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Resumo

A análise da causa raiz é um processo crucial para identificar e abordar as razões subjacentes às
falhas em sistemas complexos, como redes de fibra ótica e operações industriais de grande escala.
As metodologias tradicionais de análise da causa raiz frequentemente enfrentam dificuldades para
lidar com a grande quantidade de dados e complexidades presentes nesses sistemas, levando a
análises demoradas e subjetivas. Para enfrentar esses desafios, esta pesquisa investiga a aplicação
de técnicas de mineração de dados com o objetivo de agilizar e automatizar a análise da causa raiz.

O principal objetivo desta pesquisa é desenvolver um modelo baseado em mineração de dados
que possa identificar e agrupar automaticamente alarmes, facilitando uma análise mais eficaz. Por
meio de algoritmos avançados, o modelo automatiza a análise de dados de alarme, detecta padrões
recorrentes e permite aos operadores de rede prioritizar questões críticas para atenção imediata.
Técnicas de alinhamento de sequências e os cálculos de similaridade foram implementadas, per-
mitindo obter perceções valiosas sobre as relações entre os alarmes e suas causas raiz.

O modelo proposto foi rigorosamente validado usando um conjunto abrangente de dados que
abrange 7 dias de informações de alarme de uma rede real de fibra ótica, contendo mais de 5,5 mil-
hões de alarmes. Ao implementar um algoritmo eficiente de deteção de chattering, aproximada-
mente 49% dos alarmes redundantes foram removidos com sucesso, resultando em um conjunto
de dados mais refinado que melhorou significativamente a qualidade geral da análise.

Para identificar e medir com precisão as similaridades entre os alarmes, um novo algoritmo
baseado no algoritmo de Smith-Waterman foi desenvolvido. Essa técnica avançada de alinhamento
de sequências permitiu comparações e alinhamentos precisos entre os alarmes, fornecendo insights
valiosos sobre as possíveis causas raiz e as relações entre diferentes alarmes. A aplicação de agru-
pamento hierárquico, com base na análise de similaridade, aprimorou ainda mais as capacidades
do modelo, gerando grupos mais coesos e distintos de alarmes relacionados.

Esta pesquisa demonstra o potencial das técnicas de mineração de dados para revolucionar
a Análise de Causa Raiz em sistemas complexos. Ao automatizar a identificação e análise de
alarmes, as organizações podem alcançar garantia constante de serviço, resolução rápida de prob-
lemas e manter uma vantagem competitiva no mundo atual impulsionado pela tecnologia. O mod-
elo proposto oferece uma abordagem proativa para a análise da causa raiz, tornando os sistemas
mais resilientes e adaptáveis. Testes e validações extensivos em diversos conjuntos de dados e am-
bientes de rede garantirão a ampla aplicabilidade e eficácia do modelo. À medida que a tecnologia
de mineração de dados evolui, o modelo continuará a se aprimorar, oferecendo às organizações
uma ferramenta poderosa para aperfeiçoar suas capacidades de análise da causa raiz e garantir a
confiabilidade e estabilidade de sistemas complexos.
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Abstract

Root cause analysis is a crucial process for identifying and addressing the underlying reasons
behind system failures in complex environments, such as fiber optic networks and large-scale
industrial operations. Traditional root cause analysis methodologies often struggle to handle the
vast amount of data and complexities present in these systems, leading to time-consuming and
subjective analysis. To overcome these challenges, this research explores the application of data
mining techniques to expedite and automate root cause analysis.

The main objective of this research is to develop a data mining-based model that can automat-
ically identify and cluster alarm floods, enabling easier and more effective analysis. Leveraging
advanced algorithms, the model automates the analysis of alarm data, detects recurrent patterns,
and allows network operators to prioritize critical issues for prompt attention. Sequence alignment
techniques and similarity calculations were implemented, allowing us to obtain valuable insights
into the relationships between alarms and their root causes.

The proposed model has been rigorously validated using a comprehensive dataset that spans
over 7 days of alarm data from a real-world fiber optic network, encompassing more than 5.5
million alarms. By implementing an efficient chattering detection algorithm, approximately 49%
of redundant alarms were successfully removed, resulting in a streamlined and refined dataset that
significantly improved the overall analysis quality.

To accurately identify and measure similarities between alarm floods, a novel algorithm based
on the Smith-Waterman algorithm was developed. This advanced sequence alignment technique
enabled precise comparison and alignment of alarm sequences, providing valuable insights into
potential root causes and relationships between different alarms. The application of hierarchical
clustering, based on similarity analysis, further enhanced the model’s capabilities, generating more
cohesive and distinct clusters of related alarms.

This research demonstrates the potential of data mining techniques to revolutionize Root Cause
Analysis in complex systems. By automating the identification and analysis of alarm floods, or-
ganizations can achieve constant service assurance, swift issue resolution, and maintain a compet-
itive edge in today’s technology-driven world. The proposed model offers a proactive approach
to root cause analysis, making systems more resilient and adaptive. Extensive testing and valida-
tion on diverse datasets and network environments will ensure the model’s broader applicability
and effectiveness. As data mining technology evolves, the model will continue to evolve, offer-
ing organizations a powerful tool to enhance their root cause analysis capabilities and ensure the
reliability and stability of complex systems.
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Chapter 1

Introduction

This document is dedicated to Root Cause Analysis (RCA) in the context of a fiber optic network.

We explore the field of data mining using sequence similarity analysis methods to gain a deeper

understanding of the alarm data generated by the network.

In this introductory chapter, we provide a concise overview of the theme, emphasizing the

importance of RCA in a fiber optic network scenario. We aim to leverage data mining techniques,

particularly sequence similarity analysis, to enhance the RCA process and ensure the continuous

and reliable operation of the network.

Furthermore, we present the structure of this document. After this introduction, we proceed

with a detailed explanation of the thesis chapters, outlining the topics covered in each chapter.

This structure is designed to provide a comprehensive exploration of our proposed methodology

and its application to the fiber optic network’s alarm data analysis.

1.1 Context

In the contemporary landscape, the operation of various industries, such as telecommunications

and transportation, heavily relies on complex systems and networks [1, 2]. These systems are

indispensable for ensuring uninterrupted operations. However, the growing complexity of these

systems elevates the risk of potential failures and service disruptions [3]. Hence, the identification

of the root causes of these failures is a pressing concern to maintain consistent and dependable

services [4, 5].

1.2 Motivation

The increasing intricacy of these systems presents a significant challenge, particularly in the con-

text of uncovering the root causes of these failures. This is crucial for preserving the continuity

of reliable services [4, 5]. Traditional methods of RCA typically involve manual investigation

and expert analysis, which can be both time-consuming and resource-intensive, often leading to

subjective outcomes [6].
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2 Introduction

1.3 Root Cause Analysis Background

RCA is an established methodology used for identifying the fundamental reasons behind specific

problems or failures in complex systems. Traditionally, this process involves manual investigations

and expert analyses to discern the root causes of issues. While RCA has been indispensable in

understanding and resolving problems, it can be time-consuming, resource-intensive, and prone

to subjectivity, particularly in complex systems [6]. As technology and systems have evolved, the

intricacy of these systems has increased significantly, demanding more efficient and precise RCA

methods.

1.4 Problem Formulation

In the context of this thesis, we recognize that traditional RCA methodologies may not be suffi-

ciently effective in complex systems, such as fiber optic networks or large-scale industrial oper-

ations. The vast number of variables and potential interactions present significant challenges in

terms of data handling, pattern detection, and insight extraction. This can hinder the ability to

promptly and accurately identify the root causes of failures, a crucial consideration in scenarios

where continuous service assurance is vital.

1.5 Goals

In light of these challenges, the primary aim of this thesis is to provide innovative solutions. We

seek to explore and implement data mining techniques to expedite and automate RCA in complex

systems. Our specific objectives revolve around the development of cutting-edge algorithms and

methodologies that can automate the identification of Alarm Floods (AFs). Alarm Floods, in this

context, refer to sequences or clusters of similar alarms occurring within a specific timeframe.

We aim to streamline the characterization of these AF clusters comprising similar alarms and

effectively pinpoint the most representative sequences within each cluster. These efforts are aimed

at rendering the RCA process more efficient and reliable, ensuring the continuity of services in

our technology-driven world.

1.6 Structure

In this chapter, we provide an overview of the theme of this thesis and set the context for the re-

search. We introduce the concept of RCA and highlight its significance in complex scenarios to

ensure the constant service and stability of systems. We discuss the challenges faced while apply-

ing traditional RCA methods in the context of large-scale and dynamic systems. Additionally, we

emphasize the importance of data mining techniques in enhancing RCA processes. Moreover, we

briefly touch upon the significance of sequence similarity analysis in analyzing big data systems.
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In Chapter 2, we delve into the state of the art in the field of RCA, emphasizing its foundational

concepts and challenges. We explore the use of data mining approaches, specifically focusing on

sequence similarity analysis, as a means to improve RCA in big data systems. A comprehensive

study of the Smith-Waterman algorithm, which is a key element of our proposed methodology, is

presented, highlighting its advantages and applications in SA and similarity analysis. Furthermore,

we conduct a literature review to identify existing works with similar objectives and analyze their

methodologies to derive insights and potential inspirations for our research.

Chapter 3 is dedicated to presenting our proposed methodology for RCA using pattern match-

ing techniques. We begin by discussing the pre-processing steps involved in handling alarm data

to prepare it for further analysis. Next, we introduce the SA algorithm, leveraging the Smith-

Waterman method, as a powerful tool for identifying similar patterns in alarm sequences. Sub-

sequently, we explore post-processing techniques, including clustering, to group similar AFs and

identify distinct clusters. Additionally, we discuss the process of finding the archetype AF within

each cluster, which serves as a representative sequence.

In Chapter 4, we present the results of applying our proposed RCA methodology to real-world

datasets. We define relevant evaluation metrics and describe the experimental setup to measure the

performance of the approach. We analyze the obtained results and discuss the effectiveness of our

methodology in comparison to traditional RCA approaches. We also interpret the implications of

our findings and identify any limitations encountered during the experimentation. Moreover, we

discuss potential avenues for future enhancements and improvements.

The final chapter of this thesis summarizes the main contributions and accomplishments of our

research. We reiterate the significance of data mining techniques, particularly sequence similarity

analysis, in enhancing RCA for big data systems. We discuss the broader implications of our

work and its potential applications in real-world scenarios. We provide insights into practical

applications and offer suggestions for further research and development. Finally, we conclude

by summarizing the key insights and highlighting the significance of our work in the context of

complex and dynamic systems.
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Chapter 2

Background and State of the art

In this chapter, our objective is twofold. Firstly, we analyze state-of-the-art techniques employed

in analogous RCA problems. This examination provides valuable insights into problem-solving

approaches and highlights existing solutions implemented in similar contexts. By addressing these

aspects, we lay the groundwork for the project, ensuring that subsequent steps are built upon a solid

understanding of the subject matter and the existing body of research in the field.

Secondly, we aim to establish a firm foundation for both the theoretical and practical facets

of this project. To achieve this, we explore the fundamental concepts crucial for understanding

and implementing the thesis. This exploration ensures a comprehensive grasp of the key concepts

necessary for project development.

