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Abstract: During the pathophysiological course of type 2 diabetes (T2D), several metabolic imbal-
ances occur. There is increasing evidence that metabolic dysfunction far precedes clinical mani-
festations. Thus, knowing and understanding metabolic imbalances is crucial to unraveling new
strategies and molecules (biomarkers) for the early-stage prediction of the disease’s non-clinical
phase. Lifestyle interventions must be made with considerable involvement of clinicians, and it
should be considered that not all patients will respond in the same manner. Individuals with a
high risk of diabetic progression will present compensatory metabolic mechanisms, translated into
metabolic biomarkers that will therefore show potential predictive value to differentiate between
progressors/non-progressors in T2D. Specific novel biomarkers are being proposed to entrap pre-
diabetes and target progressors to achieve better outcomes. This study provides a review of the
latest relevant biomarkers in prediabetes. A search for articles published between 2011 and 2021
was conducted; duplicates were removed, and inclusion criteria were applied. From the 29 studies
considered, a survey of the most cited (relevant) biomarkers was conducted and further discussed in
the two main identified fields: metabolomics, and miRNA studies.
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1. Introduction

According to the International Diabetes Federation, diabetes affects more than 463 million
people, with type 2 diabetes (T2D) being the most common, accounting for around 90% of
all diabetes worldwide in 2019 [1]. T2D was responsible for more than 4.2 million deaths
in 2019, and is also a trigger for other non-communicable diseases, putting considerable
pressure on national health systems [1]. T2D is associated with severe comorbidities, such
as cardiovascular diseases (ischemic heart disease, myocardial infarction, peripheral arte-
rial disease, heart failure, and stable angina being the most prevalent) [2], kidney diseases
(such as glomerulosclerosis and glomerular hypertrophy inflammation/fibrosis, which
ultimately lead to diabetic kidney disease) [3], and liver diseases (nonalcoholic fatty liver
disease (NAFLD), nonalcoholic steatohepatitis (NASH), liver failure, cirrhosis, and hepato-
cellular carcinoma) [4], while it also increases the possibility of developing several types of
cancer (such as breast cancer, bladder cancer, pancreatic cancer, non-Hodgkin lymphoma,
etc.) [5]. Outcomes of such comorbidities can be reduced with early intervention in the
development of type 2 diabetes. In recent decades, there has been a massive effort and
investment to find biomarkers that can detect T2D early and support the implementation
of prophylactic measures.
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One of the most important clinical symptoms of diabetes mellitus is hyperglycemia.
Thus, monitoring blood glucose levels via a glycated hemoglobin assessment remains the
most common screening method. However, when glucose levels are elevated, the disease
is already active. Significant investments in research have allowed the identification of
biomarkers that can be used to describe the progression from a subclinical to a clinical
stage, and some biomarkers have been described as having potential predictive value to
differentiate between progressors and non-progressors.

The critical threshold is prediabetes. Prediabetes is an asymptomatic disorder of the
normoglycemia–hyperglycemia transitional state, when plasma glucose is above normal
range but below clinical diabetes. Prediabetic subjects present either impaired fasting glu-
cose (IFG), impaired glucose tolerance (IGT), or both, as well as an increased risk of develop-
ing type 2 diabetes. Such metabolic alterations are already mentioned as being responsible
for microvascular problems (such as retinopathy, nephropathy, and neuropathy—persistent
complications among the hyperglycemic community) [6]. Whether prediabetes justifies
clinical identification and intervention is still continuously debated among international
professional organizations, and overall criteria remain without consensus. However, the
importance of targeting prediabetes is relevant considering that the risk of developing
diabetes can decrease by 40 to 70% with lifestyle alterations in prediabetic patients [7].
The main problem associated with prediabetes is that it may lead to overdiagnosis and,
therefore, overtreatment. The pharmacotherapy associated with prediabetes can include
antidiabetic drugs such as biguanides (e.g., metformin) or thiazolidinediones (e.g., rosigli-
tazone), and others, such as GLP-1 analogs or α-glucosidase inhibitors. In addition to
pharmacotherapy, bariatric surgery (such as gastric bypass or sleeve gastrectomy) has
already been studied in prediabetic patients, with positive results, such as the reversion of
IGT to normal values in 98% of individuals [7].

