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Resumo

Nos dltimos anos tem havido limita¢cdes no aumento do poder computacional de CPUs conven-
cionais e novas abordagens sao necessdrias de modo a acelerar sistemas computacionais. Sistemas
heterogéneos que combinam um CPU e uma FPGA sio uma alternativa a ser explorada, permitindo
a desenvolvedores tirar partido das caracteristicas e qualidades de cada uma das tecnologias.

Nesta dissertacdo sdo exploradas varias implementacdes em FPGA do algoritmo kNN. Tirando
partido de caracteristicas de FPGAs como permitir computagdes em paralelo para executar o al-
goritmo kNN, é possivel acelerar essas computacdes e desenvolver médulos de hardware espe-
cializados que implementam essas otimizag¢des. Usando estes médulos em conjunto com um CPU
é possivel obter uma implementacdo mais rapida do algoritmo kNN em comparagdo com uma
implementacao apenas em CPU.

Foi usada sintese de alto nivel (HLS) de modo a gerar descricdes RTL das implementagdes
em hardware. Para tal foi utilizada a ferramenta Vitis HLS, que sintetiza c6digo C em descri¢cdes
de hardware que podem ser utilizadas para configurar FPGAs. No entanto, o cédigo C deve ser
devidamente estruturado para sintese de alto nivel de modo que o Vitis HLS proporcione uma
solugdo que va de encontro ao desejado.

As diferentes implementag¢des propostas podem ser configuradas com parametros introduzidos
pelo desenvolvedor, que permitem controlar a aceleragdo e os recursos utilizados, de modo a
garantir uma adequacdo para diferentes requisitos e recursos disponiveis em diferentes FPGAs.
Para além das diferentes versdes de cédigo obtidas, foram também utilizados pragmas de modo a
controlar os recursos utilizados.

Por fim, as vdrias implementacdes do algoritmo kNN foram testadas e avaliadas usando o
software Vitis HLS que através da sintese de cddigo C permite obter valores para a laténcia e re-
cursos usados de uma implementacao hardware tendo como alvo uma FPGA, sendo neste trabalho
escolhida a FPGA ZYNQ XC7Z020-1CLG400C. Os resultados permitiram aferir as aceleracdes
obtidas e os recursos usados para cada uma das implementacdes, sendo a maior aceleragdo reg-
istada entre versdes em FPGA de 44,49 vezes, e quando comparadas implementagdes em CPU e
FPGA da mesma versdo a maior aceleracio foi de 352,59 vezes.

Palavras chave: FPGA, High Level Synthesis, Heterogeneous systems, kNN
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Abstract

In the last years there have been limitations on the increase of computational power of conven-
tional CPUs, and new approaches are needed to accelerate computational systems. Heterogeneous
systems that combine combining both CPUs and FPGAs on the same board are an alternative
to be explored, allowing developers to take advantage of the characteristics and qualities of both
technologies.

In this dissertation are explored various FPGA implementations of the kNN algorithm using
high level synthesis. Taking advantage of the characteristics of FPGAs such as allowing parallel
computations to perform the kNN algorithm, it is possible to accelerate the calculations needed
to perform the kNN algorithm and develop specialized hardware cores that implement those op-
timizations. Using this cores in conjunction with a CPU provides a faster implementation of the
kNN algorithm when compared to a CPU implementation.

High level synthesis was used to generate the RTL description of the hardware implementation.
The framework used is the Vitis HLS, that synthesizes C code in hardware descriptions that can
be used to configure FPGAs. However, C code must be properly structured for synthesis for Vitis
HLS to deliver a solution that matches the proposed one.

The different proposed implementations can be configured with parameters chosen by the
developer, that allow to control the speedup and resources used, to guarantee that the solution is
suitable to different requirements and available resources in different FPGAs. Beyond the different
code implementations pragmas were used to control the resources used.

Finally, the implementations of the KNN algorithm were tested and evaluated using Vitis HLS,
that from synthesis of C code it was possible to obtain values for latency and resource usage of a
hardware implementation targeting a FPGA, being the one chosen in this work the FPGA ZYNQ
XC7Z020-1CLG400C. The results allowed to assess the obtained speedups and the resources used
of each implementation, with the biggest acceleration registered between FPGA versions of 44.49
times, and comparing CPU and FPGA implementations of the same version the biggest accelera-
tion was of 352.59 times.

Keywords: FPGA, High Level Synthesis, Heterogeneous systems, kNN
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Chapter 1

Introduction

1.1 Context

Since 1965, when Moore’s Law was introduced, the computational power of CPUs has been in-
creasing more and more throughout the years, until recent times. Recently due to technological
limitations, the increase in computational power in CPUs is no longer guaranteed or expected [9]
[10]. As long as the computational power of CPUs was expected to increase, little attention was
given to Application Specific Integrated Circuit (ASIC) implementations of algorithms since it
was expected that the computational power of CPUs would continue to increase, while an ASIC
is expensive to design and is limited in its purpose since it can only do the specific task that it
was designed for. However, in recent times since the increases in computational power of CPUs
are no longer expected, more attention is being given to alternative implementations, that when

compared to a generic CPU can achieve higher speeds of processing data for a specific task.

ASIC implementations were not commonly used since its design was significantly harder when
comparing to a software implementation of the same algorithm that could be compiled to run on
a CPU, and once the hardware is assembled to execute a certain algorithm, it could only execute
that specific algorithm, while a CPU could execute a wide array of applications and thus being the

preferred choice for developing new applications.

The CPU design allows it to execute a wide array of instructions, to which code of any lan-
guage is compiled and thus can execute the required application in the CPU. However, one of the
shortcomings of the CPU due to its designs it that a CPU has limited parallel execution capability.
This can be a hindrance in algorithms where parallelization is present in the algorithm itself, that
is, computations that can be run at the same time since there are no data dependencies between
them, and as such, there is no conflict from them being made in parallel. However, as a CPU has
a limited capacity to execute instructions in parallel, it cannot take full advantage of this natural
parallelism present in different algorithms, and as such, slowing down computations that could be

made faster if they were parallelized further.
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1.2 FPGA

Field programmable gate array(FPGA) [11] is an integrated circuit that contains different hardware
components that can be programmed in order to implement an hardware implementation of a task
or algorithm. FPGA hardware components can be programmed, and as such, different hardware
designs can be implemented. Due to this use of hardware components, it is possible to create
designs which allows for computations to be made in parallel more efficiently. By configuring
the existing hardware on the FPGA, it is possible to implement multiple hardware cores. By
instantiating those hardware cores multiple times, and correctly inputting and outputting data to
and from them, it is possible to achieve a design where computations are done in parallel at great

extents.

This is extremely useful for implementing an algorithm that presents natural parallelism. For
example, a function that takes an array and sums 1 to all elements in that array, is a function that
has no data dependencies between all the operations that needs to execute. As such, theoretically
all operations could be made at the same time, in parallel, in a single clock cycle. However, as
the CPU architecture only allows for sequential instructions, each sum will be made in its own
clock cycle, in a sequential manner. When compared to the theoretical one clock cycle this is a
huge slowdown. However using FPGA implementations it is possible to approach the theoretical
limit of doing all the operations in a single clock cycle, since it is possible to program multiple
hardware cores that perform the summation for each element of the array at the same time, and as
such achieving a much lower latency for this operation when compared to a CPU implementation,
even though an FPGA implementation will not reach the theoretical limit of doing the summation
in a single clock cycle due to having to read the values of the array and write its result. In Figures
1.1 and 1.2 the comparison between tasks being executed in a sequential or parallel manner is
demonstrated. In Figure 1.1, all operations are done in sequence, regardless of if they have data
dependencies between them. In Figure 1.2, as operations B and C have no data dependencies

between them, they can be done in parallel, and as such accelerating the whole operation.

time

Figure 1.1: Sequential representation of tasks in an FPGA[1]

This example shows the potential that custom hardware implementations have in comparison
to a CPU implementation, as CPU implementations have limited parallel execution while by creat-
ing custom hardware designs there is more room for creating modules with parallel computations
execution capabilities. This is more relevant for heavy computational tasks, such as image process-
ing, machine learning applications and more. Accelerating an operation that is made recurrently

in an algorithm can provide greatly reduced latencies when compared to a CPU implementation
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time

w

Figure 1.2: Parallel representation of tasks in an FPGA[1]

and as such for heavy computational tasks a custom hardware implementation can greatly reduce
the time that takes for that task to complete.

1.3 High-Level Synthesis

FPGAs, as a device that allows configurable hardware implementations, are typically programmed
using hardware description languages (HDLs) such as very high speed integrated circuit (VHSIC)
hardware description language (VHDL) [12]. However, hardware description languages are com-
parably harder to implement a task or an application when compared to software languages such
as C. As such, designing using HDLs require a deep expertise and hardware design knowledge,
increasing costs and time consumed by design.

High-Level Synthesis (HLS)[13] tools allow for a compromise between HDLs and software
languages. HLS allows designers to obtain RTL descriptions of their proposed designs from high-
level languages such as C. This allows for much faster design of hardware descriptions of tasks
and applications when compared to designing the hardware in a hardware description language.
The HLS tool takes as input a C code, and based on that, provides a hardware implementation that
should do the same task that was programmed in C.

However, special care is still needed when designing new hardware designs. There might be
opportunities to implement certain design choices that are not possible in high-level languages,
such as the parallelization of a task. As such, pragmas are used to guide the tool during the
synthesis process. Pragmas can be used to inline functions, unroll loops, and partition arrays.
Furthermore, there are other code changes that can impact the obtained hardware description,
such as instantiating two functions with no dependencies between them for them to be able to be

executed in parallel in the hardware implementation.

1.4 kNN algorithm

The kNN algorithm [2] is a machine learning algorithm that can be used in a wide range of ap-
plications. The kNN algorithm searches for the k nearest neighbours of a point to be classified

and classifies the point as the most represented class in its k nearest neighbours. Due to the rising



4 Introduction

popularity of machine learning applications for different purposes, it is an interesting algorithm
to accelerate that can be used in various contexts. When analysing the calculations that are done
by the algorithm, it shows great potential for a FPGA implementation, as the algorithm allows for
most of its calculations to be done in parallel, which benefits from a FPGA implementation when
compared to a CPU. Such implementation, if well designed and implemented, can greatly speedup

the algorithm and reduce its energy consumption.

1.5 Problem and objectives

The goal of this dissertation is to propose fast KNN FPGA based implementations. This means,
to create hardware descriptions that implements the kNN algorithm that when programmed in an
FPGA achieves a speedup when compared to a CPU implementation of the kNN algorithm.

As such, throughout this dissertation we present the developed implementations of the kNN al-
gorithm that aim to achieve the previously mentioned goal. This is done by synthesizing different
C codes in Vitis HLS, exploring different optimizations and opportunities to execute computations
in parallel. The different C codes are generated by a script, that will change the code according
to some specifications, which allows for varying degrees of speedup and resources to be used by
each implementation. Furthermore, the objective is to characterize the different obtained imple-

mentations in terms of achieved speedup and resources usage.

1.6 Document structure

This document is organized in 6 chapters. The current chapter (Chapter 1) introduced the prob-
lem at hand, the different technologies used and described the problem and the goals to achieve,
Chapter 2 presents a compilation of the literary review of the fundamental concepts of the kNN
algorithm, FPGAs structure and high-level synthesis. Chapter 3 presents previous related work
that was done about related topics to those of this dissertation. In Chapter 4, it is presented all
the proposed solutions and how they were achieved. Chapter 5 presents the results from the eval-
uations that were done post synthesis and after the proposed solutions were programmed in the
FPGA+CPU SoC, and Chapter 6 presents the conclusions and future work.



Chapter 2
Background

This chapter presents a brief review of the fundamental concepts used in the dissertation.

2.1 kNN algorithm

The k-Nearest Neighbours algorithm is a widely used machine learning algorithm, that can be
used to classify a given data point (instance) by which class it belongs, based on the class of its k
nearest data points (instances)[2]. Suppose there is a database of data points in the form of (X,Y),
of which it is know what class they belong, and it is chosen an arbitrary integer value for k. To
classify a new data point, (X,y), it is needed to find the k points in the database that are nearest to
the new data point. The most used distance is the Euclidean distance, but other ways of calculation
of the distance between points are valid and may be more appropriate depending on the kind of
data used. The algorithm calculates the distance of the new data point, (x,y), to every data point
that is stored in the database. As the distances are calculated, they should be ranked, from the
nearest to the furthest away to the new data point. After this is done, the classification of the new
data point is equal to the more represented class in the nearest data points. Figure 2.1 shows how a
new data point is classified depending on the number of nearest neighbours chosen (k). By setting
k=1, only the nearest neighbour is considered, and as such the new data point is classified as class
B, the class of the nearest neighbour. But by setting k=3, the most represented class in the three
nearest neighbours is now class A, and the new data point is classified accordingly.

Due to the associated computations and parallelism involved, it is particularly suited for an
implementation in FPGA when compared to a regular CPU, since the kNN algorithm shows great
potential for parallelism, and as such can be greatly improved by parallelizing its operations. Due
to the capability of instantiating multiple modules of calculating this distance in a FPGA, it is
possible to compute multiple distances at the same time, which is a significant improvement when
compared to a CPU. Other advantage of an implementation in an FPGA its due to its improved effi-
ciency of ranking the distances computed when compared with a CPU. For example, if it is needed
to rank a new distance and it is used an insertion sort algorithm to sort the distances calculated,

the complexity of sorting a new value in a software implementation in O(N) while in hardware is
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Class A f;\,
& Class B .

Figure 2.1: Visual representation of kNN algorithm for different values of k. [2]

O(1), which is a huge improvement. Even if the sorting algorithm isn’t insertion sort, due to the
possibility of parallelization of the computations needed, implementations of other sorting algo-
rithms will be faster in hardware compared to a simple CPU. Lastly, FPGA implementations tend
to have a lower energy consumption when compared to a CPU, which makes them suited for sav-
ing energy consumption. That happens because of the improvements in the time and complexity

required to classify a new data point.

2.2 FPGA

To implement all the algorithms and approaches developed in this dissertation, it is important to
know details about the FPGA chosen to be the target to implement the developed approaches. The
chosen FPGA was the ZYNQ XC7Z020-1CLG400C, that is present in the board PYNQ-Z2 [14].
This FPGA has 220 DSPs, 53200 LUTs, 106400 FFs and 140 BRAMs.

As is with all FPGAs, this FPGA includes configurable logic blocks (CLBs), that can be pro-
grammed to implement a hardware implementation of the desired pieces of code, representing for
example diverse functions needed to be implemented in hardware. With the correct programming
of the FPGA obtained via synthesis of C code, it is possible to implement specialized hardware
modules that present more parallelism when compared to a CPU by, for example, instantiating
multiple hardwares that can do multiplications in parallel. While a CPU usually only has one
ALU per core, and as such, can only do one operation per clock cycle in each core, meanwhile
in an FPGA a designer is able to instantiate multiple operations blocks to be ran in parallel at the
same clock cycle, taking advantage of the properties of the FPGA to better implement algorithms

with high potential of parallelization.

2.2.1 Vitis HLS

Vitis HLS is [3] a high level synthesis tool, which means that is a program that can take high
level code and transform it in a RTL design description of the said code, described in a hardware
description language. In Vitis HLS the starting point is a C/C++ code and by running a synthesis

of that code, it is possible to set a desired clock frequency and obtain an estimate to the number
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of clock cycles that the hardware implementation generated from that code took from the start
to the end of the function. Vitis HLS does diverse optimizations that can only be achieved in
hardware rather than software by default, such as pipelining loops and in lining functions, so
that the designer of the solution can focus on code optimizations that can lead to even further
parallelism or having less reads and writes from and into an external memory. These optimizations,
once synthesized, should also lead to a lower number of clock cycles that the function takes from
its beginning to its end. An optimization that the designer of the system can control is the unrolling
of loops, which occurs when the computations in a loop are independent from each other, so that it
is possible to instantiate multiple loops running in parallel, leading to a faster solution. The trade-
off is the use of greater number of hardware resources and higher power dissipation. Once the
code is done it is possible to start the synthesis of that code, and after that a solution is obtained.
In Vitis HLS it can be observed the performance estimates view and the schedule viewer, shown
in Figures 2.2 and 2.3, respectively.

In performance estimates view it is possible to observe an estimate number of clock cycles that
the synthesised function requires, as well as further information about each of the loops or cycles

present in it.

Performance Estimates
- Timing (ns)

= Summary

Clock Target Estimated Uncertainty

ap_clk 3.33 2.433 0.90
- Latency (clock cycles)

< Summary

Latency | Interval

min| max_min| max Type
25802580 2580 2580 none,

-1 Detail
¢ Instance
=% Loop
Latency Initiation Interval

Loop Name min max Iteration Latency achieved targetTrip Count Pipelined
-Loop 1 10341034 12 1 1 1024 yes
- Loop 2 1280 1280 5 - - 256 no
-Loop 3 257 257 3 1 1 256 yes

Figure 2.2: Performance metrics obtained in Vitis HLS after synthesizing C code. Source:[3]

In Schedule view we can observe what operations took place in each cycle. This is important
if it is intended a higher clock frequency, because it allows to identify which block is the limiting

factor.

Operation\Control Step | o | e | s | s | v | e |

v Loop2 ~Loop 2
j5(phi_mux)
exitcond2(icmp)
i3+
tmp_s()
inMem_V_load(read) —_—
inMem_V_load_1(read) —
tmp_6(])
tmp_11())
inMem_V_load_2(read) —_—
inMem_V_load_3(read) —
tmpl(+)
tmp2(+)
sum_V_3(+)
node_81(write)

Figure 2.3: Schedule view obtained in Vitis HLS after synthesizing C code. Source:[3]
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Chapter 3

Related work

This chapter presents some of the previous work addressing performance improvements of kKINN
implementations in the context of heterogeneous systems. This mainly consists of a few recent
papers about implementations of the kNN algorithm in FPGAs.

3.1 "An Efficient K-NN Algorithm Implemented on FPGA Based
Heterogeneous Computing System Using OpenCL"'

Pu et al. [4] address an FPGA implementation of the kNN algorithm written in OpenCL, which
is a framework for heterogeneous platforms, that is, systems that have more than one processing
unit with different implementations, performances and energy consumptions. Using OpenCL, it is
possible to program multiple computing kernels in order to parallelize computations. It works in
both GPUs and FPGAs, which makes it cross-platform and mostly portable.

The focus is on two phases of the the kNN algorithm: The distance calculation and the sorting
of the distances. As mentioned before, due to the independence of the calculations of the distances,
they can be fully parallelized, which is what happens in the approach implemented in this paper.
Multiple distance calculation kernels are created, that can calculate the distance to all points in
a data set from multiple new data points, storing the results in a local array stored in the FPGA.
Figure 3.1 shows a representation of the distance calculation between a new query point and a
reference data set point. As the distances between different points in not dependent on any other
points of the same data set, the distance calculations between different points can be made at the
same time.

After computing all the distances, it begins the sorting stage where a partial bubble sort[15]
is used. Since the k best results matter, the results are divided in bubbles of two distances, of
which it is selected the nearest and inserted in another bubble, until there are only k distances,
corresponding to the nearest points. After the k nearest points are known, the classification of the
new point is equal to the most represented class in the k nearest points obtained.

To test the efficiency of this implementation, the execution time and the energy consumption

of the implementation was compared in three different systems, those being a Core 17-3770K CPU
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Figure 3.1: Visual representation of distance calculations matrix. Source:[4]

running at 3.5GHz, being used 4 i7 cores, in a AMD Radeon HD7950 GPU with 28 compute units
and maximum frequency of 900MHz and in an Terasic DE4 with a Stratix IV 4SGX530 FPGA
running at 400MHz, with a OpenCL compiler being used to do the comparison. The data set used
in their tests was a quantum physics data set with 20480 points. The testing set were 20 points that

needed to be classified with the results shown in Table 3.1.

