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Resumo

O poder inerente ao uso de métodos de Deep Learning está a alterar o futuro da sociedade.
Processos que envolvem redes neuronais, tais como a classificação de imagem, são usados em
várias frentes e atingem resultados comparáveis aos dos seres humanos. A tarefa de classificação
de imagens pode ser o catalisador para o avanço do funcionamento dos hospitais e clínicas de
saúde, sendo uma ferramenta fulcral para os profissionais de saúde, principalmente no diagnóstico
médico. Estes métodos reduzem o tempo necessário para o diagnóstico e ajudam os médicos no
planeamento de tratamentos, levando a um aumento da qualidade de vida dos doentes e reduzindo
os custos de operação das infraestruturas hospitalares. O uso de sistemas de Inteligência Artifi-
cial na saúde é visto com incerteza e cautela devido ao alto risco e responsabilidade associados a
posições médicas. Esta incerteza advém de inconsistências presentes nas previsões destes modelos
quando os dados de inferência não seguem a mesma distribuição de treino. Consequentemente,
estes modelos não têm a capacidade de generalizar tão bem como os técnicos de saúde na avali-
ação de exames que seguiram diferentes processos de aquisição. Isto leva a graves consequências,
particularmente no contexto médico. Assim sendo, soluções para melhorar a capacidade de gener-
alização de modelos de Deep Learning têm sido alvo de investigação, de forma a mitigar quebras
de rendimento na análise de dados fora da distribuição e promover confiança e aceitação destes
modelos em aplicações médicas. Os esforços na investigação podem ser separados em soluções
data e model-centric. O foco nos dados usa particularidades nas imagens para induzir mais di-
versidade e melhor extração de características nos modelos. Ao mesmo tempo, práticas focadas
no modelo fazem mudanças nas arquiteturas e nos objetivos de treino de forma a prevenir que o
modelo alcance um estado de demasiada confiança, também designado por overfitting.

Nesta dissertação, o nosso objetivo primário é desenvolver modelos mais robustos num am-
biente médico multicentro, onde a distribuição dos dados muda nos passos de inferência. Este
fenómeno é alcançável usando técnicas focadas nos dados, como a variabilidade existente nas car-
acterísticas dos exames explorados, permitindo a criação de tarefas paralelas. Adicionalmente,
usamos métodos focados no modelo, como a regularização usando disentanglement e mapas de
atenção, promovendo invariância no modelo no que toca à previsão de doenças. As nossas exper-
iências levaram à seleção de fontes de variabilidade nos dados, que, integrado com alterações nas
arquiteturas, resultaram em ganhos de rendimento em cenários fora de distribuição, relativamente
a um modelo estabelecido como base.

Em suma, este estudo foca-se em modificações de modelos de Deep Learning, cruciais para
promover a generalização, de forma a aumentar a taxa de aceitação e confiança em soluções de
Inteligência artificial na prática clínica.
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Abstract

The power of Deep Learning applications is currently shaping the future of society. Deep neural
approaches, such as image classification, are used on several fronts and achieve results comparable
to human reasoning. Remarkably, the image classification scenario can significantly advance how
hospitals and clinics operate, aiding overloaded medical professionals primarily for diagnostic
purposes. These methods save doctors a substantial amount of time and help them with treatment
planning, leading to a general increase in patient’s quality of life and decreasing the facilities’
operating costs.

The use of AI systems in healthcare is met with uncertainty and caution due to the high risk and
responsibility inherent in medical roles. This is mainly due to inconsistencies in predictions when
inference data is not precisely curated to training distributions. As a result, these models cannot
generalise as effectively as human practitioners when evaluating exams that follow different ac-
quisition procedures. This can lead to severe consequences, particularly in the medical field. Con-
sequently, thoughtful solutions are currently being researched to improve the generalisability of
deep neural algorithms, mitigating any performance drops when dealing with out-of-distribution
data and promoting trust and acceptance of these models in medical applications. Research ef-
forts for improved generalisation can be separated into data-centric and model-centric branches.
Data-centrism takes advantage of data particularities to induce more diversity and better feature
extraction. At the same time, model-specific practices make architectural and training objective
changes to prevent the model from reaching an overconfidence state, better known as overfitting.

In this thesis, our primary goal is to develop more robust models in a medical multi-centre
environment where the distribution of the data changes in inference steps. We can achieve this
by using data-centric approaches, such as the explored feature variability in the training data,
allowing the creation of valuable side tasks. Additionally, one can use model-focused techniques,
namely disentanglement regularisation and attention maps, to promote model invariance in disease
prediction. Our experiments led to the selection of favourable sources of variability in data, which,
integrated with architecture modifications, led to performance gains in out-of-distribution data
compared to the established baseline.

In conclusion, this study delves into modifications to Deep Learning models that promote
generalisation, further increasing the acceptance and trust in AI solutions for daily use in the
medical field.
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”Deep in the human unconsciousness is a pervasive need for a logical universe that makes sense.
But the real universe is always one step beyond logic.”

from "the sayings of Muab’Dib", by the Princess Irulan
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Chapter 1

Introduction

1.1 Context

Our society is constantly evolving. Throughout the many years of Human existence, we continu-

ously develop tools to help our daily lives. Certain innovations may have a minor impact, while

others can potentially transform the lives of billions. In today’s modern world, the rapid advance

of technology has opened up unprecedented opportunities, especially in healthcare. With the de-

velopment of diverse machines and systems, we now possess the potential to achieve remarkable

levels of wellness and well-being.

Deep Learning (DL) is a relatively new field that emerged from tremendous advances in com-

putational systems. At its core, DL attempts to reverse-engineer aspects of the human brain, tai-

lored for specific use cases and driven by the quest to uncover meaningful correlations in vast pools

of data [10]. Fortunately, since we are in a data-driven era, DL is becoming increasingly prevalent

in most applications. One example is healthcare, where the need to store patient data [11], such as

text reports, imaging studies and diagnostic information, created an extensive database for training

models. Once a model can perform a task with reliable performance, it can be a valuable tool for

doctors and patients.

Integrating DL algorithms into healthcare fosters a promising market, evaluated at 9.64 billion

USD in 2022 and expected to reach 272.91 billion USD by 2030 [12]. One of the main drivers for

this trend is the rise in the automation of medical services, strongly promoted by the unprecedented

times caused by the COVID-19 pandemic [13]. Often given at hospitals and clinics, medical care

delivery drifted to a decentralised system based on telemedicine and remote patient monitoring.