At a prediabetic stage, several metabolic imbalances are already established, occurring
before the clinical manifestations. Identifying these imbalances with adequate and precise
biomarkers can facilitate early intervention. In America, one in every three individuals
have prediabetes, and 11% will develop diabetes [8]. Worldwide, prediabetes is increasing,
and the expectation is that, by 2030, the number of people with prediabetes will increase to
more than 470 million. Each year, 5–10% will progress to diabetes and develop diabetic
comorbidities, such as hypertension [9].

Novel biomarkers can enable the risk stratification of diabetic progression. In this
study, a review was performed on new and emerging biomarkers that can act as targets to
improve clinical outcomes of the disease’s evolution through early intervention. A study
of review articles on the subject was performed to identify the most relevant biomarkers.
Among the obtained results, the most cited biomarkers across the studies were further
considered and discussed. Our review’s primary objective was to evaluate the research
stage and the mechanistic pathway of each biomarker in order to highlight their importance
in clinical implementation.

2. Materials and Methods
Search Strategy and Selection Criteria

The present work was developed in 2 steps: the first step aimed to identify the most
relevant biomarkers (with review articles); after having identified them, the second step
consisted of establishing their respective descriptions.

Initially, a search for English review articles published between 2011 and 2021 (last
ten years) was conducted in PubMed. Queries were ‘Biomarkers’ and ‘Prediabetes’/‘Impaired
fasting glucose’/‘Impaired glucose tolerance’. From the collected articles, duplicates and
manuscripts with an association between prediabetic condition, impaired fasting glucose,
impaired glucose tolerance, and other comorbidities (cardiovascular diseases, cancer,
polycystic ovarian syndrome, etc.) or diet-related factors (polyphenols, vegetables, etc.)
were removed.
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After a thorough assessment of each of the included manuscripts, the biomarkers were
identified; those mentioned in a higher number of articles were considered to be the most
relevant. Finally, for the most relevant biomarkers, a comprehensive review was carried
out regarding description, outcomes, advantages, and disadvantages.

3. Results

A total of 145 total cumulative records were retrieved from PubMed, 13 of which were
duplicates and, hence, immediately excluded. The title and abstract were examined for the
remaining 132 records, following concordance assessment of the inclusion criteria and ob-
jectives, resulting in an additional exclusion of 103 records. Thus, 29 studies were identified
as being eligible and relevant. All manuscripts were carefully studied, and biomark-
ers were identified and counted. The analysis of the results identified two approaches
to novel prediabetic biomarkers: metabolomics [10–30], and microRNA studies [31–38].
The results are shown in Figure 1. Further ahead, Tables 1 and 2 summarize the most
relevant biomarkers’ descriptions, outcomes, advantages, and disadvantages.
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Table 1. Prediabetic biomarkers identified in metabolomics studies: description, outcomes, and identification of their
advantages and disadvantages.

Biomarker Description/Outcomes Advantages/Disadvantages References

2-
Hydroxybutyrate

(2HB)

2HB is a metabolite of alpha-ketobutyrate synthesis produced
in the threonine and methionine catabolism and glutathione

anabolism; it is a predictive marker of hyperglycemia and
beta-cell dysfunction; Elevated levels of 2HB are associated
with insulin resistance, oxidative stress, lipid oxidation, and

diabetic state aggravation. Decreased levels of 2HB were
observed 6 months after bariatric surgery as a representative

improvement of the pathology.

2HB has proven to be a
biomarker independent of sex,
age, BMI, and collection site;

however, it is still in a
premature investigation stage.