2.1 Related work on Root Cause Analysis

In the domain of RCA and fault management for complex systems, two key techniques, namely

Sequence alignment (SA) and Frequent Pattern Mining (FPM), have emerged as powerful tools

for analyzing large-scale alarm datasets. These methods play a vital role in detecting patterns,

similarities, and correlations within alarm sequences, providing valuable insights into the behavior

of systems and potential underlying issues.

In this related work section, we delve into the applications and advancements of SA and FPM

in the context of AF similarity analysis.

2.1.1 Sequence alignment

SA is a fundamental technique in various fields, including bioinformatics, natural language pro-

cessing, and data mining [7]. It involves the comparison of two or more sequences to identify

regions of similarity or homology [4, 5, 6, 8, 9]. In the context of AF analysis and RCA in fiber

optic networks, SA methods play a crucial role in identifying similar alarm patterns and under-

standing the relationships between alarms over time.

In the literature, SA methods have been extensively applied to AF similarity analysis [4, 5, 6,

7, 8, 9, 10]. These methods aim to match and align alarm sequences to reveal underlying patterns

5



6 Background and State of the art

and correlations. One of the prominent SA algorithms used in this domain is the Dynamic Time

Warping (DTW) algorithm [11, 12, 13]. DTW allows for flexible alignment of sequences, accom-

modating time shifts and distortions, making it suitable for time-series data like alarm sequences.

Another well-known SA algorithm applied to AF analysis is the Smith-Waterman algorithm,

which originates from bioinformatics [8, 14] but has been adapted to handle the temporal dimen-

sion of AFs [15, 16]. The Smith-Waterman algorithm calculates the similarity score between

two alarm sequences by taking into account the order of alarms and their temporal relationships

[5, 7, 14, 15, 16, 17]. It has become a benchmark in the literature due to its effectiveness in

identifying similar alarm patterns and subsequences.

In addition to DTW and Smith-Waterman, other SA techniques like the Basic Local Align-

ment Search Tool (BLAST) [18] algorithm and match-based accelerated alignment algorithms

[4, 9, 17] have also been utilized for AF similarity analysis. These methods further contribute to

the identification of recurrent AFs and the detection of underlying patterns in large-scale alarm

datasets.

SA methods have proved beneficial in identifying and removing redundancy in alarm data,

allowing for more efficient alarm rationalization [19, 20, 21]. By aligning alarm sequences, oper-

ators can gain insights into the temporal patterns of alarms and better understand the dynamics of

the network, aiding in the identification of root causes and troubleshooting of network issues.

Moreover, the application of SA in online operator support has shown promise [7, 19]. Tech-

niques such as AF template extraction and online AF classification leverage SA to match ongoing

AFs to historical patterns, assisting operators in real-time decision-making and problem resolution.

Overall, SA methods have demonstrated their utility in analyzing AFs and enhancing RCA

in fiber optic networks. By aligning and comparing alarm sequences, these methods enable the

extraction of valuable insights from large volumes of alarm data, leading to more efficient network

maintenance and constant service assurance in complex fiber optic systems. As the volume of data

in fiber optic networks continues to grow, the application of SA techniques will likely play an even

more significant role in improving network performance and reliability.

2.1.2 Frequent Pattern Mining

FPM is a powerful data mining technique used to identify recurring patterns or itemsets that fre-

quently co-occur in a given dataset [10, 18, 22, 23]. The concept of frequent patterns lies at the

core of various data-driven applications, including market basket analysis, web usage mining,

bioinformatics, and AF analysis in complex systems.

In the context of AF analysis, FPM methods have been employed to discover the most frequent

combinations of alarms or alarm patterns within the alarm sequences. These methods aim to unveil

the common alarm patterns that occur frequently in the network, providing valuable insights into

the behavior and dynamics of the alarm system.

One of the well-known FPM algorithms is the Apriori [10, 24] algorithm, which is widely used

for association rule mining in market basket analysis. In the context of AFs, Apriori identifies

frequent itemsets, i.e., sets of alarms that often co-occur together. These itemsets can represent
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recurrent alarm patterns that might be indicative of specific network issues or underlying system

behaviors.

Another popular FPM approach is the FP-Growth algorithm [22, 23, 25, 26], which efficiently

mines frequent patterns by building a compact data structure called the FP-tree. This algorithm is

particularly suitable for large-scale alarm datasets, as it optimizes memory usage and reduces the

number of database scans, thereby improving performance.

By discovering frequent alarm patterns, network operators can identify redundant or repetitive

alarms, leading to a more concise and informative alarm system. This can significantly reduce

alarm fatigue for operators, as they can focus on critical alarms and promptly address network

anomalies.

Additionally, FPM has been applied to dynamic alarm suppression, a technique used to tem-

porarily hide non-relevant alarms during AFs [6, 10, 18, 22, 23, 24]. By identifying frequently

occurring alarms that are not directly related to the root cause, FPM helps optimize alarm presen-

tation and improve operator response times during AFs.

Furthermore, FPM techniques have proven useful in discovering meaningful associations be-

tween alarms, providing valuable insights into network dependencies and relationships. This in-

formation can aid in the detection of cascading failures, helping network operators take proactive

measures to prevent potential service disruptions.

In summary, FPM is a versatile and effective data mining technique that has found applications

in diverse domains, including AF analysis in fiber optic networks. By identifying recurring alarm

patterns, FPM contributes to alarm rationalization, dynamic alarm suppression, and the overall

enhancement of RCA. As data volumes continue to grow in complex systems, FPM methods will

remain instrumental in extracting valuable knowledge from alarm data, enabling constant service

assurance and optimal network management.

2.1.3 Literature overview

SA algorithms excel in performing a fine-grained analysis of individual alarms and their temporal

relationships. This level of detail is essential for gaining an accurate understanding of the precise

sequence of events within AFs. FPM may not capture such nuances as effectively.

AFs often exhibit alarms in specific temporal sequences. SA algorithms excels in considering

the temporal relationships between alarms. This temporal awareness is crucial for detecting pat-

terns and similarities evolving over time, while FPM might oversimplify the analysis. The alarm

sequences may also vary in length, making them less amenable to FPM. SA algorithms address

this variability by accommodating gaps in sequences, aligning similar segments, and providing a

scoring mechanism for the alignments.

SA algorithms offer the flexibility to define customized scoring criteria. This adaptability

is vital for assigning varying weights to alarms or specific alarm components, reflecting their

significance in the analysis. SA algorithms can also adapt to different gap penalties, which is

valuable for handling AFs with varying temporal gaps between alarms.
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FPM can be sensitive to noise and variations in alarm reporting times, potentially leading to

less effective analysis. In contrast, SA algorithms are more resilient to noise, ensuring that even

subtle patterns are captured accurately.

SA algorithms have a well-established track record in diverse fields like bioinformatics, show-

casing their reliability and adaptability in identifying patterns in sequences.

In summary, SA algorithms offer distinct advantages in terms of granularity, temporal aware-

ness, adaptability, and robustness, making them a robust choice for AF analysis.

2.2 Background concepts

This section delves into the theoretical and practical aspects of the project. To do so, we explore

fundamental concepts that are essential for both understanding and implementing the thesis. This

exploration is aimed at fostering a comprehensive understanding of the key concepts required for

project development.

2.2.1 Fiber optic networks

Fiber optic networks are a type of telecommunication network that transmit data using pulses of

light through optical fibers, which are thin strands of glass or plastic [27]. These networks are

known for their high capacity, fast data transmission speeds, and long-distance capabilities.

In a fiber optic network, data is encoded into light signals, which are then transmitted through

the optical fibers. The light signals travel through the fibers by repeatedly bouncing off the inner

walls through a phenomenon called total internal reflection. This allows the signals to propagate

over long distances without significant loss or degradation [27, 28].

Compared to traditional copper-based networks, fiber optic networks offer several advantages.

Firstly, they have much higher bandwidth, enabling them to transmit large amounts of data at

incredibly fast speeds. This makes them ideal for applications that require high data transfer rates,

such as video streaming, cloud computing, and telecommunication services [14].

Additionally, fiber optic networks are less susceptible to electromagnetic interference and sig-

nal loss. They are immune to electromagnetic interference from nearby electrical cables or devices,

ensuring reliable data transmission. The optical fibers also have lower signal attenuation, allowing

data to be transmitted over longer distances without requiring frequent signal regeneration[28].

Fiber optic networks are widely used in various sectors, including telecommunications, inter-

net service providers, data centers, and enterprise networks. They form the backbone of modern

communication infrastructure, facilitating the efficient and reliable transmission of data across

long distances.

Several types of fiber optic technologies are used in telecommunications, each designed to

meet specific requirements and address various deployment scenarios. Some of the most common

are Fiber To The Home (FTTH), Fiber To The Building (FTTB), Fiber To The Cabinet (FTTC),

and Fiber To The Node (FTTN) [27].
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The scenario presented in this dissertation follows an FTTH topology, which is a popular and

efficient approach for delivering high-speed broadband services to end-users. This technology in-

volves extending the fiber optic network directly to individual homes or buildings. FTTH offers

the highest bandwidth and is capable of delivering gigabit or even multi-gigabit speeds to resi-

dential users. To ensure the successful deployment and operation of an FTTH network, several

fundamental equipment components are utilized [27, 28]. Here are some of the key equipment

used in an FTTH network:

1. Optical Line Terminal: The Optical Line Terminal (OLT) is a central device located in the

service provider’s facility or central office. It serves as the interface between the service

provider’s network and the subscriber’s fiber optic connections. The OLT aggregates and

manages multiple subscriber connections and handles the distribution of data, voice, and

video services.

2. Optical Network Unit/Terminal: The Optical Network Unit (ONU) or Optical Network

Terminal (ONT) is installed at the subscriber’s premises. It is the endpoint of the FTTH

network and is responsible for receiving and transmitting data over the fiber optic connec-

tion. The ONU/ONT converts the optical signal into electrical signals compatible with the

customer’s devices, such as computers, telephones, and televisions.

3. Splitters and Couplers: Splitters and couplers are passive devices used for dividing or

combining optical signals in an FTTH network. Splitters are used to split the incoming fiber

optic signal into multiple output ports, allowing multiple subscribers to share the same fiber

connection. Couplers, on the other hand, combine or couple optical signals from different

fibers into a single fiber.

2.2.2 Alarm Manager

The increasing complexity of network topologies has made the use of RCA tools crucial for ensur-

ing their proper operation. However, manually defining rules for alarm aggregation and correction

in these tools requires network knowledge and has become increasingly complex due to the grow-

ing number of network devices. To address this challenge, this project aims to leverage data

mining techniques to extract new insights from the network, thereby assisting and enhancing the

rule creation process.

In this case study, the RCA tool employed is Alarm Manager, developed by Altice Labs. Alarm

Manager plays a vital role in generating and storing all alarm instances associated with the failure

of customers’ equipment. Before delving into further project details, it is important to gain a

comprehensive understanding of Alarm Manager’s functionality, workflow, and the data it retains

for each alarm instance.
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2.2.2.1 Description

Alarm management involves the process of monitoring, analyzing, and responding to alarms gen-

erated by various systems or processes. The overall goal of alarm management is to ensure that

alarms are effective, reliable, and help operators take appropriate actions in response to abnormal

conditions or events [1, 3, 29, 30].