Platform CPU GPU FPGA

Feature size/nm 22 28 40
Runtime/ms 10211.05 24.85 6912

Objects’s 1.96 804.96 289.34
Speedup 410 148
Power/w 130 200 24

Objects/J 0.015 4.024 12.056
EER 268 R04

Table 3.1: Results of the implementations in CPU,GPU and FPGA. Source:[4]

The GPU and FPGA achieved a much lower run time when compared to the CPU, and the
GPU was better in the run time where it achieved a speedup of 410 compared to the CPU, and the
FPGA was the better choice if we need lower energy consumption, needing only 804 times less

energy to compute the same number of data points when compared to the CPU.

3.2 "KNN-STUFF: kNN STreaming Unit for Fpgas"'

Vieira et al. [5] present an implementation of the kNN algorithm in an FPGA obtained via RTL
description. The main advantage of this implementation when compared to the previous [4] one
is that it does not fully parallelize every operation possible, having a trade-off of achieving worse
speedup but using less hardware resources. Another benefit of using this implementation is the
fact that it implements the distance calculation and the sorting of the k nearest solutions in a
single component, that can be used either as a standalone accelerator or used by creating multiple
instances of it, obtaining a better speedup but using more hardware resources of the FPGA. The
implementation of a single accelerator is shown in Figure 3.2 and Figure 3.3.

A single accelerator stores the new point to be classified and an array of all the values in the

database. Each clock cycle, the distance between the new data point and a point already in the
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Figure 3.2: Implementation of the distance calculating algorithm. Source:[5]
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Figure 3.3: Implementation of the sorting algorithm. Source:[5]

database is calculated. In the following cycle, the new distance will be feeded to the insertion sort
algorithm, and a new distance, between the new point and the following point in the database is
calculated. Since the implementation of the insertion sort in algorithm has a complexity of O(1),
it can feed a new distance every clock cycle, which increases the efficiency of this implementation
when compared to a software one were the insertion sort could take up to O(N) and would not
be able to process the distances calculated continuously. As said before, this accelerator could be
instantiated multiple times, to make multiple calculations in parallel. The authors did not compare
this implementation with other previous implementations, but compared the speedup and energy
consumption of using a single accelerator versus multiple. One of these experiments compared
the execution time when using a single accelerator to the execution time using 4 accelerators, with
sets with different number of features and different number of elements. Multiple tests were done
to compare the implementation in an FPGA and an implementation in software, using multiple
sets with different training and testing sets and different number of features. One of those tests
compared the speedup between the implementation in software and a hardware implementation
with 4 accelerators instantiated, where the maximum speedup achieved was slightly above 11
times. The data sets used are presented in Table 3.2 and the corresponding speedup obtained by

using the hardware implementation in Figure 3.4.
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Dataset Training Testing | Features Classes
Iris 100 50 - 3
Wine 118 60 13 3
Breast Cancer 379 190 30 2
Car Evaluation 1,152 376 3 4
Abalone 2,784 1,393 8 29
Bank Marketing 30,140 15,071 16 2
Poker Hand 25,010 1,000,000 10 10

Table 3.2: Data sets used in tests. Source:[5]
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Figure 3.4: Speedup achieved by varying number of accelerators. Source:[5]

3.3 "A Memory-Access-Efficient Adaptive Implementation of kNN
on FPGA through HLS"

Song et al. [7] presents a solution that differs from the ones previously discussed by introducing
a statistical technique that may help obtaining results faster: the principal component analysis
(PCA). The solutions so far did only calculate the distance between the point that we want to
classify and all the data points in the data set to classify the desired point. With the addition of the
PCA it can greatly speed up the distance calculation process, especially in cases where there is a

high number of features (also referred as dimensions) in the data.

3.3.1 PCA principals

Before exploring the implementation, we briefly describe here how PCA works in the context of
kNN [6]. PCA allows to obtain an approximate kNN result from ranking not the real distance
between the point to classify and its nearest neighbours, but from ranking the distance between
a orthogonal projection in the main components of the point and its neighbours. This is possible
under the assumption that the main components are the ones that retains the most variance in the
data set when isolated from the other components. The main benefit of this is that it reduces the
dimensionality of the data set, reducing the number of subtractions and multiplications needed to
obtain a distance between two points. This approach is well suited to kNN because it only cares

about the classification between the distances and not the real distance between two points, and
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when the orthogonal projection is done in the main component there is lost information about
the real distance but maintaining in most cases the order of the distances. Figure 8 shows the
PCA applied to kNN, where it is wanted to find the 2 nearest neighbours to the point to classify,
g. to do that, all the data points, p, and q where projected in the main direction. After this, the
distances are ordered in the main direction from the closest to the furthest. As can be seen, the
final result for the 2 nearest neighbours in the main direction were the points py and p;. However,
the result is not correct because point pg is not in fact a nearest neighbour to the point ¢, and pg
is the correct result. This happens because the distance between points g and py is bigger in the
non-principal direction, in which case some wrong results can be obtained. However, this issue
can mostly be dealt with, and the correction is explained in the next section where it is described

the implementation of the PCA.

* 2 dimensional point

* principal component

-~ vertical linetov
distance between points

Figure 3.5: Two dimension points being projected in a main direction. Source:[6]

3.3.2 PCA implementation

to use PCA one needs to calculate the main components for the data set. to do this a threshold for
the variance explained by the main components is defined. If it is set to 95 % and thus the main
components chosen will explain 95 % of the variance in the data set.

After the main components are selected, it is needed to make an orthogonal projection of the
data set and the point to classify in the main components, and store the values obtained. Once
this is done, it is needed to set up 2 arrays where distances are stored: the main heap, where the
k nearest neighbours will be stored ordered by the real distance between the point to classify and
the data points, and the filter heap, where the orthogonal projection distances between the point to
classify and our data points are stored. The filter heap should contain more points and distances
than the real heap to ensure that it is obtained the real nearest neighbours at the end of this process.
The points in the filter heap are candidates to being the nearest neighbours, and the main heap is
where the final nearest neighbours are stored.

Starting the classification, the first step is to calculate the distance between a data point and
the point to classify in the orthogonal projection in the main components. If this distance is bigger
than the biggest distance present in the filter heap, this point is discarded as not being a candidate
to being a nearest neighbour. However, if this distance is smaller than the biggest distance in the
filter heap, this point is a candidate to being a nearest neighbour. If this is the case, it should be

confirmed that this is the case when calculating the real distance. It is then proceeded to calculate
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the real distance between the point to classify and the data point, and compare it to the biggest
distance present in the main heap. If the distance if bigger, this point is not a real nearest neighbour
and the point is not inserted in the main heap but kept in the filter heap. If this distance is smaller,
this new value should be sorted in both the main and filter heap, and the previous value deleted
from both.

The reason that are maintained more points in the filter heap than the real heap, and that are
kept points that are not the nearest neighbour in the filter heap, is because there can be a situation
like the one presented in Figure 3.5 where a point that is not a nearest neighbour has a smaller
distance in the main components direction than one that is a real nearest neighbour. By keeping
more values in the filter heap it allows more points to be tested and check if their real distance is in
fact lower than the biggest real distance, while still eliminating a significant amount of data points
that have bigger distances in both instances. In this way it can be assured that a better accuracy is

achieved in the nearest neighbours obtained.

3.3.3 FPGA implementation
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Figure 3.6: Graphical representation of the modules used in the hardware implementation for an
approximate kNN. Source:[7]

Figure 3.6 represents the whole hardware system implemented in a FPGA and the modules that
compose it. The module k_max implements the two heaps, heap and heap’. The heap represents
the main heap and heap’ represents the filter heap previously described. rd_dist_calc_pca module
is the module used to calculate the distances of the orthogonal projections of the point to classify

and the data points. similarity_comparision_or represents the module that calculates the real
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distances between the point to classify and the data points. These modules interact in the same

way as was previously mentioned and implement the PCA in an FPGA.

After this implementation, some further improvements can be made that are only possible in
a hardware implementation. One of those improvements is calculating multiple distances of the
orthogonal projections in parallel. As mentioned in [6], for 95% of the data points the real distance
is not calculated, so by calculating the orthogonal projection distances in parallel it should be
encountered a situation where it is needed to calculate more than one real distance for each time
that it is calculated the orthogonal projection distances. If this was the case the calculation of
multiple orthogonal projection distances in parallel could lead to a slowdown of our system, but

as mentioned, those situations are rare.

Other optimization only possible since this solution is implemented in hardware is using low-
precision data representations of the data set. The main goal is to increase the data read in each
clock cycle. Since there can only be accessed 512 bits of data in each clock cycle, if it is reduced
the number of bits that represents the data it can be achieved a greater data bandwidth. An im-
provement that is possible is using 16 bits to represent an int instead of 32 bits. What this allows is
to access more data points in each clock cycles, which goes in end with the first optimization, since
there are a larger number of distances to calculate for each clock cycle it becomes worthwhile to

have multiple rd_dist_calc_pca working in parallel.

3.3.4 Results

In order to evaluate this solution, they used a data set with one million points with 960 dimensions.
The baseline for comparison was the PCA implementation in software described in [6], and that
solution run on a CPU server, that in total had 88 running threads and 128 GB of DDR4. The
FPGA was set to use 16 main components in its calculations. The first test was comparing the
execution time between the two solutions, while changing the number of bits that represents an int
in the FPGA and changing the number of threads for the software solution. The results are shown

in Figure 3.7.

Although it is not very noticeable, using a 32-bit representation for an int, the software solution
needs to have 4 running threads to reach the same execution time that was obtained in the FPGA
solution. When the number of bits to represent an int decreased, a much larger number of threads
were needed to catch up to the execution time obtained in the FPGA. With this we can conclude
that the FPGA is adequate and can run faster than a software implementation in a larger number

of situations.

With respect to energy consumption, the FPGA did use 324 times less energy than the PCA

software solution, making it much more energy efficient. The results are shown in Figure 3.8.
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Figure 3.7: comparison of the execution time in a CPU and FPGA solution, varying the number
of bits to represent an int and the number of threads running. Source:[7]
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Figure 3.8: Energy consumption of a CPU solution and a FPGA solution. Source:[7]

3.4 Architectural Considerations for FPGA Acceleration of Machine

Learning Applications in MapReduce

Neshatpour et al. [8] approaches the kNN implementation from a cloud based point of view. This
is, it applies the kNN to a data set that is present not locally, but on a cloud, from which it is needed
to actively exchange information to obtain the desired results for the kNN. This is important due
to the fact that when it is dealt with huge data sets, they cannot be stored locally but only on cloud
servers, making this approach an important one to study and know its implications.

To make the interactions with the cloud server, the MapReduce programming model [16]
was used to exchange data with the cloud server, and the Hadoop framework [17] was used to
implement that. to compare the different results, it was chosen different CPU and FPGA models
in order to test its impact on the execution time and energy consumption of the solutions. The
experimental setup used 2 main processors, A Xeon and a Atom core. The Xeon core is a high-
performance core and Atom is a low energy consumption type of core. To complement the CPU

where the software will be run, it was also chosen 2 types of FPGA, and Artix-7 being the high
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end one and a Virtex-6 being the low end one. The final variable was if the FPGA was on or off
chip. The main difference between these two approaches is the type of communication between
the CPU and the FPGA. If the FPGA is on chip, the communication can be made with an AXI
communication, that offers a bigger bit rate than the off chip alternative, a PCI-Express Gen3
communication. This is important because due to technology constraints, it is not always cost
efficient to integrate an FPGA with a CPU in a single device, thus having off chip as a solution.

A model of the overall system can be seen in Figure 3.9. As can be seen, there is multiple
CPU+FPGA working in parallel in the same data set that is stored in a cloud that contribute all to
the same solution.

Mapper/Reducer Mapper/Reducer Mapper/Reducer

Shared DRAM and LLC Cache

£
H
]
]
E

Mapper/Reducer : ’ Mapper/Reducer B ' Mapper/Reducer

Figure 3.9: Representation of a system composed of multiple CPU+FPGA systems to calculate
kNN in a cloud. Source:[8]

The results of experiments changing the above-mentioned options can be seen in Tables 3.3
and 3.4. As can be seen, using a FPGA implementation they achieved speedups and energy gains

when compared to only processors implementations.

Also, it should be mentioned that this paper did not focus in the kNN implementation but in
showing that using a CPU+FPGA approach is beneficial when compared to only a CPU imple-
mentation. The main conclusion of this paper is that a CPU and FPGA implementation is well
suited to deal with databases stored in clouds, but we can further make improvements on the kKNN
implementation used in this paper, since that was not the focus and the implementation was a
direct one, without optimizations. Using for example the approach with the approximate kNN
refereed in this paper [7] is one way to improve the solution and making it even more suited for

cloud applications of the kNN.
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Table 3.3: Normalized execution times for solutions changing options such as the CPU, the FPGA
and if the FPGA in on or off chip. Source:[§]
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Table 3.4: Power dissipation for solutions changing variables such as the CPU, the FPGA and if
the FPGA in on or off chip. Source:[8]

3.5 New Benchmark Suite

The new benchmark suite[18] is a GitHub repository created by Tiago Santos that compiles task
heavy applications, that are suited to being accelerated by heterogeneous CPU and FPGA systems.
As the tasks have a long execution time in a single CPU but can be accelerated by custom hardware
cores that can execute some operations in parallel. This provides a good starting point to explore
some possible optimizations regarding the implementation of the kNN algorithm in a hardware

core.

3.5.1 New Benchmark Suite KNN code structure

One of the codes provided in the previously referred benchmark is a code example of kNN algo-
rithm used to classify instances in data sets. This code is the base code that is explored in this

dissertation to measure the accelerations that are obtained from our improvements to the code.
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This code already covers some optimizations, such as changing the types of the variables depend-
ing on their size, such as for the data type of the features in our data set. If the N_CLASSES is less
than 128 classes, the CLASS_TYPE will be defined as the type char, otherwise it will be defined
as a short int, leading to the CLASS_TYPE to occupy less space, and thus accelerating the code.
Our kNN function takes as arguments the following arrays:training_X, an array that containing
all the instances in the training data set, training_Y, and array that contains all the classes that the
instances in our training data set belong, testing_X with all the features of the instances to classify,
testing_Y where we store the predicted class for each instance in the testing data set, and a min
and max array with the min and max values for all the features in the training data set, so that
the feature values of the testing data set can be normalized to be in the range between 0 and 1 in

relation of the values present in the training data set. The arrays are described below:

* DATA_TYPE training_X[N_TRAINING][N_FEATURES] - Contains all the features of all

the training instances.

e CLASS_TYPE training_Y[N_TRAINING] - The real class that the training instance be-

longs.

* DATA_TYPE testing_X[N_TESTING][N_FEATURES] - Contains all the features of all the

training instances.

* CLASS_TYPE testing_ Y[N_TESTING] - Stores the predicted class for each training in-

stance

e DATA_TYPE min[N_FEATURES] - The minimal value for each feature that was found in

the training data set.

e DATA_TYPE max[N_FEATURES] - The maximum value for each feature that was found
in the training data set.

It is also important to clarify what the variables that determine the array size mean. Those are

variables set globally that help keep the same array size for a certain data set:

int N_TRAINING - Number of the training instances

int N_TESTING - Number of the testing instances

int N_FEATURES - Number of features present in each instance

¢ int K - The number of nearest neighbours that is used to classify an instance

In addition to these arrays and parameters, there are some arrays declared in the function to

allow the calculation of the kNN algorithm:

* double bestDistances[K] - Stores the k shortest distances between the point to classify and

the points in the training dataset.
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* int bestPointsIdx[K] - Store the index of the k best neighbours in the training data set.

The kNN function iterates for all instances in the testing_X, calculating the distance for each
instance to all the data points present in the training_X array, storing the index of the k nearest
neighbours to the instance and the distance from the instance to those k points, and updating the
best neighbours if a shortest distance than any of the present in the k best is found after that until
the distance is calculated between the instance and all points in the training data set. After that,
it is checked in the training_Y array the class that the k nearest points belong, and classifies the
instance as the most present class in the k nearest neighbours, storing the most present class in the
closest neighbours, that is, the prediction, in the array testing_Y, where the predictions are stored.

This is done using some sub function that is important to know to understand how the code

works. The sub-functions are as follows:

void kNN_MinMaxNormalize (min, max, queryDatapoint) - Normalizes all the features of
the queryDatapoint in relation to the the max and min values for each feature in the training

data set so that the values are stored in a value between O and 1.

 void kNN_InitBest (bestDistances, bestPointsIdx) - Initializes the arrays that store the clos-

est k neighbours distances to the point to classify and its index in the training dataset.

* double kNN_UpdateBestCaching (queryDistance, queryldx ,bestDistances ,bestPointsIdx)
- Checks if the most recent calculated distance between the point to classify and one point
in the training data set is shorter than the ones previously calculated, and if yes, update the

bestDistances and bestPointsIdx arrays.

* CLASS_TYPE kNN_ VoteBetweenBest (bestPointsldx, training_Y) - Calculates the most

present class in the best k neighbours and classifies the point into that class.

Algorithm 1 kNN algorithm

1: for All_testing_instances do

2 KNN_MinMaxNormalize

3 kNN _InitBest

4 for All_training_instances do

5 for All_features do

6: Calculate_distance_between_featuress
7

8

9

Acumulate_distances_features
kNN_U pdateBestCaching
kNN _VoteBetweenBest

3.5.2 New Benchmark Suite data sets structure

This code uses two data sets to measure the improvements: the WISDM dataset [19] and a gen-

erated data set. In the main function, the code starts by analysing the data set files. Those are
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files, train.dat and testing.dat, are text files, which can be read in the code in the main func-
tion. They are organized in the following fashion: each line represents an instance, with all its
features and in the case of the training set the class that the point belongs. As such, we have
N_FEATURES for each point, N_CLASSES representing the total number of the classes and
NUM_TRAINING_SAMPLES represents the number of training points and NUM_TESTING_SAMPLES
the number of testing samples.

Due to this display of the information, each line of the training and testing data set is read in
the main function as a point where its stored all its features and the class that it belongs. This
allows the computation of the kNN algorithm and after it’s calculation it is possible to compare
the predicted class to the real one, and it is possible to obtain a percentage of correct predictions.

Table 3.5 shows a representation of the data set files, how its structured and what it represents.

Feature Class
0 | 1 | 2| 3 | 4 |..|N_FEATURES

0 0.04 [0.09[0.14 [ 0.12 | 0.11 | ... 11.96 0

1 0.12 [ 0.12 [ 0.06 | 0.07 | 0.11 | ... 12.05 0

2 0.14 10.09 [ 0.11 [ 0.09 [ 0.09 | ... 11.99 0

" 3 0.06 | 0.1 [0.09]0.09 011 | ... 10.69 2
g 4 0.2 0.1 ] 0.1 [0.08 ] 0.1 | .. 10.8 2
E 5 0.09 [0.09 [ 0.1 [0.12[0.08 | ... 8.63 2
a 6 012012 [0.12 [ 0.13 [ 0.15 | ... 9.87 5
7 01 [ 0.1 [ 01 | 0.1 [0.11]... 9.91 5
N_TRAINING | 0.09 | 0.09 | 0.08 | 0.11 | 0.1 | ... | 10.65 2

Table 3.5: Example of the train.dat for the wisdm dataset

However, the point struct where are stored both the value of all the features for a point and
its class is not very efficient. That is because it is required to either access the feature values to
calculate the distance to the point to classify, or to access its class. As such, in the main function,
before calling the kKNN_PredictAll the points structure for both the training and testing data set
are separated in the X and Y arrays, where the X arrays store the values of the features and the Y

array stores the class, as was explained previously.