[39–42]

Aromatic Amino
Acids (AAAs)

AAAs, tyrosine, and phenylalanine are amino acids with an
integrated aromatic ring. Phenylalanine is a precursor of

tyrosine, and tyrosine is a precursor of catecholamines. Both
tyrosine and phenylalanine are glucogenic and ketogenic

amino acids.
Increased levels of tyrosine and phenylalanine were observed

in obesity-related insulin resistance, and predicted the
development of T2D. After diabetic treatment with glipizide
and metformin, AAA levels changed in accordance with the

patient’s insulin resistance status.

Different expression patterns
of amino acids can be

predictive of prediabetes in
various cohorts. Additionally,

significance can be altered
after variable adjustment of
body mass index (BMI), age,

sex, race/ethnicity,
and FPG levels.

[18,43,44]

Adiponectin

Adiponectin is a hormone secreted from the adipose tissue
with insulin sensitivity, antidiabetic, anti-inflammatory, and
anti-atherogenic properties. Adiponectin stimulates a broad
spectrum of metabolic actions via ceramidase activation; it is

directly correlated with insulin sensitivity, and inversely
correlated with T2D development risk. Lower adiponectin

levels were observed 10 years prior to T2D diagnosis.

A biomarker independent of
ethnic differences, it can be

affected by sex-specific
mechanisms nevertheless.

Certain studies do not
corroborate the lower
adiponectin levels in

prediabetics compared with
healthy individuals.

[45–48]

Acylcarnitine

Acylcarnitines result from the conjugations of acyl-coenzyme
A with carnitine conjugation for the transport of fatty acids

through the inner mitochondrial membrane for
beta-oxidation. They are associated with the NF-κB pathway,

and can promote insulin resistance and inflammation.
Acylcarnitine has shown to be higher in prediabetes due to
the dysregulation of mitochondrial fatty acid oxidation. A
panel of acylcarnitines was observed to be associated with

T2D development in a 6-year follow-up.

Some acylcarnitines did not
show any association with

body fat or waist–hip ratio, fat
mass, or fat distribution.

Overall, they are independent
biomarkers of traditional

risk factors.

[49–52]

Branched-Chain
Amino Acids

(BCAAs)

BCAAs such as leucine, isoleucine, and valine are the most
abundant and essential amino acids present in a regular diet.

Accumulation of BCAAs activates via mTOR and,
consequently, S6 kinase, which leads to serine

phosphorylation of the substrate-1 (IRS–1) insulin receptor,
causing insulin resistance. High levels of BCAAs are

associated with obesity, insulin resistance, impaired glucose
tolerance, and T2D. BCAA levels normalize after bariatric

surgery.

Phenotypic and genetic
factors can influence BCAA

levels, which can reveal
associations with both sex and
BMI. There is still some debate

on whether BCAAs are the
cause or the effect and, as

such, whether they should be
considered a biomarker.

[53–55]

C-Reactive
Protein (CRP)

CRP is an inflammatory biomarker of hepatic origin
associated with the acute phase response; it responds to

transcription factors released by macrophages and adipocytes.
Higher CRP levels were found in patients with prediabetes
and insulin resistance, rendering it a sensitive biomarker for
early T2D diagnosis. These results may be a consequence of

the low state of chronic inflammation grade found before the
onset of type 2 diabetes.

Association between CRP and
prediabetes is independent of

age, sex, ethnicity, alcohol
consumption, smoking,

hypertension, BMI, and total
cholesterol. It is still in an

early investigation stage for
prediabetes signaling.

[56–59]
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Table 1. Cont.

Biomarker Description/Outcomes Advantages/Disadvantages References

Ferritin

Ferritin is a protein (acute phase reactant) involved in iron
storage, which is able to release iron in a controlled manner.

Iron contributes to insulin resistance via many pathways,
such as β-cell oxidative stress and β-cell apoptosis through

ROS formation. Iron metabolism seems to be correlated with
T2D status: uncontrolled T2D is associated with iron

deficiency. High ferritin levels translate to an increased risk of
developing T2D. Dietary restriction and chelation may

prevent T2D progression.