AGORA, the Alarm Manager system developed by Altice Labs, is a comprehensive Fault

Management tool designed to handle various aspects of alarm reception, storage, treatment, mon-

itoring, and correlation. It serves as the central hub for managing states, severity levels, and other

standardized alarm parameters. Additionally, Alarm Manager enables the definition of alarm cy-

cles within the system and oversees the processing infrastructure along with multiple collection

channels.

Drawing upon Altice Labs’ expertise and insights from the telecommunications industry,

Alarm Manager ensures efficient fault monitoring, problem detection, and the initiation of fault

tickets. By streamlining processes, it enhances operational efficiency, allowing for prompt ad-

justments to align with business needs. Moreover, it offers flexibility in managing new platforms

and network elements, empowering organizations to adapt swiftly to evolving requirements [3].

Through its capabilities, Alarm Manager delivers operational gains and facilitates agile business

operations.

2.2.2.2 Functioning

The alarms are generated by monitoring systems that continuously monitor the status of devices,

processes, or networks. These systems are designed to detect abnormal conditions, equipment

failures, safety hazards, or other critical events. When a predefined threshold or condition is

met, an alarm is triggered. Alarms are often assigned different levels of priority based on their

significance and potential impact [2]. Prioritization helps operators focus on the most critical

alarms and ensures that resources are allocated effectively. Priority levels may be determined

based on factors such as safety implications, operational impact, or regulatory requirements [1].

Once the alarm is observed, it needs to be promptly communicated to the relevant operators or

stakeholders. This can be done through various means such as visual indicators, audible alerts, or

a message notification. It should be clear, and concise, and provide relevant information about the

alarm, including its severity, location, and description. When operators receive an alarm notifica-

tion, they need to acknowledge it to indicate that they are aware of the alarm. This helps in tracking

the status of alarms and prevents them from being overlooked or ignored. Alarm acknowledgment

can be done manually by the operator or automated within the alarm management system. Once

an alarm is acknowledged, the operator initiates an analysis of the situation. They investigate the

root cause of the alarm, assess its impact, and determine the appropriate response or action. This

may involve referring to standard operating procedures, consulting with subject matter experts, or

utilizing diagnostic tools to troubleshoot and resolve the issue [29, 30].
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It is important to document the details of alarms, including their time of occurrence, duration,

actions taken, and any additional information that can aid in future analysis or auditing [29]. After

the alarm is resolved, proper documentation ensures traceability, and knowledge sharing, and

enables continuous improvement of alarm management processes [1].

A periodic review of alarm performance and system behavior is essential to identify oppor-

tunities for optimization. This involves analyzing alarm patterns, evaluating alarm effectiveness,

and adjusting alarm settings as needed. The aim is to minimize nuisance alarms, reduce AFs, and

improve the overall efficiency and usability of the alarm management system [4].

2.2.2.3 Alarm Data

Given that the alarm serves as the central entity within the alarm manager, it comprises a multitude

of fields aimed at describing all the relevant information. However, for the current project, many

of these fields may lack helpful information, necessitating an initial assessment to determine the

significance of each field for subsequent pre-processing and field removal phases.

Table 2.1 presents a comprehensive list of features associated with an alarm stored by the

Alarm Manager. Each feature is accompanied by its respective meaning, which is crucial for

comprehending the problem, facilitating its resolution, and understanding the potential range of

values that each feature can assume.

By carefully examining the features presented in Table 2.1, operators can develop a more com-

prehensive perception of the problem, enabling them to identify relevant information for effective

troubleshooting and resolution. This systematic approach to understanding alarm attributes lays

the foundation for subsequent data processing and analysis, ensuring that only pertinent fields are

retained while irrelevant or redundant ones are appropriately removed.

This thorough understanding of the alarm features enables effective problem-solving and

decision-making processes by providing insights into the nature of the issue at hand. By carefully

examining and analyzing these features, operators can identify pertinent information, eliminate

irrelevant fields, and streamline subsequent data processing and analysis efforts. Chapter 3 will

provide a more in-depth exploration of the discussed topics.

2.2.2.4 Alarm data mining

With the continuous advancements in alarm monitoring and control systems, the amount of data

generated for analysis has significantly increased in both volume and complexity. This influx

of data poses challenges for network operators who need to effectively process and interpret the

information in a timely manner [4, 8, 9]. To address this issue, the application of data mining

techniques has become a valuable solution.

Alarm data mining refers to the process of extracting meaningful insights and patterns from

alarm data generated in various systems and processes. In many industries, such as manufacturing,

telecommunications, and energy, alarm systems play a crucial role in monitoring and alerting

operators about abnormal conditions or events that require attention.
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Table 2.1: Alarm manager features

Feature Description Range of Values / Type
equipment_name Name of the OLT where the

alarm instance occurred
String
(ex: olt401.hub.islpny.alticeusa.net)

equipment_type Type of the corresponding
OLT

String (ex: OLT2T4)

equipment_
manageddomain

OLT location string (ex: New_York)

equipment_site Area where the OLT is in-
stalled

string (ex: ISLPNY)

equipment_id OLT identification string (ex: 10.172.72.7)
alarmedresource_id Device identification string (ex: 10.172.72.7-20-101-2-1-

2)
events Number of occurrences N>0 (ex: 1)
severity Degree of severity of the

alarm
string (ex: Critical)

raisedtime Creation time of the alarm
instance, measured by the
Alarm Manager clock

timestamp (ex: 01/02/2023 01:59)

clearedtime Clearing time of the alarm
instance, measured by the
Alarm Manager clock

timestamp (ex: 01/02/2023 01:59)

specificproblem A brief summary of the alarm string (ex: Deactivate failure of
ONUi)

specificproblem-
abbrev

Abbreviation of the alarm string (ex: DFi)

ackstate Whether the alarm was ac-
knowledged or not

string (ex: Unacknowledged)

Actingurgency Degree of urgency of the
alarm, like severity

string (ex: Critical)

archivetime Closing time of the alarm
instance, measured by the
Alarm Manager clock

timestamp (ex: 01/02/2023 01:59)

id unique identifier of an alarm N>0 (ex: 100400698)

Alarm data mining involves analyzing and exploring large volumes of alarm data to identify

patterns, trends, anomalies, and relationships within the data. By doing so, it aims to improve

the overall understanding of alarm behavior, optimize alarm settings, and enhance the efficiency

and effectiveness of alarm management systems [1, 2]. By leveraging alarm data mining tech-

niques, organizations can gain valuable insights into their systems’ behavior, enhance operational

efficiency, and improve decision-making processes related to alarm management.

Alarm data mining encompasses several common goals [6, 8, 9], which are:

• Alarm optimization: This involves the identification of redundant or nuisance alarms, re-

ducing false positives, and improving the prioritization of alarms. The aim is to prevent
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alarm overload and mitigate operator fatigue, ensuring that operators can focus on critical

tasks effectively.

• Fault detection and diagnosis: Through alarm data mining, abnormal conditions can be de-

tected, and the root causes of alarms can be diagnosed. This process provides valuable

insights for troubleshooting and maintenance activities, enabling prompt resolution of is-

sues.

• Performance improvement: By analyzing alarm response times, alarm resolution rates, and

operator actions, alarm data mining helps identify areas for enhancing system reliability

and operator performance. These insights facilitate the implementation of targeted improve-

ments to optimize overall operational efficiency.

• Predictive analytics: Historical alarm data is utilized to build predictive models. These

models enable the anticipation of potential failures or abnormal events, enabling proactive

maintenance actions to be taken. By addressing issues before they escalate, downtime can

be minimized, and system availability can be maximized.

By pursuing these goals, alarm data mining empowers organizations to optimize their alarm

management systems, enhance operational efficiency, and improve decision-making processes.

By uncovering hidden patterns and correlations, operators can gain actionable insights, streamline

operations, and ensure the effective management of alarms in complex network environments

[19, 20, 21].

2.2.3 Pattern Similarity Algorithms

This section delves into various pattern similarity algorithms used in the context of AF analysis,

including the Levenshtein distance algorithm, Jaccard similarity, Needleman-Wunsch, and the

Smith-Waterman algorithm. We will discuss their features and highlight why the Smith-Waterman

algorithm is the most suitable choice for this thesis.

The Levenshtein distance algorithm, often referred to as the edit distance algorithm, quantifies

the dissimilarity between two strings by determining the smallest count of single-character modi-

fications needed to convert one string into another [31, 32]. While it serves as a valuable tool for

evaluating text-based data, like textual alarm descriptions or codes, its effectiveness diminishes

when confronted with temporal patterns or sequences, a frequent occurrence in AF analysis [32].

Jaccard similarity is a metric employed to gauge the resemblance between two sets. In alarm

analysis, it proves valuable for assessing the similarity between alarms appearing in distinct se-

quences. This metric excels at recognizing shared elements but falls short in accounting for the

chronological order of occurrences. Consequently, it may not capture essential patterns associated

with the temporal sequencing of alarms within AFs [33, 34].

The Needleman-Wunsch algorithm, commonly employed in bioinformatics, is a global SA

algorithm primarily designed for comparing sequences such as DNA or protein sequences [35].
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This algorithm calculates the optimal alignment of two sequences by comprehensively evaluating

matches, mismatches, gaps, and similarities spanning the entire length of the sequences [35, 36].

It assigns specific scores to matches, mismatches, and gaps, with the overarching objective of

maximizing the alignment’s overall score [37].

Both Needleman-Wunsch and Smith-Waterman algorithms are very similar. However, the

Smith-Waterman algorithm is designed to find the best local alignment, meaning it identifies the

most similar subsequence within two sequences [15]. This is particularly useful when you are in-

terested in pinpointing specific regions of high similarity within longer sequences. In contrast, the

Needleman-Wunsch algorithm aims to align the entire sequences globally [35], which can mask

local similarities. The Smith-Waterman algorithm performs better when comparing sequences

with significant dissimilarities. It doesn’t enforce a global alignment like Needleman-Wunsch,

which can sometimes align sequences that are too different.

In summary, the selection of the Smith-Waterman algorithm over other pattern similarity al-

gorithms is underpinned by the algorithm’s superior suitability for AF analysis. Its granularity,

ability to handle temporal relationships, adaptability, robustness, and efficiency make it the most

fitting choice for the comprehensive analysis of AF patterns and their underlying causes. In AF

scenarios, where understanding precise temporal sequences is paramount, the Smith-Waterman al-

gorithm emerges as the ideal solution to unearth complex relationships among alarms and capture

subtle patterns efficiently.

2.2.4 Smith-Waterman Algorithm

The Smith-Waterman algorithm, initially proposed in [7], serves the purpose of finding a pair of

segments, one from each of two long sequences, that exhibit the highest similarity (homology)

compared to any other pair of segments. Originally developed in 1981 for the purpose of iden-

tifying similarities among molecular sequences, the Smith-Waterman Algorithm rapidly gained

popularity and found broader applications, including the analysis of industrial alarm sequences

[15, 16].

As a local SA method, the Smith-Waterman algorithm operates on the concept of local align-

ment. To elucidate this concept, let us consider a pair of symbolic segments, each obtained from

two symbolic sequences [5]. By introducing gap symbols (’-’) into one or both segments, their

lengths can be equalized (if the sequences have the same length, there might be no gaps). Conse-

quently, every symbol in one segment aligns with a corresponding symbol in the other segment at

the same position, establishing an alignment.

