the buttons (selected/unselected) clearly in-
dicated?

2. Compatibility: Compatibility between the system and the real world
(language familiar to the user)

A. When I try to run a task, do I quickly find the desired but-
ton?

B. Is the order of the buttons in a familiar sequence?

C. When I press a button, is the result expected?

D. Do the commands grouped in a menu all belong to the cate-
gory indicated by the button text of that menu?

3. Freedom: User freedom and control (it must be possible for the user
to undo or redo operations)

A. When I make a mistake, does the system allow me to go
back?

B. Can I interrupt an action and resume it at any time?

C. Can I cancel an operation that is in progress?

D. Can I delete any changes that were made and go back to the
previous state?

4. Consistency: Consistency and standards (the system must be clearly
understood and follow known conventions)

A. Is the location of buttons and windows maintained when I
switch screens?

B. Do the buttons always have the same meaning when I
switch the screen?

C. Is the meaning of the color code consistent?

D. Is it possible to use scroll in all windows?

5. Prevention: Error prevention (avoid them)

A. Does the system notify me when data entry problems occur,
before I run validation?

B. When I do a validation, does the system give an error mes-
sage if the data format is not what I expected?

C. Am I warned by the system if I am about to make a serious
mistake?

D. Is there a clear separation between the buttons that allow the
occurrence of serious errors and the remaining buttons?

6. Emphasis: Emphasis on recognition (minimize user memory effort by
making objects, actions and options always present)

A. Do the colors used in the texts conform to accepted conven-
tions for their meaning?

B. Does the text contained in each button convey the idea of
what is expected?

C. Is the information on the screen available where I expect it?

D. Are the items grouped by gender in different logical zones?

7. Flexibility: Flexibility and efficiency in use (the user should be al-
lowed to customize or schedule frequent actions - e.g. create short-
cuts)

A. Can I configure the screen?

B. Are there shortcut keys to perform commonly used func-
tions?

C. Can I temporarily disable some functions?

8. Aesthetics: Aesthetics and minimalist design (only essential informa-
tion)

A. Is the information on the screen just what I need?

B. Does the information on the screen stand out from the back-
ground?

C. Aesthetically, is the system pleasant in terms of: colors,
brightness, etc.?

9. Help to Users: Helps users recognize, diagnose and recover from er-
rors (error messages must be clear and suggest solutions)

A. Are the error/help messages clear and appropriate?

B. Do the error messages accurately indicate the problem?

C. Are the messages short and to the point?

10. Help and documentation: Help and documentation (documentation
always available)

A. Can I easily search for information?

B. Is the help function clearly visible?

C. Is the information accurate, complete and understandable?

11. Easiness: Easiness of learning

A. Is the system intuitive (I understand it easily)?

B. Do I find it easy to learn to work with the system?

12. Speed: System response speed

A. Is the response time for the operations carried out suffi-
ciently short?

B. Is the response time on switching tasks short enough (Ex-
ample: you are seeing ”pending” and change it to ”im-
pressions”) (ex: está a ver ”pendentes” e altera para ”im-
pressões”) ?

13. Reliability: Reliability of your functions (how often do functions
work without issues?)

A. Creating a Course with Modules and Lessons?

B. Creating expositive content?

C. Creating a Programming Exercise?

D. Creating a Quiz?

E. Creating Questions?

F. Adding existing exercises to a Course?

G. Creating a programming exercise based on an existing one?

H. Cloning an existing course and making small adjustments??

I. Creating an Occurrence, Class or Students?

14. Classification

A. Given all the parameters you analysed how would you clas-
sify the Agni Teacher UI?

15. Observations: Strong points and weak points

A. Strong points?

B. Weak points?

B. Improvement suggestions?

FIGURE E.5: Final User Interface Evaluation Questionnaire

Figure E.5 displays the questions within their heuristic category asked to the evalua-

tors for the evaluation of the developed UI. The heuristics 1-13 had the possible choices of

”Never”, ”Almost never”, ”Regular”, ”Almost always”, ”Always”, and ”Not applicable”.

For the classification, the possible options were ”Very Good”, ”Good”, ”Sufficient”, ”In-

sufficient”, and ”Bad”. Finally, the answers for the observations were in long text format.

E. FINAL USER INTERFACE EVALUATION 85

All categories, despite reliability with some small adjustments, are the same questions as

the evaluation of Strapis UI displayed in D.

