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Abstract. We introduce the concept of upper metric mean dimension of a one-parameter
family of scaled pressure functions, which extends the corresponding notion for a single potential
and satisfies a variational principle. This approach, supported by Convex Analysis, conveys a
definition of measure-theoretic upper metric mean dimension, which is concave and upper semi-
continuous, and therewith equilibrium states. In the context of dynamical systems, we establish
a variational principle for the metric mean dimension with potential in terms of Katok entropy.
As an application, we provide a simple formula for the upper metric mean dimension with

potential for the shift on the space
(
[0, 1]D

)N
, for every D ∈ N, which links mean dimension

theory with ergodic optimization.

Contents

1. Introduction 2
2. Main definitions 4
2.1. Upper metric mean dimension with potential 4
2.2. Box dimension 5
2.3. Pressure functions 5
2.4. Scaled pressure functions 6
2.5. Upper metric mean dimension determined by a family of scaled pressure functions 6
3. Main results 7
4. Convex Analysis and pressure functions 10
5. Proof of Theorem A 12
6. Proof of Theorem B 14
7. Proof of Theorem C 16
7.1. Linking HK

δ and mdimM (X, d, T, ϕ) 17
7.2. Proof 18
7.3. Generalization 20
8. Proof of Theorem D 20
8.1. Dimension homogeneity assumption 26
9. Proof of Theorem E 27
9.1. Linking D and mdimM (X, d, T, ϕ) 28
9.2. Metric mean dimension points 30
10. Examples 30
11. Final comments 38
11.1. Semigroup actions 38
11.2. Ergodic optimization 40
Acknowledgments 42
References 42

Date: November 16, 2023.
2010 Mathematics Subject Classification. Primary: 37D35, 28D20, 37B40, 26A51;
Key words and phrases. Metric mean dimension; Pressure function; Katok entropy; Variational principle;

Equilibrium state; Box dimension.
1



2 M. CARVALHO, G. PESSIL, AND P. VARANDAS

1. Introduction

Let (X, d) be a compact metric space and T : X → X be a continuous map. Denote by
C0(X) the space of real valued continuous maps whose domain is X, endowed with the uniform
norm; by B the σ-algebra of Borel sets of X; by P(X) the set of Borel probability measures
on X with the weak∗-topology; by PT (X) its subset of T -invariant measures; by ET (X) the
set of its ergodic elements; and, given µ ∈ P(X), let supp(µ) stand for its support. Measure-
theoretic and topological entropy are classical, comprehensive and well succeed invariants in
the theory of dynamical systems. Yet, these are not complete invariants, so there are several
recently developed entropy-like concepts to estimate the complexity of systems by innovative
approaches. The upper and lower metric mean dimensions are labels for dynamical systems
introduced by E. Lindenstrauss and B. Weiss in [15] to quantify the complexity of infinite
entropy systems. We denote them by mdimM (X, d, T ) and mdimM (X, d, T ), respectively, to
emphasize their dependence on the fixed metric d of the space X where the dynamics T acts.
These concepts vanish if the topological entropy of T is finite; if, otherwise, T has infinite
entropy, they convey information about the dimension of the phase space and the action of the
dynamical system: they primarily report on the speed at which the entropy at scale ε approaches
+∞ as this scale goes to zero. The choice of the metric d has impact precisely on the speed of
such convergence, which is quantified by the upper and lower metric mean dimensions.

In [16], E. Lindenstrauss and M. Tsukamoto established, under mild conditions, a variational
principle between the metric mean dimension and the Lp rate-distortion function Rµ,p of each
µ ∈ PT (X). More precisely, they showed that, for every p ∈ N,

mdimM (X, d, T ) = lim sup
ε→ 0+

sup
µ∈PT (X)

Rµ,p(ε)
log (1/ε)

. (1)

Actually, Y. Gutman and A. Śpiewak showed in [11] that it suffices to take the previous supre-
mum over ET (X), and obtained a new variational principle linking the upper metric mean
dimension to the metric entropy hµ, namely

mdimM (X, d, T ) = lim sup
ε→ 0+

1

log (1/ε)
sup

µ∈ET (X)
inf

diam(P )≤ ε
hµ(P ) (2)

where the infimum is taken over the Borel partitions P of X with diameter at most ε and hµ(P )
stands for the entropy of P . Problem 3 in [11] asked whether the metric mean dimension could
be expressed in terms of Brin-Katok local entropy hBK . An affirmative answer to this problem
was given by [11] and [20], where the authors proved that

mdimM (X, d, T ) = lim sup
ε→ 0+

1

log (1/ε)
sup

µ∈ET (X)
hBKµ (ε). (3)

A recurrent question in the literature concerning the previous and similar definitions asks
whether we may exchange the order of lim supε and supµ. It is known that this order can be
exchanged under the marker property (cf. [17, 25, 29] and also [30, 31]), but there are relevant
systems without this property, as shown in [26, 21]. Regarding this issue, we refer the reader to
Example 10.3 and Remark 10.4.

Meanwhile, Tsukamoto introduced [25] the concept of upper metric mean dimension with
potential, which we will denote by mdimM (X, d, T, ϕ) for the potential ϕ, and proved a dou-
ble variational principle similar to the one obtained earlier in [17] for the (topological) mean
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dimension (see [10] for the definition). Tsukamoto’s definition of upper metric mean dimen-
sion with potential is inspired by the topological pressure, though the potential may vary with
the scale ε. One is led to ask whether there is a measure-theoretic upper metric mean dimen-
sion H : PT (X) → R satisfying a classical variational principle (like the one established in [28,
Theorem 9.10]), that is,

mdimM (X, d, T, ϕ) = sup
µ∈PT (X)

{
H(µ) +

∫
ϕdµ

}
. (4)

As happens with the topological pressure, there may exist several maps satisfying such a relation,
and the selection of a particular one depends on the preferred mechanism to generate them, or on
their applications. For the zero potential case, distinct notions of measure-theoretic metric mean
dimension were shown to exist and be related through a variational principle to some version
of entropy, such as Brin-Katok local entropy (cf. [11], [20]), Katok metric entropy (cf. [27],
[20]), Shapira entropy (cf. [20]) and Rényi information dimension (cf. [11]), just to mention
a few. Regarding variational principles for continuous potentials and the previous measure-
theoretic notions, we refer the reader to [7]. We stress that in all these variational principles
the maximization on the space of probability measures is done for a fixed scale, which only
afterwards is made to decrease to zero. Therefore, their statements do not comply with formula
(4).

The previous information suggests the existence of some unifying path of reasoning, and
Convex Analysis methods arise naturally in this background. Actually, in [1], the authors
established an abstract variational principle for the so called pressure functions acting on a
Banach space of potentials on a compact metric space, for which equilibrium states always exist.
The main result of [1] ensures the existence of a conjugate of the pressure function, which acts
on the set of Borel finitely additive probability measures if the space of potentials is made up
from bounded measurable maps, and on the space of Borel probability measures if the space
of potentials is C0(X). The first aim of our work is to show that the upper metric mean
dimension with potential is a pressure function, so [1, Theorem 1] provides a suitable definition
of a measure-theoretic upper metric mean dimension, defined on P(X) whenever the potentials
belong to C0(X). In subsequent sections we will deduce extra properties of this concept and
relate it to the measure-theoretic metric mean dimension introduced in [29].

Motivated by the aforementioned equalities (1), (2) and (3) for the zero potential, we introduce
a scaled version of the upper metric mean dimension with potential, determined by a one-
parameter family of scaled pressure functions (definitions in Section 2). This scaled upper
metric mean dimension turns out to be a pressure function as well, to which we may apply
the arguments of [1]. This way we obtain a variational principle, equilibrium states and the
natural query about the continuity of these objects with the scale, whose answer will be given
in Section 3. Moreover, this approach conveys a notion of measure-theoretic upper metric mean
dimension, whose properties will be established in Theorem A.

In the case of continuous maps acting on a compact metric space, we will discuss another
definition of measure-theoretic metric mean dimension in terms of Katok metric entropy (cf.
[28, Theorem 8.19]). This new notion turns out to be convex and upper semi-continuous, and
satisfies a variational principle. See Theorem C for more information.

Inspired by the concepts of entropy point and local entropy for homeomorphisms introduced
in [32], we define similarly a local metric mean dimension (precise definition in (15) of Section 3)
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and what is a metric mean dimension point. Afterwards, having fixed a homeomorphism T on
a compact metric space (X, d), we relate through a variational principle the upper metric mean
dimension of T with the average of the local metric mean dimension (cf. Theorem E).

A relevant case study to which Theorem A applies is the shift map on a space Y N, where
Y is a dimensionally homogeneous compact metric space. We will show that, in this setting,
the variational principle established by Theorem A becomes an instance of ergodic optimization
(more details in Theorem D).

This paper is organized as follows. The purpose of Section 2 is to recall some definitions and
to introduce the new concepts. In Section 3 we state the main results. In Section 4 we summon
the axiomatic contributions of [1] which we will use further on. After proving our results in
Sections 5-9, we present some examples and applications in Section 10 and end with a short list
of open problems suggested by this work.

2. Main definitions

We start by briefly recalling the definition of upper metric mean dimension with potential and
by introducing the notions of scaled pressure function and the upper metric mean dimension
determined by a family of scaled pressure functions.

2.1. Upper metric mean dimension with potential. Let (X, d) be a compact metric space,
T : X → X be a continuous map and ϕ : X → R be a continuous potential. For each n ∈ N,
define the dynamical metric

dn(x, y) = max
0≤ j≤n−1

d(T j(x), T j(y)) ∀x, y ∈ X

which is equivalent to d, and the sum Snϕ =
∑n−1

j=0 ϕ ◦ T j .
Given a closed subset K of X and ε > 0, consider the following infimum

S(K, d, ϕ, ε) = inf

{∑̀
i=1

(1/ε)supUi ϕ : {Ui}1≤ i≤ ` finite open cover of K, diam(Ui, d) < ε

}
(5)

the average

A(K, d, T, ϕ, ε, n) =
1

n
logS(K, dn, Snϕ, ε)

and the limit

P (K, d, T, ϕ, ε) = lim
n→+∞

A(K, d, T, ϕ, ε, n)

which exists since the sequence
(
S(K, dn, Snϕ, ε)

)
n

is sub-additive in the variable n. The upper
metric mean dimension with potential, as defined in [25], extends the concept of metric mean
dimension introduced in [15] (corresponding to the particular case of ϕ = 0) as follows:

Definition 2.1. The upper metric mean dimension with potential of (K, d, T, ϕ) is given by

mdimM (K, d, T, ϕ) = lim sup
ε→ 0+

P (K, d, T, ϕ, ε)

log (1/ε)
.

A subset E ⊂ K is said to be ε-separated with respect to the metric d if d(x, y) ≥ ε for every
x, y ∈ E; it is ε-spanning with respect to the metric d if for every x ∈ K there exists some
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y ∈ E such that d(x, y) ≤ ε. The notion of upper metric mean dimension with potential can be
equivalently defined if one replaces S(K, d, ϕ, ε) by either

S1(K, d, ϕ, ε) = sup
{ ∑
x∈E

(1/ε)ϕ(x) : E ⊂ K is ε-separated
}

or

S2(K, d, ϕ, ε) = inf
{ ∑
x∈E

(1/ε)ϕ(x) : E ⊂ K is ε-spanning
}
.

Remark 2.2. Since the topological pressure of a continuous map is invariant by co-boundary,
the same holds for the upper metric mean dimension with potential, that is,

mdimM (X, d, T, ϕ) = mdimM (X, d, T, ϕ+ ψ ◦ T − ψ) ∀ϕ, ψ ∈ C0(X).

2.2. Box dimension. Let (Y, d) be a compact metric space. The upper box dimension of Y is
defined as

dimB Y = lim sup
ε→ 0+

S(Y, d, 0, ε)

log(1/ε)
.

We define similarly the lower box dimension of Y . If the upper and lower box dimensions of Y
coincide, their value is the box dimension of Y .

Remark 2.3. It is straightforward that if T (K) ⊂ K, then

P (K, d, T, 0, ε) ≤ logS(K, d, 0, ε) ∀ ε > 0.

In particular,

mdimM (K, d, T, 0) ≤ dimB(K, d).

2.3. Pressure functions. Let (X, d) be a locally compact metric space and B(X) be a Banach
space over R equal to either

Bd(X) = {φ : X → R : φ is measurable and bounded}
or Cb(X) = {φ ∈ Bd(X) : φ is continuous}

or else Cc(X) = {φ ∈ Cb(X) : φ has compact support}

endowed with the norm ‖ϕ‖∞ = supx∈X |ϕ(x)|. In what follows, Pa(X) will stand for the set
of normalized finitely additive set functions on the Borel σ-algebra of X, which we will simply
call finitely additive probability measures, with the total variation norm, defined by

‖µ− ν‖ = sup

{∣∣ ∫ ψ dν −
∫
ψ dµ

∣∣ : ψ ∈ B(X) and ‖ψ‖∞ ≤ 1

}
.

We recall the notion of pressure function used in [1].

Definition 2.4. We say that a map Υ: B(X) → R is a pressure function if it satisfies the
following conditions:

• Monotonicity: ϕ ≤ ψ =⇒ Υ(ϕ) ≤ Υ(ψ) ∀ϕ,ψ ∈ B(X)
• Translation invariance: Υ(ϕ+ c) = Υ(ϕ) + c ∀ϕ ∈ B(X), ∀ c ∈ R
• Convexity: Υ(tϕ+ (1− t)ψ) ≤ tΥ(ϕ) + (1− t)Υ(ψ) ∀ϕ, ψ ∈ B(X), ∀ t ∈ (0, 1).
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For instance, the topological pressure of a continuous self-map T : X → X of a compact metric
space X, whose topological entropy is finite, is a pressure function (cf. [28, Theorem 9.7]). More
generally, if the weighted topological entropy is finite, the weighted topological pressure function
defined in [9] is a pressure function.