Given that the two symbolic segments represent contiguous subsequences of their respective

symbolic sequences, this alignment is referred to as the local alignment of the two sequences. In

other words, the Smith-Waterman algorithm identifies the specific regions within the sequences

where the highest similarity occurs rather than attempting to align the sequences in their entirety.

By utilizing dynamic programming techniques, the Smith-Waterman algorithm efficiently cal-

culates a similarity score for each possible alignment position, taking into account the match/mismatch
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between symbols and the introduction of gaps. The algorithm identifies the alignment with the

highest score, representing the most significant local similarity between the sequences.

If we consider two sequence examples:

X = [3143112]

Y = [214123]

A possible alignment of this pair of sequences is:

X ′ = [3143112−]

Y ′ = [214−1−23]

After alignment, both sequences should have the same length. Each element in the aligned

segment X’ corresponds to an element in the aligned segment Y’. For instance, the first pair in the

alignment is (3, 2), and the second pair is (1, 1). It is important to note that this is just an example

of how the alignment could be performed, as there are countless possible combinations. However,

the algorithm’s goal is to determine the optimal alignment, which requires distinguishing between

good and poor alignments.

The objective of the alignment process is to identify the alignment that maximizes the simi-

larity between the sequences. This involves assigning scores to different alignments and selecting

the one with the highest score as the optimal alignment. Good alignments are characterized by a

high similarity score, indicating a strong match or homology between the aligned segments. On

the other hand, poor alignments have lower similarity scores and may indicate a weaker or in-

significant match between the segments. To achieve this, the Smith-Waterman algorithm utilizes

a scoring system that considers various factors such as match/mismatch scores and gap penalties.

Consider a symbolic pair (a, b) from two aligned sequences, where a and b represent two

alarms. If neither of them corresponds to a gap ("-"), a similarity score function, s(a, b), is cal-

culated. The value of this similarity function is positive if the alarms match (a == b), and a

non-positive value is assigned if a ̸= b. Typically, in the case of pair matching where no prior

information about the alarm types is available, a score of 1 is assigned for matching pairs, and a

negative value µ is assigned for non-matching pairs. However, these scores can vary. Therefore,

the result of the similarity function would be 1 for the pair (1, 1) and µ for the pair (3, 2).

In cases where a gap is introduced in the sequences, and the pair (a, b) includes a gap, a

penalty is always added to the similarity score function. A constant penalty δ is assigned for all

gaps inserted in the SA. For example, in the pair (3, -), the score of the function would be δ .

Finally, to calculate the overall similarity of the alignment between the two sequences, the

sum of all similarity scores of all pairs included in the alignment is computed. Referring back

to the initial example alignment of the segments X’ and Y’, considering a penalty of δ = -0.4

for introducing a gap and a non-matching penalty µ = -0.6, the following similarity function is

obtained:
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X ′ = [3143112−]

Y ′ = [214−1−23]

S(X ′,Y ′) = s(3,2)+ s(1,1)+ s(4,4)+δ + s(1,1)+δ + s(2,2)+δ

S(X ′,Y ′) = (−0.6)+1+1+(−0.4)+1+(−0.4)+1+(−0.4) = 2.2

As it is evident, the higher the result of S(X’, Y’), the greater the degree of similarity. The

alignment between X and Y that has the highest similarity score function is considered the optimal

alignment between the two sequences.

It is important to note that the similarity score function provides a quantitative measure of

how well the two sequences align with each other. By comparing different alignments and their

corresponding similarity scores, we can determine which alignment captures the highest level of

similarity between the sequences. This optimal alignment represents the best matching pattern

between the AF sequences, indicating the strongest correlations and patterns within the data.

Now that we have a thorough understanding of SA, it becomes much simpler to formulate the

problem addressed by the Smith-Waterman Algorithm. To solve the problem of local alignment,

we consider two symbolic sequences, A and B, with arbitrary lengths:

A = [a1,a2, · · · ,aM]

B = [b1,b2, · · · ,bN ]

Let Σ be the set of elements, and am and bn are elements from sequences A and B, respectively,

where m = 1,2, . . . ,M and n = 1,2, . . . ,N.

We can define segments or contiguous subsequences of A and B as Ai:p and B j:q, respectively,

where 1 ≤ i ≤ p ≤ M and 1 ≤ j ≤ q ≤ N.

Ai:p = [ai,ai+1, · · · ,ap]

B j:q = [b jb j+1, · · · ,bq]

The similarity index, I(Ai:p,B j:q), represents the similarity between the segment pair (Ai:p,B j:q).

The goal of the local alignment problem is to find the optimal segment pair that has the highest

similarity index among all possible segment pairs. We denote this highest similarity index as S(A,

B). However, if the two sequences, A and B, are completely different and all segment pairs have

a negative similarity index, S(A, B) is set to 0 to indicate no similarity. The similarity index S(A,

B) can be calculated using Equation 2.1.

S(A,B) = max
1≤i≤p≤M,1≤ j≤q≤N

(I(Ai:p,B j:q),0) (2.1)
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To determine S(A, B) and the corresponding local alignment, we use the Smith-Waterman

algorithm. This algorithm constructs an index matrix H, where each element Hp+1,q+1 represents

the maximum positive similarity index of segment pairs ending in ap and bq. If there is no positive

similarity index, Hp+1,q+1 is set to 0. The value of Hp+1,q+1 can be recursively computed using

Equation 2.2, considering a uniform penalty δ , when a gap is inserted into the sequence.

Hp+1,q+1 = max{Hp,q + s(ap,bq),Hp,q+1 +δ ,Hp+1,q +δ ,0} (2.2)

The dynamic programming algorithm based on this equation can be summarized in the fol-

lowing steps:

1. Build a matrix H of size (M+1)×(N+1) and initialize the first row and column of H as 0.

2. Calculate the values of the remaining entries in H using the recursive equation.

3. Find the highest value in matrix H, which represents the similarity index S(A, B) of the two

sequences.

4. Trace back from this highest value until reaching an entry with a value of 0. The path

obtained during this traceback represents the optimal local alignment.

By applying this dynamic programming algorithm, we can efficiently solve the problem of

local alignment and determine the optimal alignment and similarity index between the two se-

quences, A and B.

Let us consider the example of the two sequences mentioned earlier: A = [3 1 4 3 1 1 2] and

B = [2 1 4 1 2 3]. We have a gap penalty δ = -0.4, a match score of 1, and a mismatch penalty

µ = -0.6. To find the optimal local alignment, we first construct the matrix H. Each element H(i,

j) in the matrix represents the maximum similarity index of segment pairs ending at position i in

sequence A and position j in sequence B. After initializing the first column and row of the matrix H

with 0, we proceed to calculate the remaining values of H by considering the neighboring elements

and applying Equation 2.2. This iterative process allows us to determine the maximum similarity

index for each position in the matrix. Figure 2.1 represents the matrix H of the alignment.

By performing iterative calculations of the values in matrix H, we can identify the highest

similarity index. In our example, the maximum value is found at H(8, 6), which is 3.2. This value

is determined by considering the contributions from H(7, 5) + 1, H(7, 6) + δ , H(8, 5) + δ , and 0.

Upon closer examination, it becomes evident that the maximum similarity score of the segments

is 3.2 rather than 2.2, as previously mentioned. This implies that the alignment example provided

earlier does not represent the optimal local alignment.

To obtain the optimal local alignment, we perform a backward path search starting from the

element with the highest value in H. We follow the path by considering the neighboring elements

with increasing indices until we reach an entry with a value of 0. The path that represents the

alignment of the segments can be observed in Figure 2.2.
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Figure 2.1: Matrix H for example sequences A and B

After obtaining the path, we proceed forward to complete the alignment. Each diagonal move

corresponds to adding a symbol from both aligned segments. Each horizontal move involves

adding a symbol from sequence B to its aligned segment and inserting a gap in sequence A’s

aligned segment. Similarly, each vertical move includes adding a symbol from sequence A to its

aligned segment and inserting a gap in sequence B’s aligned segment. In Figure 2.3, the alignment

score of the two segments is displayed. The alignment score represents a numerical value that

quantifies the overall similarity between the two sequences being aligned.

Following these rules, we finalize the optimal local alignment for our example: [1 4 3 1 1 2]

and [1 4 - 1 - 2].
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Figure 2.2: Optimal path of the aligment

Figure 2.3: Score of the optimal alignment
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Chapter 3

Pattern Matching of Alarm Floods
Sequences

The AF pattern matching problem revolves around measuring the similarity between different AFs

and identifying which floods should be grouped together based on this similarity. Think of an AF

as a sequence of alarms that occur within a specific time frame. The goal is to find patterns or

common segments among these AFs that can act as distinguishing features.

By calculating a similarity index, we can quantify the resemblance between AFs. If two floods

share a significant portion of alarms or exhibit similar patterns, they are considered more alike

and likely to belong to the same group or pattern. These shared segments within a pattern serve

as symptomatic characteristics that aid in determining whether a new incoming flood should be

classified into an existing pattern.

In essence, the AF pattern matching problem involves identifying similarities between floods,

grouping them based on these similarities, and utilizing common segments as indicators to clas-

sify new floods. This process enables the detection and categorization of AFs, facilitating more

effective analysis and decision-making in alarm management systems.

In this chapter, we will delve into data processing methods to optimize the speed and efficacy

of analysis. Additionally, we will explore a possible algorithmic approach for Pattern Matching of

AF Sequences, drawing inspiration from the Smith-Waterman Algorithm.

3.1 Pre-processing

In the field of data analysis and machine learning, the process of preparing data for modeling

and analysis plays a critical role in achieving accurate and reliable results. Pre-processing tech-

niques are employed to transform raw data into a suitable format that can be effectively utilized

by machine learning algorithms. This stage involves several steps, including feature selection,

addressing chattering, and organizing the dataset into temporal sequences.

Feature selection is a crucial pre-processing step that aims to identify and retain the most

relevant and informative features from the available data. By selecting a subset of features that

21
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have the most significant impact on the target variable, we can reduce computational complexity,

enhance model interpretability, and potentially improve the overall performance of the predictive

models.

Chattering refers to the occurrence of repeated or fluctuating values in a dataset, often caused

by measurement errors or noise [38, 39, 40]. It can have a detrimental effect on model accuracy,

as it introduces unwanted variations and instability. Pre-processing techniques, such as smoothing

or filtering, are applied to mitigate chattering and create more consistent and reliable data.

Furthermore, in many applications, data is collected over time and exhibits temporal depen-

dencies. To capture these temporal relationships and patterns, it is essential to organize the dataset

into sequential segments or time series [29]. By dividing the data into temporal sequences, we can

leverage the inherent temporal information to improve the predictive power of our models.

As discussed in section 2.2.2, this dissertation utilizes data sourced from an alarm manager

managed by Altice Labs, which is responsible for capturing alarm information in a fiber optic

network. To develop and study the algorithm, a comprehensive dataset consisting of a full day’s

worth of alarms from February 1, 2023, was provided. This dataset encompasses a significant

volume of data, comprising a total of 534,859 alarm entries. The extensive and representative

nature of this dataset ensures that the algorithm can be thoroughly tested and evaluated for its

effectiveness in handling real-world alarm scenarios.

3.1.1 Model features

As a first step in the pre-processing phase, it is necessary to select the features that are relevant to

the model. This involves identifying and choosing the features that can provide valuable insights

and information. In the context of the problem under investigation in this dissertation, it has been

determined that the majority of features within the dataset hold little relevance to the system. To

ensure simplicity and reduce computational workload, it is essential to remove these irrelevant

features from the model.