E.3 Results

1.V
isibility

2.C
om

patability
3.Freedom
4.C

onsistency
5.Prevention
6.Em

phasis
7.Flexibility
8.A

estehtics
9.H

elp
to

U
sers

10.H
elp

w
ith

docum
entation

11.Easiness
12.Speed
13.R

eliability
14.C

lassification

Never/Bad: 1

Almost Never/Insufficient: 2

Regular/Sufficient: 3

Almost Always/Good: 4

Always/Very Good: 5
S1
S2
S3
S4
S5
T1
T2
T3
T4
T5

Overall

FIGURE E.6: Final UI Evaluation Results (line chart)

86 IMPROVING TEACHER’S USER EXPERIENCE IN A VIRTUAL LEARNING ENVIRONMENT

S1 S2 S3 S4 S5 T1 T2 T3 T4 T5 % Mean
1. 93 3.95

A 5 5 2 4 3 4 3 4 80 3.75
B 5 5 2 5 3 2 4 3 3 90 3.56
C 4 4 5 4 5 3 2 4 4 4 100 3.90
D 5 4 5 5 5 4 4 5 3 5 100 4.50

2. 100 4.20
A 5 5 4 3 5 3 3 4 3 3 100 3.80
B 4 5 5 5 5 4 2 5 3 5 100 4.30
C 5 5 4 4 4 4 3 5 4 4 100 4.20
D 5 4 5 5 5 5 4 5 3 4 100 4.50

3. 60 3.96
A 3 4 5 5 3 2 5 2 5 90 3.78
B 5 4 3 5 5 2 60 4.00
C 4 5 2 30 3.67
D 4 4 5 5 3 5 60 4.33

4. 80 4.50
A 5 4 5 5 5 4 3 5 3 5 100 4.40
B 5 5 5 4 4 4 5 3 5 90 4.44
C 5 5 5 5 5 5 5 3 5 90 4.78
D 5 5 5 2 40 4.25

5. 65 3.85
A 5 4 4 4 2 3 3 4 80 3.63
B 5 5 3 4 3 4 60 4.00
C 5 4 5 4 3 3 60 4.00
D 5 3 5 4 3 3 60 3.83

6. 85 4.06
A 5 5 5 5 2 5 3 5 80 4.38
B 5 4 4 4 5 4 4 5 3 5 100 4.30
C 4 5 4 3 5 3 2 4 3 3 100 3.60
D 5 5 4 2 5 3 60 4.00

7. 37 2.82
A 4 4 2 3 2 2 60 2.83
B 4 5 1 2 40 3.00
C 2 10 2.00

8. 100 4.27
A 4 4 5 3 5 3 2 4 4 4 100 3.80
B 5 4 5 5 5 5 3 5 4 5 100 4.60
C 5 4 5 5 4 5 2 5 4 5 100 4.40

9. 90 3.96
A 4 4 4 3 5 4 2 4 3 4 100 3.70
B 4 5 3 4 4 3 4 70 3.86
C 4 5 5 4 4 4 3 5 4 5 100 4.30

10. 73 3.14
A 4 4 3 2 3 3 60 3.17
B 4 3 2 1 1 4 3 1 80 2.38
C 4 5 4 5 2 4 3 4 80 3.88

11. 100 3.95
A 5 5 4 4 5 3 2 4 3 4 100 3.90
B 5 5 5 4 5 3 2 4 3 4 100 4.00

12. 80 4.63
A 4 5 5 5 5 5 3 5 4 5 100 4.60
B 5 5 5 5 5 3 60 4.67

13. 99 4.30
A 4 5 5 5 5 3 1 5 5 5 100 4.30
B 4 5 5 5 4 4 1 5 5 5 100 4.30
C 5 5 4 5 5 4 2 5 4 4 100 4.30
D 5 5 5 5 5 4 2 5 4 5 100 4.50
E 5 5 5 5 5 4 2 5 4 5 100 4.50
F 4 5 4 4 5 4 5 4 5 90 4.44
G 3 5 5 4 5 4 1 3 4 5 100 3.90
H 3 5 5 4 5 4 2 3 3 5 100 3.90
I 5 5 5 5 5 4 4 5 3 5 100 4.60

14.
A 5 5 5 5 5 4 1 5 4 5 100 4.40

TABLE E.1: Final Evaluation Detailed Results (categories)

E. FINAL USER INTERFACE EVALUATION 87

Strong points
S1 Beautiful and intuitive UI
S2 Very easy to use and very intuitive, fast operation and color scheme are very neutral, so probably easy to

work with for extended periods of time.
S3 Beautiful and simple UI
S4 Good and intuitive UI
S5 Really easy to understand
T1 The process of creating activities is easy and intuitive (quizzes, exercises, etc.)
T2 The tool.
T3 The plataform is intuitive and easy to use
T4 Simple and intuitive interface. It has all principal functionalities.
T5 Maintains the usability philosophy.