3.5.3 New Benchmark Suite code optimizations

Although the base code of the New Benchmark Suite does not have optimizations regarding prag-
mas, there is still some optimizations implemented in the code regarding the variables type for the
CLASS_TYPE and DATA_TYPE, varying the types of this variables to suit the data set better or
if the user wants a more accurate kNN algorithm.

The CLASS_TYPE can be of two types: char or short. The difference between the two types
is that a char is stored in one byte, while int is stored in 2 bytes. This way, if there is a number of

classes in the data set that is low,the classes of the data set and the predicted ones can be stored in
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a variable of the type char, and if there is a large number of classes the classes need to be stored in
a variable of the type int so that the larger number of classes can be stored. The decision is made
around the number of classes, and CLASS_TYPE will be of the type char if there are less than
129 classes (127 classes and unknown class), and of the type short if there are more.

The DATA_TYPE also varies, but does not depend on the training data set, but rather if the
user wants a more accurate kNN in exchange for using more memory. If a lower accuracy is
acceptable, the DATA_TYPE will be of the type float, that occupies 4 bytes in memory. However,
if a higher accuracy is required for the application, the DATA_TYPE can be of the type double,

leading to more accurate results.

3.6 Summary

In the recent works explored in this chapter, there were multiple approaches to the kNN algorithm.
However, none of these approaches obtained the RTL description of the hardware to implement in
the FPGA via HLS.

By using HLS, it is possible to explore more approaches to the implementation of the kNN
algorithm when compared to writing the said RTL description from scratch since code to be syn-
thesized can be written in C.

Another advantage of using HLS is that there is a more direct comparison when comparing
CPU implementations of the kNN algorithm and the FPGA version obtained from synthesizing the
code that implements the CPU version, allowing for a more accurate calculation of the speedup
obtained using a FPGA of different implementations of the kNN algorithm.



Chapter 4

KNN partitions

As mentioned by multiple authors (see, eg, [4] [5] ), a way of accelerating applications using an
FPGA is to parallelize the computations. As such, the first approach to a more efficient imple-
mentation of the kNN algorithm is to consider multiple cores that are able to compute the kNN
algorithm for a given training and testing data set in parallel, which should yield a speedup when
compared to a simple implementation that runs the computations sequentially.

The name to this approach is kNN partitions, which is described in this chapter. The approach
divides the training data set in partitions so that it is possible to compute the distance from the
instance to classify to multiple points in the training set at the same time, reducing the time needed

to calculate the distances needed and to find the k nearest neighbours to the instance to classify.

4.1 Initial code and proposed changes

The starting code for this approach is the NewBenchmarkCode [18] previously presented in chap-
ter 3. The goal of this approach is to divide the training data set, and for each instance to classity,
calculate the distance to multiple points present in the training data set in parallel. To do so, the
code used needs to suffer some changes in order to accommodate the fact that multiple calculations

need to be done in parallel. The changes in the code to parallelize the computations are:

 Divide the training data set: the data set should be divided in a specified number of parts,

that each should have the same size and store a subset of the training set

* Calculate the nearest k neighbours in each partition: In each partition, find the best k neigh-

bours of the instance to classify

* Find the best neighbours between the best points of all partitions: After the best k points for

each partition are found, find the best k points among all partitions

* Classify accordingly to the best k points: Classify the instance to the most present class in

the best k points in all partitions

23
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In the original implementation of the code, there is only a single training data set, for which
the distance of the instance to classify is calculated to all the points present in the training data set,
and then it is found the nearest k neighbours to the instance to classify and finally the instance is
classifies as the most represented class in nearest k neighbours. A block diagram of the original
code is depicted in Figure 4.1. The kNN function takes as arguments the instances to classify,
and the instances of the training data set and corresponding classes. The instances to classify are
normalized, and for each instance to classify, its distance to all points in the training data set is
calculated, from where the best k neighbours are found and then it is voted the most represented

class in the best neighbours.

main.c

Instances to classify Training dataset instances

N_TRAI
NING

0 1 2 3 ] 1 2

Training dataset classes

0 1 2 B N_TRAI
MNING

KNN_Predict_All

for all testing

instanes
h 4

‘ kNN_MinMaxMormalize ‘

for all training
instances

b J h

kNN_DistCalc

| kNN_UpdateBestCaching ‘

I —

| kNMN_VoteBetweenBest ‘

Classes array v

0 1 2 3

Figure 4.1: Block diagram representation of the original kNN algorithm code

The proposed solution is to first find the best k neighbours for a number of partitions of the
training data set. As such, as each partition of the training data set is independent from each other,

it is possible to calculate the distance between the instance to classify and points in multiple par-



4.1 Initial code and proposed changes 25

titions of the training data set in parallel. The parallelism in computing the distances is important
in achieving a speedup, since it is computational expensive to calculate all the distances, which
incurs in high a latency for classifying an instance. By making those operations in parallel it is
possible to achieve a speedup in comparison to an implementation that only allows the computa-
tions to be made sequentially. A block diagram representation of the proposed solution is present
in Figure 4.2, where the training data set is copied into local variables and divided into two arrays,
each representing a partition of the training data set. There are also two instances that calculate
distance between the instance to classify and the points in each partitions of the training data set,

where the best k neighbours for each partitions are found.
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Instances to classify Training dataset instances
0 1 2 3 0 1 2 | L TR
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| kMN_UpdateBestCaching | kMN_UpdateBestCaching
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| kNN_Partial_UpdateBestCaching |

¥

| kNN_Partial_UpdateBestCaching |(—
‘ kNMN_FPartial_VoteBetweenBest }17

‘ kMN_Partial_VoteBetweenBest I<
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Figure 4.2: Block diagram representation of the kNN algorithm with 2 partitions
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To calculate the best k neighbours in a data set while having multiple partitions it is needed to
first find the best k neighbours in a single partition, and then rank those points again to find the
best k neighbours for all the data set from the best k neighbours from each partition.

In the original code, the best distances are kept in the array bestDistances and the index of
the point correspondent to that distance in the array bestPointsIdx, with the distance and the index
being stored in the same position in the two arrays.

However, as goal for this implementation is for the training set to be partitioned, the id of a
point will be referent to its position in its own partition of the training data set.

As such, the array bestPointsIdx will store the id of the k best points in a single partition, and
the array bestPointsArrayldx will store the id of the partition that the corresponding point belongs.
The distance of the point to the instance to classify, the index in its partition and the id of its
partition are kept in the same position across all the aforementioned arrays, in order to facilitate
the updating of those arrays, since when it is needed to update the values in those arrays it is the
same position in all of them that will be updated.

The array bestPointsArrayldx is important to the voting phase, because while the array best-
Pointsldx stores the k best neighbours for all the data set, the best neighbours can belong to dif-
ferent partitions. As such, it is important to know to what partition each point belongs, and only
check its class in the partition of the data set that the point belongs. As the voting function can only
take partition of the training data set, it is needed that the function is called for all partitions, but
only update the voting process if a best point belongs to the partition that is input in the function.

The class of the best k points are kept in a structure named histogram. This histogram has
N_CLASSES int variables, where it is stored the number of best points that belong to a class for
the training data set. As the voting function is called multiple times, this histogram is passed to the
function and only updated if there is a best point in the partition that is being input to the function,
and after all partitions are input in the function with the same histogram, it is possible to check
in the histogram which is the most represented class, which is the instance that the instance to

classify will be classified as.

4.2 Initial code changes

To implement the changes described earlier to the original KNN code, some new arrays were added
and some functioned slightly changed in order to accommodate the differences in the computa-
tions needed in order to execute the kNN algorithm in partitions. The new arrays created for the

proposed implementation are the following:
* double bestDistances[K] - Stores the K best neighbours from all partitions.
* int bestPointsIdx[K] - Stores the index of the K best neighbours in its own partition.

* int bestPointsArrayldx[K] - Stores the index of the partition of which the best K neighbours
belong



4.2 Initial code changes 27

These arrays represent the best k neighbours for the whole data set, but for each partition there

are two arrays that represent that partition only:

* int bestPointsIdx_O0[K] - Stores the index of the best k neighbours in the partition 0

* double bestDistances_0[K]; - Stores the distance to the instance to classify of the best k

neighbours in the partition 0

Also, some of the functions were changed slightly in order to accommodate the fact that the

training data set is now divided in partitions. The changed functions are:

* void KNN_Partial_Predict (training_X, queryDatapoint, bestPointsIdx, bestDistances, n_part):
Predicts the k best neighbours of an instance in a given training data set partition. Includes
an int argument that specifies the size of the partition of the training set that is used to cal-
culate the distances,in order for the function to know how many points it as to loop in order

to calculate the distances for all the points in a partition.

* double kNN_Partial_UpdateBestCaching (queryDistance, queryldx, bestDistances, best-
Pointsldx, bestPointsArrayldx, arrayldx): Takes as arguments both the arrays that store
the information about the best points in a single partition and the whole training data set.
The goal is to find the best points between all the partitions, and if a new best point is found,

updating the arrays for the best points of the whole training data set.

* CLASS_TYPE kNN_Partial_VoteBetweenBest( bestPointsldx, training_Y, histogram, best-
PointsArrayldx, arrayld): Checks if a best point is present in the provided partition, and if
it does, checks the classification of the point and adds to the histogram an occurrence of its

class. Returns the most popular class in the histogram.

A snippet of the C code written to implement the proposed solution is presented in Code

Listings 4.1.

3 // Create and initialize arrays to store the best points(code not shown)

4 /] Store the testing dataset in multiple local arrays(code not shown)

s // Loop across all testing instances

6 for (int i = 0; i < N_TESTING; i++)

7 {

8 // Normalize the testing instance

9 kNN_MinMaxNormalize (min, max, testing_X[i]);

10 // Calculate the best k points from the partitioned training datasets
11 kNN _Partial_Predict(training_X_first , testing_X , min_first, max_first,
12 bestPointsIdx_first ,bestDistances_first ,2);

13 kNN _Partial_Predict (training_X_second , testing_X , min_second,

14 max_second , bestPointsIdx_second , bestDistances_second ,2) ;

16 //Find the best k points from all partioned datasets
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for(int 1=0;i1<K;i++){
kNN_Partial_UpdateBestCaching(bestDistances_first[i],
bestPointsIdx_first[i],bestDistances , bestPointsIdx ,
bestPointsArrayldx ,1);

for(int 1=0;i1<K;i++){
kKNN_Partial_UpdateBestCaching (bestDistances_second[i],
bestPointsIdx_second[i],bestDistances , bestPointsIdx ,
bestPointsArrayldx ,2);

// Find the most represented class in the best points and predict the
classification for the instance
kKNN_Partial_VoteBetweenBest(bestPointsIdx , training_Y _first,
histogram , bestPointsArrayldx ,1);

testing_Y [i]=kNN_Partial_VoteBetweenBest(bestPointsldx ,

training_Y_second , histogram , bestPointsArrayldx ,2);

// Reset the histogram for the next instance
for(int i=0;i<N_CLASSES;i++){
histogram[i]=0;

Code Listing 4.1: kNN algorithm code for 2 partitions

In the previous code, both the training and testing data sets are copied to local variables. This
is done to ensure that the computations can be made in parallel once the code is synthesised via
high-level synthesis.

The copying of the training data set leads to the use of BRAMs to store the training data set
in local variables of the kNN function and DSPs to copy the contents from the input variable of
the kNN function to local variables, but greatly reduces accessing data times. Also, the instance
to classify is copied to multiple arrays. This is done so that the arrays that are called by the
kNN_Partial_Predict are not the same arrays, and as such, Vitis HLS synthesizes the code with the

computations being made in parallel in the synthesized version.

4.2.1 Synthesis results

The previous code, where the training data set was divided in 2 partitions, was synthesized in
Vitis HLS and was compared to a synthesized version of the original code without any changes.
Both codes were synthesized with a target clock period of 15 nanoseconds, without applying any
pragmas to the code, so that the results are comparable between the two solutions. The goal is to
confirm if the newly proposed solution does indeed have a speedup when compared to the original
kNN algorithm code.
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After the high-level synthesis, the latency for each solution was registered, and from it was
possible to calculate the speedup obtained from the proposed solution. The results are displayed
in Figure 4.1, where a speedup of 7.91 was obtained for the new solution when compared to the

original code solution.

Original Code | 2 Partitions
Latency (s) 1.560 0.197

Speedup 1 7.91
Table 4.1: Latency and speedup table for synthesized versions of the original kNN code and
proposed solution

The results can be explained due to two factors: the reduced reading times required for the
computations requiring consecutive data points in the training data set, as in the 2 partitions code
the partitions of the training data set are stored locally, which allowed the computations both to
be pipelined with less interval between the current training data set instance and the next, and
the fact that the variables were stored in different local variables allowed the parallelization of
some computations, namely it was possible to calculate the distance between the instance and all
the points of the two partitions in parallel at the same time, greatly reducing the latency of the
algorithm. The speedup obtained was more than 2, which could be expected since the number
of distance calculations done in parallel doubled, but since also the training data ser is not stored
locally, it lead to a further increase in the speedup due to reducing the reading times of instances

in the training data set.

However, it is expected that with the parallelization there is an increase in the number of
resources used by the synthesized version, since it needs to use more hardware components of the
FPGA to calculate the distance between the instance and the two partitions of the training data set
at the same time, one for each partition since the operations were parallelized. It is also expected
that some resources were allocated to the copying of input variables of the kNN function to the

local variables.

The comparison between the resources used in the synthesized version of the original code
and the synthesized version of the code with the data set partitioned in two partitions can be
seen in the Table 4.2. Just like the speedup, the number of resources used more than doubled.
This can be explained since the reading time of the training data set is lower, there is potential
for a lower initiation interval between calculating the distances to all points in the data set for
consecutive instances to classify, but for this to be achieved, there is a need to accelerate and do
more computations in parallel in order to use the new values as soon as possible in the loop, such

as multiplications. As such, to achieve this lower initiation interval, more resources will be used.

Given the results for the solution where the training data set was partitioned in 2 partitions,
and the training and testing data sets were stored in local variables, a new version with 4 partitions
was coded. The new code for 4 partitions code is vastly identical to the code with 2 partitions, but

in each step each function is now called 4 times instead of 2.
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Original Code | 2 Partitions
BRAM 0 694
DSP 33 293
FF 13059 54300
LUT 11489 59905

kNN partitions

Table 4.2: Resource table for synthesized versions of the original kNN code and the proposed
solution

This new solution with the training data set divided in 4 partitions was synthesized in the same

conditions that the previous solutions were synthesized. The results can be seen in Table 5.3.

Original Code | 2 Partitions | 4 Partitions
Latency (s) 1.56 0.197 0.111
Speedup 1 7.91 14.05

Table 4.3: Latency and speedup table for all synthesized versions of the kNN algorithm

The speedup between the synthesized version of the original code and the new one increased
again, this time to 14.05 when compared to the original solution. This results shows that the par-
tition of the training data set and copy of the instance to classify to a local variable of the kKINN
function is a good approach to follow to achieve higher speedups. However, it is also noticeable
that the increase in speedup was smaller when comparing to the speedup obtained from the orig-
inal solution to the 2 partitions solutions: while the speedup increased 6.91 times from the first
solution to the second, the speedup only increased 6.14 times from the 2 partitions solution to
the 4 partitions solution. As such, it is expected that if more partitions are made, the gains in
speedup will be diminishing when increasing the number of partitions. This can be explained due
to the increase in the reading times when adding more parallel calculations, as while the distance
calculations can be made in parallel, finding the best neighbours for all instances and finding the
most represent class in the best points is done sequentially. As such, while increasing the number
of partitions, it increases the reading times for the sequential part of the algorithm, which will
decrease the speedup obtained between the original code and the 2 partitions version and the 2
partitions version and 4 partitions version.

This paves the way for new experiments, where it is tried to find the best number of partitions
that lead to the best speedup possible.

The resources used by the 3 versions are shown in Table 4.4 .

Original Code | 2 Partitions | 4 Partitions
BRAM 0 694 700
DSP 33 293 583
FF 13059 543 101775
LUT 11489 59905 112436

Table 4.4: Resource table for all synthesized versions of the kNN algorithm
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When comparing the 2 partitions version with the 4 partitions version, is is possible to observe
that the number of FFs, LUTs and DSPs nearly double, mirroring the increase in speedup when
comparing the two versions. However, the number of BRAMS stayed almost constant, due to the
fact that the training data set occupies the same space in memory, be it divided in two partitions or

four.

4.3 kNN partitions versions

Given the previous results from partitioning the training data set, the approach to increase the
number of partitions shows potential to achieve a higher speedup. As such, the new approach is
to develop new codes that partition the training data set even further, in order to achieve a higher
speedup.

However, this task is a time-consuming task, since all of the previous codes were "hand writ-
ten" for each version. A better approach is to automate the code to be written, creating a script
that only needs to know in how many partitions the training data set is to be divided, and then
the said script automates the correspondent code to the required number of partitions. This can
be done since the code was segmented in separate phases of the kNN calculations that now allow
for new versions with any number of partitions to follow the same pattern, allowing the task to be
automatized. As such, the goal of the new script is to automatize the code written.

Also, new versions of the code are created, all serving a purpose for data sets of varied sizes
and FPGAs with varying number of resources: A local version, an external version, and a multi-

step version. A brief description of the three versions is:

* Local version: The training data set is directly included into the kNN function

» External version: The training data set is included into the main function and is passed as
an argument to the kNN function, without it being copied to local variables of the kNN

function

* Multi stage version: The training data set is included into the main function and is passed

as an argument to the kNN function, being copied to local variables of the kNN function

In the local version, the training data set is included in the kNN function itself. This is done
including the partitioned data set into local variables of the function in compilation time, and as
such, the training data set needs to be pre-processed, cannot be changed during run time and is
stored in BRAMs. This approach is suited for a combination of data sets and FPGAs where the
whole data set can be stored in the BRAMs of the FPGA. This is because in this version the data
set is stored locally in the FPGA, and as such, greatly diminishing the read times of the training
data set when compared to a version where the data set is passed as an input variable of the kKNN
function, and as such is stored outside of the FPGA which incurs in higher reading times and a
higher interval between reads of the data set. However, this is only possible if the FPGA has the
number of BRAM s to store the training data set, and as such an adequate training data set or FPGA
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must be chosen in order for this version to be used. A block diagram of this version is present in

Figure 4.3.
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Figure 4.3: Local version block diagram representation

In the external version, the training data set is an input variable of the kNN function and is
not stored in local variables. This means that the training data set might be changed, but the most
importantly, it is stored in the memory of whole CPU+FPGA board and not in the BRAMs of the
FPGA, which are able to store a bigger amount of data. This approach is indicated for when the
required training data set cannot be stored in the BRAMs of the FPGA and as such must be stored
in the memory of the board. This incurs in higher reading times and interval between consecutive
reads of the training data set, but it is still able to calculate the kNN algorithm with multiple

partitions. This version is shown in Figure 4.4.
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Figure 4.4: External version block diagram representation

Lastly, the multi-stage version is a version where the training data set cannot be completely
loaded into the memory of the FPGA due to limitations one the number of BRAMs of FPGA,
which occur for bigger data sets. A representation of this version is present in Figure 4.5. The
data sets are an input variable of the kNN function, just as the external version. However, in this
version, the training data set is copied to local variables, where that partition of the training data
set will be stored, and the kNN algorithm calculated for that partition. After the kNN algorithm is



4.4 Automation script and file organization 33

done for that partition, the next partition is copied to the local variables of the function, repeating
the process until the kNN is done for all partitions.

The number of partitions should be depending on the training data set size and the number
of BRAMS on the FPGA. The goal is that the local variables take as much of the BRAMs of the
FPGA as possible, allowing that partition of the training data set to be locally stored while the KNN
algorithm is being calculated for the partition, and once the kNN is done copy the next partition to
the local variables.