The primary objective of this analysis is to explore the relationships among various alarms

within the system. A key factor in the data that plays a crucial role is the correlation between

failures, with a specific emphasis on accurately identifying the specific problem that occurred.

This identification is represented by the variable "specificProblem" throughout the study.

To provide a visual representation of the occurrence frequencies for each problem, the accom-

panying Figure 3.1 illustrates the number of times each problem has been recorded within the

top 20 occurrences over a full day. This visual depiction offers valuable insights into the relative

significance and distribution of different problems within the system, aiding in prioritization and

understanding of the most prevalent issues.

In order to achieve more accurate and effective identification of correlations among AF se-

quences, relying solely on the alarm description parameter is not sufficient. It is also beneficial to

incorporate the "raisedtime" feature, which represents the time at which the alarm occurred. By

including this temporal information, we not only identify and order the alarms but also capture
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Figure 3.1: Top 20 alarm distribution

the temporal distance between them. This temporal aspect can provide more precise indications

of similarities between sequences.

Furthermore, the "alarmedresource_id" feature, which indicates the equipment where the alarm

occurred, has also been considered. By leveraging this feature, we can divide the analysis into re-

gions, enabling the identification of physical distances between equipment. This approach helps

to eliminate potential correlations between different infrastructures.

To enhance the analysis, the combination of the “specificproblem”, “raisedtime”, and “alarme-

dresource_id” features allows for a more comprehensive exploration of AFs. This multi-dimensional

perspective facilitates a deeper understanding of the relationships and patterns within the data, en-

abling more accurate identification and analysis of correlated sequences.

Another feature that could potentially be useful is "clearedtime," which represents the time

when an alarm is cleared or resolved. This feature provides information about the duration of each

alarm, which could offer valuable insights. However, upon analyzing the distribution of alarm

durations, it was observed that the majority of alarms have very short durations. Specifically,

around 90% of alarms have a duration of less than one minute, with over 50% of alarms having a

duration of 0 seconds.

Considering this distribution pattern, it was determined that the "clearedtime" feature may

not contribute significant discriminatory power to the analysis. Including it in the model may

introduce noise or irrelevant information. To visually illustrate this distribution, a graph can be

observed in Figure 3.2.

3.1.2 Chattering

Implementing a method to remove chattering alarms is highly recommended as they do not provide

any valuable information for analysis [38, 41]. Although there is no definitive criterion to identify
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Figure 3.2: Alarms duration distribution

chattering alarms, various techniques are used, with their effectiveness depending on the specific

system being analyzed. The main objective of this step is to eliminate repeated alarms and prepare

the dataset accordingly [42].

In many reported cases, including the present one, the dataset primarily consists of point-based

data, which means that the alarms only contain information about the occurrence timestamp and

not their duration. Typically, a fixed time window (Tw) is employed in these scenarios, represent-

ing a specific temporal interval in which only one occurrence of each alarm is allowed. There are

two common approaches to accomplish this:

• Fixed Data Frame: In this method, once an alarm is triggered, no new occurrences of the

same alarm are accepted during the time window Tw. For instance, if we have an alarm

sequence ai < t1, t2, · · · , tn−1, tn > with n = ∥ai∥, any timestamp ti+x that satisfies ti+x − ti <

Tw (for x > 0) corresponds to the same alarm and will be filtered out. A new alarm of that

type is only accepted after ti +Tw, and the process repeats accordingly.

• Moving Data Frame: This approach is similar to the fixed data frame method, with the dis-

tinction that the Tw period is calculated based on the previous alarm in the original dataset,

rather than the most recent alarm classified as non-chattering. In other words, if the time

difference between ti and the previous alarm ti−1 is less than Tw, the alarm is considered

chattering and is omitted during the pre-processing stage.

Figure 3.3 displays the two analyzed methods of chattering using a window time frame of 1

minute. Both methods can be implemented, and there is no clear superiority of one over the other.

The choice should be based on the specific use case being processed. However, despite the fact
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Figure 3.3: Alarm Chattering: Fixed Vs Moving Data Frame (Tw = 60s)

that the fixed time frame method removes fewer alarms, it has been more widely adopted. This

is because while chattering alarms should not be accepted, data analysts prefer not to remove all

these alarms for fear of losing important information. It is important to carefully consider the

trade-offs between removing chattering alarms and potentially losing important information.

The selection of an appropriate value for the alarm removal period, Tw, is crucial for the effi-

ciency of the chattering process [38, 43]. This value can be fixed for the entire system or configured

specifically for each alarm tag. According to the ISA-18.2 standard [42], an alarm is considered

chattering if it repeats three or more times within a period of less than one minute. However, this

restriction period is often extended to ensure the removal of all potential chattering alarms. Al-

though there are no direct constraints on the chosen value, the period is typically between 60 and
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Figure 3.4: Alarm frequency in original dataset

300 seconds, with a one-minute time frame being the most common choice.

To process the dataset effectively, a time window of two minutes was applied, using the fixed

data frame method. This approach was chosen to remove chattering alarms, resulting in a signifi-

cant reduction in the dataset size. The initial dataset, consisting of over half a million alarms, was

pruned down to approximately 150,000 alarms after the removal process.

To visualize the impact of the preprocessing step, Figures 3.4 and 3.5 provide a comparison

of alarm occurrences in 10-minute intervals before and after the chattering alarm removal. The

graph highlights the effectiveness of the filtering process in reducing alarm clutter and enhancing

the overall quality of the dataset.

Overall, the application of the fixed data frame method and subsequent removal of chattering

alarms has streamlined the dataset, creating a more manageable and insightful dataset for subse-

quent analysis.

3.1.3 Alarm Floods

Now that the dataset has undergone the desired filtering process, we proceed with the final step:

dividing it into alarm sequences. However, before we proceed with the temporal segmentation,

we also perform a spatial division. This involves separating the alarms based on the specific

devices in which they occurred. Since the alarm manager consists of multiple OLTs, it is crucial

to separate the reported alarms for each OLT. This separation allows us to analyze the behavior

of each network segment individually, providing a clearer understanding of the most frequent

problems encountered in each OLT.

This separation is based on the value of the "alarmedresource_id" field, which identifies the

location in the network where the alarm occurred. After discussions with a team knowledgeable

about the network, it was decided that the division would be based on the Passive Optical Network

(PON) associated with the OLT where the alarm was reported. In other words, the division is

performed by examining only the first three values of the "alarmedresource_id" field. The first

value identifies the OLT, the second value represents the respective card, and the third value in-

dicates the downlink PON of the card. This decision was made considering the low correlation
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Figure 3.5: Alarm frequency after chattering (Tw = 120s)

between devices in different PONs and the algorithm’s computational load for similarity analysis.

By dividing the dataset in this manner, we significantly reduced the training time required for the

model. Additionally, this division aligns with the network’s structure, allowing for a more focused

analysis of each PONs behavior.

This spatial segmentation provides valuable insights into the specific performance and behav-

ior of individual PONs within the network. By isolating alarms reported from different PONs, we

can better understand any unique characteristics or issues associated with each segment. This ap-

proach enhances the efficiency and effectiveness of subsequent analyses, enabling more targeted

troubleshooting and problem-solving efforts.

Once the spatial separation is completed, we can focus on the temporal segmentation by iden-

tifying AFs. The objective is to determine the root cause of alarm sequences, as correlated alarms

often occur in close proximity in terms of time. To achieve this, we follow the guidelines provided

by the ISA18.2 standard. According to these guidelines, an AF is defined as follows: it begins

when the alarm rate exceeds 10 alarms per 10 minutes within a 10-minute interval, and it ends

when the alarm rate falls below 5 alarms per 10 minutes within a regular 10-minute interval.

Applying these criteria to the dataset, we initially identified a total of 154 AFs. However,

upon closer analysis, it became evident that 42 of these floods had considerably different sequence

lengths compared to the majority of the floods. To ensure consistency and coherency in the sub-

sequent analysis, we made the decision to remove these 42 AFs from the dataset. This prun-

ing process primarily aimed to expedite the algorithm’s training time, as processing time scales

quadratically with the length of AFs.

By segmenting the remaining AFs, we can isolate and analyze sequences of alarms that are

temporally close and likely related. This segmentation enables a more focused examination of the

root cause within alarm patterns, allowing for a deeper understanding of the underlying issues.

With the dataset now organized into AFs, it is ready for further analysis and the application of

the pattern matching algorithm to identify and explore meaningful relationships among the alarm

sequences.
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3.2 Adapted Smith-Waterman Algorithm

The AF pattern matching problem involves calculating a similarity index between AFs and de-

termining which floods should be classified into the same group or pattern based on this index.

The goal is to identify common segments among AFs within a pattern, as these segments serve

as indicative symptoms of such AFs. By analyzing the common segments, it becomes possible to

assess whether an incoming flood belongs to a particular pattern.

This approach, proposed in [4, 10], builds upon the principles of the Smith-Waterman Al-

gorithm, described in 2.2.4, for similarity analysis of segments and introduces a novel element:

temporal information. By incorporating time into the analysis, this approach allows for a more

flexible and nuanced interpretation of alarm sequences. For instance, if two alarms occur in close

proximity, this method does not differentiate between which one was reported first, thereby ac-

commodating variations in reporting order. Moreover, it can effectively discern alarm pairs that

occur with significant temporal differences, indicating a lower level of correlation between them.

By considering the temporal dimension, this approach provides a richer understanding of alarm

patterns and their interrelationships, enabling more accurate and insightful alarm management in

complex systems.

To gain a better understanding of the algorithm, let’s consider a scenario where we have a set

of alarms, denoted by K, and define a time-stamped AF as follows:

A =< a1,a2, · · · ,aM >

am = (em, tm),m = 1,2, · · · ,M.

Here, em represents the alarm type from the set K, and tm represents the corresponding time

stamp of the alarm occurrence for each alarm am.

In order to explain the new method of calculating the similarity score for pairs of time-stamped

alarms, it is necessary to calculate the temporal distance between each alarm in relation to their

time stamps. This is achieved by introducing the concept of a time distance vector for each AF:

dm = [d1
m,d

2
m, · · · ,dK

m ]
T

dK
m =

min1≤i≤M{|tm − ti| : ei = k} if the set is not empty

∞ otherwise
. (3.1)

Each entry (dK
m) in the time distance vector (dm) provides valuable information about the time

gap between the m-th alarm and the nearest alarm of type k on the time axis. If there are no

alarms of type k present in the alarm sequence (i.e., none of the alarms have the alarm type k), the

corresponding time gap is considered infinite (∞).

To illustrate this further, let us consider an example. Imagine that we have an alarm sequence

where each alarm is associated with a specific type, such as temperature or pressure. The time
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distance vector for a particular alarm, let us say the m-th alarm (am), captures the time gaps be-

tween this alarm and the nearest alarm of type k (dK
m). If there are no alarms of type k present in

the sequence, the time gap is considered infinite because there is no reference alarm of that type

to compare it with.

It’s important to note that the m-th alarm itself has the alarm type em, so the corresponding

entry (dm
em

) in the time distance vector is naturally zero since the time gap between an alarm and

itself is zero.