Weak points
S1 What is in the improvements
S2 Did not notice undo functionality. Did not notice customization. Lack of confirmation on deletes and such

improves speed but might lead to unwanted errors.
S3 Saving contents is not automated
S4 It can get tricky for a first-timer to add exercises to a class.
S5 I didn’t find a help button, but I also didn’t need one
T1 Difficulties to find buttons to create modules and lessons. unintuitive interface in this function. Missing

logout and customized user data
T2 Complexity of the system - It is not easy to manage. It is hard to follow the goal and needs many clicks to

do something.
T3 I was not able to use to clone an existing course and making small adjustments
T4 Some difficulties with first time usage. Sometimes I felt a little lost with so many windows. I don’t know

if it has to do with the color enhancement of the resource that is selected or it is simply a matter of excess
information (visual pollution). Error when saving the course. Some errors when I select a programming
exercise done by others (changing the type, adding tests, etc. The exercise selection window should have
more context, I suggest <course name>/<exercise name>. Answers in quizzes allow you to select multiple
answers. Most of the time this is not the desirable behavior (switching to radiobutton)

T5 It appears to replicate an existing system (Moodle)
Improvement suggestions

S1 Possiblity to clone exercises also within a course. Everywhere you can click, make the cursor to pointer
(occurrence table,...)

S2 Include delete confirmation as an option. Improve customizability and hotkeys.
S3 Improve weak points
S4 Add a ’+’ (plus sign) into the menu after lessons so that adding exercises is easier.
S5 /
T1 Improve the more macro process of creating courses-modules-lessons. Help available at these stages
T2 Create all tasks in one step form (e.g., tell the number of courses, modules, and lessons and do them

all simultaneously and not one by one)
Create an onboarding experience. Change the color. It is too monotone and old school. You must have
the option to select all options.
Reduce the number of clicks to do something. Allow CSV upload with the data. Auto-save is a must-have.
You create many interfaces simultaneously without validation. You must divide the interface into parts
and create a focus group.

T3 Platform must be tested if there are errors (selection of dates in the past)
T4 Dynamic tutorial (facilitate onboarding). Gamification (PBL, lock/unlock levels through conditions,

avatars, etc.)
T5 Do more of these tests and refinements

TABLE E.2: Final Evaluation Detailed Results (observations)

Bibliography

[1] L. Corporation, “Annual report for 2023,” LinkedIn Corporation, Mountain View,

CA, Tech. Rep., 2023. [Online]. Available: https://www.linkedin.com/business/

talent/blog/talent-strategy/linkedin-most-in-demand-hard-and-soft-skills [Cited

on page 1.]

[2] B. Xia, “An in-depth analysis of learning goals in higher education: Evidence from

the programming education,” Journal of Learning Design, vol. 10, p. 25, 03 2017. [Cited

on page 1.]

[3] M. Piteira and C. Costa, “Learning computer programming: Study of difficulties

in learning programming,” in Proceedings of the 2013 International Conference on

Information Systems and Design of Communication, ser. ISDOC ’13. New York, NY,

USA: Association for Computing Machinery, 2013, p. 75–80. [Online]. Available:

https://doi.org/10.1145/2503859.2503871

[4] J. R. Anthony Robins and N. Rountree, “Learning and teaching programming: A

review and discussion,” Computer Science Education, vol. 13, no. 2, pp. 137–172, 2003.

[Online]. Available: https://doi.org/10.1076/csed.13.2.137.14200

[5] S. Derus and A. M. Ali, “Difficulties in learning programming: Views of students,”

in 1st International Conference on Current Issues in Education (ICCIE 2012), 2012, pp.

74–79. [Cited on page 1.]

[6] Y. Bosse and M. A. Gerosa, “Why is programming so difficult to learn? patterns

of difficulties related to programming learning mid-stage,” ACM SIGSOFT Software

Engineering Notes, vol. 41, no. 6, pp. 1–6, 2017.

[7] T. Jenkins, “On the difficulty of learning to program,” in Proceedings of the 3rd Annual

Conference of the LTSN Centre for Information and Computer Sciences, vol. 4, no. 2002.

Citeseer, 2002, pp. 53–58. [Cited on page 1.]

89

https://www.linkedin.com/business/talent/blog/talent-strategy/linkedin-most-in-demand-hard-and-soft-skills
https://www.linkedin.com/business/talent/blog/talent-strategy/linkedin-most-in-demand-hard-and-soft-skills
https://doi.org/10.1145/2503859.2503871
https://doi.org/10.1076/csed.13.2.137.14200

90 IMPROVING TEACHER’S USER EXPERIENCE IN A VIRTUAL LEARNING ENVIRONMENT

[8] L. E. Winslow, “Programming pedagogy—a psychological overview,” SIGCSE Bull.,

vol. 28, no. 3, p. 17–22, sep 1996. [Online]. Available: https://doi.org/10.1145/

234867.234872 [Cited on page 1.]