Furthermore, the partitions can be further partitioned. In the local version, the local variables
are partitioned allowing for calculations in parallel. In the multi stage version this can also be done,
partitioning the partition of the training data set in partitions of the partition that is being worked.
The partition of the partition that is stored locally does not affect the number of BRAMs that are
needed to store the training data set but can increase the number of computations in parallel done
at the same time and as such achieving a higher speedup. However, there will be increased latency
due to the copying of the external data set to the local variables for which should be accounted.
This version allows a greater degree of flexibility allowing for more control of the resources used
by an implementation of the kNN algorithm.

For the multi stage version, external partitions represent the number of partitions of the data
set, and local partition will represent in how many partitions is divided the local variables that

store a partition of the data set.
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Training
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Figure 4.5: Multi stage version hardware version representation

4.4 Automation script and file organization

A script was developed to automate the process of generating code that implement the new versions
of the kNN algorithm with varying number of partitions. The goals of the script are two: first, to
divide the training data set into partitions before it is included in the kNN code, and second, to
automate the function calls that are used to calculate the KNN algorithm in according to the number
of partitions required. This process is done by the same script. Each version of the kNN algorithm
will have its own script, but they share a lot of the code, namely, the division of the training data

set into partitions will be the same for all versions, and also the majority of the files that implement
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the function calls are the same for all versions. As such, an overview of the files shared between

all versions will be presented and then the few changes between versions will be address later.

The script takes as arguments the number of partitions desired and can take as an argument the

ID of the scenario being used. The usage of the script for the local version is the following:

python local_partition_script.py [Number of local partitions] [ID of the
scenario (optional) ]

The files created by the script are included in the code of the versions using includes, allowing
for easy changes to the code by just running the script. By adjusting the number of partitions in

the script, it is possible to obtain the code for a version with that number of partitions.

The training data sets are represented in files named training_X_id and training_Y_id. The
id corresponds to the number of the partition, and it is created as much of those files as there are

partitions.

The files that call the sub functions of the kNN algorithm are created once, but its content will
vary according to the number of partitions, where more or less functions are called accordingly to

the number of partitions.

The script and the files created by it are stored in a folder inside the folder that has the main.c
and knn.c files. The structure of the new folder and the files created for the local version with 2
partitions can be found below:

local_partition
local_partition_script.py
training_X_ 0.dat
training_X_1.dat
training_Y_ 0.dat
training_Y_1.dat
array_dec.h
partial_dist_dec.h
local_arrays_dec.h
partial_dist_init.h
local_arrays_init.h
partial_predict.h
update_lbest.h
vote.h

The local version was chosen to demonstrate the folder where the script is stored, and the files
created by it due to the fact that the local version is the version that has the few files. Since the
training data set is directly included in the kNN function, it does not need to receive data set as
an argument, regardless of the number of partitions. As such, the declaration and calling of the
kNN function for the local version will always be the same, being input an array of instances to
classify and the array that stores the attributed class to each instance. For the external and multi

step versions, as the arrays are input in the kNN function, its declaration and calling vary with the
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number of partitions which leads to more files being used. However, the specificities of the file

structure for each version are addressed later.

4.5 Training dataset partition automatization

The first step to automate the new versions is to automate the process of dividing the training data
set. The division of the training data set in the hand written versions was a task that was included
in the synthesis of the whole kNN function, and with that, took resources that are not needed to
calculate the kNN algorithm and added latency that was not due to the kNN algorithm itself, but
the divising of the training data set in partitions. As such, it is important to divide the training data
set beforehand, so that it can be used without having code to divide the training data set in the KNN
code to be synthesized, being either directly included into local variables of the kNN function or
passed as arguments in the external and multi-stage versions. This step is also needed to generalize
the process so that it is possible to divide the training data set in any number of partitions that is
desired, including situations where the division of the number of training points and the number
of partitions has a remainder.

As such, it was included in the script code that divided the training data set into any number
of partitions that are required. The code starts by reading the training_X.dat and training_Y.dat
files, where the features and class for the points in the training data set are stored, each in each
file, respectively.

While reading the files, it counts the number of lines in the files, and stores that value as the
N_TRAINING, the number of training points in the data set.

After that it divides the N_TRAINING by the number of partitions. If the result has no re-
mainder, the training points are divided into n_partitions of (N_TRAINING/n_partitions) size.

If the result of the division of the number of partitions by the number of partitions has remain-
der, the first partitions up to the number that is equal to the remainder will store training points,
while the following partitions have its features set to the maximum value, in order for all the parti-
tions to have the same size but so that the computations are not affected by the fact that the training
data set could not be distributed equally by the partitions, as those newly created points added to
the partitions have the maximum value possible and as such will never be best neighbours.

In the end the result of this division is stored in files with the name training_X_id.dat and
training_Y _id.dat, where the id represents the number of the partition stored in that file. These

files will later be included in all of the versions, and as such the code is useful for all of them.

4.6 Function calls and variables automatization

The next step to automatize the creation of code for varying number of partitions is to automate
the process of creating the files mentioned before. For each file it is explained why it is needed and

what it does, and some functions called in the file or variables created will be further explained.
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Figure 4.6: Array partition example for division without and with remainder

The contents of the file are also shown, with an example for a partition of 3 parts of the training
data set being chosen.

The file array_dec.h includes the training data set files in the code. For the local version, this
files are included in the kNN function, and as such, the training data set is stored locally, while for
the external and multi step version it will be called in the main function. The size of the variables
is adjusted given the number of partitions in order to increase memory usage efficiency.

This file will include the training_X.training_Y, min and max arrays and its contents are

present in Code Listing 4.2.

I static DATA_TYPE training X_0[1446][N_FEATURES]={
2 #include "./localarrays/training_X_0.dat"
}s
4 static CLASS_TYPE training_Y_0[1446]=
5 #include "./localarrays/training_Y_0.dat"
6 3
7 static DATA_TYPE min[N_FEATURES]=
8 #include "min. dat"
10 static DATA_TYPE max [N_FEATURES]=
) #include "max. dat"
13 static DATA_TYPE training_X_1[1446][N_FEATURES]={
14 #include "./localarrays/training_X_1.dat"
15 };
16 static CLASS_TYPE training_Y_1[1446]=
17 #include "./localarrays/training Y _1.dat"
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static DATA_TYPE training X 2[1446][N_FEATURES]={
#include "./localarrays/training_X_2.dat"

}s

static CLASS_TYPE training_Y_2[1446]=

#include "./localarrays/training_Y_2.dat"

Code Listing 4.2: Declaration of the training dataset arrays

The files partial_dist_dec.h and local_arrays_dec.h are used for creating the variables that
store the best distance points for each partition in the case of the partial_dist_dec.h file and for the
local_arrays_dec.h it is used to create copies of the instance that is being classified in order to be
accessed by each partition in a parallel manner, and its contents are displayed in Code Listings 4.3
and 4.4 respectively. Since for both cases the variables being created in this file will be initialized
for each new instance to classify, and as such, will be initialized in each loop until the array of
instances to be classified is finished, they cannot be initialized in the at the same spot that they are
declared, and as such, two additional files are be needed.

int bestPointsIdx_0 [K];
double bestDistances_0[K];
int bestPointsIdx_1 [K];
double bestDistances_1[K];

int bestPointsIdx_2 [K];
double bestDistances_2 [K];

Code Listing 4.3: Declaration of the partial distance arrays

static DATA_TYPE testing_X_O[N_FEATURES]={0};
static DATA_TYPE testing_X_1[N_FEATURES]={0};
static DATA_TYPE testing_X_ 2 [N_FEATURES]={0};

Code Listing 4.4: Declaration of the partitions of the testing point

The file partial_dist_init.h is shown in Code Listings 4.5 and initializes the values for the arrays
bestPointsldx and bestDistances. This is done before beginning the classification of an instance
and set the distance values for the greater value that they can take, so that distances smaller than

that can be updated into the arrays.

kKNN_InitBest(bestDistances_0 , bestPointsIdx_0);
kNN _InitBest(bestDistances_1, bestPointsIdx_1);
kKNN_InitBest(bestDistances_2 , bestPointslIdx_2);

Code Listing 4.5: Initialization of the partial distance arrays

The file local_arrays_init.h copies the instance that is being classified into local variables of
the kNN function, with the number of variables being equal to the number of partitions in which
the training data set is divided and is presented in Code Listing 4.6. This is done to allow the
calculations to be done in parallel, because otherwise that would not be the case as two functions

cannot read from the same variable at the same time in the hardware implementation. By copying
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the contents of the instance to classify in multiple local variables, it is possible to calculate the

distance to the partitions of the data set in parallel.

for (int k = 0; k < N_FEATURES; k++){
testing_X_O[k]=testing_X[i][k];

3 testing_X_1[k]=testing_ X [i][k];

testing_X_2[k]=testing_X[i][k];
}

Code Listing 4.6: Loop that copies the testing point into multiple independent variables

The file partial_predict.h instantiates the calls of the function kKNN_Partial_Predict and is pre-
sented in Code Listing 4.7. The function kNN_Partial_Predict takes as arguments one of the
partitions of the training data set, one copy of the instance to classify, the arrays to store the best
neighbours in that partition and its id, and an integer that indicates the size of the partition of the
training data set. This function is called as many times as there are partitions, until the calculation
of the distances is done for all partitions.

kNN _Partial_Predict(training_X_0, testing_X_0, min, max, bestPointsIdx_O ,
bestDistances_0 ,1446) ;
kNN _Partial_Predict(training_X_1, testing_X_1, min, max,bestPointsIdx_1 ,
bestDistances_1,1446) ;
kNN _Partial_Predict(training_X_2 , testing_X_2 , min, max, bestPointsldx_2 ,
bestDistances_2 ,1446) ;

Code Listing 4.7: Calls of the partial distance predict funtions

The file update_best.h instantiates the calls of the function kNN_Partial UpdateBestCaching
and is shown in Code Listings 4.8. The function kNN_Partial _UpdateBestCaching takes as argu-
ments the arrays that store the best points for a partition and the arrays that store the best points
for the whole data set, as well as the id of the partition input to the function. The goal is to find the

best k neighbours for the whole data set from the best k neighbours from each partition.

for(int i=0;1<K;i++){

kKNN_Partial_UpdateBestCaching (bestDistances_0[i], bestPointsIdx_O0[i],
bestDistances , bestPointsIdx ,
bestPointsArrayldx ,0) ;

for(int 1=0;i<K;i++){
kKNN_Partial_UpdateBestCaching (bestDistances_1[i], bestPointsIdx_1[i],

bestDistances , bestPointsIdx ,

bestPointsArrayldx ,1);

for(int 1=0;1<K;i++){
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17 kKNN_Partial_UpdateBestCaching (bestDistances_2[i], bestPointsIdx_2[1i],
18 bestDistances , bestPointsIdx ,
bestPointsArrayldx ,2);

Code Listing 4.8: Calling of the UpdateBest functions

The file vote.h instantiates the calls of the function KNN_Partial VoteBetweenBest. The
kNN_Partial_ VoteBetweenBest takes as arguments the array with the id of the best k neighbours,
the training_Y array correspondent to the partition being input, the id of the said partition and the
histogram and is displayed in Code Listing 4.9.

If the id of the partition and the id of a point in the array that stores the id of the partition that
that point belongs, then it is checked in the training_Y, at the position of the point its class and it
is stored in the histogram. At the final partition, the most represented class in the histogram is the

predicted class of the instance to classify.

kNN_Partial_VoteBetweenBest(bestPointsIdx , training_Y_O , histogram ,
bestPointsArrayldx ,0) ;
> kKNN_Partial_VoteBetweenBest(bestPointsIdx , training_Y_1 ,histogram ,
bestPointsArrayldx ,1);
3 testing_Y [1]=kNN_Partial_VoteBetweenBest(bestPointsIdx , training_Y_2 ,histogram,
bestPointsArrayldx ,2);

Code Listing 4.9: Calling of the Vote functions

4.7 Local version C code

With the aforementioned files it is possible to finally put together the C code of the local version.
The local version is the version with the simpler C code, as the declaration and calling of the kNN
function does not change with the number of partitions and does not need further files than those
described in the previous section. This file is shown in Code Listing 4.10.

1 void kNN_PredictAll (DATA_TYPE testing_ X [N_TESTING ] [N_FEATURES],
2 CLASS_TYPE testing_Y [N_TESTING])

4 #include" ./ array_dec.h"

6 #include" ./ localarrays/partial _dist_dec.h"

8 int bestPointsIdx [K];

9 double bestDistances [K];

10 // Distances stored in doubles for better accuracy

11 int bestPointsArrayldx [K];

13 CLASS_TYPE histogram [N_CLASSES] = {0};



40 kNN partitions

#include" ./ localarrays/local_arrays_dec.h"

for (int i = 0; i < N_TESTING; i++)

{
kNN_MinMaxNormalize (min_0, max_0, testing X [i]);
kKNN_InitBest(bestDistances , bestPointsIdx);
#include" ./ localarrays/partial_dist_init.h"
#include" ./ localarrays/local_arrays_init.h"
#include" ./ localarrays/partial_predict.h"
#include" ./ localarrays/update_best.h"

#include" ./ localarrays/vote.h"

for(int i=0;i<N_CLASSES;i++){
histogram[i]=0;

Code Listing 4.10: Code for the kNN Predict All function for the local version

4.8 External and multi stage versions extra files

As mentioned before, the external and multi stage versions need two more files in order to be
automated. These are the files that will declare the kNN function in the knn.h and knn.c files and
call the kNN function in the main.c file.

The file that declares the kNN function and is used in the knn.h and knn.c files is called
knn_dec.h and is presented in Code Listings 4.11. This file stores the declaration of the kNN
function that varies with the number of partitions of the training data set.
void kNN_PredictAll (DATA_TYPE training_X_0 [N_TRAINING ][ N_FEATURES],

DATA_TYPE training_X_1 [N_TRAINING ][ N_FEATURES],
DATA_TYPE training_X_2 [N_TRAINING ][N_FEATURES],
CLASS_TYPE training_Y_O[N_TRAINING],

CLASS_TYPE training_Y_1[N_TRAINING],

CLASS_TYPE training_Y_2 [N_TRAINING],

DATA_TYPE testing_X [N_TESTING | [N_FEATURES] ,
CLASS_TYPE testing_Y [N_TESTING],

DATA_TYPE min [N_FEATURES],
DATA_TYPE max [N_FEATURES] ,)

Code Listing 4.11: Declaration of the training arrays in the external and multistage versions

The file that will store the calling of the kNN version is called knn_call.h and is shown in
Code Listings 4.12. This gives as argument all the partitions of the training data set in the main
function. It is important to remember that for the external and multi stage versions the partitions

of the training data set are declared in the main function.
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kKNN_PredictAll (training_X_0 , training_X_1 ,training_X_2 ,training_Y_0 ,training_Y_1
,training_Y_2 ,testing_X , predicted_testing_Y ,min,max);

Code Listing 4.12: Calling of the kNN PredictAll function for the external and multistage versions

4.9 External version C code

The C code for the external version is nearly identical to the local code with only two changes: The
declaration of the function is now done with an include, and the training data set is not declared
in the function. As the name of the other variables and the variables that store the training data set
are the same it allows for the use of the same code to generate the other files for the two versions,

as described earlier. The code is displayed in Code Listing 4.13

"

#include" ./ external_arrays/knn_dec. txt

#include" ./ external_arrays/partial_dist_dec.txt"

int bestPointsIdx [K];
double bestDistances [K];
int bestPointsArrayldx [K];

"

#include" ./ external_arrays/local_arrays_dec. txt
CLASS_TYPE histogram [N_CLASSES] = {0};
for (int i = 0; i < N_TESTING; i++){

#include" ./ external _arrays/partial_dist_init.txt

kNN _InitBest(bestDistances , bestPointsIdx);
kNN_MinMaxNormalize (min_0, max_0, testing_X[i]);

#include" ./ external_arrays/local_arrays_init.txt"
#include" ./ external_arrays/partial_predict. txt"

#include" ./ external arrays/update_best. txt
#include" ./ external_arrays/vote.txt"

for(int 1=0;i<N_CLASSES;i++){
histogram [i]=0;

Code Listing 4.13: Code for the external version
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4.10 Multi stage version

As mentioned before, the multi stage version is a version where the training data set cannot be
loaded completely into local variables of the kNN function. As such, the training data set is
loaded as many times as there are partitions, and a kNN algorithm is ran on that partition. While
this may seem similar to the previous versions, there is one key difference: As the training data
set is copied into local variables of the kNN function, once the kNN algorithm is done for the
partition it should not be copied again. This changes the approach slightly in comparison to
the previous versions. As a partition cannot be access after the kNN algorithm is done for the
partition, it is not possible to check its training_Y file after the distances are calculated. As such,
the proposed solution is to store the class of a nearest neighbour in an array that is changed at
the same time that the best distances array is changed, so that the the same position for the two
arrays represent the same point, and as such is possible to associate a best distance with the class
that the point belongs. Both the best distances and the array that stores the correspondent class
are used by all the partitions, until all partitions are done. To accommodate these changes, some
functions were slightly altered. The function kNN_Partial_UpdateBestCaching was changed to
receive as an input the array that stores the class associated to a best point, with the new name
kNN_Partial_UpdateBestCaching_multistage. The kNN_Partial_VoteBetweenBest function was
also changed to kKNN_Partial_VoteBetweenBest_multistage, with it only accessing the new classes
array, and only with it vote the most represented class.

Other particular important difference between the multi stage version and the other versions
is the fact that the multi stage version has two kinds of partitions: external partitions and local
partitions.

The external partitions represent the number of times that partitions of the training data set are
copied into local variables of the kNN function. After the kNN algorithm for an external partition
of the training data set is done, the next partition is copied. This number of external partitions
should be chosen around the size of the training data set and the number of BRAMs on the FPGA
that will implement the algorithm. A higher number of external partitions will lead to less BRAMs
being used while still having that partition of the training data set stored locally, reducing the
latency of reading data outside of the FPGA. However, as there are more partitions, there are more
times were data outside of the FPGA will be read which will slow down the algorithm.

The number of local partitions represent how many kNN algorithms will be done in parallel
for the external partition. The external partition when being copied to local variables is stored in
multiple local variables, allowing for the parallelization of the computations. This will use more
resources than if no local partitions were used, but greatly helps achieving a higher speedup.

These two kinds of partitions allow for a lot of control of the resources used in this version:
The number of external partitions influences the number of BRAMs that will be used, while the
number of local partitions influence the other resources such as LUTs, FFs and DSPs.

The code for the multi stage version for two external partitions can be seen in Code Listing

4.14. In this code, there is only one local variable to store the training data set, which is written
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twice while the code is executing. After the first partition of the training data set is copied to
the local variables, the kNN algorithm function is done for that external partition, with the best
distances and correspondent class being stored. After that, the second partition is copied to the
local variables, and the kNN is calculated again, taking into consideration the best distances and

the respective classes that were previously calculated.

void kNN_Multistage (DATA_TYPE training_ X [N_TRAINING ][N_FEATURES],
CLASS_TYPE training_Y [N_TRAINING],
DATA_TYPE testing_X [N_TESTING ] [N_FEATURES],
CLASS_TYPE testing_Y [N_TESTING],
DATA_TYPE min [N_FEATURES],
DATA_TYPE max [N_FEATURES])

DATA _TYPE training_ X _local [N_TRAINING/2][N_FEATURES];
CLASS_TYPE training_Y _local [N_TRAINING/2];

double bestDistances [N_TESTING][K];
int bestPointsIdx [N_TESTING][K];
CLASS_TYPE bestDistancesclass [N_TESTING][K];

for(int i=0;i<N_TESTING;i++){
kKNN_InitBest(bestDistances[i],bestPointsIdx[i]);
kNN_MinMaxNormalize (min, max, testing_X[i]);

for(int 1=0;i<N_TRAINING/2;i++){
for(int j=0;j<N_FEATURES; j++){
training_X_local[i][j]=training_X[i][]];
}

training_Y _local[i]=training_Y [i];

kKNN_PredictAll (training_X_local , training_Y_local, testing_ X, testing_Y

,bestDistances ,bestDistancesclass);

for(int i=0;1i<N_TRAINING/2;i++){
for(int j=0;j<N_FEATURES; j++) {
training_X_local[i][j]=training_ X [i+N_TRAINING/2][] ];

}
training_Y _local[i]=training_Y [ i+N_TRAINING/2];

kKNN_PredictAll (training_X _local , training_Y_local, testing_ X, testing_Y

,bestDistances ,bestDistancesclass);
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}

Code Listing 4.14: Code for the multistage version with 2 external partitions and 1 local partition

It is also important to understand the structure of the multi stage version where there are more
than one local partition. In this case, two set of variables to store the training data set locally
are created, that will later be written with values of the training data set. For this to happen, the
function kNN_PredictAll should have its declaration changed to accommodate the fact that it will
receive two training data sets. This process is similar to the one done for the external version,
where the declaration and calling of the function changed with the number of partitions that were
calculated in parallel.

