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Abstract

Machine Learning Operations (MLOps) offers excellent possibilities for automation, development,
version control, testing, model training, retraining and monitoring that are perfect not only for user
interaction, but for developers and Machine Learning (ML) engineers to create, update and main-
tain predictive models. Active Learning is a branch of ML that involves humans in the training
process of ML models to increase the accuracy of predictions by requesting feedback for queries
chosen by it. This document proposes a MLOps system that focus on combining these two con-
cepts providing the user with an interactive platform where they can serve as a feedback provider
during the training of ML models, while trying to improve the Replicability and Reproducibility
aspects of ML research and development, often ignored or neglected, by introducing a structured
and organized view of the training process, models and datasets used. Two classification problems
were studied using the developed tool, revealing that active learning is not always advantageous in
this specific form, leading to the need to develop more generic solutions that encompass a wider
range of classification problems that deal with their inherently specificities, but also the need to
investigate the effect of the Oracle’s subjectivity.
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Resumo

Machine Learning Operations (MLOps) possibilita excelentes possibilidades para a automação,
desenvolvimento, controlo de versões, testagem, treino de modelos, retreino e monitorização que
são perfeitas para não só interação com utilizadores, mas também desenvolvedores e engenheiros
de Machine Learning (ML) para criar, atualizar e manter modelos preditivos. Active Learning é
um ramo de ML que envolve humanos no processo de treino de modelos de ML para aumentar
a precisão das predições, pedindo feedback acerca de dúvidas na classificação escolhidas pelo
modelo. Este documento propõe um sistema MLOps que se centra na combinação destes dois
conceitos oferecendo ao utilizador uma plataforma interativa onde ele pode servir como provedor
de feedback durante o treino de modelos de ML, tentando ao mesmo tempo melhorar os aspetos
de Replicabilidade e Reprodutibilidade nos contextos de investigação e desenvolvimento de ML,
muitas vezes ignorados ou negligenciados, introduzindo uma vista do processo de treino, mod-
elos e dados usados estruturada e organizada. Dois problemas de classificação foram estudados
usando a ferramenta desenvolvida, revelando que active learning não é sempre vantajoso nesta
específica forma, levando à necessidade de desenvolver soluções mais genéricas que abranjam um
maior número de problemas de classificação que lidem com as suas especificidades inerentes, mas
também a necessidade de investigar os efeitos da subjetividade do Oracle.
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Chapter 1

Introduction

This chapter presents the motivation, goals and structure for this dissertation document.

1.1 Motivation

In order to facilitate the development, integration, testing, releasing, deployment and infrastructure

management of ML systems, a new philosophy, born from the idea to apply DevOps to this area

of software development, is becoming popular - MLOps [1]. Using MLOps to enable to quick

and efficient deployment, maintenance and retraining of ML models that fit the user’s needs. At

the same time, Active Learning is an evolving branch of ML that aims to overcome difficulties

that an ML model has in giving accurate predictions by requesting the feedback of a human for

queries generated by it [2]. Combining these two concepts into an interactive application plat-

form is a great opportunity to leverage the advantages of workflow automation and management

present in the MLOps philosophy to provide a smoother, more interactive, understandable and

organized experience to the end user from whom the feedback is requested. Additionaly, Replica-

bility and Reproducibility within the field of ML has been neglected and consequently has become

an increasingly bigger problem [3, 4], with researchers having difficulty to reproduce the work of

others and extending the same approach to related problems with different real-world conditions.

The implementation and usage of a structured tool inspired by MLOps can provide a systematic

way of using ML models, contributing to an easier achievement of these two essential research

work characteristics. All of these context pieces come together to provide an opportunity to de-

velop an MLOps inspired tool that tries to answer the problems where active learning might offer

performance gains while at the same time ensuring the replicability and reproducibility of the

experiments ran. These problems might be related to several areas of ML research, such as Fa-

cial Recognition (FR) or video content age-related classification, as these two examples or indeed

briefly studied in this work.
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2 Introduction

1.2 Goals

The main goals of combining Active Learning with MLOps within the context of this project, are:

• Goal 1 - Understand what is the ML tools and Active Learning state-of-the-art and how they

overlap.

• Goal 2 - Build a basic web application platform that stores, in an organized manner, ML

Pipelines and allows their scheduled or on-demand execution (Runs).

• Goal 3 - Modify the Active Learning solution proposed in [2] to enable its staggered exe-

cution, that is, enable it to be paused and await for feedback that is given by an application

user, before resuming its execution.

• Goal 4 - Introduce support for generic PyTorch model Trainer and Tester ML algorithms,

Dataset Handler (processing scripts) entities and storage and usage of Trained Models.

The code is publicly available in a GitHub repository1.

1.3 Document Structure

The following chapters are present in this document:

• Chapter 2 - This document begins by explaining and detailing at some length essential back-

ground knowledge to understand the topics, purpose and the work in the context of the Dis-

sertation subject. We begin by describing fundamental concepts related to ML in general,

followed by a brief contextualization of how Convolutional Neural Neural Networks came

to be popular in ML and how they work. Biometric systems are described next, more specif-

ically, what defines them, their practical applications and what human characteristics can be

used to power them. Then, the topic of Biometrics is presented, its constituent parts, the

effect training and testing datasets have on it. To close the background section, a description

of MLOps as DevOps applied to ML is made along with the differences to simple DevOps.

• Chapter 3 - Includes a State of the Art regarding the common accepted different levels of

MLOps as well one relevant Human-in-the-Loop (HITL) Active Learning.

• Chapter 4 - The developed Platform’s Architecture is presented, separated in two main sec-

tions - Backend and Frontend.

• Chapter 5 - Two experiments using two different datasets are described, trying to figure out

if HITL affect the training process.

• Chapter 6 - A discussion of the learnings from the development work made is presented,

highlighting the challenges and proposing point for future improvements and work.

1https://github.com/up201105402/di



Chapter 2

Background

Pattern finding in data is a recurring problem with a long history. Its different attempts at solving

spawned findings useful in many fields, from Tycho Brahe’s observations in the 16th century that

later allowed Johannes Kepler to find the laws of planetary motion which were fundamental for

the development of classical mechanics, to something more mundane, practical and recent like the

automated recognition of printed text [5, p. 1].

2.1 Machine Learning fundamental concepts

The type of problems like the latter one presents as its main challenge the variability of the input

data (the images of each printed character), specially if we’re talking about hand printed text. One

could define a set of rules to try to uniquely identify each one of the characters on the text; but

that would inevitabily lead to a potentially unmanageable amount of rules in the attempt to tame

the great number of slight variations on each base shape. This is where a ML approach provides

significant advantages over the previously described one [5, p. 2].

Figure 2.1: Variability in handwritten "e" characters. 1

A distinctive characteristic of a ML system is the ability to learn from data; learning, in this

context, can be defined by: "A computer program is said to learn from experience E with respect to

0Adapted from https://www.kaggle.com/datasets/dhruvildave/english-handwritten-characters-dataset

3



4 Background

some class of tasks T and performance measure P, if its performance at tasks in T, as measured by

P, improves with experience E." [6, p. 2] In this definition, the tasks T are what the ML algorithm

is trying to achieve, like identifying each handwritten character correctly in our previous example.

One can identify several common types of tasks [7, p. 98-101]:

• Classification - assigning one of k category to an input vector x using a funcion f such

that: f : Rn → {1, ...,k} or, alternatively, having f return a probability distribution over the

categories.

• Classification with missing inputs - Same as the previous type but instead of one function

f , several functions are used to classify the input vector x - one for each subset of missing

values of x.

• Regression - like classification but the output is real number as we’re predicting a value

given and input input vector x using a funcion f such that: f : Rn → R.

• Transcription - consists in, literally, transcribing some unstructured representation of data

into text form (e.g. transcribing pieces of text present in photographs, or speech recognition

on audio files and its transcription into text form).

• Machine Translation - literally translating a sequence of symbols in one language into

another sequence of symbols in another language. This is useful to translate between human

languages (e.g. English to Spanish and vice versa).

• Structured Output - any task that produces a vector as an output (or other data structure

with multiple values) with relevant relationships between the different elements. This is a

big type of tasks that contains the transcription, translation and many others.

• Anomaly detection - sifting through a set of events or objects and selecting the unusual or

strange ones (by some criteria), like detecting credit card fraud.

• Synthesis and sampling - generating new data that is similar to training data. Useful when it

would be expensive, time consuming or boring to manually generate lots of data (e.g. speech

synthesis, that is, generating an audio file with a spoken version of a written sentence).

• Imputation of missing values - consists in predicting the missing xi values from an input

x ∈ Rn.

• Denoising - similar to the previous type (Imputation of missing values), but here the aim is

to predict the correct x or p(x|x̃) before a corruption process generated the x̃ that is inputed

into the algorithm.

• Density estimation or probability mass function estimation - the algorithm is made to

learn a probability densitity or mass function pmodel such that: pmodel : Rn → R.
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The performance measure P of a system is often related to its task T ; for classification, classifica-

tion with missing inputs and transcription it is accuracy or error rate (correct or incorrect number

of outputs for the total examples inputed) that we measure. In a general sense, it is how the system

will perform in a real setting that is of most interest, motivating the use of test sets independent

from the training sets to evaluate these performance measures [7, p. 102].

With regards to the experience E, there’s two loose classes of algorithms based on how datasets

- data collections of examples, also referred as data points - are experienced and its features

extracted. These features are extracted by Preprocessing or feature extraction. This helps improve

the preformance of the whole model by transforming the input data - both the training set and the

testing set) - into a new variable space (e.g. scaling and cropping the character images), reducing

intra-class variability and helping reveal more relevant and precise inter-class differences. Another

way performance may be positively affected by this process is by reducing the overall size of input

data into a smaller, more manageable, size while retaining a satisfactory ability to correctly classify

new testing input samples [5, p. 2]. These two classes are: [7, p. 102-103]:

• Unsupervised - when the algorithm learns relevant properties belonging to the input data

through features extracted from the dataset. In practise, this means learning the probability

distribution p(x) of an input vector x by observing several examples of it or some other

relevant properties of that distribution.

• Supervised - when the algorithm also learns relevant properties belonging to the input data

through features extracted from the dataset but in this case, each example on the dataset is

also associated with a label that identifies what it is that we want to identify that is repre-

sented. In practise, this means learning to predict the vector y that an input p(x) should

originate in the system, by observing several examples of vector pairs; this can be done

by estimating the probability: p(y|x). That is why it is called supervised: the algorithm is

shown what the correct prediction based on examples and is expected to expand this to new

input data.

Despite of the fact that the training data, and consequently the training datasets should in theory

encompass the biggest number of examples possible, most of the times it is impossible to produce

a dataset that represents all possible inputs; the ability for the algorithm to perform well when

faced with inputs unrepresented in the training dataset is referred as Generalization [7, p. 108].

This is what separates a ML problem from a simple optimization problem, as besides defining a

training error - an error measure for input data from training dataset - we define a test error or

generalization error usually measuring the system’s performance on a test set of data that was

collected independently of the training set. Despite of this independance, one can still improve the

test error if we improve the training error, which is controlable because the algorithm is trained by

it. This is true if the i.i.d. assumptions [7, p. 109] are considered; these stand for the independent

and identically distributed and it is applied to both the training and testing sets. The identically

distributed aspect refers to the assumption that both sets are generated by the same probabiliy
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distribution as each other. It is still, related to both the training and test errors that two important

problems can arise in ML that should be avoided [7, p. 109-110]:

• Underfitting - when the algorithm is not able to achieve a low enough training error.

• Overfitting - when the gap between the training and test errors is too big.

An algorithm’s capacity controls its probability to underfit or overfit; a low capacity means the

algorithm struggles to fit the traning set but on the other hand a high capacity might mean the

algorithm will overfit by memorizing the training set and not perform well with new data.

The development of Deep Learning (DL) was motivated in part by the limited ability of tra-

ditional machine learning algorithms to achieve good generalization on complex tasks such as

speech and object recognition, that usually deal with data in high-dimentiontal spaces that often

imply high computational costs. As the number of data dimensions grows, the number of possible

input values for x grows much quicker than the examples in the number of training examples that

is pheasable to find; this makes the job of the algorithm much more difficult as the probability that

there isn’t a meaningful training example to draw from is much higher [7, p. 152-153].

2.1.1 Convolutional Neural Networks

Regression and simple classification problems usually make use of linear combinations of basis

functions to produce good results; however, to adapt the same models to much bigger scale ones -

like FR systems - the basis functions need to be modified appropriately [5, p. 225].

Before AlexNet [8], object recognition systems made use of machine learning methods whose

higher performance for realistic input probing data depended on trying to procure larger datasets

(which was a challenge as the existing ones were lacking in total number of images, tipically only

in the tens of thousands [9, 10, 11]) than the ones suitable for smaller scale problems like the

previously described character recognition problem, or augment the already existing datasets in a

way that still mantains the existing image labels (e.g. an error rate <0.3% can be obtaind on the

MNIST dataset [12]). That began to change with the appearance of datasets like LabelMe [13]

(hundreds of thousands of images) and ImageNet [14] (15 million images, of which some are dis-

played in Figure 2.2); still the complexity of object recoginition problems was not fully appeased

by comparable datasets to ImageNet and so, AlexNet showed that importing prior knowledge can

help close this flaw of not having enough training data to adequately account for evey possible

variation.

This is where CNNs come in as a great candidate that fulfils all the demands to produce

accurate solutions for object recoginition problems, ahead of the previously more successful Feed-

forward Neural Networks (FNNs) [5, p. 225]. That is because when comparing CNNs to FNNs

with similarly-sized layers, the first have are easier to train (less connections and parameters)

while having only a slightly lower theoretically best performance [15]. Currently state-of-the-art

(SOTA) FR systems [16, 17, 18] use CNNs because of the advantages just described.
2Adapted from Figure 5.5 [7, p. 109]
3Adapted from https://www.kaggle.com/competitions/imagenet-object-localization-challenge
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(a) Human (b) Shark (c) Bird

Figure 2.2: Examples of objects from ImageNet’s training dataset images used in the ImageNet
Object Localization Challenge. 3

CNNs are a specialized type of neural network for processing grid formatted data - like a two

dimentional grid of pixels that make up images - that use convolution in at least one of their layers

[7, p. 326]. Convolution is an operation defined as:

s(t) =
∫

x(a)w(t −a)da (2.1)

But is usually expressed as (for continuous functions in t):

s(t) = (x∗w)(t) (2.2)

With the first argument - x called the input, the second argument - w called the kernel and the

output - s(t) - the feature map. For a discrete variable t, (2.1) becomes:

s(t) =
∞

∑
a=−∞

x(a)w(t −a) (2.3)

When convolution is applied to ML, x is usually a multidimentional array of data and w is usually,

again, a multidimentional array but of parameters that are to be tuned by the algorithm; these

multidimentional arrays are often referred as tensors [7, p. 328]. Because of the multidimentional

arrays, we can extend (2.3) to account for this; for the 2 dimentional case - where I is, for example,

an image - it becomes:

S(i, j) = (I ∗K)(i, j) = ∑
m

∑
n

I(m,n)K(i−m, j−n) (2.4)

It is common for (2.4) to be implemented as another equivalent function named cross-correlation,

taking advantage of convolution’s commutative property:

S(i, j) = (K ∗ I)(i, j) = ∑
m

∑
n

I(i+m, j+n)K(m,n) (2.5)

Convolution implementation alternatives that are more efficient computationally wise are an active

subject of research; some of these established alternatives include: [7, p. 356]:
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• Apply the Fourier transform to both the input and kernel, performing point-wise multiplica-

tion of the two signals and applying the inverse Fourier transform to the output.

• For kernels that can be expressed as the outer product of d vectors (separable kernels) com-

posed convolution is faster than the naive computation (2.3).

Convolutional networks were some of the first deep models to have good enough performance to

solve important commercial applications in the past [19] - check reading in 1990s, OCR and hand-

written recoginition - and continue to be relevant today a lot because of AlexNet [8]. Convolution

makes use of important aspects whithin the context of ML:

• Sparse interactions - contrary to traditional neural networks where every output and in-

put interact in each layers (through matrix multiplication by a matrix of parameters with

a separate parameter that describes that input-output relationship), CNNs rely on sparse

interactions, meaning that the kernel is smaller than the input and we need to store less pa-

rameters, saving on memory and computational resources [7, p. 330]. Figure 2.3 visually

depicts the connections between the inputs and outputs for a kernel with width equal to 3.