The integration of AI systems allowed a decreased workload for medical professionals. The other

driver revolves around the strategies around product development, where companies and startups

take advantage of the current media attention to promote their new algorithms.

Deep Learning approaches can coordinate with medical care on several fronts [13, 14], such as

genomics, analysis of sensorial data and clinical text data. The medical genomics discipline uses

AI [15] to predict the 3D structuration of the genome [16], identify the transcription start sites [17,

1
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18], detect DNA methylation [19] and predict genetic expression from genotype data [20]. Sensor-

based algorithms use signals acquired from diverse sensors, like the Electroencephalograph (EEG) [21]

or the Electrocardiograph (ECG) [22], to extract patterns and make predictions about human motor

activity, seizures and emotions, or to diagnose particular diseases, such as Myocardial Infarction

or Atrial Fibrillation, respectively. Regarding clinical text data, medical reports can be written by

deep neural models using speech recognition-[23], or the available clinical reports can be used for

feature extraction and improved disease classification [24].

Clinical imaging is an additional department where most DL applications are integrated with

the medical field [14]. It is possible to analyse and extract information from distinct imaging

modalities, such as Computer Tomography (CT) [25], X-ray [26], Magnetic Resonance Imag-

ing (MRI) [27], Ultrasound [28] or Positron Emission Tomography (PET) [29]. This analysis is

helpful for multiple tasks:

• Image Segmentation is a technique that partitions an image into distinct and meaningful

regions or objects [30]. This process can identify and isolate different structures within

medical images, allowing doctors to accurately delineate anatomical structures, tumours or

calcifications for measuring or diagnostic purposes [31, 32].

• Image Classification categorises groups of pixels, vectors or even the entire image into one

or multiple classes. It can be used for disease classification [33, 24, 27], like in this thesis,

or for patient risk assessment.

• Object Detection is beneficial for mammography and histopathology, for example, since it

finds bounding boxes around objects and classifies them [34, 33]. It can detect and identify

cancerous masses or specific cell types.

• Image Registration ensures spatial similarity between two or more images. It can spatially

combine medical images from different modalities or acquisition times in healthcare [35],

useful for precise navigation in image-guided surgery, for example.

• Image Reconstruction involves generating new images based on raw data or other images.

Medical image reconstruction can improve image quality [36], interchange modalities and

enhance diagnostic value.

These aspects collectively encapsulate the majority of medical image analysis solutions using

DL. Their profound impact on the healthcare sector empowers medical professionals with essential

tools that enhance patient care, streamline diagnoses, and enable personalised treatment plans. By

automating routine tasks, DL solutions alleviate pressure on healthcare practitioners, allowing

them to focus on more demanding aspects of their work. Furthermore, this automation paves the

way for early disease detection, leading to timely treatments with higher success rates and reduced

patient impact, ultimately improving the quality of life and reducing costs [14, 13].

That said, it comes as no surprise that DL solutions are in the spotlight, gaining much atten-

tion, especially from investors. Recent reports show that global funding for AI startups has surged
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by 108% from 2020 to 2021, reaching an impressive 66.8 billion USD. Health-focused companies

account for 18% of these fundings [37]. Several news outlets have reported on the collaborations

between hospitals and AI companies. For example, Baptist Health System has joined forces with

Nuance to incorporate its speech recognition software [38]. Diagnostikum is also utilising the

AI-Rad Companion software developed by Siemens Healthineers to automate chest X-ray analy-

sis [39].

1.2 Motivation

Despite the immense prospect of AI systems for medical diagnosis and its current popularity, there

must be some cautious procedures for integrating these systems into healthcare, especially when

dealing with potentially life-threatening situations.

Medical decisions significantly impact patients’ quality of life, whether it is in diagnosing their

condition or planning their treatment. As a result, medical professionals carry a heavy responsi-

bility as they are solely responsible for any mistakes, even if they were made in a group decision

during multidisciplinary meetings [40]. Understandably, any changes to their workflow can cause

scepticism among the workforce.

In contrast, AI systems lack sentience and are withheld from any liability for their predictions,

whether the model performs mundane tasks, such as distinguishing cats from dogs or sensitive

and high-risk predictions of diseases. In this perspective, integrating DL algorithms in healthcare

implies sole accountability for the human agent [41]. Thus, for models to be accepted in medical

centres, doctors must develop a deep trust in these technologies to vouch for their performance

and reliability.

Despite all the development for building trustworthy deep neural solutions with incredible per-

formances, the complexity, data sensitivity, cognitive biases and black-box reasoning behind these

models hinder their confidence and adoption in healthcare. The general public also demonstrates

signs of distrust, with a survey revealing that about 60% of US adults are uncomfortable with

healthcare providers relying on AI [12].

When focusing on reliability, these architectures suffer significant prediction inconsistencies

when evaluated in scenarios where the data input slightly changes from the regular distribu-

tion [42]. In other words, they do not hold similar generalisation capabilities to humans, and

a simple alteration of acquisition parameters of a particular exam could make their predictions

meaningless.

The acquisition procedures in medical imaging are not standardised, so different hospitals or

medical centres use distinct protocols, resulting in exams with diverging data distribution [43].

This phenomenon also poses a problem to the widespread implementation of AI models in differ-

ent medical institutions.

We aim to understand the variability in exams of the same modality and create novel techniques

to adapt models to generalisation scenarios, improving their reliability and trustworthiness in the
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high-stakes landscape of medical diagnosis. This study is inserted in a project entitled Causality-

driven Generative Models for Privacy-preserving Case-based Explanations (CAGING) [44]. This

is an exploratory research project funded by the FCT - Fundação para a Ciência e a Tecnologia,

I.P. (Portuguese Foundation for Science and Technology). This project focuses on explainable

artificial intelligence, privacy-preserving machine learning and causality.

1.3 Objectives

This dissertation aims to explore Deep Learning techniques to improve Generalisation in distinct

distributions of medical data revolving around Disentanglement Representation Learning. For this

purpose, we formulate two questions that our work should resolve.