The code for a multi stage version with 2 external partitions and 2 local partitions is shown in
Code Listing 4.15. There are declared two sets of local variables, which will be written two times
during the kNN function.

void kNN_Multistage (DATA_TYPE training_X [N_TRAINING ][N_FEATURES],
CLASS_TYPE training_Y [N_TRAINING],
DATA_TYPE testing_X [N_TESTING ] [N_FEATURES],
CLASS_TYPE testing_Y [N_TESTING],
DATA_TYPE min[N_FEATURES],
DATA_TYPE max [N_FEATURES])

DATA_TYPE training_X_0 [N_TRAINING/4 ][N_FEATURES];
CLASS_TYPE training_Y_O[N_TRAINING/4];
DATA_TYPE training_X_1[N_TRAINING/4][N_FEATURES ];
CLASS_TYPE training_Y _1[N_TRAINING/4];

double bestDistances [N_TESTING][K];
int bestPointsIdx [N_TESTING][K];
CLASS_TYPE bestDistancesclass [N_TESTING][K];

for(int i=0;i<N_TESTING;i++){
kKNN_InitBest(bestDistances[i],bestPointsIdx[i]);
kNN_MinMaxNormalize (min, max, testing_X[i]);

23 // Copying the first external partition to the 2 local variables (code not shown

)

kKNN_PredictAll (training_X_0 , training_X_1, training_Y_O ,training_Y_1,
testing_X , testing_Y ,bestDistances ,bestDistancesclass);

// Copying the second external partition to the 2 local variables (code not

shown)

kKNN_PredictAll (training_X_0 ,training_X_1, training_Y_0 ,training_Y_1,
testing_X , testing_Y ,bestDistances ,bestDistancesclass);
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31
32}

Code Listing 4.15: Code for the multistage version with 2 external partitions and 2 local partitions

4.11 Multi stage version automation

The automation of the multi stage version is done by instantiating the loops that copy the training
data set to local variables and by calling the kNN function with the local variables once the external
partition of the data set is copied, and changing the declaration and calling of the KNN_Predict_All
function in accordance to the number of local partitions. This is done with includes, being the code
generated by the python script. For each external partition, there will be a block of loops that copy
the training data set followed by the kNN function, in an equal number to the number of external
partitions. For each local partition, there will be additional loops for coping the data set in each
block. For this to be done, the first step is generating the code for the function kNN_Multistage,
that will be called from the main function with the training dataset with no partitions. Its declara-

tion and code are displayed in Code Listings 4.16.

> void kNN_Multistage (DATA_TYPE training_X [N_TRAINING | [N_FEATURES],
CLASS_TYPE training_Y [N_TRAINING],

4 DATA_TYPE testing_X [N_TESTING ] [N_FEATURES] ,

; CLASS_TYPE testing_Y [N_TESTING],

6 DATA_TYPE min [N_FEATURES],

7 DATA_TYPE max [N_FEATURES |)

10 DATA_TYPE local_min [N_FEATURES];
11 DATA_TYPE local_max [N_FEATURES | ;

13 for(int 1=0;i<N_FEATURES;i++){
14 local_min[i]=min[i];

15 local_max|[i]=max[1i];

18 #include" ./ part_arrays/knn_multistage_code.h"

Code Listing 4.16: Code for the multistage function

The bulk of the code where the copying loops and calls of the kKNN_PredictAll functions are
done in the file "/part_arrays/knn_multistage_code.h", since the loops and calling of the kKNN_PredictAll
function will vary with the number of local and external partitions desired. An example of the code
generates for an example of 1 external partition and 3 local partitions in the file "/part_arrays/knn_multistage_code.]
is described in Code Listing 4.17.
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for(int i=0;i<1446;i++){
for(int j=0;j<N_FEATURES; j++){

3 training_X_O[i][j]=training_X[i+O0][]];

IS

3

}

training_Y_O[i]=training_Y [i+0];

}

for(int 1i=0;1<1446;i++){
for(int j=0;j<N_FEATURES; j++){
training_X_1[i][jl=training_X[i+1445](j1;

}
training_Y_1[i]=training_Y [i+1445];

3}

for(int 1=0;i<1446;i++){
for(int j=0;j<N_FEATURES; j++) {
training_X_2[i][jl=training_X[1+2890][j];
}
training_Y_2[i]=training_Y [i+2890];
}

kNN partitions

kNN_PredictAll (training_X_0 , training_X_1 ,training_X_2 ,training_Y_0 , training_Y_1
,training_Y_2 ,testing_X , testing_Y ,bestDistances ,bestDistancesclass);

Code Listing 4.17: Code for the multistage version with 1 external partition and 3 local partitions

The function kKNN_PredictAll is also changes with the number of local partitions, taking as
many arrays of the training dataset as arguments as there are local partitions. This means that
the declaration of the kNN_PredictAll function will also vary, as well as the contents of the files
included in it. The structure of the kKNN_PredictAll function is presented in Code Listings 4.18

#include" ./ part_arrays/knn_dec.h"

{

#include" ./ part_arrays/partial_dist_dec.h"
#include" ./ part_arrays/local_arrays_dec.h"

for (int i = 0; i < N_TESTING; i++){

#include" ./ part_arrays/partial_dist_init.h"

#include" ./ part_arrays/local_arrays_init.h"

#include" ./ part_arrays/partial_predict.h"

#include" ./ part_arrays/update_best.h"

testing_Y[i] = kNN_VoteBetweenBest_Class(bestDistancesclass[i]);

Code Listing 4.18: Declaration and code of the kNN_PredictAll function
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The contents of the files included are almost identical of the files with the same name described
before, except the changes to the kKNN_Partial_UpdateBestCaching and kNN_VoteBetweenBest
functions described before. As the array bestDistancesclass stores the class of the best points, that
is being changed by the function kKNN_Partial_UpdateBestCaching_Class as new best points are
found, the function kKNN_VoteBetweenBest_Class is only called once at the end of the classifica-
tion.

The automatization of the multi stage version is fundamental to achieve a good implementation
of the kNN algorithm. Since this is the most flexible code, it is the one that can better adjust to the
required training data sets and FPGA to be used.

4.12 Summary

In this chapter three new versions of the kNN algorithm were presented: The local version, the
external version and the multi stage version. All the versions have its uses and applications, and
as the solutions are synthesized and programmed into the FPGA, a better description of them
will be achieved. The partitions are the main theme of all versions, with the goal of achieving
parallel computations by using different partitions. To implement any number of partitions for a
version of the KNN algorithm, a script that automatizes the writing of the code was developed for
each version. The generated code properly inserted in the code that implements each partition,
allowing flexibility in choosing the number of partitions that are desired for a version of the kKINN

algorithm.
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Chapter 5

Experimental results

5.1 Experimental setup

In order to evaluate the different implementations of the kNN algorithm, multiple experiments
were made in order to evaluate and compare the implementations.

The first evaluation metric uses the Vitis HLS synthesis report. This is the report obtained after
the synthetization of a C code that provides estimates to the latency and minimum clock period
of the RTL implementation of the corresponding C code, as well as estimates for the number of
BRAMs, DSPs, LUTs and FFs used by the RTL implementation. These estimates are useful in
comparing the synthesized version of different implementations but as the place and route did not
take place, those are just rough estimates that need to be verified when programmed in the FPGA.

The second metric was the latency of the function in the FPGA versus the latency of the
same function ran in a CPU. This better displays the acceleration that FPGA implementations of
a function can achieve when compared to a CPU version of the same function. Clock cycles were
used to compare the two since an FPGA and a CPU are usually ran at different clock frequencies
to better represent the acceleration obtained via FPGA implementations.

The target FPGA for the Vitis HLS synthesis was the ZYNQ XC7Z020-1CLG400C, that has
220 DSPs, 53200 LUTs, 106400 FFs and 140 BRAMs. The data set used in the evaluation was
the WISDM data set [19]. The data set chosen was the WI_K3_F data set, a data set with a low
k of 3 and single precision floating point for the training and testing instances, with 4336 training

samples, 1082 testing samples, where each data point has 43 features.

5.2 FPGA results

The first evaluation was the synthesis evaluation, where the solutions were evaluated in Vitis HLS
after the synthesis of their C code. This evaluation provides estimated results reported by Vitis
HLS for latency, clock cycles, speedup in comparison to a benchmark and resources used in each
implementation. This provides parameters that characterize the implementation and allows for

comparison between the implementations.

49
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The benchmark for the results obtained in this section are the results obtained from synthesiz-
ing the kNN original code[18]. This benchmark is be used when calculating the speedups obtained
from the different implementations that were evaluated. The chosen target clock was 15 nanosec-
onds, which corresponds to a frequency clock of 75 MHz. This relatively low frequency was
chosen in order to prevent negative slack from occurring when analysing the different implemen-
tations, and thus assuring that all implementations are comparable by using a clock frequency that
makes it less likely to have negative slack when synthesizing the code.

The data set used was the WI_K3_F . The obtained latencies and speedups for different im-

plementations were obtained and measured.
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Figure 5.1: Local version latency and speedup per partition over benchmark
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Figure 5.2: External version latency and speedup per partition over benchmark
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Figure 5.3: Speedups obtained from both local and external versions over benchmark

As expected, as the number of partitions increases, so does the speedup obtained from each
partition, although at a slowing rate each time the number of partitions is increased. The number
of partitions in the local version increased by 4 each time, while in the external version increased
by 8. The goal was to find if at a high number of partitions, the speedup starts to decrease instead
of increasing due to the higher reading times, and if does, for which number of partitions does that
occur and which number of partitions provides the highest speedup.

For the local version, that did occur for 20 partitions, where the speedup obtained was 44.49 .
After that, as the number of partitions increased, the speedup began to decrease. For the external
version, although the speedup always increased for the measured partitions, the increases were
lower for each partition, from which it is expected that also for the external version the speedup
would begin to decrease after a certain number of partitions. The highest speedup measured for

the external version was of 15.10.
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Figure 5.4: DSPs used per partition for local and external versions
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Figure 5.5: LUTs used per partition for local and external versions
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Figure 5.6: FFs used per partition for local and external versions

The number of DSPs, LUTs and FFs used by each implementation increases as the number of
partitions increases, as expected. The number of resources used by implementation when compar-
ing the local version to the external version, for the same number of partitions, is approximately
four times higher. This can be explained due to the higher number of operations that are made
in parallel in each partition of the local version, in order to take advantage of the lower initiation
interval possible due to the data being stored locally with faster reading times, as explained in the

previous chapter, which leads to a higher usage of resources.
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Num partitions

1 4 8 12 16 20 24 28 32

Latency (ns)

2.88E+08 7.93E+07 4.69E+07 3.81E+07 3.50E+07 3.44E+07 3.49E+07 3.61E+07 3.77E+07

Clock cycles 1.926407 5.28E+07 3.13E+06 2.54E+06 2.34E+06 2.29E+07 2.33E+06 2.41E+06 2.51E+06
BRAM 678 686 698 550 706 886 1066 1238 1426
DSP 176 704 1408 2112 2816 3520 4224 4928 5632
FF(K) 29162 115137 220290 329609 436941 545736 654560 762360 872208
LUT(k) 32895 125260 249511 372808 496364 619806 742943 866306 989524

Table 5.1: Resources used per partition for local version
Num partitions 1 8 16 24 32 40 48 56 64

Latency (ns)

1.55E+09 4.01E+08 2.14E+08 1.55E+08 1.29E+08 1.15E+08 1.08E+08 1.04E+08 1.03E+08

53

Clock cycles 1.04E+08 2.68E+07 1.42E+07 1.03E+07 8.57E+06 7.67E+06 7.19E+06 6.95E+06 6.86E+06
BRAM 0 0 0 0 0 0 0 0 0
DSP 32 224 480 736 992 1248 1504 1760 2016
FF 15453 89101 174560 259827 345123 430470 515654 600918 686470
LUT 13505 80417 159458 236418 315449 394388 469229 547511 625842

Table 5.2: Resources used per partition for external version

The main difference between the two versions is the use of BRAMs by the local version. As
in the local version the data set is stored locally, it is stored using BRAMs. Initially, in the local
version, the number of BRAMs is almost the same as the number of partitions increase. However,
for higher number of partitions the number of BRAMs begin to increase instead of staying the
same. This can be explained since for higher partitions, the size of each partition is increasingly
small, leading to all the memory of some of the BRAMs not being used, while still requiring more
BRAMs to be used as each partition is stored in its own BRAM.

The increase in the number of DSPs, FFs and LUTs, for both versions, is approximately linear,
meaning that the increase in the number of this resources is proportional to the increase in the
number of partitions.

It should also be noted that while Vitis HLS provides number of resources to be used by each
number of partitions for each version, in fact from the versions displayed here only the external
version with 1 partitions is able to be ran in the ZYNQ XC7Z020-1CLG400C FPGA, due to the
limited number of resources available. If any other version with more partitions was to be ran in

an FPGA, it would need to be ran in an FPGA with more resources.
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The multistage version was also synthesized in Vitis HLS in order to verify if the assumptions
about the effect of the number of local and external partitions were right, namely, if by increasing
the number of external partitions the use of BRAMs did decrease and if by increasing the number

of local partitions the latency decreased and the number of resources used increased.
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Figure 5.7: Latency curves for the multistage version
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Figure 5.8: Speedup curves for the multistage version over benchmark

As expected, the latency of each solution decreased with the increase in the number of local
partitions. The number of external partitions did not have a great impact in the latency, being the
latency for versions with the same number of local partitions nearly the same, with the increase in
external partitions leading to small increases in the latency due to the overhead introduced when

copying external data into the accelerator.
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Figure 5.9: Number of BRAMs used by each multistage solution

As for the BRAM use, although it tends to decrease with the increase in the number of external
partitions, it did not always happen, leading to situations where an increase in the number of
external partitions did not decrease the number of BRAMs, but still there was not a situation where
the number of BRAMs did increase. This leads to the conclusion that arbitrarily increasing the
number of external partitions might not reduce the number of BRAMs being used, and a solution
must be carefully analysed in order to pick the lowest number of external partitions that will use

maximum number of BRAMs that its desired.
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Figure 5.10: Number of DSPs used by each multistage solution
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Figure 5.11: Number of LUTs used by each multistage solution
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Figure 5.12: Number of FFs used by each multistage solution

Analysing the resources used for the multistage version, it is possible to observe that when
increasing the number of external partitions, for the same number of local partitions, the number
of DSPs and FFs stayed nearly the same, while the number of LUTs increased with the increase
in the number of external partitions. This can be explained with the fact that when increasing the
number of external partitions there are no more kNN computation being done in parallel, but there
is only an increase in the loops used to copy the external variables into local ones. As there are no
more computations being done in parallel, the number of DSPs stayed nearly the same, as well as
the number of FFs. Since when synthesized C loops will mostly use LUTs, this explains the fact
that when increasing the number of loops used to copy external variables into local ones it will

lead to an increase in the number of LUTs used.



5.3 CPU vs FPGA results 57

5.3 CPU vs FPGA results

To compare the obtained implementations in an FPGA with a CPU version, the kNN code was
ran in an ARM processor, the same type of typically processor used in CPU+FPGA SoC. The
CPU estimates were obtained from running the kNN code in an RaspberryPi 4, which uses the
ARM based processor Broadcom BCM2711, Quad core Cortex-A72 (ARM v8) 64-bit SoC @
1.8GHz, running raspbian OS, while the FPGA estimates were the ones obtained in Vitis HLS
via synthesizing C code, with the target clock frequency for the FPGA of 75 MHz. This CPU
estimates were preferred instead of running the multiple versions in a CPU of a SoC with a FPGA
due to the ease of running multiple different versions. Although the conditions are very different
from the ones found in SoC CPU+FPGA where only a CPU is running, namely due to the fact
that by running an operating system the time measurements of the duration of the kNN function
might be affected from other processes ran in the same OS, the time estimates can be used to give
a rough estimate of the number of clock cycles used by each implementation.

The C code of each version with various number of partitions was compiled in gcc with the
optimization flag of -O3, in order to have an optimized CPU version of each version. To obtain the
clock cycles, each version with varying number of partitions was ran 100 times in the RaspberryPi,
and the average time of those runs was used to get an average running time for each implemen-
tation. This time was then used to estimate the number of clock cycles used by dividing the time
with the clock frequency of the CPU, which is 1.8 GHz.

This number of estimated clock cycles then was used to calculate an estimation for the speedup
achieved for each version with different number of partitions when comparing an FPGA imple-

mentation with a CPU one. The results are shown in Figures 5.13 and 5.14.
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Figure 5.13: Speedup of FPGA over CPU implementations of the local and external versions
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Figure 5.14: Speedup of FPGA over CPU implementations of the multistage version

The speedup curves are nearly identical to the ones obtained before where the different ver-
sions were compared to a FPGA implementation of the original code. This is due to the fact that
the running time of the kNN function was nearly constant, only increasing in the order of the hun-
dredths of second with the increase in the number of partitions. Also, the speedups presented here
should be taken with scepticism, due to the reasons referred before about the CPU estimates. The
lowest speedup estimation was obtained for the external version with 1 partition (that is identical
to the original code) with a speedup of 7.71, showing that even in the worst circumstance there
is still a significant speedup achieved by using a FPGA implementation. The highest speedup

estimated was for the local version with 24 partitions with a estimated speedup of 352.59.



Chapter 6

Conclusion

6.1 Concluding remarks

Throughout this dissertation it was shown that fast KNN machines are made possible by the use
of heterogeneous systems. By using code transformations and automations it was possible to
propose a flexible approach to the kNN algorithm that is able to be adapted for different circum-
stances regarding the target FPGA and the training data set used, with the maximum speedup when
compared to the original code achieved by the local version with a speedup of 44.49 times. The
external version achieved the maximum speedup at 64 partitions with a speedup of 15.10, and the
multistage version achieved a speedup of 22.41 for 2 external partitions and 8 local partitions.

The code transformations were fundamental in achieving efficient solutions. Proper care was
taken when developing C code that was to be synthesized via high level synthesis as the tools used
are still dependent of the input code styles to produce more efficient solutions.

A flexible solution to target multiple implementations of the kNN algorithm was achieved.
This is important since not all FPGA+CPU platforms are able to support large data sets that might
be required to be used by some applications, and as such, a lower speedup may be obtained in
such platforms, and in the other hand if the board can store the training data set in its memory
it is possible to achieve a higher degree of speedup. The trade-off between resources used and
achieved speedup should be set around the training data set and the CPU+FPGA platform used.