It is immediately apparent that there are fewer connections and consequently less calcula-

tions and computational requirements than if s was obtained through matrix multiplication

in which case every input xi will be connected to every output s j.

Figure 2.3: Sparse connectivity representation with a kernel width of 3. 4

• Parameter sharing - in matrix multiplication each parameter is used exactly once when

computing the output of each layer. Again, conversely, parameters or members of the kernel

in a CNN are used on every input, giving us another reason for not needing to learn and

store as many parameters saving on their storage [7, p. 331-334].

• Equivariant representations - parameter sharing in convolution causes CNNs layers to

show equivariance to translation, that is, a function is equivariant if the output changes the

same way as the input changes [7, p. 334]:

f (g(x)) = g( f (x)) (2.6)

4Adapted from Figures 9.2, 9.3 and 9.4 [7, p. 331-332].
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Which means that if g is a function that transforms the input in some way, shifting it (but

not changing its scale or rotating it [7, p. 335]), then the convolution result s is equivariant

to g. To use a practical example, if there’s a function g that shifts every pixel of an image I

one unit to the right such that:

I′(x,y) = g(I) = I(x−1,y) (2.7)

Then:

(g(I)∗K) = g(I′ ∗K) (2.8)

That is, it is equivalent to apply the shifting transformation to I and then perform the convo-

lution or perform the convolution with I′ and then apply the shifting transformation.

A CNN layer has usually 3 stages (Figure 2.4) [7, p. 335-339]:

• Convolution stage - where several concurrent convolution calculation are made that pro-

duce a set of linear activations. Convolution, whithin the context of CNNs, actually usually

constists of several parallel convolution operations because different features require differ-

ent kernels to be extracted appropriately [7, p. 342]. Also, it is usually not the mathematical

definition of discrete convolution that is used (2.3), but some variation on it; some examples

include what MATLAB calls valid, same and full convolution (different particular cases of

zero padding the input), unshared convolution [20, 21], tiled convolution [22, 23].

• Detector stage - where the result of the convolution stage is fed to a nonlinear activation

function (e.g. rectified linear activation function).

• Pooling stage - where the result of the detector stage is fed to a pooling function, which

replaces the output of the net a certain location with a summary statistic of neighbouring

outputs. It helps to make the output approximately invariant to small translations in the

input, which is useful for applications where the presence of a certain feature is more im-

portant than its location within the input - for example, in a FR system it is more important

to know of the existence of eyes, nose, mouth and other facial elemennts rather than their

exact location within an image. A popular pooling function is max pooling, represented in

Figure 2.5; this function takes the maximum value of, if we follow the typical model for

CNN layer, the output after the convolution and detector stages and picks the maximum

value for each region defined by the filter size and stride size - set, in the example, as 2

for both. The stride value determines the number columns or rows the filter mask of size

2x2 (as the filter size is 2 as well) skips left to right, top to bottom over the input matrix;

each possible superposition of the filter mask on the input matrix given this description is

a region from which we want to extract the max value. As the pooling result is smaller in

dimentions than the input, the means that the next layer of the CNN will have a smaller size

input, reducing storage and computational resources needs ahead. Pooling is also useful to
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process and normalize inputs of different sizes. This is can be accomplished by, for exam-

ple, having the pooling operation output one summary value for each quadrant of an image,

no matter its size. What types of pooling to use in each situation is not readily obvious,

however, there has been theoritical work on it that provides some answers [24].

A prior is probability distribution over the parameters of a model that tells what models are

reasonable before any data has been observed. An infinitely strong prior places makes some

parameters impossible (zero probability) no matter how much the data might support these values.

A distribution’s entropy determines if it constitutes a weak or strong prior: high entropy (or high

variance) means a weak prior, the opposite is true for low entropy (or low variance).

High variance distributions allow the data to move the parameters almost freely; low variance

are more important in determining the parameters’ values. Convolution introduces an infinitely

strong prior probability distribution for the parameters of a layer and inparts in it the already

described characteristics of local (sparse) interactions and equivariance to translation; in the same

manner pooling is an ininitely strong prior as well and each unit should be invariant to small

translations [7, p. 341]. Because of these facts, convolution and pooling can cause underitting

as with any prior they’re only useful if their assumptions are reasonable. For applications where

feature spatial location is important using pooling can increase the training error; pooling can be

implemented on a feature to feature basis avoiding unwanted training error increases.

CNNs can output a class label for classification problems, a scalar real value for regression

problems or even a tensor S = Si, j,k, representing the probability that - for an image recoginition

problem for example - the pixel with coordinates ( j,k) belong to class i, allowing to label every

pixel and outline objects present in the images [7, p. 352]. CNNs can also handle inputs of varying

spatial extents, like images with a wide range of resolutions [7, p. 354].

2.2 Biometric Systems

Biometrics or biometric recognition is defined as the "automated recognition of individuals based

on their biological and behavioural characteristics" [25]. Accordingly, a biometric system is de-

fined as a "system for the purpose of the biometric recognition of individuals based on their be-

havioural and biological characteristics" [25]. These systems have had wide range applications,

starting from law enforcement related forensics [26] to the more currently relevant automated bor-

der control [27] and general user authentication [28]. The characteristics that qualify to be used

within the context of biometric recognition should satisfy each and every of the following criterion

[29]:

• Universality: every person subject to the system must display the characteristic.

• Distinctiveness: any two subjects should display the same characteristic in a manner suffi-

ciently different so that it can be used to distinguish between them.

5Adapted from Figure 9.7 [7, p. 336]
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Figure 2.4: Typical composition of a CNN layer. 5

Figure 2.5: Example of max pooling with filter size 2 and stride size 2.

• Permanence: the characteristic should be displayed in a sufficiently constant state, in a

manner dependant on certain disinguishing criteria, in an appropriate period of time.

• Collectability: the characteristic can be quantified and measured accordingly.

Additionaly, biometric systems usually require more criterion to be considered when determining

if a characteristic is eligible to be used [29]:

• Performance: the performance that the used characteristic can achieve within a biome-

teric recognition system measured in quantities such as accuracy and speed, and how the

resources and operational and environmental factors influence them.

• Acceptability: the willingness for people to accept the usage of the chosen characteristic in

their daily lives.
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• Circumvention: how easy it is to fool a biometric system that works based on this charac-

teristic.

Several biometric characteristic can be used with biometric systems; no characteristic will

meet all the requirements of all practical applications, each one has its advantages and disadvan-

tages. The choice of which characteristic to use must take into account this at the same time as the

previously mentioned criteria. Examples of characteristics include [29]:

• DNA: Deoxyribonucleic acid (DNA) is the most specific human identifier as everyone -

except twins - have a unique DNA code. In a practical context though, its usage cases

are limited by its easiness of forgery (one can steel a piece of another person’s DNA, for

example a hair, rather easily), the lengthiness of the current techniques to process and match

DNA samples and the privacy concerns associated with storing and using (mainly misusing

actually) a piece of such delicate and private information that DNA represents. Because of

all of this, DNA biometrics is used most popularly used in the field of forensics.

• Ear: Although there is still work to be done, it has been posited that the human ear’s shape

might posess some distinctive aspects that can be used within a biometrics system.

• Face: Probably the most commonly used characteristic due to the non-intrusive nature of

the associated biometric systems, the human face is a great candidate to be used for human

identification. The most commonly approaches for FR are the using the shape, absolute and

relative location of facial element like the mouth, nose, eyes, chin; and the comparision be-

tween the overall analysis of a face image and a weighted average of several canonical faces.

Some limitations are usually imposed on FR systems though, namely the privacy concerns

mainly regarding the collection, storing, securing and usage of facial images; the technical

requirements regarding the images collected, concerning things like lighting, background,

poses. The latter is an important issue with FR systems, they can struggle to recognize faces

under certain lighting conditions, poses and other aspects that introduce variability into how

a person’s face might look like.

• Facial, hand, and hand vein infrared thermogram: Most of the times inpractical to use in

real world applications due to the prohibitibely expensive nature of the technology associ-

ated required, the pattern of heat that human bodies radiate can be used as a distinguishable

characteristic using infrared sensors to non-invasely capture it.

• Fingerprint: Probably the longest still used human characteristic for biometrics, finger-

prints are still a very popular form of biometrics due its ability to provide very high identi-

fication accurary - even twins have different fingerprint structures as they are formed during

the first seven months of fetal development. Nowadays, fingerpint idenfication is done using

methods much more advanced than in the past, like fingerpint scanners that are affordable

for most applications and can even be embedded with other systems like laptops. Despite

all this, fingerprint systems can require a lot of computational resources and are sometimes



2.2 Biometric Systems 13

not suitable for the small percentage of people whose fingerprints are not discernable or are

damaged.

• Gait: The way or pattern a person moves their limbs while moving (e.g. walking, running)

is a complex spatio-temporal biometric. Although not very distinctive, it is sufficiently

distinguishable to be used in low-security applications. Because it is dependant on behaviour

more than other physical characteristics it may vary over time due to many reasons (e.g.

weight loss or gain, physical or brain injuries, inebriation). Like FR, it is a non-intrusive

method of recoginition. Because it involves processing video and analyzing the relative

movement of several separate body parts, it is computationaly heavy.

• Hand and finger geometry: The shape, size and various lengths within the human hand

(e.g. finger length and width, palm dimensions) can be used for biometric systems. These

systems are easy to use and relatively inexpensive, and do not appear to be affected by envi-

ronmental factors like the weather or dry skin, unlike hand jewelry, challenges in dexterity

and the ever changing hand appearance during the developing years of every human. The

devices used for this type of biometrics are similar to the ones used for fingerprints but

are usually much larger and thus less practical. Additionaly, these characteristics are not

distinctive enough to allow scaling up to a big number of system users.

• Iris: the region of the eye between the pupil and the sclera - the iris - is formed during fetal

development and first two years of life and is very distinctive in each individual. It allows

promising accuracy and speed on recognition systems is a good choice for large-scale (user

wise) systems, as even identical twins have different irises and spoof attempts with artifical

irises are easy to detect. Finally, although theses systems are still expensive to implement,

they have become affordable recently.

• Keystroke: the particular way a person types can be used to identify them. Understandably

this is literally unique to every person but it may offer sufficient discriminatory power to

allow for identity verification. Similarly to a person’s gait, the keystroke behaviour may

vary but on the other hand it can be monitored in an non-obtrusive manner.

• Odor: every person exudes a distinct body odor that is unique in its chemical composition

and thus can be used for recognition. It is although not clear yet if deodorant, perfume or

environmental circumnstances may affect the effectiveness of a system based on body odor.

• Palmprint: in the same line of thinking for fingerpint recognition, the human palm’s pat-

terns can be used for recognition, possibly with an even bigger degree of distinctiveness as

palms are bigger than fingerprints - which in turn makes palmprint scanners more cumber-

some and less practical. On the other hand the bigger surface area allows for scanners with

smaller imagery resolution which lowers their cost.

• Retinal scan: the retinal blood vessels form a complex and unique structure in each person

and each eye, so much so that it is claimed that they’re the most secure characteristic to use
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with biometric systems as in addition, it is difficult to replicate and or/change this structure.

In addition to user authentication applications, retinal scan biometric systems can help reveal

some medical conditions. However, they require from the users a more intrusive interaction

as they have to allow the close examination of their eyes by a device.

• Signature: every person as heir own to way to sign their name so this can be used to identify

them and are widely accepted by most people in a lot of facets of life. However, personal

signatures can change over time and are susceptible to forgery.

• Voice: a person’s voice is, a bit like their gait, the result of a mixture of physiological,

behavioral and environmental factors. The physiological components are usually static -

vocal tracts, mouth, nose, lips - unless they are damaged; the variability in time is mainly

introduced by the behavioral aspects - emotional state, age, medical conditions. However, a

person’s voice is not a very distinctive characteristic and for that reason is not a good choice

for large-scale systems. Additionaly, these systems’ performance is negatively affected by

noise interferance - background or other voices - and transmission channel degradation.

2.3 Human-in-the-Loop

2.3.1 Explainable AI

While the usefulness and accuracy of ML solutions has increased over the years, their sophis-

tication and complexity has increased alongside, driven by the development of opaque decision

algorithms in the field of DL such as CNNs which may contain hundreds of layers and millions of

parameters that make their functioning difficult to comprehend. As these algorithms may be used

to provide predictions in critical contexts with real-life consequences it’s sometimes imperative

to understand how the predictions are arrived at by the algorithm, because decisions that are not

justifiable or legitimate can’t be accepted. To achieve this, interpretability strategies are employed

that explain in human terms how and what weighed on the prediction so that its recipient, an expert

in the subject the ML system is inserted in, can evaluate it and decide what level of importance it

warrants and help improve the model by providing feedback if the prediction is wrong or wrongly

arrived at [30, 31]: this is what is meant by explainable AI (xAI). Interpretability methods can be

classified in 3 categories [32]:

• Pre-model, which are applied before the ML model and try to understand the data through

prototypical examples.

• In-model, which are applied in the models themselves resulting in ML algorithms that are

interpretable by themselves.

• Post-model, which are applied after the ML model was built an try to explain the output,

through sensitivity analysis (disturbing the input and observing the changes in the output),
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saliency maps that highlight key features of the input that justity the class they belong to

(commonly used in computer vision), or other strategy.

In the field of Computer Vision, explainability remains a challenge and the existing methods

are still far from bulletproof even though there has been encoraging progress. This lack of relia-

bility is illustrated by the fact that two very similar or even indistinguishable images may generate

different explanations [33] and thus, the application of xAI algorithms to sensible fields that have

potentially serious consequences must be a careful endeavour; still, positive outcomes have been

achieved in these fields [34, 35].

2.3.2 Active Learning

In a human teaching environment, there are several methods of teaching that teachers may employ

to pass on knowledge to their students. One of those is Active Learning, which invites the students

to directly participate in the teaching process, by questioning, discussing, asking questions, inves-

tigate and think of solutions, all while the guidance of the teacher stays present [36]. Proponents

of this teaching method claim several benefits, among them the deeper understanding of the mate-

rial by the students; the easiness to correct misconceptions or errors in the students understanding;

how it is easier to direct the students’ minds in the right path for learning. Analogous to the Active

Learning concept described above, a similar concept with the same name exists in ML, which

can be summarised as how an algorithm can achieve better results, i.e. better accuracy, with less

training labels than otherwise necessary, by getting feedback on unlabeled data instance from an

Oracle - which can be a human [2, p. 4]. This concept is specially useful when the algorithm’s job

of labeling or classifying data is difficult - because it is time-consuming or resource intensive - but

unlabeled data is easily obtainable.

Figure 2.6: The three main active learning scenarions 1

1Adapted from Figure 4 in [2, p. 9]
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As can be seen in Figure 2.6, there are 3 main active learning scenarios [2, p. 8]:

• Membership query synthesis - where the learner can request labels from the Oracle for any

unlabeled instance, including queries generated by it, rather than samples from a natural

distribution.

• Stream-based selective sampling - where the learning decides if it wants either to query the

Oracle for each unlabeled instance or discard it.

• Pool-based sampling - where there’s a small set of labeled data and a large pool of unlabeled

data available. Queries are chosen from the static pool, which is usually assumed to be static,

according to an informativeness measure that evaluates all instances.

Active Learning implementation raise several questions though. The reliance on Oracle input

may become a problem or of reduced utility in several scenarios [35, p. 8-9]:

• The Oracle may not be certain about the feedback they’re providing regarding the query.

• Different people - Oracles - may provide different feedback for the same query, specially if

it is hard to interpret.

• The Oracle might not have the necessary knowledge to provide accurate feedback.

• The effort put in by the Oracle might not be enough to offset the cost - be it time or mental

- as the model’s gains in learning may not be noticeable or worth it.

• Wrong feedback given by the Oracle might jeopardize the model’s learning.

2.4 Replicability and Reproducibility

DL has assumed great importance within the topic of ML [37, 38, 39], being a major part in

the software of modern systems from self-driving cars [40] to medical imaging technology [41].

This newfound popularity stems from the success DL has had in nany ML areas such as natural

language processing [42, 43], machine translation [44, 45] and, most relevantly, computer vision

[46, 47].