Once the distances have been calculated, they need to be converted into time weights. This

conversion is achieved by applying a monotonically decreasing function that maps the distances

to weights. This function should satisfy the properties of f (0) = 1 and f (∞) = 0. By applying this

function to each distance, we obtain the corresponding time weight. The resulting time weight

vector captures the relative importance or influence of each alarm type based on their temporal

proximity. The time weight vector can be obtained as follows:

Wm = [w1
m,w

2
m, · · · ,wK

m]
T

= [ f (d1
m), f (d2

m), · · · , f (dK
m)]

T
. (3.2)

As a result, the em − th entry of the time weight vector Wm is 1, indicating that the m-th alarm

belongs to its corresponding alarm type. When an alarm event occurs very close to the m-th alarm

on the time axis, it receives a high weight in the time weight vector. Conversely, if a specific alarm

type is not present in the vicinity of the m-th alarm on the time axis, it is assigned a low weight.

This weight gradually diminishes and approaches zero as the time gap increases. By using the

time weight vector, an alarm event is not restricted to a single alarm type but is associated with

all alarm types with varying weights, reflecting the temporal relationship between alarms. For the

implementation of the algorithm, the scaled Gaussian function was chosen:

f (x) = e−
x2

2σ2 . (3.3)

The value σ controls the time weight according to the distance. A higher value of σ results in

a wider curve for the function, leading to a larger or equal similarity index. On the other hand, if

σ is set to 0, the curve becomes non-existent, and the algorithm behaves the same as the standard

Smith-Waterman algorithm.

By adjusting the value of σ , you can fine-tune the sensitivity of the algorithm to capture

different levels of temporal proximity between alarm events. A higher σ value allows for a broader

acceptance of time gaps, potentially capturing more similar patterns. Conversely, a lower σ value

narrows the acceptance window, focusing on more immediate temporal relationships.

It’s important to experiment with different σ values to find the optimal balance between cap-

turing relevant temporal relationships and avoiding false matches. The choice of σ will depend on

the specific characteristics of your alarm data and the desired level of flexibility in the similarity

assessment.
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When comparing two sequences, it is not recommended to apply the same function to both

sequences. This is because the concept of temporal difference is relative rather than absolute.

Applying a Gaussian function to both sequences can lead to duplicate matches if there are many

closely spaced alarms, which can result in an increase in the similarity index. In [9], to address

this, a different function is applied to the second sequence:

f (x) =

1 if x = 0

0 otherwise.
(3.4)

However, this can lead to undesired alignments, particularly when multiple different alarms

occur at the same timestamp. To counteract this tendency, the time weight vector was calculated

as follows:

wk
m =

1 if em = k

0 otherwise.
(3.5)

Now, let us redefine the similarity score, denoted as s(a, b), for a pair of time-stamped alarms

s((ea, ta),(eb, tb)). In the original Smith-Waterman algorithm, the similarity score function only

had two possible values: a match score of 1, indicating that the alarms are similar, or a mismatch

penalty denoted as µ , indicating a dissimilarity between the alarms.

However, in the modified algorithm, a more flexible approach is introduced. The similarity

score is now calculated as a linear combination of the match score and the mismatch penalty. This

means that the score value is determined by a weighted combination of these two factors. The

specific weights or ratios used in the combination are based on the time weight vectors, Wa and

Wb, associated with each alarm. The new similarity score can be obtained as follows:

s((ea, ta),(eb, tb)) = max
1≤k≤K

[wk
a ×wk

b](1−µ)+µ. (3.6)

After obtaining the similarity indexes for all pairs, the next step is to construct the H matrix,

which follows a similar approach to the original Smith-Waterman algorithm. The H matrix is built

using Equation 2.2.

After obtaining the complete matrix, the similarity index is represented by the maximum value

in the matrix and the optimal local alignment is obtained through a backward path search starting

from that element.

It is important to note that, unlike the Smith-Waterman algorithm, the similarity score between

two sequences, S(A, B), is not necessarily equal to S(B, A). This is because a Gaussian function

is applied only to the temporal distance of one of the sequences and not to both. As a result,

both similarity indexes between the two AFs should be calculated by inverting the order of the

sequences. The similarity index between the two sequences is then defined as the maximum value

between these two indexes.
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Table 3.1: AFs examples

AF A AF B
Alarm Timestamp Alarm Timestamp
DESC 20:10:24 LOSi 15:54:07
RX_LOWER 20:10:24 DESC 15:54:07
LOFi 20:10:24 LOFi 15:54:24
DFi 20:10:28 LOAMi 15:54:40
LOAMi 20:10:28 LOFi 15:56:51
LOFi 20:13:03 DFi 15:57:17

LOAMi 16:01:05
LOSi 16:01:06

Following the matrix calculation formula, the maximum possible similarity value between two

sequences is determined by the length of the shorter sequence. This means that as the sequences

become longer, the similarity index between them increases, which may not be desirable. To

address this, the similarity index can be normalized between 0 and 1. This can be achieved by

dividing the maximum value in the H matrix by the length of the shorter sequence. Therefore,

if two segments have exactly the same pattern, the normalized similarity value will always be 1,

regardless of the lengths of the sequences.

By normalizing the similarity index, it allows for fair comparisons between sequences of dif-

ferent lengths and ensures that the similarity score reflects the similarity of the patterns rather than

the sequence lengths.

We take as an example two partial AFs presented in Table 3.1 obtained from the provided

dataset. The set of unique alarms consists of 6 alarms, denoted as Σ = {′DESC′,′ RX_LOWER′,
′LOFi′,′ DFi′,′ LOAMi′,′ LOSi′}. Segment A has a length of 7, while Segment B has a length of 9.

To begin, we need to calculate the time distance vectors. Each alarm instance will have a

matrix size of 7x6, where 7 represents the length of the segment, and 6 represents the number of

unique alarms. Let us consider the first alarm in AF A as an example. It belongs to the ′DESC′

alarm type, resulting in a distance of 0 to the ′DESC′ alarm. For instance, the minimum distance

to a ′LOAMi′ alarm is 4 seconds. As there are no ′LOSi′ alarms in sequence A, all instances will

have an infinite distance to this particular alarm type. Thus, the time distance vectors for segment

A yield the results in Table 3.2.

By applying the formula previously presented in Equation 3.3, we obtain the following time

weight vectors shown in Table 3.3.

By setting the algorithm parameters δ = −0.4 and µ = −0.6, we can calculate the matrix

H, representing the similarity index of alarm sequences A and B, along with the optimal local

alignment. This calculation process closely follows the classical Smith-Waterman algorithm, with

the key difference lying in the calculation of the similarity score.

For example, when determining the value of H4,8, we need to evaluate the similarity score

between the 3rd alarm in sequence A and the 7th alarm in sequence B. To accomplish this, we

utilize the time weight vectors associated with each alarm. In this case, the time weight vector
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Table 3.2: Time distance between alarm types

AF A DESC RX_L LOFi DFi LOAMi LOFi LOAMi
DESC 0 0 0 4 4 159 164
RX_LOWER 0 0 0 4 4 159 164
LOFi 0 0 0 4 4 0 5
DFi 4 4 4 0 0 155 160
LOAMi 4 4 4 0 0 5 0
LOSi ∞ ∞ ∞ ∞ ∞ ∞ ∞

Table 3.3: Time weight between alarm types

AF A DESC RX_L LOFi DFi LOAMi LOFi LOAMi
DESC 1 1 1 0.1353 0.1353 0 0
RX_LOWER 1 1 1 0.1353 0.1353 0 0
LOFi 1 1 1 0.1353 0.1353 1 0.0439
DFi 0.1353 0.1353 0.1353 1 1 0 0
LOAMi 0.1353 0.1353 0.1353 1 1 0.0439 1
LOSi 0 0 0 0 0 0 0

for the 3rd alarm in sequence A is given as w3 = [1 1 1 0.1353 0.1353 0]T , while the time weight

vector for the 7th alarm in sequence B is w7 = [0 0 0 1 0 0]T , obtained using the time weighting

function. By performing an element-wise multiplication of these two vectors and selecting the

largest element, which is 0.1353, we can calculate the similarity score based on Equation 3.6:

0.1353(1+0.6)−0.6 =−0.3835.

Consequently, the value of H4,8 can be determined using Equation 2.2:

H4,8 = max(H3,7 +(−0.3835),H3,8 −0.4,H4,7 −0.4,0)

H4,8 = max(1.6+(−0.3835),1.2−0.4,3−0.4,0) = 2.6.

By calculating the entire matrix using this approach, we obtain Table 3.4.

As mentioned earlier, since the indexes are not commutative (S(A, B) ̸= S(B, A)), it is also

necessary to calculate the H matrix with the sequences swapped. By applying the same calculation

process for the H matrix, we obtain the Table 3.5.

As we can see, the first matrix, representing the similarity from A to B, has a value of 5.2, while

the second matrix has a value of 4.2. This indicates that the similarity between the two sequences

is 5.2. To normalize the similarity index, we divide the value by the length of the shorter segment,

resulting in the following result:

S(A,B) =
max(5.2,4.2)

min(7,9)
= 0.743.

By following the same approach on the dataset from February 1, 2023, as presented earlier,

we conducted pattern matching for all 112 pairs of AFs. The outcomes were used to construct a
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Table 3.4: Matrix H between A and B

A DESC RX_L LOFi DFi LOAMi LOFi
B 0 0 0 0 0 0 0

LOSi 0 0.2 0.65 0.25 0 0 0
DESC 0 0.9 1.47 1.07 0.67 0.27 0
LOFi 0 0.5 1.6 1.2 1.61 1.21 0.98

LOAMi 0 0.6 1.2 2.5 2.1 1.7 1.4
LOFi 0 0.24 1.12 2.1 3.5 3.1 2.7

LOAMi 0 0 0.72 1.7 3.1 4.25 3.85
DFi 0 0 0.32 1.6 2.7 2.7 5.2

LOAMi 0 0 0 1.2 2.3 3.23 4.8
LOSi 0 0 0 0.8 1.9 2.83 4.4

Table 3.5: Matrix H between B and A

B LOSi DESC LOFi LOAMi LOFi LOAMi DFi LOAMi LOSi
A 0 0 0 0 0 0 0 0 0 0

DESC 0 0 0.87 0 0 0 0 0 0 0
RX_L 0 0 0.47 1.6 1.2 1.9 1.5 1.4 1 0.8
LOFi 0 0.3 0.07 0.68 2.55 2.15 1.75 1.35 0.6 0.4
DFi 0 0 0 0 0.86 1.56 3.35 2.95 2.6 2.2

LOAMi 0 0 0 0 0.46 1.6 2.1 3.9 3.5 3.1
LOFi 0 0.2 0 0 0 0 0 3.5 4.2 3.8

heatmap that visualizes the similarities between these AFs, depicted in Figure 3.6.

3.3 Post-processing

After calculating the similarity indexes between all pairs of AFs, it is necessary to implement

methods for post-processing and analyzing this data.

Post-processing refers to additional steps or operations performed on data or results after an

initial analysis or computation. Its purpose is to refine, enhance, or transform the output in order

to improve its quality, usefulness, or compatibility with further processes.

In the context of AF analysis, post-processing plays a crucial role in refining the obtained

similarity indexes and making them more meaningful and actionable. This involves applying

techniques to reduce noise, eliminate outliers, and enhance the overall quality of the data. The

goal is to extract relevant information and insights that can be used for decision-making or further

analysis.