[9] R. Sabarinath and C. Quek, “A case study investigating programming students’ peer

review of codes and their perceptions of the online learning environment,” Education

and Information Technologies, vol. 25, 09 2020. [Cited on pages 1 and 16.]

[10] P. Denny, D. Cukierman, and J. Bhaskar, “Measuring the effect of inventing practice

exercises on learning in an introductory programming course,” in Proceedings of

the 15th Koli Calling Conference on Computing Education Research, ser. Koli Calling ’15.

New York, NY, USA: Association for Computing Machinery, 2015, p. 13–22. [Online].

Available: https://doi.org/10.1145/2828959.2828967

[11] K. von Hausswolff, “Practical thinking in programming education,” in Proceedings of

the 17th Koli Calling International Conference on Computing Education Research, ser. Koli

Calling ’17. New York, NY, USA: Association for Computing Machinery, 2017, p.

203–204. [Online]. Available: https://doi.org/10.1145/3141880.3143780

[12] R. Millar et al., “The role of practical work in the teaching and learning of science,”

Commissioned paper-Committee on High School Science Laboratories: Role and Vision.

Washington DC: National Academy of Sciences, vol. 308, 2004. [Cited on page 1.]

[13] M. Kordaki, “A drawing and multi-representational computer environment for

beginners’ learning of programming using c: Design and pilot formative

evaluation,” Computers & Education, vol. 54, no. 1, pp. 69–87, 2010. [Online].

Available: https://www.sciencedirect.com/science/article/pii/S0360131509001845

[Cited on pages 1 and 16.]

[14] E. Verdú, L. M. Regueras, M. J. Verdú, J. P. Leal, J. P. de Castro, and R. Queirós,

“A distributed system for learning programming on-line,” Computers & Education,

vol. 58, no. 1, pp. 1–10, 2012. [Online]. Available: https://www.sciencedirect.com/

science/article/pii/S036013151100193X [Cited on page 10.]

[15] D. Muñoz de la Peña, F. Gómez-Estern, and S. Dormido, “A new internet tool for

automatic evaluation in control systems and programming,” Computers & Education,

vol. 59, no. 2, pp. 535–550, 2012. [Online]. Available: https://www.sciencedirect.

com/science/article/pii/S0360131511003320 [Cited on pages 1, 11, and 16.]

https://doi.org/10.1145/234867.234872
https://doi.org/10.1145/234867.234872
https://doi.org/10.1145/2828959.2828967
https://doi.org/10.1145/3141880.3143780
https://www.sciencedirect.com/science/article/pii/S0360131509001845
https://www.sciencedirect.com/science/article/pii/S036013151100193X
https://www.sciencedirect.com/science/article/pii/S036013151100193X
https://www.sciencedirect.com/science/article/pii/S0360131511003320
https://www.sciencedirect.com/science/article/pii/S0360131511003320

BIBLIOGRAPHY 91

[16] I. Maslov, S. Nikou, and P. Hansen, “Exploring user experience of learning man-

agement system,” The International Journal of Information and Learning Technology, vol.

ahead-of-print, 07 2021. [Cited on pages 1, 16, and 17.]

[17] L. Langreo, “What teachers really think about their learning management sys-

tems,” Sep 2022. [Online]. Available: https://www.edweek.org/technology/what-

teachers-really-think-about-their-learning-management-systems/2022/09 [Cited

on pages 1, 16, and 17.]

[18] Y. Bauer, J. P. Leal, and R. Queirós, “Can a Content Management System Provide

a Good User Experience to Teachers?” in 4th International Computer Programming

Education Conference (ICPEC 2023), ser. Open Access Series in Informatics (OASIcs),

R. A. Peixoto de Queirós and M. P. Teixeira Pinto, Eds., vol. 112. Dagstuhl,

Germany: Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2023, pp. 4:1–4:8.

[Online]. Available: https://drops.dagstuhl.de/opus/volltexte/2023/18500 [Cited

on pages 3 and 62.]

[19] M. Hassenzahl and N. Tractinsky, “User experience - a research agenda,” Behaviour

& Information Technology, vol. 25, no. 2, pp. 91–97, 2006. [Online]. Available:

https://doi.org/10.1080/01449290500330331 [Cited on page 6.]

[20] V. Roto and E. Kaasinen, “The second international workshop on mobile internet

user experience,” in Proceedings of the 10th international conference on Human computer

interaction with mobile devices and services, 09 2008, pp. 571–573. [Cited on page 6.]

[21] P. Desmet and P. Hekkert, “Framework of product experience,” International Journal

of Design, vol. 1, pp. 57–66, 04 2007. [Cited on page 6.]