The first question is: "Which factors of variability influence the disease prediction perfor-
mance of Deep Learning solutions in out-of-distribution medical data?". We outline particular

tasks that we consider essential for promoting invariability in medical imaging classification and

prepare a shared research ground for the upcoming question.

The second question is: "Which deep neural mechanisms and training procedures pro-
mote feature independence for improved Generalisation?". We investigate current techniques

and their intuitions for enforcing the transformation of an image into independent feature sets.

These techniques will ultimately be integrated in intricate ways to solve the selected tasks, cre-

ating different architectures whose primary goal is maintaining performance across Multi-Centre

Medical datasets.

Finally, we endorse a discussion encircling the techniques experimented throughout this Dis-

sertation, aiming to provoke interest in the scientific community for the next steps towards better

models in healthcare.

1.4 Main Contributions

The Thesis’ main contributions can be summarised as:

• We explore data heterogeneity in chest X-rays sourced from different datasets, selecting

features that may be the underlying root for variability. Additionally, we define a set of

rules and baseline models to make this research comparable throughout the entire study.

• We investigate the impact of modifying the baseline to be able to perform separate and

independent tasks with the hopes of implicitly enforcing feature separation. Subsequently,

we promote explicit regularisation for feature disentanglement.

• We propose a novel approach that utilises the previous findings and attention-based con-

trastive regularisation of pairs of images sampled differently from the same radiograph to

promote disease prediction invariance. We submitted a research paper [45] with this work

to the Deep Learning Special Session, held as part of the 22nd International Conference on

Machine Learning and Applications (ICMLA 2023).
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• We evaluate the ability of generative model methodologies to extract meaningful patterns

by assessing image reconstruction quality. Then, we use these methodologies as a backbone

to infer their strengths and weaknesses when incorporated with the contributions above.

1.5 Dissertation Structure

Besides the Introduction, this dissertation contains seven more chapters:

• Chapter 2 provides background to the concepts that are going to be explored;

• Chapter 3 reveals some literature studies that tackle the same objectives as our work;

• Chapter 4 defines a set of ground rules and assumptions to serve as a control group and

Baseline for all the experiments;

• Chapter 5 presents the first experiments on architectures and regularisations to reach disen-

tangled representations;

• Chapter 6 integrates attention mechanisms into the framework coupled with contrastive

learning to improve the out-of-distribution performance of the model.

• Chapter 7 explores experiments done to a standard Variational AutoEncoder with and with-

out the previous methodologies and assesses the generative models’ disentanglement capa-

bility.

• Chapter 8 presents the main conclusions obtained in the work developed under the scope of

this Dissertation and motivates the scientific community for further work.
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Chapter 2

Background

2.1 Introduction

The previous chapter hints at the main techniques for achieving this dissertation’s goals. Deep

Learning processes prorate groundbreaking tools across many fields in the modern world, and

their robustness in different, out-of-distribution scenarios generally links to the training proce-

dures chosen, predominantly data and model architecture. Thus, selecting proper methods to

ensure good generalisation capabilities is pivotal, resulting in more reliable and meaningful Deep

Learning models that become more competitive in the promising market of Artificial intelligence

applications.

This chapter provides the theoretical foundation for subsequent discussion, diving into all

prominent topics surrounding X-rays, Deep Learning modules and Disentanglement Representa-

tion Learning.

2.2 X-rays in the modern World

2.2.1 X-ray Characteristics and Generation

X-rays are similar to visible light since they are a form of electromagnetic radiation but dif-

fer in two key aspects: energy and wavelength [46]. The "Röentgen light" has higher energy

values (100− 1,0x105eV compared to 1− 3eV ), inversely corresponding to lower wavelengths

(0.01− 10nm versus 380− 700nm)[46, 47]. These lower wavelengths allow the X-ray beam to

pass through most solid objects, including the human body, losing a certain amount of energy that

depends on the characteristics of the material [48]. This reduction of energy is the foundation of

X-ray Imaging: if a body is between an X-ray generator and a detector, the detector will quantify

the amount of radiation that hits it, corresponding to the radiation that was not absorbed by the

body, resulting in different contrasts along the obtained film. Objects composed of atoms with a

high atomic number, such as bone (calcium atoms), will absorb most of the radiation, resulting in

high-contrast images, compared to fat, tissues, and air-filled cavities, that generate sparse shades

of grey in the detector [49].

7
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Figure 2.1: Schematics of an X-ray tube

As a general rule, the generation of X-rays occurs in an X-ray vacuum tube, comprised of

two principal components: a cathode, usually a filament, that with electric current heats up, re-

leases electrons via thermionic emission, which are accelerated by high voltage and strike the

anode. Most of these electrons interact with the anode, slow down and stop, heating the latter and

generating X-ray radiation [46, 50]. Figure 2.1 displays a simple example of an x-ray tube.

This radiation does not have constant energy values; it is a distribution of the number of

photons created as a function of their energy, designated as the X-ray spectrum [51]. The X-

ray spectrum depends on several factors, such as the electric current applied to the cathode, the

potential voltage of the X-ray tube, the materials used in the cathode and anode, the detector type,

etc. [52]. These factors subsequently influence the final image’s contrast, resolution and noise

levels. For example, a high potential voltage of 120 kVp (kiloVoltage peak) generally increases

exposure, resulting in a brighter final image.

2.2.2 X-rays in Healthcare: Post-Processing

For diagnostic purposes, X-ray radiography uses these electromagnetic waves to check for anatom-

ical abnormalities in our body, namely bone fractures, calcifications, infections, and tumours.

As mentioned above, the characteristics of the X-ray machine influence the final image and

need to be carefully defined before each exam, taking into account the "As Low As Reasonably

Achievable" principle (ALARA) [53]. This principle arises because X-ray is ionizing radiation

that, when absorbed by organisms, can damage molecular structures and cells, promoting a range

of effects, such as loss of skin, hair, vomiting or cancer. Therefore, radiographs focus on the best

image quality attainable by the lowest possible exposure to X-ray radiation [54]. In other words,

this double-edged sword should be appropriately handled by experienced technicians concomi-

tantly with radiologists who specify what they want to obtain in this exam.

Additionally, there are some parameters that the radiologist can change after the radiograph [55].

