
Faculdade de Engenharia da Universidade do Porto

UPWIND - Controlo de seguimento de
trajetória em Sistemas Aéreos de

Energia Eólica

Conrado José Correia Guimarães Martins da Costa

Master in Electrical and Computer Engineering

Supervisor: Fernando A.C.C. Fontes

October 31, 2023

© Conrado José Correia Guimarães Martins da Costa, 2023

Resumo

Atualmente, a conversão da energia cinética do vento em energia eléctrica é amplamente con-
seguida através de turbinas eólicas que são colocadas em terra ou no mar. As tendências recentes
visam aumentar a altura destas turbinas para aumentar a produção de energia, devido ao facto de
a velocidade do vento começar a ser mais forte e mais estável a altitudes mais elevadas. Aumen-
tar a altura das torres e a dimensão das pás dos aerogeradores apresenta-se como uma solução
inviável uma vez que a construção destas estruturas envolve custos acrescidos. Por razões como
estas, foram investigados e desenvolvidos sistemas inovadores de produção de energia eléctrica
designados por sistemas aéreos de energia eólica.

O sistema é constituído por um dispositivo de asa rígida controlado amarrado por um cabo a
um tambor de guincho que se enrola, permitindo a rotação do eixo da máquina eléctrica. Desen-
volvimentos recentes retratam este dispositivo como sendo capaz de atingir elevadas altitudes com
ventos mais fortes e mais estáveis, explorando a energia cinética do vento ao seguir trajectórias pre-
definidas que maximizam a produção de energia durante um ciclo de enrolamento/desenrolamento
do cabo. Para que o dispositivo siga adequadamente o caminho desejado, é abordado o seu modelo
dinâmico bem como algoritmos de seguimento de trajetórias que são utilizados para desenvolver
um controlador de trajetória para o dispositivo se orientar autonomamente e convergir para o cam-
inho desejado.

Esta dissertação estuda o problema do seguimento de trajectórias, em particular, o projeto de
controladores avançados para diferentes perfis de trajetória implementado num modelo cinemático
simplificado, bem como no modelo dinâmico do sistema aéro de energia eólica.

i

ii

Abstract

Nowadays, the conversion of wind kinetic energy into electric energy is widely achieved through
wind turbines that are placed on-shore or off-shore. Recent tendencies aim to increase their height
in order to increase energy production, due to the fact that wind velocity starts to become stronger
and more stable at higher altitudes. As more material is required to reach higher altitudes the whole
device becomes less affordable. For such reasons, innovative electrical energy production systems
designated as airborne wind energy systems have been researched and are under development.

The system comprises a rigid wing tethered device, a kite, linked to a winch drum that reels
itself, allowing the shaft of the connected electric machine to rotate. Recent developments portray
the kite as a device capable of reaching high altitudes with stronger and more stable winds, exploit-
ing the wind kinetic energy while following predefined optimised paths that best maximise energy
production during a two-phase cycle of reel-in/reel-out of the tether. For the kite to adequately
follow the desired path, its dynamic model is addressed as well as guidance logic algorithms,
with both being used to develop a trajectory controller for the device to steer autonomously and
converge to the desired path.

This dissertation studies the path-following problem and state-of-the-art controllers that are to
be implemented on a simplified kinematic model, for different path profiles. The dynamic model
of the kite is assessed with respect to the best path-following controller.

iii

iv

Agradecimentos

Em primeiro, e sempre em primeiro, tenho gratidão para com a minha Família: à minha mãe Paula,
ao meu pai Tomanel, aos meus irmãos Martim e Rosendo. Obrigado pela educação e pelos valores
que sempre me transmitiram.

Em segundo, tenho gratidão para com os meus amigos da UBI: André L., André P., Jorge B.,
José F. e Tomás C..

Em terceiro, tenho gratidão para com o orientador da minha dissertação, o Professor Fernandes
Fontes, pela ajuda e colaboração. Mas mais importante, por me integrar na equipa de excelência
do projeto UPWind. Em particular, os membros: Gabriel F., Luís P., Luís R., Manuel F., Rui C.,
Sérgio V. e Thien N. que sempre se mostraram disponíveis para ajudar durante a elaboração da
dissertação.

Conrado José Correia Guimarães Martins da Costa

v

vi

Contents

1 Introduction 1
1.1 Context and Motivation . 1
1.2 Goals . 2
1.3 Dissertation Structure . 3

2 Airborne Wind Energy Systems 5
2.1 Airborne Wind Energy Systems . 5
2.2 Ground-Gen AWES . 6
2.3 Fly-Gen AWES . 9
2.4 Discussion . 11

3 Path-Following Guidance 13
3.1 Path-Following and Trajectory Tracking . 13
3.2 Path-Following Problem Formulation . 14

3.2.1 Vehicle Kinematic Model . 15
3.2.2 Path Parameterization and Specification 16
3.2.3 Path-Following Problem in 2D . 18
3.2.4 Path-Following Methods for the 2D Problem 20

3.3 Discussion . 27

4 2D Simulations for a Kinematic Car Model 29
4.1 2D Kinematic Car Model . 29
4.2 Simulation: Distance to the closest point in the path with PID Controller 30

4.2.1 PID Controller . 30
4.2.2 Simulation Parameters . 31
4.2.3 Simulation results of the 8-Shape path 32
4.2.4 Simulation results of the Ellipse path 34

4.3 Simulation: Carrot Chase Method (L0 distance) 35
4.3.1 Simulation Parameters . 35
4.3.2 Simulation results of the 8-Shape Path 36
4.3.3 Simulation results of the Ellipse Path 38

4.4 Simulation: Nonlinear Guidance Logic (L1 distance) 39
4.4.1 Simulation Parameters . 39
4.4.2 Simulation results of the 8-Shape path 40
4.4.3 Simulation results of the Ellipse Path 42

4.5 Discussion . 43

vii

viii CONTENTS

5 AWES Path-Following Guidance and Simulation 45
5.1 Coordinate Systems . 45
5.2 Acting Forces and Dynamic Model . 48
5.3 AWES Path-following Model . 49
5.4 AWES Path-following Guidance Logic and Control 50
5.5 AWES Simulation . 52
5.6 Discussion . 56

6 Conclusions and Future Work 57
6.1 Conclusions . 57
6.2 Future Work . 58

A Race Track Path-Following 59
A.1 Race Track Path-Following . 59

References 61

List of Figures

1.1 Wind speed velocity variation with altitude [1] 2

2.1 Most common AWES concepts and most renowned development entities [2]. . . 6
2.2 Ground-Gen AWES two-phase operation with electric machine located on the

ground. Extension, or energy production, phase (left) and recovery, or energy
consumption, phase (right) [3] . 7

2.3 SkySails flexible wing kite [4] . 8
2.4 Ampyx Power AP2 Prototype [5] . 8
2.5 TwingTec TT100 AWE system [6] . 8
2.6 Fly-Gen AWES [7] . 9
2.7 Lighter than air: Altaeros prototype [8] . 10
2.8 Makani M600 Prototype [9] . 10
2.9 UPWIND Multiplex EasyStar II glider [1]. 11
2.10 UPWIND Prototype with the Multiplex EasyStar II glider coupled to the ground-

station [1]. 12

3.1 Path-following illustration of a vehicle converging to a desired path. 14
3.2 Outer-loop Path-following illustration; ud: input to the vehicle’s kinematics; p:

vehicle’s position; η: vehicle’s orientation [10]. 15
3.3 3-DOF vehicle standard kinematic model representation. {G} = {xG,yG}: global

inertial reference frame; {B} = {xB,yB}: body-fixed frame; ψ: heading angle; δ:
steered angle; V: velocity vector. 16

3.4 Example of two Lissajous Curves: circle and eight-shape figures. 17
3.5 Path-following 2D problem illustration. 18
3.6 Method 1 illustration: distance to the closest point in the path (straight line). . . . 20
3.7 Method 1 illustration: distance to the closest point in the path (curved). 21
3.8 Method 2 illustration: VTP ahead of the closest point on the path (straight line) to

the vehicle Q. 23
3.9 Method 2 illustration: virtual target point T ahead of the closest point on the path

(curved) to the vehicle Q. 24
3.10 Method 3 illustration: virtual target point T ahead of the vehicle’s position P by a

distance L1. 26

4.1 Car-like system geometry [11] . 30
4.2 Method 1 8-Shape path simulation: cross-track error time variation. 32
4.3 Method 1 8-Shape path simulation: desired path and actual vehicle trajectory. . . 33
4.4 Method 1 8-Shape path simulation: heading angle time variation. 33
4.5 Method 1 Ellipse path simulation: desired path and actual vehicle trajectory. . . . 34
4.6 Method 1 Ellipse path simulation: cross-track error time variation. 34

ix

x LIST OF FIGURES

4.7 Method 1 Ellipse path simulation: heading angle time variation. 35
4.8 Method 2 8-Shape path simulation: cross-track error time variation. 36
4.9 Method 2 8-Shape path simulation: desired path and actual vehicle trajectory. . . 37
4.10 Method 2 8-Shape path simulation: heading angle time variation. 37
4.11 Method 2 Ellipse path simulation: desired path and actual vehicle trajectory. . . . 38
4.12 Method 2 Ellipse path simulation: cross-track error time variation. 38
4.13 Method 2 Ellipse path simulation: heading angle time variation. 39
4.14 Method 3 8-Shape path simulation: desired path and actual vehicle trajectory. . . 40
4.15 Method 3 8-Shape path simulation: cross-track error time variation. 41
4.16 Method 3 8-Shape path simulation: heading angle time variation. 41
4.17 Method 3 Ellipse path simulation: desired path and actual vehicle trajectory. . . . 42
4.18 Method 3 Ellipse path simulation: cross-track error time variation. 42
4.19 Method 3 Ellipse path simulation: heading angle time variation. 43

5.1 Coordinate Systems [12]. 46
5.2 Kite roll angle and turning dynamics [13]. 47
5.3 Path-following Model [13] . 50
5.4 Kite guidance logic [13] . 52
5.5 L0 and L1 guidance logics [13] . 52
5.6 Ellipse trajectory with a varying tether length r ∈ [50,250]. 54
5.7 Kite following the desired path in the (ϕ,β) space, with T = 60s and L0 = 60◦. . . 54
5.8 Cross-track error for T = 60s and L0 = 60◦ . 55
5.9 Simulated (r,ϕ,β) for T = 60s and L0 = 60◦ . 55
5.10 Generated Power (W) and Energy (Wh) for T = 60s and L0 = 60◦. 56

A.1 Method 1 RCP track simulation: desired path and actual vehicle trajectory. 59
A.2 Method 1 RCP track simulation: cross-track error time variation. 60

List of Tables

4.1 Method 1: Simulation Parameters . 32
4.2 Method 1: 8-Shape path simulation results, where d(Px0,Py0) is the initial distance

to the path and t0 the time the vehicle first crosses the path. 33
4.3 Method 1: Ellipse path simulation results, where d(Px0,Py0) is the initial distance to

the path and t0 is the time the vehicle first crosses the path. 35
4.4 Method 2: Simulation Parameters . 36
4.5 Method 2: 8-Shape path simulation results, where d(Px0,Py0) is the initial distance

to the path and t0 the time the vehicle first crosses the path. 37
4.6 Method 2: Ellipse path simulation results, where d(Px0,Py0) is the initial distance to

the path and t0 the time the vehicle first crosses the path. 39
4.7 Method 3: Simulation Parameters . 40
4.8 Method 3: 8-Shape path simulation results, where d(Px0,Py0) is the initial distance

to the path and t0 the time the vehicle first crosses the path. 41
4.9 Method 3: Ellipse path simulation results, where d(Px0,Py0) is the initial distance to

the path and t0 the time the vehicle first crosses the path. 43

5.1 Simulation parameters . 53
5.2 Physical Simulation Parameters ([14],[13]). 54

A.1 Method 1 RCP track: simulation parameters . 60

xi

xii LIST OF TABLES

List of Acronyms

AWE Airborne Wind Energy
AWES Airborne Wind Energy System
LOS Line of sight
PID Proportional–integral–derivative controller
UAV Unmanned aerial vehicle
UAV Underwater autonomous vehicle
USV Unmanned surface vessel
VTP Virtual target point

xiii

xiv ABREVIATURAS E SÍMBOLOS

Nomenclature

Chapter 3 - Path-Following Guidance:

Subsection (3.2) Path-following problem formulation:

p vehicle’s position
η vehicle’s orientation
ud input to the vehicle’s kinematics

Subsection (3.2.1) Vehicle Kinematic Model:

cx external disturbance along x-axis
cy external disturbance along y-axis
r heading rate
u longitudinal speed
V velocity vector
v lateral speed
δ steering angle
ψ heading angle