One of three DL types are commonly used in Software Engineering (SE) [48, 49, 50]; the

first one is the traditional artificial neural network (ANN) consisting of fully connected neural

networks (e.g. multilayer perceptron [51, 52, 53], deep belief network [53]). The two others

were both developed to enhance representation learning by using large sets of data and purposely

designed neural networks, and are the most used in SE [54]: the convolutional neural network

(CNN) [55, 56], that senses regional characteristics of a matrix data using special convolution

functions and the recurrent neural network (RNN) [57, 58] that can capture features of sequential

data. These DL models can be optimized for a specific SE task [59, 60], that is, train the model
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parameters usually initialized with pseudo-random values using training data until the values of a

loss function converge or a number of training iterations is reached.

The drawing of conclusions from the analysis of results produced by the running of an exper-

iment that tests a previously formulated hypothesis is a foundational element of scientific inquiry.

Additionally, for these conclusions to be lent credibility, the results must be repeatable provided

that the experimental process is the same. These facts have been used all throughout history to

consolidate the knowledge about the real-world. Along these lines, Effectiveness, Replicability

and Reproducibility are all key characteristics of works within the realm of scientific research

[61, 62, 63, 64, 65] which can be extended to more practical real-world implementations of ML

related solutions for commercial, security or medical related purposes, to name some examples.

Despite all this, a 2016 survey found that more than 70% of researchers from a range of fields

failed to reproduce another researcher’s experiments, and over 50% failed to reproduce one of their

own [66]. In the field of computer science, new knowledge from recent years has been increasingly

obtained from practical experiments (which is true within ML research) performed under easier to

control conditions as they are not almost totally determined on the natural or social real world but

rely on computers builts by humans. Still, researchers have had difficulty reproducing the work of

others here too [3]. In the more specific research field of ML there are several reasons that explain

this phenomenon [4]:

• Not readily available training data or differences in data distribution.

• ML model and/or training procedures being misspecified or under-specified.

• Not readily available necessary code to run the experiments, or errors in the code;

• Results metrics being misspecified or under-specified.

• Erroneous statistical analysis of the results, often claiming significant results when not jus-

tifiable.

• Selective results reporting and underestimation of overfitting.

• Drawing of conclusions with broader implications that what can be suported by the evi-

dence.

Efectiveness has been shown to be achieved at higher levels when using DL algorithms over

alternative ones [67, 68, 69, 70, 71], while, at the same time, saving the manual work of feature

engineering [72, 38, 73, 71]. In ML, a common main objective for a model is to perform better

and rank at the top on benchmarks scores. The achievement of such results are often claimed even

though is is not always clear if they’re actually owed to improvements in the model’s design or

other variables - experimental conditions, hyperparameters, random initial parameters - that might

also affect them [74, 75, 76, 3].

Replicability - the ability to exactly reproduce reported experimental results given the same

model and data - gives credibility and scientific merit to reported results [61, 62, 77]; this can
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be a problem as for DL models as exact reproduction may be impossible because of the random-

ness during model initialization and optimization [77]. A wider definition for replicability can be

adopted in this cases, that is, replicability is achieved if experimental results can be approximately

reproduced with a high probability with the same model and data. Replicability however, does not

guarantee that the results are extendable to experiments under different conditions [78, 61, 63].

A 2019 report indicated that 63.5% of the results in 255 manuscripts were successfully replicated

[79]. Interestingly, it found that when help was provided by the authors 85% of results were suc-

cessfully reproduced, compared to only 4% when no help was available. If we consider that there’s

no significant influence introduced in these values by a biased response of the authors, that is, only

the ones that knew that the results would be re-obtained would respond, this goes against repli-

cation studies in other fields that did not observe such an increase in the percentage of successful

replication attempts [80].

Figure 2.7: Reproducible Research. 2

Reproducibility is the requirement that must be met to achieve that, meaning that one ex-

perimental finding can also be obtained on a different experiment using the same experimental

protocol, the same model, but different real-world data [63, 64]. Many SE DL studies often ignore

both replicability and reproducibility considerations, making it is uncertain the extent to which

their reported results can be replicated or reproduced under different conditions, such as the num-

ber of training iterations or the size and type of data. Replicability and Reproducibility are often

regarded as mere threats and left to deal with on future works, even if the importance of these

factors is acknowledged and thus are rarely investigated [59, 81, 82, 83].

2.5 Machine Learning Operations

DevOps is "the combination of cultural philosophies, practices, and tools that increases an orga-

nization’s ability to deliver applications and services at high velocity: evolving and improving
2Adapted from https://github.com/WhitakerLab/ReproducibleResearch
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products at a faster pace than organizations using traditional software development and infrastruc-

ture management processes. This speed enables organizations to better serve their customers and

compete more effectively in the market" [84]. One can apply DevOps to Machine Learning sys-

tems, which is exactly what MLOps is. MLOps aims to unify ML system development and ML

system operation - respectively "Devs" and "Ops". MLOps promotes the automation and mon-

itoring at all steps of ML system construction - integration, testing, releasing, deployment and

infrastructure management [1]. The theory related to ML stil apply on for MLOps, the additional

challenge is to build and integrate an ML system and to continuously operate it in production and

at the same time, avoid some of the pitfalls that come with this [85]. Even though an ML project

can be classified as a software project, they differ in the following ways [1]:

• Team skills: the skills and knowledge required from the members of ML project team

usually demand data scientists or ML researchers, who specialize on exploratory data anal-

ysis, model development, and experimentation; these profiles might not necessarily include

knowledge and/or experience on production level software development.

• Development: The development process for ML is all about experimentation; different

features, algorithms, modeling techniques, and parameter configurations are tried until one

finds what the best solution for the problem is. The adds the challenge of tracking what

worked and what didn’t, so as to maintain reproducibility while maximizing code reusabil-

ity.

• Testing: In addition to the normal unit and integration tests common in software develop-

ment, testing task like data validation, trained model quality evaluation, and model valida-

tion are also needed.

• Deployment: ML systems can require the specific pipelines to perform automatic retraining

and deployment of its model, adding complexity as these tasks are generaly manually done

by data scientists.

• Production: besides coding imposed performance limitations common on software projects,

ML projects’ performance also depend on constantly evolving data profiles. Thus, addi-

tional monitoring strategies for the production ML project in order to track its performance

are needed so that it is clear when performance values deviate from the expectated ones.

• Continuous Integration (CI): data, data schemas and models testing and validating are

added to the usual code testing and validating.

• Continuous Delivery (CD): CD deals with the delivery of a system, that is, a ML train-

ing pipeline, not a single piece of software, that automatically deploys a model prediction

service.

• Continuous Training (CT): CT is exclusive to ML projects and deals with automatically

retraining and maintaining the models.
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Chapter 3

State of the Art

ML projects in the real world often fail or come short of their objectives, never evolving into

production ready applications [86], as, for the most part, focus has been more on building models

but not on preparing them for real world operation and setting up the necessary tools, organization

and infrastructure for it [87]. This can lead to operational issues if ML related workflows if are

handled manually.

3.1 Machine Learning Operations

Due to the still recent and constantly evolving nature of MLOps, it’s definition is not very precise

and not widely agreed and known. However, it is understood that the term MLOps is right at the

intersection of several other established and mature fields: ML, SE (in the form of DevOps) and

Data Engineering [88].

Figure 3.1: Intersection of topics that define MLOps. 1

1Adapted from Figure 5 of [88]

21



22 State of the Art

Additionaly, Kreuzberger, Kühl and Hirschl [88] define MLOps as "(...) a paradigm, includ-

ing aspects like best practices, sets of concepts, as well as a development culture when it comes

to the end-to-end conceptualization, implementation, monitoring, deployment, and scalability of

machine learning products." It is intended to facilitate the creation of ML systems, linking the

development (Dev) and operations (Ops) phases, leveraging these principles that can be totally or

partially present [88]:

P. I CI/CD automation - responsible for the build, test, delivery and deploy steps of software

project.

P. II Workflow orchestration - coordinates the tasks within an ML workflow, organizing their

execution considering each task’s dependencies and requirements.

P. III Reproducibility - the ability to obtain the same results when repeating the same ML exper-

iment.

P. IV Versioning - assures the versioning of data, model and code to facilitate reproducibility and

traceability.

P. V Collaboration - provides the ability to collaborate with other people on data, models and

code.

P. VI Continuous ML training & evaluation - provides the ability to periodically and automat-

ically retrain models with new feature data.

P. VII ML metadata tracking/logging - to keep track of workflow related data such as dates,

execution times used to build performance metrics.

P. VIII Continuous monitoring - the periodic assessment of data, models and code to detect errors

or changes that affect the products quality.

P. IX Feedback loops - the possibility to trigger operations based on the monitoring of some steps,

such as scheduling retraining through the monitoring of a model’s production performance.

These principles can be implemented in the system by several components which can be di-

vided into several categories or components, each matching one or more principles [88] (Table

3.1):

C. I CI/CD Component - comprised of tools that implement continuous integration, continuous

delivery, and continuous deployment.

C. II Source Code Repository - comprised of tools that implement code storing and versioning.

C. III Workflow Orchestration - comprised of tools that implement task orchestration of an ML

workflow through directed acyclic graphs that represent the execution of the steps in the

workflow.
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C. IV Feature Store System - comprised of tools that implement central storage of commonly

used features. Two databases may be tipycally be configured: an offline one to serve features

for experimentation, and and online one to serve features with low latency for predictions in

production.

C. V Model Training Infrastructure - comprised of the computational resources (CPUs, RAM,

GPUs), that can be distributed or non-distributed, but are usually designed to be scalable.

C. VI Model Registry - comprised of tools that implement the storage of trained ML models

together with their metadata.

C. VII ML Metadata Stores - comprised of tools that implement the storage and tracking of vari-

ous kinds of metadata for each ML workflow pipeline task; some of these tools can be used

to implement the previous component as well, as they too can encompass the handling of

model metadata.

C. VIII Model Serving - comprised of tools that implement the serving of model produced predic-

tions, that can be used in online inference for real-time predictions or in batch inference for

predictions using large volumes of input data.

C. IX Monitoring - comprised of tools that implement the continuous monitoring of the model’s

performance, as well as the ML infrastructure, CI/CD and orchestration.

Table 3.1: Intersection between MLOps Components and Principles.

Components Principles

CI/CD
CI/CD automation

Continuous ML Training & Evaluation
Feedback loops

Source Code Repository
Versioning

Collaboration

Workflow Orchestration
Workflow orchestration

Reproducibility
Continuous ML training & evaluation

Feature Store System
Reproducibility

Versioning
Model Training Infrastructure Continuous ML training & evaluation

Model Registry
Reproducibility

Versioning

ML Metadata Stores
Versioning

ML metadata tracking/logging
Model Serving CI/CD automation

Monitoring
Continuous monitoring

Feedback loops
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3.1.1 MLOps Architecture

Leveraging the advantages of the MLOps philosophy to automate the bulding, development, ver-

sioning, testing, deployment and monitoring of ML systems helps make these phases easier in an

ML project. Applying the enumerated principles to the ML related steps to deliver a model to

production, we can achieve, depending on the requirements and goals of the implementation, as

close an automatic pipeline as possible. From the previous MLOps Principles and Components

listed a complete, end-to-end, architecture was proposed in [88], detailing the task sequence -

workflow - executed in each stage, giving ML researchers, developers and engineers guidance on

the overall design of a MLOps system while remaining agnostic to what tools are responsible for

what task, leaving that decision to be made along the appropriate requirements defined for each

specific solution. This means that, in theory, any tool, be it simple or full fledged, open-source or

commercially licensed, can be chosen to realize any step of any workflow; however, in practise,

there can be limitations to the realistic options list that arise from the possible integrations or other

incompatibilities or awkward combinations of tools.

1. MLOps product initiation - This is a preparatory stage where:

1.1. A business problem is identified by a Business Stakeholder as having a possible ML

solution.

1.2. The overall system architecture is defined by the Solution Architect, choosing what

tools are to be used after careful deliberation.

1.3. The specific ML problem is derived from the initial Business Stakeholder formulation

by the Data Scientist (e.g. regression, classification, etc).

1.4. The data required to feed the ML solution is identified by a Data Engineer and Data

Scientist, determined if it is available and can be obtained.

1.5. The Data Engineer and Data Scientist then locate the raw data sources, checking its

distribution and quality as well as validating that it is prepared for the designed ML

system (e.g. checking if the data is properly labeled if supervised ML is being used).

2. Requirements for feature engineering pipeline - This is where the operations related with

the ML system features are defined.

2.1. A Data Engineer defines the data processing operations that produce usable data (e.g.

normalization, aggregations, cleaning).

2.2. A Data Scientist and Data Engineer defines the feature engineering rules that produce

new or more advanced features from already existing ones. They can be iteratively

adjusted based on feedback from the experimental model engineering stage or from

the monitoring of the model performance.

3. Feature engineering pipeline - The requirements defined in the previous stage for the fea-

ture engineering pipeline are the starting point for a Data Engineer and SE to build the
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feature engineering pipeline prototype where they are implemented. The task orchestration

of

As a foundational requirement, the data engineer (R4) defines the code required for the

CI/CD (C1) and orchestration component (C3) to ensure the task orchestration of the feature

engineering pipeline. This role also defines the underlying infrastructure resource configu-

ration.

3.1. The feature engineering pipeline connects to the raw data sources in whichever format

or storage location it is.

3.2. The data is extracted from those sources.

3.3. The data is processed, that is, transformed and cleansed, and the data is made useful.

The processing rules defined in the previous stage are the ones used here, subject to

continuous improvement based on the feedback from phases ahead.

3.4. Feature engineering is executed and new or more advanced features are produced

based on other features. The feature engineering rules defined in the previous stage

are the ones used here, subject to continuous improvement based on the feedback

from phases ahead.

3.5. The extracted features are stored into a feature store system.

4. Experimentation - This is where the major training logic from the training data features is

executed, until a model type and its parameters are found determined to be the best for the

ML problem at hand.

4.1. A Data Scientist connects to the feature store system or even to the raw data for an

initial analysis. A feedback loop to the previous stage is established if any data adjust-

ments are deemed to be required.

4.2. Feature store data preparation and validation and train and test split dataset creation.

4.3. A Data Scientist determines the most suitable algorithm for the context of the ML

problem, through iterations of the following steps, until the performance metrics in-

dicate satisfactory results; for each iteration, metadata (e.g. parameters to train the

model, performance metrics results, iteration identifiers, time and date information,

etc) is stored in the ML metadata. The support of Software Engineer ensures well-

engineered model training code.

i. Model training iterations on new versioned training data, starting with the previ-

ously defined hyperparameters and algorithm in the experimental stage.

ii. Model evaluation iterations, testing and validating the model with several combi-

nations of model parameters.

4.4. The tuned model is exported and the code commited to the repository by a data scien-

tist; additionally, a DevOps or ML engineer defines the ML workflow pipeline related

code and commits it also.
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5. Automated ML workflow pipeline - This stage is similar to an automated version of the

experimentation stage, and it is managed by the a DevOps engineer together with a ML

engineer, taking care of the runtime environments, the underlying infrastructure (hardware

and other resources) and computation frameworks.

5.1. The features are automatically pulled from the feature store system.

5.2. Automated feature store data preparation and validation and train and test dataset split.

5.3. Automated iterations of the following steps, until the performance metrics indicate

satisfactory results; for each iteration, metadata (e.g. parameters to train the model,

performance metrics results, iteration identifiers, time and date information, etc) is

stored in the ML metadata.

i. Automated model training iterations on new versioned training data, starting with

the previously defined hyperparameters and algorithm in the experimental stage.

ii. Automated model evaluation iterations, testing and validating the model with sev-

eral combinations of model parameters.

5.4. The final trained model is then exported.

5.5. The final trained model is stored in the model registry, along with its associated meta-

data (e.g. training data feature version, training code version), from where it can easily

fetched once the it is ready for deployment in production.

5.6. The CI/CD component triggers the continuous deployment pipeline and the production-

ready model and the associated model serving code are pulled from their storage and

versioning systems. The CD pipeline builds and tests the ML model and deploys it

along with serving code to deploy to production.

5.7. The model serving component, which can be designed by the software engineer as

they are experienced in developing and deploying production applications, receives

requests (typically through a REST API) and makes predictions for new data from

the feature store system. It’s good practice to do A/B testing, that is, deploying two

competing models (one the established one and the other the challenger) to compare

their real-world performance [89].

5.8. While the model is operational in production its performance is constantly monitored

along with the model serving infrastructure; if anything triggers the need for a change,

such as unsatisfactory prediction accuracy a feedback loop is used to communicate

back to a previous stage.

5.9. The feedback loop can be used to trigger the execution of steps within previous stages,

such as the experimental stage, data engineering zone, and the Automated ML work-

flow, always with the aim of improving the final model in production.