Using the correct software, the practitioner can adjust the image’s brightness and contrast to high-

light the wanted areas and provide a wider intensity gamut. One typical setting generally adjusted

is the Windowing Level, which separates in a pair of values, Window Center and Window Width,

represented in Hounsfield Units (HU) [56], a tissue density unit. The air has a score of -1000 HU;
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the lung, being composed mostly of air, scores around -500 HU; fat, water, and soft tissues portray

-50 HU, 0 HU and 50 HU, respectively; bone is much more dense, having values of more than

1000 HU [57].

Window Center, or Window Level, corresponds to the midpoint of the range of the Housefield

Units displayed. If increased, the final image turns brighter, and vice-versa. Window Width is

the gamut itself. A wide Window Width will hold structures with various densities. Thus, the

transition from black to white will occur across several compositions, meaning that subtle changes

in density will not display observable pixel intensity alterations [58].

Radiologists change the windowing parameters to highlight or differentiate specific regions of

interest, such as tissues, bones, or air cavities, each with its variation of ideal intensities. Image

2.2 compares different windowing width ranges applied to the same Computed Tomography (CT)

scan.

Figure 2.2: Different windowing settings applied to the same CT scan to highlight different struc-
tures. Source: [1].

Practitioners store the radiographs after no longer being needed for medical purposes. For

insurance and law fulfilment, exams must be archived for at least 5 to 10 years [11]. Violation of

this rule can result in hefty fines for the radiologist and the hospital or clinic in question. Therefore,

efforts arise to create an efficient device for storing, retrieving and accessing radiographs [55], all

medical images and procedures done to a particular patient. Picture Archiving and Communication

System (PACS) is the most common device used in healthcare for this purpose [59].

Several formats and standards are available for storing X-ray imaging compatible with the

PACS system, but the most widely accepted is the Digital Imaging and Communications in Medicine

(DICOM) [60]. DICOM images contain the exam itself and metadata detailing all information

about the patient, the image acquisition, the hospital and the vendor.

The climbing prominence of Deep Learning techniques is nurtured by the rising availability

of big data. This premise stands on top of the numerous datasets curated for particular tasks.

Regarding healthcare, creating datasets using medical information is generally centre-wise and

heavily prioritizes patient anonymity to prevent the leak of any sensitive details [61]. The data

goes through a particular pipeline of retrieval, storing and clustering that usually ensures that each
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entry in the dataset fulfils specific requirements, leading to a high-quality dataset. Nevertheless,

these requirements are typically only centre-wise, and while some post-processing techniques are

similar, others make datasets from different sources diverge in their data distribution.

One significant difference is the medical image storing format [62]. As discussed previously,

the DICOM standard ensures that the radiograph is in its raw form and carries other relevant in-

formation to detail the exam made that can explain some of the fluctuations between two different

radiographs, for example, the exposure, differential voltage or X-ray tube current. However, sav-

ing files in DICOM format is quite demanding since the size is notably more extensive than a

simple PNG or JPEG image. Thus, some organisations prefer to discard all details stored in the

DICOM’s metadata and apply some post-processing techniques to the radiograph, further polariz-

ing the distributions of different datasets.

One of these techniques involves changing the radiograph’s grayscale intensities to fit the win-

dowing level chosen by the practitioner. Despite being beneficial for the radiologist at the moment

of evaluation, it can sometimes introduce some variability to the data, especially considering that

there are several X-ray visualisation software, customarily coupled with proprietary X-ray ma-

chines, which use different ranges for the same windowing.

2.3 Foundational Deep Learning

Deep Learning, as a subfield of Machine Learning, inherently drives the trajectory toward Artificial

Intelligence. Within its sphere, Deep Learning encapsulates synthetic intelligent algorithms that

extract intricate patterns and make decisions using complex networks driven by large volumes of

data. These algorithms are heterogeneous and apply to almost all situations and modalities. The

subsequent sections delve into some prevalent practices in Deep Learning, portraying some of its

capabilities.

The typical Deep Learning architecture comprises several layers, sometimes grouped into

blocks or modules. Convolutional, fully connected, batch normalisation and pooling layers con-

stitute the fundamental operations within a deep neural network, often coupled with activation

functions, such as Rectified Linear Units (ReLUs) and Sigmoid.

The process of extracting features from an input can be called encoding. Thus, the input gets

encoded into meaningful, generally more concise representations called feature maps. For exam-

ple, throughout the encoding pipeline in the imaging modality, the input gets spacially smaller but

gains depth - the layers in an architecture compress the local information into a single pixel. This

whole encoding process translates to the encoder block in architectures.

In some cases, the high-dimension feature space obtained by the encoder is called the latent

space. The latent space corresponds to an abstract space representing the input’s information in

its most compact state, usually as a vector. The compact information is the stem for most Deep

Learning applications, branching into multiple undertakings, such as classification, regression, or

reconstruction tasks.
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The antagonist of the encoder block is the decoder block. This new block tries to reconstruct

the input using only the latent space. Therefore, the opposite flow happens - the feature maps

expand gradually, dispersing concise information locally. For Convolutional Neural Networks

(CNNs), the transposed convolution operation substitutes the convolutional layer.

Figure 2.3: High-level representation of encoder and decoder blocks

The preliminaries explained in this section, depicted in Figure 2.3, are the foundations for the

following sections that will dive into intricate ways to combine these blocks to generate insightful

models.

2.4 Generative Models

Unlike deterministic models, generative models learn to extract meaningful features from the input

images in an unsupervised setting. Throughout the training process, these models encode the

image into the latent space, which depicts the characteristics of the image in its latent variables.

Using a training dataset, the main objective of this model is to find a probabilistic distribution

capable of describing the main factors of variation in the images [63]. After a successful training

procedure, the model can generate new images following the training distribution.

These models are crucial for several fields, such as natural language processing, computer

vision, and speech recognition, holding the potential to automatically augment datasets by provid-

ing appropriate new data points. The unsupervised feature extraction settings also hold promising

scenarios for promoting feature separability since the latent variables produced can be related to

factors of variation of the training distribution. Variational AutoEncoders (VAEs) and Genera-

tive Adversarial Networks (GANs) are the most popular generative models and will be further

discussed.