Subsection (3.2.3) Path-Following Problem in 2D and Subsection (3.2.4) Path-Following
Methods for the 2D Problem:

ascmd centripetal acceleration
c arc centre
D total cross-track error
d cross-track error
e position error vector
l path length
kp proportional gain
L1 distance between vehicle’s centre of mass and virtual target point
n normal vector
P vehicle’s centre of mass position
p vehicle’s position vector
Q closest point on the path
q target position on the path vector
R arc/circle radius

xv

xvi ABREVIATURAS E SÍMBOLOS

r distance between vehicle’s centre of mass position and virtual target point
s along-track error
T virtual target point
Tt total time
U total control effort
uR longitudinal reference speed
ud control input
WA path starting point
WB path ending point
z vector between arc centre and vehicle’s centre of mass position
z̃ normalized z
α ahead angular distance on the path with respect to the closest point on the path
δ ahead linear distance on the path with respect to the closest point on the path
θL angle between straight-line path starting and ending points
θc angle arc centre and vehicle’s centre of mass position
η angle between vehicle’s velocity vector and line segment PT
γ path particle
λ path variable
λ1, λ2 equation system variables
ψ vehicle’s heading angle
ψd desired heading angle
P path

Chapter 4 - 2D Simulations for a Kinematic Car Model:

Subsection (4.1) 2D Kinematic Car Model

c vehicle’s curvature
l distance between front and rear wheels
R turning radius
U control variables
u longitudinal speed
X state variables
δ steering angle
ψ yaw angle

Simulations subsections:

c vehicle’s curvature
D total cross-track error
d cross-track error
d average cross-track error
kd derivative gain
ki integral gain
kP proportional gain

ABREVIATURAS E SÍMBOLOS xvii

L0 path-following method 2 distance parameter
L0 path-following method 3 distance parameter
R turn radius
T total simulation time
U total control effort
u longitudinal speed
αt path-following method 2 angle distance parameter
∆t time step
δt path-following method 2 distance parameter
ψ heading angle
ψd desired heading angle

Chapter 5 - AWES Path-following Guidance and Simulation:

A wing reference area of the kite
at tether reel-out acceleration
al kite lateral acceleration
cD aerodynamic drag coefficient
cL aerodynamic lift coefficient
d cross-track error
d average cross-track error
−→
F li f t aerodynamic lift force
−→
F inert inertial forces
−→
F th tether force
g gravitational acceleration
L0 distance ahead of the closest point to the vehicle in the path
L1 distance ahead of the vehicle in the path
m mass (kg)
p kite position
ṗ kite velocity
Q closest point in the path to the vehicle
r tether length
R reference point in the path
Ttether tether tension force
u control vector
V kite speed
va apparent wind velocity
Va kite aerodynamic apparent velocity vector
vt tether reel-out speed
vw wind velocity
x state vector
α angle of attack
ϕ azimuth angle

xviii ABREVIATURAS E SÍMBOLOS

β elevation angle
ψ roll angle
η angle between the kite’s heading and the heading to the reference target point
ρ air density
ϱ angle between the kite velocity and the path tangent

Chapter 1

Introduction

1.1 Context and Motivation

The current human needs in economic activities such as manufacturing and services, transporta-

tion systems, broad lifestyles and more, are tightly linked to a higher and rising electrical energy

demand. Non-renewable resources, mainly fossil fuels, are primarily used to suffice the referred

needs but, it is known the lack of sustainability associated with its exploitation, making climate

change a reality.

Therefore, long-term usage of non-renewable resources becomes more and more restricted

and, to achieve sustainability and overcome their drawbacks, governments and international or-

ganisations enact energy policies, initiatives, agreements, road maps and protocols. The majority

of these thrive for CO2 emissions reduction and limitation, energy-related technological develop-

ments and growth in the usage of renewable and sustainable energy sources [3].

Recent events show how fossil fuel shortage and over-dependency are able to disrupt the

world’s energy system. The energy transition to mostly renewable sources is required to urgently

scale faster, allowing to overcome and mitigate climate change damages mainly through decar-

bonisation, carbon emission reductions, adequate availability of the renewable energy source and

its exploitation at a reasonable price, but also, preferably, emerging renewable energy devices and

systems [15, 3].

To achieve climate neutrality, the exploitation of several renewable energy sources has been

and is still encouraged, one of them being wind energy. During the last decades wind energy sys-

tems, mainly wind turbines, have been highly developed and have contributed to a yearly increase

in both the quantity of power installations and overall produced energy.

Nowadays, the conversion of wind kinetic energy into electric energy is widely achieved

through wind turbines of several metres high (50 to 200 metres on average), placed on-shore or

off-shore. Nonetheless, even though proper and adequate conversion and power control systems

are designed for wind turbines, recent tendencies aim to increase their height in order to increase

energy production, due to the fact that wind velocity starts to become stronger and more stable at

higher altitudes - more kinetic power available [13].

1

2 Introduction

Figure 1.1: Wind speed velocity variation with altitude [1]

Wind turbine towers are not inexpensive and, as more material is required to reach higher

altitudes the whole device becomes less affordable. Moreover, knowing that the swept area covered

by the wind turbine blades increases the power output, increasing the blades length also increases

the overall cost related to the deployment of this solution [16].

A growing community of research groups have been developing airborne wind energy sys-

tems, AWES. These systems are designed to be lightweight and inexpensive and able to exploit

the kinetic energy from the high altitude winds. However, such devices require adequate airframe

structures and guidance control algorithms to achieve autonomous flight under varying circum-

stances (e.g., wind gusts). Thus, several AWES thematic lines are being researched to make the

designed solutions competitive [3].

1.2 Goals

Within the AWES community, the project UPWIND [1] aims to research and develop solutions

concerning the AWES or inexpensive flying tethered devices, known as kites. The project has

significantly contributed to a variety of challenging optimisation and control problems such as

path-following guidance strategies, multiple kite systems layouts and automatic take-off/landing.

This dissertation is integrated into the UPWIND project and the main goals comprise the

design and assessment of path-following controllers for different path profiles. It involves the

literature review regarding state-of-the-art path-following controllers, the development of the con-

trollers in a standard vehicle kinematic model and the simulation in several path profiles. In ad-

dition, considering the rigid-wing AWES concept, the designed and implemented path-following

controller is to be simulated using the dynamic model researched within the referred project.

1.3 Dissertation Structure 3

1.3 Dissertation Structure

Chapter 2 introduces the Airborne Wind Energy Systems, AWES, technology and the main cat-

egorisations of such systems, along with some examples. Then, the referred chapter ends with a

wrap-up discussion bringing into context the technology used within the UPWind project that will

be assessed in this dissertation.

Chapter 3 describes the path-following guidance. It starts by stating the differences between

trajectory tracking and path-following. Next, the general path-following problem is formulated, a

standard kinematic vehicle model is introduced and a method to build a path is presented. After-

wards, the 2D path-following problem is formulated and path-following algorithms are detailed.

Chapter 4 dwells into the simulation of a car-like model system in several path types using

the path-following controllers devised in Chapter 3. The results are then discussed to assess the

implemented controllers regarding the convergence of the vehicle to the path and the total control

efforts.

With the implemented path-following controllers and their assessment for a standard kine-

matic model, Chapter 5 presents the Kite System Dynamic Model which represents fundamental

knowledge required for the implementation and simulation of a path-following controller applied

to an AWES solution. This chapter starts by covering the coordinate reference systems, the acting

forces and the dynamic model. In addition, it characterizes the path-following problem applied

to AWES, and does the linkage between the kite dynamic model and the algorithms presented in

Chapter 3. Afterwards, the path-following controller with the best results for the car-like model

system simulations is used for the AWES simulations, being the results discussed later in the

chapter.

Finally, Chapter 6 ends with the conclusions and future work.

4 Introduction

Chapter 2

Airborne Wind Energy Systems

2.1 Airborne Wind Energy Systems

Airborne Wind Energy Systems are part of an innovative lightweight electrical energy production

system focused on transforming wind kinetic energy into electrical energy. The system is funda-

mentally made up of autonomous tethered flying devices, commonly designated as kites, linked to

a ground station by one or multiple tethers.

Pioneered by Miles Loyd [17] in the late 1970s and early 80s, since then new concepts of

AWES have been developed through recent years. The majority of the designed AWES solutions

require less material than tower-based wind turbines, have lower manufacturing costs and are able

to reach high altitudes and stable winds [3], [7].

Therefore, AWES is currently portrayed as an emerging technology focused on wind energy

harvesting that still maintains the general concept of energy conversion behind wind turbines,

while having a different and inexpensive lightweight structural design approach.

These device developments have several problems and concerns that are yet to be considered

and solved [3]. The variety and extent of the related problems are linked to the device concept

and configuration and may range from the kite’s structure to the implemented control strategies.

Hence, within the growing community of researchers and manufacturing entities, there is still a

lack of convergence towards the best design and control approach [7].

As the literature suggests, regarding the whole setup, AWES are buoyant or flying devices that

primarily diverge on whether the conversion from mechanical to electrical power stage happens on

the device or on its surroundings. Ground-Gen deployments have the conversion stage at ground

level, while Fly-Gen has the conversion stage in the air [2]. Figure 2.1 portrays the common

categorisation for the majority of the designs concerning AWES.

5

6 Airborne Wind Energy Systems

Figure 2.1: Most common AWES concepts and most renowned development entities [2].

2.2 Ground-Gen AWES

Ground-Gen concepts have the kite transferring mechanical energy through the tether to the ground

station. A winch drum is coupled with the shaft of the electric machine that works as a generator

or as a motor. For such systems, the complete production cycle has two phases as seen in Fig.2.2.

During the energy production phase, designated as the traction phase, as the tether reels out

with the stift cable keeping adequate tension force, the cable keeps unwinding from the drum that

actuates over the electric machine shaft and electric energy is generated. Desirably, at this phase

the kite performs a periodic circular or 8-shaped path while maintaining mostly a crosswind flight,

therefore having strong apparent wind velocity and withdrawing higher mechanical power from

the wind. As the kite maintains the crosswind flight, the tether is forced to reel out and as a result

the generator produces electricity.

When the tether reaches its maximum length, it must be retracted, therefore a recovery phase,

or reel-in phase, is required. During this phase the movement of the kite must be such that energy

consumption is minimised since, at this stage, the cable will be coiled again in the drum with the

electric machine acting as a motor, therefore consuming energy [16]. This phase also requires

some flight control to reduce the tension force on the tether and the lifting force over the kite.

Since the kite has a periodic predefined path to be followed, the overall cycle must have a

positive energy balance so, during the extension stage it is desirable that the absolute value of

the production power be significantly higher than the absolute value of the consumption power

obtained during the recovery stage, in order for the system to be productive [13].

How well the movement is assessed in real-time under non-linear disturbances, such as wind

dynamics, defines the maximisation of the energy production and, for that purpose, at first the

desired trajectory must be defined and then a path-following controller must be designed [13].

As for real applications concerning the Ground-Gen group, it may be distinguished as having a

fixed or movable ground station. Moreover, within the available solutions several types of AWES

2.2 Ground-Gen AWES 7

Figure 2.2: Ground-Gen AWES two-phase operation with electric machine located on the ground.
Extension, or energy production, phase (left) and recovery, or energy consumption, phase (right)
[3]

are possible considering the wing type and take-off method [7]. Focusing on the wing type, these

are classified as flexible-wing or rigid-wing kites.

Regarding the flexible wing kites, some leading companies have full airborne solutions. Namely,

SkySails developed during the last two decades systems for the usage of flexible wing kites as aux-

iliary propulsion systems for seagoing vessels, with the purpose of saving fuel [4]. Nonetheless,

their business further evolved to the development of kite systems for energy production (see Figure

2.3). The company Kitepower [18] also has a full airborne solution that uses flexible wing kites

with the main tether attached to an airborne control pod that allows steering control of the kite

during flight.

Rigid wing kites are similar to an aircraft with most designs having the elevator, rudder,

ailerons and one or multiple rotors. In addition, these systems still have the kite control unit,

tether and ground station. Regarding such systems, several solutions are available on the market

[7].

For example, the former company Ampyx Power developed rigid wing kite prototypes and

solutions, one of these being displayed in Figure 2.4. The Ampyx Power AWES is a glider aircraft

with an autopilot that allows the control of the device’s manoeuvres during flight while performing

repetitive crosswind patterns at high altitudes (200-450 metres) [19]. TwingTec is also on the

market providing highly technological rigid wing kite solutions, with some innovative approaches

regarding takeoff and landing. One of the prototypes designed by TwingTec is portrayed on Figure

2.5.

8 Airborne Wind Energy Systems

Figure 2.3: SkySails flexible wing kite [4]

Figure 2.4: Ampyx Power AP2 Prototype [5]

Figure 2.5: TwingTec TT100 AWE system [6]

2.3 Fly-Gen AWES 9

2.3 Fly-Gen AWES

Fly-Gen concepts of AWES essentially have the generators mounted on the lifting device, with

the resulting electrical power being transmitted through the tether (see Figure 2.6). For these

systems, the tethers are usually thicker and heavier since additional conductive wires are required

to transmit the electrical power to the ground [3].

Several designs for Fly-Gen AWES have been created throughout the last decade ranging from

lighter-than-air systems to large aicrafts with generators on-board [8].