[22] M. Hassenzahl, The Thing and I: Understanding the Relationship Between User and Prod-

uct. Springer, 01 2005, vol. 3, pp. 31–42. [Cited on page 6.]

[23] N. Tractinsky, A. Katz, and D. Ikar, “What is beautiful is usable,” Interacting with

Computers, vol. 13, pp. 127–145, 12 2000. [Cited on page 6.]

[24] P. W. Jordan, Designing pleasurable products: An introduction to the new human factors.

CRC press, 2000. [Cited on page 6.]

https://www.edweek.org/technology/what-teachers-really-think-about-their-learning-management-systems/2022/09
https://www.edweek.org/technology/what-teachers-really-think-about-their-learning-management-systems/2022/09
https://drops.dagstuhl.de/opus/volltexte/2023/18500
https://doi.org/10.1080/01449290500330331

92 IMPROVING TEACHER’S USER EXPERIENCE IN A VIRTUAL LEARNING ENVIRONMENT

[25] K. BATTARBEE and I. KOSKINEN, “Co-experience: user experience as interaction,”

CoDesign, vol. 1, no. 1, pp. 5–18, 2005. [Online]. Available: https://doi.org/10.1080/

15710880412331289917 [Cited on page 6.]

[26] E. Karapanos, J. Zimmerman, J. Forlizzi, and J.-B. Martens, “User experience

over time: An initial framework,” in Proceedings of the SIGCHI Conference on Human

Factors in Computing Systems, ser. CHI ’09. New York, NY, USA: Association for

Computing Machinery, 2009, p. 729–738. [Online]. Available: https://doi.org/10.

1145/1518701.1518814 [Cited on page 6.]

[27] A. H. Allam, A. R. C. Hussin, and H. M. Dahlan, “User experience: challenges and

opportunities,” in Journal of Information Systems Research and Innovation 2013, 2013.

[Cited on page 7.]

[28] D. Benyon, Designing User Experience. Pearson Educación, 2019. [Online]. Avail-

able: https://books.google.pt/books?id=MXqFDwAAQBAJ [Cited on pages 7, 8,

and 17.]

[29] M. Gualtieri, “Best practices in user experience (ux) design,” Design compelling user

experiences to wow your customers, pp. 1–17, 2009. [Cited on page 7.]

[30] A. Williams, “User-centered design, activity-centered design, and goal-directed

design: A review of three methods for designing web applications,” in Proceedings

of the 27th ACM International Conference on Design of Communication, ser. SIGDOC ’09.

New York, NY, USA: Association for Computing Machinery, 2009, p. 1–8. [Online].

Available: https://doi.org/10.1145/1621995.1621997 [Cited on page 7.]

[31] D. A. Norman, “Human-centered design considered harmful,” Interactions, vol. 12,

no. 4, p. 14–19, jul 2005. [Online]. Available: https://doi.org/10.1145/1070960.

1070976

[32] E. Schweikardt, “Sustainably oursuser centered is off center,” Interactions, vol. 16,

no. 3, p. 12–15, may 2009. [Online]. Available: https://doi.org/10.1145/1516016.

1516019 [Cited on page 7.]

[33] S. H. Hsu, M. C. Chuang, and C. C. Chang, “A semantic differential

study of designers’ and users’ product form perception,” International Journal

of Industrial Ergonomics, vol. 25, no. 4, pp. 375–391, 2000. [Online]. Available:

https://doi.org/10.1080/15710880412331289917
https://doi.org/10.1080/15710880412331289917
https://doi.org/10.1145/1518701.1518814
https://doi.org/10.1145/1518701.1518814
https://books.google.pt/books?id=MXqFDwAAQBAJ
https://doi.org/10.1145/1621995.1621997
https://doi.org/10.1145/1070960.1070976
https://doi.org/10.1145/1070960.1070976
https://doi.org/10.1145/1516016.1516019
https://doi.org/10.1145/1516016.1516019

BIBLIOGRAPHY 93

https://www.sciencedirect.com/science/article/pii/S0169814199000268 [Cited on

pages 8 and 17.]

[34] D. Bartram, “The perception of semantic quality in type: Differences between de-

signers and non-designers,” Information design journal, vol. 3, no. 1, pp. 38–50, 1982.

[Cited on pages 8 and 17.]

[35] J. Nielsen, “Usability inspection methods,” in Conference Companion on Human

Factors in Computing Systems, ser. CHI ’94. New York, NY, USA: Association for

Computing Machinery, 1994, p. 413–414. [Online]. Available: https://doi.org/10.

1145/259963.260531 [Cited on page 8.]

[36] K. Finstad, “The Usability Metric for User Experience,” Interacting with Computers,

vol. 22, no. 5, pp. 323–327, 05 2010. [Online]. Available: https://doi.org/10.1016/j.

intcom.2010.04.004 [Cited on page 8.]