2.4.1 Variational AutoEncoders

Variational AutoEncoders are architectures [64, 65] composed mainly of an encoder and a decoder,

as portrayed in Figure 2.4. The encoder network maps the input data x into a latent space following

a prior distribution. The decoder will take this latent distribution and return a reconstruction into

the original data space, x̂. One can argue that the latent space could be regularised using single data
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points; however, this constricts the model and eliminates the possibility for variance. Therefore,

probabilistic distributions are used, such as the Gaussian.

Figure 2.4: Architecure of the Variational AutoEncoder.

The training objective of VAEs uses a reconstruction term, which compares the reconstructed

image with the original using mean squared error loss or cross-entropy functions. Additionally,

the Kullback-Leibler Divergence (KL) approximates the encoder’s distribution (qθ(z|x)) with the

original image distribution (p(z|x)). Equation 2.1 represents the loss function.

L =−Ez∼qθ (z|x)[log p(x|z)]+KL(qθ (z|x)||p(z|x)) (2.1)

2.4.2 Generative Adversarial Networks

Generative Adversarial Networks [66] are characterised by a pair of networks that will compete

with each other. Unlike VAEs, GANs do not try to estimate the probabilistic data distribution.

Instead, it uses an adversarial approach, training two architectures with opposite objectives. The

main goal is to achieve an equilibrium between the two networks. One of the networks is the

generator, G, which will construct images based on a simple distribution, z. The other network is

the discriminator, D, which will infer if the input image corresponds to an original (D(x)) or gen-

erated (D(G(z))) instance. The main objective of the generator is to try fooling the discriminator

that simultaneously learns to discriminate better. Figure 2.5 summarises the GAN architecture.

This adversarial training is made possible by a minimax loss, where the generator tries to

minimise it while the discriminator maximises it. Equation 2.2 depicts the training objective of a

GAN.

Figure 2.5: General Architecture of a GAN.



2.5 The Attention Mechanism 13

min
G

max
D

= Ex∼p(x)[log(D(x)]+Ez∼p(z)[log(1−D(G(z)))] (2.2)

Compared to VAEs, GANs can produce reconstructions with finer details due to the differences

in the training objective [67]. The adversarial training is an intuitive procedure to emphasise a

high-quality image reconstruction. However, the strict control of the latent space given by VAEs

gives an advantage to these networks regarding feature separability.

2.5 The Attention Mechanism

Despite their tremendous success, CNNs keep getting more extensive and comprehensive, con-

tributing to soaring computational costs that scale with the number of image pixels. Mnih et al.

introduced the attention mechanism [68] to force the model to only focus on certain image regions

instead of the entire picture.

The attention mechanism gets inspiration from the human brain. The overwhelming amount

of information coming through the retina to the brain would overcome the limited amount of

energy available in the brain to process all the neuronal activity involved in processing the visual

stimuli [68]. Therefore, selective attention arises where the previously conceived notions about

the environment allow the brain to focus on particular locations of the visual apparatus, processing

vital information while discarding meaningless stimuli [69]. By combining the perception from

different fixations over time, our brain can efficiently build a representation of the surroundings,

saving energy resources.

In Deep Learning, the idea behind attention mechanisms is to prioritize the information in

particular locations over others to give the model a grasp on what matters in a specific context.

The general attention module [70] takes as input the feature vectors obtained by an encoder,

F , and the query, q. The matrix F is where the attention mechanism will extract the most relevant

information, guided by the query, that tells the mechanism where to focus.

As the name implies, the query corresponds to an inquiry or a question. Depending on the task,

there are several ways to define this matrix - some can use hidden states obtained throughout the

encoding process, the model’s previous predictions, tabular characteristics, or even a combination

of the feature vectors with randomly instantiated and learnable weights [70].

The feature vectors are the starting point for extracting the keys, K, and values, V , matrices.

These names correlate with the notion of a dictionary of key and value pairs. As equation 2.3

shows, K and V result from a linear combination of the feature vectors, F , and learnable weights,

WK and WV .

K =WK ×F ;V =WV ×F (2.3)

The end goal of the attention mechanism is to obtain a weighted average of the values vec-

tors, Attention Pooling, constrained by the relevancy of the keys according to a particular query,

Attention Scoring [70].
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Attention scoring is a technique that outputs the attention scores vector, a, representing the

degree of interest of each key regarding the query in question, as defined in 2.4.

al = score(q,kl), (2.4)

where al is the attention score translating the importance of kl to the query. Several attention

score functions are available [71, 70], and some are listed below:

• Additive — also known as Bahdanau Attention [72], combines the query and the keys

vectors using an addition operation parametrized as a feedforward neural network. The two

variables are combined using the following expression 2.5:

a(q,kl) = vT × tanh(W1 × kl +W2 ×q), (2.5)

where v, W1 and W2 are learnable weights.

• Multiplicative — Being the most common function implemented, it joins the query and

keys vectors by multiplying themselves with the help of a weight matrix, W [73].

a(q,kl) = kT
l ×W ×q (2.6)

If the variables have the same length, one can simplify the expression and use the dot-

product operation instead. The multiplicative attention can scale by the factor 1√
dk

, where

dk corresponds to the length of vector kl , for vectors with a significant length.

• Similarity — Other typical similarity measurements can take place, such as the cosine

similarity (equation 2.7) and the euclidean distance (equation 2.8).

a(q,kl) =
q · kl

∥q∥×∥kl∥
(2.7)

a(q,kl) =

√√√√ dk

∑
i=1

(qi − kli)
2 (2.8)

After the softmax operation [74], the obtained vector of attention scores is then used concomi-

tantly to the values vector for the weighted average calculation in the attention pooling step. This

context vector is the final step in the general attention mechanism.

2.5.1 Self-Attention

Self-attention is a variant of the attention mechanism that extrapolates the relationship between

each vector with the other feature vectors. Every feature vector will go through an attention mech-

anism, where the attention scoring process gets calculated using that vector’s query representation
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and the key vectors of itself and the other feature matrices. As a result, each context vector en-

capsulates the relevance of all feature vectors, offering a comprehensive perspective on the input

sequence’s internal dependencies and relationships [2].

2.5.2 Multi-Head Attention

The context vector corresponds to one representation subspace, extracted from the query, key

and value vectors. To unlock the ability to have different representation subspaces from different

positions, Vaswanie et al. proposed creating h learned linear projections of the vectors mentioned

above, each one of them having its attention mechanism [2]. The h context vectors are calculated

parallelly, concatenated and linearly transformed into the expected output dimension. This module

is called multi-head attention, and its intuition is to enrich the model’s capability to focus on

different input positions, akin to an ensemble of attention.