For lighter-than-air systems, some prototype designs by the company Altaeros exist with buoy-

ant structures floating with a wind turbine inside (see Figure 2.7). As it moves in the air, the power

of the high-altitude wind drives the inner turbine which in turn results in electrical power being

transmitted through the tether.

Another onboard power generation solution was designed by the company Makani. The de-

signed solution relies on several generators mounted in the airborne structure which flies in a

crosswind motion, being the in-flight produced energy transported to the ground by the tether.

With the end of the project in 2020, the company shared the technical reports, flight logs for the

M600 Prototype (see Figure 2.8), code repositories containing avionics, flight controls, simula-

tions and many other project artefacts [9].

Figure 2.6: Fly-Gen AWES [7]

10 Airborne Wind Energy Systems

Figure 2.7: Lighter than air: Altaeros prototype [8]

Figure 2.8: Makani M600 Prototype [9]

2.4 Discussion 11

2.4 Discussion

Throughout this chapter, a wide spectrum of Airborne Wind Energy Systems designs exist with

the common purpose of exploiting higher altitude winds (see Figure 1.1). A considerable part of

the industry pursues soft kites and tackles its issues, whereas others seek approaches with some

similarity to current aircraft and unmanned aerial vehicles (UAV) technologies.

Some illustrated examples of flexible wing kites are either controlled by the ground station

through several tethers, or just by a control pod below the airborne structure. In addition, relative

to wind turbines, kite devices are in general lightweight, have low manufacturing costs and have

stable flight behaviour. As for a scenario of a falling flexible and soft kite, it has some crash

resistance and may not cause high damage [8].

On the other end of the spectrum, rigid-wing kites are highly similar to aircraft such as glid-

ers. Instead of having the steering control on the ground station or on a hovering pod below the

airborne structure, it is embedded in the airborne device. For such concepts, some standard aero-

dynamic concepts still apply, along with some common hardware and software tools. Some of

these available tools are useful for simulation and developments regarding the flight controller.

The manoeuvre control of these airborne devices is a challenging problem since the kite’s atti-

tude and motion during flight have consequences on the generated electric power. Therefore, path-

planning, control and optimisation methods are studied and implemented to maximise/minimise

the energy production/consumption during the pumping cycles as the tether reels-out/reels-in [13],

[16]. Furthermore, launching, landing and relaunching autonomously with reliability, robustness

and safety during all operation phases, for extended periods of time, and for diverse weather con-

ditions, is still a set of problems being evaluated by several research teams [8].

Within the UPWIND Project and concerning the scope of my dissertation, the kite to be con-

sidered is a rigid wing glider, namely a glider Multiplex EasyStar II (see Figure 2.9). Currently,

the device is modified and has telemetry and autopilot capabilities, being able to fly autonomously

with a path-following controller or manually through radio signals.

Figure 2.9: UPWIND Multiplex EasyStar II glider [1].

12 Airborne Wind Energy Systems

Figure 2.10: UPWIND Prototype with the Multiplex EasyStar II glider coupled to the ground-
station [1].

Chapter 3

Path-Following Guidance

The following chapter details the path-following guidance problem required for adequate vehicle

steering throughout a given spatial track, such that it reaches its target point while accomplishing

the provided mission objectives. In Subsection 3.1, the distinction between path-following and

trajectory tracking concerning time-dependency is clarified. In Subsection 3.2, the fundamental

blocks concerning the path-following problem are inferred and portrayed from a control system

standpoint, without ample concern for the inherent vehicle hardware block representation. Before

the path specification and the guidance methods, in Subsection 3.2.1, the state-of-the-art kinematic

model is exposed along with common simplifications. In Subsection 3.2.2, common spatial con-

figurations that are found in the literature are described. Additionally, it provides one method to

build them, ending with considerations and assumptions that are commonly contemplated. The

path-following problem is then formulated in Subsection 3.2.3 which precedes the methods found

in Subsection 3.2.4.

3.1 Path-Following and Trajectory Tracking

Path-following and trajectory tracking are both crucial tasks to be performed by a wide variety

of autonomous vehicles under different application scenarios. Some examples of such devices

are unmanned aerial vehicles (UAVs), unmanned surface vessels (USVs), underwater autonomous

vehicles (UAVs), autonomous cars and many more.

Both tasks consist of steering a given vehicle through a pre-defined path known to lead to the

accomplishment of the vehicle’s mission. The vehicle’s behaviour is linked to its motion dynamics,

and to the path specification which may require tight tracking of complex curves and surrounding

elements (e.g., obstacles) that may change the approach to the target. Hence, deviation from the

path may occur, therefore it is required to implement a strategy to converge with the path but also

to maintain it [20], [10], [21].

Regarding some mission constraints such as speed, time and maximum distance to the path,

either path-following or trajectory tracking is chosen. Path-following is not directly parameterized

by time, meaning that it is not required for the vehicle to be at specific positions of the path at

13

14 Path-Following Guidance

Desired Path

Figure 3.1: Path-following illustration of a vehicle converging to a desired path.

specific instants of time. Moreover, being non-time-dependent, path-following is described as a

strategy that allows smoother manoeuvrability and convergence to the path, which may rely on the

vehicle parameters (e.g., velocity, turn radius, et cetera) [10]. On the contrary, trajectory tracking

differs due to the existence of time restrictions to arrive at certain waypoints. Figure 3.1 illustrates

the spatial interpretation regarding the path-following problem.

The literature conveys a multitude of path-following methods that have been surveyed, re-

viewed, researched and applied during the past decades. The methods start to differ by virtue of

the dynamic and kinematic models inherent to the vehicle being considered for the desired appli-

cation. Considering such methods, the task of path-following requires the development of some

control strategy that in fact solves the problem [10], [20], [13], [22].

Next, the path-following problem is formulated.

3.2 Path-Following Problem Formulation

The formulation is required to establish the theoretical background regarding path-following which

is necessary to implement the control strategy.

In the literature, path-following is described as a problem of making an object (e.g., aircraft,

ground vehicle, etc.) described by a set of kinematic constraints, converge and track a desired

spatial path as the given mission progresses [10], [23], [24]. This geometric problem is primarily

concerned with deriving a control law such that the object is driven with desired parameter profiles

(e.g., speed) while minimizing the distance to the specified path.

Figure 3.1 shows a vehicle adjusting its heading angle which leads to a trajectory that con-

verges with the desired path.

From a control system perspective, the literature has several examples which portray mainly

the implemented controller designs for the application being described. However, the majority

follow the approach of separating the vehicle guidance and control problems into the outer-loop

and inner-loop controllers [20], [25]. The mentioned architecture is also suggested in [10] which

has a more descriptive controller design regarding the inner-loop application.

3.2 Path-Following Problem Formulation 15

Figure 3.2: Outer-loop Path-following illustration; ud: input to the vehicle’s kinematics; p: vehi-
cle’s position; η: vehicle’s orientation [10].

The outer-loop path-following controller is implemented whenever a guidance strategy is re-

quired. It focuses on capturing desired references that are essential to steer the vehicle to and

through the path, though it may also have additional specifications (e.g., reference speed) [10],

[23]. The simplified path-following system with the outer-loop path-following controller is de-

picted in Figure 3.2.

The outer-loop provides the reference commands to the inner-loop so that it controls the ve-

hicle dynamics. In practice, those commands are inputs to the vehicle’s autopilot which is the

inner-loop path-following controller. With such commands, the necessary dynamics (e.g., forces)

of the vehicle are assessed during the mission. In short, the inner-loop is usually implemented

before the vehicle’s kinematic block, being detailed in [10].

3.2.1 Vehicle Kinematic Model

The vehicle kinematic model is useful to implement a control law that gives a solution to the path-

following problem. As the literature suggests, an abstract vehicle may be represented as shown

in Figure 3.3 where the global inertial reference frame is {G} = {xG,yG} with the vehicle being

represented according to its body-fixed frame {B} = {xB,yB}. Considering {B}, the x-axis points in

the vehicle’s forward direction with the origin on its centre of mass. Its orientation with respect

to {G} describes the vehicle’s heading angle, or yaw angle, denoted as ψ. In addition, δ represents

the steered angle with respect to the body frame, and v is the velocity vector [26].

The most common vehicles perform longitudinal manoeuvres with ease, i.e. moving forward

or backwards. As for lateral motion, not all vehicle designs require or even allow it to be immediate

mostly due to the absence of actuators or elements of thrust that allow movement or rotation.

Nonetheless, significant influences may exist and act as external disturbances to the vehicle’s

motion (e.g., wind).

Therefore, usually, the kinematic model of an abstract three degrees of freedom (3-DOF) ve-

hicle is considered to have three main scenarios: under-actuated with no external disturbances;

under-actuated with external disturbances; fully-actuated with external disturbances [10]. Consid-

ering such scenarios, in summary, a system with fewer actuators than degrees of freedom is said

to be under-actuated [26].

16 Path-Following Guidance

Figure 3.3: 3-DOF vehicle standard kinematic model representation. {G}= {xG,yG}: global inertial
reference frame; {B} = {xB,yB}: body-fixed frame; ψ: heading angle; δ: steered angle; V: velocity
vector.

Commonly the under-actuated scenario is considered for the path-following implementation

since the accurate model is regarded as being a more complex task [22]. In addition, this sim-

plified model is sufficient to assess the vehicle’s behaviour as it manoeuvres, without external

disturbances (e.g., wind gusts), with a given path-following controller for a standard application

scenario.

With respect to Figure 3.3, the complete kinematic model is as follows:
ẋ = ucos(ψ)− vsin(ψ)+ cx

ẏ = usin(ψ)− vcos(ψ)+ cy

ψ̇ = r

(3.1)

The under-actuated without external disturbances kinematic model is defined as:
ẋ = ucos(ψ)

ẏ = usin(ψ)

ψ̇ = r

(3.2)

where (x,y) describes the vehicle’s position, ψ is the vehicle’s heading angle, u and v are the

longitudinal and lateral speeds respectively described the velocity vector V = [u,v], r describes the

angular speed or a given heading rate and, at last, (cx,cy) represents the effect of external unknown

disturbances in {G}.

3.2.2 Path Parameterization and Specification

Depending on the given mission, the desired path is not unique. Regardless of the variety of

application scenarios, the path often includes straight lines and curves. Therefore, the literature

commonly evaluates the path-following algorithms on a set of spatial paths: straight lines, orbits

or ellipses, circles and eight-shape. The latter includes both lines and semi-circles and represents

a figure that is recurrently found in AWES applications.

3.2 Path-Following Problem Formulation 17

Figure 3.4: Example of two Lissajous Curves: circle and eight-shape figures.

For future reference, the mentioned shapes are usually built as Lissajous curves expressed

mathematically as: x = Asin(at+δ)+C

y = Bsin(bt)+D
(3.3)

In example, the circle has parameters a = b, A = B and δ = (2n+1)π2 where A,B,n ∈ Z and the

eight-shape the parameters are a = b
2 and δ = k π2 with k ∈ Z. Figure 3.4 portrays both cases.

During the progress of the vehicle’s mission, such paths are usually defined on a xy plane at a

constant altitude and speed [22].

Nevertheless, regarding the path frames, the literature sometimes mentions specifically the

one being considered. The chosen path frame is important to characterize the position error be-

tween the vehicle and the waypoint on the path. Depending on the position of the vehicle and the

curvature of the path the perception (or sign) of the error varies. In [10] the two most common

path frames are characterized and compared under specific circumstances (e.g., the existence of

inflection points on the path).

The specified and assigned mission path may still hold particular circumstances, in addition

to complex curves. With respect to the eight-shape, the intersection point may hold a problem for

some path-following guidance algorithms. Thus, to keep track of the correct path direction some

alternatives are considered such as implementing a looking ahead strategy [22] or a state-machine.

It is important to note that the assigned path is often the result of some optimization process

which imposes a set of constraints. This result may relate to the mission’s overall requirements and

be linked with the implemented system. Thus, finding and evaluating the optimal path would be

extensive work which is not the current focus of this document. Hence, focusing on the previously

referred path profiles, they are fed to the vehicle as a look-up table. In practice, this avoids the

allocation of computational processing to compute the trajectory waypoints. Concerning standard

18 Path-Following Guidance

Figure 3.5: Path-following 2D problem illustration.

applications, it simplifies the path-following problem, being our focus on the control strategy over

the vehicle’s kinematics and dynamics. This set of scenarios encourages the evaluation of the

path-following algorithms which will be described in Subsection 3.2.4.

3.2.3 Path-Following Problem in 2D

The path-following problem in 2D is portrayed in Figure 3.5. In this figure, the inertial global

frame is denoted as {G} = {xG,yG} and the vehicle’s body-fixed frame is denoted as {B} = {xB,yB}.

The position vector of the vehicle is denoted as p = [x,y]T ∈ R2 with its origin at {B}, the

vehicle heading angle as ψ = ∠(xG, xB) and the sideslip as β = ∠(xB,V). The latter concerns the

deviation between the vehicle’s route and the actual track being followed due to the surrounding

fluid (e.g., water or air) behaviour.