The varying number of partitions is the factor of flexibility to the solutions. As demonstrated,
for a small number of partitions of the local version the number of BRAMs used is nearly constant,
for the external version no BRAMs are used and for the multistage version the number of BRAMs
used tends to decrease with the increase in the number of external partitions, and as such the three
proposed versions are suited for varying scenarios depending on the training data set size and
resources available at the FPGA+CPU platform.

The number of partitions must be carefully chosen depending on the requirements of the spe-
cific application, for example, if the application requires a latency below a certain threshold or if
the highest speedup is wished for a certain FPGA+CPU SoC platform that has a given number of
resources, giving the developer the possibility to choose the better option for the given application.
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The C code for the multiple versions proposed was created using a script that automated the
creation of C code that once synthesized implemented the proposed solution, with the script taking
as arguments the number of partitions desired for one of the proposed solutions. As the script is
able to generate code for an arbitrary number of partitions, it makes possible for developers to
explore and implement multiple solutions with different versions and varying number of partitions
in an efficient away.

The division of the training data set is also an approach that can be used for other applications
that require the same partitions that were made in the implemented solutions. By reusing the code,
it is possible to use it in other contexts for accelerating different machine learning algorithms using

FPGA:s, facilitating future work that might be done with other algorithms.

6.2 Future work
As future work, we propose the following:

» Using a hardware implementation of the insertion algorithm that inserts a new instance in a
single clock cycle. This could be used in the update best functions in order to decrease the

initiation interval between consecutive calls of the function;

» Using pragmas systematically to control the number of resources used. In the local version,
an increase in the iteration interval could lead to a decrease in the number of resources used

by that version, while still providing a speedup when compared to the external version;

* Parallelizing the calculation of the distance between an instance to classify and a point in
the training data set. This might be more relevant for implementations that only classify one
single instance with a high number of features, since the calculation of the distance of an

instance to a point in the training data set for all of their features is not parallelized;

» Use of analytical models to estimate FPGA resource and performance to decide about con-

figuration to be used according to the data set and target FPGA;

» Research implementations of pipelining and streaming considering successive points to clas-

sify.
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Appendix A

kNN Added functions

A.1 Initial version added functions

o

double kNN_Partial_UpdateBestCaching(double queryDistance ,

double bestDistances [K], int
int bestPointsArrayldx [K],

double worstOfBest = 0;

int

worstOfBestldx = -1;
double secondWorstOfBest = 0;
secondWorstOfBestldx = -1;

int

static int count=0;

for

{

(int 1 = 0; 1 < K; i++)

int

if (worstOfBest < bestDistances|[i])

arrayldx)

{
secondWorstOfBest = worstOfBest;
secondWorstOfBestldx = worstOfBestldx ;
worstOfBest = bestDistances[i];
worstOfBestldx = 1i;

}

else if (secondWorstOfBest < bestDistances[i])

{
secondWorstOfBest = bestDistances[1i];
secondWorstOfBestldx = i;

}

if (queryDistance < worstOfBest)

{

bestDistances [ worstOfBestldx |
bestPointsIdx [ worstOfBestldx ]

bestPointsArrayldx [worstOfBestldx ]

= queryDistance ;

= queryldx;

63

arrayldx;

int queryldx,
bestPointsIdx [K],
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33 }

34 return (queryDistance > secondWorstOfBest) ? queryDistance

35 : secondWorstOfBest ;
6 }

33 void kNN_Partial_Predict (DATA_TYPE training_X [N_TRAINING ][ N_FEATURES],

39 DATA_TYPE queryDatapoint [N_FEATURES],

40 DATA_TYPE min[N_FEATURES], DATA_TYPE max[N_FEATURES],
41 int bestPointsIdx [K], double bestDistances [K],
42 int array_size)

13 {

44 double bestDistanceMax = DBL MAX;

45

16 kKNN_InitBest(bestDistances , bestPointsldx);

47

18 for (int i = 0; i < (array_size); i++)

49 {

50 double distance = 0.0F;

51

52 for (int j = 0; j < N_FEATURES; j++)

53 {

54 DATA_TYPE feature = queryDatapoint[j];

55 double diff = feature — training X [i][]j];

56 distance += diff = diff;

58 }

59

60 if (distance < bestDistanceMax)

61 {

62 bestDistanceMax = kNN_UpdateBestCaching(distance , i, bestDistances ,
63 bestPointsIdx) ;

64 }

65 }

66}

s CLASS_TYPE kNN_Partial_VoteBetweenBest(int bestPointsIdx [K],

69 CLASS_TYPE training_Y [N_TRAINING],
70 CLASS_TYPE histogram [N_CLASSES],
71 int bestPointsArrayldx [K],

72 int arrayld)

73 {

74 for (int i = 0; 1 < K; i++)

75 {

76 if (bestPointsArrayldx[i]==arrayld)

77 {

78 int bestldx = bestPointsIdx[i];

79 CLASS_TYPE cl = training_Y [bestldx ];

80 histogram [(int)cl]++;
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A.2 Multistage version added functions

CLASS_TYPE mostPopular = -1;
int mostPopularCount = -1;

for (int i = 0; i < N_CLASSES; i++)
{

if (histogram[i] > mostPopularCount)

{

mostPopularCount = histogram/[i];
mostPopular = (CLASS_TYPE)i ;

}

return mostPopular;

A.2 Multistage version added functions

65

CLASS_TYPE kNN_Partial_VoteBetweenBest_multistage (CLASS_TYPE bestDistancesclass

(K1)
{
CLASS_TYPE histogram [N_CLASSES] = {0};
for (int i = 0; 1 < K; i++)
{
CLASS_TYPE cl = bestDistancesclass[i];
histogram [(int)cl]++;
}
CLASS_TYPE mostPopular = -1;
int mostPopularCount = -1;
for (int i = 0; i < N_CLASSES; i++)
{
if (histogram[i] > mostPopularCount)
{
mostPopularCount = histogram[i];
mostPopular = (CLASS_TYPE)i;
}
}
return mostPopular;
}

double kNN_Partial_UpdateBestCaching_multistage (double queryDistance ,

CLASS_TYPE queryClass,

double bestDistances [K], CLASS_TYPE

bestDistancesclass [K])
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45
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48

49

50
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double worstOfBest = 0;
int worstOfBestldx = -1;
double secondWorstOfBest = 0;
int secondWorstOfBestldx

static int count=0;

1l
|
—_

for (int 1 = 0; 1 < K; i++)
{
if (worstOfBest < bestDistances|[i])
{
secondWorstOfBest = worstOfBest;
secondWorstOfBestldx = worstOfBestldx;
worstOfBest = bestDistances[i];
worstOfBestldx = i;
1
else if (secondWorstOfBest < bestDistances[i])
{
secondWorstOfBest = bestDistances[i];
secondWorstOfBestldx = i;
1

if (queryDistance < worstOfBest)

{
bestDistances [ worstOfBestldx] = queryDistance;
bestDistancesclass [ worstOfBestldx] = queryClass;

}

return (queryDistance > secondWorstOfBest) ? queryDistance

secondWorstOfBest ;

A.3 Initial KNN code with 2 partitions

void kNN_PredictAll (DATA_TYPE training_X [N_TRAINING ] [N_FEATURES],
CLASS_TYPE training_Y [N_TRAINING],
DATA_TYPE testing_X [N_TESTING ] [N_FEATURES] ,
CLASS_TYPE testing_Y [N_TESTING], DATA_TYPE min[N_FEATURES],
DATA_TYPE max [N_FEATURES |)

// Declare training and min max arrays

DATA_TYPE training_X_first [(N_TRAINING/2) ] [N_FEATURES | ;
DATA_TYPE training_X_second [ (N_TRAINING/2) ][N_FEATURES ] ;

CLASS_TYPE training_Y _first [N_TRAINING/2];
CLASS_TYPE training_Y_second [N_TRAINING/2];
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16 DATA_TYPE min_first [N_FEATURES ];
17 DATA_TYPE min_second [N_FEATURES];

19 DATA_TYPE max_first [N_FEATURES];

20 DATA_TYPE max_second [N_FEATURES|;

21

22 // Separate the training points array into two arrays
24 for (int i = 0; i < (N_TRAINING/2); i++)

25 {

26 training_Y_first[i]=training_Y [i];

28 for (int j = 0; j < N_FEATURES; j++)

29 {

30 training_X_first[i][j]=training_X[i][j];

31 }

32 }

34 for (int i = (N_TRAINING/2); i < N_TRAINING; i++)
35 {

36 training_Y_second [(1i —(N_TRAINING/2) ) ]=training_Y [i];
38 for (int j = 0; j < N_FEATURES; j++)

39 {

40 training_X_second [ (i —(N_TRAINING/2)) ][j]=training_X[i][j];
41 }

42 }

43

44 // Duplicate the min max arrays

45

46 for (int i = 0; i < N_FEATURES; i++)

47 {

48 min_first[i]=min[i];

49 min_second[i]=min[i];

50 max_first[i]=max[i];

51 max_second[i]=max[1i];

52 }

54 // Create arrays to store the best points

56 int bestPointsIdx_first [K];

57 int bestPointsIdx_second [K];

58 double bestDistances_first [K];

59 double bestDistances_second [K];

60 int bestPointsIdx [K];

61 double bestDistances [K];

62 int bestPointsArrayldx [K];

63
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kNN Added functions

kKNN_InitBest(bestDistances , bestPointsIdx);

CLASS_TYPE voteResult;

CLASS_TYPE histogram [N_CLASSES] = {0};

static DATA_TYPE testing_X_O[N_FEATURES] = {0};
static DATA_TYPE testing_X_1 [N_FEATURES] {0},

for (int i = 0; i < N_TESTING; i++)
{
kNN_MinMaxNormalize (min, max, testing_X[i]);
for (int k = 0; k < N_FEATURES; k++)
{
testing_X_O0[k]=testing_X[i][k];
testing_X_1[k]=testing_X[i][k];

// Init best distance arrays

kNN _InitBest(bestDistances , bestPointsIdx);
kKNN_InitBest(bestDistances_first , bestPointsIdx_first);
kKNN_InitBest(bestDistances_second , bestPointsIldx_second);

// Calculate the best points for each partition

kNN _Partial_Predict(training_X_first, testing_X_0, min_first,
max_first ,bestPointsIdx_first ,
bestDistances_first ,2);

kNN _Partial_Predict(training_X_second , testing_X_ 1, min_second,
max_second , bestPointsIdx_second ,

bestDistances_second ,2) ;

// Calculate the best points between all partitions

for(int i=0;i<K;i++)

{
kNN _Partial_UpdateBestCaching(bestDistances_first[i],
bestPointsIdx_first[i],bestDistances ,bestPointsIdx ,
bestPointsArrayldx ,1);

}

for(int 1=0;i<K;i++)

{
kNN_Partial_UpdateBestCaching (bestDistances_second[i],
bestPointsIdx_second[i],bestDistances ,bestPointsIdx ,
bestPointsArrayldx ,2);
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/1 Vote

the most represented class in best points

kNN _Partial_VoteBetweenBest(bestPointsIdx , training_Y _first ,

histogram , bestPointsArrayldx ,1);

testing_Y [1]=kNN_Partial VoteBetweenBest(bestPointsldx ,

training_Y_second , histogram ,
bestPointsArrayldx ,2);

for(int i=0;i<N_CLASSES;i++)

{
histo

gram[i]=0;

A.4 Initial KNN code with 4 partitions

void kNN_PredictAll (DATA_TYPE training_X [N_TRAINING ][N_FEATURES],

// Declare

DATA_TYPE

CLASS_TYPE training_Y [N_TRAINING],
DATA_TYPE testing_X [N_TESTING ] [N_FEATURES],

69

CLASS_TYPE testing_Y [N_TESTING], DATA_TYPE min[N_FEATURES],

DATA_TYPE max [N_FEATURES ])
training and min max arrays

training_X _first [N_TRAINING/4][N_FEATURES];

DATA_TYPE training_X_second [N_TRAINING/4 ][ N_FEATURES |;

DATA_TYPE
DATA_TYPE

CLASS_TYPE
CLASS_TYPE
CLASS_TYPE
CLASS_TYPE

DATA_TYPE
DATA_TYPE
DATA_TYPE
DATA_TYPE

DATA_TYPE
DATA_TYPE
DATA_TYPE
DATA_TYPE

/l Separat

training_X_third [N_TRAINING/4][N_FEATURES];
training_X_fourth [N_TRAINING/4][N_FEATURES |;

training Y _first [N_TRAINING/4];
training_Y_second [N_TRAINING/4];
training_Y _third [N_TRAINING/4];
training_Y_fourth [N_TRAINING/4];

min_first [N_FEATURES];
min_second [N_FEATURES | ;
min_third [N_FEATURES ] ;
min_fourth [N_FEATURES ] ;

max_first [N_FEATURES ] ;
max_second [N_FEATURES ] ;
max_third [N_FEATURES|;
max_fourth [N_FEATURES ];

e the training points array into four arrays
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31 for (int i = 0; i < (N_TRAINING/4); i++)

32 {

33 training_Y_first[i]=training_Y [i];

34 for (int j = 0; j < N_FEATURES; j++)

35 {

36 training X _first[i][j]=training X [i][j];
Y )

8 }

0 for (int i = (N_TRAINING/4); i < (2#(N_TRAINING/4)); i++)

42 training_Y_second [(i —(N_TRAINING/4))]=training_Y [i];

13 for (int j = 0; j < N_FEATURES; j++)

44 {

15 training_X_second [ (i —(N_TRAINING/4))][j]=training_X[i][j];
46 }

47 }

18

49 for (int i = (2%x(N_TRAINING/4)); i < (3+%(N_TRAINING/4)); i++)
50 {

51 training_Y _third [(1—-(2%(N_TRAINING/4)))]=training_Y [i];
52 for (int j = 0; j < N_FEATURES; j++)

53 {

54 training_X_ third [(i—-(2%x(N_TRAINING/4)))][jl=training_X[i][]];
55 }

56 }

57

58 for (int i = (3%(N_TRAINING/4)); i < N_TRAINING; i++)

59 {

60 training_Y_fourth [(i —(3%(N_TRAINING/4)))]=training_Y [i];
61 for (int j = 0; j < N_FEATURES; j++)

62 {

63 training_X_fourth [(i—(3%(N_TRAINING/4)))][j]l=training_X[i][]];
64 }

65 }

66

67 // Duplicate the min max arrays

68

69 for (int i = 0; i < N_FEATURES; i++)

70 {

71 min_first[i]=min[1i];

72 min_second[i]=min[i];

73 min_third[i]=min[i];

74 min_fourth[i]=min[1i];

76 max_first[i]=max[i];
77 max_second[i]=max[i];

78 max_third[i]=max[1i];
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79 max_fourth[i]=max[1i];

80 }

81

82 // Create arrays to store the best points
83

84 int bestPointsIdx_first [K];

85 int bestPointsIdx_second [K];

86 int bestPointsIdx_third [K];

87 int bestPointsIdx_fourth[K];

88 double bestDistances_first[K];

89 double bestDistances_second [K];

90 double bestDistances_third [K];

91 double bestDistances_fourth [K];

92 int bestPointsIdx [K];

93 double bestDistances [K];

94 int bestPointsArrayldx [K];

95

96 CLASS_TYPE histogram [N_CLASSES] = {0};

97

98 static DATA TYPE testing_ X _first [N_FEATURES]={0};
99 static DATA_TYPE testing_X_second [N_FEATURES]={0};

100 static DATA_TYPE testing_X_third [N_FEATURES]={0};
101 static DATA_TYPE testing_X_fourth [N_FEATURES]={0};

103 for (int i = 0; i < N_TESTING; i++)
104 {
105 kNN _InitBest(bestDistances , bestPointsIdx);

107 kNN_MinMaxNormalize (min, max, testing_X[i]);

109 for (int k = 0; k < N_FEATURES; k++)

110 {

11 testing X _first[k]=testing_X[i][k];
112 testing_X_second [k]=testing_X[i][k];
113 testing_X_third [k]=testing_X[i][k];
114 testing_X_fourth[k]=testing_X[i][k];
115 }

117 // Init best distance arrays

119 kKNN_InitBest(bestDistances , bestPointsIdx);

120 kKNN_InitBest(bestDistances_first , bestPointsIdx_first);
121 kKNN_InitBest(bestDistances_second , bestPointsIldx_second);
122 kKNN_InitBest(bestDistances_third , bestPointsIdx_third);
123 kKNN_InitBest(bestDistances_fourth , bestPointsIdx_fourth);
124

125 // Calculate the best points for each partition

127 kNN _Partial_Predict(training_X_first, testing_X_first,
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128 min_first ,max_first ,bestPointsIdx_first ,

129 bestDistances_first ,1084);

130 kKNN_Partial_Predict (training_X_second , testing_X_second ,

131 min_second , max_second , bestPointsIdx_second ,

132 bestDistances_second ,1084);

133 kKNN_Partial_Predict(training_X_third , testing_X_third ,

134 min_third , max_third, bestPointsIdx_third ,

135 bestDistances_third ,1084);

136 kNN _Partial_Predict(training_X_fourth , testing_X_fourth ,

137 min_fourth , max_fourth ,bestPointsIdx_fourth ,

138 bestDistances_fourth ,1084);

139

140 // Calculate the best points between all partitions

141

142 for(int j=0;j<K;j++)

143 {

144 kNN_Partial_UpdateBestCaching(bestDistances_first[]j],

145 bestPointsIdx_first[j],bestDistances ,
146 bestPointsIdx , bestPointsArrayldx ,1);
147 }

148

149 for(int j=0;j<K;j++)

150 {

151 kNN _Partial_UpdateBestCaching (bestDistances_second[j],

152 bestPointsIdx_second[j],

153 bestDistances ,

154 bestPointsIdx , bestPointsArrayldx ,2);
155 }

156

157 for(int j=0;j<K;j++)

158 {

159 kNN _Partial_UpdateBestCaching(bestDistances_third[j],

160 bestPointsIdx_third[j],bestDistances ,
161 bestPointsIdx , bestPointsArrayldx ,3);
162 }

163

164 for(int j=0;j<K;j++)

165 {

166 kNN _Partial_UpdateBestCaching(bestDistances_fourth[j],

167 bestPointsIdx_fourth[j],

168 bestDistances ,

169 bestPointsIdx , bestPointsArrayldx ,4);
170 }

171

172 // Vote the most represented class in best points

173

174 kKNN_Partial_VoteBetweenBest(bestPointsIdx , training_Y _first ,histogram,

175 bestPointsArrayldx ,1);

176



189

190

191

192

A.4 Initial KNN code with 4 partitions

kNN_Partial_VoteBetweenBest(bestPointsIdx , training_Y_second ,
histogram , bestPointsArrayldx ,2);

kNN _Partial_VoteBetweenBest(bestPointsIdx , training_Y_third,
histogram , bestPointsArrayldx ,3);

testing_Y [1]=kNN_Partial VoteBetweenBest(bestPointsldx ,
training_Y_fourth , histogram ,
bestPointsArrayldx ,4);

for(int i=0;i<N_CLASSES;i++)

{
histogram[i]=0;

73



74

A.5 Python script for the local version

kNN Added functions

import sys
import os

import subprocess

# Check 1f at least one argument was provided
if len(sys.argv) == 1:
print ("Usage: local_arrays.py [Num of local partitions]

)

exit ()
else:
if sys.argv[l] == 0:
print ("Number of partitions cannot be 0")
exit ()
else:

n_part=int (sys.argv|[1l])

print ("Number of local partitions:"+str(n_part))

#clean previous files
current_directory = os.getcwd()

extension_to_remove = '’ .dat’

for root, dirs, files in os.walk (current_directory) :
for file in files:
if file.endswith (extension_to_remove) :
file_path = os.path.join(root, file)
os.remove (file_path)

print (f"Removed: {file_path}")

#get the parent directory

parent_directory = os.path.dirname (os.getcwd())