2.5.3 Transformer Architecture

Figure 2.6: Architecture of the transformer model, proposed by [2]

In the landscape of modern Deep Learning, transformer architectures are garnering much ac-

clamation and focus. With its foundation in the self-attention mechanism, capturing intricate pat-

terns and contextual relationships, these architectures allowed a new era of Natural Language
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Processing (NLP) tasks and further expanded to computer vision problems.

Unlike CNNs, transformer architectures are solely based on attention modules and consist of

an encoder and a decoder. The encoder consists of multiple identical stacked blocks, each com-

posed of two layers: a multi-head self-attention mechanism and a position-wise fully connected

feedforward network. Around each layer, there is a residual connection, followed by layer normal-

isation. The decoder shares the same architecture as the encoder, adding a third layer known as

encoder-decoder attention that receives the queries from the decoder’s multi-head self-attention

mechanism and the keys and values from the encoder outputs. The decoder multi-head self-

attention uses outputs of the previous decoding step, shifted to the right alongside a mask that

hides the future positions, allowing this new decoding step to only attend to earlier positions.

The position-wise fully connected feedforward network utilizes positional encoding. Each

input vector is coupled to a positional encoding vector to give the model information about the

vector’s order related to the input feature vectors. These positional vectors can be learned or

fixed a priori based on sine or cosine functions, enriching the model’s comprehension of sequence

context.

2.5.4 Vision Transformers

The performance scenario regarding Transformers in the field of NLP motivated the adaption

of this attention-based architecture to computer vision. Thus, the Vision Transformers (ViTs)

emerged, using a transformer-like encoding of patches obtained from the image input. The patch

embedding process involves splitting the input image into several patches with a pre-determined

size. These patches are then flattened and linearly projected to vectors with a particular dimen-

sion, using a convolutional operation with kernel size and stride set to the patch size. The vector

dimension is maintained throughout the whole encoding process. Image 2.7 illustrates the ViT

architecture. Comparisons between ViTs and state-of-the-art CNNs reveal no clear superiority in

Figure 2.7: Overview of the Vision Transformer architecture, with its patch embedding [3]
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one of these networks since both have unique strengths and weaknesses. Observations [75] state

that on small-scale datasets, ViTs will have less generalisation ability and worse performance than

CNNs. The transformer encoding lacks convolutional principles, like translation invariance and

locality. Especially with locality, CNNs take advantage of a high inductive bias, which stands for

the set of assumptions made by the model related to the neighbouring pixels of an image. How-

ever, in large-scale datasets, ViTs surpass the performance of CNNs since the attention operations

are appropriately fitted and can capture global dependencies and contextual understanding.

2.6 Disentanglement Representation Learning

Disentanglement in the context of deep learning is a crucial pursuit to make sense of complex

data representations. An image contains several characteristics. When encoding an image to a

latent representation, these characteristics intertwine inside this space, which means they are not

independent, as they should be (at least in most cases). For example, in a picture representing a

car, the car’s colour should not be influenced by the chassis shape. These conclusions are clear

for human reasoning since we deeply understand colour, shape, and their unarguable separation.

Our experiences in this world gave us enough context to completely disentangle the image to its

fundamental characteristics. However, DL models do not have this context and have difficulties

separating the main factors of variation inside a representation, mainly due to data scarcity. Figure

2.8 illustrates the car example.

Figure 2.8: Example of the possibilities of disentanglement in changing a car’s characteristics.

This is where disentanglement and feature separability come into play: the essence of disen-

tanglement lies in encoding each dimension of the latent space to represent a single, independent

feature. This ensures that any modification to a specific feature will not inadvertently affect others.

The standard procedure for implementing disentangled learning is to encode the image into

the wanted independent features. These dimensions of the latent representation are subject to

regularisation by giving them specific tasks that link them to the wanted features. In the car

example, to ensure that a specific dimension is responsible for the chassis shape, it would be

advisable to use that dimension’s parameters for parallelly classifying the correct shape of the
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chassis. Then, using a generative modelling approach, a decoder would reconstruct an image from

this latent space. Some dimensions can be modified or omitted in the reconstruction according to

the task objective. The final image may differ from the original but still shares most components.

By having independent feature spaces, changes made to one vector will not propagate to the

others. That said, in a classification task, promoting feature disentanglement can translate into a

better classifier that does not fluctuate its predictive power when presented with variability in the

data distribution.

2.7 Conclusion

This chapter has provided an overview of the foundational concepts and techniques that form the

basis of our research. We began by exploring the fundamental principles of X-rays and their use

in the medical field. Then, we encompassed the main knowledge about Deep Learning, exploring

models and techniques that have potential use for this thesis, namely the attention mechanism,

generative models and disentanglement representation learning. These concepts motivate the next

chapter, which reflects the main literature contributions that built our work.



Chapter 3

Literature Review

The previous chapter introduced the base ground for the concepts that will serve as foundations for

this dissertation. In this chapter, we explore essential strategies and innovations that researchers

have developed that link the background concepts with the prospective work aimed to be done in

this study.

3.1 Generalisability in Deep Learning Applications

Research in improving generalisation can be divided into two main fields: data-centric approaches

focus on optimising the training dataset, while model-centric methods refine the architecture and

training techniques of neural networks. This section delves into these approaches, highlighting the

strategies and innovations contributing to improved generalisation in deep learning.

3.1.1 Data-Centric Approaches

Data-centric approaches for enhancing generalisation in machine learning have gained substantial

attention in recent years. These strategies focus on improving a model’s performance and adapt-

ability by carefully managing and augmenting the training data. Several key methodologies and

studies have contributed to this field:

• Data Augmentation: These methods generate new training samples by applying various

transformations to existing data. Classic augmentation methods [76, 77, 78] include rota-

tion, translation, scaling, and image flipping. By artificially increasing the diversity of the

training dataset, it helps models learn more robust and invariant features.