In addition, Q is the target position on the desired pathP of length l parameterized by γ(λ) ∈R2

with λ ∈ [0, l] [27]. Thus, as in [28], the geometric path is expressed as:

P = {q ∈ R2 | q = γ(λ) ∀λ ∈ [0, l]} (3.4)

3.2 Path-Following Problem Formulation 19

Figure 3.5 illustrates the 2D path-following problem as it is commonly found in the literature

[28], [10], [22]. In particular, it displays the position vector of the vehicle (p), the position vector

of the point on the path (q) and the normal vector (n) known to be orthogonal to the tangent to the

path at each waypoint to be tracked.

As mentioned earlier, the guidance strategies regarding path-following focus on making the

vehicle converge and follow the desired path, without time constraints. Nevertheless, as the sim-

plified control scheme in Figure 3.2 suggests, a given reference input is usually given such as the

reference speed. Therefore, the vehicle keeps track of both the desired path and the desired input

reference.

It is, therefore, implied that the path-following problem has two major tasks as firstly described

in [28] and later revised in [10]. The tasks are the following:

(i) Geometric Task: make the vehicle converge and follow the desired spatial path so that the

position error, defined as the vector difference e := p−q, evolves along time and converges

to 0. Mathematically:

lim
t→0

e(t) = 0 (3.5)

(ii) Dynamic Task: make the vehicle track a given input reference. Assuming that it is desirable

to track the reference longitudinal speed uR then it yields:

lim
t→0

u(t)−uR(t) = 0 (3.6)

The position error vector e = [s,d] with e ∈ R2 components describe the along-track error

and the cross-track error, respectively, the cross-track error d is mostly used as a comparison

metric between several path-following algorithms as it defines the distance between the vehicle

and the shortest point on the track [24]. This assumption is valid whenever Q is chosen such that

it coincides with the orthogonal projection of the centre of mass of the vehicle P [10]. Therefore,

with the along-track error component being zero, methods that employ this assumption for a set of

guidance laws evaluate the error as the total cross-track error given by the following expression:

D =
Tt∑

t=0

d(t) (3.7)

where d(t) denotes the cross-track error at an instant of time t, being Tt the total time (e.g.,

simulation time).

20 Path-Following Guidance

Figure 3.6: Method 1 illustration: distance to the closest point in the path (straight line).

Moreover, commonly the total control effort is also evaluated as in [24]. It is computed by the

following expression:

U =
Tt∑

t=0

ud(t)2 (3.8)

where ud(t) is the control input to the vehicle’s kinematics.

3.2.4 Path-Following Methods for the 2D Problem

3.2.4.1 Method 1: distance to the closest point in the path

For this method, first, it is considered a straight line that is a segment of the path to be followed.

It is delimited by two waypoints defined as WA = [WAx,WAy]T ∈ R2 and WB = [WBx,WBy]T ∈ R2,

with the orientation of the line being described by the vector w.

In addition, the vehicle’s centre of mass P is projected onto the line and coincides with the

reference point Q, also designated as the point which is closest to P. This orthogonal projection

is characterized by the normal vector n. Therefore, it holds that the error to minimize given the

path-following problem is the cross-track error d. Figure 3.6 depicts the geometric interpretation

for this scenario.

Vector w is expressed as:

w = [wx,wy]T =
1

∥WAWB∥

−−−−−→
WAWB =

 1
∥WAWB∥

(WBx−WAx)
1

∥WAWB∥
(WBy−WAy)

 (3.9)

The normal vector n:

n =
nx

ny

 = −wy

wx

 (3.10)

3.2 Path-Following Problem Formulation 21

Figure 3.7: Method 1 illustration: distance to the closest point in the path (curved).

The reference point Q is described by the equality:

Q =WA+λ1w = P+λ2n (3.11)

where the Q coordinates are obtained when the following equations are solved with λ1 and λ2

determined: WAx+λ1wx = Px+λ2nx

WAy+λ1wy = Py+λ2ny
(3.12)

With the segments being perpendicular then:

WAWB ⊥ PQ⇒ ∠(WAWB,PQ) = θ =
π

2
rad (3.13)

which could be verified with arctan(m1−m2
1+m1m2

) being the m1 and m2 the slopes of the line seg-

ments WAWB and PQ.

At last, regarding the straight line scenario, the cross-track error d is given by the Euclidean

distance:

d =
√

(Qx−Px)2+ (Qy−Py)2 (3.14)

If the path is defined as a curve, the above strategy does not fully apply. Figure 3.7 describes

one possible approach which consists of defining the arc centre (c) that passes in Q and is oriented

to P by the vector z = [zx,zy]T ∈ R2.

To find the closest point Q the factor R
∥z∥ is used to normalize so that the magnitude of z is equal

22 Path-Following Guidance

to the radius R. Thus

z̃ =

̃zx

z̃y

 = zx
R
∥z∥

zy
R
∥z∥

 (3.15)

where ∥z∥ =
√

z2
x+ z2

y .

Now, adding the curve centre coordinates, the closest point to P on the path is given by the

following expression:

Q =

Qx

Qy

 = cx+ z̃x

cy+ z̃y

 (3.16)

Finally, the cross-track error is also obtained with the expression 3.14.

In summary, with Algorithm 1 it is possible to implement the method described above, for

both the straight line and curved trajectories.

Algorithm 1 Method 1: distance to the closest point in the path.

Parameterize the path P as γ(λ) ∈ R2

Initialize the vehicle’s initial position P = (Px,Py)
for every instant of time 0 < t <= T do

Compute λp(t) = argmin
λ<L

|p(t)−γ(λ)|:

Straight Line:
Compute w (3.9) and n (3.10);
Solve for λ1 and λ2 the equation (3.12);
Compute Q (3.11);
Compute d (3.14);
(optional) validate θ = arctan(m1−m2

1+m1m2
) = π

2 rad (3.13);
Curve:

Compute ∥z∥ = ∥P−C∥ with P = [Px,Py] ∈ R2 and c = [cx,cy] ∈ R2;
Compute z̃ (3.15);
Compute Q (3.16);
Compute d (3.14);

Apply the control input ud = kP d;
end for

3.2.4.2 Method 2: Carrot Chase

The Carrot Chase method is widely described in the literature, being in general the first to be

presented for a given application and further compared with other methods. Such applications are

described in the articles [27] and [25], while [24] is prior to these and reports several methods

which are evaluated and compared in two generic applications: straight line and circular (loiter)

paths.

3.2 Path-Following Problem Formulation 23

Figure 3.8: Method 2 illustration: VTP ahead of the closest point on the path (straight line) to the
vehicle Q.

The majority of the mathematical expressions presented in the first method 3.2.4.1 still hold.

For this method, it is assumed the existence of a virtual target point (VTP) which slides along the

path. That point denoted as T is ahead of the closest point to the path Q by a distance of δ if

the path corresponds to a straight line. On the contrary, for curved paths such distance would be

described by an angle. Hence, one must also parameterize the look-ahead distance and evaluate

the strategy for the path geometry variations.

Regarding the previous method, in addition, it is required to specify the coordinates of T. One

possibility is to solve:

 d(T,Q) = δ

d(T,P) = r
⇔

√

(Tx−Qx)2+ (Ty−Qy)2 = δ√
(Tx−Px)2+ (Ty−Py)2 = r

(3.17)

where Tx and Ty are the desired coordinates of the virtual target point on the path. The distance r

may be computed with:

r =
√

(d)2+ (δ)2 (3.18)

However, there may exist more than one solution. Therefore, usually, the coordinates are ob-

tained with the angle θL = ∠(WAWB,yG) computed with the four-quadrant inverse tangent, denoted

as atan2, as follows:

θL = atan2(WBy−WAy,WBx−WAx) (3.19)

This function is widely used in programming and allows one to compute the angle in all four

quadrants, without division by zero errors.

24 Path-Following Guidance

Figure 3.9: Method 2 illustration: virtual target point T ahead of the closest point on the path
(curved) to the vehicle Q.

Thus, it results that T is given by: Tx = (d(WA,Q)+δ)cosθL

Ty = (d(WA,Q)+δ) sinθL
(3.20)

The vehicle is assumed to have an heading angle of ψ = ∠(xB, xG) with no sideslip (β = 0),

therefore the desired heading angle ψd is expressed as:

ψd = atan2(Ty−Py,Tx−Px,) (3.21)

So, it is required for the vehicle to steer with the angle difference of ψd −ψ.

For a path that is curved parameterized with centre c and radius R, as in Figure 3.9, the virtual

target point is ahead on the path by an angle α which is a design parameter. Hence, similarly to

3.19:

θc = atan2(Py− cy,Px− cx) (3.22)

The target point has the following coordinates: Tx =Cx+Rsin(θc+α)

Ty =CyRcos(θc+α)
(3.23)

In summary, with Algorithm 2 it is possible to implement the method 2.

3.2 Path-Following Problem Formulation 25

Algorithm 2 Method 2: Carrot Chase

Parameterize path P as γ(λ) ∈ R2

Initialize the vehicle’s initial position P = (Px,Py)
for every instant of time 0 < t <= T do

Compute λp(t) = argmin
λ<L

|p(t)−γ(λ)|:

Straight Line:
Initialize δ
Compute w (3.9) and n (3.10);
Solve for λ1 and λ2 the equation (3.12);
Compute Q (3.11), d (3.14), r (3.18) and θ (3.19);
(T x,Ty)← ([d(WA,Q)+δ]cosθL, [d(WA,Q)+δ] sinθL) (3.20);

Curve:
Initialize α
Compute ∥z∥ = ∥P−C∥ with P = [Px,Py] ∈ R2 and c = [cx,cy] ∈ R2;
Compute z̃ (3.15), Q (3.16) and d (3.14);
(T x,Ty)← (Cx+Rcos(θc+α),Cy+Rsin(θc+α)) (3.23);

Compute ψd (3.21);
Compute the required heading angle of ψd −ψ;
Apply the control input ud = kP(ψd −ψ)

end for

3.2.4.3 Method 3: Nonlinear Guidance Logic (L1 distance)

The nonlinear guidance logic, often referred to as the L1 distance method, is firstly described

in [20] as being a method that generates the lateral acceleration command required to steer the

vehicle to engage the target on the path. The idea is similar to the previous method: the virtual

target point (T) is defined ahead on the path based on a design parameter (in this case distance

L1). However, the approach to compute the required steering angle and acceleration is simpler and

broad as it applies to straight and curved paths.

Figure 3.10 portrays the L1 distance method. The vehicle has at a given instant of time position

P, velocity V and heading angle ψ = ∠(xB, xG) without sideslip (β = 0). First, the acceleration is

considered to be pointing to the centre of a circle of radius R. This circle intercepts at least one

point of the path designated the VTP, T, at a distance L1 from the vehicle’s position. For this

scenario, just T is considered, nevertheless for multiple interceptions, one may add a decision

strategy such as choosing the VTP which points on a given direction.

With these concepts, it yields the expression for the L1 distance:

sin(η) =
L/2
R
⇔ L = 2Rsin(η) (3.24)

where η = ∠(V,PT).

26 Path-Following Guidance

Figure 3.10: Method 3 illustration: virtual target point T ahead of the vehicle’s position P by a
distance L1.

Denoting ascmd the centripetal acceleration, with the expression 3.24 it results:

ascmd =
V2

R
=

2V2 sin(η)
L1

(3.25)

with R = L1
2sin(η) .

It is possible to easily compute the η angle if the target coordinates are known:

η = ψd +ψ (3.26)

where ψd is given similarly to 3.21.

The coordinates of T may be found by considering a circle of radius L1 with its centre in P.

This circle will intersect the path at the points that are the solution of the following circle equation:

L2
1 = (xr −Px)2+ (yr −Py)2 (3.27)

While implementing this method, as the above expressions show, the L1 distance is a constant

design parameter and therefore it is not required to compute R. The values of L1 must be defined

to achieve the required vehicle performance. Thus, further increase or decrease of this parameter

changes how far the target point is on the path, hence changing the engagement to the path and

consequently the cross-track error.

In summary, with Algorithm 3 it is possible to implement Method 3.

3.3 Discussion 27

Algorithm 3 Method 3: L1 distance

Parameterize the path P as γ(λ) ∈ R2

Initialize the vehicle’s initial position P = (Px,Py)
Initialize the L1 distance
for every instant of time 0 < t <= T do

Compute the target T coordinates 3.27;
ψd = atan2(Ty−Py,Tx−Px);
η = ψd +ψ (3.26);
Compute the centripetal acceleration ascmd (3.25);
Apply the control input ud = ascmd ;

end for

3.3 Discussion

Throughout this chapter, the path-following guidance has been described. As the illustration de-

picted in Figure 3.2 suggests, the desired path is provided to the system that in practice is a look-up

table when considering methods 1, 2 and 3 that were characterized in Subsection 3.2.4.