5.10. Continuous training may be triggered by the detection of concept drifts during the

monitoring stage, that is, when the real-world input data deviates from the original kind
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of data the training data used represented [90]; new training data or simply scheduled

events can also trigger retraining.

According to the level of automation, three MLOps levels of maturity are defined [1]:

• Level 0: the process for building and deploying ML models is entirely manual, including

the steps for data analysis, data preparation, model training and validation. This level of

maturity is usually controlled by experimental and ever changing code until a workable

model is produced. This means that there’s a separation between the ML and operations

teams, as the first only hands out a ready ML model off to the second that is responsible

for the deployment, which makes release iterations more difficult and understandably, more

difficult. Both CI and CD are not considered, as well as performance monitoring. This level

of MLOps maturity arise might be sufficient when models are rarely changed or trained

which rarely is acceptable in the real world, which is why they often break failing to adapt

to environmental or data changes.

• Level 1: continuous training of the model is added in this level by automating the ML

pipeline enabling continuous delivery of prediction service model. To automate the retrain-

ing of production models, the automated data and model validation steps are added to the

pipeline, along with pipeline triggers and metadata management. Pipeline triggers enables

the automation of model retraining based on the occurance of certain events or with a certain

frequency: on demand, on a schedule, on availability of new training data, on model per-

formance degradation, on changes in the data distributions. Still, testing is usually manual

assuming deployments are not frequent, as well as the deployment task itself which is often

manual too. The tested source code is usually submitted and handed over to the IT team to

deploy to the target environment. Level 1 is suitable when new deployments are based on

new data instead of improvements on the model itself. The next level of MLOps accounts

for this need of constant, reactive and rapid improvements.

• Level 2: This last level resolves the need for constant, reactive and rapid update of the

pipelines in production with a robust automated CI/CD system. New ideas for feature en-

gineering, model architecture, and hyperparameters are readily explored and their merit

assessed through automatic building, testing, and deployment to the target environment. All

of the components defined before (3.1) are included in this level of maturity.

3.1.2 ML Tools

Following the growth in popularity of AI and ML in recent years, many tools have appeared that

help automate many different related processes. Several tools are presented in this subsection that

provide a general, wide view of what is currently available in the MLOps universe and what fea-

tures these tools have. Most of these tools are open-source in nature, as half of all IT organizations

were using them in 2022 with the expectation that this proportion will grow to two thirds in 2023
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[91]. The scope of the tools is varied: some are meant to be all encompassing, covering the whole

MLOps workflow pipeline, others are specialized for only certain steps or components. ML related

development involves trial and error, investigation and iterative execution and thus, a number of

artifacts play important parts, from datasets and associated features, to models, hyperparameters,

metrics, code, configuration and log files. As manual management of these ML artifacts, steps,

processes and pipelines cannot be done efficiently, many tools and systems were developed in or-

der to provide comparability, reproducibility, and traceability (collection, storage, versioning) of

ML artifacts across the ML lifecycle steps and iterations. Several ML systems or applications cur-

rently exist, each with their specialization and different focuses. Classifying these systems in clear

categories is not a straight forward task as boundaries are blurred between systems that simply

provide functionality for the development of ML systems to ones that focus on the management,

storage, and deployment of ML artifacts. Therefore, classification of these systems can be made

along these general classes, which are not mutually exclusive [92]:

• Lifecycle Management: systems that focus on the entire MLOps architecture 3.1.1 and,

going beyond specialized or limited implementation of stage steps to cover most or all of

the stages (and their steps) in the ML architecture. Microsoft Azure ML [93], Amazon Sage-

Maker [94], Google Vertex AI [95], IBM Watson Studio [96], Comet [97], DataRobot AI

Cloud Platform [98] and Cloudera Data Science Workbench [99] are all overarching ML as

a service (MLaaS) commercial solutions that are available by a provider’s cloud infrastruc-

ture offering powerful configuration options such as the scaling of processing and memory

resources. However, they are paid tools and its usage may not be admissable because of

data protection requirements as it implies handing over access to a third party to sensible

information. Valohai [100] is a comparable solution to the ones before, with the advantage

that it can be deployed in the cloud or on-premise. Open-source solutions such as MLflow

[101, 102], ClearML [103], Polyaxon [104] and Hopsworks [105], are more flexible in the

sense that they’re available both in the cloud and on-premise. MLflow focuses on capturing,

storing, managing, and deploying ML artifacts; it registers experiment runs, the associ-

ated code and data dependencies, executed manually or automatically depending on what

is defined on the instrumentation code. It also has a standard for packaging ML models,

compatible with many serving environments; a standard for packaging reusable and repro-

ducible project code; a model registry to store and manage models through their deployment

lifecycles. ClearML and Polyaxon are also comparable in the functions they cover, adding

model monitoring and resource management too. Hopsworks adds Hadoop Distributed File

System (HDFS) together with a NewSQL database (HopsFS) for highly scalable learning,

Github-like project management and an integrated feature store. A company name Iterative

developed a collection of open-source tools, starting with a data, model, code and metrics

version control tool built upon Git, appropriately named DVC [106], extending it with CML

[107] - a CI/CD library for ML projects -, DCVLive [108] - a library for logging metrics

and metadata -, Iterative Studio [109] - a web application for data and model management,

experiment tracking, visualization and collaboration - and MLEM [110] - a model registry
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and deployment tool. For non-ML experts, Ease.ML [111] guides its users along through-

out its several functions: automatic data ingestion and augmentation, automatic feasibility

studies, data noise debugging, data acquisition, scalable multitenant automatic training, con-

tinuous integration, and ending with continuous quality optimization. All of the previous

tools are meant for general usage and thus are not focused on one specific use case, as

oppposed to proprietary specially developed tools to fit one specific use case, such as the

internally used tools by Airbnb, Uber and LinkedIn. Airbnb uses Bighead for feature man-

agement, model development, execution management, lifecycle management, offline and

online inference services and containerization management [112]; Uber uses Michelangelo

to build, deploy and operate uniform and reproducible ML pipelines used in their produc-

tion microservices environments, made up of a mix of open-source and internally devel-

oped tools providing feature storage, a language for feature selection and transformation,

the distributed deep learning framework Horovod [113] and the model management sys-

tem Gallery [114]; LinkedIn uses Pro-ML with scalability in mind, for data exploration

and model creation with an own language for feature and model representations and a cen-

tral feature marketplace, real time and batch model training, model deployment and model

monitoring [115].

• Pipeline Management: similar to the previous class, but these tools typically do not sup-

port model deployment and monitoring (the steps 55.6., 55.7., 55.8., 55.9., 55.10.) the man-

agement of software artifacts, or both. Velox [116], Vamsa [117] and ArangoML Pipeline

[118] are similar in the functions covered, all focusing on models and model metadata,

even though their goals might differ. Velox provides management and orchestration of train-

ing pipelines for predeclared models, model performance evaluation and model inference;

Vamsa provides automated provenance tracking of ML pipelines based on static analyses of

Python programs; ArangoML Pipeline builds upon ArangoDB to provide artifact and meta-

data storage for ML pipeline tracking, auditing, reproducibility, and monitoring. Apache

SystemDS [119] is a declarative ML pipeline system that uses a dedicated language for dif-

ferent ML lifecycle tasks. Both Mltrace [120] and ProvDB [121] are focused on lineage

and provenance [122]: Mltrace is a Python tool for lineage and tracing of artifacts in ML

pipelines; ProvDB is an all-in-one provenance, model lineage, and metadata management

system. TFX [123] is a Tensor-Flow based tool with libraries to create ML pipelines for

the data, model and operations related steps of the ML Pipeline Workflow, as well as the

MLMD [124] library for metadata management and version control. These same workflows

can be deployed in Kubernetes by Kubeflow [125]. H2O [126] is a powerful open-source

distributed in-memory ML platform that makes easy the productionalization of ML mod-

els in enterprise environments that also provides ML lifecycle integration and ML artifact

management support. Neptune [127], FBLearner Flow & Predictor [128] ( Facebook’s pro-

prietary ML pipeline development and processing system), MLCask [129], and Disdat [130]

additionally support software artifacts, improving reproducibility.
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• Experiment Management: tools that focus on the comparability and reproducibility of

exploratory ML experiments that aim to develop models, training and optimising them;

they often complement tools of the previous class providing the results from which subse-

quent pipelines are created and executed. DWF [131] allows for the tracking of experiments

and training iterations and associated configurations and performance metrics artifacts on

a predefined collection of models provided by TensorFlow [132] and scikit-learn [133] but

trained models storage or versioning. StudioML [134] adds the capture of model artifacts

without the necessity of modifying experiment code. MLCube [135] and MLPM [136] focus

on reproducibility for the model development and deployment related steps, by providing

model packaging functions. Guild AI [137], Datmo [138], Keepsake [139], Runway [140],

Sacred [141] and Weights & Biases [142] further improve on the reproducibility aspect by

capturing source code, dependencies, execution environment and logs. Apache Submarine

[143] and Determined [144] integrate and provide functional interfaces for popular ML

frameworks (e.g. TensorFlow, PyTorch, MLflow, TensorBoard) without requiring extra in-

frastructure knowledge for orchestration.

• Model Management: tools that focus on the model development, deployment and monitor-

ing steps - differing from the Experiment Management tools because they support these last

two - as well as the management of models and their metadata. ModelDB [145], ModelHub

[146] both focus on supporting model development, deployment, and monitoring; the first

uses a relational database while the second uses Git to version models and their metadata.

ModelKB [147] focuses on model management, experimentation, deployment, and monitor-

ing. It collects metadata about each experiment and automatically generates source code for

deployment, sharing, and reproducibility. MMP [148] is a model management tool designed

for Industry 4.0 environments, associating models with business and domain metadata, and

it has a a model registry, and a central metadata store. MISTIQUE [149] specializes in

the storage and management of model intermediates (e.g. input data) to accelerate model

evaluation, performance analysis, and interpretability. Sql4ml [150] translates ML models

expressed in SQL to Python TensorFlow code. MLModelCI [151], ModelCI-e [152], Clip-

per [153], Rafiki [154], Overton [155] and CMS [156] are tools mainly designed for model

deployment and monitoring related steps (Rafiki supports also model training as well as

Overton and CMS). ModelHub.AI [157] is a tool that lists a range of deep learning models

for their easier dissemination.

• Dataset & Feature Management: tools that focus on dataset and feature management ca-

pabilities as well as data pre-processing, tipically acting as a complement for tools in the

Model Management class. MLdp [158] is Apple’s own tool for ML data management, that

integrates different types of data, support for large volumes of raw and volatile data, ver-

sion and dependency management, data provenance, and integration with major other ML

frameworks. ExDra [159] is a tool for data acquisition, integration, and preprocessing from

federated and heterogeneous raw data sources. Pachyderm [160] provides automated data
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versioning, data lineage and provenance; provenance and explainability were also motiva-

tions for the design of ProvLake [161] a tool to capture, integrate, and query data across mul-

tiple programs, databases and stores. Lighter tools like Data Provenance Library [162] and

Shuffler [163] are library-level solutions; Data Provenance Library focuses on provenance

of data (using MongoDB as a provenance store), supporting data reduction, augmentation

and transformation operations; Shuffler focuses on data preparation for computer vision.

Feast [164] is a feature store that aims to feed ML models with features enabling a DevOps

philosophy for the lifecycle of features.

All of these tools are collected in Table 3.2.
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Table 3.2: ML Tools by Class and License Type 2

Class License
Type

Tools

Lifecycle Management
Free MLflow [101, 102], ClearML [103],

Polyaxon [104], Hopsworks [105], Iterative
Tools [106, 107, 108, 109]

Non-Free Microsoft Azure ML [93], Amazon Sage-
Maker [94], Google Vertex AI [95], IBM
Watson Studio [96], Comet [97], DataRobot
AI Cloud Platform [98], Cloudera Data Sci-
ence Workbench [99], Valohai [100], Big-
head [112], Michelangelo [114], Pro-ML
[115]

Pipeline Management
Free Velox [116], ArangoML Pipeline [118],

Apache SystemDS [119], Mltrace [120],
TFX [123], Kubeflow [125], H2O [126],
Disdat [130]

Non-Free Vamsa [117], ProvDB [121], Neptune [127],
FBLearner Flow & Predictor [128], ML-
Cask [129]

Experiment Management
Free DWF [131], StudioML [134], MLCube

[135], MLPM [136], Guild AI [137],
Datmo [138], Keepsake [139], Sacred [141],
Apache Submarine [143], Determined [144]

Non-Free Runway [140], Weights & Biases [142]

Model Management
Free ModelDB [145], Sql4ml [150], Clipper

[153], Rafiki [154], ModelHub.AI [157]
Non-Free ModelHub [146], ModelKB [147], MMP

[148], MISTIQUE [149], MLModelCI
[151], ModelCI-e [152], Overton [155],
CMS [156]

Dataset & Feature Management
Free Pachyderm [160], ProvLake [161], Data

Provenance Library [162], Shuffler [163],
Feast [164]

Non-Free MLdp [158], ExDra [159]

3.1.3 Real-world MLOps example

Implementing ML in real-world applications is a challenge when the focus is systems integration

and scaling. Due to the still novel nature of MLOps there are very few use cases available in

the literature that clearly describe a MLOps implementation from the problem identification and

understanding, to model continuous training, deployment, delivery, and monitoring [165]. One of

these rare examples is the use case of Oravizio [166], a software product providing information on

patient-incurred risks related to hip about patient-level risks related to hip (total hip arthroplasty)

2Adapted from Figure 2 of [92]
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and knee joint replacement surgery (total knee arthroplasty). It helps the interaction between

a surgeon and a patient helping to make the well informed decisions and consent regarding an

eventual operation. Oravizio was developed in cooperation between two different organization, a

hospital specializing in joint replacement surgery, and Solita, a software company headquartered

in Finland. The hospital had a 10 years worth accumulated volume of data, used as an asset that

might contain risk factors related to joint replacement surgeries down to an individual patient’s

level.

Three different prediction models are provided:

• Risk of infection within one year from surgery;

• Risk of revision within two years from surgery;

• Risk of death within two years from surgery;

These models are fed with data from patients who have undergone surgery, collected over the

years, totalling 30000 medical records. This number is too large to be processed manually by a

surgeon during or in preparation of each appointment, thus a risk determining model that predicts

the outcome of the surgery is used. This data however, was not well suited for post-processing

as various formats and computer systems were used to gather and store it, some of which were

already been retired. Extra effort was thus required to first consolidate and only then pre-process

it to give it uniformity and utility. After that, the objective is to have an explanatory ML model for

each of the listed risks to allow for validation and ensure regulatory compliance, which is made

easy by the already known relations between the risk in joint replacement surgery and selected

explanatory values from previous clinical research. XGBoost was selected as the implementation

of the Gradient Boosting Machine (GBM) [167], to calculate the predictions required and the final

model was built, which is deterministic, meaning that it can be validated with test data in a test

environment not needing to perform any validation in the production environment.

A version control system (VCS) was used to store all the developed artifacts with the exception

of the model itself, due to privacy restrictions related to strict regulations on patient records use.

Because of this, the final model was deployed in the production environment by handover from

data scientists working within the hospital’s computational environment to software developers

working on the Solita’s production environment using a network drive.

This separation of environment owners, makes frequent changes like retraining of the model

more difficult adding to the fact they were not anticipated as needed. However, re-training was

later performed with more 45000 patient records somewhat improving the model’s performance,

showing the benefits of model re-training. As is apparent in this implementation example, the

model is a key artifact in a MLOps system; in this particular case, it serves as the interface between

the hospital and service provider. If needed or simply desired, a more accurate model can be re-

created in pre-determined intervals or in an ad-hoc fashion, spawning a new model version for

each iteration cycle.



34 State of the Art

Figure 3.2: Oravizio’s MLOps Implementation. 3

3Adapted from Figure 3 of [165]
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Due to the two different organizations involved in Oravizio’s solution being isolated from one

another, the model’s monitoring process was designed with this in mind and has an effect on the

detection of bias and other problems. The most prominent related design decision is the selection

of a model that gives deterministic results, not evolving over time, producing the same results

continuously, not giving rise to any results drift and thus, no retraining is needed unless a new

patient records dataset can be produced, in which case the retraining process is triggered manually

after the accordingly human decision is made.