2.4. Scaled pressure functions. Let (X, d) be a locally compact metric space. In what follows
we introduce a weakening of the notion of pressure function in Definition 2.4, which allows a
weaker form of translation invariance.

Definition 2.5. A map Γ: B(X) → R is said to be a scaled pressure function if there exists a
constant α > 0 (the scale) such that Γ satisfies the following conditions:

• Monotonicity: ϕ ≤ ψ =⇒ Γ(ϕ) ≤ Γ(ψ) ∀ϕ,ψ ∈ B(X)
• Scaled translation invariance: Γ(ϕ+ c) = Γ(ϕ) + αc ∀ϕ ∈ B(X), ∀ c ∈ R
• Convexity: Γ(tϕ+ (1− t)ψ) ≤ tΓ(ϕ) + (1− t)Γ(ψ) ∀ϕ, ψ ∈ B(X), ∀ t ∈ (0, 1).

It is clear that pressure functions are scaled pressure functions with constant α = 1. Moreover
we note that, if Γ is a scaled pressure function with constant α, then Υ = Γ/α is a pressure
function. For example, the functions (P (X, d, T, ·, ε))0<ε< 1, defined in Subsection 2.1 for a
continuous self-map T : X → X of a compact metric space X, are scaled pressure functions with
constant log 1/ε. Indeed, the monotonicity and the convexity are immediate to show. Regarding
the translation invariant condition, given ϕ ∈ C0(X) and c ∈ R, one has for every 0 < ε < 1

S(X, d, ϕ+ c, ε) = inf
(Ui)1≤ i≤n

{
n∑
i=1

(1/ε)supUi (ϕ+c)

}
= (1/ε)c inf

(Ui)1≤ i≤n

{
n∑
i=1

(1/ε)supUi ϕ

}
and

A(X, d, T, ϕ+ c, ε, n) =
1

n
logS(X, dn, Sn(ϕ+ c), ε) =

1

n
log
(

(1/ε)nc S(X, dn, Snϕ, ε)
)
.

Therefore,

P (X, d, T, ϕ+ c, ε) = lim
n→+∞

A(X, d, T, ϕ+ c, ε, n)

= lim
n→+∞

A(X, d, T, ϕ, ε, n) +
(

log 1/ε
)
c

= P (X, d, T, ϕ, ε) +
(

log 1/ε
)
c.

2.5. Upper metric mean dimension determined by a family of scaled pressure func-
tions. In what follows, we will consider a compact metric space (X, d) and families of scaled
pressure functions acting on the same Banach space, and associate to them a conjoint notion
of upper metric mean dimension. Let Γ = (Γε)0<ε< 1 be a family of scaled pressure functions
defined on the same Banach space B(X) and such that, for every 0 < ε < 1, the map Γε satisfies
the scaled translation invariance condition with respect to the constant log 1/ε.

Definition 2.6. The upper metric mean dimension of Γ at ϕ ∈ B(X) is given by

mdimM (Γ, d, ϕ) = lim sup
ε→ 0+

Γε(ϕ)

log (1/ε)
. (6)

The previous notion generalizes the concept of upper metric mean dimension with potential
introduced in [25]. Indeed, if we consider a continuous self-map T acting on X and the family
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of scaled pressure functions Γ = (P (X, d, T, ·, ε))0<ε< 1 defined in Subsection 2.1, then it is
immediate to verify that

mdimM (Γ, d, ·) = mdimM (X, d, T, ·).

To simplify the notation, if a scaled pressure function Γε : B(X) → R, for some 0 < ε < 1,
satisfies the scaled translation invariance condition with respect to the constant log 1/ε, then
we will call it an ε-pressure function.

3. Main results

We start with a consequence of [1], which provides a variational principle and equilibrium
states for the upper metric mean dimension determined by a family Γ = (Γε)0<ε<1 of ε-pressure
functions.

Theorem A. Let (X, d) be a compact metric space and Γ = (Γε)0<ε< 1 be a family of ε-pressure
functions defined on a Banach space B(X) and such that mdimM (Γ, d, ·) < +∞. Then

mdimM (Γ, d, ϕ) = max
µ∈Pa(X)

{
M(µ) +

∫
ϕdµ

}
∀ϕ ∈ B(X) (7)

where

M(µ) = inf
ϕ∈CΓ

∫
ϕdµ and CΓ =

{
ϕ ∈ B(X) : mdimM (Γ, d,−ϕ) ≤ 0}. (8)

The map M is concave, upper semi-continuous, bounded above by mdimM (Γ, d, 0) and satisfies

M(µ) = inf
ϕ∈B(X)

{
mdimM (Γ, d, ϕ)−

∫
ϕdµ

}
∀µ ∈ Pa(X).

In addition, if τ : Pa(X)→ [0,+∞] is another function taking the role of M in the equality (7),
then τ ≤M . Moreover, CΓ ⊇ lim infε→ 0+ AΓε, where

AΓε =
{
ϕ ∈ B(X) : Γε(−ϕ) ≤ 0

}
.

When B(X) = C0(X), the maximum in (7) is attained in P(X).

It is straightforward to conclude that µ attains the infimum in (8) (that is, M(µ) =
∫
ϕ0 dµ

for some ϕ0 ∈ CΓ) if and only if mdimM (Γ, d,−ϕ0) = 0 and µ is an equilibrium state of −ϕ0.
Indeed, if mdimM (Γ, d,−ϕ0) = 0 and µ is an equilibrium state of −ϕ0, then

0 = mdimM (Γ, d,−ϕ0) = M(µ) +

∫
−ϕ0 dµ

so M(µ) =
∫
ϕ0 dµ. Conversely, if M(µ) =

∫
ϕ0 dµ for some ϕ0 ∈ CΓ, then

0 ≥ mdimM (Γ, d,−ϕ0) ≥ M(µ)−
∫
ϕ0 = 0

so mdimM (Γ, d,−ϕ0) = 0 and µ is an equilibrium state of −ϕ0.

After completing this work we became aware of the recent preprint [29] by Yang, Chen and
Zhou, where the authors propose a notion of measure-theoretic upper metric mean dimension
for continuous self-maps of compact metric spaces. Our strategy is different from, though akin
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to, the one we read in [29], whose authors define the measure-theoretic upper metric mean
dimension for a continuous map T : X → X of a compact metric space (X, d) by

µ ∈ P(X) 7→ F (µ) = inf
ϕ∈C

∫
ϕdµ

where

C = {ϕ ∈ C0(X) : mdimM (X, d, T,−ϕ) = 0}.
Moreover, the authors showed that the map F satisfies the variational principle

mdimM (X, d, T, ϕ) = sup
µ∈P(X)

{
F (µ) +

∫
ϕdµ

}
∀ϕ ∈ C0(X).

From the latter equality, we deduce by applying Theorem A to (P (X, d, T, ·, ε))0<ε< 1 that

F (µ) ≤ M(µ) ∀µ ∈ P(X).

Yet, by definition, C ⊆ CΓ; hence

M(µ) ≤ F (µ) ∀µ ∈ P(X).

Thus, M = F , so we may add that F depends on the choice of the metric d (cf. Example 10.1)
and only attains the maximum at invariant probability measures (cf. Lemma 5.4). Therefore,
Theorem A recovers the main contribution of [29], besides extending it to scaled pressure func-
tions. We note that Theorem A’s statement is free from a dynamical context, which allows us
to consider other settings, such as semigroup actions (cf. Subsection 11.1).

We proceed to discuss the computability of the map M . More precisely, take a family Γ =(
Γε)0<ε< 1 of ε-pressure functions Γε : C0(X) → R such that mdimM (Γ, d, ·) < +∞. Let

M : P(X) → R be the map assigned by Theorem A to the family Γ =
(
Γε)0<ε< 1, which

satisfies

lim sup
ε→ 0+

Γε(ϕ)

log (1/ε)
= max

µ∈P(X)

{
M(µ) +

∫
ϕdµ

}
∀ϕ ∈ C0(X). (9)

For every 0 < ε < 1, denote by hε : P(X) → R the map provided by the application of [1,
Theorem 1] to the pressure function Γε/ log (1/ε), so that

Γε(ϕ)

log (1/ε)
= max

µ∈P(X)

{
hε(µ) +

∫
ϕdµ

}
∀ϕ ∈ C0(X). (10)

Is M the lim sup, as ε go to 0+, of the maps hε? To address this question, consider the function

M∗ : P(X) → R
µ 7→ sup(µε)ε ∈M(µ) lim supε→ 0+ hε(µε)

where M(µ) is the space of sequences of probability measures in P(X) which converge in the
weak∗-topology to µ.

Theorem B. Let (X, d) be a compact metric space and Γ =
(
Γε)0<ε< 1 be a family of ε-pressure

functions Γε : C0(X)→ R such that mdimM (Γ, d, ·) < +∞. Then

mdimM (Γ, d, ϕ) = max
µ∈P(X)

{
M∗(µ) +

∫
ϕdµ

}
∀ϕ ∈ C0(X).
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Moreover, given ϕ ∈ C0(X), the previous maximum is attained at any accumulation point of the
family of equilibrium states (µεnϕ )n for ϕ and the pressure functions (Γεn/ log (1/εn))n, where the
sequence (εn)n∈N converges to zero and satisfies

mdimM (Γ, d, ϕ) = lim
n→+∞

Γεn(ϕ)

log (1/εn)
.

Theorem B is a consequence of a more general result that will be proved in Section 6. Theo-
rems A and B may be applied to most definitions of pressure function available in the literature.
We will illustrate this assertion in Subsection 11.1, within the context of topological pressures
determined by dynamical systems or semigroup actions.

We will now address the dynamical setting. Let (X, d) be a compact metric space and T : X →
X be a continuous map such that mdimM (X, d, T ) < +∞. Although Theorem A provides a map
M : P(X) → R satisfying a variational principle, the variational nature of the definition of M
prevents us from easily compute it in specific examples or draw dynamical information from it.
In what follows, we introduce another suitable notion of measure-theoretic upper metric mean
dimension, built on Katok’s description of the metric entropy, which also satisfies a variational
principle like (4).

Given µ ∈ PT (X) and δ ∈ ]0, 1[, we define

HK
δ : PT (X) → R

µ 7→ sup(µε)ε ∈M(µ) lim supε→ 0+
hKµε (ε,δ)

log(1/ε)

(11)

whereM(µ) stands for the space of sequences of probability measures in PT (X) which converge
to µ in the weak∗-topology, and hKν (ε, δ) is the δ-Katok entropy of ν at scale ε (see the definition
in [14] and more details in Section 7).

Theorem C. Let (X, d) be a compact metric space and T : X → X be a continuous map such
that mdimM (X, d, T ) < +∞. Then, for every δ ∈ ]0, 1[,

mdimM (X, d, T, ϕ) = max
µ∈ET (X)

{
HK
δ (µ) +

∫
ϕdµ

}
∀ϕ ∈ C0(X). (12)

Our approach allows a generalization which will be established in Subsection 7.3.

We may improve the information conveyed by Theorems A and C if we consider full shifts on
compact alphabets satisfying a box dimension homogeneity condition. Given a compact metric
space (Y, d) and ρ > 1, we endow the space Y N with the metric

dρ(x, y) = sup
n∈N

d(xn, yn)

ρn−1
(13)

where x = (xn)n∈N and y = (yn)n∈N. For each ϕ ∈ C0(Y N) the following result provides an ex-
act formula for the upper metric mean dimension mdimM (Y N, dρ, σ, ϕ), yielding a reformulation
of the variational principle (7) in this setting.

Theorem D. Let (Y, d) be a compact metric space such that dimB U = dimB Y for every
nonempty open set U ⊂ Y . Then,

mdimM (Y N, dρ, σ, ϕ) = dimB Y + max
µ∈Eσ(Y N)

∫
ϕdµ ∀ϕ ∈ C0(Y N). (14)
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For instance, for every positive integer D and every ρ > 1,

mdimM (([0, 1]D)N, dρ, σ, ϕ) = D + max
µ∈Eσ(([0,1]D)N)

∫
ϕdµ ∀ϕ ∈ C0(([0, 1]D)N).

For more information when D = 1, see Example 10.2. To the authors knowledge, this is the first
explicit calculation of the upper metric mean dimension with potential of a dynamical system.
We also note that the maximization in (14) is an issue of ergodic optimization. Regarding this
subject, we refer the reader to Section 11.

In the remainder of this section, we consider the action of a homeomorphism T on a compact
metric space (X, d). Define the local metric mean dimension function by

D : X → R
x 7→ inf

{
mdimM (U, d, T ) : U is an open neighborhood of x

}
. (15)

As T is a homeomorphism, the map D is upper semi-continuous and T -invariant. In particular,
it is constant almost everywhere of any ergodic probability measure. Moreover, it satisfies the
following variational principle.

Theorem E. Let (X, d) be a compact metric space and T : X → X be a homeomorphism such
that mdimM (X, d, T ) < +∞. Then

mdimM (X, d, T ) = max
µ∈PT (X)

∫
D(x) dµ(x) = max

µ∈ET (X)

∫
D(x) dµ(x).

In addition, a measure µ ∈ PT (X) attains the previous maximum if and only if

D|supp(µ) ≡ mdimM (X, d, T ).

4. Convex Analysis and pressure functions

In this section we collect some information from [1] concerning pressure functions. We start
by observing that a monotone and translation invariant map Υ: B(X) → R ∪ {±∞} is finite
valued or constantly ∞. Indeed, given ϕ, ψ ∈ B(X), then

Υ(ϕ)− ‖ϕ− ψ‖∞ = Υ(ϕ− ‖ϕ− ψ‖∞) ≤ Υ(ϕ) ≤ Υ(ψ + ‖ϕ− ψ‖∞) = Υ(ψ) + ‖ϕ− ψ‖∞.