[37] J. Brooke, “Sus: A quick and dirty usability scale,” Usability Eval. Ind., vol. 189, 11

1995. [Cited on page 8.]

[38] B. Laugwitz, T. Held, and M. Schrepp, “Construction and evaluation of a user ex-

perience questionnaire,” in HCI and Usability for Education and Work: 4th Symposium

of the Workgroup Human-Computer Interaction and Usability Engineering of the Austrian

Computer Society, USAB 2008, Graz, Austria, November 20-21, 2008. Proceedings 4, vol.

5298. Springer, 11 2008, pp. 63–76. [Cited on pages 8 and 17.]

[39] M. Hassenzahl, M. Burmester, and F. Koller, “Attrakdiff: Ein fragebogen zur mes-

sung wahrgenommener hedonischer und pragmatischer qualität,” Mensch & Com-

puter 2003: Interaktion in Bewegung, pp. 187–196, 2003. [Cited on pages 8 and 17.]

[40] A. B. Kocaballi, L. Laranjo, and E. Coiera, “Measuring user experience in conversa-

tional interfaces: A comparison of six questionnaires,” in Proceedings of the 32nd In-

ternational BCS Human Computer Interaction Conference 32, 07 2018. [Cited on page 8.]

[41] K. Hone, U. Ph, R. Graham, and A. Link, “Towards a tool for the subjective assess-

ment of speech system interfaces (sassi),” Natural Language Engineering, vol. 6, 07

2000. [Cited on page 8.]

https://www.sciencedirect.com/science/article/pii/S0169814199000268
https://doi.org/10.1145/259963.260531
https://doi.org/10.1145/259963.260531
https://doi.org/10.1016/j.intcom.2010.04.004
https://doi.org/10.1016/j.intcom.2010.04.004

94 IMPROVING TEACHER’S USER EXPERIENCE IN A VIRTUAL LEARNING ENVIRONMENT

[42] I. Dı́az-Oreiro, G. López, L. Quesada, and Guerrero, “Standardized questionnaires

for user experience evaluation: A systematic literature review,” Proceedings, vol. 31,

p. 14, 11 2019. [Cited on page 8.]

[43] J. Nielsen, “Enhancing the explanatory power of usability heuristics,” in Proceedings

of the SIGCHI Conference on Human Factors in Computing Systems, ser. CHI ’94. New

York, NY, USA: Association for Computing Machinery, 1994, p. 152–158. [Online].

Available: https://doi.org/10.1145/191666.191729 [Cited on pages 9 and 17.]

[44] ——, “Why you only need to test with 5 users,” Mar 2000. [Online].

Available: https://www.nngroup.com/articles/why-you-only-need-to-test-with-

5-users/ [Cited on pages 9 and 17.]

[45] R. A. Virzi, “Refining the test phase of usability evaluation: How many subjects is

enough?” Human Factors: The Journal of Human Factors and Ergonomics Society, vol. 34,

pp. 457 – 468, 1992. [Online]. Available: https://api.semanticscholar.org/CorpusID:

59748299 [Cited on page 9.]

[46] M. Hertzum and N. Jacobsen, “The evaluator effect during first-time use of the cog-

nitive walkthrough technique.” in HCI (1), 01 1999, pp. 1063–1067. [Cited on page 9.]

[47] W. Hwang and G. Salvendy, “Number of people required for usability evaluation:

The 10±2 rule,” Commun. ACM, vol. 53, no. 5, p. 130–133, may 2010. [Online].

Available: https://doi.org/10.1145/1735223.1735255 [Cited on pages 9 and 17.]

[48] R. Queiros and J. Leal, “Orchestration of e-learning services for automatic evaluation

of programming exercises,” Journal of Universal Computer Science, vol. 18, p. 1454tex-

tendash1482, 06 2012. [Cited on page 11.]

[49] J. Ramirez-Echeverry, F. Restrepo-Calle, and F. González, “Uncode: Interactive sys-

tem for learning and automatic evaluation of computer programming skills,” in ED-

ULEARN18 Proceedings, 07 2018. [Cited on page 11.]

[50] J. Caiza and J. Del Alamo, “Programming assignments automatic grading: Review

of tools and implementations,” Inted 2013 Proceedings, pp. 5691–5700, 01 2013. [Cited

on page 11.]

https://doi.org/10.1145/191666.191729
https://www.nngroup.com/articles/why-you-only-need-to-test-with-5-users/
https://www.nngroup.com/articles/why-you-only-need-to-test-with-5-users/
https://api.semanticscholar.org/CorpusID:59748299
https://api.semanticscholar.org/CorpusID:59748299
https://doi.org/10.1145/1735223.1735255

BIBLIOGRAPHY 95

[51] R. Queiros and J. Leal, “Programming exercises evaluation systems - an interoper-

ability survey,” in International Conference on Computer Supported Education, vol. 1, 01

2012, pp. 83–90. [Cited on page 11.]