The threshold level is still
uncertain, and may vary
according to age and sex.

Ferritin levels are predictive of
diabetes progression
independently of a

comprehensive range of risk
factors, such as physical

activity, smoking,
and family history.

[60–63]

Glycated
Albumin (GA)

Albumin is the most commonly studied soluble protein, and
is highly susceptible to post-translational modifications

(PTMs). One frequent modification is glycation, resulting in
GA. GA plays a vital role in diabetic pathophysiology; it is
inversely correlated with obesity and positively correlated

with diabetes. The increase observed in diabetes is associated
with secondary comorbidities. GA can act as an antigen, elicit

the immune response, and form complexes that can
accumulate in the arteries and kidneys, leading to

nephropathy and atherosclerosis.

Accurate assessment for
short-term glycemic control.

The enzymatic method is
sensitive, fast, and less

susceptible to pre-analytical
variables. Values of GA are
not reliable in individuals

with abnormal
albumin metabolism.

[22,64–67]

Glycine

Glycine is a nonessential stable amino acid, able to be
synthesized by the body from serine. Glycine is a precursor of
protein metabolism, and can act as a neurotransmitter and as
a co-ligand for N-methyl-D-aspartate glutamate receptors to
control insulin secretion and liver glucose output, functioning
on both the pancreas and the brain. Lower glycine levels are

associated with an increased risk of prediabetes, type 2
diabetes, and obesity, and are also correlated with insulin

resistance and glucose intolerance.

Glycine levels are not
dependent exclusively on

glycemic status, and may vary
in individuals with abnormal

amino acid metabolisms or
metabolic syndrome.

[10,18,23,
68]

Linoleoyl-
glycerophosphocholine

(LGPC)

Linoleoyl-glycerophosphocholine (LGPC) is a metabolite of
the phospholipase A2 hepatic enzyme and lecithin-cholesterol
acyltransferase. Known for its anti-inflammatory properties,

it acts as a non-competitive enzyme inhibitor of
phospholipase A2, usually increasing during the

inflammatory state. This metabolite’s plasma concentration is
associated with an increased risk of developing insulin

resistance, impaired glucose tolerance, and diabetes.

Independent of age, sex, body
mass index, familial diabetes,

fasting glucose, waist
circumference, blood pressure,

glycosylated hemoglobin,
triglycerides, and high-density

lipoprotein cholesterol.

[21,69]

Triglycerides

Triglycerides are the most common lipids present in the body,
and are composed of three fatty acids and a glycerol molecule.
They are often an indication of conditions such as obesity and

metabolic dysfunction. High levels of triglycerides are
associated with diabetic progression, beta-cell dysfunction,
and impaired insulin secretion. Studies have demonstrated

that the product of triglycerides and glucose is able to
discriminate prediabetes and diabetes, and triglyceride levels

can be improved with physical activity and, therefore,
improve glycemic status.

Triglycerides have already
been implemented in clinical

practice. In prediabetic
individuals, high levels of

triglycerides are a predictive
factor for T2D progression.
Studies found variations

between different ethnicities.

[70–72]

3.1. Metabolomics Studies

Metabolomics is a high-throughput technique that enables the identification and quan-
tification of small molecules present in biological samples such as blood, urine, and tissue.
Metabolomics is increasingly used to address metabolic dysregulation associated with
prediabetes (Figure 2). The method used in metabolomics combines analytical chemistry
and data analysis with spectroscopic/spectrometric techniques (such as mass spectrometry
or nuclear magnetic resonance) and separation techniques (such as gas chromatogra-