• Feature Engineering: Selection, transformation, or creation of new features from the raw

data to improve machine learning models’ performance [79]. These techniques play a cru-

cial role in enhancing the generalisation of machine learning models by focusing on the

relevance of input features [80]. While traditional techniques involve manual feature craft-

ing and selection, recent advancements [81] in deep learning have shown the potential to
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automatically extract relevant features from raw data, further improving model adaptability

and performance.

• Data Splits: Performing dataset splits comprises dividing datasets into training, validation,

and testing sets [82]. The model will only be able to learn its weights by using the train-

ing set, selecting the best hyperparameters based on the validation set and assessing per-

formance with the testing set. These splits are essential in enabling accurate performance

estimation and model selection [83].

• Cross-Validation: By repeatedly partitioning the dataset into training and validation sub-

sets, cross-validation mitigates overfitting and minimises bias in model assessment [84].

3.1.2 Model-Centric Approaches

Pursuing model-centric approaches to improve generalisation in machine learning has resulted in

innovative strategies that focus on enhancing the models’ ability to adapt to diverse datasets. These

techniques, separate from data-centric strategies, involve exploring the model’s architecture, regu-

larisation, and training methodologies. Some traditional approaches for improving generalisability

are as follows:

• Early-Stopping: This is a widely utilised model-centric approach in machine learning,

primarily employed to prevent overfitting. It involves monitoring a model’s performance

on a validation dataset during training and halting the process once the performance starts

deteriorating [4]. Figure 3.1 illustrates the intuition behind early-stopping.

Figure 3.1: Early stopping based on the validation set [4]

• Dropout: Introduced by Hinton et al., dropout [85] works by randomly deactivating a sub-

set of neurons during each training iteration, not participating in the prediction. This random

element helps the network become more robust and less reliant on any specific set of neu-

rons.

• Regularisation (L1 and L2): Some techniques work by enforcing the model to decrease

its complexity and confidence in its weights. L1 regularisation, also known as Lasso [86]
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regularisation, encourages sparsity in neural network weights by adding the absolute values

of weights as a penalty term to the loss function. In contrast, L2 or Ridge [87] regularisation

mitigates overfitting by adding the squared weights as a penalty term.

3.2 Generative Models

Generative models have witnessed remarkable advancements, enabling diverse applications such

as image synthesis and disentanglement. This section will present promising works that follow the

scope of this dissertation, presenting interesting architectural modifications for VAEs and GANs.

3.2.1 Variational AutoEncoders

• Beta-VAE [88]: This architecture introduces a disentanglement factor, β , to the KL term in

the VAE loss function (equation 2.1, as seen in equation 3.1:

L =−Ez∼qθ (z|x)[log p(x|z)]+βKL(qθ (z|x)||p(z|x)) (3.1)

This factor helps control the trade-off between reconstruction accuracy and the degree of

feature disentanglement. The higher the value for beta, the higher the degree of disentangle-

ment. The beta-VAE model proves effective in learning semantically meaningful factors of

variation in data. It is a valuable tool for applications requiring interpretable and controllable

latent representations.

• Vector Quantised-VAE (VQ-VAE): Oord et al. introduce the Vector Quantized Variational

Autoencoder architecture [5], a novel approach for learning discrete data representations.

In traditional Variational Autoencoders (VAEs), latent representations are continuous and

difficult to interpret. The key idea in VQ-VAE is to map continuous data into discrete

codes, enabling more interpretable and efficient representations. It achieves this by using

an embedding space of discrete latent vectors and training an encoder to map input data to

the nearest vector in the embedding space. This approach allows for better disentanglement

of features, making it easier to control and manipulate specific attributes in the data. Figure

3.2 illustrates the architecture of the VQ-VAE.

The loss function in VQ-VAE (equation 3.2) consists of three components. The first term is

reconstruction loss, measuring the difference between the input data, x, and the reconstruc-

tion, x̂, typically using MSE or a similar measure. The second term moves the embedding

vectors, e, towards the encoder outputs, ze(x) using l2 loss. The last term is the commitment

loss, which makes sure the encoder outputs commit to the embeddings. The stopgradient

operator is represented by sg.

L = MSE(x, x̂)+∥(sg[ze(x)]− e)∥2
2 +β · ∥ze(x)− sg[e])∥2

2 (3.2)



22 Literature Review

Figure 3.2: Overview of the VQ-VAE architecture. Source [5]

• VQ-VAE 2: This is a more complex and evolved version of the VQ-VAE, with multiple

quantisation levels structured hierarchically. The image input is quantised into several levels

of embedding spaces, gradually into higher-level discretised representations [6]. This hier-

archy enables capturing complex features at different levels. Figure 3.3 demonstrates the

hierarchical levels present in the VQ-VAE 2. It tends to outperform VQ-VAE regarding re-

construction quality, disentanglement of features, and generation of diverse and high-fidelity

images.

Figure 3.3: Representation of the hierarchical VQ-VAE for two levels of discretisation [6]

3.2.2 Generative Adversarial Networks

• InfoGAN [89]: This model extends the traditional GAN architecture by introducing a mu-

tual information regularisation term, encouraging the generator to learn generative and in-

formative representations about specific data attributes. The generator receives as input ran-

dom Gaussian noise, z (as seen in the typical GAN), and latent code c, which is initialised

as a random distribution. However, the latent code will learn to have meaningful repre-

sentations throughout training. These meaningful representations are created by adding a

fully connected layer to the discriminator, denoted as the auxiliary classifier, Q. This fully
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connected layer predicts the distribution Q(G(z)), given the generated data. Thus, the mu-

tual information term corresponds to the KL divergence between Q(G(z)) and c. λ controls

the trade-off between the GAN loss and the mutual information regularisation. The overall

training objective is represented in equation 3.3.

min
G,Q

max
D

= Ex∼p(x)[log(D(x))]+Ez∼p(z)[log(1−D(G(z)))]

−λ ·KL(c,Q(G(z)))
(3.3)

InfoGAN enables the unsupervised discovery of meaningful and independent features within

the data, making the learned representations more interpretable.

• VQGAN: This work is inspired by VQ-VAE, GAN and Transformers. GANs, with their ad-

versarial training paradigm, excel at generating realistic images, while VQ-VAEs facilitate

disentangled and structured representations.

Figure 3.4: Summary of the VQGAN, encompassing the VQ-VAE quantisation controlled by
Transformers, reconstructing an image that will be discriminated in an adversarial setting [7].