Recent trends outline other methods which require real-time processing for the path to be fol-

lowed, some of them being hybrid topologies combining the look-up table with real-time waypoint

computation. For this dissertation, the path (e.g., ellipse or 8-shape) is fixed and given to the sys-

tem with the assumption that is the optimal path to be followed. With that, the focus dwells on

the design of a control strategy to assess the behaviour of the vehicle along its mission, something

to be accomplished using state-of-the-art guidance algorithms which are known to hold adequate

control demand for the most common autonomous vehicle’s autopilot systems.

The three referred methods were detailed in this chapter. Method 1 requires the evaluation of

the path profile, i.e. either straight or curved, and does not consider the angles formed between

the existing elements of the global or body frames. Therefore, it is implied that this method uses

directly the cross-track error on the control input. Regarding Algorithm 1, the control input does

not fully specify the required turning angle of the vehicle based on the cross-track error, since

depending on the vehicle model being considered the expression may differ. Often, the mentioned

resulting expression is related to the vehicle’s curvature equation and uses parameter λ2 to assess

the above or under the path circumstances.

Method 2 is similar to the previous one as it also evaluates the path profile, but scrutinizes the

existence of angles and uses the VTP concept. From the literature, it is clear that the approach

to determine the VTP coordinates and the required heading angle is not unique. Despite this, as

algorithm 2 suggests, the fundamental instructions of the previous method were used. With the

adequate angle description, it holds that the control input is given by an angle and a proportional

gain.

28 Path-Following Guidance

Method 3 also employs the VTP and is commonly used in autonomous vehicles being available

in some autopilot solutions (e.g., ardupilot). It has the advantage of being similar to the majority of

path profiles and, in addition, the control input is defined as a relation of the vehicle’s velocity and

a design parameter (L1 distance). The performance of the method is determined by this parameter

L1 distance and should be properly chosen such that the overall cross-track error along the entire

path is minimised.

Chapter 4

2D Simulations for a Kinematic Car
Model

This chapter covers simulations using the vehicle kinematic model addressed in Chapter 3.Sec-

tion 4.1 defines the variables to be considered when simulating a car-like vehicle with the referred

kinematic model. Sections 4.2, 4.3 and 4.4 describe the simulation environment, i.e. impor-

tant considerations and simulation parameters, for the simulation of the path-following guidance

methods detailed in 3.2.4. The methods are compared with the metrics mathematically expressed

in equations 3.7 and 3.8.

4.1 2D Kinematic Car Model

The 3-DOF wheeled vehicle motion to be simulated in this chapter has the kinematic model iden-

tical to the one described in Chapter 3 (equation 3.2) with its position and orientation represented

by the body coordinate frame {B} as in Figure 3.3.

The car-like system to be considered for the simulations is illustrated in Figure 4.1 and its

kinematic model is described as follows:
ẋ = u(t)cos(ψ(t))

ẏ = u(t)sin(ψ(t))

ψ̇ = u(t)c(t)

(4.1)

The vehicle’s configuration evolves as the control inputs change. Therefore, for some instant

of time t, we have that ψ(t) is the yaw angle, δ(t) is the steering angle, (x(t),y(t)) is the mid-point

of the axle, c(t) is the curvature of the path driven by the vehicle and l is the distance between the

front and rear wheels. These last two parameters are related through the turning radius R by the

following expressions: c(t) = tan(δ(t)
l

Rmin =
1
|cmax |

(4.2)

29

30 2D Simulations for a Kinematic Car Model

Figure 4.1: Car-like system geometry [11]

At last, for some t, in seconds, we have that

X(t) = (x(t),y(t),ψ(t)) (4.3)

U(t) = (u(t),c(t)) (4.4)

The generalized kinematic model described in Chapter 3 (equation 3.2) is changed to a system

of equations 4.1 so that some of the car-like parameters and constraints are considered. Mainly, the

curvature is known to saturate during the simulations as the control inputs are given. With ψ = 0

the curvature is zero and this often occurs in straight line paths, with the maximum curvature

defined by ψ ∈ [−ψm,ψm].

In this Chapter, this model will be used throughout the simulations with the various path-

following algorithms described in Chapter 3 being implemented.

4.2 Simulation: Distance to the closest point in the path with PID
Controller

Algorithm 1 does not define extensively the computation of the required turning angle to steer the

vehicle to the path, as stated and explained in the discussion of Chapter 3. Considering model 4.1,

the required angle is related to the vehicle’s curvature c along the path and is associated with the

steering angle δ.

4.2.1 PID Controller

This method is simulated with a PID controller. Theoretically, this controller continuously tries

to minimise the error e(t) over time by adjusting a control variable u(t). It holds that e(t) is the

difference between a reference r(t) and the process variable y(t).

The PID controller has the mathematical expression:

u(t) = Kp · e(t)+Ki ·

∫ t

0
e(τ)dτ+Kd ·

de(t)
dt

(4.5)

4.2 Simulation: Distance to the closest point in the path with PID Controller 31

where u(t) is the control action of the PID controller at time t, KP is the proportional gain, KI is

the integral gain and KD is the derivative gain.

The Euler’s method is to be considered to compute the derivative term at each discrete time

step. Hence:

e′(ti) ≈
e(ti+h)− e(ti)

∆t
(4.6)

where i = 0,1, ...,T being T the simulation time.

4.2.2 Simulation Parameters

Regarding the Method 1 simulation, the used parameters for both the 8-shape and ellipse figures

are defined in table A.1. It is important to note that, the vehicle velocity is considered to be

constant, whereas the curvature is controlled with the mentioned PID controller. Therefore, the

curvature at a given simulation time step is computed with the expression:

c = Kp ·d(t)+Ki ·

∫ t

0
d(τ)dτ+Kd · ḋ (4.7)

where d denotes the cross-track error distance. The derivative term is computed with:

ḋ ≈
di+1−di

∆t
(4.8)

being ∆t the simulation time step, di+1 and di the current and previous cross-track error dis-

tances respectively.

The PID Gains were partially tuned with the Ziegler-Nichols tuning method and rearranged

with trial and error. At first, the integral and derivative gains are set to zero, except for the pro-

portional gain which starts with an arbitrarily low value (e.g., equal to zero). Then, the system’s

response is evaluated as the proportional gain is increased, with this procedure ending when con-

stant oscillations at the output are observed. In the end, the obtained gain and oscillation period

are used to compute the remaining two gains, with the aid of reference tables.

The specified path has profile variations, i.e. is either curved or straight, therefore setting the

constant gains initially for the whole simulation often leads to undesirable behaviour in some path

segments. Thus, those values were adjusted by trial and error as more simulations were carried

out.

The proportional control steers heavier the further the current position is from the desired

trajectory, i.e. whenever the cross-track error is considerably high. The overall performance rises

when the gain increases, however, it may result that depending on the distance from the trajectory

the vehicle starts to drift and have periodic circular motions. With just this control, in scenarios

where the vehicle is considered to be deflected to the path, oscillations along it still occur and,

therefore, overshoot still exists.

32 2D Simulations for a Kinematic Car Model

Table 4.1: Method 1: Simulation Parameters

Parameter 8-Shape Path Ellipse Path
Simulation Time T 160 160
Total Path Length 143.23 142.83
Starting Point (Px0 ,Py0) (22,8) (15,28)
Velocity (u) 1 1
Turn Radius (R) 10 10
Starting Heading Angle (ψ) 0◦ 0◦

PID Gains
KP = 17

KI = 0.11
KD = 27.3

KP = 19
KI = 0.075

KD = 25

Adding a derivative term, the cross-track error rate may be evaluated, allowing the movement

in a perpendicular direction, with respect to the desired trajectory, to be checked. Hence, whenever

the path is perfectly being followed the rate is zero. Therefore, tuning the derivative gain changes

how the vehicle moves towards the path, i.e. if it moves faster or slower. Lower values do not

counteract the oscillations and higher values may result in a longer response time to correct the

distance offsets.

If there exists misalignment of the vehicle while facing surrounding disturbances (e.g., cross-

wind, water swat, ground unevenness), the changes caused may not be perceived, thus this addi-

tional offset persists. This is described as being a steady state error which could be minimised by

adding an integral term. This term is defined as a sum of the cross-track error and indicates if the

vehicle has been moving more on one side of the trajectory rather than the other. Higher values of

the integral gain may contribute to instability as small deviations from the path are exaggerated.

On the contrary, small values determine a slower response to the changes.

Hence, the gains were used and adjusted to acknowledge these scenarios and provide a result-

ing trajectory as close as possible to the reference path.

4.2.3 Simulation results of the 8-Shape path

The parameters of the simulation of the 8-shape path are summarised in table A.1.

Figure 4.2: Method 1 8-Shape path simulation: cross-track error time variation.

4.2 Simulation: Distance to the closest point in the path with PID Controller 33

Figure 4.3: Method 1 8-Shape path simulation: desired path and actual vehicle trajectory.

Figure 4.4: Method 1 8-Shape path simulation: heading angle time variation.

Table 4.2: Method 1: 8-Shape path simulation results, where d(Px0,Py0) is the initial distance to the
path and t0 the time the vehicle first crosses the path.

Parameter d(x0,y0) t0
DTotal

t ∈ [0,T]

d,

t ∈ [0,T]

DTotal

t ∈ [t0,T]

d

t ∈ [t0,T]

UTotal

t ∈ [0,T]

UTotal

t ∈ [t0,T]

Result 2.11 8.2 s 399.81 0.25 299.5 0.15 59.57 56.34

34 2D Simulations for a Kinematic Car Model

4.2.4 Simulation results of the Ellipse path

The parameters of the simulation of the ellipse path are summarised in table A.1.

Figure 4.5: Method 1 Ellipse path simulation: desired path and actual vehicle trajectory.

Figure 4.6: Method 1 Ellipse path simulation: cross-track error time variation.

4.3 Simulation: Carrot Chase Method (L0 distance) 35

Figure 4.7: Method 1 Ellipse path simulation: heading angle time variation.

Table 4.3: Method 1: Ellipse path simulation results, where d(Px0,Py0) is the initial distance to the
path and t0 is the time the vehicle first crosses the path.

Parameter d(x0,y0) t0
DTotal

t ∈ [0,T]

d

t ∈ [0,T]

DTotal

t ∈ [t0,T]

d

t ∈ [t0,T]

UTotal

t ∈ [0,T]

UTotal

t ∈ [t0,T]

Result 3 5.9 s 388.76 0.24 272.45 0.18 59.77 57.49

4.3 Simulation: Carrot Chase Method (L0 distance)

Method 2 is described in Chapter 3 and is commonly referred to as the L0 distance method. This

algorithm uses the VTP concept, being this point ahead on the path with respect to the nearest point

Q concept. Thus, the required parameters contrary to the previous method are the L0 distance

(or δ distance) for straight paths and the α angle for curved paths. This method provides the

required computations for the desired angle to adequately steer the vehicle. It is common to add a

proportional gain KP to enhance the system’s response, with a behaviour similar to the PID gains

description in the Subsection 4.2.1.

4.3.1 Simulation Parameters

Regarding the simulation of Method 2, the used parameters for both the 8-shape and ellipse paths

are defined in Table 4.4. It is important to note that the vehicle velocity is considered to be con-

stant, with the heading angle being adjusted with the control u = Kp(ψd −ψ). When implementing

Algorithm 2 it is noticeable the sequence of computations to determine the parameters for this

method, hence next some considerations concerning these parameters are made.

The L0 distance, or δ, is defined first as it is easily restricted by the path length. Starting with

small values, the distance of the target point T is close to the nearest point on the path Q, thus the

vehicle is impelled to move abruptly towards the path. With such values, this behaviour occurs

several times with the vehicle oscillating as it moves along the reference path.

36 2D Simulations for a Kinematic Car Model

Table 4.4: Method 2: Simulation Parameters

Parameter 8-Shape Path Ellipse Path
Simulation Time T 38 38
Total Path Length 143.23 142.83
Starting Point (Px0 ,Py0) (22,8) (15,28)
Velocity (u) 4 4
L0 Distance 4 4
α angle −5◦ = −0.087rad −5◦ = −0.087rad
Starting Heading Angle (ψ) 0◦ 0◦

Proportional Gain KP = 2.55 KP = 19

On the contrary, for high values, the VTP is extremely ahead and important waypoints are often

missed, i.e. the vehicle does not acknowledge path profile changes. Also, the vehicle requires more

time to converge with the path and, therefore, it yields a high cross-track error cumulative sum.

Even with the L0 distance defined, it is also important to adjust the proportional gain KP as

it allows softer steering. With KP = 1 the required heading angle is given as the difference of the

desired heading angle with the current one. Hence, starting at this value, the gain is increased or

decreased as smoother or harsher steering manoeuvres are required.

4.3.2 Simulation results of the 8-Shape Path

The parameters of the simulation of the 8-shape path are summarised in Table 4.4.

Figure 4.8: Method 2 8-Shape path simulation: cross-track error time variation.

4.3 Simulation: Carrot Chase Method (L0 distance) 37

Figure 4.9: Method 2 8-Shape path simulation: desired path and actual vehicle trajectory.