Theorem 4.1 (Theorem 1 of [1]; see also [2]). Let (X, d) be a locally compact metric space and
Υ: B(X)→ R be a pressure function. Then

Υ(ϕ) = max
µ∈Pa(X)

{
h(µ) +

∫
ϕdµ

}
∀ϕ ∈ B(X) (16)

where the map h = hΥ,B(X) : Pa(X)→ R ∪ {−∞,+∞} satisfies

h(µ) = inf
ϕ∈AΥ

∫
ϕdµ and AΥ = {ϕ ∈ B(X) : Υ(−ϕ) ≤ 0}.

The map h is concave, upper semi-continuous, bounded above by Υ(0) and, if τ : Pa(X) →
[0,+∞] takes the role of h in (16), then τ ≤ h. Moreover, one has

h(µ) = inf
ϕ∈B(X)

{
Υ(ϕ)−

∫
ϕdµ

}
∀µ ∈ Pa(X).

In case X is compact and B(X) = C0(X), then the maximum is attained at P(X).
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The variational principle (16) ensures that there always exist normalized finitely additive
measures which attain the supremum; that is, the set

Eϕ(Υ) =
{
µ ∈ Pa(X) : Υ(ϕ) = h(µ) +

∫
ϕdµ

}
is non empty.

Definition 4.2. Consider a pressure function Υ: B(X) → R and a potential ϕ ∈ B(X). We
say that µ ∈ Pa(X) is a tangent functional to Υ at ϕ if

Υ(ϕ+ ψ)−Υ(ϕ) ≥
∫
ψ dµ ∀ψ ∈ B(X).

We denote by Tϕ(Υ) the set of tangent functionals to Υ at ϕ.

The next result states that, for every potential ϕ, the set Tϕ(Υ) coincides with the space of
finitely additive equilibrium states of ϕ and established a sufficient condition for the uniqueness
of such finitely additive equilibrium states.

Theorem 4.3 (Theorem 2 of [1]). Let (X, d) be a locally compact metric space and Υ: B(X)→
R be a pressure function. Then

Eϕ(Υ) = Tϕ(Υ) ∀ϕ ∈ B(X).

Moreover, if B(X) = Cb(X) or B(X) = Cc(X), then there exists a residual subset R ⊂ B(X)
such that #Eϕ(Υ) = 1 for every ϕ ∈ R.

It is known that the uniqueness of equilibrium states for the topological pressure associated
to a dynamical system is tied in with the differentiability of the pressure. In the wider setting
of pressure functions one has the following generalization.

Definition 4.4. A pressure function Υ: B(X)→ R is locally affine at ϕ ∈ B(X) if there exists
a neighborhood V of 0 ∈ B(X) and a unique µϕ ∈ Pa(X) such that

Υ(ϕ+ ψ)−Υ(ϕ) =

∫
ψ dµϕ ∀ψ ∈ V.

Recall that Υ: B(X) → R is Fréchet differentiable at ϕ ∈ B(X) if there exists a unique
µϕ ∈ Pa(X) such that

lim
ψ→ 0

1

‖ψ‖∞
∣∣Υ(ϕ+ ψ)−Υ(ϕ)−

∫
ψ dµϕ

∣∣ = 0.

Theorem 4.5 (Theorem 3 of [1]). Let (X, d) be a locally compact metric space and Υ: B(X)→
R be a pressure function. The following are equivalent:

(a) Υ is locally affine at ϕ.

(b) There exists a unique tangent functional µϕ ∈ Tϕ(Υ) and

lim
ψ→ 0

sup

{
‖µ− µϕ‖ : µ ∈ Tϕ+ψ(Υ)

}
= 0

(c) Υ is Fréchet differentiable at ϕ.

In particular, the following are also equivalent:
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(d) Υ is affine.

(e)
⋃
ϕ∈B(X) Tϕ(Υ) is a singleton.

(f) Υ is everywhere Fréchet differentiable.

As being affine is a rigid condition that often does not hold, one may consider the weaker
notion of Gateaux differentiability. A pressure function Υ: B(X)→ R is Gateaux differentiable
at ϕ ∈ B(X) if the directional pressure map t ∈ R 7→ Υ(ϕ + tψ) is differentiable for every
ψ ∈ B(X): that is, given ψ ∈ B(X), the limit

dΥ(ϕ)(ψ) = lim
t→ 0

1

t
[Υ(ϕ+ tψ)−Υ(ϕ)]

exists and is finite.

Theorem 4.6 (Corollary 4 of [1]). A pressure function Υ: B(X)→ R is Gateaux differentiable
at ϕ if and only if there exists a unique tangent functional in Tϕ(Υ).

5. Proof of Theorem A

Part of the content of Theorem A is a direct consequence of [1, Theorem 1]. For instance, the
map M is concave, since it is the infimum of affine maps, and bounded above by mdimM (Γ, d, 0)
due to the translation invariance of Γ. We are left to verify that the upper metric mean dimension
of a family Γ = (Γε)0<ε< 1 of ε-pressure functions (defined in Subsection 2.5) is a pressure
function. Afterwards, we identify the admissible potentials in CΓ (a subset defined by (8) in the
statement of Theorem A) which determine the measure-theoretic upper metric mean dimension
map M .

Consider the space

LB(X) = {Γ: B(X)→ R | Γ is a scaled pressure function} ∪ {±∞}.
This is a positive convex cone, that is,

(a) if Γ ∈ LB(X), then βΓ ∈ LB(X) for every β > 0;

(b) given Γ1, Γ2 ∈ LB(X) and 0 ≤ t ≤ 1, then tΓ1 + (1− t)Γ2 ∈ LB(X).

The next lemma, whose proof is straightforward, describes another relevant property of this
space.

Lemma 5.1. LB(X) is closed under the lim sup operator, which preserves the scale. More

precisely, let
(
Gt
)

0<t< 1
be a collection of elements of LB(X) with common scale α. Then the

map
ϕ ∈ B(X) 7→ lim sup

t→ 0+

Gt(ϕ)

is a scaled pressure function with scale α.

The next proposition establishes that mdimM (Γ, d, ·) is a pressure function.

Proposition 5.2. Given a family Γ = (Γε)0<ε< 1 of ε-pressure functions, defined in the same
Banach space B(X), the map

mdimM (Γ, d, ·) : ϕ ∈ B(X) 7→ lim sup
ε→ 0+

Γε(ϕ)

log (1/ε)

belongs to LB(X).
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Proof. Fix 0 < ε < 1. It is immediate to check that the renormalization

Υε : ϕ ∈ B(X) 7→ Γε(ϕ)

log (1/ε)

is a convex and monotone function. Moreover, for every ϕ ∈ B(X) and every c ∈ R, one has

Υε(ϕ+ c) =
Γε(ϕ+ c)

log (1/ε)
=

Γε(ϕ) +
(

log 1/ε
)
c

log (1/ε)
= Υε(ϕ) + c.

Therefore, the map Γε
log (1/ε) is in LB(X), with scale α = 1 for every 0 < ε < 1. Consequently, by

Lemma 5.1, the map mdimM (Γ, d, ·) is an element of LB(X), as claimed. �

We will now find suitable potentials.

Lemma 5.3. Let Γ = (Γε)0<ε< 1 be a family of pressure functions and consider the sets

CΓ =
{
ϕ ∈ B(X) : mdimM (Γ, d,−ϕ) ≤ 0

}
and, for every 0 < ε < 1,

AΓε =
{
ϕ ∈ B(X) : Γε(−ϕ) ≤ 0

}
.

Then

CΓ ⊇ lim inf
ε→ 0+

AΓε .

Proof. Clearly, if Γε(−ϕ) ≤ 0 for every small enough ε, then

lim sup
ε→ 0+

Γε(−ϕ)

log (1/ε)
≤ 0.

Consequently, ⋃
n∈N

⋂
0<ε< 1/n

AΓε ⊆ CΓ.

The proofs of Lemma 5.3 and Theorem A are complete. �

We conclude this section by showing that, in the case of a continuous map acting on a compact
metric space with finite upper metric mean dimension, all equilibrium states are T -invariant
probability measures.

Lemma 5.4. Let (X, d) be a compact metric space, T : X → X be a continuous map such that
mdimM (X, d, T ) < +∞ and ϕ ∈ C0(X) be a continuous potential. Then any equilibrium state
µϕ of ϕ with respect to the variational principle (7) is invariant under T.

Proof. Given ϕ ∈ C0(X), let µϕ ∈ P(X) be such that

mdimM (X, d, T, ϕ) = M(µϕ) +

∫
ϕdµϕ.

We will show that
∫

(ψ ◦ T ) dµϕ =
∫
ψ dµϕ for every ψ ∈ C0(X). Fix ψ ∈ C0(X) and let µ1 and

µ2 be equilibrium states associated to the potentials ϕ+ψ◦T −ψ and ϕ−ψ◦T +ψ, respectively.
Then

mdimM (X, d, T, ϕ+ ψ ◦ T − ψ) = M(µ1) +

∫
ϕdµ1 +

∫
(ψ ◦ T ) dµ1 −

∫
ψ dµ1
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and

mdimM (X, d, T, ϕ− ψ ◦ T + ψ) = M(µ2) +

∫
ϕdµ2 −

∫
(ψ ◦ T ) dµ2 +

∫
ψ dµ2.

Moreover, by Remark 2.2, we know that

mdimM (X, d, T, ϕ) = mdimM (X, d, T, ϕ+ ψ ◦ T − ψ) = mdimM (X, d, T, ϕ− ψ ◦ T + ψ).

Therefore,

M(µϕ) +

∫
ϕdµϕ = M(µ1) +

∫
ϕdµ1 +

∫
(ψ ◦ T ) dµ1 −

∫
ψ dµ1

≥M(µϕ) +

∫
ϕdµϕ +

∫
(ψ ◦ T ) dµϕ −

∫
ψ dµϕ

which yields
∫

(ψ ◦ T ) dµϕ ≤
∫
ψ dµϕ. Analogously,

M(µϕ) +

∫
ϕdµϕ = M(µ2) +

∫
ϕdµ2 −

∫
(ψ ◦ T ) dµ2 +

∫
ψ dµ2

≥M(µϕ) +

∫
ϕdµϕ −

∫
(ψ ◦ T ) dµϕ +

∫
ψ dµϕ

so
∫

(ψ ◦ T ) dµϕ ≥
∫
ψ dµϕ. The proof is complete. Hence, the maximum in the variational

principle provided by Theorem A can be computed on the set of T -invariant probability mea-
sures. �

6. Proof of Theorem B

Fix a compact metric space (X, d) and a family of pressure functions Υε : C0(X) → R, for
0 < ε < 1, such that Υ = lim supε→ 0+ Υε < +∞. Recall that Lemma 5.1 ensures that Υ is a
pressure function as well.

Lemma 6.1. Consider ϕ ∈ C0(X) and a sequence (εn)n∈ N such that limn→+∞ Υεn(ϕ) =
Υ(ϕ). If, for every n ∈ N, the measure µεn ∈ P(X) is a tangent functional to Υεn at ϕ, then
any accumulation point µ ∈ P(X) of (µεn)n∈N is a tangent functional to Υ at ϕ.

Proof. Given ψ ∈ C0(X),

Υ(ϕ+ ψ)−Υ(ϕ) ≥ lim sup
n→+∞

Υεn(ϕ+ ψ)− lim
n→+∞

Υεn(ϕ)

= lim sup
n→+∞

(
Υεn(ϕ+ ψ)−Υεn(ϕ)

)
≥ lim sup

n→+∞

∫
ψ dµεn

≥
∫
ψ dµ.

�

We notice that, from Theorem 4.3, it is known that the set of equilibrium states of the pressure
function Υ coincides with the set of its tangent functionals. For every 0 < ε < 1, denote by
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hε : P(X)→ R the map given by the application of [1, Theorem 1] to the pressure function Υε,
which satisfies

Υε(ϕ) = max
µ∈P(X)

{
hε(µ) +

∫
ϕdµ

}
∀ϕ ∈ C0(X).

Moreover, given ϕ ∈ C0(X) and 0 < ε < 1, let µεϕ be an equilibrium state of the pressure
function Υε for ϕ.

Theorem 6.2. Let (X, d) be a compact metric space and
(
Υε)0<ε< 1 be a family of pressure

functions Υε : C0(X)→ R such that Υ = lim supε→ 0+ Υε < +∞. Then

Υ(ϕ) = max
µ∈P(X)

{
M∗(µ) +

∫
ϕdµ

}
∀ϕ ∈ C0(X).

Moreover, given ϕ ∈ C0(X), the previous maximum is attained at any accumulation point of the
family of equilibrium states (µεnϕ )n for ϕ and the pressure functions (Υεn)n, where the sequence
(εn)n∈N converges to zero and satisfies

Υ(ϕ) = lim
n→+∞

Υεn(ϕ).

Theorem B is a particular instance of the previous statement. Indeed, given a compact metric
space (X, d) and a family Γ =

(
Γε)0<ε< 1 of ε-pressure functions Γε : C0(X) → R such that

mdimM (Γ, d, ·) < +∞, it is enough to apply Theorem 6.2 to the family of pressure functions
defined, for every 0 < ε < 1, by

Υε(ϕ) =
Γε(ϕ)

log (1/ε)
∀ϕ ∈ C0(X)

and the map

Υ = mdimM (
(
Υε)0<ε< 1, d, ·).

Proof of Theorem 6.2. We will show that the map M is an upper bound for M∗ and that they
coincide at the equilibrium states µ provided by Lemma 6.1. Let µ ∈ P(X) and assume that
µε → µ in the weak∗-topology as ε goes to zero. Then, for every ϕ ∈ C0(X),

Υ(ϕ) = lim sup
ε→ 0+

Υε(ϕ)

= lim sup
ε→ 0+

max
ν ∈P(X)

{
hε(ν) +

∫
ϕdν

}
≥ lim sup

ε→ 0+

(
hε(µε) +

∫
ϕdµε

)
=
(

lim sup
ε→ 0+

hε(µε)
)

+

∫
ϕdµ.