Biomolecules 2021, 11, 1589 6 of 15

phy, high-performance liquid chromatography (HPLC), ultra-HPLC, etc.) in a profitable,
high-yield manner.
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3.2. MicroRNA Studies

miRNAs are small, non-coding RNAs involved in post-transcriptional gene expres-
sion (Figure 3); they can modulate important biological mechanisms such as growth and
proliferation, differentiation, and cell death. Research on miRNAs is more recent than
metabolomics research, leading to the belief that there is still much to be uncovered. miR-
NAs are becoming increasingly prominent in many pathologies, including prediabetic
studies. Interestingly enough, different miRNA profiles were found in healthy, prediabetic,
and diabetic individuals [38].
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Figure 3. The current model for the biogenesis and post-transcriptional suppression of microRNAs: 1© In the nucleus,
the miRNA gene is a transcript from RNA polymerase II, which produces a primary miRNA: pri-microRNA (pri-miRNA).
2© The pri-microRNA transcripts are first processed into ~70-nucleotide pre-miRNAs by Drosha inside the nucleus.
3© Pre-miRNA is quickly exported by Exportin-5 to the cytosol. 4© In the cytoplasm, the pre-miRNA is processed by

Dicer, thus producing a double-ribbon miRNA. 5© This product is unwound and then joined with Argonaute to form the
complex RISC. 6© The RISC complex obtains the pairing between the miRNA and the homolog target mRNA via reverse
base complement. 7© It subsequently acts on its target through translational repression or mRNA cleavage 8©, depending,
at least in part, on the level of complementarity between the small RNA and its target.
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Table 2. A brief description and outcomes of miRNAs expression associated with prediabetes, impaired glucose tolerance,
and impaired fasting glucose.

miRNAs Description/Outcomes References

miRNA-15a

miRNA-15a is associated with several biological processes, such as angiogenesis and insulin
production; it is also involved in the activation of TGFβR1, CTGF, and p53 proteins.
Lower miRNA-15a levels were found in individuals who developed T2D in a 10-year
follow-up. The association between miRNA-15a and diabetic progression was still significant
after variable adjustment for age, sex, BMI, and hypertension status.

[73,74]

miRNA-23a

miRNA-23a indirectly targets SMAD4—a critical pathway in the regulation of
insulin-dependent glucose transport activity. NEK7 is also a target of miRNA-23a and, in
animal models, a low level of NLRP3 induced pyroptosis, mitigating the hepatic and renal
complications of T2D.
The levels of miRNA-23a are lower in prediabetic and T2D patients compared with healthy
individuals. Levels of miRNA-23a can also distinguish prediabetic and T2D patients.

[75,76]

miRNA-29a

miRNA-29a was observed to improve pancreatic beta-cell function in in vitro studies.
Likewise, upregulation of miRNA-29a is implicated in diabetic progression by IGT and
decreased insulin secretion.
Higher expression of miRNA-29a is an independent predictor of T2D, IFG, and IR.
Additionally, it is significantly correlated with stress hormone levels.

[77,78]

miRNA-126

One of the most studied miRNAs in prediabetic conditions, it is highly correlated with VEGF,
and with the promotion of angiogenesis.
Anti-miRNA-126 targets SPRED-1 via Ras/ERK/VEGF and PI3K/Akt/eNOS, inhibiting the
proliferation and migration of endothelial progenitor cells and promoting apoptosis. Low
levels of miRNA-126 are strongly correlated with the progression of the disease.

[79,80]

miRNA-150

Previous miRNA-150 studies demonstrated its regulatory function in beta-cell formation,
hematopoietic stem cell differentiation, and obesity-induced inflammation and insulin
resistance by controlling adipose tissue and beta-cell function.
In the CORDIOPREV study, prediabetic progressors were evaluated in a 5-year follow-up;
miRNA-150 levels were higher in plasma several years before the diagnosis of T2D.

[81,82]

miRNA-192

miRNA-192 is involved in IFG and IGT, triglyceride levels, and the fatty liver index.
Moreover, miRNA-192 inhibited the proliferation of pancreatic beta-cell lines and
insulin secretion.
Levels of miRNA-192 are found to be higher in diabetic subjects. Interestingly, vitamin D
supplementation modulates miRNA-192 levels, improving the hyperglycemic status in
prediabetic patients.