Figure 4.10: Method 2 8-Shape path simulation: heading angle time variation.

Table 4.5: Method 2: 8-Shape path simulation results, where d(Px0,Py0) is the initial distance to the
path and t0 the time the vehicle first crosses the path.

Parameter d(x0,y0) t0
DTotal

t ∈ [0,T]

d

t ∈ [0,T]

DTotal

t ∈ [t0,T]

d

t ∈ [t0,T]

UTotal

t ∈ [0,T]

UTotal

t ∈ [t0,T]

Result 2.11 3.2 s 30.15 0.079 6.39 0.018 0.21 0.20

38 2D Simulations for a Kinematic Car Model

4.3.3 Simulation results of the Ellipse Path

The parameters of the simulation of the ellipse path are summarised in table 4.4.

Figure 4.11: Method 2 Ellipse path simulation: desired path and actual vehicle trajectory.

Figure 4.12: Method 2 Ellipse path simulation: cross-track error time variation.

4.4 Simulation: Nonlinear Guidance Logic (L1 distance) 39

Figure 4.13: Method 2 Ellipse path simulation: heading angle time variation.

Table 4.6: Method 2: Ellipse path simulation results, where d(Px0,Py0) is the initial distance to the
path and t0 the time the vehicle first crosses the path.

Parameter d(x0,y0) t0
DTotal

t ∈ [0,T]

d

t ∈ [0,T]

DTotal

t ∈ [t0,T]

d

t ∈ [t0,T]

UTotal

t ∈ [0,T]

UTotal

t ∈ [t0,T]

Result 3 3.8 s 36.02 0.095 3.13 0.009 0.103 0.102

4.4 Simulation: Nonlinear Guidance Logic (L1 distance)

Method 3 is described in Chapter 3. Contrary to the previous two methods, the nonlinear guidance

logic does not depend on the path profile to do specific computations that influence the control, i.e.

both straight and curved paths are treated the same way. Nevertheless, the control depends on just

one design parameter (L1 distance), thus since the velocity is considered constant to simplify the

evaluation of the algorithms, the vehicle manoeuvres depend on this constant and the L1 distance.

Moreover, the given control holds the centripetal acceleration command which in more specific

applications is useful.

4.4.1 Simulation Parameters

Regarding Method 3 simulation, the used parameters for both the 8-shape and ellipse trajectories

are defined in Table 4.7.

Concerning the path length, the L1 distance should be chosen such that there is at least one

point on the path that is the solution of equation 3.27. Often, this distance is such that initially

the path is reachable, facilitating the convergence. However, the VTP is not always within the

vehicle’s reach, hence these scenarios should be evaluated. Having a moderate L1 distance with

respect to the path length is a possibility to avoid similar problems. The L1 distance choice for the

40 2D Simulations for a Kinematic Car Model

Table 4.7: Method 3: Simulation Parameters

Parameter 8-Shape Path Ellipse Path
Simulation Time T 160 160
Total Path Length 143.23 142.83
Starting Point (Px0 ,Py0) (22,8) (15,28)
Velocity (u) 1 1
L1 Distance 7 7
Starting Heading Angle (ψ) 0◦ 0◦

following simulations has these ideas in consideration and, with this value the vehicle converges

with the path initially and after path profile transitions, i.e. between straight lines and curves.

As for the velocity, it is set as a small constant value since higher values would make the

vehicle hop faster between the different path segments and, therefore, accumulate high cross-track

error. This is due to the fact that the vehicle would not start to steer properly at the right times,

with this behaviour deprecating as the target point is always ahead.

4.4.2 Simulation results of the 8-Shape path

The parameters of the simulation of the 8-shape path are summarised in table 4.7.

Figure 4.14: Method 3 8-Shape path simulation: desired path and actual vehicle trajectory.

4.4 Simulation: Nonlinear Guidance Logic (L1 distance) 41

Figure 4.15: Method 3 8-Shape path simulation: cross-track error time variation.

Figure 4.16: Method 3 8-Shape path simulation: heading angle time variation.

Table 4.8: Method 3: 8-Shape path simulation results, where d(Px0,Py0) is the initial distance to the
path and t0 the time the vehicle first crosses the path.

Parameter d(x0,y0) t0
DTotal

t ∈ [0,T]

d

t ∈ [0,T]

DTotal

t ∈ [t0,T]

d

t ∈ [t0,T]

UTotal

t ∈ [0,T]

UTotal

t ∈ [t0,T]

Result 2.11 18.6 s 483.93 0.302 189.93 0.134 9.19 8.07

42 2D Simulations for a Kinematic Car Model

4.4.3 Simulation results of the Ellipse Path

The parameters of the simulation of the ellipse path are summarised in table 4.7.

Figure 4.17: Method 3 Ellipse path simulation: desired path and actual vehicle trajectory.

Figure 4.18: Method 3 Ellipse path simulation: cross-track error time variation.

4.5 Discussion 43

Figure 4.19: Method 3 Ellipse path simulation: heading angle time variation.

Table 4.9: Method 3: Ellipse path simulation results, where d(Px0,Py0) is the initial distance to the
path and t0 the time the vehicle first crosses the path.

Parameter d(x0,y0) t0
DTotal

t ∈ [0,T]

d,

t ∈ [0,T]

DTotal

t ∈ [t0,T]

d

t ∈ [t0,T]

UTotal

t ∈ [0,T]

UTotal

t ∈ [t0,T]

Result 3 15.5 s 543.74 0.34 320.42 0.222 6.03 5.76

4.5 Discussion

Throughout this chapter the path-following algorithms presented in Chapter 3 were simulated

in two pre-defined paths: 8-shape and ellipse figures. These paths allow the evaluation of the

different algorithms in trajectories that may be assigned to the vehicle’s mission. The scheme

with both straight and curved profiles is useful to assess how the different implemented controllers

handle the situations where after convergence there is a change in the path profile. The simulations

were performed with the control over the car-like system curvature or heading angle. In addition,

the velocity was kept constant but also tested, as some algorithms would increase or decrease the

overall cross-track error according to the combination of other simulation parameters (e.g. gains,

distance parameters, initial position and orientation).

Considering the simulations of the 8-shape path, the results for the three algorithms are pre-

sented in Tables 4.2, 4.5 and 4.8. As for the ellipse path, the results are in Tables 4.3, 4.6 and

4.9.

These tables contain the starting distance to the path is given by dx0,y0, the instant of time t0
that indicates when the vehicle first crossed the path, i.e. first time is zero cross-track error, the

sum of the cross-track error DTotal, the average cross-track error d and the total control effort U.

These last three parameters are shown for both intervals t ∈ [0,T] and t ∈ [t0,T] with T being the

simulation time.

Both the 8-shape and ellipse paths were simulated considering that the vehicle would move

along the path segments while executing a finite state machine. This strategy allows for the se-

quential follow of the segments, even when there exists any nearby closest point of a future, but

not the next, state.

44 2D Simulations for a Kinematic Car Model

As for the results of the simulation, the first method takes some time to converge and oscillates

until it does. It employs the PID controller to which acquiring the best gains is not trivial and,

although the cross-track error is minimised with a small average value, of the three methods it has

the highest control effort. Thus, the controller keeps correcting the heading angle of the vehicle,

with very small oscillations that could be imperceptible.

The second method performs better than the other two. The VTP ahead on the path, the

proportional gain, the L0 distance and the evaluation of the path profile are advantageous. The L0

distance with moderate values allows for a smooth approximation to the path, instead of oscillating

which happens for low values. With the evaluation of the path profile, it is possible to specify the

VTP and have, therefore, accurate path transitions. As with the tuning of the proportional gain,

it becomes possible to fix abrupt manoeuvres. Nevertheless, this method holds the lowest result

values of all three, except for the initial distance.

The third method gives intermediate results when compared to the other two. The path length

specified limits the maximum L1 distance and, therefore, only a small range of values is possible.

The higher the distance, the more ahead the target is, thus there exists a tendency for a smooth

initial convergence. This has the cost of accumulating high cross-track until it finally converges. If

low values are considered, they may not be viable since there could be no point on the path within

reach.

Chapter 5

AWES Path-Following Guidance and
Simulation

In a system with an AWES of the type rigid wing, the device is set to follow a time-independent 3D

predefined path with a fast crosswind motion performing 8-shaped or elliptical periodic trajectories

[13]. The attained energy production deprecates if the current kite movement and followed path

deviates significantly from the desired and optimal trajectory. This happens due to the production

and consumption phases that are inherent to the rigid wing AWES implementation that is being

considered.

In this chapter the 3D mass-point kite power system model [29] that has been used in 3D

Simulations within the UPWIND Project is described. The dynamic model of the rigid-wing

tethered kite is necessary for the interpretation of the kite motion and to adequately design the

control system for its guidance. Section 5.1 presents the different coordinate systems necessary

to describe the kite motion, and Section 5.2 details the acting forces over the kite along with the

system dynamics.

This Chapter also describes the path-following guidance which has been applied in the UP-

WIND project. In Section 5.3 the idea of the path-following implemented within the project is

characterized. In section 5.4 the guidance methods previously seen in Chapter 3 are linked to the

AWES application. In Section 5.5, some results concerning the implementation of the L0 distance

guidance algorithm in the kite’s model are illustrated.

5.1 Coordinate Systems

The model of the kite is defined through the standard definition of the considered reference frames

and coordinate systems: body coordinate system (coupled to the kite body), local coordinate sys-

tem and global coordinate system [13], [16] depicted in Figure 5.1.

The Global Coordinate System, G, is an inertial cartesian coordinate system (x,y,z) with the

origin on the ground. Usually, it coincides with the ground station where one of the ends of the

45

46 AWES Path-Following Guidance and Simulation

Figure 5.1: Coordinate Systems [12].

tether is attached. The basis of this system is defined as (⃗ex, e⃗y, e⃗z) with the x-axis pointing towards

the main wind direction.

The Local Coordinate System, L, is a non-inertial spherical coordinate system (r, ϕ, β) with

basis (⃗er, e⃗ϕ, e⃗β).

The Body Coordinate System, B, is a non-inertial cartesian coordinate system with basis

(⃗e1, e⃗3, e⃗2) and origin at the centre of gravity of the kite body. Considering a glider type AWES, the

x-axis points through the nose, the y-axis points through the right-hand side wing and the z-axis

points down.

Considering the coordinate systems defined above, the position of the kite is given by

p =

x

y

z

G

=

rcos(β)cos(ϕ)

rcos(β)sin(ϕ)

rsin(β)

G

(5.1)

with p = [r,ϕ,β]T
L .

The associated rotation matrix from the Local coordinate system to the Global coordinate

system:

RLG =
[⃗
er e⃗ϕ e⃗β

]
=

cos(β)cos(ϕ) −sin(ϕ) −sin(β)cos(ϕ)

cos(β)sin(ϕ) cos(ϕ) −sin(β)sin(ϕ)

sin(β) 0 cos(β)

 (5.2)

The associated rotation matrix from the Global coordinate system to the Local coordinate

5.1 Coordinate Systems 47

Figure 5.2: Kite roll angle and turning dynamics [13].

system:

RGL = R−1
LG = RT

LG =

e⃗T

r

e⃗T
ϕ

e⃗T
β

 =

cos(β)cos(ϕ) cos(β)sin(ϕ) sin(β)

−sin(ϕ) cos(ϕ) 0

−sin(β)cos(ϕ) −sin(β)sin(ϕ) cos(β)

 (5.3)

Being the kite an aerodynamic lifting device, the apparent wind velocity vector quantifies the

relation between the wind velocity vector, vw and the flight velocity vector, vk, relative to the

stationary ground station. The apparent wind velocity, va, is defined as:

va = vw−vk = vw− ṗ (5.4)

Assuming the longitudinal axis of the body of the kite aligned with the apparent wind velocity

results

e⃗1 =
−va

∥va∥
(5.5)

The basis of the Body Cartesian coordinate system (⃗e1, e⃗3, e⃗2) for a rigid-wind kite has its unit

vectors e⃗1 aligned with the longitudinal axis and pointing forward, e⃗2 pointing towards the left

wing and e⃗3 pointing upwards. The e⃗2 and e⃗3 are both portrayed on Fig.5.2.

With ψ being the roll angle around the longitudinal axis e⃗1, assuming that initially the roll

angle is ψ = 0, then let ẽ2 = e⃗2. With ẽ2 contained in the plane τ tangent to a sphere centered at the

origin which contains the axis e⃗β and e⃗ϕ it results that ẽ2 ⊥ e⃗r and ẽ2 ⊥ e⃗1 [29].