Thus

Υ(ϕ)−
∫
ϕdµ ≥ M∗(µ).

Taking the infimum over all ϕ ∈ C0(X) we get

M(µ) = inf
ϕ∈C0(X)

{
Υ(ϕ)−

∫
ϕdµ

}
≥ M∗(µ).
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Therefore,

max
µ∈P(X)

{
M∗(µ) +

∫
ϕdµ

}
≤ Υ(ϕ).

For the converse inequality, given ϕ ∈ C0(X), take a sequence (εn)n∈N as in the Lemma 6.1
and such that the limit limn→+∞ µ

εn
ϕ in the weak∗-topology exists. According to Lemma 6.1,

such a limit is an equilibrium state for Υ and ϕ. Denote it by µϕ. Then

Υ(ϕ) = lim
n→+∞

Υεn(ϕ)

= lim
n→ +∞

(
hεn(µεnϕ ) +

∫
ϕdµεnϕ

)
=
(

lim
n→+∞

hεn(µεnϕ )
)

+

∫
ϕµϕ.

Consequently, as µϕ is an equilibrium state of ϕ, the previous estimates imply that

M(µϕ) = lim
n→+∞

hεn(µεnϕ ).

Thus

M(µϕ) = lim
n→+∞

hεn(µεnϕ ) ≤ M∗(µϕ)

and so

Υ(ϕ) = M(µϕ) +

∫
ϕdµϕ ≤ M∗(µϕ) +

∫
ϕdµϕ ≤ max

µ∈P(X)

{
M∗(µ) +

∫
ϕdµ

}
.

This finishes the proof of Theorem 6.2. �

7. Proof of Theorem C

Let (X, d) be a compact metric space and T : X → X be a continuous map such that
mdimM (X, d, T ) < +∞. We start by recalling the definition of Katok metric entropy (cf. [14]).

Given µ ∈ ET (X), ε > 0, δ ∈ ]0, 1[ and n ∈ N, consider the minimal number of open sets with
diameter smaller than ε with respect to dn needed to cover any subset A ∈ B with measure µ
greater than 1− δ, that is,

Nµ(ε, δ, n) = inf
A∈B

{S(A, dn, 0, ε) : µ(A) > 1− δ}.

Define

hKµ (ε, δ) = lim sup
n→+∞

1

n
logNµ(ε, δ, n).

We can extend the previous notion to non-ergodic probability measures in PT (X) via inte-
gration: given µ ∈ PT (X), define

hKµ (ε, δ) =

∫
ET (X)

hKm(ε, δ) dPµ(m) (17)

where µ =
∫
ET (X)mdPµ(m) is the ergodic decomposition of µ. We note that, by definition, the

map hKm is measurable and m-integrable; this way, the function

µ ∈ PT (X) 7→ hKµ (ε, δ)

is also affine.
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Definition 7.1. Given µ ∈ PT (X) and δ ∈ ]0, 1[, define

HK
δ : PT (X) → R

µ 7→ sup(µε)ε ∈M(µ) lim supε→ 0+
hKµε (ε,δ)

log(1/ε)

(18)

where M(µ) stands for the space of sequences of probability measures in PT (X) which converge
to µ in the weak∗-topology.

Remark 7.2. A priori, the map HK
δ may depend on δ, though in several examples its value is

independent of this parameter (cf. Section 10). Moreover, given µ ∈ PT (X),

lim
δ→ 0+

HK
δ (µ) = sup

δ ∈ ]0,1[
HK
δ (µ) (19)

since the map δ ∈ ]0, 1[ 7→ HK
δ (µ) is non-increasing.

To introduce a potential in the previous concept, given a continuous map ϕ : X → R and
µ ∈ ET (X), take

Nµ(ϕ, ε, δ, n) = inf {S(A, dn, Snϕ, ε) : µ(A) > 1− δ}
and

PKµ (ϕ, ε, δ) = lim sup
n→+∞

1

n
logNµ(ϕ, ε, δ, n).

Similarly, we now extend the previous notion to µ ∈ PT (X) using its ergodic decomposition,
that is,

PKµ (ϕ, ε, δ) =

∫
ET (X)

PKm (ϕ, ε, δ) dPµ(m)

if µ =
∫
ET (X)mdPµ(m) ∈ PT (X).

Remark 7.3. Given δ ∈ ]0, 1[ and µ ∈ ET (X), one has Nµ(ϕ, ε, δ, n) ≤ S(X, dn, Snϕ, ε) for
every n ∈ N and ε > 0; so PKµ (ϕ, ε, δ) is bounded above by P (X, d, T, ϕ, ε).

7.1. Linking HK
δ and mdimM (X, d, T, ϕ). The following connection between hKµ and PKµ is a

straightforward adaptation of Proposition 2.2 in [6].

Lemma 7.4. Let (X, d) be a compact metric space, T : X → X be a continuous map, ϕ : X → R
be a continuous potential and µ ∈ ET (X) be an ergodic probability measure. Then, given τ > 0
and 1 > δ1 > δ2 > δ3 > 0, one has for every 0 < ε < τ

hKµ (ε, δ1)

log(1/ε)
+

∫
ϕdµ− τ ≤

PKµ (ϕ, ε, δ2)

log(1/ε)
≤

hKµ (ε, δ3)

log(1/ε)
+

∫
ϕdµ+ τ. (20)

This lemma has a main consequence: having fixed δ ∈ ]0, 1[, if we define

PKϕ,δ : PT (X) → R

µ 7→ sup(µε)ε ∈M(µ) lim supε→ 0+
PKµε (ϕ,ε,δ)

log(1/ε)

(21)

then, taking lim sup in (20), one gets

HK
δ1 (µ) +

∫
ϕdµ ≤ PKϕ,δ2(µ) ≤ HK

δ3 (µ) +

∫
ϕdµ ∀µ ∈ PT (X).
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Therefore, noticing that (see Remark 7.3)

PKϕ,δ ≤ mdimM (X, d, T, ϕ) ∀ δ ∈ ]0, 1[ ∀ϕ ∈ C0(X)

we conclude that:

Lemma 7.5. For every δ ∈ ]0, 1[ and µ ∈ PT (X), one has

HK
δ (µ) ≤ inf

ϕ∈C0(X)

{
mdimM (X, d, T, ϕ)−

∫
ϕdµ

}
= M(µ).

For future use, let us state two other properties of the map HK
δ .

Lemma 7.6. For every δ ∈ ]0, 1[, the map HK
δ is convex and upper semi-continuous.

Proof. The convexity of HK
δ is due to the fact that, for every δ ∈ ]0, 1[ and ε > 0, the map

µ ∈ PT (X) 7→ hKµ (ε, δ)

is affine, hence the subsequent lim sup in the definition of HK
δ yields a convex map in PT (X).

Besides, the supremum of convex maps is convex as well.

Regarding the upper semi-continuity of HK
δ , consider µ ∈ PT (X) and a sequence (µn)n∈N in

PT (X) converging, in the weak∗-topology, to µ. Given n ∈ N, for every η > 0 there is a sequence

(µ
(n)
εk )k∈N in M(µn) such that

HK
δ (µn)− η < lim sup

k→+∞

hKµεk
(εk, δ)

log(1/εk)
≤ HK

δ (µn).

Moreover, the sequence (µ
(n)
εn )n∈N belongs to M(µ). Thus,

HK
δ (µn) < lim sup

n→+∞

hKµεn (εn, δ)

log(1/εn)
+ η ≤ HK

δ (µ) + η.

So, for every η > 0,

lim sup
n→+∞

HK
δ (µn) ≤ HK

δ (µ) + η

which implies that

lim sup
n→+∞

HK
δ (µn) ≤ HK

δ (µ).

�

We are ready to prove Theorem C.

7.2. Proof. Fix δ ∈ ]0, 1[. The upper bound follows immediately from Lemma 7.5 and Theo-
rem A:

mdimM (X, d, T, ϕ) = max
µ∈PT (X)

{
M(µ) +

∫
ϕdµ

}
≥ max

µ∈ET (X)

{
HK
δ (µ) +

∫
ϕdµ

}
. (22)

We are left to show the other inequality. For that, we proceed by constructing µ0 ∈ PT (X)
such that

mdimM (X, d, T, ϕ) ≤ HK
δ (µ0) +

∫
ϕdµ0.
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It was proved in [7] that, for every δ ∈ ]0, 1[ and every non-negative ϕ ∈ C0(X),

mdimM (X, d, T, ϕ) = lim sup
ε→ 0+

sup
µ∈ET (X)

PKµ (ϕ, ε, δ)

log(1/ε)
. (23)

We note that the translation invariance property on both sides of the previous equality allows us
to drop the condition ϕ ≥ 0. Thus, given ϕ ∈ C0(X), applying Lemma 7.4 and (23) we obtain,
for every 1 > δ1 > δ3 > 0,

lim sup
ε→ 0+

sup
µ∈ET (X)

hKµ (ε, δ1)

log(1/ε)
+

∫
ϕdµ ≤ mdimM (X, d, T, ϕ) ≤ lim sup

ε→ 0+

sup
µ∈ET (X)

hKµ (ε, δ3)

log(1/ε)
+

∫
ϕdµ.

These inequalities imply that, for every δ ∈ ]0, 1[,

mdimM (X, d, T, ϕ) = lim sup
ε→ 0+

sup
µ∈ET (X)

hKµ (ε, δ)

log(1/ε)
+

∫
ϕdµ. (24)

Therefore, we may find a sequence (εn)n of positive real numbers converging to 0 and such that

mdimM (X, d, T, ϕ) = lim
n→+∞

sup
µ∈ET (X)

hKµ (εn, δ)

log(1/εn)
+

∫
ϕdµ.

Thus, given η > 0, there is p ∈ N such that, for every n ≥ p,

mdimM (X, d, T, ϕ)− η < sup
µ∈ET (X)

hKµ (εn, δ)

log(1/εn)
+

∫
ϕdµ

and so, for every n ≥ p there exists µεn ∈ ET (X) satisfying

mdimM (X, d, T, ϕ)− η <
hKµεn (εn, δ)

log(1/εn)
+

∫
ϕdµεn .

Taking a subsequence if necessary, we may assume that the sequence
(
µεn
)
n≥ p converges in the

weak∗-topology to µ0 ∈ PT (X). Then, by Definition 7.1, for every η > 0,

HK
δ (µ0) ≥ lim sup

n→+∞

hKµεn (εn, δ)

log(1/εn)
≥ mdimM (X, d, T, ϕ)−

∫
ϕdµ0 − η. (25)

Hence,

mdimM (X, d, T, ϕ) ≤ HK
δ (µ0) +

∫
ϕdµ0.

To conclude, we note that even though the equilibrium state µ0 ∈ PT (X) may be non-ergodic,
by convexity and upper semi-continuity of the map

µ 7−→
{
HK
δ (µ) +

∫
ϕdµ

}
the maximum must also be attained at some ergodic measure. The proof of Theorem C is
complete.

Remark 7.7. From (22) and (25) we conclude that, up to a subsequence, the equilibrium state
µ0 satisfies

HK
δ (µ0) = lim

n→+∞

hKµεn (εn, δ)

log(1/εn)
.
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Remark 7.8. If one defines HK
δ without considering measures varying with the scale, say

H̃δ : µ 7→ lim sup
ε→ 0+

hµ(ε, δ)

log(1/ε)

then the equality (12) may not be valid: see Example 10.3 and Remark 10.4. This is related to
the existence of probability measures capturing the dynamical complexity at all scales, which is
a too strong requirement (see Section VIII in [16]). However, in some cases those probabilities
do exist, as happens in Example 10.2.

7.3. Generalization. The reasoning to prove Theorem C may be extended to maps

F : PT (X)× ]0, 1[→ R
satisfying

mdimM (X, d, T, ϕ) = lim sup
ε→ 0+

sup
µ∈PT (X)

{ F (µ, ε)

log(1/ε)
+

∫
ϕdµ

}
. (26)

Actually, if we define

F ∗ : PT (X) → R
µ 7→ sup(µε)ε ∈M(µ) lim supε→ 0+

F (µε,ε)
log(1/ε)

whereM(µ) is the space of sequences of probability measures in PT (X) which converge to µ in
the weak∗-topology, then the previous argument also shows that

mdimM (X, d, T, ϕ) = max
µ∈PT (X)

{
F ∗(µ) +

∫
ϕdµ

}
.

For instance, F may be any of the examples referred to in (1), (2) and (3), or their corresponding
versions with potential (see definitions in [7]).

Remark 7.9. Example 10.3 provides a negative answer to the question of whether we can ex-
change the order of lim supε and supµ in (26). However, Theorem C shows that the regularization
F ∗ of F is sufficient to surpass the obstructions to such an exchange of order.

8. Proof of Theorem D

The estimates in this section will be done for unilateral sequences, though they are also valid
for bilateral ones. Let (Y, d) be a compact metric space such that dimB U = dimB Y for every
nonempty open set U ⊂ Y . By Theorem A and Lemma 5.4 we have

mdimM (Y N, dρ, σ, ϕ) = sup
µ∈Pσ(Y N)

{
M(µ) +

∫
ϕdµ

}
∀ϕ ∈ C0(X).

Since mdimM (Y N, dρ, σ) = dimBY (cf. [27, Theorem 5]), Theorem A also indicates that

sup
µ∈Pσ(Y N)

M(µ) = dimBY.

Thus,

mdimM (Y N, dρ, σ, ϕ) ≤ dimBY + max
µ∈Pσ(Y N)

∫
ϕdµ ∀ϕ ∈ C0(X). (27)

For the converse inequality, recall from Lemma 7.5 that, given δ > 0, we have

HK
δ (µ) ≤ M(µ) ≤ mdimM (Y N, dρ, σ) = dimBY ∀µ ∈ Pσ(Y N). (28)
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Theorem 8.1. Let (Y, d) be a compact metric space such that dimB U = dimB Y for every
nonempty open set U ⊂ Y . Then, for every δ ∈ ]0, 1[,

HK
δ (µ) = dimB Y ∀µ ∈ Pσ(Y N).