Finally, the model was not intended to give prescriptive results but only helpful advice related

to the possible risks associated with a surgical operation, leaving the final decision, and all the

responsibility and consequences inherent with it, to an expert that can determine if the advice is

relevant and correct or if it is wrong, infeasible and the result of the model’s malfunctioning.

3.2 Active Learning

When an ML model makes a wrong prediction, it is common to provide to retrain it with more

data related to said predictions; for example, in a classification problem, if the model has problems

distinguishing between two classes to apply to test data, further training data with instances of said

classes is fed to retrain the model. This may not always be the better solution as said data may be

hard to find, or retraining may be costly in time and resources. An alternate solution is to involve a

human component into the process, by having a person with the right knowledge profile be asked

by the model to provide feedback. Such a solution is described in [35]; it uses a neural network

for a classification task, with the model training and testing process split into several steps:

1. After predictions are generated by the model, data points for which said predictions are

given are chosen as they represent the images with the highest entropy.

2. Explanations for each sampled image in the step before are generated, returning a tensor

with the size of the image, that can be thought to represent of how much the network is

focusing on each pixel.

3. Average pooling is applied to the tensor, with a certain window and stride, splitting the ten-

sor into small rectangular regions, generalizing the importance levels within them, making

it easy for a human eye to form a general idea of where the model is focusing more.

4. Said squares are drawn over the original image and given to the Oracle, a human, that

chooses which rectangles are relevant to a correct classification of the query. This choice

is fed to the model by a weights tensor of zeros, except filled with ones where image was

selected, which is then multiplied by the gradients of the network, and from the mean of

the result an extra member of the loss is obtained, which is added to the already calculated

cross-entropy loss.

This solution allows the Oracle to impact the training of the model, modifying the model loss

function to penalize wrong predictions further. This can increase the value of the information of
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each data point by decreasing the entropy [168] and, also, decreasing the amount of data required

to train a more accurate neural network.

3.2.1 Active Learning Tools

Many tools have been designed and built over recent years to fulfill the several tasks executed

in the steps within the MLOps Architecture 3.1.1 (specially as the popularity of ML and AI has

increased in recent years), be it in the form of open-source and free software tipically covering

only a subset of those steps or in a full featured commercial solution form that cover all or a

wide range of them. While initially these tools were used in more traditional ML ways, supplying

data to a model and analysing the results, drawing conclusions to improve next training iterations,

they eventually started to consider collaboration with users, in the form of active learning [169]

with users in the role of oracles to be queried when there was a need to label new data. In these

tools, execution control rests on the learning algorithms, which determine when it is necessary

to query the oracles; this dynamic can be modified to a shared control philosophy, classified as

interactive machine learning (IML) [170], where interactions between algorithms and are more

focused, frequent and incremental.

Tools of the first kind can request feedback from users at different stages: preparation (col-

lecting data to build the model around), execution (labeling data when queried by the algorithm -

oracles) or validation (checking the performance of the model when needed). Examples are:

• AliPy [171], a tool to evaluate, compare and analyze the performance of active learning

algorithms implemented within it.

• Libact [172], a tool that implements several AL algorithms and allows being extended using

provided interfaces.

• modAL [173], a tool suitable for rapid prototyping.

• NEXT [174], a crowdsourcing tool for label collecting.

Tools of the second kind provide greater interactivity with humans, making the interface design

more important as it is responsible for the bidirectional feedback between users and model [175].

IML is still a recent research field and there are not many general purporse tools dedicated to

it, the most notable being AnchorViz [176], a visualization tool that focuses on the discovery of

prediction errors and previously unseen concepts through humandriven semantic data exploration.

Custom-made, ad-hoc, IML related developments are more common though, more restricted in

goals, aimed at solving specific problems, such as giving additional structure to unstructured data,

that is, data that has no identifiable structure, does not have a predefined model, or does not fit into

relational databases, such as images, video, audio files and certain types of text documents [177].

Examples of this include:

• Crayons [178], a tool that creates image classifiers.
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• CueFlik [179], a web image search tool in which users classify images based on created

rules giving examples and counterexamples;

• ilastik [180] that uses image segmentation, object classification, counting and tracking al-

lowing non-expert users to interactively provide annotations;

• AIDE [181], an image annotation tool for ecological surveys that links users and ML models;

• JAABA [182] adds labels to video frames to identify animal behaviors;

• InteractML [183], a tool for users working with movement interaction in immersive media;

• Wekinator [184], a tool that enables the application of ML music information retrieval to

real-time musical performance;

• BeatBox [185], a tool that enables user creation of custom beatbox recognizers;

IML can also be used as a way of promoting xAI: CAIPI [186] allows the ML model to query

users while at the same time explaining that query; both the query but the explanation can be give

feedback by the user, that is, the query is answered but the explanation can also be corrected.
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Chapter 4

Platform Architecture

This chapter describes the architecture for a new Experiment Management ML tool. Even though

the usage of one or several already existing tools to achieve the active learning and reproducibility

and replicability previously states goals would possibily be feasible, it was deemed that their

adaptation to fit these would be more difficult and take up more time than creating an all new

application designed and built with them specifically in mind. It is worth mentioning though, that

the advantages related to the simplicity of installation and usage, may be overshadowed by the

lack of other more powerful features present in other tools, depending on the specific application;

on the other hand, when these are not a requirement and the ML problem to be solved fits the tool,

a simple tool is more convenient and desirable. The developed platform, as most web applications,

can be divided into two main parts:

• Backend - developed from scratch using Go for the web server implementation, Redis [187]

for in-memory data storage and PostgresSQL [188] for in-disk RDBMS data storage.

• Frontend - developed using the Javascript framework Vue 3 [189], from an existing MIT-

licensed template called Admin One [190], along with Tailwind [191] for CSS. Vite [192]

was used as a development server and for tooling.

First, the Data Model and the created entities in the chosen RDBMS and then design and

functioning of the platform will be described, having in mind these two main categories of software

development - Backend and Frontend - that will be . The main purpose of the overall design was

to achieve a level of automation for Active Learning ML models based on the one described by

[35] but modified to fit the pipeline execution logic described in 4.2.6.

4.1 Data Model

The RDBMS chosen to store permanent data was PostgresSQL as it is open-source, well supported

and has a long history of reliability. The backend web server performs CRUD operations using the

GORM [193] library. This adds three extra columns to every entity:

39
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• created_at

• updated_at

• deleted_at

Which contain a timestamp representation of the moment in time each entity was created, last

updated and deleted at, respectively.

There are 13 entities:

• Users - represents a system user identified by its unique ID, containing a unique username

and a hashed password.

• Pipelines - represents a ML pipeline, uniquely identified by its ID, containing a name, the

user it belongs to and, most importantly, its definition, which is made up of the steps to be

executed described in a stringified JSON format.

• Runs - represents a Pipeline’s execution, uniquely identified by its ID. It stores information

about the execution status, the last time it was run (if ever), the pipeline definition at the

time the run was created and the step awaiting feedback (if any) and the error message (if

the execution stopped due to an error).

• Pipeline Schedules - represents the a scheduled, future pipeline execution, uniquely identi-

fied by its ID. It can either be a single execution event - in which case the unique_occurrence

column will have a date representation value - or a recurring event described by a cron ex-

pression.

• Run Statuses - represents the possible values for the status of a run, uniquely identified by

their respective ID. Five possible statuses are defined initially: Not Run, Executing, Error,

Success and Waiting for Feedback.

• Run Step Statuses - represents the status of each step on a pipeline’s execution’s - run -

definition, mapped through the step ID. The possible statuses are the same as the overall run

statuses described above.

• Human Feedback Query - represents the queries - or feedback requests - a run’s step may

need. It contains the relevant step ID, Epoch, Query ID, Run ID and Query Status.

• Query Statuses - represents the possible statuses for a Human Feedback Query, which are

initially defined as Unresolved, Submitted or Resolved.

• Human Feedback Rect - represents the regions - in the form of rectangles - within a query,

identified by a step and in need of selection among them by a human who can discern which

ones are relevant for a better prediction. It contains the rectangle’s coordinates within the

image and a flag indicating if it was selected as relevant or not by a user.
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• Dataset Handlers - represents a custom PyTorch dataset processing class. Uniquely identi-

fied by an ID contains a name, a owner user and a path where the python script containing

said class is stored. The script file must implement the following methods and classes (where

fraction gives the fraction value of data to use for training and testing, respectively):

# returns a tuple with the data classes

def get_data_classes():

...

# returns a class that implements torch.utils.data.Dataset

class TrainDataset(torch.utils.data.Dataset):

def __init__(self, fraction=1):

...

# returns a class that implements torch.utils.data.Dataset

class ValidationDataset(torch.utils.data.Dataset):

def __init__(self, fraction=1):

...

This script is copied into the relative path datasets/handler.py within a run’s work files di-

rectory.

• Trainers - represents a custom PyTorch based trainer script. It should look for a dataset

handler in the relative path datasets/handler.py on its directory or implement a dataset han-

dler itself. Uniquely identified by an ID, contains a name, a owner user and a path to the

python script that implements the trainer. Any training logic, including custom models,

loss functions, performance metrics can be used, from any installed Python library. If feed-

back is needed during the its execution - during a model’s training - it should be marked as

staggered. It must generate a PyTorch model, extending the

• Testers - represents a custom PyTorch based tester script. It must look for a dataset handler

in the relative path datasets/handler.py on its directory or implement a dataset handler itself.

Uniquely identified by an ID, contains a name, a owner user and a path to the python script

that implements the trainer.

• Trained Model - represents a previously trained PyTorch model weights whose state_dict

was saved to a file with the extension .pt. Uniquely identified by an ID, contains a name, a

owner user and a path to the file.

4.2 Backend

The backend was developed in Go [194] using the Gin Web Framework [195] to implement the

Web Server, providing static files and resources and a REST API responsible for the getting,

updating and deleting the stored data, as well as requesting and scheduling processing requiring

tasks.
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4.2.1 Presentation, Service and Repository Pattern

The web server is designed along the lines of a Controller, Service and Repository design pattern

as it is widely used by the software developer community (so much so that it is the de facto stan-

dard for Java EE applications) [196]. It consists of organizing the application’s components within

horizontal layers that take up different roles and responsibilites, abstracting the work they perform

from the other layers, leading to independence between them. The layers need only to communi-

cate between them using the interface each component implements, without worrying about the

specifics of what each component does. Although there isn’t a set number of layers, the backend

applications is organized into the 4 most common layers: Presentation, Service, Repository and

Database (Figure 4.1).

Figure 4.1: Backend Application Layers

Each of these layers contains the following components:

• Presentation Layer

– User Requests Handler - Handles user related requests from the frontend application,

specifically signup, log in, log out and new token requests.

– Pipeline Requests Handler - Handles pipeline related requests from the frontend ap-

plication, specifically fetching, creating, updating and deleting.

– Run Requests Requests Handler - Handles run related requests from the frontend

application, specifically fetching, creating, running and resuming. Run results fetching

is also handle here.

– Dataset Requests Handler - Handles dataset handler related requests from the fron-

tend application, specifically fetching, creating, updating and deleting.

– Trainer Requests Handler - Handles trainer related requests from the frontend appli-

cation, specifically fetching, creating, updating and deleting.
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– Trained Models Requests Handler - Handles trained models related requests from

the frontend application, specifically fetching, creating, updating and deleting.

– Trainer Requests Handler - Handles trainer related requests from the frontend appli-

cation, specifically fetching, creating, updating and deleting.

• Service Layer

– User Service - Provides the methods listed in Figure 4.2a for user creation, editing

and authentication, which contain the relevant business logic.

– Token Service - Provides the methods listed in Figure 4.2b for token creation and

deletion which contain the relevant business logic.

– Pipeline Service - Provides the methods listed in Figure 4.2c for pipeline fetching, cre-

ation, editing, run scheduling and deletion which contain the relevant business logic.

– Run Service - Provides the methods listed in Figure 4.2d for run fetching, creation, run

tasks creation, execution, resuming and deletion which contain the relevant business

logic.

– Step Service - Provides the methods listed in Figure 4.2e for step and edge (that is,

the connections between steps) creation which contain the relevant business logic.

– Task Service - Provides the sole method listed in Figure 4.3a to setup the Asynq server

worker, as the busined logic for task creation and handling stayed with RunService to

avoid cyclic imports.

– Dataset Service - Provides the methods listed in Figure 4.3b for dataset handlers fetch-

ing, creation, editing and deletion, which contain the relevant business logic.

– Trainer Service - Provides the methods listed in Figure 4.3c for trainer scripts fetch-

ing, creation, editing and deletion, which contain the relevant business logic.

– Trained Model Service - Provides the methods listed in Figure 4.3d for trained models

fetching, creation, editing and deletion, which contain the relevant business logic.

– Tester Service - Provides the methods listed in Figure 4.3e for tester scripts fetching,

creation, editing and deletion, which contain the relevant business logic.

• Repository Layer

– User Repository - Provides the methods listed in Figure 4.4a necessary for user cre-

ation, editing and authentication, that interact directly with the PostgresSQL database.

– Token Repository - Provides the methods listed in Figure 4.4b necessary token cre-

ation and deletion, that interact directly with the Redis in-memory database.

– Pipeline Repository - Provides the methods listed in Figure 4.4c for pipeline fetch-

ing, creation, editing, run scheduling and deletion, that interact directly with the Post-

gresSQL database.
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(a) User Service Interface

(b) Token Service Interface

(c) Pipeline Service Interface

(d) Run Service Interface

(e) Step Service Interface

Figure 4.2: Services Layer Part 1
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(a) Task Service Interface

(b) Dataset Service Interface

(c) Trainer Service Interface

(d) Trained Model Service Interface

(e) Tester Service Interface

Figure 4.3: Services Layer Part 2
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– Run Repository - Provides the methods listed in Figure 4.4d for run fetching, creation,

updating, execution, resuming and deletion that interact directly with the PostgresSQL

database.

– Dataset Repository - Provides the methods listed in Figure 4.5a for dataset handlers

fetching, creation, editing and deletion, that interact directly with the PostgresSQL

database.

– Trainer Repository - Provides the methods listed in Figure 4.5b for trainer scripts

fetching, creation, editing and deletion, that interact directly with the PostgresSQL

database.

– Trained Model Repository - Provides the methods listed in Figure 4.5c for trained

models fetching, creation, editing and deletion, that interact directly with the Post-

gresSQL database.

– Tester Repository - Provides the methods listed in Figure 4.5d for tester scripts fetch-

ing, creation, editing and deletion, that interact directly with the PostgresSQL database.

4.2.2 Authentication

User authentication is handled with claims represented by JWTs [197] and signed using RS256,

one of the recommended algorithms in the specification for JWS [198], which is used by JWT for

encryption. Claims issuing follows the logic bellow (Figure 4.6):

1. A user is registered or logs in.

2. A pair of JWT Claims Sets [197] is generated, one with a smaller expiration date called

id/login token, the other with a longer expiration date called refresh token.

3. The refresh token ID and user ID are stored in Redis.

4. The id/login and refresh token structures are signed using RS256 with a private key from a

pair of public and private keys generated beforehand.

5. These signed structures are returned to the user.

4.2.3 REST API

All the requests - apart for the POSTs to /api/user/login and /api/user/signup - must contain au-

thentication information in the Auhtorization header (a signed JWT token provided by the web

server after logging in). The following endpoints and methods are provided by the web server:

• User API

– POST /api/user/ - Edits user information.
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(a) User Repository Interface

(b) Token Repository Interface

(c) Pipeline Repository Interface

(d) Run Repository Interface

Figure 4.4: Repository Layer Part 1
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(a) Dataset Repository Interface

(b) Trainer Repository Interface

(c) Trained Model Repository Interface

(d) Tester Repository Interface

Figure 4.5: Repository Layer Part 2
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Figure 4.6: Authentication tokens generation

– POST /api/user/login - Logs in a user and generates a new pair of login and refresh

tokens.

– POST /api/user/signup - Registers a new user.

– POST /api/user/tokens - Gets a new login token if provided with a still valid refresh

token.

– POST /api/user/signout - Signs out a user and removes its tokens from memory.

• Pipeline API

– GET /api/pipeline/ - Gets all the pipelines for the currently logged in user.

– POST /api/pipeline/ - Creates a new pipeline.

– DELETE /api/pipeline/ - Delete a pipeline.

– GET /api/pipeline/:id - Gets a single pipeline, identified by its id.

– POST /api/pipeline/:id - Updates a the pipeline information, most importantly its

definition, given its id.

– GET /api/pipeline/:id/schedule - Gets all the scheduled pipeline execution records

for a given pipeline identified by its id, past and present.