Since analyzing AFs individually would require a significant amount of time and human re-

sources, clustering AFs based on their similarity allows for classification and study to be performed

on clusters. To achieve this, a method called hierarchical clustering was utilized. This approach

facilitates the grouping of AFs with similar characteristics, enabling more efficient and effective

analysis of the data.



34 Pattern Matching of Alarm Floods Sequences

Figure 3.6: Similarity heatmap

Furthermore, after the AFs are grouped using clustering, a method was developed to charac-

terize each cluster through an exemplar sequence. In other words, the AF that is closest to the

centroid of the cluster is selected as the representative sequence, known as the archetype.

In the following sections, this topic will be further discussed in detail, providing insights into

the post-processing techniques and the characterization of clusters.

3.3.1 Alarm flood clustering

AF clustering is a technique used to group similar AFs together based on their patterns, charac-

teristics, or similarities. It is a post-processing method that follows the calculation of similarity

indexes between AFs. The goal of clustering is to identify common patterns or behaviors within

the AFs and to group them into meaningful clusters.

In the context of alarm management and analysis, clustering can help uncover hidden struc-

tures, relationships, and trends among the alarms. By clustering AFs, we can gain a better un-

derstanding of their underlying causes, identify recurring patterns, and classify them into distinct

groups or categories.

Various clustering algorithms can be employed for AF analysis, such as hierarchical clustering,

k-means clustering, or density-based clustering. These algorithms consider different measures of
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Table 3.6: Hieralchical clustering - similarity matrix

AF1 AF2 AF3 AF4 AF5 AF6
AF1 1 0.2 0.85 0.7 0.4 0.8
AF2 0.2 1 0.3 0.2 0.5 0.4
AF3 0.8 0.3 1 0.6 0.3 0.7
AF4 0.7 0.2 0.6 1 0.9 0.2
AF5 0.4 0.5 0.3 0.9 1 0.2
AF6 0.8 0.4 0.8 0.2 0.2 1

similarity or dissimilarity between AFs and group them based on their proximity or similarity in

feature space.

In the specific case studied in this dissertation, where we have a pairwise similarity scores

matrix, a post-processing method based on hierarchical clustering was chosen. Hierarchical clus-

tering is a technique that groups similar data points into clusters based on their proximity or sim-

ilarity. It allows for the identification of patterns or structures within the AFs, enabling a deeper

understanding of their relationships and characteristics.

The method involves transforming the similarity table, which contains the similarity values

between all pairs of AFs, into a distance matrix. This is done by subtracting each similarity

value from 1, resulting in a distance value. The purpose of this transformation is to measure the

dissimilarity or distance between AFs. This information is crucial for performing hierarchical

clustering and determining the optimal clusters based on the defined distance threshold.

Initially, each AF is assigned to its own individual cluster. For example, if there are 10 AFs,

the algorithm starts with 10 separate clusters. The next step is to merge the clusters that have

the smallest distance between them. There are different approaches to determining the distance

between clusters during the merging process:

• Single-linkage: The distance between the merged cluster and the remaining clusters is de-

termined by the smallest distance between any two AFs in the merged cluster.

• Complete-linkage: The distance between the merged cluster and the remaining clusters is

determined by the largest distance between any two AFs in the merged cluster.

• Average-linkage: The distance between the merged cluster and the remaining clusters is

calculated as the average distance between each AF in the merged cluster and every AF in

the remaining clusters.

The distance matrix is updated after each merge, and the process continues until a certain

distance threshold is reached. If no distances below the threshold are found during the merging

process, the cluster aggregation stops and the final clusters are determined.

To illustrate this process, let us consider an example with six AFs and a maximum distance

threshold of 0.4. Using the similarity table shown in Table 3.6 as an example, we can demonstrate

how the clusters are formed.
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Table 3.7: Hieralchical clustering - distance matrix part 1

AF1 AF2 AF3 AF4 AF5 AF6
AF1 0 0.8 0.15 0.3 0.6 0.2
AF2 0.8 0 0.7 0.8 0.5 0.6
AF3 0.2 0.7 0 0.4 0.7 0.3
AF4 0.3 0.8 0.4 0 0.1 0.8
AF5 0.6 0.5 0.7 0.1 0 0.8
AF6 0.2 0.6 0.2 0.8 0.8 0

Table 3.8: Hieralchical clustering - distance matrix part 2

AF1 AF2 AF3 AF4/AF5 AF6
AF1 0 0.8 0.15 0.6 0.2
AF2 0.8 0 0.7 0.8 0.6
AF3 0.2 0.7 0 0.7 0.3

AF4/AF5 0.6 0.8 0.7 0 0.8
AF6 0.2 0.6 0.2 0.8 0

Table 3.9: Hieralchical clustering - distance matrix part 3

AF1/AF3 AF2 AF4/AF5 AF6
AF1/AF3 0 0.8 0.7 0.3

AF2 0.8 0 0.8 0.6
AF4/AF5 0.7 0.8 0 0.8

AF6 0.2 0.6 0.8 0

Table 3.10: Hieralchical clustering - distance matrix part 4

AF1/AF3/AF6 AF2 AF4/AF5
AF1/AF3/AF6 0 0.8 0.8

AF2 0.8 0 0.8
AF4/AF5 0.8 0.8 0

By converting the matrix into distances, we obtain Table 3.7.

The two clusters with the lowest distance are AF4 and AF5, with a distance of 0.1. For the

merging of these two clusters, the complete-link method was chosen. This decision is based on

the fact that in the studied context, it is important to consider the maximum distance between each

element of the cluster to ensure that no new AFs are associated that are not similar to all elements

of the cluster. By merging these two clusters using the complete-link method, we obtain the Table

3.8.

The table visually represents the merged cluster, showing the connection between AF4 and

AF5. This merging process helps to create more cohesive clusters by grouping together AFs that

exhibit high similarity.

Repeating the process, we now merge the cluster AF1 with AF3, resulting in the Table 3.9.

The merging of AF1 and AF3 follows the same methodology as before, using the selected linkage
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Figure 3.7: Hierarchical clustering

method to determine the distance between the merged cluster and the remaining clusters.

As there is still a similarity distance below the threshold, it is possible to add sequence AF6 to

the cluster AF1/AF3. This results in the final clusters, as shown in the Table 3.10.

Once the algorithm finishes, it results in three distinct clusters, each containing a group of

closely related AFs. The first cluster comprises AFs 1, 3 and 6, indicating their high similarity.

The second cluster consists of AF 2, which stands alone as a distinct sequence. Finally, the last

cluster combines sequences 4 and 5, highlighting their close relationship.

For a clearer understanding of the clustering analysis performed, Figure 3.7 depicts the hier-

archical clustering based on the similarity heatmap shown in Figure 3.6.

This diagram illustrates the distances between all sequences, making it easier to visualize the

boundaries of each cluster in the model. By using this diagram, we can better understand the

groupings of sequences and their relationships within the dataset.

For the dataset under analysis, a minimum similarity threshold of 0.5 was chosen for sequences

within a cluster. This resulted in the identification of 11 clusters, encompassing a total of 95 AFs.

The clustering process ensures that each cluster maintains a maximum level of similarity, with

the dissimilarity between any two AFs within a cluster being below a specified threshold. This

guarantees that the clusters are formed based on strong similarities, promoting the identification

of coherent patterns and meaningful associations among AFs.
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With the clusters defined, the next step is to select an archetype AF for each cluster. The

archetype represents a representative sequence that encapsulates the essential characteristics of its

respective cluster, providing a concise and informative representation of the clustered data.

3.3.2 Clusters Archetype Alarm Floods

Once the AFs are grouped into clusters, it is necessary to obtain a representative segment for each

cluster. This step aims to reduce computational load. Instead of calculating the similarity index

for all elements within the cluster when new data is presented for analysis, it is only calculated for

the AF that represents the cluster.

This process of finding a representative segment helps streamline the analysis by reducing the

number of calculations required. By using a single representative AF to characterize the cluster,

the computational burden is significantly reduced. This approach enables faster and more efficient

analysis of new data, as the similarity index computation is focused on the representative AF rather

than the entire cluster.

There are different approaches to selecting the archetype of a cluster, depending on the clus-

tering algorithm and the data. Some common methods include:

• Centroid: The centroid is the mean position of all data points in the cluster. It represents

the central tendency of the cluster.

• Medoid: The medoid is the data point in the cluster that has the smallest average dissimi-

larity to all other points. It is a real data point from the cluster.

• Exemplar: The exemplar is a representative data point that best exemplifies the character-

istics of the cluster. It can be chosen based on criteria such as proximity to the cluster center

or the highest density within the cluster.

The centroid method is commonly used due to its accuracy in obtaining the reference point of

the cluster. However, in the case of complex cluster elements with categorical variables, it was

not possible to find a solution to exactly determine a sequence that represents the centroid of the

cluster. To overcome this issue, the medoid method was chosen instead.

In the practical case under study, the medoid method selects an actual AF from the cluster

rather than calculating a fictitious sequence that would be at the center of the cluster. The chosen

AF is the one with the smallest distance to the other alarms in the cluster. This approach ensures

that the selected AF is a real data point within the cluster and is representative of its characteristics.

To determine the medoid from the distance matrix, one can calculate the sum of distances

for each row or column, which represents the dissimilarity between each AF and the others. The

medoid is then identified as the row or column with the lowest sum, indicating the AF that exhibits

the smallest overall dissimilarity to the remaining alarms in its cluster.

Using the AF1/AF3/AF6 cluster as an example from the clustering chapter, we have obtained

the Table 3.11.
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Table 3.11: Distance matrix of the cluster AF1/AF3/AF6

AF1 AF3 AF6 Σ

AF1 0 0.15 0.2 0.35
AF3 0.15 0 0.3 0.45
AF6 0.2 0.3 0 0.5

By calculating the sum of distances for each row, we can determine the medoid of the cluster.

In this case, when examining the sums of distances for each row in the distance matrix, we observe

that the row corresponding to AF1 has the smallest sum. This indicates that AF1 is the AF that

exhibits the least dissimilarity compared to the other AFs in the cluster.

Being the medoid of the cluster, AF1 serves as the representative sequence that best captures

the overall characteristics of the AFs within the cluster. It can be considered the most typical or

central sequence, as it demonstrates the closest similarity to the rest of the AFs.
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Chapter 4

Results

Throughout the development of this work, the dataset covering a 24-hour period on February 1,

2023, was utilized. However, for model validation, a new dataset comprising a week’s worth of

alarm records, totaling over 5.5 million alarms, was made available. 70% of the alarms were

used for training the model, enabling the generation of AF clusters. The remaining alarms were

inputted into an evaluation model, which involved comparing the newly obtained AFs with the

clusters generated during the training phase.

In this chapter, we will discuss the results obtained from the analysis of the provided data.

Special attention was given to the efficiency and model speed, with the aim of determining the

feasibility of applying a real-time system. The challenges and opportunities of deploying the

model in a real-time setting will be carefully examined and assessed. Moreover, the insights

gained from the evaluation process will shed light on the model’s capability to handle large-scale

datasets and provide meaningful RCA in a time-sensitive manner.

4.1 Chattering

Regardless of whether the data is used for model training or testing, it needs to undergo pre-

processing. Although the chattering pre-processing step is relatively simple to implement, its

efficiency in processing speed should be taken into consideration. With a dataset of this size, there

is a significant processing load.