Consequently,

mdimM (Y N, dρ, σ, ϕ) ≥ dimB Y + max
µ∈Pσ(Y N)

∫
ϕdµ ∀ϕ ∈ C0(X) (29)

and, bringing (27) and (29) together, the proof of Theorem D is complete, up to the proof of
Theorem 8.1.

Proof of Theorem 8.1. To show that

HK
δ (µ) ≥ dimB Y ∀µ ∈ Pσ(Y N)

we start relating the map HK
δ with the local box dimension of the alphabet set Y .

Lemma 8.2. For every δ ∈ ]0, 1[ and ρ > 1, given a fixed point (y, y, · · · ) ∈ Y N one has

lim
γ→ 0+

dimB Bγ(y) ≤ HK
δ (δN{y})

where δN{y} ∈ Pσ(Y N) is the product measure of the Dirac measure supported on y and Bγ(y)

stands for the open ball in Y centered at y with radius γ in the metric dρ.

Proof. Fix δ ∈ ]0, 1[ and ρ > 1. Given ε > 0 and γ > 0, let E = E(ε) ⊂ Bγ(y) be a maximal
ε-separated subset of Bγ(y). Take

νγε =
1

|E|
∑
e∈E

δ{e} and µγε = (νγε )N. (30)

Then, clearly any two elements in the n-cylinder

z, w ∈ E × · · · × E × Y × Y × · · · ⊂ Y N

which differ at some of the first n coordinates satisfy dn(z, w) ≥ ε. Let L = L(n, ε, δ) be the
maximal positive integer such that L|E|−n < δ, where |E| stands for the cardinal number of E.
Then, any subset A ⊂ Y N satisfying

µγε (A) > 1− δ

must contain an (n, ε)-separated subset F whose cardinal number satisfies

|F| ≥ |E|n − L > (1− δ)|E|n

since Y N \A can contain at most L sub-cylinders {y1} × · · · × {yn} × Y × Y × · · · . Thus,

hKµγε (ε, δ) ≥ log |E|.

Let (εγn)n be a sequence of positive real numbers converging to 0 such that

• dimB Bγ(y) = limn→+∞
log |E(εγn)|
log(1/εγn)

;

• limn→+∞ µγ
εγn

= µγ ∈ P(Y N) in the weak∗-topology.



22 M. CARVALHO, G. PESSIL, AND P. VARANDAS

Then,

HK
δ (µγ) ≥ lim sup

n→+∞

hK
µγ
ε
γ
n

(εγn, δ)

log(1/εγn)
≥ lim sup

n→+∞

log |E(εγn)|
log(1/εγn)

= dimB Bγ(y).

As supp(µγ) ⊂ Bγ(y)N, we also have

lim
γ→ 0+

µγ = δN{y}

so, by the upper semi-continuity of HK
δ , we get

HK
δ (δN{y}) ≥ lim sup

γ→ 0+

HK
δ (µγ) ≥ lim

γ→ 0+
dimB Bγ(y).

�

The next proposition generalizes the previous information.

Proposition 8.3. Given δ ∈ ]0, 1[ and ρ > 1, for every periodic point by σ with minimal period
p, say ξ = (y1, · · · , yp, y1, · · · , yp, · · · ) ∈ Y N, the Dirac periodic probability measure µξ ∈ Pσ(Y N)
supported on the orbit of ξ satisfies

1

p
lim

γ→ 0+
dimB B

γ
p (ξ) ≤ HK

δ (µξ)

where Bγ
p (y) = Bγ(y1)× · · · ×Bγ(yp) ⊂ Y p and Bγ(a) stands for the open ball in Y centered at

a with radius γ.

Proof. Endow the space Y p with the metric

dmax
(
(z1, z2, · · · , zp), (w1, w2, · · · , wp)

)
= max

{
d(z1, w1), · · · , d(zp, wp)

}
and consider in (Y p)N the metric dmax

ρp given by (13) when applied to the metric space (Y p, dmax)
and the value ρp:

dmax
ρp (α, β) = sup

n∈N∪{0}

max1≤ i≤ p d(αi+np − βi+np)
ρpn

.

Then the map

Φ:
(
Y N, dρ, σ

p
)

→
(

(Y p)N, dmax
ρp , σ

)
(z1, z2, · · · ) 7→

(
(z1, · · · , zp), (zp+1, · · · , z2p), · · ·

)
satisfies Φ ◦ σp = σ ◦ Φ and is bi-Lipschitz. In fact, given z = (z1, z2, · · · ) and w = (w1, w2, · · · )
in Y N, one has

dmax
ρp (Φ(z),Φ(w)) = sup

n∈N∪{0}

max1≤ i≤ p d(zi+np − wi+np)
ρpn

≤ ρp−1 sup
n∈N∪{0}

max
1≤ i≤ p

|zi+np − wi+np|
ρi+np−1

= ρp−1dρ(z, w)
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and

dmax
ρp (Φ(z),Φ(w)) = sup

n∈N∪{0}

max1≤ i≤ p d(zi+np − wi+np)
ρpn

≥ sup
n∈N∪{0}

max
1≤ i≤ p

d(zi+np − wi+np)
ρi+pn−1

= dρ(z, w).

Now, take a periodic point ξ = (y1, · · · , yp, y1, · · · , yp, · · · ) ∈ Y N by σ, with minimal period
p, and let µξ be the Dirac periodic probability measure supported on the orbit of ξ. We notice
that, for each i ∈ {1, · · · , p}, the push-forward Φ∗(δ{σi(ξ)}) is the Dirac measure δ{Φ(σi(ξ))} in

(Y p)N supported on the fixed point

Φ(σi(ξ)) =
(

(y1+i, · · · , yp, y1, · · · , yi), (y1+i, · · · , yp, y1, · · · , yi), · · ·
)
.

For every γ > 0 and ε > 0, consider the probability measure µγε (i) in (Y p)N defined in (30),
within the proof of Lemma 8.2, but now with respect to the fixed point Φ(σi(ξ)) by σ. Then,

hKµγε (i)(ε, δ) ≥ log |Ei(ε)|

where Ei(ε) is a maximal ε-separated subset of

Bγ
i = Bγ(yi+1, · · · , yp, y1, · · · , yi) = Bγ(yi+1)× · · · ×Bγ(yp)×Bγ(y1)× · · · ×Bγ(yi).

Therefore,

hK1
p

∑p−1
i=0 µγε (i)

(ε, δ) =
1

p

p−1∑
i=0

hKµγε (i)(ε, δ) ≥
1

p

p−1∑
i=0

log |Ei(ε)|.

We now observe that Bγ
i (ξ) is given by permutations in the coordinates of Bγ

p (ξ) for every
i = 1, ..., p. Hence they all have the same upper box dimension, which can be estimated using
the same sequence of scales, say (εγn)n. Assume (by taking a subsequence if necessary) that those
scales are such that the sequence

(
µγ
εγn

(i)
)
n

converges in the weak∗-topology, say

lim
n→+∞

µγ
εγn

(i) = µγ(i) ∀ i ∈ {1, · · · , p}.

Consequently,

HK
δ

(1

p

p∑
i=1

µγ(i)
)
≥ lim sup

n→+∞

hK1
p

∑p−1
i=0 µγ

ε
γ
n

(i)
(εγn, δ)

log(1/εγn)
≥ lim sup

n→+∞

1

p

p∑
i=1

log |Ei(εγn)|
log(1/εγn)

= dimB B
γ
p (ξ).

Moreover, as supp(µγ(i)) ⊂ Bγ
i for every i,

lim
γ→ 0+

1

p

p∑
i=1

µγ(i) =
1

p

p∑
i=1

δ{Φ(σi(ξ))} =
1

p

p∑
i=1

Φ∗δ{σi(ξ)} = Φ∗(µξ).

Finally, by the upper semi-continuity of HK
δ ,

HK
δ (Φ∗(µξ)) ≥ lim

γ→ 0+
dimB B

γ
p (ξ).

We are left to relate HK
δ (Φ∗(µξ)) with HK

δ (µξ). The following lemma explains why HK
δ is

preserved under bi-Lipschitz conjugations.
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Lemma 8.4. Let T : X → X and T ′ : X ′ → X ′ be continuous maps on compact metric spaces
(X, d) and (X ′, d′), and Φ: X → X ′ be a bi-Lipschitz conjugation between them. Then,

HK
δ (X, d, T, µ) = HK

δ (X ′, d′, T ′,Φ∗(µ)) ∀µ ∈ PT (X).

Proof. We start by recalling a few simple facts about the push-forward map µ 7→ Φ∗µ = µ◦Φ−1:
(a) A sequence (µε)ε in PT (X) converges to µ ∈ PT (X) if and only if Φ∗µε in PT ′(X ′) converges
to Φ∗µ ∈ PT ′(X ′).
(b) m ∈ ET (X) if and only if Φ∗m ∈ ET ′(X ′).
(c) ν =

∫
mdPν(m) is the ergodic decomposition of ν ∈ PT (X) if and only if Φ∗ν =

∫
Φ∗(m) dPν(m)

is the ergodic decomposition of Φ∗ν ∈ PT ′(X ′).

Take now constants C1, C2 > 0 such that

C1 d(x, x′) ≤ d′(Φ(x),Φ(x′)) ≤ C2 d(x, y) ∀x, x′ ∈ X.

Then, by considering separated subsets, we get for any A ⊂ X

S(A, dn, 0, ε) ≤ S(Φ(A), d′n, 0, C1ε) ≤ S(A, dn, 0, C3ε)

where C3 = C1/C2. Thus, for every m ∈ ET (X),

Nm(ε, δ, n) = inf {S(A, dn, 0, ε) : m(A) > 1− δ}
≤ inf {S(Φ(A), d′n, 0, C1ε) : Φ∗m(Φ(A)) > 1− δ}
= NΦ∗m(C1ε, δ, n)

≤ inf {S(A, dn, 0, C3ε) : m(A) > 1− δ}
= Nm(C3ε, δ, n).

Hence,

hKm(ε, δ) ≤ hKΦ∗m(C1ε, δ) ≤ hKm(C3ε, δ).

Consequently, for every ν ∈ PT (X) with ergodic decomposition given by ν =
∫
mdPν(m) we

have

hKν (ε, δ) =

∫
hKm(ε, δ) dPν(m)

≤
∫
hKΦ∗m(C1ε, δ) dPν(m)

= hKΦ∗ν(C1ε, δ)

≤
∫
hKm(C3ε, δ) dPν(m)

= hKν (C3ε, δ).

Thus,

hKν (ε, δ) ≤ hKΦ∗ν(C1ε, δ) ≤ hKν (C3ε, δ).

We now proceed to evaluate HK
δ . Given µ ∈ PT (X), take sequences µn → µ and εn → 0+

such that

HK
δ (µ) = lim

n→+∞

hKµn(εn, δ)

log(1/εn)
.
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Then,

HK
δ (µ) ≤ lim sup

n→+∞

hKΦ∗µn(C1εn, δ)

log(1/εn)
≤ HK

δ (Φ∗µ).

For the converse inequality, take sequences µn → µ and εn → 0+ such that

HK
δ (Φ∗µ) = lim

n→+∞

hKΦ∗µn(C1εn, δ)

log(1/C1εn)
.

Then,

HK
δ (Φ∗µ) ≤ lim sup

n→+∞

hKµn(C3εn, δ)

log(1/C1εn)
≤ HK

δ (µ).

�

It is equally straightforward to show the following power rule for the map HK
δ .

Lemma 8.5. Let (X, d, T ) be as above and p ∈ N. Then

HK
δ (X, d, T p, µ) ≤ pHK

δ (X, d, T, µ) ∀µ ∈ PT (X).

To complete the proof of Proposition 8.3, we summon Lemmas 8.4 and 8.5 to deduce that

lim
γ→ 0+

dimB B
γ
p (x) ≤ HK

δ

(
(Y p)N, dmax

ρp , σ,Φ∗µξ

)
= HK

δ

(
Y N, dρ, σ

p, µξ

)
≤ pHK

δ

(
Y N, dρ, σ, µξ

)
.

�

Let us resume the proof of Theorem 8.1. Under the assumption that every nonempty open
set in U ⊂ Y satisfies dimB U = dimB Y , we know that

dimB Bγ
p (ξ) = dimB

(
Bγ(y1)× · · · ×Bγ(yp)

)
=

p∑
i=1

dimB Bγ(yi).

Therefore, by Proposition 8.3, for every periodic probability measure µξ supported on a periodic
point ξ = (y1, · · · , yp, y1, · · · ) with minimal period p, we have

dimB Y =
1

p

p∑
i=1

lim
γ→ 0+

dimB Bγ(yi) =
1

p
lim

γ→ 0+
dimB Bγ

p (ξ) ≤ HK
δ

(
Y N, dρ, σ, µξ

)
.

In addition, by the specification property of the shift map (cf. [23, Proposition 2]), the set of
periodic probability measures is dense in Pσ(Y N). Thus, from the upper semi-continuity of HK

δ
we obtain

HK
δ (µ) ≥ dimB Y ∀µ ∈ Pσ(Y N).

We end the proof of Theorem D by bringing together the last inequality and (28). �

Remark 8.6. We note that, under the assumptions of Theorem D, one has

M(µ) = dimB Y ∀µ ∈ Pσ(Y N).