– POST /api/pipeline/:id/schedule - Creates a new scheduled pipeline run record, which

can be a single occurrence or a repeatable event described by a cron expression.

– DELETE /api/pipeline/:id/schedule - Deletes an existing scheduled pipeline execu-

tion.
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– POST /api/pipeline/:id/file - Uploads a file to the web server, associating it to a given

step within a pipeline.

• Run API

– GET /api/run/ - Gets all the runs for the currently logged in user.

– GET /api/run/:id - Gets all the runs for the pipeline identified by the id.

– POST /api/run/:id - Creates a run for the pipeline identified by the id.

– POST /api/run/execute/:runID - Executes a run identified by the id, resetting its state

and deleting any previously associated information.

– POST /api/run/resume/:runID - Executes a run identified by the id, picking up its

execution from the state and step it was suspended at.

• Run Results API

– GET /api/runresults/:id - Gets all the information related to the current results of run

(identified by its id) - the overall and step statuses, the feedback queries, the tail end

of the log file (along with the URL to the full log).

– GET /api/runresults/:id/log - Gets just the tail end of the log file (along with the URL

to the full log) associated with a run (identified by its id).

• Feedback API

– GET /api/feedback/:id - Get not resolved feedback query information for a run iden-

tified by id.

– GET /api/feedback/:id - Submits feedback information for not yet resolved queries,

for a run identified by id.

– GET /api/feedback/:id/query/:queryId - Gets a specific feedback query with id queryId

for a run identified by id.

• Dataset API

– GET /api/dataset/ - Gets all the dataset handlers for a specific user.

– POST /api/dataset/ - Creates a dataset handler for a specific user, given a name.

– GET /api/dataset/:id - Gets a specific dataset handler identified by its id.

– POST /api/dataset/:id/file - Updates a dataset handler identified by its id, uploading

a python file that implements it.

– DELETE /api/dataset/ - Deletes a specific dataset handler.

• Trainer API

– GET /api/trainer/ - Gets all the trainers for a specific user.
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– POST /api/trainer/ - Creates a trainer for a specific user, given a name.

– GET /api/trainer/:id - Gets a specific trainer identified by its id.

– POST /api/trainer/:id/file - Updates a trainer identified by its id, uploading a python

file that implements it.

– DELETE /api/trainer/ - Deletes a specific trainer.

• Tester API

– GET /api/tester/ - Gets all the testers for a specific user.

– POST /api/tester/ - Creates a tester for a specific user, given a name.

– GET /api/tester/:id - Gets a specific tester identified by its id.

– POST /api/tester/:id/file - Updates a tester identified by its id, uploading a python file

that implements it.

– DELETE /api/tester/ - Deletes a specific tester.

• Trained Model API

– GET /api/tester/ - Gets all the trained models for a specific user.

– POST /api/tester/ - Creates a trained model for a specific user, given a name.

– GET /api/tester/:id - Gets a specific trained model identified by its id.

– POST /api/tester/:id/file - Updates a trained model identified by its id, uploading a

.pt PyTorch file that implements it.

– DELETE /api/tester/ - Deletes a specific trained model.

4.2.4 Concurrent Pipeline Runs Execution

While concurrent execution of HTTP requests is assured by the Gin Framework, as it uses the Gor-

outines [199] dependent http.Serve function from Go’s standard lib behind the scenes - concurrent

execution of pipeline run’s is still needed. This is assured by using Redis as a message broker for

a task queue. The Go Asynq library [200] provides just this.

Figure 4.7 represents the basic architecture behind Asynq: a client creates tasks that are sub-

mitted and queued in the message broker in queues with different priorities. These tasks are then

picked up by worker threads on the server and processed. In reality, the http threads that serve run

execution requests are the clients that enqueue tasks into a single queue, as all run execution tasks

have the same priority, while a separate Goroutine on the web server, that sets up the asynq server

during startup, polls for awaiting tasks and spawns up to 10 concurrent task processing threads.

These task can be one of two types:

• Execute Run - Executes a pipeline run from the start, removing any previous working data

and results
1Adapted from Example use case in [200]
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Figure 4.7: Asynq architecture 1

• Resume Run - Resumes execution of a pipeline run that had been paused awaiting for

feedback; previously associated working data and results are kept as they are needed to

continue the execution until a final state - Error or Success - is obtained.

Within the first type, there are two sub-types:

• Immediate execution tasks - or, more precisely, executed as soon as there’s a worker thread

available. They are executed against an already existing run entity.

• Scheduled execution tasks - that are queued as tasks in Redis but only executed at a set time

in the future. They create a new run entity object when picked up by the service worker

thread. If they’re recurrent events, only the first event is queued as a task and when it is

picked up for execution by the server the next ocurrence will be queue and so on. However,

their execution will be compromised if Redis is shut down after they are queued. In that

case, the web server must be restarted, as during startup the scheduled tasks queued in Redis

are synchronyzed: all of the unique ocurrence and cron scheduled tasks are fetched from

the database and compared to the Redis scheduled tasks; if any of them is missing from the

Redis queue, it is queued up.

4.2.5 Environment variables

The backend is configured mainly through environment variables divided into 3 groups:

• Web Server (path related variables should contain paths for which the OS user running the

web server go process has read and write permissions for):
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– WEB_SERVER_PORT - the port the webserver will be listening to HTTP connections

and requests on.

– ID_TOKEN_DURATION - how long an id/login token will be valid for, in seconds.

– REFRESH_TOKEN_DURATION - how long an refresh token will be valid for, in sec-

onds.

– PIPELINES_WORK_DIR - the directory onto which pipeline execution related files

will be created on or copied.

– FILE_UPLOAD_DIR - the directory onto which files uploaded throught the REST API

will be created.

– RUN_LOGS_DIR - the directory onto which run execution logs will be created.

– RUN_LOG_FILE_NAME - the file name for the a run’s execution log.

• PostgresSQL Connection:

– POSTGRES_HOST - the hostname or ip address of the host where the PostgresSQL

DB is installed.

– POSTGRES_PORT - the PostgresSQL DB port.

– POSTGRES_USER - the PostgresSQL user.

– POSTGRES_PASSWORD - the PostgresSQL user password.

– POSTGRES_DB - the PostgresSQL database.

– POSTGRES_SSL - whether to enable SSL mode.

– POSTGRES_TIMEZONE - the PostgresSQL timezone.

• Redis:

– REDIS_HOST - the hostname or ip address of the host where Redis is installed.

– REDIS_PORT - the port through which to connect to the Redis.

4.2.6 Pipeline Steps

When a Run is created for a Pipeline, the latter’s definition is copied onto the Run entity object,

capturing it as it was at that moment in time, so that updates to the Pipeline’s definition won’t affect

the run. A Pipeline’s definition consists in the steps that make it up as well as the connections

between them; this is represented in a JSON array object; taking advantage of the fact the frontend

pipeline steps editor is based on Vue Flow [201] which produces one already, a few more fields

are added for the backend. A pipeline definition example would be:

[

{

"type": "checkoutRepo",

...



54 Platform Architecture

"data": {

"id": "0",

"nameAndType": {

...

},

"stepConfig": {

...

},

},

...

},

{

"type": "humanFeedbackNN",

...

"data": {

"id": "1",

"nameAndType": {

...

},

"stepConfig": {

...

},

},

...

},

{

...

"type": "smoothstep",

"source": "1",

"target": "0",

...

}

]

Storing this JSON array as a string in the database avoids the need to perform marshallling

and unmarshalling operations every time we need to fetch or edit a pipeline’s definition. However,

unmarshalling does occur just before executing a run, because the step JSON representations need

to be converted into Go struct objects that implement a step interface (Figure 4.8a) allowing them

to have type specific individual logic while the top layer of code that calls their execution remains

agnostic to it.

After unmarshalling (Figure 4.10):

1. The Steps are collected into a linked list, which in fact is a graph in which the vertices

have only both one input and output edges. The decision to use a graph was to allow future



4.2 Backend 55

(a) Step Interface

(b) Edge Interface

Figure 4.8: Step and Edge interfaces

changes to the Steps definition to support a graph like structure instead of the simpler linked

list one.

2. With the Steps collected into a single structure, the execution can start by navigating through

the Steps. If we’re executing a run, previously created Step Statuses and run related files are

deleted from the database and disk, respectively, if any exist. New directories for the run

log and files are then created, at RUN_LOGS_DIR/pipelines/<pipelineID>/<runID> and

PIPELINES_WORK_DIR/<pipelineID>/<runID>, respectively. If we’re resuming a run,

this is skipped.

3. The Run Status is updated to "Executing".

4. The starting Step to execute is fetched. If we’re executing a run, that is the first Step in

the definition; if we’re resuming a run, that’s the Step that has a Step Status with the value

"Waiting for Feedback" and Human Feedback Queries submitted.

5. The Step Status is updated to "Executing".

6. The Step is Executed.

7. If the Step execution failed: item

• The Step Status is updated to "Error"

• The Run Status is also updated to "Error".

If the Step succeded:

• If there’s feedback required by the Step, Human Feedback Query entities are created,

the Step Status is updated to "Waiting for Feedback" along with the Run Status.



56 Platform Architecture

Figure 4.9: Pipeline Definition Unmarshalling

• If there’s no feedback required by the Step, the Step Status is updated to "Success" and

the next Step in the list is fetched; if there are no Steps left, the Run Status is updated

to "Success", otherwise we execute the next step and repeat the cycle.

There are several types of steps, divided into 6 categories:

• General - these are steps that perform generic or utilitarian tasks, not necessarily related

with ML.

– Checkout Repository - Checkout a Git [202] repository into the run’s local working

directory.

– Shell Script - Copies a shell script written by the user into the run’s local working

directory and runs it.

– Python Script - Copies a Python script written by the user into the run’s local working

directory and runs it.

• HITL - these are steps that perform built-in HITL algorithm tasks.

– Neural Network Training with Human Feedback - Uses the training and testing

algorithm desbribed in [35], adapted to conform to the logic described in Figure 4.10.

It can be used with the pre-packaged datasets handlers for ISIC 2017 [203], APTOS

2019 [204], American National Cancer Institute (NCI) cervigrams, ROSE-Youtu [205]

and PornographyXXX. Several model variations can be trained on of these datasets,

with the following PyTorch implementations to choose from:

* AlexNet [206] - alexnet

* ConvNeXt [207] - convnext_tiny, convnext_small, convnext_base, convnext_large

* DenseNet [208] - densenet121, densenet161, densenet169, densenet201
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* EfficientNet [209] - efficientnet_b0, efficientnet_b1, efficientnet_b2, efficientnet_b3,

efficientnet_b4, efficientnet_b5, efficientnet_b6, efficientnet_b7

* EfficientNetV2 [210] - efficientnet_v2_s, efficientnet_v2_m, efficientnet_v2_l

* GoogLeNet [211] - googlenet

* Inception V3 [212] - inception_v3

* MaxVit [213] - maxvit_t

* MNASNet [214] - mnasnet0_5, mnasnet0_75, mnasnet1_0, mnasnet1_3

* MobileNet V2 [215] - mobilenet_v2

* MobileNet V3 [216] - mobilenet_v3_large, mobilenet_v3_small

* RegNet [217] - regnet_y_400mf, regnet_y_800mf, regnet_y_1_6gf, regnet_y_3_2gf,

regnet_y_8gf, regnet_y_16gf, regnet_y_32gf, regnet_y_128gf, regnet_x_400mf,

regnet_x_800mf, regnet_x_1_6gf, regnet_x_3_2gf, regnet_x_8gf, regnet_x_16gf,

regnet_x_32gf

* ResNet [218] - resnet18, resnet34, resnet50, resnet101, resnet152

* ResNeXt [219] - resnext50_32x4d, resnext101_32x8d, resnext101_64x4d

* ShuffleNet V2 [220] - shufflenet_v2_x0_5, shufflenet_v2_x1_0, shufflenet_v2_x1_5,

shufflenet_v2_x2_0

* SqueezeNet [221] - squeezenet1_0, squeezenet1_1

* SwinTransformer [222] - swin_t, swin_s, swin_b

* SwinTransformer V2 [223] - swin_v2_t, swin_v2_s, swin_v2_b

* VGG [224] - vgg11, vgg11_bn, vgg13, vgg13_bn, vgg16, vgg16_bn, vgg19, vgg19_bn

* VisionTransformer [225] - vit_b_16, vit_b_32, vit_l_16, vit_l_32, vit_h_14

* Wide ResNet [226] - wide_resnet50_2, wide_resnet101_2

Similarly, several parameter optimization algorithms can be chosen:

* Adadelta [227]

* Adagrad [228]

* Adam [229]

* AdamW [230]

* SparseAdam [229]

* Adamax [229]

* ASGD [231]

* SGD [232]

* RAdam [233]

* Rprop [234]

* RMSprop [235]

* NAdam [236]

* LBFGS [237]
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• Datasets - Created based on existing dataset handlers; they use their assigned PyTorch

dataset handler script, copying it into the local run files directory, onto the datasets/han-

dler.py path. They should implement a Python a method named get_data_classes() that

returns a tuple with the possible data label classes, a class named TrainDataset and a class

named ValidationDataset that both extend the PyTorch torch.utils.data.Dataset (just a con-

vention so that the HITL, Trainer and Tester scripts can easily access it).

• Trained Models - Created based on existing trained models weights; they use their assigned

PyTorch .pt file, copying it into the local run files directory, onto the base_models/trained_model.pt

path. Testers and Trainers that want to use these models should locate them under this path.

• Trainers - Created based on existing trainer scripts; they use their assigned PyTorch trainer

script, copying it into the local run files directory and running it. If human interaction

through feedback is required, they should implement a Python the same basic logic that

a Neural Network Training with Human Feedback Step does, that is, after each epoch, if

queries are generated, they must create a CSV file for each one at epochs/n/query_i_rects.csv

along with the respective image file at epochs/n/query_i_image.png (n and i being the epoch

number and the query number, respectively) and store in the disk any data it needs to resume

its execution after feedback is given in the web application. For that, the script file must

support the usage of the resume_epoch argument that indicates the epoch the execution was

paused at, previously.

• Testers - Created based on existing model testing scripts; they use their assigned PyTorch

tester script, copying it into the local run files directory and running it.

4.3 Frontend

The frontend web application was developed using the Javascript framework Vue 3 [189], starting

from an existing MIT licensed template (Admin One [190]), along with Tailwind [191] for CSS

in a single page application design with Vue Router [238] serving the different views. Vite [192]

was used as a development server and for tooling. Data fetching, creation, updating and deletion

is done through the endpoins listen in 4.2.3.

There are 14 different views:

• /login - Log In View

• /signup - Sign Up View

• /pipelines - Pipelines View

• /pipelines/edit/:id - Pipeline Edit View

• /runs - Runs View
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• /pipelines/runs/:id - Pipeline Runs View

• /runresults/:id - Run Results View

• /feedback/:id - Feedback View

• /feedback/:id/query/:queryId - Single Feedback Query View

• /datasets - Datasets Handlers View

• /trainers - Trainers View

• /testers - Testers View

• /trained - Trained Models View

4.3.1 Log In and Sign Up

In order to use the application, users must register and choose a username and password with

between 5 and 30 characters long. After log in or user registration is completed (using the screens

in Figures 4.11a and 4.11b), the user is redirected to the Pipelines page and authenticated requests

are made by passing the signed id/login token on the Authorization header. Before using them

though, the client should check if the locally stored tokens are still valid. Depending on their

validity, one of three scenarions may happen (Figure 4.12):

1. Id/login and refresh tokens are both valid: authenticated requests to the server are made

using the Authorization header with the value of the signed id/login token.

2. The id/login token is expired but the refresh token is valid: a request for a new id/login token

is sent to the server, passing the old id/login and refresh tokens.

3. Both the id/login token and refresh tokens are expired: the user is sent to the login page.

4.3.2 Pipelines

Accessible through the side menu. Pipelines are listed in a table. New ones can be created, existing

one can be deleted or edited (Figure 4.13).

4.3.3 Pipeline Edit View

Accessible when clicking in one of the Edit buttons in 4.3.2. Pipelines are edited in this screen;

new steps can be added, existing steps can be edited by double clicking on them or deleted by

clicked the "X" popup icon when they’re selected (Figure 4.13). Steps can also be moved freely

on the Vue Flow [201] canvas for better user viewing. The scheduled executions of the pipeline

are also displayed in a table manner and new ones can be added and existing ones can be deleted.