[52] M. Piteira, C. Costa, and M. Aparicio, “Computer programming learning: How to

apply gamification on online courses?” Journal of Information Systems Engineering &

Management, vol. 3, 04 2018. [Cited on page 12.]

[53] G. Kiryakova, N. Angelova, and L. Yordanova, “Gamification in education,” in Pro-

ceedings of 9th international Balkan education and science conference, 10 2014. [Cited on

page 12.]

[54] R. Queiros, J. Leal, and J. Campos, “Sequencing educational resources with seqins,”

Computer Science and Information Systems, vol. 11, pp. 1479–1497, 10 2014. [Cited on

page 12.]

[55] J. P. Leal, R. Queirós, P. Ferreirinha, and J. Swacha, “A Roadmap to

Convert Educational Web Applications into LTI Tools,” in Third International

Computer Programming Education Conference (ICPEC 2022), ser. Open Access Series

in Informatics (OASIcs), A. Simões and J. a. C. Silva, Eds., vol. 102. Dagstuhl,

Germany: Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2022, pp. 12:1–12:12.

[Online]. Available: https://drops.dagstuhl.de/opus/volltexte/2022/16616 [Cited

on pages 12 and 63.]

[56] E. Baniassad, L. Zamprogno, B. Hall, and R. Holmes, “Stop the (autograder)

insanity: Regression penalties to deter autograder overreliance,” in Proceedings of the

52nd ACM Technical Symposium on Computer Science Education, ser. SIGCSE ’21. New

York, NY, USA: Association for Computing Machinery, 2021, p. 1062–1068. [Online].

Available: https://doi.org/10.1145/3408877.3432430 [Cited on pages 12 and 17.]

[57] T. Lehtinen, A. Lukkarinen, and L. Haaranen, “Students struggle to explain

their own program code,” in Proceedings of the 26th ACM Conference on Innovation

and Technology in Computer Science Education V. 1, ser. ITiCSE ’21. New York, NY,

USA: Association for Computing Machinery, 2021, p. 206–212. [Online]. Available:

https://doi.org/10.1145/3430665.3456322 [Cited on pages 12 and 17.]

[58] C. Kennedy and E. T. Kraemer, “Qualitative observations of student reasoning:

Coding in the wild,” in Proceedings of the 2019 ACM Conference on Innovation and

https://drops.dagstuhl.de/opus/volltexte/2022/16616
https://doi.org/10.1145/3408877.3432430
https://doi.org/10.1145/3430665.3456322

96 IMPROVING TEACHER’S USER EXPERIENCE IN A VIRTUAL LEARNING ENVIRONMENT

Technology in Computer Science Education, ser. ITiCSE ’19. New York, NY, USA:

Association for Computing Machinery, 2019, p. 224–230. [Online]. Available:

https://doi.org/10.1145/3304221.3319751 [Cited on pages 12 and 17.]

[59] J. Finnie-Ansley, P. Denny, B. A. Becker, A. Luxton-Reilly, and J. Prather, “The

robots are coming: Exploring the implications of openai codex on introductory

programming,” in Proceedings of the 24th Australasian Computing Education Conference,

ser. ACE ’22. New York, NY, USA: Association for Computing Machinery, 2022,

p. 10–19. [Online]. Available: https://doi.org/10.1145/3511861.3511863 [Cited on

page 13.]

[60] A. L. Santos, “Shifting programming education assessment from exercise outputs

toward deeper comprehension,” in 4th International Computer Programming Education

Conference (ICPEC 2023), ser. Open Access Series in Informatics (OASIcs), R. A.

Peixoto de Queirós and M. P. Teixeira Pinto, Eds., vol. 112. Dagstuhl,

Germany: Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2023, pp. 1:1–1:5.

[Online]. Available: https://drops.dagstuhl.de/opus/volltexte/2023/18497 [Cited

on pages 13 and 17.]

[61] N. Zanjani, S. L. Edwards, S. S. Nykvist, and S. Geva, “The important elements of lms

design that affect user engagement with e-learning tools within lmss in the higher

education sector,” Australasian Journal of Educational Technology, vol. 33, pp. 19–31,

2016. [Cited on pages 16 and 17.]

[62] A. Saleh, H. Abu Addous, I. Alansari, and O. Enaizan, “The evaluation of user ex-

perience on learning management systems using ueq,” International Journal of Emerg-

ing Technologies in Learning (iJET), vol. 17, pp. 145–162, 04 2022. [Cited on pages 16

and 17.]