Therefore, ẽ2 is given as

ẽ2 =
e⃗r × e⃗1∥∥∥⃗er × e⃗1

∥∥∥ (5.6)

Assuming that the roll angle ψ is directly controlled, ẽ2 may be rotated ψ along the axis e⃗1

48 AWES Path-Following Guidance and Simulation

using the following Rodrigues’ formula:

e⃗2 = ẽcosψ+ (⃗e1× ẽ2)sinψ+ e⃗1(⃗e1 · ẽ2)(1− cosψ) (5.7)

with e⃗3 resulting as the cross product

e⃗3 = e⃗1× e⃗2. (5.8)

5.2 Acting Forces and Dynamic Model

The rigid wing of the kite acts as an aerodynamic control surface, thus changing the aerodynamic

forces and moments that adjust its flight motion [30]. Therefore, the aerodynamic forces must

be considered for an adequate dynamic model of the kite. Moreover, considering the energy

harvesting purpose of the device, tether length variations, during the two-phase generation cycle,

and respective tension force must also be considered. The complete model allows the assessment

of the kite’s flight path and the harvested energy.

Newton’s second law of motion equation applied to the kite system is as follows

mp̈ = F⃗th+ F⃗grav+ F⃗aer(α) (5.9)

The above expression relates the kite mass and acceleration with the tether force that acts on

the kite, F⃗th, the gravity force, F⃗grav, and the resultant aerodynamic force, F⃗aer(α).

Considering the tether to be inelastic and massless, the tether force is expressed as:

F⃗th = −Ttether e⃗r =

−Ttether

0

0

L

(5.10)

being the tension force, Ttether, commonly measured on the ground station.

As for the gravity force:

F⃗grav = −mg e⃗z =

0

0

−mg

G

=

−mgsin(β)

0

−mgcos(β)

L

(5.11)

for a given kite with mass m

Concerning the aerodynamic force applied on the kite, it is just given by the sum of the drag

and lift forces:

F⃗aer(α) = F⃗li f t(α)+ F⃗drag(α) (5.12)

5.3 AWES Path-following Model 49

with the Lift Force, F⃗li f t(α), aligned with axis e⃗3, and the Drag Force, F⃗drag(α), aligned with the

axis e⃗1. In addition, both lift and drag forces depend on the airfoil parameters and design, having

respectively lift and drag coefficients expressed as cL(α) and as cD(α) [13].

The referred lift and drag forces are defined as

F⃗li f t(α) =
1
2
ρAcL(α)∥va∥

2 e⃗3 (5.13)

F⃗drag(α) = −
1
2
ρAcD(α)∥va∥

2 e⃗1 (5.14)

Thus results that

F⃗aer(α) =
1
2
ρA∥va∥

2 (cL(α)⃗e3− cD(α)⃗e1) (5.15)

depending on the angle of attack, α, of the wing of the kite and the square of the apparent wind

velocity.

For the spherical coordinate system (r, ϕ, β), according to [29],[13] we have that mp̈ may be

rewritten as:

mp̈ = m

r̈

rϕ̈cos(β)

rβ̈

L

= F⃗th+ F⃗grav+ F⃗aer(α)+ F⃗inertial (5.16)

with the inertial force being F⃗inertial = F⃗centri f ugal+ F⃗Coriolis in the non-inertial coordinate system.

Finally, the state-space model used in simulations of the kite trajectory is given with the fol-

lowing dynamic equation [13]:

ẋ = f (x(t),u(t)) =
d
dt

r

ϕ

β

ṙ

ϕ̇

β̇

=

ṙ

ϕ̇

β̇

at
1

mrcos(β) Fϕ(α,ψ)
1

mr Fβ(α,ψ)

(5.17)

being the state x = (r,ϕ,β, ṙ, ϕ̇, β̇) and control u = (at,α,ψ), where at is the direct control of the

tether acceleration, r̈, exerted by the winch located at the ground station upon the reel-in and

reel-out cycle phases, α the angle of attack and ψ the roll angle.

5.3 AWES Path-following Model

Considering the coordinate systems portrayed in Figure 5.1, for a given AWE system with a tether

with constant length r, the kite moves on the surface of a sphere of radius equal to the tether length

50 AWES Path-Following Guidance and Simulation

r. Moreover, the position of the kite is defined according to the azimuth and elevation angles as

p(ϕ,β). Thus, the 3D desired path is reduced to a 2D path parameterized in the (ϕ,β) space, usually

periodic with an elliptical shape or figure-of-eight shape [31], [12].

In order to maintain the trajectory of the kite as close as possible to the time-independent

predefined path in the (ϕ,β) space, its heading angle must be controlled. If the roll angle, ψ,

around the longitudinal axis of the kite, is considered to be directly controllable, then changing

the roll angle provides a lateral component to the lift force designated as Turning Lift (see Figure

5.2).

Hence, this turning lift is associated with the lateral acceleration, al, responsible for steering

the kite within the (ϕ,β) plane [31]. This lateral acceleration is given by

al =
1
m

Fli f t sin(ψ) (5.18)

where m is mass, Fli f t the lift force and ψ the roll angle.

For a given path, the path-following controller steers the kite by changing its roll angle. While

the airborne device moves, the distance between its position p(ϕ,β) and the nearest point, Q, on

the reference path is designated as cross-track error, d. In addition, ϱ is the angle between the kite

velocity vector, V = ṗ, with the tangent to the path.

Figure 5.3: Path-following Model [13]

5.4 AWES Path-following Guidance Logic and Control

Chapter 3 details three guidance methods to steer the vehicle through a pre-defined path. The first

one describes the distance to the closest point in the path obtained through the path geometrical

relations. However, it does not have a specific formulation to compute the required steering angle

which is required. In addition, for the simplified kinematic model, the control effort is considerably

high.

5.4 AWES Path-following Guidance Logic and Control 51

Hence, considering that it is possible to steer the kite through lateral acceleration commands,

it is convenient to use the nonlinear guidance logic, or L1 distance, along with the carrot chase (L0

distance) method. In practice, these two algorithms have been applied to autonomous vehicles for

path-following missions, in particular the L1 distance with the autopilot system Ardupilot [32].

Considering Figure 5.4, the centripetal acceleration of the kite is adjusted over time with the

main purpose of making the kite’s position converge with the desired path. For that, some refer-

ence point on the desired path, located ahead of the kite’s current position, is firstly considered,

and then the controller adjusts accordingly the acceleration and roll angle that grants the needed

lifting force. The distance between the vehicle and the reference point is the mentioned L1 dis-

tance which is a design parameter that allows to adjust how steep it is the convergence to the path

[13], [16].

As already detailed in Section 3.2.4.3, with the designated reference point, the required lateral

acceleration, as, for the vehicle to move towards its target while following a curved trajectory is

given by the expression:

ascmd = 2
V2

L1
sin(η) (5.19)

The above control input was used for the car-like model simulation in Chapter 4. It was

discussed the problem of the non-existence of any target points ahead on the path that would be

at an L1 distance from the vehicle. Thus, to avoid having coupled strategies to solve the regions

where this could happen, the L0 distance is used instead.

The L0 controller is suggested in [13] for the AWES application. This controller applies the

base idea of the path-following model seen in Section 3.2.4.2 and Section 5.3. The main difference

compared to the L1 logic is the fact that the distance to be considered is the distance between the

nearest point on the path, Q, and the target reference point on the path that is ahead, R. Also, the

L0 distance is a design parameter to be defined for the controller of the kite, instead of the L1

distance. Both L1 and L0 guidance logics are depicted in Figure 5.5.

Therefore, it yields that L1 is computed by the following expression:

L1 =
√

d2−L2
1 (5.20)

being d the distance between the current position, P, and the nearest point on the path, Q.

Knowing the L1 distance, it is possible to solve equations 5.18 and 5.19 to compute the roll

angle:

ψre f = arcsin
(
2mV2sin(η)

Fli f tL1

)
(5.21)

Similarly to Algorithm 2, having the required roll angle it is possible to apply the control input:

ψ̇ =
1
I

KP(ψ−ψre f) (5.22)

52 AWES Path-Following Guidance and Simulation

with Kp being the proportional gain. Since it is being considered the roll angle along the kite’s

longitudinal axis, the moment of inertia I is added to the expression [13].

Figure 5.4: Kite guidance logic [13]

Figure 5.5: L0 and L1 guidance logics [13]

5.5 AWES Simulation

This section comprises simulations made with the software already developed previously by the

UPWIND Team. It implements the dynamic model seen in Section 5.2 and the control strategy

mentioned earlier. However, the path specification changes when compared to the car-like simu-

lations. In the car-like simulations, the ellipse was defined in xy-plane with the arcs that would

sweep from −π to π with an offset. For the AWES simulation, the reference trajectory is a curve

5.5 AWES Simulation 53

parameterized by (ϕ,β) space on the surface of the sphere. Thus, considering the ellipse, the curve

is closed with two straight lines and two arcs defined in radians, or degrees.

With both the dynamical model and chosen guidance algorithm, through Simulink it is possible

to test the system. Mainly, test steep approximations to the desired path, deviations and oscillations

along the path, loss of vehicle orientation, overshooting, error accumulation with an increase of the

distance from the vehicle to the path (cross track error) and even the reversal of the flight direction

[13].

Regarding the simulation, the parameters are described in the Table 5.1. The vehicle wing

reference area, the aerodynamic coefficients and the fluid values used are summarized in Table

5.2.

Table 5.1: Simulation parameters

Parameter Ellipse Figure
Simulation Time 60 s
ϕ ϕ ∈ [−30◦,30◦]
β β ∈ [−15◦,15◦]
Starting Point (ϕ0,β0) (30◦,25◦)
Tether Length r ∈ [50,250] m
L0 60◦

The Kite starts with the tether reeled out at 50 metres and starts to move towards the desired

elliptical trajectory. The 3D trajectory that the kite has during this traction phase is portrayed in

Figure 5.6. As the kite increases in altitude, it is controlled to track the desired path in the (ϕ,β)

space on the surface of the sphere, as depicted in figure 5.7.

In Section 5.2, equation 5.17, the state-space model used within the current simulation is

mentioned. The state vector x variables (r,ϕ,β) are illustrated in Figure 5.9 and describe the kite’s

behaviour during the simulation. The reeled-out tether length keeps increasing until it reaches near

its maximum admissible length, which takes approximately 60 seconds. This variation describes

the increase in altitude of the kite’s body.

The kite tracks the path with change in the ϕ and β state variables, diminishing the cross-track

error. The variations of these variables become periodic as the kite effectively converges with the

path. These variations are illustrated in Figure 5.9.

The system illustrated is being simulated with the L0 design parameter set to 60◦, which

defines the cross-track error. With this value, the kite has an overall good performance with the

average cross-track error after the first 5 seconds being dt>=55s = 0.0027. If lower values for the L0

are used, the kite has steeper approximations to the target point ahead on the path, hence overshoot,

i.e. oscillations, may happen most of the time. This often leads to higher accumulated cross-track

error and higher control effort, which is undesirable.

54 AWES Path-Following Guidance and Simulation

Table 5.2: Physical Simulation Parameters ([14],[13]).

Parameter Value
Wing Reference Area A 0.28 m2

Acceleration of Gravity g 9.8ms
Kite Mass m 0.7 kg

Fluid Velocity vw 10ms
Fluid Density ρ 1.2kgm3

200

150

100

Ellipse trajectory with a varying tether length

50

Y

0
0

-50

50

0

100

150

Z

-100

200

50
100

X

-150
150 -200

200

Desired Path
Kite Trajectory

Figure 5.6: Ellipse trajectory with a varying tether length r ∈ [50,250].

Figure 5.7: Kite following the desired path in the (ϕ,β) space, with T = 60s and L0 = 60◦.

5.5 AWES Simulation 55

Figure 5.8: Cross-track error for T = 60s and L0 = 60◦

Figure 5.9: Simulated (r,ϕ,β) for T = 60s and L0 = 60◦

56 AWES Path-Following Guidance and Simulation

0 5 10 15 20 25 30 35 40 45 50 55 60
0

500

1000

1500

2000

2500

3000

Po
w

er
 (

W
)

Generated Power and Energy

0 5 10 15 20 25 30 35 40 45 50 55 60
Time (seconds)

0

5

10

15

20

25

30

En
er

gy
 (

W
h)

Figure 5.10: Generated Power (W) and Energy (Wh) for T = 60s and L0 = 60◦.

5.6 Discussion

The evaluation of the kite model, considering the path-following problem, is highly similar to the

majority of the vehicles. The L1 distance method holds the same problem as the car-like system:

the possibility of losing track of the path, i.e. when the vehicle is not in the neighbourhood of the

desired trajectory. It is possible to solve this problem with additional coupled control strategies,

however, in such scenarios, other methods are implemented.

Hence, the L0 distance method, highly identical to the carrot chase method previously de-

scribed, is used as an alternative that guarantees convergence and stability. The total cross-track

error achieved is very low, still hardly reaching and stabilizing at zero. Nonetheless, the control

effort is fairly low and the computations are often quick.

With the kite properly following the path and flying in a crosswind direction with its angle of

attack controlled, i.e. direction perpendicular to the direction of the wind, a high lift is produced,

leading to a high tether force. As the tether reels out, the electric machine produces electric power.