#check if there is a scenario specified
if (len(sys.argv) > 2):
scenario_str = str(sys.argv[2])
#print ("Scenario str:")

#print (scenario_str)

# Construct the command to compile the C program

[Name of the scenario]"

compilation_command_str = f"gcc dataset_norm.c dataconverter.c utils.c -o

dataset_norm "

if(len(sys.argv) > 2):

compilation_command_str=compilation_command_str + £"-D SCENARIO=" +

scenario_str

print ("compilation command str:")
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print (compilation_command_str)

# Use subprocess.run() to execute the compilation command
gcc_result = subprocess.run(compilation_command_str, shell=True, text=True,

capture_output=True, cwd=parent_directory)

# Check the result
if gcc_result.returncode == 0:

print (f"Dataset normalization program compiled successfully.")
else:

print ("Compilation encountered an error.")

print ("Error Output:")

print (gcc_result.stderr)

dataset_norm_program_str=f"dataset_norm"
print ("Dataset normalization command str:")

print (dataset_norm_program_str)

# Use subprocess.run() to execute the program
data_norm_result = subprocess.run(dataset_norm_program str, shell=True, text=True,

capture_output=True, cwd=parent_directory)

# Check the result
if data_norm_result.returncode == 0:

print (f"Dataset normalization program ran successfully.")
else:

print ("Compilation encountered an error.")

print ("Error Output:")

print (data_norm_result.stderr)
#check 1if training dataset files exist

try:
training_X_file = open("../training_X.dat", "r")
except FileExistsError:

print ("Ficheiro training_X.dat n o encontrado")

try:
training_Y_file = open("../training_Y.dat", "r")
except FileExistsError:

print ("Ficheiro training_Y.dat n o encontrado")

training_X_lines = training_X_file.readlines()

training_Y_lines = training_Y_file.readlines ()

training_Y=1[]
training_X=[]
features=1[]

temp_line=]]
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min=[]

max=/[]

for line in training X_lines:

temp_line=line.replace("{","")

temp_line=temp_line.replace("}","")

if (temp_line[len(temp_line)-2]==","):
temp_line=temp_line[:len(temp_line)-2]

else:
temp_line=temp_line[:len(temp_line)-1]

features=temp_line.split (",")

training_X.append (features)

for line in training_ Y_lines:
temp_line=line.replace("{","")
temp_line=temp_line.replace("}","")
features=temp_line.split (", ")

training_Y.append (features)

training_X_file.close ()

training_Y_file.close()

new_size=(len(training_X)//n_part)

remainder=(len(training_X) %$n_part)

training_X_new_file_name="training_X_0.dat"

training_Y _new_file_name="training Y O.dat"

training X_new_file_array=[]

training_Y_new_file_array=[]

#open array files

for i in range (n_part):
f_x=open (training X_new_file_name, "w")
f_y=open (training_Y_new_file_name, "w")
training_X new_file_array.append (f_x)
training_Y_new_file_array.append (f_y)
print ("New training X file name:" + training X new_file_name)
print ("New training_ Y file name:" + training_Y_new_file_name)
training_X_new_file_name=training X new_file_name.replace(str(i),str(i+l))

training_Y _new_file_name=training_ Y new_file_name.replace(str(i),str(i+l))

#write in training X array

for i in range(n_part):
for j in range (new_size):
training_X_new_file_array[i].write("{")

for k in range(len(training_XI[0])):
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training_X new_file_array[i].write(training X[ (i*new_size)+3j] [k])
if (k< (len(training_XI[0])-1)):
training X_new_file_array[i].write(",")
training_X_new_file_array[i].write("}")
if (j<(new_size-1) or (remainder>0)):
training_X new_file_arrayl[i].write(",")

training X_new_file_array[i].write("\n")
#1f there are remainder write them in training X

if (remainder>0) :
for 1 in range(n_part):
if (i<remainder) :
training_X new_file_array[i].write("{")
for k in range(len(training_XI[0])):
training X_new_file_array[i].write(training_ X[ (n_part+new_size)+i] [
k1)
if (k< (len(training_X[0])-1)):
training_X new_file_array[i].write(",")
training_X_new_file_array[i].write("}")
training_X_new_file_array[i].write("\n")
else:
training_X_new_file_array[i].write("{")
for k in range(len(training_X[0])):
training_X new_file_array[i].write ("0.900000")
if (k< (len(training_X[0])-1)):
training_X new_file_array[i].write(",")
training_X_new_file_array[i].write("}")

training_X_new_file_array[i].write("\n")
#write in training Y array

for i in range (n_part):

training_Y new_file_array[i].write("{")

for j in range (new_size):
training_Y_new_file_array[i].write(training_Y[0] [ (i new_size)+7j])
if (j<new_size-1 or (remainder>Q)):

training_Y _new_file_array[i].write(",")

if (remainder==0) :

training_Y_new_file_array[i].write("}")

training_Y_new_file_array[i].write("\n")
#1f there are remainder write them in training Y

if (remainder>0) :
for i1 in range (n_part):
if (i<remainder) :
training_Y_new_file_array[i].write(training_Y[0] [ (n_part*new_size)+il])

training_Y_new_file_array[i].write("}")
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training_Y_new_file_array[i].write("\n")
else:

training_Y_new_file_array[i].write("0")

training_Y_new_file_array[i].write("}")

training_Y_new_file_array[i].write("\n")

#write partial dist dec file

partial_dist_dec_file=open("./partial_dist_dec.h", "w")

bestpointsstr=" int bestPointsIdx_0[K];\n"
bestdiststr=" double bestDistances_0[K];\n"

for i in range (n_part):
partial_dist_dec_file.write (bestpointsstr)
partial_dist_dec_file.write (bestdiststr)
bestpointsstr=bestpointsstr.replace(str(i),str(i+l))

bestdiststr=bestdiststr.replace(str(i),str(i+l))
#write partial dist init file
partial_dist_init_file=open("./partial_dist_init.h", "w")
initbeststr=" kNN_InitBest (bestDistances_0, bestPointsIdx_0);\n"
for i in range(n_part):
partial_dist_init_file.write(initbeststr)
initbeststr=initbeststr.replace(str(i),str(i+l),2)
#write partial predict file
partial_predict_file=open("./partial_predict.h", "w")
predictstr=" kNN_Partial_ Predict (training_X_ 0, testing X 0, min_0, max_0,
bestPointsIdx_0,bestDistances_0,n_part);\
I"l"
if (remainder==0) :
predictstr=predictstr.replace("n_part",str (new_size))
else:
predictstr=predictstr.replace("n_part",str (new_size+l))
for i in range (n_part):
partial_predict_file.write (predictstr)
predictstr=predictstr.replace(str(i),str(i+l),6)

#write update best file

update_best_file=open ("./update_best.h", "w")
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update_best_str=""" for(int 1=0;i<K;1i++){

kNN_Partial_UpdateBestCaching (bestDistances_0[i], bestPointsIdx_0[1i],
bestDistances, bestPointsIdx,bestPointsArrayIdx, 0

)7
}\n\n"""

for i in range (n_part):
update_best_file.write (update_best_str)
if (i==0):
update_best_str=(update_best_str.replace(str (i), str(i+l))).replace("1","0"
s 1)
else:

update_best_str=update_best_str.replace(str (i), str(i+l))
#write vote file
vote_file=open("./vote.h", "w")

vote_str="kNN_Partial_VoteBetweenBest (bestPointsIdx, training_Y_0,histogram,

bestPointsArrayIdx, 0);\n"

vote_last_str="testing_Y[i]=kNN_Partial_VoteBetweenBest (bestPointsIdx, training_Y 0
,histogram, bestPointsArrayIdx,0);\n"

for i in range (n_part-1):
vote_file.write (vote_str)

vote_str=vote_str.replace(str(i), str(i+l),2)

vote_last_str=vote_last_str.replace("0",str(n_part-1),2)

vote_file.write(vote_last_str)
#write array dec file
array_dec_file=open("../array_dec.h", "w")

training_X_str="""static DATA TYPE training X_ O[N_TRAINING] [N_FEATURES]={
#include "./localarrays/training_X_0.dat"

}'\H\IJ"""
’

if (remainder==0) :
training_X_str=training X_str.replace ("N_TRAINING", str (new_size))
else:

training_X_str=training X str.replace ("N_TRAINING", str (new_size+l))

training_Y_str="""static CLASS TYPE training Y O[N_TRAINING]=
#include "./localarrays/training_Y_ 0.dat"

; \H\H"""
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if (remainder==0) :
training_Y_str=training_Y_str.replace ("N_TRAINING",str (new_size))
else:

training_Y_str=training_ Y str.replace ("N_TRAINING", str (new_size+l))

min_str="""static DATA TYPE min O[N_FEATURES]=
#include"min.dat"

; \H\I’l"""

max_str="""static DATA TYPE max_ O[N_FEATURES]=
#include"max.dat"

; \I’l\l’l"""

for i in range (n_part):
array_dec_file.write (training_X_str)
array_dec_file.write(training_Y_str)
array_dec_file.write (min_str)
array_dec_file.write (max_str)
( 1)
training_Y_str=training_Y_str.replace(str(i),str(i+l),1)
((str(i)+".dat"), (str(i+l)+".dat"))
), (str(i+l)+".dat"))

training_X_str=training X_str.replace(str(i),str(i+l),
training_X_str=training X_str.replace
training_Y_str=training_Y_str.replace((str(i)+".dat"
min_str=min_str.replace(str(i),str(i+l))
max_str=max_str.replace(str(i),str(i+l))
#declare local arrays dec file
local_arrays_dec_file=open("./local_arrays_dec.h", "w")
local_arrays_dec_str="static DATA_TYPE testing_X_O[N_FEATURES]={0}; \n"
for i in range (n_part):
local_arrays_dec_file.write (local_arrays_dec_str)
local_arrays_dec_str=local_arrays_dec_str.replace(str(i),str(i+l),1)
local_arrays_dec_file.write ("\n\n\n")
#initiate local arrays file
local_arrays_init_file=open("./local_arrays_init.h", "w")

local_arrays_copy_str="testing_X_0[k]=testing_X[i] [k];\n"

local_arrays_init_file.write("for (int k = 0; k < N_FEATURES; k++){\n")
local_arrays_init_file.write (" //#pragma HLS UNROLL\n")

for i in range (n_part):

local_arrays_init_file.write(local_arrays_copy_str)
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local_arrays_copy_str=local_arrays_copy_str.replace(str(i),str(i+l),1)

local_arrays_init_file.write("}\n")

81
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A.6 Python script for the external version

import sys
import os

import subprocess

# Check 1f at least one argument was provided
if len(sys.argv) == 1:

print ("Usage: external_arrays.py [Num of external partitions] [Name of the

scenariol")
exit ()
else:
if sys.argv[l] == 0:
print ("Number of partitions cannot be 0")
exit ()
else:

n_part=int (sys.argv|[1l])

print ("Number of external partitions:"+str (n_part))

#clean previous files
current_directory = os.getcwd()

extension_to_remove = '’ .dat’

for root, dirs, files in os.walk (current_directory) :
for file in files:
if file.endswith (extension_to_remove) :
file_path = os.path.join(root, file)
os.remove (file_path)

print (f"Removed: {file_path}")

#get the parent directory

parent_directory = os.path.dirname (os.getcwd())

#check if there is a scenario specified
if (len(sys.argv) > 2):
scenario_str = str(sys.argv[2])
#print ("Scenario str:")

#print (scenario_str)

# Construct the command to compile the C program
compilation_command_str = f"gcc dataset_norm.c dataconverter.c utils.c -o

dataset_norm "

if (len(sys.argv) > 2):
compilation_command_str=compilation_command_str + f£"-D SCENARIO=" +

scenario_str

print ("compilation command str:")

print (compilation_command_str)
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# Use subprocess.run() to execute the compilation command
gcc_result = subprocess.run(compilation_command_str, shell=True, text=True,

capture_output=True, cwd=parent_directory)

# Check the result
if gcc_result.returncode == 0:

print (f"Dataset normalization program compiled successfully.")
else:

print ("Compilation encountered an error.")

print ("Error Output:")

print (gcc_result.stderr)

dataset_norm_program_str=f"dataset_norm"
print ("Dataset normalization command str:")

print (dataset_norm_program_str)

# Use subprocess.run() to execute the program
data_norm_result = subprocess.run(dataset_norm_program_str, shell=True, text=True,

capture_output=True, cwd=parent_directory)

# Check the result
if data_norm_result.returncode == 0:

print (f"Dataset normalization program ran successfully.")
else:

print ("Compilation encountered an error.")

print ("Error Output:")

print (data_norm_result.stderr)

try:
training_X_file = open("../training_X.dat", "r")
except FileExistsError:

print ("Ficheiro training_X.dat n o encontrado")

try:
training_Y_file = open("../training_Y.dat", "r")
except FileExistsError:

print ("Ficheiro training_Y.dat n o encontrado")

training_X_lines = training_X_file.readlines ()

training_Y_lines = training_Y_file.readlines|()

training_Y=1[]
training_X=1[]
features=[]
temp_line=][]
min=1[]

max=/[]
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for line in training_X_lines:

temp_line=line.replace("{","")

temp_line=temp_line.replace("}","")

if (temp_line[len(temp_line)-2]==","):
temp_line=temp_line[:len(temp_line)-2]

else:
temp_line=temp_line[:len(temp_line)-1]

features=temp_line.split (", ")

training_X.append(features)

for line in training_Y_lines:
temp_line=line.replace("{","")
temp_line=temp_line.replace("}","")
features=temp_line.split (",")

training_Y.append (features)

training_X_ file.close ()

training_Y_file.close ()

new_size=(len(training_X)//n_part)

remainder=(len(training_X) %$n_part)

training_X_new_file_name="training_ X_0.dat"

training_Y _new_file_name="training Y O.dat"

training_X_ new_file_array=[]

training_Y _new_file_array=[]

#open array files

for i in range (n_part):
f_x=open (training X_new_file_name, "w")
f_y=open (training_Y_new_file_name, "w")
training X_new_file_array.append (f_x)
training_Y _new_file_array.append (f_y)
print ("New training X file name:" + training X new_file_name)
print ("New training Y file name:" + training_Y_new_file_name)
training_X_new_file_name=training X new_file_name.replace(str(i),str(i+l))

training_Y_new_file_name=training_Y_new_file_name.replace(str(i),str(i+l))

#write in training X array

for i in range (n_part):
for j in range (new_size):
training_X_new_file_array[i].write("{")
for k in range(len(training_XI[0])):
training_X_new_file_array[i].write(training_X|[ (i*new_size)+3j][k])
if (k<(len(training_X[0])-1)):

training_X_new_file_array[i] .write(",")
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training_X_new_file_array[i].write("}")
if (j<(new_size-1) or (remainder>0)):
training _X_new_file_array[i].write(",")

training X_new_file_array[i].write("\n")
#1f there are remainder write them in training X

if (remainder>0) :
for 1 in range(n_part):
if (i<remainder) :
training_X_new_file_array[i].write("{")
for k in range(len(training_X[0])):
training X_new_file_array([i].write(training_ X[ (n_part+new_size)+i] [
k])
if (k< (len(training_X[0])-1)):
training X_new_file_array[i].write(",")
training_X new_file_array[i].write("}")
training_X_new_file_array[i].write("\n")
else:
training_X_new_file_array[i].write("{")
for k in range(len(training_XI[0])):
training_X new_file_array[i].write("0.900000")
if (k< (len(training_X[0])-1)):
training_X new_file_array[i].write(",")
training_X_new_file_array[i].write("}")

training_X_new_file_array[i].write("\n")
#write in training Y array

for i in range (n_part):

training_Y_new_file_array[i] .write("{")

for j in range (new_size):
training_Y_new_file_array[i].write(training_Y[0] [ (i new_size)+3])
if (j<new_size-1 or (remainder>0)):

training_Y new_file_array[i].write(",")

if (remainder==0) :

training_Y_new_file_array[i].write("}")

training_Y_new_file_array[i].write("\n")
#1f there are remainder write them in training Y

if (remainder>0) :
for i in range (n_part):
if (i<remainder) :
training_Y new_file_array[i].write(training Y[O] [ (n_part+new_size)+i])
training_Y_new_file_array[i].write("}")
training_Y new_file_array[i].write("\n")

else:

training_Y_new_file_array[i] .write("0")
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training_Y_new_file_array[i] .write("}")

training_Y_new_file_array[i].write("\n")
#create array dec file
array_dec_file=open("../array_dec.txt", "w")

training X_str="""static DATA TYPE training X O[N_TRAINING] [N_FEATURES]={
#include "./external_ arrays/training X 0.dat"

}'\n\n"""
7

if (remainder==0) :
training_X_str=training X_str.replace ("N_TRAINING", str (new_size))
else:

training_X_str=training X_str.replace ("N_TRAINING", str (new_size+l))

training_Y_str="""static CLASS TYPE training_ Y O[N_TRAINING]=
#include "./external_arrays/training_Y_0.dat"

; \H\H"""

if (remainder==0) :
training_Y_str=training_Y_str.replace ("N_TRAINING", str (new_size))
else:

training_Y_str=training_ Y str.replace ("N_TRAINING", str (new_size+l))

min_str="""static DATA TYPE min O[N_FEATURES]=
#include”./min.dat"

; \n\nnnn

max_str="""static DATA TYPE max_O[N_FEATURES]=
#include"./max.dat"

,‘\I’I\H"""

for i in range (n_part):

array_dec_file.write(training X_str)

(
array_dec_file.write(training_Y_str)
array_dec_file.write (min_str)

(

array_dec_file.write (max_str)
training X_str=training X_str.replace(str(i),str(i+l))
training_Y_str=training_Y_str.replace(str(i),str(i+l))
min_str=min_str.replace(str(i),str(i+l))
max_str=max_str.replace(str(i),str(i+l))

#create knn_predictAll call (in main function)

knn_call_file=open("./knn_call.txt", "w")

training_X_str="training X_0"
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training_Y_str="training_Y_ 0"
min_str="min_0"
max_str="max_0"
knn_call_file.write ("kNN_PredictAll (")
for i1 in range(n_part):
knn_call_file.write(training_X_str)
knn_call_file.write(",")
training_X_str=training X_str.replace(str(i),str(i+l))
for i in range (n_part):
knn_call_file.write(training_Y_str)
knn_call_file.write(",")
training_Y_str=training_ Y str.replace(str(i),str(i+l))
knn_call_file.write("testing_X, predicted_testing_Y,")
for i1 in range (n_part):
knn_call_file.write (min_str)
knn_call_file.write(",")
min_str=min_str.replace(str(i),str(i+l))
for i in range(n_part-1):
knn_call_file.write (max_str)
knn_call_file.write(",")
max_str=max_str.replace(str(i),str(i+l))
knn_call_file.write (max_str)
knn_call_file.write(");\n")
#create knn_predictAll declaration (in knn.h and knn.c)
knn_dec_file=open ("./knn_dec.txt", "w")
training_X_str="DATA_TYPE training X O[N_TRAINING] [N_FEATURES]"
training_Y_str="CLASS_TYPE training_Y_ O[N_TRAINING]"
min_str="DATA_TYPE min_O[N_FEATURES]"
max_str="DATA_TYPE max_O0O[N_FEATURES]"
knn_dec_file.write ("void kNN_PredictAll (")
for i in range (n_part):

knn_dec_file.write(training_X_str)

knn_dec_file.write(",\n")
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training_X_str=training_X_str.replace(str(i),str(i+l))

for i in range (n_part):
knn_dec_file.write(training_Y_str)
knn_dec_file.write(",\n")

training_Y_str=training_ Y str.replace(str(i),str(i+l))

knn_dec_file.write ("DATA_TYPE testing_X[N_TESTING] [N_FEATURES], \nCLASS_TYPE
testing_Y[N_TESTING], \n")

for i in range (n_part):
knn_dec_file.write (min_str)
knn_dec_file.write (", \n")

min_str=min_str.replace(str(i),str(i+l))

for i in range(n_part-1):
knn_dec_file.write (max_str)
knn_dec_file.write(",\n")
max_str=max_str.replace(str(i),str(i+l))
knn_dec_file.write (max_str)

knn_dec_file.write (")\n")