Changes can saved by clicking the "Save" button or discarded by clicking the "Cancel" button.
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4.3.4 Runs View

Accessible through the side menu clicking on the "Runs" option. Every Pipeline and its Runs

are listed in a table with nested rows. New Runs can be created, existing ones can be executed,

resumed, given feedback (depending on their status) or get their results checked (Figure 4.15).

4.3.5 Pipeline Runs View

Accessible when clicking in one of the View buttons in 4.3.4. Shows the same and the same

actions can be performed as in the Runs View but for a single chosen Pipeline (Figure 4.16).

4.3.6 Run Results View

Accessible when clicking in a View Run button in 4.3.4 or 4.3.5. Shows the current results for a

Run.

• If a run is Waiting for Feedback, a button to the Feedback View is added so that Feedback

can be submitted.

• Each Step displayed on the canvas has a tag with their status.

• The latest 25 lines in the Run log are displayed and updated every 5 seconds. A button to

show the full logs is also present.

• A table showing all the Run generated feedback queries is displayed.

4.3.7 Feedback View

Users can access this view by clicking the "Give Feedback" button in 4.3.6. It shows the current not

Resolved Feedback Queries for a Run, linked to the last Step that made the run’s execution pause.

User’s can select the rectangular areas that are most relevant for the purpose of training algorithm,

either by clicking those areas on the image (which will make the corresponding rectangle turn

green) or by checking the corresponding rows in the table bellow (Figure 4.18). Clicking the

submit button submits the feedback given, making the Run ready to be resumed again.

4.3.8 Single Feedback Query View

Users can access this view by clicking the View button in Feedback table in 4.3.6. It shows only

the query selected. Similarly to 4.3.7, users can select and submit the relevant rectangular areas

(Figure 4.19), but only if the query is not in the Resolved status.
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4.3.9 Datasets Handlers, Trainers, Testers and Trained Models Views

Users can access these view by clicking the respective button in the side bar. All of them present

a table representation of Datasets Handlers, Trainers, Testers and Trained Models (Figure 4.20).

New records can be created, existing ones may be deleted or edited, by uploading a different .pt

file for a Trained Model or a .py file for the rest.
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Figure 4.10: Steps Execution Logic
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(a) Log In (b) Sign Up

Figure 4.11: Log In and Sign Up Pages

Figure 4.12: Client token handling

Figure 4.13: Pipelines View
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Figure 4.14: Pipeline Edit View



4.3 Frontend 65

Figure 4.15: Runs View

Figure 4.16: Pipeline Runs View
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Figure 4.17: Run Results View
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Figure 4.18: Feedback View
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Figure 4.19: Single Query Feedback View

(a) Dataset Handlers View (b) Trainers View

Figure 4.20: Log In and Sign Up Pages

(a) Testers View (b) Trained Models View

Figure 4.21: Views
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Automated workflow examples

This chapter describes two examples of pipelines ran on the application described in 4, describing

the datasets, models and training methods used.

5.1 HITL logic

The human oracle queries for both of the pipelines were generated using the logic proposed in [35]

for each training epoch:

1. The model generates a prediction for the training images;

2. Predictions are selected by calculating their associated entropy values, sorting them in de-

scending order and choosing the first x.

3. A xAI algorithm (DeepLIFT [239], even though other options that might have been better

suited were not searched for) is run for the images associated with each prediction selected,

returning a tensor with the pixel attributions which can be read as how much each pixel the

model is focusing on each pixel.

4. Average pooling is applied to the attribution tensor, producing rectangular (more specifi-

cally, squared) regions that translates it to a visual interpretation on the image.

5. These rectangular regions are drawn over the images and presented to the human oracle

which then selects the ones most relevant for the correct classification.

6. The selected rectangles are then translated into ones in a tensor otherwise full of zeros,

multiplied by the gradients of the network and from the mean of the result an extra loss

member is obtainined, that is added to the already calculated cross-entropy loss.

5.2 Face Spoofing

Face spoofing consists of fooling a face recognition ML systems with a fake video or image,

for example a paper print out of a face or a face picture displayed on a screen. The experiment
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described in this section was inspired by previous work on it, specifically the binary classification

task and the effect of background elements on the predictions which can be leveraged to provide a

more informed decision by the model[31].

5.2.1 ROSE-Youtu

Commonly used datasets used for related research were Idiap REPLAY-ATTACK [240], CASIA

Face AntiSpoofing [241] and MSU mobile face spoofing [242]. Idiap REPLAY-ATTACK [240]

has 1200 videos taken on a MacBook webcam that represent 2 conditions: the first is uniform

background and lighting and the second is complex background and natural lighting; spoofing

attack videos were shot on a Canon PowerShot camera of iPad and iPhone 3GS displayed videos

and paper printed faces. CASIA Face AntiSpoofing [241] has 600 videos with more face acquisition

devices and different quality levels, with spoofing types including warping, cutting and replaying

attacks. MSU has 280 videos of genuine and fake faces captured on a Laptop and Android phone

camera, with two types spoofing attacks, printed photo attack and replay video attack. It is also

divided into training and testing data.

ROSE-Youtu [205] was introduced after de already named datasets and focused on:

• face samples captured in real-world scenarios;

• the mediums used for spoofing are able to fool a system without anti-spoofing detection;

• several cameras, quality levels and illumination used to capture videos;

• several types of spoofing attacks;

It contains more than 4000 videos of 25 subjects, more than Idiap REPLAY-ATTACK, CASIA Face

AntiSpoofing and MSU mobile face spoofing, even though only only 3350 videos of 20 subjects

are available in its public version. There’s a total of between 150 to 200 videos for each subject,

captured on 5 mobile devices at a distance between 30 and 50 centimeters (using front-facing

cameras with different camera resolutions) in 5 lighting conditions, with an average duration of

10 seconds. Besides videos of a genuine subject, there are 7 other types of videos representing

attacks: 2 paper printed attacks, 2 replay attacks (of videos played on a Lenovo and Apple laptops)

and 3 paper mask attacks (introducing three-dimensional information in the dataset). This dataset

was divided into two parts: a training dataset and a testing dataset made up of 4 equally spaced

frames extracted from each of the videos of the first 10 and the last 10 subjects, respectively; each

frame was labeled according to the video it was extracted from: if the video was of a genuine

subject it was labeled so, if it was from a video of any type attack it was labeled simply as an

attack. There are thus two possible classes of data:

• Class 0: Genuine subject

• Class 1: Face spoofing attack
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5.2.2 Model and Training

A MobileNet v2 [215] model with two outputs values which are activated with softmax was used.

The optimization of the weights is done using the Adam algorithm [229] and the learning rate was

set at 1× 10−5. A base model trained for 20 epochs on 10% of the training data (700 images)

was created starting from a pre-trained MobileNetv2 on the ImageNet dataset (the default pre-

trained option for MobileNetv2 offered in PyTorch), using also 10% of the testing data. Then,

this base model was trained for 20 more epochs with oracle queries set up to start at the 10th. To

compare the HITL results, an automatic training pipeline was also ran on the same base model for

20 epochs.

5.2.3 Results

(a) HITL

(b) Auto

Figure 5.1: Face Spoofing HITL vs Automatic training comparision

There was some difficulties when choosing the relevant areas in which the model should focus;

of the offered choices few were clear cut indications of either a real or face attack image. This
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is specially true for the attacks that most closely resemble real faces even for human observers,

the replay attacks, as their most distinguishable characteristic is the overall foggy, less defined

appearance and not specific regions of the image, unless the edges of the screen the image is

displayed or a finger of the hand that holds the screen are visible, which is an obvious tell it is a

face spoofing attack. The choosing of these regions was a focus not for these first queries, which

proved to be a mistake; instead, the choosing of regions with bright spots of incident light on the

screen were preferred. Additionally, almost all of these first queries were of the replay attack kind,

which restricted feedback opportunities for images of the other attacks as well as real face images.

Thus, all this might have lead to some choices that guided the model in the wrong direction for

classification of the next epoch’s testing and training data. These are all possible explanations to

the unremarkable effects on the mitigation of the overfitting of the model on the training data;

additionally the testing accuracies evolved similarly for both the HITL and auto training pipelines.

5.3 Pornographic content detection

Video content classification is widely used in all its distribution channels, be it television, movie

theaters, internet streaming, to direct and try to restric the access of said video contents to only

the intended or legally allowed age group public. This classification is made manually, by peo-

ple that watch and review the images showed and determine what type of audience should be

recommended or allowed to watch them.

5.3.1 PornographyXXX

PornographyXXX is a dataset compiled of several extracted video frames from original content

ranging from mostly innocuous (instructional videos, live music performance, live sports, product

advertising, news shows), passing through age restricted and/or containing people with less cloth-

ing (tv shows with people in swimsuits in the pool or on the beach, sporting wrestling or fighting

sports), to pornographic films. These constitute a scale of seemingly increasing difficulty when it

comes to distinguishing between pornographic and non pornographic content. A total of 16727

frames are present, of which 6785 are categorized as easily identifiable non-pornographic, 3555

are categorized as difficult to identify as non-pornographic and 6387 are categorized as porno-

graphic. For the purposes of the model’s classification though, this data was labeled as simply

pornographic or non-pornographic, making its task a binary classification one. There are thus two

possible classes of data:

• Class 0: Non-pornographic

• Class 1: Pornographic
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5.3.2 Model and Training

A MobileNet v2 [215] model with two outputs values which are activated with softmax was used.

The optimization of the weights is done using the Adam algorithm [229] and the learning rate

was set at 1× 10−5. A base model trained for 100 epochs on 10% of the training data (1672

images) was created starting from a pre-trained MobileNetv2 on the ImageNet dataset (the default

pre-trained option for MobileNetv2 offered in PyTorch), using also 10% of the testing data. This

is quite a lot more training epochs than the Face Spoofing example; indeed the model achieved a

stable training accuracy of around 80% at around the 50 epochs mark, but a decision was made

to continue training to try to improve this score. Then, this base model was trained for 20 more

epochs with oracle queries set up to start at the 10th. To compare the HITL results, an automatic

training pipeline was also ran on the same base model for 20 epochs.

5.3.3 Results

(a) HITL

(b) Auto

Figure 5.2: Pornographic content detection HITL vs Automatic training comparision
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Similarly to the Face Spoofing detection there were some difficulties when choosing the rele-

vant areas in which the model should focus. For non-pornographic images, it is a tough decision

to select on what the model should focus more, due to the wide range of images present in the

dataset and indeed possible in the real-world. A decision was made to avoid picking any rectangle

in these cases, implying that the absense of special focus on any area is in itself a reason to classify

the image in the non-pornographic class. This does not necessarily translate well in the HITL al-

gorithm, as it the selection of the areas of special focus that push the model into a specific category

and, in the absense of any selection, the effect is the same as if no feedback were provided in this

cases which is the same as automatic training. For the cases in which the images should be labeled

as pornographic, the clear cut indications are areas where nudity (more specifically, genitals and

other private areas) is displayed; however, these were not always available to chose. Additionaly,

images belonging to pornographic videos may not always display these clear indications as they

can be frames from moments in the video where they are not present, either because they’re off-

frame, it’s from a moment with a black screen, an introductory screen or other of the kind. Again,

these are all possible explanations to the unremarkable effects on the mitigation of the overfitting

of the model on the training data; additionally the testing accuracies evolved similarly for both the

HITL and auto training pipelines.
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Conclusions

The recent crescent popularity of MLOps provides and excellent oportunity to better incorporate

ML with any software project relieving developers and engineers from the cumbersome specific

ML associated tasks that can be automated, while at the same making the more familiar generic

pipelines - development, integration, testing, code and data maintenance, deployment and moni-

toring much more efficient, controlable and useful when it comes to improving the performance

of the prediction models. It is therefore evident that there is an excellent opportunity to leverage

the advantages of MLOps and apply it to the context off efficient ML. There are a wide range of

MLOps systems that also cover a wide range of applications, ones in more detail and with more

features than others.

6.1 Challenges

During the development of the MLOps tool, it was apparent that some problems arise when de-

signing such a system, specially one with the quite limited scope and size as this one:

• Active Learning Feedback - having a one size fits all approach for an active learning system

is difficult, not only because different datasets have different types of data, and constitute

data points for different kinds of problems. Consequently, the way ML training algorithms

interact with humans to request and receive feedback is problem specific. That means that

the approach followed in [35] and embedded in the implementend system is not generic

enough to accomodate all classification tasks, let alone all ML tasks. Not only the visual

interactive way - selection of regions marked by rectangles - but also the criteria for when

to ask the user for queries are subject of research and experimentation. Additionally, the

Oracle’s subjectivity plays a part as well, as feedback choices may vary between users for

various reasons, from individual expertise to the fact that different people make different

choices in situations where the answer is not obvious.

• Dataset & Feature Management - handling and storing datasets is a challenge. That is

because a lot of the time they’re many gigabytes in size disk space a precious commod-

ity; their data is often organized and listed differently, calling for different pre-processing
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logic which ; there’s not one (or indeed, neither a small set) definite, centralized, agreed

upon, public repository where they’re originally hosted and can be reliably fetched from.

This means that a fully automated, UI-driven dataset and feature management is difficult to

achieve and compromises have to be made, such as providing only a very generic way to

pre-process already existing datasets stored in disk, by having the users creating their own

Python scripts with only loose restrictions to their structure, in order to accomodate as wide

range of needs as possible.

• Server Resources - ML algorithms are often costly in resources for the host system in which

they run. This remains and increases to even a bigger challenge when choosing the host

server of where to install an MLOps system, as several ML models may be trained or tested

simultaneously, multiplying manifold concerns for CPU, GPU availability and capability.

In the system described in 4, a maximum of 10 pipelines may be running at a given time

which can be a stretch for powerful system even.

• Different ML Tasks - The ML tool described in this work has the limiation of only being

able to handle classification tasks of the kind described in 5, meaning that it will fit a fairly

limited set within the universe of possible ML problems; this is further emphasized by the

already described "one size fits all" approach of the active learning logic, specifically with

the usage of rectangles that are not appropriate to provide feedback for all classification

problems.

6.2 Future Work

Given the limited features that were implemented in the designed system, it is not comprehensive

when comparing to the MLOps universe, as it is more geared to human interaction through active

learning. Nevertheless, some improvements and additions can be made to make it a more useful

and powerful system, such as:

• Active Learning Feedback Improvements - the restrictions imposed to the interaction

with users, expressed in the shape of the regions to choose and the interface points with the

system defined algorithms can be somewhat lifted by using a more encompassing design.

Regions for selection don’t have to be always rectangles, as they may not accurately rep-

resent a reasonable representation for queries to be presented to a user, depending on the

dataset chosen, but also on the ML problem at hand. Similarly, the creation and reading of

CSV files and saving image files in pre-determined directory, forces the users to write algo-

rithms that have to conform to these simplistic impositions, rather than a well established

and designed interface protocol.

• Dataset & Feature Management - the limited tools to manage datasets and feature extrac-

tion within the system, makes their management cumbersome with a big manual component.

The development of a features bank, with tracking and versioning would gear the system in
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way to overcome this and avoid the need to move the feature extract logic to the Trainers

defined, which leads to longer execution times and resource heavier ML workflows, than if

features were already extracted and readily available to be used in future pipelines.

• Framework support beyond PyTorch - the self made imposition to use PyTorch as the ML

framework comes from the fact that the previous work this system is based on [35] uses it

as well. However, other frameworks such as scikit-learn [133] may possibly be used with

the Dataset Handlers, Trainers, Testers and Trained Models steps by lifting this restriction

and making the necessary changes to the code and testing accordingly. This would provide

more flexibility and useability to the system.



78 Conclusions



References

[1] Google, “MLOps: Continuous delivery and automation pipelines in machine learning,” July
2020, [Online; accessed 08-January-2022]. [Online]. Available: https://cloud.google.com/
architecture/mlops-continuous-delivery-and-automation-pipelines-in-machine-learning

[2] B. Settles, “Active learning literature survey,” 2009. [Online]. Available: https:
//api.semanticscholar.org/CorpusID:324600

[3] P. Henderson, R. Islam, P. Bachman, J. Pineau, D. Precup, and D. Meger,
“Deep reinforcement learning that matters,” Proceedings of the AAAI Conference
on Artificial Intelligence, vol. 32, no. 1, Apr. 2018. [Online]. Available: https:
//ojs.aaai.org/index.php/AAAI/article/view/11694

[4] J. Pineau, P. Vincent-Lamarre, K. Sinha, V. Larivière, A. Beygelzimer, F. d’Alché Buc,
E. Fox, and H. Larochelle, “Improving reproducibility in machine learning research (a re-
port from the neurips 2019 reproducibility program),” 2020.