Chapter 6

Conclusions and Future Work

6.1 Conclusions

The path-following controllers developed in this dissertation do not consider time restrictions for

the vehicle to arrive at the pre-defined path waypoints. It mainly consists of a geometrical problem

that has the advantage of not requiring real-time references. Hence, with offline data, i.e. look-

up tables (e.g., desired path), the system continuously computes the vehicle dynamics without

additional computation processing dedicated to, for example, the path waypoints. Thus, these

controllers focus mainly on the steering control of the vehicle which allows its convergence to the

referred waypoints.

The three algorithms presented were then tested on a car-like kinematic model. The model

is straightforward and, therefore, it yields the advantage of allowing the comparison of different

guidance methods, without additional restrictions and assumptions. In addition, it is commonly

the starting point to develop more complex algorithms for autonomous vehicles, before delving

into complex dynamics.

The simplified standard kinematic model was simulated with the developed controllers, allow-

ing the assessment of the vehicle’s manoeuvrability along two different paths: ellipse and 8-shape.

All of the implemented control strategies allow the convergence of the vehicle to the path, how-

ever, results show that the L0 distance is more adequate if the the path length is known and some

path variations are acceptable. In addition, this method gives the centripetal acceleration command

which for more complex vehicle kinematics is useful.

As simulation results show, it is a challenge to tune the best design parameters. Nevertheless,

the simulations that were carried out for the car-like model hold interesting results. Overall, the

obtained results are sufficient as no specific restrictions were defined, other than some limitation

of some parameters due to saturation.

With the devised controllers for the simplified kinematic model, the implementation of the

L0 to the AWES shows good results. With the kite dynamic model, it is possible to find the

required lateral acceleration command required to steer and converge the kite’s position with the

VTP on the path. The AWES simulation shows how at first the algorithms may be developed for

57

58 Conclusions and Future Work

a standard kinematic model and then applied to a more specific application, maintaining the same

overall path-following control strategy.

6.2 Future Work

From the Literature, cyclical phases and repetitive movements bring to discussion iterative meth-

ods that keep adjusting the parameters of the system, while taking into consideration information

from previous iterations [3]. The flight control steering parameters references are computed by

solving optimisation problems that must be solved in real-time within a fixed sampling time, usu-

ally having high computational resources demand [31]. This sometimes may not be ideal, hence

hybrid approaches have been surveyed.

Under the theme of combined control architectures, Model Predictive Control has been added

on top of the path-following basis controller. As stated previously, the kite has a pre-defined peri-

odic path to be followed while it completes each of the two phases portrayed in Fig.1.1, repeating

the cycle thereafter.

These aerial devices hold path-following problems that are still being researched. Guarantee-

ing that they operate considerably well under diverse unpredictable scenarios is still a challenge. It

is possible to simulate these models for fixed parameters and for varying and shifting behaviours,

approximating simulated models and controllers to real applications. These possibilities are im-

portant to assess wind flow dynamics and respective disturbances over the airfoil and airframe of

the AWES. However, such methods are often computationally sophisticated, and may be, at first,

simulated for simple models.

Thus, it results that, this dissertation provides a starting point for more challenging and newly

state-of-the-art trajectory controllers to steer the vehicle under disturbances while being autonomous.

This could require the design of an architecture where the vehicle is able to assess surrounding cir-

cumstances and land or take-off as required and safely. These scenarios should be considered in the

future (e.g. existence of wind gusts within a reliable automatic take-off and landing scheme) which

may require a path-following algorithm parameterized differently and more robust to changes.

Appendix A

Race Track Path-Following

A.1 Race Track Path-Following

This appendix shows the application of the PID controller seen in Chapter 4 applied to a more

complex path: a race track. This type of track has been used to test autonomous racing as described

in [33].

Figure A.1: Method 1 RCP track simulation: desired path and actual vehicle trajectory.

The developed codes are available at the Github page.

59

https://github.com/conradoguimaraes/Path-Following

60 Race Track Path-Following

Figure A.2: Method 1 RCP track simulation: cross-track error time variation.

Table A.1: Method 1 RCP track: simulation parameters

Parameter RCP Track
Simulation Time T 293.3
Starting Point (Px0 ,Py0) (110, 20)
Velocity (u) 5
Turn Radius (R) 10
Starting Heading Angle (ψ) 0◦

PID Gains
KP = 14

KI = 0.095
KD = 22

References

[1] LTPaiva FACCFontes. UP WIND Project [online]. URL: http://www.upwind.pt.

[2] Simon Watson, Alberto Moro, Vera Antunes dos Reis, Charalampos Baniotopoulos, Stephan
Barth, Gianni Bartoli, Florian Bauer, Elisa Boelman, Dennis Bosse, Antonello Cherubini,
Alessandro Croce, and Fagiano. Future emerging technologies in the wind power sector: A
European perspective. Renewable and Sustainable Energy Reviews, 113, October 2019.

[3] Roland Schmehl, editor. Airborne Wind Energy: Advances in Technology Development and
Research. Green Energy and Technology. Springer Singapore, Singapore, 2018.

[4] Michael Erhard and Hans Strauch. Automatic Control of Pumping Cycles for the SkySails
Prototype in Airborne Wind Energy. April 2018. Journal Abbreviation: Green Energy and
Technology.

[5] Elena Malz, Jonas Koenemann, S. Sieberling, and Sebastien Gros. A reference model for
airborne wind energy systems for optimization and control. December 2018.

[6] Rolf Luchsinger, Damian Aregger, Florian Bezard, Dino Costa, Cédric Galliot, Flavio Gohl,
Jannis Heilmann, Henrik Hesse, Corey Houle, Tony A. Wood, and Roy S. Smith. Pumping
Cycle Kite Power with Twings. Springer Singapore, 2018.

[7] Udo Zillmann, Kristian Petrick, and Stefanie Thoms. Introduction to Airborne Wind Energy.

[8] Yashank Gupta. Magnus Based Airborne Wind Energy Systems. PhD thesis, November 2018.

[9] Makani [online]. URL: https://x.company/projects/makani/.

[10] Nguyen Hung, Francisco Rego, Joao Quintas, Joao Cruz, Marcelo Jacinto, David Souto, An-
dre Potes, Luis Sebastiao, and Antonio Pascoal. A review of path following control strategies
for autonomous robotic vehicles: theory, simulations, and experiments, April 2022.

[11] Luís Paiva and Fernando Fontes. Adaptive time-mesh refinement in optimal control problems
with state constraints. Discrete and Continuous Dynamical Systems, September 2015.

[12] Gonçalo B. Silva, Luís Tiago Paiva, and Fernando A.C.C. Fontes. A Path-following Guid-
ance Method for Airborne Wind Energy Systems with Large Domain of Attraction. In 2019
American Control Conference (ACC), July 2019.

[13] Manuel C. R. M. Fernandes, Sérgio Vinha, Luís Tiago Paiva, and Fernando A. C. C. Fontes.
L0 and L1 Guidance and Path-Following Control for Airborne Wind Energy Systems. Ener-
gies, February 2022.

[14] CLARK Y AIRFOIL (clarky-il) [online]. URL: http://airfoiltools.com/airfoil/
details?airfoil=clarky-il.

61

http://www.upwind.pt
https://x.company/projects/makani/
http://airfoiltools.com/airfoil/details?airfoil=clarky-il
http://airfoiltools.com/airfoil/details?airfoil=clarky-il

62 REFERENCES

[15] European Commission. Directorate General for Research and Innovation. Research and
innovation to REPower the EU. Publications Office, 2022.

[16] Manuel Côrte-Real de Matos Fernandes. Airborne Wind Energy Systems: Modelling, Sim-
ulation and Economic Analysis, July 2018.

[17] Miles L. Loyd. Crosswind kite power (for large-scale wind power production). Journal of
Energy, May 1980. Publisher: American Institute of Aeronautics and Astronautics.

[18] Kitepower - Airborne Wind Energy [online]. URL: https://thekitepower.com/.

[19] Michiel Kruijff and Richard Ruiterkamp. A Roadmap Towards Airborne Wind Energy in the
Utility Sector. In Green Energy and Technology. April 2018.

[20] Sanghyuk Park, John Deyst, and Jonathan How. A New Nonlinear Guidance Logic for
Trajectory Tracking. August 2004.

[21] Andrzej Stateczny, Paweł Burdziakowski, Klaudia Najdecka, and Beata Domagalska-
Stateczna. Accuracy of Trajectory Tracking Based on Nonlinear Guidance Logic for Hy-
drographic Unmanned Surface Vessels. Sensors, February 2020.

[22] Jorge Estrela Da Silva and Joao Borges De Sousa. A dynamic programming approach for
the control of autonomous vehicles on planar motion. June 2010.

[23] A. Pedro Aguiar, Dragan B. Dačić, João P. Hespanha, and Petar Kokotović. Path-following
or reference tracking? IFAC Proceedings Volumes, July 2004.

[24] P.B. Sujit, Srikanth Saripalli, and J.B. Sousa. An evaluation of UAV path following algo-
rithms. July 2013.

[25] Ehab Safwat, Weiguo Zhang, Ahmed Mohsen, and Mohamed Kassem. Design and Analy-
sis of a Robust UAV Flight Guidance and Control System Based on a Modified Nonlinear
Dynamic Inversion. Applied Sciences, January 2019.

[26] Peter Corke, Witold Jachimczyk, and Remo Pillat. Robotics, Vision and Control: Fundamen-
tal Algorithms in MATLAB®. Springer Tracts in Advanced Robotics. Springer International
Publishing, 2023.

[27] Hector Perez-Leon, Jose Joaquin Acevedo, Jose A. Millan-Romera, Alejandro Castillejo-
Calle, Ivan Maza, and Anibal Ollero. An Aerial Robot Path Follower Based on the ‘Carrot
Chasing’ Algorithm. In Manuel F. Silva, José Luís Lima, Luís Paulo Reis, Alberto Sanfeliu,
and Danilo Tardioli, editors, Robot 2019: Fourth Iberian Robotics Conference. Springer
International Publishing, 2020.

[28] M. Breivik and T.I. Fossen. Principles of Guidance-Based Path Following in 2D and 3D.
2005.

[29] Luís Tiago Paiva and Fernando A. C. C. Fontes. Optimal Control Algorithms with Adaptive
Time-Mesh Refinement for Kite Power Systems. Energies, (3), March 2018.

[30] U. Fechner and R. Schmehl. Flight path planning in a turbulent wind environment. Airborne
Wind Energy, 2018.

https://thekitepower.com/

REFERENCES 63

[31] Fernando A. C. C. Fontes, Mcrm Fernandes, and L. T. Paiva. A Model Predictive Control
Scheme to Improve Performance of a Path-following Controller for Airborne Wind Energy.
July 2020.

[32] Navigation Tuning — Plane documentation [online]. URL: https://ardupilot.org/
plane/docs/navigation-tuning.html.

[33] Alexander Liniger, Alexander Domahidi, and Manfred Morari. Optimization-Based Au-
tonomous Racing of 1:43 Scale RC Cars. Optimal Control Applications and Methods,
September 2015.

https://ardupilot.org/plane/docs/navigation-tuning.html
https://ardupilot.org/plane/docs/navigation-tuning.html

	Front Page
	Table of Contents
	List of Figures
	List of Tables
	1 Introduction
	1.1 Context and Motivation
	1.2 Goals
	1.3 Dissertation Structure

	2 Airborne Wind Energy Systems
	2.1 Airborne Wind Energy Systems
	2.2 Ground-Gen AWES
	2.3 Fly-Gen AWES
	2.4 Discussion

	3 Path-Following Guidance
	3.1 Path-Following and Trajectory Tracking
	3.2 Path-Following Problem Formulation
	3.2.1 Vehicle Kinematic Model
	3.2.2 Path Parameterization and Specification
	3.2.3 Path-Following Problem in 2D
	3.2.4 Path-Following Methods for the 2D Problem

	3.3 Discussion

	4 2D Simulations for a Kinematic Car Model
	4.1 2D Kinematic Car Model
	4.2 Simulation: Distance to the closest point in the path with PID Controller
	4.2.1 PID Controller
	4.2.2 Simulation Parameters
	4.2.3 Simulation results of the 8-Shape path
	4.2.4 Simulation results of the Ellipse path

	4.3 Simulation: Carrot Chase Method (L0 distance)
	4.3.1 Simulation Parameters
	4.3.2 Simulation results of the 8-Shape Path
	4.3.3 Simulation results of the Ellipse Path

	4.4 Simulation: Nonlinear Guidance Logic (L1 distance)
	4.4.1 Simulation Parameters
	4.4.2 Simulation results of the 8-Shape path
	4.4.3 Simulation results of the Ellipse Path

	4.5 Discussion

	5 AWES Path-Following Guidance and Simulation
	5.1 Coordinate Systems
	5.2 Acting Forces and Dynamic Model
	5.3 AWES Path-following Model
	5.4 AWES Path-following Guidance Logic and Control
	5.5 AWES Simulation
	5.6 Discussion

	6 Conclusions and Future Work
	6.1 Conclusions
	6.2 Future Work

	A Race Track Path-Following
	A.1 Race Track Path-Following

	References