Efficient pre-processing is of paramount importance, particularly when dealing with large

datasets, as it can significantly influence the overall performance and speed of subsequent analysis

and modeling tasks. By streamlining the chattering detection process, computational resources

are utilized more effectively, resulting in quicker and more dependable RCA outcomes. Without a

fast and efficient model, applying online RCA becomes unfeasible. Therefore, optimizing the pre-

processing steps is essential to enable real-time or near-real-time RCA in dynamic and complex

systems.

Initially, an algorithm was created that simply took the original dataset and, for each alarm

iteration, analyzed a two-minute time window to check for any instances of the same type of
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alarm occurring on the same device. While this approach worked as expected, it proved to be

highly inefficient as it traversed alarms that were unrelated to the filtering process.

To address this issue, the dataset was efficiently subdivided into pairs of combinations based on

"alarmedresource_id" and "specificalarmabbrev," resulting in approximately four hundred thou-

sand combinations. By applying the chattering detection method to each of these smaller subsets,

we were able to drastically reduce the processing time compared to the original approach. This

optimization allowed us to process around half a million alarms within 30 minutes, whereas the

previous method took approximately 4 hours.

In the dataset under analysis, the chattering algorithm successfully removed approximately 2.7

million (49%) reported alarms. This outcome highlights the repetitive nature of alarm reporting,

which is not very informative and does not provide new insights for problem analysis. By effec-

tively eliminating chattering alarms, the dataset becomes more refined and focused, ensuring that

the subsequent analysis and modeling tasks are based on meaningful and relevant data.

In Figure 4.1, we can observe the top pairs of reported alarms in the dataset before and after

applying the chattering detection method. Pre-chattering, we can clearly see an excessive number

of alarms, particularly those of type LCGDi. However, after the chattering process, these alarms

almost entirely disappear from the dataset’s top alarm pairs. This observation underscores that the

alarm manager generates a considerable number of repeated alarms, especially of type LCGDi.

This finding also reinforces the importance of pre-processing techniques in RCA, as it helps

reduce unnecessary noise and improves the overall efficiency of the analysis process. With a

cleaner dataset, the subsequent steps of pattern matching and clustering can yield more accurate

results, leading to a more effective RCA outcome.

Additionally, the removal of chattering alarms from the dataset has implications for the ap-

plication of real-time systems. By reducing the number of redundant alarms, a real-time RCA

system can operate with greater speed and precision, allowing for timely detection and resolution

of critical issues in complex systems.

4.2 Alarm Flood similarity

Another fundamental aspect of pre-processing is the detection of AFs. The definition of an AF

can vary depending on the system under analysis. For this particular problem, given the limited

knowledge of the dataset, it was decided to implement the norm defined by ISA-18.2. Thus, an

AF is considered to start when there are more than ten alarms within a 10-minute period and ends

when the number of alarms within the same period drops below five. Following this approach,

in the seven-day dataset, we identified 3363 AFs, comprising 542534, 23.6% of all alarms (after

chattering).

After identifying all the AFs in the dataset, they were divided into two groups. As mentioned

earlier, 70% of the AFs were used for the training model, while the remaining 30% were used for

validation. Thus, in this dataset, 1750 AFs were used for training, and 760 for validation. The AFs

selected for training were then subjected to the proposed similarity calculation between them.
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Figure 4.1: Alarm pairs difference with chattering

This partitioning of the dataset into training and validation sets allows for a robust evaluation

of the model’s performance. By using a significant portion of the data for training, the model can

learn patterns and similarities within the AFs, improving its ability to generalize and identify root

causes in unseen data.

The only parameter that influences the computation time of each similarity is the length of the

AF sequence. Since longer sequences require more processing time, and it is not very common

for AFs to exceed 30 alarms, all AFs with a size greater than 60 alarms were excluded from the

similarity calculation. This decision aimed to expedite the training process without compromising
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the selected sample’s value.

By removing the longer AFs from the similarity calculations, we can significantly reduce the

computational overhead during training while still capturing relevant patterns and behaviors. This

optimization ensures a more efficient and streamlined analysis, allowing us to focus on the most

representative and informative AFs within the dataset.

Additionally, this approach reflects a practical consideration, as very long AFs may not be as

common or relevant to the specific analysis at hand. By focusing on a subset of AFs that are more

representative of typical scenarios, we can obtain more accurate and actionable results from the

subsequent data mining techniques.

Given the substantial number of AFs in the dataset, calculating the similarity index for all

pairs would be time-consuming and result in unnecessary comparisons between dissimilar AFs.

To optimize the process, a divide and conquer strategy was implemented, dividing the AFs based

on the number of common alarm types they share. This approach enables the formation of initial

clusters that are less refined but can be processed rapidly. Subsequently, each of these clusters is

further subdivided into more detailed clusters, allowing for faster and more focused analysis.

This division and clustering strategy efficiently groups similar AFs together, reducing the time

and computational resources required for similarity analysis. By first creating smaller clusters and

then refining them, the model can quickly identify patterns and similarities between AFs, which

is crucial for effective RCA in fiber optic networks. For this particular system, a threshold of at

least three common alarm types was chosen. This value was carefully considered to maximize the

separation of more distant AFs while ensuring that highly similar sequences were not split apart.

The main issue with this approach is that the relationship between the number of alarms and

computational load is quadratic. This means that if the number of AFs doubles, the number of

similarity calculation iterations will quadruple, resulting in four times more time consumption.

Consequently, this approach lacks efficiency when dealing with the scalability of the training

dataset. To address or at least minimize this inherent algorithmic nature, optimizing the similarity

calculation and implementing a multi-threaded algorithm that allows multiple iterations to run

simultaneously during model training would help alleviate processing time.

4.3 Clustering and archtype

A visual representation of the AFs’ distances within the training model can be observed in Figure

4.2.

The application of hierarchical clustering to this model proves to be a highly effective method

for identifying distinct clusters of AFs. It efficiently groups similar AFs together, enabling them

to be analyzed collectively. By employing the complete-link method to merge individual clusters

into larger ones, we ensure that all AFs within the same cluster are never more than 0.4 index

distance apart, as defined by the distance threshold.

In this research, the chosen threshold of 0.4 was deemed suitable, as it strikes a balance be-

tween creating a sufficient number of sequences within each cluster while maintaining granularity.
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Figure 4.2: Hieralchical clustering of the 7 days

A higher threshold would result in larger clusters, but they would be less refined. Conversely, a

lower threshold would yield more detailed clusters, but a considerable number of AFs might not

fit into any cluster, leading to data loss. The selected threshold provides a meaningful trade-off

between cluster size and precision, facilitating accurate and insightful RCA.

With this approach, a total of 25 clusters were obtained. However, clusters with less than 10

AFs were removed from the analysis, as they represent a very small sample size and might lead

to erroneous conclusions for network operators. After applying this filter, the remaining clusters

were found to be mostly composed of AFs with more than 30 alarms, indicating the detection

of numerous similar sequences in the dataset. Only 904 (26.9%) AFs were not associated with

any final cluster, suggesting that a majority of the system’s issues can now be understood more

efficiently, as the most common problems have been identified.

As previously mentioned, the archetype AF within each cluster represents the closest similarity

to all other AFs within that cluster. By reducing all the AFs in a cluster to a single archetype, the

analysis for network operators becomes significantly faster and more straightforward.

Following a detailed analysis of each AF, the 25 archetypes were selected. It was observed

that each archetype is distinct from the others, suggesting the identification of various types of

problems that may have different root causes. This outcome underscores the model’s ability to

uncover diverse issues in the system and provides valuable insights for resolving and preventing

them effectively. The identified archetypes serve as representative examples, facilitating quicker

problem diagnosis and resolution for network operators.
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Figure 4.3: Association of the new data with the clusters

4.4 Test model

After selecting all the archetype AFs from the training clusters, the next step involves analyzing

the AFs from the validation dataset. These new sequences are subjected to the proposed similarity

algorithm, but instead of comparing each AF with all others, each one is compared with all the

archetypes generated during training.

Upon calculating the similarities, we found a total of 542 AFs from the test dataset that had a

similarity index of 0.6 or higher with at least one of the clusters, representing 71.3% of the AFs

associated with a known cluster.

This result indicates that a significant portion of the new dataset contains alarm sequences

previously identified and represented by the archetypes. Consequently, these sequences can be

considered as known AFs, enabling the network operator to focus more on identifying the root

causes of the remaining AFs. By recognizing familiar AFs, the operator can allocate resources

efficiently and prioritize the analysis of unfamiliar alarm patterns, contributing to quicker and

more effective root cause identification.

Figure 4.3 illustrates the distribution of AFs across different clusters. Notably, cluster 1 ex-

hibits a significantly higher number of AFs compared to other clusters, suggesting that a substantial

portion of the detected issues share a common root cause.
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Conclusions and Future Work

By utilizing the modified Smith-Waterman Algorithm, this research aimed to enhance the accuracy

and effectiveness of pattern matching in AF sequences. The algorithm’s ability to handle local

alignments and its sensitivity to gaps and mismatches make it well-suited for capturing intricate

patterns and subtle variations in alarm occurrences.

Through the implementation, this dissertation explored the potential of utilizing advanced SA

techniques in the context of alarm management. By applying this algorithm to AF sequences,

researchers can uncover meaningful patterns, clusters, and trends that may go unnoticed using

traditional approaches.

Moreover, the study extended beyond theoretical exploration and delved into the practical

implementation studied algorithm. The algorithm has been adapted to handle the specific charac-

teristics and requirements of alarm data, considering factors such as alarm timing, and contextual

information. This ensures the algorithm’s relevance and effectiveness in the AF analysis domain.

By leveraging the Smith-Waterman Algorithm and its adaptations, this dissertation contributed

to the advancement of pattern matching techniques for AF sequences. The results obtained through

this research endeavor hold the potential to enhance alarm management strategies, improve fault

detection and diagnosis, and ultimately optimize system performance and reliability.

5.1 Future Work

In the context of future work, there are several key tasks to enhance the developed system. One of

the primary objectives is to create an online AFs similarity model capable of efficiently identifying

correlations between new AFs and previously trained clusters. This real-time or near-real-time

model would automatically enhance the AFs, enabling network operators to dedicate more time to

investigating unknown sequences of alarms.

To further optimize the system, it is crucial to improve the distance calculation between AFs,

reducing the processing time required for training new AFs. This enhancement would signifi-

cantly increase the system’s capacity to handle larger volumes of data, ensuring scalability and

robustness.
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Additionally, the implementation of multi-threading could significantly boost processing speed,

further streamlining the entire analysis process. This improvement would lead to faster results and

more agile decision-making, enhancing the overall efficiency of the RCA.

Furthermore, exploring advanced machine learning techniques and algorithms could poten-

tially lead to more accurate and precise clustering of AFs, enabling deeper insights into the under-

lying patterns and correlations. Embracing the latest advancements in data mining and artificial

intelligence would undoubtedly strengthen the system’s capability to handle complex scenarios

and deliver more reliable results.

Finally, conducting extensive real-world testing and validation on different datasets and net-

work environments would be crucial to ensure the model’s generalizability and effectiveness in

diverse operational settings. By continuously refining and updating the model based on new data

and insights, organizations can maintain a proactive approach to RCA and continuously improve

the reliability and resilience of their systems.
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