26 M. CARVALHO, G. PESSIL, AND P. VARANDAS

8.1. Dimension homogeneity assumption. We stress that some homogeneity hypothesis on
the box dimension structure of the space Y is indeed necessary. For instance, if a space of posi-
tive upper box dimension contains an isolated point (as happens with Y =

{
0
}
∪
{

1/n : n ∈ N
}

endowed with the Euclidean metric, whose box dimension is 1/2; cf. [13, Lemma 3.1]), then The-
orem 8.1 does not hold for the Dirac probability measure supported on that point. Consequently,
Theorem D is not valid for a well chosen potential, as the following result illustrates.

Proposition 8.7. Let (Y, d) be a compact metric space and σ the shift map on (Y N, dρ).

(a) Given y ∈ Y , one has

HK
δ (δN{y}) = M(δN{y}) = lim

γ→ 0+
dimB Bγ(y).

(b) Assume that (Y, d) has positive upper box dimension and contains a point y0 such that

lim
γ→ 0+

dimB Bγ(y0) < dimB Y.

Then there exists ϕ ∈ C0(Y N) such that

mdimM (Y N, dρ, σ, ϕ) < dimBY + max
µ∈Eσ(Y N)

∫
ϕdµ.

Proof. (a) Fix y ∈ Y . For each γ > 0 consider a map ϕγ ∈ C0(Y N) satisfying

ϕγ(x1, x2, · · · ) =

{
0 if x1 ∈ Bγ/2(y)

−dimBY − 1 if x1 /∈ Bγ(y)

and always bounded above by 0. Given ε > 0, let U1, · · · , UN be a minimal open cover of
Bγ(y) with diameter at most ε. Complete it to an open cover of the whole space Y by adding a
minimal ε-cover UN+1, · · · , UN+P of the complement of ∪ni=1Ui. Without loss of generality we
may suppose that none of the sets UN+1, · · · , UN+P intersects Bγ(y). Take ` = `(ε) such that

diam(Y, d)/ρ`−1 < ε and consider the open cover of Y N given by

α =
{
Uj1 × · · · × Uj`+n × Y × Y × · · · : 1 ≤ j1, · · · , j`+n ≤ N + P

}
.

Then the diameter of α with respect to the metric dρ,n satisfies diam(α, dρ,n) ≤ ε and∑
U ∈α

(1/ε)supU Snϕγ =
∑

Uj1×···×Uj`+n

(1/ε)
∑`+n
v=1 supUjv

ϕγ

= (N + P )`
∑

Uj1×···×Ujn

(1/ε)
∑n
v=1 supUjv

ϕγ

≤ (N + P )`
∑

Uj1×···×Ujn

(1/ε)−(dimBY+1) #
{
v : jv ∈{N+1, ··· , N+P}

}

= (N + P )`
( n∑
k=0

(
n

k

)
P kNn−k (εdimBY+1)k

)
= (N + P )`

(
N + PεdimBY+1

)n
.
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We observe that as P is smaller than the ε-covering number of Y then one has P ≤ ε−(dimBY+1/2)

for small enough ε > 0. Thus, for those values of ε,

P (Y N, dρ, σ, ϕγ , ε) ≤ log
(
N + PεdimBY+1

)
≤ log

(
N + ε1/2

)
and so

mdimM (Y N, dρ, σ, ϕγ) ≤ lim sup
ε→ 0+

log
(
N + ε1/2

)
log(1/ε)

= dimB Bγ(y). (31)

On the other hand,

max
µ∈Eσ(Y N)

∫
ϕγ dµ =

∫
ϕγ dδ

N
{y} = 0 ∀γ > 0. (32)

Therefore

M(δN{y}) = inf
ψ ∈C0(Y N)

{
mdimM (Y N, d, σ, ψ)−

∫
ψ dδN{y}

}
≤ lim

γ→ 0+
mdimM (Y N, d, σ, ϕγ)

≤ lim
γ→ 0+

dimB Bγ(y).

To complete the proof of item (a) we summon Lemmas 8.2 and 7.5.

(b) Let y0 ∈ Y be such that limγ→ 0+ dimB Bγ(y0) < dimB Y and γ0 > 0 such that

dimB Bγ0(y0) < dimB Y.

Consider ϕγ0 associated to y0 as previously defined. Then, taking into account (31) and (32) we
conclude that

mdimM (Y N, dρ, σ, ϕγ0) < dimB Y + max
µ∈Eσ(Y N)

∫
ϕγ0 dµ.

�

9. Proof of Theorem E

Recall from Section 3 that the map D : X → R is given by

D(x) = inf
{

mdimM (U, d, T ) : U is an open neighborhood of x
}
.

Even though the main results we show in this subsection assume invertibility of the dynamics,
we define D for possibly non-injective maps. Unless stated otherwise, in what follows we will
assume that T is just continuous. As one can see in Examples (10.3) and (10.5), which are far
from being injective, the above concept is closely related to the map HK

δ . We will show this is
true in general if the map T is a homeomorphism.

We start by establishing some useful properties of the map D.

Lemma 9.1. The map D is upper semi-continuous and

0 ≤ D ≤ mdimM (X, d, T ).

In particular, D is measurable and µ-integrable with respect to every µ ∈ P(X).
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Proof. Given x ∈ X and an open neighborhood U of x, let (xn)n∈N be a sequence of elements
in U converging to x. Then, for sufficiently large n, one has xn ∈ U and

D(xn) ≤ mdimM (U, d, T ).

We conclude the proof by taking lim supn and infU . �

Lemma 9.2. For any µ ∈ ET (X), the map D is constant µ-almost everywhere.

Proof. We begin by showing that D is increasing along orbits. Given an open nonempty subset
U of X, let E ⊂ U be (n + 1, ε)-separated. Then, by the Pigeonhole Principle, there is an

(n, ε)-separated subset A ⊂ T (E) ⊂ T (U) with cardinality #A ≥ #E/S1(X, d, 0, ε). Hence,

S1(T (U), dn, 0, ε) ≥ S1(U, dn+1, 0, ε)/S1(X, d, 0, ε)

and so D(x) ≤ D(T (x)) for all x ∈ X.
We observe now that if x ∈ X is recurrent, that is, limk→+∞ T

nk(x) = x for some subsequence
of the orbit of x by T , then by the upper semi-continuity of D one has

lim sup
k→+∞

D(Tnk(x)) ≤ D(x).

As D is increasing along orbits, the previous inequality implies that D is constant along orbits
of recurrent points. Thus, given µ ∈ ET (X), by the Poincaré Recurrence Theorem we deduce
that D is constant µ-almost everywhere. �

9.1. Linking D and mdimM (X, d, T, ϕ). In the remaining of this section, we assume that the
map T : X → X is a homeomorphism. We will prove a general result, taking into account the
role of the potentials, of which Theorem E is an immediate consequence.

Theorem 9.3. Let (X, d) be a compact metric space and T : X → X be a homeomorphism such
that mdimM (X, d, T ) < +∞. Then, for every ϕ ∈ C0(X),

mdimM (X, d, T, ϕ) ≤ max
µ∈PT (X)

∫ (
D + ϕ

)
(x) dµ(x) = max

µ∈ET (X)

∫ (
D + ϕ

)
(x) dµ(x).

Proof. Fix δ ∈ ]0, 1[ and let µ0 be the equilibrium state constructed in the proof of Theorem C,
namely the probability measure which is the weak*-limit of the sequence

(
µεn
)
n∈N in ET (X) as

(εn)n goes to 0 and satisfies

mdimM (X, d, T, ϕ) = HK
δ (µ0) +

∫
ϕdµ0 = lim

n→∞

hKµεn (εn, δ)

log(1/εn)
+

∫
ϕdµ0.

Note that, given an open set U ⊂ X such that µ(U) > 0, for large enough n one has µεn(U) > 0.

Lemma 9.4. [32, Theorem 3.7] If T : X → X is a homeomorphism on a compact metric space
(X, d), for every ergodic probability measure µ ∈ ET (X), every open set U ⊂ X such that
µ(U) > 0, every ε > 0 and every δ ∈]0, 1[ we have

P (U, d, T, 0, ε) ≥ hKµ (ε, δ).

By Lemma 9.4 and Remark 7.7 we have

HK
δ (µ0) = lim

n→+∞

hKµεn (εn,δ)

log(1/εn)
≤ mdimM (U, d, T ).
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Thus, for any x ∈ supp(µ0),

HK
δ (µ0) ≤ inf

x∈U
mdimM (U, d, T ) = D(x).

Therefore,

HK
δ (µ0) ≤ inf

x∈ supp(µ0)
D(x) ≤

∫
D dµ0.

Hence,

mdimM (X, d, T, ϕ) ≤
∫ (
D + ϕ

)
dµ0 ≤ max

µ∈PT (X)

∫ (
D + ϕ

)
(x) dµ(x).

As µ 7→
∫
Ddµ is affine, the previous maximum is also attained at some ergodic probability

measure. This ends the proof of Theorem 9.3.
�

Let us resume the proof of Theorem E. The equality in its statement follows from Theorem 9.3,
when ϕ ≡ 0, and the fact that D ≤ mdimM (X, d, T ) (cf. Lemma 9.1).

Now consider a measure µ ∈ PT (X) satisfying

mdimM (X, d, T ) =

∫
D dµ.

Then, as D ≤ mdimM (X, d, T ), there exists a full measure set Z ⊂ X such that D|Z ≡
mdimM (X, d, T ). Therefore, since supp(µ) ⊂ Z and D is upper semi-continuous, we deduce
that D|supp(µ) ≡ mdimM (X, d, T ). The proof of Theorem E is complete. �

Remark 9.5. A strict inequality may happen in Theorem 9.3. For instance, if one considers
the shift map on Y Z, we always have

D ≡ dimBY

and so, if (Y, d) has positive upper box dimension and contains an isolated point, then using the
potential ϕ provided by Proposition 8.7 we get

mdimM (Y Z, dρ, σ, ϕ) < max
µ∈Eσ(Y Z)

∫ (
D + ϕ

)
(x) dµ(x).

Another consequence of Theorem 9.3 is the following relation between µ 7→
∫
D dµ and

µ 7→ M(µ) (see (8)).

Corollary 9.6. Let (X, d) be a compact metric space and T : X → X be a homeomorphism such
that mdimM (X, d, T ) < +∞. Then,

M(µ) ≤
∫
D dµ ∀µ ∈ PT (X).

In addition, the equality in Theorem 9.3 holds for every ϕ ∈ C0(X) if and only if

M(µ) =

∫
D dµ ∀µ ∈ PT (X).
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Proof. We recall that M is given by M(µ) = infϕ∈CΓ
∫
ϕdµ, where

CΓ =
{
ϕ ∈ C0(X) : mdimM (X, d, T,−ϕ) ≤ 0}.

Now observe that, by Theorem 9.3, for every continuous potential satisfying ψ ≥ D we have

mdimM (X, d, T,−ψ) ≤ max
µ∈PT (X)

∫ (
D − ψ

)
dµ ≤ 0

that is, ψ ∈ CΓ. By upper semi-continuity of D, there exists a decreasing sequence of continuous
potentials ϕn converging to D as n→∞. Then, by the Monotone Convergence Theorem,

M(µ) = inf
ϕ∈CΓ

∫
ϕdµ ≤ lim

n→∞

∫
ϕn dµ =

∫
D dµ ∀µ ∈ PT (X).

To conclude, assume that the inequality in Theorem 9.3 is indeed an equality for any potential
ϕ ∈ C0(X). Then, µ 7→

∫
D dµ satisfies the variational principle (7). By the maximality of

µ 7→ M(µ) among all those maps satisfying this variational principle (provided by Theorem A),
we get

M(µ) ≥
∫
D dµ ∀µ ∈ PT (X).

�

9.2. Metric mean dimension points. An element x ∈ X is said to be as a metric mean
dimension point if D(x) > 0; it is a full metric mean dimension point if D(x) = mdimM (X, d, T ).

Denote the set of such points by Dp(X, d, T ) and Df
p (X, d, T ), respectively. It was shown in [19]

that Df
p (X, d, T ) 6= ∅. The following is an immediate consequence of Theorem E:

Corollary 9.7. Under the assumptions of Theorem E, there exists an ergodic probability measure

µ ∈ ET (X) such that supp(µ) ⊆ Df
p (X, d, T ).

10. Examples

The first example confirms that the measure-theoretic upper metric mean dimension defined
in the statement of Theorem A depends on the metric.

Example 10.1. Consider the symbolic space Y = {0, 1}N with the product topology. This
topology is generated by both distances

d1(x, y) =
∑
n∈N

|xn − yn|
2n

and d2(x, y) =
∑
n∈N

|xn − yn|
3n

.

Endowing the product space Y N with the metrics Dj , for j = 1, 2, given by

Dj(a, b) = sup
n∈N

dj(an, bn)

2n

which induce the same topology in Y N, and considering in Y N the shift map σ, we get (cf. [15])

mdimM (Y N, D1, σ, 0) = dimB(Y, d1) = 1

while

mdimM (Y N, D2, σ, 0) = dimB(Y, d2) = log 2/ log 3.
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Let M1 and M2 denote the measure-theoretic upper metric mean dimension maps assigned
by Theorem A to (Y N, D1, σ) and (Y N, D2, σ), respectively, when applied to the families of ε-
pressure functions

(
P (Y N, D1, σ, ·, ε)

)
0<ε< 1

and
(
P (Y N, D2, σ, ·, ε)

)
0<ε< 1

introduced in Sub-
section 2.1. Thus

max
µ∈P(Y N)

M1(µ) =
log 2

log 3
< 1 = max

µ∈P(Y N)
M2(µ).

The next two examples comprise continuous maps with the same positive upper metric mean
dimension, though their dynamical traits and corresponding sources of complexity are different.

Example 10.2. Denote by | · | the Euclidean distance in [0, 1] and, given any ρ > 1, consider
the space [0, 1]N with the metric dρ (defined in (13)). Let σ : [0, 1]N → [0, 1]N be the shift map.
From Theorem 8.1 we already know that, for every δ ∈ ]0, 1[,

HK
δ (µ) = 1 ∀µ ∈ Pσ([0, 1]N). (33)

Nevertheless, we can improve the argument in the proof of Lemma 8.2 when computing HK
δ at

a Dirac measure supported on a fixed point, thereby showing that each approximating measure
µε detects separation at all scales.