[5] C. Bishop, Pattern Recognition and Machine Learning, ser. Information Science
and Statistics. Springer, 2006. [Online]. Available: https://books.google.pt/books?id=
qWPwnQEACAAJ

[6] T. Mitchell, Machine Learning, ser. McGraw-Hill International Editions. McGraw-Hill,
1997. [Online]. Available: https://books.google.pt/books?id=EoYBngEACAAJ

[7] I. Goodfellow, Y. Bengio, and A. Courville, Deep Learning. MIT Press, 2016, http:
//www.deeplearningbook.org.

[8] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification with deep
convolutional neural networks,” Commun. ACM, vol. 60, no. 6, p. 84–90, may 2017.
[Online]. Available: https://doi.org/10.1145/3065386

[9] Y. LeCun, F. J. Huang, and L. Bottou, “Learning methods for generic object recognition
with invariance to pose and lighting,” in Proceedings of the 2004 IEEE Computer Society
Conference on Computer Vision and Pattern Recognition, 2004. CVPR 2004., vol. 2, 2004,
pp. II–104 Vol.2.

[10] L. Fei-Fei, R. Fergus, and P. Perona, “Learning generative visual models from few training
examples: An incremental bayesian approach tested on 101 object categories,” in 2004
Conference on Computer Vision and Pattern Recognition Workshop, 2004, pp. 178–178.

[11] A. Krizhevsky and G. Hinton, “Learning multiple layers of features from tiny images,”
University of Toronto, Toronto, Ontario, Tech. Rep. 0, 2009.

79

https://cloud.google.com/architecture/mlops-continuous-delivery-and-automation-pipelines-in-machine-learning
https://cloud.google.com/architecture/mlops-continuous-delivery-and-automation-pipelines-in-machine-learning
https://api.semanticscholar.org/CorpusID:324600
https://api.semanticscholar.org/CorpusID:324600
https://ojs.aaai.org/index.php/AAAI/article/view/11694
https://ojs.aaai.org/index.php/AAAI/article/view/11694
https://books.google.pt/books?id=qWPwnQEACAAJ
https://books.google.pt/books?id=qWPwnQEACAAJ
https://books.google.pt/books?id=EoYBngEACAAJ
http://www.deeplearningbook.org
http://www.deeplearningbook.org
https://doi.org/10.1145/3065386


80 REFERENCES

[12] D. C. Ciresan, U. Meier, and J. Schmidhuber, “Multi-column deep neural networks
for image classification,” CoRR, vol. abs/1202.2745, 2012. [Online]. Available:
http://arxiv.org/abs/1202.2745

[13] B. Russell, A. Torralba, K. Murphy, and W. Freeman, “Labelme: A database and web-based
tool for image annotation,” International Journal of Computer Vision, vol. 77, 05 2008.

[14] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei, “Imagenet: A large-scale
hierarchical image database,” in 2009 IEEE Conference on Computer Vision and Pattern
Recognition, 2009, pp. 248–255.

[15] K. Jarrett, K. Kavukcuoglu, M. Ranzato, and Y. LeCun, “What is the best multi-stage archi-
tecture for object recognition?” in 2009 IEEE 12th International Conference on Computer
Vision, 2009, pp. 2146–2153.

[16] J. Deng, J. Guo, J. Yang, N. Xue, I. Cotsia, and S. P. Zafeiriou, “ArcFace:
Additive angular margin loss for deep face recognition,” IEEE Transactions on
Pattern Analysis and Machine Intelligence, pp. 1–1, 2021. [Online]. Available:
https://doi.org/10.1109%2Ftpami.2021.3087709

[17] Q. Meng, S. Zhao, Z. Huang, and F. Zhou, “Magface: A universal representation for
face recognition and quality assessment,” CoRR, vol. abs/2103.06627, 2021. [Online].
Available: https://arxiv.org/abs/2103.06627

[18] Y. Huang, Y. Wang, Y. Tai, X. Liu, P. Shen, S. Li, J. Li, and F. Huang, “Curricularface:
Adaptive curriculum learning loss for deep face recognition,” 2020. [Online]. Available:
https://arxiv.org/abs/2004.00288

[19] Y. LeCun, K. Kavukcuoglu, and C. Farabet, “Convolutional networks and applications in
vision,” in Proceedings of 2010 IEEE International Symposium on Circuits and Systems,
2010, pp. 253–256.

[20] Y. LeCun, “Learning processes in an asymmetric threshold network,” in Disordered systems
and biological organization, Les Houches, France, E. Bienenstock, F. Fogelman-Soulie,
and G. Weisbuch, Eds. Springer-Verlag, 1986, pp. 233–240.

[21] LeCun, “Generalization and network design strategies,” in Connectionism in Perspective,
R. Pfeifer, Z. Schreter, F. Fogelman, and L. Steels, Eds. Zurich, Switzerland: Elsevier,
1989, an extended version was published as a technical report of the University of Toronto.

[22] K. Gregor and Y. LeCun, “Emergence of complex-like cells in a temporal product network
with local receptive fields,” 2010. [Online]. Available: https://arxiv.org/abs/1006.0448

[23] J. Ngiam, Z. Chen, D. Chia, P. Koh, Q. Le, and A. Ng, “Tiled convolutional
neural networks,” in Advances in Neural Information Processing Systems, J. Lafferty,
C. Williams, J. Shawe-Taylor, R. Zemel, and A. Culotta, Eds., vol. 23. Curran
Associates, Inc., 2010. [Online]. Available: https://proceedings.neurips.cc/paper/2010/file/
01f78be6f7cad02658508fe4616098a9-Paper.pdf

[24] Y.-L. Boureau, J. Ponce, and Y. LeCun, “A theoretical analysis of feature pooling in visual
recognition,” in Proceedings of the 27th International Conference on International Con-
ference on Machine Learning, ser. ICML’10. Madison, WI, USA: Omnipress, 2010, p.
111–118.

http://arxiv.org/abs/1202.2745
https://doi.org/10.1109%2Ftpami.2021.3087709
https://arxiv.org/abs/2103.06627
https://arxiv.org/abs/2004.00288
https://arxiv.org/abs/1006.0448
https://proceedings.neurips.cc/paper/2010/file/01f78be6f7cad02658508fe4616098a9-Paper.pdf
https://proceedings.neurips.cc/paper/2010/file/01f78be6f7cad02658508fe4616098a9-Paper.pdf


REFERENCES 81

[25] ISO/IEC JTC 1/SC 37 Biometrics, “ISO/IEC 2382-37:2022 Information technology — Vo-
cabulary — Part 37: Biometrics,” International Organization for Standardization, Tech.
Rep., 2022.

[26] C. Champod and M. Tistarelli, Biometric Technologies for Forensic Science and Policing:
State of the Art. Cham: Springer International Publishing, 2017, pp. 1–15. [Online].
Available: https://doi.org/10.1007/978-3-319-50673-9_1

[27] J. Deng, J. Guo, J. Yang, N. Xue, I. Cotsia, and S. P. Zafeiriou, “ArcFace:
Additive angular margin loss for deep face recognition,” IEEE Transactions on
Pattern Analysis and Machine Intelligence, pp. 1–1, 2021. [Online]. Available:
https://doi.org/10.1109%2Ftpami.2021.3087709

[28] N. Reddy, A. Rattani, and R. Derakhshani, “Comparison of deep learning models for
biometric-based mobile user authentication,” in 2018 IEEE 9th International Conference
on Biometrics Theory, Applications and Systems (BTAS), 2018, pp. 1–6.

[29] A. Jain, A. Ross, and S. Prabhakar, “An introduction to biometric recognition,” IEEE Trans-
actions on Circuits and Systems for Video Technology, vol. 14, no. 1, pp. 4–20, 2004.

[30] A. B. Arrieta, N. Díaz-Rodríguez, J. D. Ser, A. Bennetot, S. Tabik, A. Barbado, S. García,
S. Gil-López, D. Molina, R. Benjamins, R. Chatila, and F. Herrera, “Explainable artificial
intelligence (xai): Concepts, taxonomies, opportunities and challenges toward responsible
ai,” 2019.

[31] P. C. Neto, A. F. Sequeira, and J. S. Cardoso, “Myope models – are face presentation attack
detection models short-sighted?” 2021.

[32] W. Silva, K. Fernandes, M. Cardoso, and J. Cardoso, Towards Complementary Explanations
Using Deep Neural Networks: First International Workshops, MLCN 2018, DLF 2018, and
iMIMIC 2018, Held in Conjunction with MICCAI 2018, Granada, Spain, September 16-20,
2018, Proceedings, 09 2018, pp. 133–140.

[33] E. Tjoa and C. Guan, “A survey on explainable artificial intelligence (XAI): Toward medical
XAI,” IEEE Transactions on Neural Networks and Learning Systems, vol. 32, no. 11, pp.
4793–4813, nov 2021. [Online]. Available: https://doi.org/10.1109%2Ftnnls.2020.3027314

[34] S. Raghunath, A. E. Ulloa Cerna, L. Jing, D. P. vanMaanen, J. Stough, D. N. Hartzel, J. B.
Leader, H. L. Kirchner, M. C. Stumpe, A. Hafez, A. Nemani, T. Carbonati, K. W. Johnson,
K. Young, C. W. Good, J. M. Pfeifer, A. A. Patel, B. P. Delisle, A. Alsaid, D. Beer, C. M.
Haggerty, and B. K. Fornwalt, “Prediction of mortality from 12-lead electrocardiogram
voltage data using a deep neural network,” Nature Medicine, vol. 26, no. 6, pp. 886–891,
Jun 2020. [Online]. Available: https://doi.org/10.1038/s41591-020-0870-z

[35] P. Serrano e Silva, R. Cruz, A. S. M. Shihavuddin, and T. Gonçalves, “Interpretability-
guided human feedback during neural network training,” in Pattern Recognition and Image
Analysis, A. Pertusa, A. J. Gallego, J. A. Sánchez, and I. Domingues, Eds. Cham: Springer
Nature Switzerland, 2023, pp. 276–287.

[36] Cornell University, “Active learning - center for teaching innovation,” [Online; ac-
cessed 26-July-2023]. [Online]. Available: https://teaching.cornell.edu/teaching-resources/
active-collaborative-learning/active-learning

https://doi.org/10.1007/978-3-319-50673-9_1
https://doi.org/10.1109%2Ftpami.2021.3087709
https://doi.org/10.1109%2Ftnnls.2020.3027314
https://doi.org/10.1038/s41591-020-0870-z
https://teaching.cornell.edu/teaching-resources/active-collaborative-learning/active-learning
https://teaching.cornell.edu/teaching-resources/active-collaborative-learning/active-learning


82 REFERENCES

[37] J. Han, E. Shihab, Z. Wan, S. Deng, and X. Xia, “What do programmers discuss about deep
learning frameworks,” Empirical Software Engineering, vol. 25, 07 2020.

[38] Y. LeCun, Y. Bengio, and G. Hinton, “Deep learning,” Nature, vol. 521, no. 7553, pp.
436–444, May 2015. [Online]. Available: https://doi.org/10.1038/nature14539

[39] J. Schmidhuber, “Deep learning in neural networks: An overview,” Neural Networks,
vol. 61, pp. 85–117, jan 2015. [Online]. Available: https://doi.org/10.1016%2Fj.neunet.
2014.09.003

[40] Y. Tian, K. Pei, S. Jana, and B. Ray, “Deeptest: Automated testing of deep-neural-network-
driven autonomous cars,” 2018.

[41] G. Litjens, T. Kooi, B. E. Bejnordi, A. A. A. Setio, F. Ciompi, M. Ghafoorian, J. A. van der
Laak, B. van Ginneken, and C. I. Sánchez, “A survey on deep learning in medical image
analysis,” Medical Image Analysis, vol. 42, pp. 60–88, dec 2017. [Online]. Available:
https://doi.org/10.1016%2Fj.media.2017.07.005

[42] R. Collobert, J. Weston, L. Bottou, M. Karlen, K. Kavukcuoglu, and P. Kuksa, “Natural
language processing (almost) from scratch,” 2011.

[43] C. Manning, M. Surdeanu, J. Bauer, J. Finkel, S. Bethard, and D. McClosky, “The Stanford
CoreNLP natural language processing toolkit,” in Proceedings of 52nd Annual Meeting
of the Association for Computational Linguistics: System Demonstrations. Baltimore,
Maryland: Association for Computational Linguistics, Jun. 2014, pp. 55–60. [Online].
Available: https://aclanthology.org/P14-5010

[44] T. Deselaers, S. Hasan, O. Bender, and H. Ney, “A deep learning approach to machine
transliteration,” in Proceedings of the Fourth Workshop on Statistical Machine Translation.
Athens, Greece: Association for Computational Linguistics, Mar. 2009, pp. 233–241.
[Online]. Available: https://aclanthology.org/W09-0438

[45] A. Vaswani, S. Bengio, E. Brevdo, F. Chollet, A. N. Gomez, S. Gouws, L. Jones, Łukasz
Kaiser, N. Kalchbrenner, N. Parmar, R. Sepassi, N. Shazeer, and J. Uszkoreit, “Ten-
sor2tensor for neural machine translation,” 2018.

[46] D. A. Forsyth and J. Ponce, Computer Vision: A Modern Approach. Prentice Hall Profes-
sional Technical Reference, 2002.

[47] R. Szeliski, Computer Vision: Algorithms and Applications, ser. Texts in Computer
Science. Springer London, 2010. [Online]. Available: https://books.google.pt/books?id=
bXzAlkODwa8C

[48] H. Ha and H. Zhang, “Deepperf: Performance prediction for configurable software with
deep sparse neural network,” in 2019 IEEE/ACM 41st International Conference on Software
Engineering (ICSE), 2019, pp. 1095–1106.

[49] J. Zhang, X. Wang, H. Zhang, H. Sun, K. Wang, and X. Liu, “A novel neural source code
representation based on abstract syntax tree,” in 2019 IEEE/ACM 41st International Con-
ference on Software Engineering (ICSE), 2019, pp. 783–794.

[50] D. Zhao, Z. Xing, C. Chen, X. Xia, and G. Li, “Actionnet: Vision-based workflow action
recognition from programming screencasts,” in 2019 IEEE/ACM 41st International Con-
ference on Software Engineering (ICSE), 2019, pp. 350–361.

https://doi.org/10.1038/nature14539
https://doi.org/10.1016%2Fj.neunet.2014.09.003
https://doi.org/10.1016%2Fj.neunet.2014.09.003
https://doi.org/10.1016%2Fj.media.2017.07.005
https://aclanthology.org/P14-5010
https://aclanthology.org/W09-0438
https://books.google.pt/books?id=bXzAlkODwa8C
https://books.google.pt/books?id=bXzAlkODwa8C


REFERENCES 83

[51] J. Y. Choi and C.-H. Choi, “Sensitivity analysis of multilayer perceptron with differentiable
activation functions,” IEEE Transactions on Neural Networks, vol. 3, no. 1, pp. 101–107,
1992.

[52] T. Fine, Feedforward Neural Network Methodology, ser. Information Science and
Statistics. Springer New York, 2006. [Online]. Available: https://books.google.pt/books?
id=s-PlBwAAQBAJ

[53] A. Goh, “Back-propagation neural networks for modeling complex systems,” Artificial
Intelligence in Engineering, vol. 9, no. 3, pp. 143–151, 1995. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/095418109400011S

[54] C. Liu, C. Gao, X. Xia, D. Lo, J. Grundy, and X. Yang, “On the reproducibility and
replicability of deep learning in software engineering,” ACM Transactions on Software
Engineering and Methodology, vol. 31, no. 1, pp. 1–46, oct 2021. [Online]. Available:
https://doi.org/10.1145%2F3477535

[55] N. Kalchbrenner, E. Grefenstette, and P. Blunsom, “A convolutional neural network for
modelling sentences,” 2014.

[56] S. Lawrence, C. Giles, A. C. Tsoi, and A. Back, “Face recognition: a convolutional neural-
network approach,” IEEE Transactions on Neural Networks, vol. 8, no. 1, pp. 98–113, 1997.

[57] T. Mikolov, M. Karafiát, L. Burget, J. Cernocký, and S. Khudanpur, “Recurrent neural
network based language model,” vol. 2, 01 2010, pp. 1045–1048.
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