###From here, most of the code was directly copied from the code_local version of

this file

#write partial dist dec file

partial_dist_file=open ("./partial_dist_dec.txt", "w")

bestpointsstr=" int bestPointsIdx_O0[K];\n"
bestdiststr=" double bestDistances_0[K];\n"

for i in range (n_part):
partial_dist_file.write (bestpointsstr)
partial_dist_file.write (bestdiststr)
bestpointsstr=bestpointsstr.replace(str(i),str(i+l))
bestdiststr=bestdiststr.replace(str(i),str(i+l))
#write partial dist init file
partial_dist_file=open ("./partial_dist_init.txt", "w")
initbeststr=" kKNN_InitBest (bestDistances_0, bestPointsIdx_0);\n"
for i in range(n_part):
partial_dist_file.write (initbeststr)

initbeststr=initbeststr.replace(str(i),str(i+l),2)

#write partial predict file
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partial_predict_file=open("./partial_predict.txt", "w")

predictstr=" kNN_Partial_ Predict (training_X_0, testing_X 0, min_0, max_0O,
bestPointsIdx_0,bestDistances_0,n_part);\
n"
if (remainder==0) :
predictstr=predictstr.replace("n_part",str (new_size))
else:

predictstr=predictstr.replace("n_part",str (new_size+l))
for i in range (n_part):
partial_predict_file.write (predictstr)
predictstr=predictstr.replace(str(i),str(i+l),6)
#write update best file
update_best_file=open ("./update_best.txt", "w")

update_best_str=""" for(int 1=0;1i<K;i++){

kNN_Partial_UpdateBestCaching (bestDistances_0[i], bestPointsIdx_0[i],
bestDistances, bestPointsIdx,bestPointsArrayIldx, 0

)

}\n\n"""

for i in range (n_part):
update_best_file.write (update_best_str)
if (1i==0):
update_best_str=(update_best_str.replace(str (i), str(i+l))).replace("1","0"

;1)

else:

update_best_str=update_best_str.replace(str (i), str(i+l))

#write vote file

vote_file=open("./vote.txt", "w")

vote_str="kNN_Partial_VoteBetweenBest (bestPointsIdx, training_Y_0,histogram,

bestPointsArrayIdx,0);\n"

vote_last_str="testing_Y[i]=kNN_Partial_VoteBetweenBest (bestPointsIdx, training_Y_ 0
,histogram, bestPointsArrayIdx,0);\n"

for i in range(n_part-1):
vote_file.write (vote_str)

vote_str=vote_str.replace(str(i), str(i+l),2)
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vote_last_str=vote_last_str.replace("0",str (n_part-1),2)

vote_file.write (vote_last_str)

#write local arrays dec file

local_arrays_dec_file=open("./local_arrays_dec.txt", "w")

local_arrays_dec_str="static DATA_TYPE testing_ X_O0[N_FEATURES]={0}; \n"

for i in range (n_part):

local_arrays_dec_file.write(local_arrays_dec_str)

local_arrays_dec_str=local_arrays_dec_str.replace(str(i),str(i+l),1)

local_arrays_dec_file.write ("\n\n\n")

#write local arrays init file

local_arrays_init_file=open ("./local_arrays_init.txt", "w")

local_arrays_copy_str="testing_X_0[k]=testing_X[1] [k];\n"

local_arrays_init_file.write("for (int k = 0; k < N_FEATURES; k++){\n")
local_arrays_init_file.write (" #pragma HLS UNROLL\n")

for i in range (n_part):
local_arrays_init_file.write(local_arrays_copy_str)
local_arrays_copy_str=local_arrays_copy_str.replace(str(i),str(i+l),1)

local_arrays_init_file.write("}\n")

A.7 Python script for the multi stage version

import subprocess
import sys

import os

# Check i1if at least one argument was provided
if len(sys.argv) < 3:
print ("Usage: local_arrays.py [Num of local partitions] [Num of external
partitions] [Name of the scenario]")
exit ()
else:
if sys.argv[l] == 0 or sys.argv[2] == 0:
print ("Number of partitions cannot be 0")
exit ()
else:
n_part=int (sys.argv[1l])
n_part_local=int (sys.argv[1l])

n_part_external=int (sys.argv[2])
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print ("Number of local partitions:"+str(n_part_local))

print ("Number of external partitions:"+str(n_part_external))

#clean previous files
current_directory = os.getcwd()

extension_to_remove = ’.dat’

for root, dirs, files in os.walk (current_directory) :
for file in files:
if file.endswith (extension_to_remove) :
file_path = os.path.join(root, file)
os.remove (file_path)

print (f"Removed: {file_path}")

#get the parent directory

parent_directory = os.path.dirname (os.getcwd())

#check if there is a scenario specified
if (len(sys.argv) > 3):
scenario_str = str(sys.argv[3])
#print ("Scenario str:")

#print (scenario_str)

# Construct the command to compile the C program
compilation_command_str = f"gcc dataset_norm.c dataconverter.c utils.c -o

dataset_norm "

if(len(sys.argv) > 3):
compilation_command_str=compilation_command_str + £"-D SCENARIO=" +

scenario_str

print ("compilation command str:")

print (compilation_command_str)

# Use subprocess.run() to execute the compilation command
gcc_result = subprocess.run(compilation_command_str, shell=True, text=True,

capture_output=True, cwd=parent_directory)

# Check the result
if gcc_result.returncode ==

print (f"Dataset normalization program compiled successfully.")
else:

print ("Compilation encountered an error.")

print ("Error Output:")

print (gcc_result.stderr)

dataset_norm_program_str=f"dataset_norm"
print ("Dataset normalization command str:")

print (dataset_norm_program_str)
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# Use subprocess.run() to execute the program
data_norm_result = subprocess.run(dataset_norm_program_str, shell=True, text=True,

capture_output=True, cwd=parent_directory)

# Check the result
if data_norm_result.returncode ==

print (f"Dataset normalization program ran successfully.")
else:

print ("Compilation encountered an error.")

print ("Error Output:")

print (data_norm_result.stderr)

try:
training_X_file = open("../training_X.dat", "r")
except FileExistsError:

print ("Ficheiro training_X.dat n o encontrado")

try:
training_Y file = open("../training_Y.dat", "r")
except FileExistsError:

print ("Ficheiro training_Y.dat n o encontrado")

training_X_ lines = training_X_file.readlines()

training_Y_lines = training_Y_file.readlines|()

training_Y=1[]
training_X=1[]
features=[]
temp_line=[]
min=[]

max=[]

for line in training X lines:

temp_line=line.replace("{","")

temp_line=temp_line.replace("}","")

if (temp_line[len(temp_line)-2]==","):
temp_line=temp_line[:len(temp_line)-2]

else:
temp_line=temp_line[:len(temp_line)-1]

features=temp_line.split (",")

training_X.append(features)

for line in training_Y_lines:
temp_line=line.replace("{","")
temp_line=temp_line.replace("}","")
features=temp_line.split (",")

training_Y.append(features)
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training_X_file.close ()

training_Y_file.close ()

n_part_total=n_part_local*n_part_external
new_size=((len(training_X)//n_part_total))

remainder=(len(training_X) %n_part_total)

#write partial dist dec file

partial_dist_file=open("./partial_dist_dec.h", "w")

bestpointsstr=" int bestPointsIdx_O0[K]; \n"
bestdiststr=" double bestDistances_0[K]; \n"

for 1 in range (n_part_local):
partial_dist_file.write (bestpointsstr)
partial_dist_file.write (bestdiststr)
bestpointsstr=bestpointsstr.replace(str(i),str(i+l))
bestdiststr=bestdiststr.replace(str(i),str(i+l))
#write local arrays dec file
local_arrays_dec_file=open("./local_arrays_dec.h", "w")
local_arrays_dec_str="static DATA_TYPE testing_X_O0[N_FEATURES]={0};\n"
for i in range (n_part_local):
local_arrays_dec_file.write(local_arrays_dec_str)
local_arrays_dec_str=local_arrays_dec_str.replace(str(i),str(i+l),1)
local_arrays_dec_file.write ("\n\n\n")
#write partial dist init file
partial_dist_file=open ("./partial_dist_init.h", "w")
initbeststr=" KNN_InitBest (bestDistances_0, bestPointsIdx_0);\n"
for i1 in range (n_part_local):
partial_dist_file.write (initbeststr)
initbeststr=initbeststr.replace(str(i),str(i+l),2)
#write local arrays init file
local_arrays_init_file=open ("./local_arrays_init.h", "w")

local_arrays_copy_str="testing X 0O[k]=testing_X[i] [k];\n"

local_arrays_init_file.write("for (int k = 0; k < N_FEATURES; k++){\n")
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local_arrays_init_file.write (" #pragma HLS UNROLL\n")

for i1 in range (n_part_local):
local_arrays_init_file.write(local_arrays_copy_str)
local_arrays_copy_str=local_arrays_copy_str.replace(str(i),str(i+l),1)

local_arrays_init_file.write("}\n")
#write partial predict file
partial_predict_file=open("./partial_predict.h", "w")

predictstr=" kNN_Partial_ Predict (training_X_ 0, testing_X_0,bestPointsIdx_0,
bestDistances_0,n_part); \n"
if (remainder==0) :
predictstr=predictstr.replace("n_part",str (new_size))
else:

predictstr=predictstr.replace("n_part",str (new_size+l))
for i in range (n_part_local):
partial_predict_file.write (predictstr)
predictstr=predictstr.replace(str(i),str(i+l),4)
#write update best file
update_best_file=open ("./update_best.h", "w")
update_best_str=""" for (int j=0; j<K; j++){
kNN_Partial_UpdateBestCaching_ Class (bestDistances_0[j], training Y O0[
bestPointsIdx_0[7F]],
bestDistances[1], bestDistancesclass/[i]);
}\H\H"""
for i in range (n_part_local):
update_best_file.write (update_best_str)
if (1==0) :
update_best_str=(update_best_str.replace(str (i), str(i+l))).replace("1","0"
;1)
else:
update_best_str=update_best_str.replace(str (i), str(i+l))
#create knn_predictAll declaration (in knn.h and knn.c)
knn_dec_file=open ("./knn_dec.h", "w")

training_X_str="DATA_TYPE training X_ O[N_TRAINING] [N_FEATURES]"

training_Y_str="CLASS_TYPE training_Y_O[N_TRAINING]"
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knn_dec_file.write ("void kNN_PredictAll (")

for 1 in range (n_part_local):
knn_dec_file.write (training_X_str)
knn_dec_file.write (", \n")

training X_str=training X_str.replace(str(i),str(i+l))

for 1 in range(n_part_local):
knn_dec_file.write(training_Y_str)
knn_dec_file.write (", \n")

training_Y_str=training_ Y_str.replace(str(i),str(i+l))

knn_dec_file.write ("DATA_TYPE testing_X[N_TESTING] [N_FEATURES], \nCLASS_TYPE
testing_ Y[N_TESTING], \ndouble
bestDistances [N_TESTING] [K], \nCLASS_TYPE
bestDistancesclass[N_TESTING] [K])")

#Create multistage file
knn_multistage_file=open ("./knn_multistage_code.h", "w")

local_arrays_X_dec_str="static DATA_TYPE training_X_O[N_TRAINING] [N_FEATURES];\n"
local_arrays_Y_dec_str="static CLASS_TYPE training_Y_O[N_TRAINING]; \n"

if (remainder==0) :
local_arrays_X_dec_str=local_arrays_X_dec_str.replace ("N_TRAINING", str (new_size
))
local_arrays_Y_dec_str=local_arrays_Y dec_str.replace ("N_TRAINING", str (new_size
))
else:
local_arrays_X_dec_str=local_arrays_X_ dec_str.replace ("N_TRAINING", str (new_size
+1))
local_arrays_Y_dec_str=local_arrays_Y dec_str.replace ("N_TRAINING", str (new_size
+1))

for i in range (n_part_local):
knn_multistage_file.write(local_arrays_X_dec_str)
knn_multistage_file.write(local_arrays_Y_dec_str)
local_arrays_X_dec_str=local_arrays_X_ dec_str.replace(str(i),str(i+l),1)

local_arrays_Y_dec_str=local_arrays_Y_ dec_str.replace(str(i),str(i+l),1)

knn_multistage_file.write ("double bestDistances[N_TESTING] [K]; \nint bestPointsIdx]|
N_TESTING] [K]; \nCLASS_TYPE
bestDistancesclass [N_TESTING] [K];\n\n")

knn_multistage_file.write (" for (int 1=0; i<N_TESTING; i++) {\nkNN_InitBest (
bestDistances[i],bestPointsIdx[i]);\
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nkNN_MinMaxNormalize (min, max, testing_X|[

i1y \n}\n\n\n\n\n\n")

copy_str=" for (int 1=0; i<N_TRAINING; i++) {\nfor (int j=0; J<N_FEATURES; j++) {\
ntraining_X_0[i] [jl=training_X[i][Jj];\n}\

ntraining_Y_O[i]=training_Y[i];\n}\n\n\n"

copy_str_part=" for (int j=0; J<N_FEATURES; j++) {\ntraining_ X_0[new_size] [J]=1;\n}\
ntraining_Y_0[new_size]l=training_Y[0];\n\

n\n"

copy_str_part=copy_str_part.replace("new_size",str (new_size))

copy_str_part_new=" for (int 1=0; i<N_TRAINING; i++) {\nfor (int j=0; j<N_FEATURES; j
++) {\ntraining_X_0[i][j]l=training_X[1i][]
];\nif (i==new_size_part) training_X_ 0[i][
71=0.9;\n}\ntraining_Y_0O[i]=training_Y[i
];\nif (i==new_size_part) training_Y_ 0[i]=

training_Y[0];\n}\n\n\n"

copy_str_part_new=copy_str_part_new.replace ("new_size_part",str (new_size))

if (remainder==0) :
copy_str=copy_str.replace ("N_TRAINING", str (new_size))
else:

copy_str=copy_str.replace ("N_TRAINING", str (new_size+l))

if (remainder==0) :
copy_str_part_new=copy_str_part_new.replace ("N_TRAINING", str (new_size))
else:

copy_str_part_new=copy_str_part_new.replace ("N_TRAINING", str (new_size+l))

copy_str_original=copy_str
copy_str_part_original=copy_str_part

copy_str_part_new_original=copy_str_part_new

training_X_ 0_str="training X_0,"

training_Y_0_str="training_Y_0,"

part_count=0

part_count_int=0

part_count_part=0

for i1 in range(n_part_external):
for j in range (n_part_local):
if (remainder==0) :
copy_str=copy_str.replace ("training_ X[i]","training X[i+"+str(

part_count_int+new_size)+"]")
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copy_str=copy_str.replace ("training_Y[i]","training Y[i+"+str(
part_count_int+new_size)+"]")
else:
if (part_count_part==0) :
copy_str=copy_str.replace ("training_X[i]","training X[i+"+stzr ((
part_count_intx (new_size+
1))+ (part_count_part« (
new_size)))+"]1")
copy_str=copy_str.replace ("training_Y[i]","training Y[i+"+stzr ((
part_count_int* (new_size+
1))+ (part_count_part» (
new_size)))+"1")
copy_str_part_new=copy_str_part_new.replace("training_ X[i]","
training X[i+"+str ((
part_count_int* (new_size+
1))+ (part_count_part» (
new_size)))+"1")
copy_str_part_new=copy_str_part_new.replace("training_Y[i]","
training Y [i+"+stzr ((
part_count_int* (new_size+
1))+ (part_count_part* (
new_size)))+"1")
else:
copy_str=copy_str.replace("training_X[i]","training X[i+"+str ((
part_count_int* (new_size+
1))+ (part_count_part« (
new_size))+1)+"1")
copy_str=copy_str.replace ("training_Y[i]","training Y[i+"+stzr ((
part_count_intx (new_size+
1))+ (part_count_part« (
new_size))+1)+"]")
copy_str_part_new=copy_str_part_new.replace("training X[i]","
training X[i+"+stzr ((
part_count_int« (new_size+
1))+ (part_count_part« (
new_size))+1)+"]1")
copy_str_part_new=copy_str_part_new.replace("training Y[i]","
training Y [i+"+stzr ((
part_count_int« (new_size+
1))+ (part_count_part= (
new_size))+1)+"]1")
if (remainder==0) :
knn_multistage_file.write (copy_str)
else:
if (part_count_part==0) :
knn_multistage_file.write (copy_str)
else:
knn_multistage_file.write (copy_str_part_new)

if (remainder==0) :
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copy_str=copy_str.replace ("training_X[i+"+str (part_count_intsnew_size)+
"1","training_X[1i]")
copy_str=copy_str.replace("training Y[i+"+str (part_count_int+new_size)+
"1","training_Y[i]")
else:
if (part_count_part==0) :
copy_str=copy_str.replace ("training_X[i+"+str ((part_count_intx* (
new_size+1)) +(
part_count_partx (new_size
)y))+"I", "training_X[i]")
copy_str=copy_str.replace ("training_Y[i+"+str ((part_count_intx* (
new_size+1l)) +(
part_count_partx (new_size
)y))+"1", "training_Y[i]")
copy_str_part_new=copy_str_part_new.replace("training X[i+"+str ((
part_count_int« (new_size+
1))+ (part_count_part= (
new_size)))+"1","
training_X[i]")
copy_str_part_new=copy_str_part_new.replace ("training Y[i+"+str ((
part_count_int« (new_size+
1))+ (part_count_part« (
new_size)))+"1","
training_Y[i]")
else:
copy_str=copy_str.replace ("training_X[i+"+str ((part_count_intx* (
new_size+1l)) +(
part_count_part+ (new_size
))+1)+"1", "training_X[i]"
)
copy_str=copy_str.replace ("training_Y[i+"+str ((part_count_intx* (
new_size+1l)) +(
part_count_part+ (new_size
)y)+1)+"]1", "training_Y[i]"
)
copy_str_part_new=copy_str_part_new.replace ("training X[i+"+str ((
part_count_intx (new_size+
1))+ (part_count_part~ (
new_size))+1)+"]","
training_X[i]")
copy_str_part_new=copy_str_part_new.replace ("training_ Y[i+"+str ((
part_count_intx (new_size+
1))+ (part_count_part« (
new_size))+1)+"]","
training_Y[i]")
if (remainder==0) :
part_count_int=part_count_int+1
else:

if (part_count_int+l<remainder) :
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part_count_int=part_count_int+1
else:
part_count_part=part_count_part+1l
#1f (part_count_part>1) :
# knn_multistage_file.write (copy_str_part)
copy_str=copy_str.replace (str(j)+"[",str(F+1)+"[")
#copy_str_part=copy_str_part.replace (str(j)+"[",str(j+1)+"[")
copy_str_part_new=copy_str_part_new.replace(str(j)+"[",str(J+1)+"[")
knn_multistage_file.write ("kNN_PredictAll (")
for j in range(n_part_local):
knn_multistage_file.write(training_X_0_str)
training_X_0_str=training X_0_str.replace(str(j),str(j+1l))
for j in range (n_part_local):
knn_multistage_file.write(training_Y_0_str)
training_Y_0O_str=training Y O_str.replace(str(j),str(j+1l))
knn_multistage_file.write("testing_X, testing_Y,bestDistances,
bestDistancesclass); \n")
training_X_0_str="training_X_0,"
training_Y_0O_str="training Y O,"
copy_str=copy_str_original
copy_str_part=copy_str_part_original

copy_str_part_new=copy_str_part_new_original
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