[83–85]

miRNA-320

Expression of miRNA-320 is associated with VEGF, IGF1, and FGF. The VEGFa/miRNA-320
axis modulates proliferation, apoptosis, and angiogenesis of endothelial cells, and has been
reported to be an active player in diabetic progression.
miRNA-320 is positively correlated with prediabetic incidence, and improves diabetic
progression via adipoR1 after duodenal–jejunal bypass.

[86–88]

miRNA-375

miRNA-375 is a pancreatic-islet-specific miRNA involved in regulating insulin secretion and
maintaining average pancreatic alpha and beta-cell mass.
miRNA-375 levels are higher and independently associated in prediabetic and diabetic
individuals. Deregulation of miRNA-375 was observed years before the onset of T2D in the
CORDIOPREV trial.

[89–91]

miRNAs associated with diabetic progression have different types of correlation
according to their miRNA-specific function. Moreover, miRNAs can predict diabetic com-
plications such as cardiovascular diseases, chronic renal disease, or retinopathy. They
display consistent and reproducible circulating levels, and are stable and resistant to RNase
activity—essential characteristics in biomarker assessment. Previous studies concluded
that diabetes-related miRNA does not change dramatically in the prediabetic stage [38].
Moreover, due to a wide range of prediabetic-associated miRNAs, choosing a set of repre-
sentative prediabetic biomarkers is challenging [92–94].
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4. Discussion

Diabetes has already reached global pandemic status, as its incidence ranges all over
the world. No longer considered a disease of developed countries, today it is even found
that diabetes is becoming more prevalent in developing countries [1]. Investment to
find new biomarkers for early detection is of the utmost importance; new and promising
molecules have been emerging and achieving improved outcomes.

Glycated hemoglobin (HbA1c) is still the most common screening method to monitor
glycaemia status; it is a stable and standardized assay that reflects blood glucose levels
over the past 2–3 months. Although commonly used in clinical practice, this method
presents notable disadvantages: moderated sensitivity; cutoff inconsistencies; does not
consider some variables—such as the production rate and lifespan of red blood cells, body
mass index, age, sex, and ethnicity—and it cannot be used in neonatal diabetes; moreover,
short-term glycemic changes are not accurate. Regarding prediabetes, there is still no
clinical consensus for the HbA1c threshold [95,96].

Another popular screening method is the oral glucose tolerance test (OGTT), which
measures glucose clearance of blood taken before and after ingestion of glucose. This is
a low-cost, widely accepted (for all types of diabetes), direct method to stratify glucose
status. However, it also has some weaknesses in terms of its variability, invasiveness,
and time-consuming analysis. Moreover, it is affected by individual variability and other
pathologies [66]. Nevertheless, results demonstrate that it is more sensitive for detecting
prediabetes than HbA1c [21].

The use of these classic biomarkers to entrap prediabetes was not considered success-
ful enough; hence, new molecules are being considered for use to differentiate diabetic
progression to a clinical stage. This study aimed to evaluate the most relevant poten-
tial biomarkers, making it possible to determine two types of approaches with different
characteristics: metabolomics, and microRNA.

Metabolomic studies aim to better understand the relationships between metabolites
and the disease’s pathophysiological mechanisms. Outstanding results have been achieved,
although none of the identified biomarkers have yet been implemented for routine di-
agnostic use in clinical practice. Metabolomics studies are sensitive and rapid, with a
high-throughput strategy capable of hundreds of readily achievable analyses, although
initial equipment investment may present a challenge [97]. Our results show that the
most relevant prediabetic biomarkers in research are 2-hydroxybutyrate, aromatic amino
acids, adiponectin, acylcarnitine, branched-chain amino acids, C-reactive protein, ferritin,
glycated albumin, glycine, linoleoyl-glycerophosphocholine (LGPC), and triglycerides.
Although they do not share a common background, they all exhibit great potential for use
as a future clinical diagnostic tool. Some biomarkers are associated with inflammation,
adiposity, lipid oxidation, glycation, oxidative stress, and iron metabolism. This is relevant
because the metabolic dysregulation observed in diabetic progression can have numerous
etiologies. In accordance, we anticipate that the answer may be found in a multiplex set of
different biomarkers.