[63] W. Nakamura, E. Teixeira de Oliveira, and T. Conte, “Usability and user experience

evaluation of learning management systems - a systematic mapping study,” in Proc.

of the 19th International Conference on Enterprise Information Systems, 01 2017, pp. 97–

108. [Cited on page 16.]

[64] R. Queirós, M. Pinto, and T. Terroso, “User Experience Evaluation in a Code

Playground,” in Second International Computer Programming Education Conference

(ICPEC 2021), ser. Open Access Series in Informatics (OASIcs), P. R. Henriques,

https://doi.org/10.1145/3304221.3319751
https://doi.org/10.1145/3511861.3511863
https://drops.dagstuhl.de/opus/volltexte/2023/18497

BIBLIOGRAPHY 97

F. Portela, R. Queirós, and A. Simões, Eds., vol. 91. Dagstuhl, Germany: Schloss

Dagstuhl – Leibniz-Zentrum für Informatik, 2021, pp. 17:1–17:9. [Online]. Available:

https://drops.dagstuhl.de/opus/volltexte/2021/14233 [Cited on page 20.]

[65] A. Issac, “Chatgpt functions malformed json,” Jul 2023. [Online]. Available: https:

//community.openai.com/t/chatgpt-functions-malformed-json/306509 [Cited on

page 48.]

[66] E. D. Experts, “How to use chat gpt: A simple guide for beginners,” Sep 2023.

[Online]. Available: https://blog.enterprisedna.co/how-to-use-chat-gpt/ [Cited on

page 48.]

[67] L. Ruettimann, “How to interact with chat gpt-4 effectively: Top tips for better

questions,” Sep 2023. [Online]. Available: https://laurieruettimann.com/chat-gpt-

4-ask-questions/ [Cited on page 48.]

[68] J. Martinez, “Return json from gpt,” Jul 2023. [Online]. Available: https:

//betterprogramming.pub/return-json-from-gpt-65d40bfc2ef6 [Cited on page 49.]

https://drops.dagstuhl.de/opus/volltexte/2021/14233
https://community.openai.com/t/chatgpt-functions-malformed-json/306509
https://community.openai.com/t/chatgpt-functions-malformed-json/306509
https://blog.enterprisedna.co/how-to-use-chat-gpt/
https://laurieruettimann.com/chat-gpt-4-ask-questions/
https://laurieruettimann.com/chat-gpt-4-ask-questions/
https://betterprogramming.pub/return-json-from-gpt-65d40bfc2ef6
https://betterprogramming.pub/return-json-from-gpt-65d40bfc2ef6

	Acknowledgements
	Abstract
	Resumo
	Contents
	List of Figures
	List of Tables
	Acronyms
	1 Introduction
	1.1 Goal and Objectives
	1.2 Approach
	1.3 Thesis Content

	2 State of the Art
	2.1 User Experience
	2.1.1 Definitions, Concepts
	2.1.2 Design Strategies
	2.1.3 Evaluation

	2.2 E-learning Systems
	2.2.1 Architecture and Features
	2.2.2 System Review
	2.2.3 User Experience in E-learning

	2.3 Summary

	3 Background
	3.1 Agni
	3.2 Strapi
	3.3 Vue
	3.4 OpenAI GPT Application Interface
	3.5 Summary

	4 System Modelling
	4.1 System Architecture
	4.2 User Interface
	4.3 Data Model
	4.4 Application Interface
	4.5 Summary

	5 Implementation
	5.1 Front-end
	5.1.1 Framework Selection
	5.1.2 Essential Libraries
	5.1.3 Course Component
	5.1.4 Responsiveness
	5.1.5 External Content

	5.2 Back-end
	5.2.1 Content Management System Selection
	5.2.2 Data Model
	5.2.3 Customization
	5.2.4 Unit Tests

	5.3 Assisted Exercise Generation
	5.3.1 Experiment
	5.3.2 Implementation

	5.4 Summary

	6 Validation
	6.1 Evaluation Methodology
	6.2 Strapi User Interface Evaluation
	6.3 Final User Interface Evaluation
	6.4 Summary

	7 Conclusion
	7.1 Contributions
	7.2 Future Work

	A Agni Student User Interface
	B Data Model
	C Automated Exercise Generation Experiment
	C.1 Prompts
	C.2 Final Prompt Responses
	C.3 Integrated Code Snipped

	D Strapi User Interface Evaluation
	D.1 Evaluation Tasks
	D.2 User Interface
	D.3 Questionnaire
	D.4 Results

	E Final User Interface Evaluation
	E.1 User Interface
	E.2 Questionnaire
	E.3 Results

	Bibliography