Given x ∈ [0, 1] and ε > 0, denote by I(ε) the amount of odd numbers between 1 and
d1/εe (thus I(ε) ≥ 1/2ε) and by B = Bε(x) ⊂ [0, 1] the open interval of radius ε centered
at x. Partition B into d1/εe intervals with the same length, say B(1), · · · , B(d1/εe). Iterate
by partitioning B(i1, · · · , in) into B(i1, · · · , in, 1), · · · , B(i1, · · · , in, d1/εe) so that the length of
B(i1, · · · , in) is at least εn+1. We observe that, if

y ∈ B(i11, · · · , i1n)×B(i21, · · · , i2n)× · · · ×B(ik1, · · · , ikn)

z ∈ B(j1
1 , · · · , j1

n)×B(j2
1 , · · · , j2

n)× · · · ×B(jk1 , · · · , jkn)

where the i′s and j′s are all odd, then dk(y, z) ≥ εn+1.
Let νε be a probability measure in [0, 1] determined by

• νε(B) = 1;
• νε(B(i)) = I(ε)−1, for every odd i;
• νε(B(i1, · · · , in)) = I(ε)−n, for every odd i′s.

Define µε = νNε , which is clearly ergodic, converges to δN{x} as ε→ 0+ and satisfies

µε
(
B(i11, · · · , i1n)×B(i21, · · · , i2n)× · · · ×B(ik1, , i

k
n)
)

= I(ε)−kn ∀ odd i′s.

Let L = L(ε, k, n, δ) ∈ N be the maximal integer such that LI(ε)−kn < δ. Then, any set A
satisfying µε(A) > 1 − δ must intersect at least I(ε)kn − L cylinders, with odd indices, of the
partition level B(i11, · · · , i1n)×B(i21, · · · , i2n)× · · · ×B(ik1, · · · , ikn), where

I(ε)kn − L > (1− δ)I(ε)kn

since [0, 1]N \ A can contain at most L of such sets. Hence, A must have a (dk, ε
n+1)-separated

subset with cardinality (1− δ)I(ε)kn. Thus,

hKµε(ε
n+1, δ) ≥ lim sup

k→+∞

1

k
log
(
(1− δ)I(ε)kn

)
= log I(ε)n ≥ log (1/2ε)n.
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Fix ε > 0. Given ε′ > 0, let n = n(ε, ε′) be such that εn+1 ≤ ε′ ≤ εn. Then

HK
δ (µε) ≥ lim sup

ε′→ 0+

hKµε(ε
′, δ)

log(1/ε′)

≥ lim inf
ε′→ 0+

hKµε(ε
′, δ)

log(1/ε′)

≥ lim inf
n→+∞

hKµε(ε
n, δ)

log(1/εn+1)

≥ lim inf
n→+∞

n− 1

n+ 1

( log(1/ε)− log 2

log(1/ε)

)
= 1− log 2

log(1/ε)
.

(34)

Finally, the upper semi-continuity of HK
δ yields

HK
δ (δN{x}) ≥ lim sup

ε→ 0+

HK
δ (µε) = 1.

We emphasize that the interesting feature of this construction, in contrast to the proof of
Lemma 8.2, is the fact that the lower bound (34) of HK

δ (µε) is done by using the measure µε
for all scales ε′ > 0. More precisely, the inequality

lim inf
ε′→ 0+

hKµε(ε
′, δ)

log(1/ε′)
≥ 1− log 2

log(1/ε)

indicates that the complexity at every scale ε′ > 0 (in terms of metric mean dimension) captured

by the measure µε is at least 1− log 2
log(1/ε) . This means precisely that µε detects separation of points

at all scales.

Example 10.3. Consider the interval [0, 1] with the metric | · |, the map f : [0, 1]→ [0, 1] given
by f(x) = |1− |3x− 1|| and the sequence (an)n∈N∪{0} of numbers in [0, 1[ whose general term

is a0 = 0 and an =
∑n

k=1
6
πk2 . For each n ∈ N, take the interval Jn = [an−1, an] and let

Tn : Jn → [0, 1] be the unique increasing affine map from Jn onto [0, 1]. Define

T : [0, 1] → [0, 1]
x ∈ Jn 7→ T−1

n ◦ fn ◦ Tn
x = 1 7→ 1

which is illustrated in Figure 1.

It is known (cf. [27] or [5]) that mdimM ([0, 1], | · |, T ) = 1, although, for every n ∈ N, one
has mdimM (Jn, | · |, T|Jn) = 0. Let us redo this computation by applying (12) in order to show

that the Dirac mass δ{1} is the unique probability measure which maximizes HK
δ .

Given n ∈ N, the set Jn can be partitioned into 3n intervals Jn(1), · · · , Jn(3n) with the same
length in such a way that

T (Jn(i)) = Jn ∀ i ∈ {1, · · · , 3n}.
Similarly, Jn(i) can be partitioned into 3n intervals Jn(i, 1), · · · , Jn(i, 3n) with the same length
so that

T 2(Jn(i, j)) = Jn ∀ i, j ∈ {1, · · · , 3n}.
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Figure 1. Graph of the map T .

Inductively, for every k ∈ N and (i1, · · · , ik) such that ij ∈ {1, · · · , 3n}, we can split Jn(i1, · · · , ik)
into 3n intervals

Jn(i1, · · · , ik, 1), Jn(i1, · · · , ik, 2), · · · , Jn(i1, · · · , ik, 3n)

with the same length and satisfying

T k+1Jn(i1, · · · , ik, i) = Jn ∀ i ∈ {1, · · · , 3n}.

We may rename these subsets so that the order of the intervals Jn(i1, · · · , ik, i) partitioning
Jn(i1, · · · , ik) is increasing in i if i1 is odd, and decreasing in i if i1 is even. This choice fits the
fact that fn is increasing in Jn(i1) if i1 is odd, and decreasing otherwise. This way, for every
1 ≤ j ≤ k, each x ∈ Jn(i1, · · · , ik) belongs to Jn(ij , ij+1, · · · , ik) after j − 1 iterates.

We note that each Jn(i1, · · · , ik) has length |Jn|/3kn for every k ∈ N. Take

εn = |Jn|/3n = 6/(π2n23n). (35)

If x ∈ Jn(i1, · · · , ik) and y ∈ Jn(j1, · · · , jk), where (i1, · · · , ik) 6= (j1, · · · , jk) and the i′s and
the j′s are all odd, in at most k iterates their images lie in J(il) and J(jl), respectively, whose
distance is at least εn; hence dk(x, y) ≥ εn.

We are ready to define a suitable sequence of invariant probability measures (µn)n which
converges to δ{1}. We start by recalling that, for every n ∈ N,

#{1 ≤ i ≤ 3n : i is odd} =
3n + 1

2
.

Let µn be defined by

• µn(Jn) = 1;
• µn(Jn(i)) = 2

3n+1 for every odd 1 ≤ i ≤ 3n;

• µn(Jn(i1, · · · , ik)) = ( 2
3n+1)k for every odd 1 ≤ i1, · · · , ik ≤ 3n and every k ∈ N.
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Clearly, (µn)n converges to δ{1} and each µn is T -invariant. In fact,

T−1Jn(i1, · · · , ik) =
3n⋃
i=1

Jn(i, i1, · · · , ik)

and

µ(T−1Jn(i1, · · · , ik)) =
∑

1≤i≤3n; i odd

( 2

3n + 1

)k+1
=
( 2

3n + 1

)k
= µ(Jn(i1, · · · , ik)).

Moreover, being a Bernoulli probability measure, µn is ergodic.
Let L = L(δ, n, k) ∈ N be the maximal positive integer satisfying

L
( 2

3n + 1

)k
< δ.

Then, any subset A ⊂ [0, 1] with µn(A) > 1− δ intersects at least (3n+1
2 )k−L sets Jn(i1, · · · , ik)

with odd indices and (3n + 1

2

)k
− L >

(3n + 1

2

)k
(1− δ)

since [0, 1] \ A contains at most L of such intervals. Therefore, A must contain an (εn, dk)-

separated subset of cardinality bigger than
(

3n+1
2

)k
(1− δ) and

hKµn(εn, δ) ≥ lim sup
k→+∞

1

k
log
((3n + 1

2

)k
(1− δ)

)
= log

(3n + 1

2

)
.

Hence, for every δ ∈ ]0, 1[,

HK
δ (δ{1}) ≥ lim sup

n→+∞

log (3n+1
2 )

log (1/εn)
= lim sup

n→+∞

log (3n+1
2 )

log (π
2n23n

6 )
= 1. (36)

Moreover, by Remark 2.3,

1 = dimB([0, 1], | · |) ≥ mdimM ([0, 1], | · |, T ) ≥ HK
δ (δ{1}).

Thus,

HK
δ (δ{1}) = 1.

Let us now use the previous information to evaluate HK
δ for all T -invariant measures.

Claim: For every δ ∈ ]0, 1[,

HK
δ (µ) = µ({1}) ∀µ ∈ PT ([0, 1]).

In particular, the map HK
δ is affine and the unique probability measure which maximizes HK

δ is
the Dirac mass δ{1}.

Proof of the Claim. We will start by showing that, given µ ∈ PT (X),

µ({1}) = 0 ⇒ HK
δ (µ) = 0.

Take one such a µ and µε ∈M(µ). Denote by µε =
∫
ET (X)mdPε(m) its ergodic decomposition.

Given δ ∈ ]0, 1[, select k = k(δ) such that µ([0, ak[) > 1 − δ. Then µε([0, ak[) > 1 − δ for small
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enough ε > 0. As every ergodic probability measure other than δ{1} gives full mass to some
J ′n = [an, an+1), we can write

µε =

∞∑
n=1

∫
m(J ′n) = 1

mdPε(m) + µε({1}) δ{1}.

Moreover, for every positive integer n ≤ k, if m(J ′n) = 1 then m([0, ak[) = 1. Yet, as T restricted
to [0, ak[ has finite topological entropy, we know that

lim sup
ε→ 0+

1

log(1/ε)

k∑
n=1

∫
m(J ′n) = 1

hKm(ε, δ) dPε(m) = 0.

Consequently, to estimate HK
δ (µ), we are reduced to the ergodic components m of µε such that

m([ak, 1]) = 1. So,

lim sup
ε→ 0+

hKµε(ε, δ)

log(1/ε)
= lim sup

ε→ 0+

1

log(1/ε)

∫
m([ak,1]) = 1

hKm(ε, δ) dPε(m)

≤ lim sup
ε→ 0+

P (X, d, T, 0, ε)

log(1/ε)
µε([ak, 1])

< mdimM ([0, 1], | · |, T ) δ

= δ.

Therefore,

0 ≤ HK
δ (µ) ≤ δ ∀ δ ∈ ]0, 1[

and so

0 ≤ HK
δ (µ) ≤ sup

0<δ′< 1
HK
δ′ (µ) = lim

δ′→ 0+
HK
δ′ (µ) = 0.

(cf. Remark 7.2). Consequently,

HK
δ (µ) = 0 = µ({1}). (37)

From the previous equality and the convexity of HK
δ , we further deduce that, for t ∈ [0, 1]

and µ ∈ PT ([0, 1]) such that µ({1}) = 0, if ν = tδ{1} + (1− t)µ then

HK
δ (ν) = HK

δ (tδ{1} + (1− t)µ) ≤ tHK
δ (δ{1}) + (1− t)HK

δ (µ) = t = ν({1}).

We are left to prove the reverse inequality, that is, HK
δ (ν) ≥ t. Take the sequence (εn)n as

in (35) and the sequence of probability measures (µn)n inM(δ{1}) used in the previous page to

compute HK
δ (δ{1}), which satisfy

lim sup
n→+∞

hKµn(εn, δ)

log(1/εn)
= HK

δ (δ{1}) = 1.
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Let (νn)n =
(
tµn + (1− t)µ

)
n

in M(ν). As η 7→ hKη (ε, δ) is affine (cf. (17)), then

HK
δ (ν) ≥ lim sup

n→+∞

hKνn(εn, δ)

log(1/εn)
by definition of HK

δ (ν)

= lim sup
n→+∞

(
t
hKµn(εn, δ)

log(1/εn)
+ (1− t)

hKµ (εn, δ)

log(1/εn)

)
= lim sup

n→+∞
t
hKµn(εn, δ)

log(1/εn)
by (37)

= t.

The proof of the claim is complete. �

Remark 10.4. Example 10.3 evinces an obstruction if one tries to prove (12) using the map

H̃δ : µ ∈ ET (X) 7→ lim sup
ε→ 0+

hKµ (ε, δ)

log(1/ε)

instead of HK
δ . Take µ ∈ ET (X) and, for δ ∈ ]0, 1[, consider k = k(δ) large enough so that the

set [0, ak] ∪ {1} =
⋃

1≤ j≤ k Jj ∪ {1} satisfies the condition

µ([0, ak] ∪ {1}) > 1− δ.

Then,

Nµ(ε, δ, n) ≤ S([0, ak] ∪ {1}, dn, 0, ε) ≤ k max
1≤ j≤ k

S(Jj , dn, 0, ε) + 1

and so

hKµ (ε, δ) ≤ max
1≤ j≤ k

P (Jj , d, T |Jj , 0, ε).

Therefore, as the restriction of T to any Jj has finite topological entropy, for every δ ∈ ]0, 1[ one
has

H̃δ(µ) = 0 ∀µ ∈ PT (X).

The next example generalizes the last one.

Example 10.5. Given α ∈ ]0, 1[, let Tα : [0, 1]→ [0, 1] be as in the previous example but whose
invariant intervals Jαn = [aαn−1, a

α
n] are determined by the sequence with general term

n ∈ N 7→ aαn =

n∑
i=1

C(α)(3i(1−1/α))

where C(α) = (
∑∞

i=1 3i(1−1/α))−1.