We have also observed new tendencies with microRNA studies. MicroRNAs are
present in different types of bodily fluids, such as blood, saliva, and urine. Moreover,
they are extraordinarily stable, which renders circulating miRNAs as outstanding candi-
dates for minimally invasive prediabetic biomarkers. Authors seem to agree that opti-
mization should be prioritized, with standardization of the pre-analytical variables (sam-
ple collection, isolation, and quantification), alternative biological sources of the sample,
and consideration of nonblood biofluids. At the moment, there is no consensus regarding
the most promising miRNA multiplex for any pathology [98], including prediabetes. Our
study showed that the most relevant miRNAs are miRNA-15a, miRNA-23a, miRNA-29a,
miRNA-126, miRNA-150, miRNA-192, miRNA-320, and miRNA-375.

Interestingly, alongside microRNA, one work mentions other potential molecules
that can also bring new insights in the implementation of biomarkers: long non-coding
RNAs (lncRNAs). These molecules are transcripts with more than 200 nucleotides that are
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not translated into proteins, although they exhibit pre- and pro-transcription functions.
Previous studies suggest that lncRNAs present functionality, but only some lncRNAs’
functional interactions have been previously uncovered [99].

Another potential pathway not contemplated in our study is the gut microbiome
—a growing area of interest. The gut microbiome is the totality of microorganisms, bacteria,
viruses, protozoa, fungi, and their collective genetic material present in the gastrointestinal
tract [100]. Alterations in the microbiome have been associated with different pathologies,
including T2D. Previous studies by the University of Gothenburg found alterations in
implemented T2D [101] and prediabetes [102]. Alterations in the microbiome are associated
with impaired glucose tolerance; however, these results must be interpreted with caution.
For example, antidiabetic drugs such as metformin are able to alter the human microbiota;
hence, results can be misleading [102].

The authors would like to recognize the limitations of the present study. We found that
different manuscripts describe the same class of metabolite in different ways. For instance,
some articles consider BCAAs to be one single biomarker, while others describe and
consider individual BCAAs. We observed the same in the case of AAAs and FFA. It was
impossible to overcome this limitation, but we are aware that this could influence the
number of mentioned biomarkers. Moreover, new biomarkers may find themselves at a
disadvantage. Additionally, we did not assess publication bias or strength of evidence.
As the number of included systematic reviews/meta-analyses was small (4 in 29), we do
not consider this an umbrella review.

Global investment is suggested in intervening clinical trials to identify and implement
selected molecules as biomarkers for early diagnosis that enable the academic and clini-
cal community to identify patients who will progress to T2D, and immediately address
preventive/therapeutic strategies.

5. Conclusions

Diabetes is still one of the most challenging health problems worldwide. Programs for
prevention and awareness of diabetes have proven to be insufficient to stop this pandemic;
hence, clinical intervention could be the answer to avoid diabetic progression by targeting
prediabetes. The growing attention to novel glycemic biomarkers is attributable to the
limitations demonstrated by both HbA1c and OGTT.

From the present study, our interpretation is that these biomarkers are the ones that,
so far, are at a more advanced research stage and, thus, are more promising for clinical
implementation. However, many other biomarkers have been the target of research in
diabetes (such as ophthalmate or galectin-3) with positive results, demonstrating the
continuous effort of the academic community to find, comprehend, and interpret new and
reliable molecules for the assessment of the (pre)diabetic pathology.

We believe that a biomarker multiplex is the most effective solution to achieve better
sensitivity and specificity in predicting progressors in T2D. Such an achievement would
improve patients’ health and decrease the national system’s burden regarding diabetes.
Moreover, low-cost, effective interventions in the form of lifestyle changes would be
sufficient to diminish drug/surgery-based clinical interventions.
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