Claim: For every δ ∈ ]0, 1[,

HK
δ (µ) = αµ({1}) ∀µ ∈ PT ([0, 1]).

In particular, the map HK
δ is affine and the unique probability measure which maximizes HK

δ is
the Dirac mass δ{1}.
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Proof of the Claim. The argument to prove the claim is completely analogous to the one in
Example 10.3 up to checking the upper bound

mdimM ([0, 1], | · |, Tα) ≤ α

which in the previous example was a trivial consequence of Remark 2.3.

For each n ∈ N, let

εαn = |Jαn |/3n = C(α) 3−n/α.

Consider a positive integer L ≥ 1 large enough so that 1 − aαn+L ≤ εαn, and take the following
partition of the [0, 1]:

[0, 1] = [0, aαn] ∪
L−1⋃
`=1

Jαn+` ∪ [aαn+L, 1].

Thus, by Remark 2.3, for every ` = 1, ..., L− 1 we have

P (Jαn+`, | · |, Tα, 0, εαn) ≤ logS(Jαn+`, | · |, 0, εαn) = logd|Jαn+`|/εαne = logd3n−( 1
α
−1)`e ≤ log 3n.

Moreover,
P ([0, aαn], | · |, Tα, 0, εαn) ≤ htop(Tα|[0, aαn ]) = log 3n.

Hence,

P ([0, 1], | · |, Tα, 0 , εαn) = max
{
P
(
[0, aαn], | · |, Tα, 0, εαn

)
, P
(
Jαn+`, | · |, Tα, 0, εαn

)
| ` = 1, · · · , L

}
≤ log 3n.

Now, for each ε > 0, let n ∈ N be such that εαn+1 ≤ ε ≤ εαn. Then,

P ([0, 1], | · |, Tα, 0, ε)
log(1/ε)

≤
P ([0, 1], | · |, Tα, 0, εαn+1)

log(1/εαn)
≤ log 3n+1

log 3n/α − logC(α)

and so

mdimM ([0, 1], | · |, Tα) ≤ lim sup
n→+∞

log 3n+1

log 3n/α − logC(α)
= α.

�

More generally, given N ∈ N and α1, · · · , ατ ∈ ]0, 1], consider the function

T : [0,N ] → [0,N ]

x ∈ [`− 1, `] 7→ Tα`(x− `+ 1) + `− 1

for ` ∈ {1, · · · ,N}, where T1 stands for the map of Example 10.3. Then,

mdimM ([0,N ], | · |, T ) = max {α1, · · · , αN }
and, for every δ ∈ ]0, 1[,

HK
δ (µ) =

N∑
`=1

α` µ({`}) =

∫
D dµ ∀µ ∈ PT ([0,N ]).

In particular, HK
δ is affine and the unique probability measures which maximize HK

δ are the
convex combinations of the Dirac measures {δ{`}}`∈I , where

I =
{
` ∈ {1, · · · ,N} : α` = max {α1, · · · , αN }

}
.
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Summoning Theorem C, we obtain the following simple formula for the upper metric mean
dimension with potential of T :

mdimM ([0,N ], | · |, T , ϕ) = max
µ∈ET ([0,N ])

∫ (
D + ϕ

)
dµ ∀ϕ ∈ C0([0,N ])

where

D(x) =

{
α` if x = `
0 otherwise.

Moreover, the space CΓ described in Theorem A is, in this family of examples, given by

CΓ =
{
ϕ ∈ C0(X) :

∫
D dµ ≤

∫
ϕdµ, ∀µ ∈ PT ([0,N ])

}
.

Therefore,

M(µ) = HK
δ (µ) =

∫
D dµ =

N∑
`=1

α` µ({`}) ∀µ ∈ PT ([0,N ]).

11. Final comments

In this section we comment on some related topics and address a few questions that are
suggested by our main results.

11.1. Semigroup actions. We start by exploring the generality of our results by applying
them to the non-dynamical context of finitely generated semigroup actions for which a notion of
topological pressure is already defined (see [3] for an account of these notions). Consider m ∈ N
and a semigroup G generated by a family of m+ 1 continuous self-maps G = {id, g1, · · · , gm} of
a compact metric space (X, d), with the composition operation. The semigroup action of G on
X is the continuous map S : G ×X → X defined by (g, x) 7→ g(x) for every g ∈ G and x ∈ X.

Given n ∈ N and g = (gi1 , gi2 , · · · , gin) ∈ Gn, consider the metric

dg,n(x, y) = max
0≤ j≤n

d(gijgij−1 · · · gi1(x), gijgij−1 · · · gi1(y))

which is equivalent to d. For every ϕ ∈ C0(X), n ∈ N and ε > 0, take the average

S(X, d,G, ϕ, ε, n) =
1

mn

∑
|g|=n

S(X, dg,n, Sg,nϕ, ε)

where S(X, dg,n, Sg,nϕ, ε) is as defined in (5) and

Sg,nϕ(x) =
n∑
j=0

ϕ(gijgij−1 · · · gi1(x)).

Then

P (X, d,G, ·, ε) : ϕ 7→ lim sup
n→+∞

1

n
logS(X, d,G, ϕ, ε, n)

is an ε-pressure function. This motivates the following notion of upper metric mean dimension
with potential for the semigroup action S.
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Definition 11.1. Given ϕ ∈ C0(X), the upper metric mean dimension with potential, of the
action S of G on X and ϕ, is given by

mdimM (X, d,G, ϕ) = lim sup
ε→ 0+

P (X, d,G, ϕ, ε)

log (1/ε)
.

Some comments are in order. Firstly, as the notion of ε-scaled pressure function depends
on the generating set G, so does the previous notion of upper metric mean dimension with

potential. Secondly, according to Lemma 5.1, if lim supε→ 0+
P (X,d,G,ϕ,ε)

log (1/ε) < +∞ at some (thus

every) ϕ ∈ C0(X), then mdimM (X, d,G, ·) is a pressure function on C0(X). Therefore, we
obtain the following consequence of Theorem A.

Corollary 11.2. Assume that mdimM (X, d,G, 0) < +∞. Then

mdimM (X, d,G, ϕ) = max
µ∈P(X)

{
M(µ) +

∫
ϕdµ

}
∀ϕ ∈ C0(X) (38)

where

M(µ) = inf
ϕ∈A

∫
ϕdµ and A =

{
ϕ ∈ C0(X) : mdimM (X, d,G, ϕ) ≤ 0

}
.

Moreover,

M(µ) = inf
ϕ∈C0(X)

{
mdimM (X, d,G, ϕ)−

∫
ϕdµ

}
.

The map M is concave, upper semi-continuous and, if γ : P(X)→ [0,+∞] is another function
with the role of M in (38), then γ ≤M.

Since there are finitely generated semigroup actions by continuous maps on compact metric
spaces which admit no probability measure preserved by all the generators, one cannot expect to
replace the space P(X) in (38) by another requesting such a notion of invariance. Whenever the
semigroup action admits a probability measure preserved by all the generators, as happens when
the semigroup is amenable, then Corollary 11.2 and Theorem E suggest the following question.

Question 1: Let G be a finitely generated amenable group of homeomorphisms acting on a
compact metric space X such that mdimM (X, d,G, 0) < +∞. Denote by PG(X) the space of
probability measures on X preserved by all homeomorphisms g ∈ G. Does there exist a function
D : X → [0,+∞] such that

mdimM (X, d,G, 0) = max
µ∈PG(X)

∫
D dµ ?

If so:

(a) Does M(µ) = D(x) for µ-almost every point x ∈ X and every probability measure
µ ∈ PG(X) ?

(b) Is D constant on the support of any ergodic probability measure µ ∈ PG(X) ?

For instance, we may consider a finitely generated group G acting on the shift X = {0, 1}G by(
g, (xh)h∈G

)
7→ (xgh)h∈G

as these actions have plenty of invariant probability measures. A positive solution to the previous
question would clarify the ergodic theory of amenable finitely generated semigroup actions with
infinite topological entropy.
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11.2. Ergodic optimization. In the literature we find several notions of topological pressure
which are pressure functions. So, instead of defining an upper metric mean dimension as in
Definition 2.1 or 2.6, we might have followed another strategy.

Definition 11.3. Let (X, d) be a compact metric space and Υ =
(
Υε)0<ε< 1 be a family of

pressure functions Υε : B(X)→ R such that, for every ϕ ∈ C0(X),

lim sup
ε→ 0+

Υε

(
(log 1/ε)ϕ

)
log (1/ε)

< +∞.

Let Γ stand for the family of ε-pressure functions Γε(ϕ) = Υε(log(1/ε)ϕ). The upper metric
mean dimension of Υ at ϕ ∈ B(X) is the limit

mdimM (Υ, d, ϕ) = mdimM (Γ, d, ϕ) = lim sup
ε→ 0+

Υε

(
(log 1/ε)ϕ

)
log (1/ε)

. (39)

Observe that, by Lemma 5.1, the map mdimM (Υ, d, ·) is a pressure function as well. Given
0 < ε < 1, denote by Eε the map assigned by Theorem 4.1 to the pressure function

ϕ ∈ B(X) 7→
Υε

(
(log 1/ε)ϕ

)
log (1/ε)

which satisfies

Υε

(
(log 1/ε)ϕ

)
log (1/ε)

= max
µ∈Pa(X)

{
Eε(µ) +

∫
ϕdµ

}
∀ϕ ∈ B(X). (40)

Similarly, for each 0 < ε < 1, let hε be the map assigned by Theorem 4.1 to the pressure function
Υε, so that

Υε(ϕ) = max
µ∈Pa(X)

{
hε(µ) +

∫
ϕdµ

}
∀ϕ ∈ B(X). (41)

Proposition 11.4. For every 0 < ε < 1 and µ ∈ Pa(X), one has

Eε(µ) =
hε(µ)

log (1/ε)
.

Proof. Applying the variational principle (41) to the potential
(

log 1/ε
)
ϕ ∈ B(X), we get

Υε

((
log 1/ε

)
ϕ
)

= max
µ∈Pa(X)

{
hε(µ) +

∫ (
log 1/ε

)
ϕdµ

}
∀ϕ ∈ B(X)

so, dividing by log 1/ε, we obtain

Υε

(
(log 1/ε)ϕ

)
log (1/ε)

= max
µ∈Pa(X)

{ hε(µ)

log (1/ε)
+

∫
ϕdµ

}
∀ϕ ∈ B(X).

Therefore, by the maximality of Eε among the maps that comply with the variational principle
(40), we get

hε(µ)

log (1/ε)
≤ Eε.
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Analogously, by the variational principle relation (40) when applied to the potential ϕ
log (1/ε) ∈

B(X), one has

Υε

(
ϕ
)

log (1/ε)
= max

µ∈Pa(X)

{
Eε(µ) +

∫
ϕ

log (1/ε)
dµ
}

∀ϕ ∈ B(X)

so

Υε

(
ϕ
)

= max
µ∈Pa(X)

{(
log 1/ε

)
Eε(µ) +

∫
ϕdµ

}
∀ϕ ∈ B(X)

which implies, due to the maximality of hε regarding the variational principle (41), that(
log 1/ε

)
Eε ≤ hε.

�

If Υ = (Υ)ε is determined by a single pressure function Υ, the previous concept of upper
metric mean dimension leads us to the realm of ergodic optimization. For instance, given a
continuous map T : X → X on a compact metric space (X, d) with finite topological entropy,
then the topological pressure Ptop satisfies (cf. [12])

lim sup
ε→ 0+

Ptop((log(1/ε))ϕ)

log(1/ε)
= sup

µ∈PT (X)

∫
ϕdµ ∀ϕ ∈ C0(X).

This is the case of X = Y N and the shift map σ : Y N → Y N, for which the space of ergodic
σ-invariant probability measures is pathwise-connected as a consequence of the specification
property [24]. Therefore, combining [22, Theorem B], [12, Theorem 2.4] and Theorem D we
obtain the following additional information.

Corollary 11.5. Let (Y, d) be a compact metric space such that dimB U = dimB Y for every
nonempty open set U ⊂ Y . Consider the shift map σ : Y N → Y N. Then

(a) There exists a Baire generic subset R ⊂ C0(Y N) (resp. Rα ⊂ Cα(Y N) for each α > 0)
such that, given ϕ ∈ R (resp. ϕ ∈ Rα), there exists a unique µϕ ∈ Eσ(Y N) satisfying

mdimM (Y N, dρ, σ, ϕ) = dimB Y +

∫
ϕdµϕ. (42)

(b) There exists a dense subset D ⊂ C0(Y N) such that, for every ϕ ∈ D, the subset of ergodic
probability measures in the set{

µ ∈ Pσ(Y N) : mdimM (Y N, dρ, σ, ϕ) = dimB Y +

∫
ϕdµ

}
is uncountable.

In case the compact set Y is not finite, the shift map σ : Y N → Y N has infinite topological
entropy and may no longer be expanding. It is known that hyperbolicity is a key assumption
in many results concerning ergodic optimization and, to the best of our knowledge, ergodic
optimization for dynamical systems with infinite topological entropy is seldom addressed. In
view of [4, 8, 18], it is natural to ask the following questions, whose answers would convey
relevant information on the upper metric mean dimension with potential for these shifts.

Question 2: Let (Y, d) be an infinite compact metric space and σ : Y N → Y N be corresponding
shift map.
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(a) Does there exist a Baire generic subset R ⊂ C0(Y N) such that, for every ϕ ∈ R, the
unique invariant probability measure µϕ satisfying (42) has zero entropy and full sup-
port?

(b) Given α > 0, does there exist an open and dense subset O ⊂ Cα(Y N) such that, for each
ϕ ∈ O, there is a unique invariant probability measure µϕ supported on a periodic orbit
by σ and satisfying (42) ?
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