This article incorporates both training procedures [7], using a modified VQ-VAE objective

that evaluates the reconstruction using a discriminator network in an adversarial setting.

The transformers regulate the embedding space by modelling a sequence of these discrete

latent variables. The quantised encoding of an image is represented by a sequence of em-

beddings in the embedding space. Thus, by applying the self-attention mechanism in the

Transformers, one can enforce the learning of complex dependencies and patterns between

the embeddings. This way, the model learns high-level representations of the input data, al-

lowing it to generate higher-quality and fidelity images. Figure 3.4 summarises the VQGAN

architecture.

3.3 Attention-Based Mechanisms

This section explores two intricate ways of using the concept of attention modules to induce the

desirable effects on the training dynamics:
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• Self-Attention GAN: Zhang et al. introduce the convolutional attention module [8], which

employs a mechanism similar to the self-attention mechanism but adapted for convolutional

neural networks. This work is applied to GANs for improved image generation. Convo-

lutional operators of kernel size and stride of 1 map the input into query, key and values

feature maps. Then, the same principle in attention is applied, and the output of the con-

volutional attention module represents the input focused on the obtained query. Figure 3.5

illustrates the scheme of this implementation.

Figure 3.5: The proposed convolutional self-attention module for the Self-Attention GAN [8].

This module allows each pixel or feature map location in the generated image to attend to

distant regions within the same image efficiently, capturing long-range dependencies and

improving the coherence and quality of generated images. Using convolutional attention

modules significantly facilitates the incorporation of the attention mechanism in CNNs.

• Constrastive Attention Maps: The authors propose a method based on creating a self-

supervised setting using contrastive attention maps [9] to help identify and localise specific

objects or features within an image without relying on explicit annotations. This method

encodes multiple views of the input image, such as rotated transformations, and performs

attention pooling on the obtained feature maps.

A transformation T is applied to the original image to obtain the transformed image. Then,

the model generates the attention maps for the original (Aori) and the transformed input

images (Atrans). By applying the transformation T to Aori, we obtain Aori2trans. The inverse

procedure happens to Atrans, generating Atrans2ori. Aori and Atrans2ori are positive pairs, such

as Atrans and Aori2trans. The negative pairs are the backgrounds from the Aori and Atrans.

Figure 3.6 elucidates these transformations.

L = Ex

(
max(∥Atrans2ori −Aori∥2 −∥Atrans2ori −Aori2bg∥2 +m,0)

+max(∥Aori2trans −Atrans∥2 −∥Aori2trans −Atrans2bg∥2 +m,0)
)
,

(3.4)

where m indicates the margin. Following Equation 3.4, these attention maps are regularised

in a contrastive setting, maximising the similarity between positive pairs and minimising
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Figure 3.6: Contrastive setting applied to pairs of attention maps based on transformations done
to the original input image [9].

that between negative pairs. This objective encourages consistency between the attention

maps before and after the transformation of the input image. Also, it penalises the attention

maps of two anchors being activated in backgrounds. In essence, this approach enables

the network to focus on informative image regions while suppressing less relevant areas,

significantly boosting the accuracy of self-supervised co-localisation tasks. This contrastive

setting can be easily adapted to other scenarios, proving its promising uses.

3.4 Disentanglement Representation Learning

Disentanglement refers to the process of disentangling and separating latent factors of data repre-

sentation, fostering the creation of interpretable and factorised models. The following techniques

enforce disentanglement representation learning using an adversarial approach:

• Adversarial Disentanglement: This framework promotes independence from variability

factors within data, ultimately facilitating fair predictions [90]. The main objective involves

competitive training between a prediction, Pred, and a reconstruction, Dec, task.

As seen by Figure 3.7, this involves encoding x (Enc(x) = e) and learning a split represen-

tation of data as e = [e1,e2] = [Enc(x)1,Enc(x)2], such that information for the prediction

task is pulled to e1. In contrast, information for reconstruction goes to e2. Then, two adver-

sarial disentanglers, Dis1 and Dis2 are incorporated into the network. While Dis1 aims to

predict e2 from e1, Dis2 does the inverse. If e1 and e2 are genuinely independent, it would be

impossible for these disentanglers to achieve their goal. Equation 3.5 resumes the training

objective.

min
Enc,Pred,Dec

max
Dis1,Dis2

= αLpred(y,Pred(e1))+βLdec(x,Dec(e1,e2))

+ γ{Ldis1(e2,Dis1(e1))+Ldis2(e1,Dis2(e2))},
(3.5)
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Figure 3.7: Unified Adversarial Invariance model architecture.

where Lpred and Ldec are the losses for the prediction and image reconstruction tasks, respec-

tively, and Ldis1 and Ldis2 are MSE losses. α,β and γ are coefficients to control the trade-offs

between the regularisations applied. This approach successfully proposes disentanglement

to any supervised learning setting, leading to more robust and generalisable predictions.

• Disentangled Representation Learning for Privacy Montenegro et al. introduce a model [91]

capable of disentangling identity and medical features from images, allowing the generation

of privatised explanations to justify the model’s decision. This framework comprises a gen-

erative, an identity and an explanatory module. The generative module is a GAN responsible

for generating the anonymised image. The identity module is a pre-trained identity features

extractor, acting in the generated image, promoting anonymisation. The explanatory mod-

ule is a pre-trained medical features extractor and acts in the generated image, preserving

the medical features relevant for serving explanatory evidence for the model’s decision. The

feature extractors are trained to promote invariance to the opposing task. For example, the

medical feature extractor, Fext , is identity-invariant since it was trained in an adversarial

setting so that a disease classifier, Cdis, can recognise the disease of the image. However,

an identity classifier, Cid , cannot identify the patient. The training objective to promote the

invariance is defined in Equation 3.6.

LFext = E(−ydis · log(Cdis(Fext(I)))+ yid · log(Cid(Fext(I)))), (3.6)

where I is the input image and ydis and yid are the ground-truth labels of the images in regard

to disease and identity recognition, respectively. The results obtained translate the model’s

ability to generate privatised images, meaning that the adversarial training successfully sep-

arated the disease from the identity features. This framework is promising for promoting

disentanglement in order to achieve invariability in model predictions.
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3.5 Conclusion

Our comprehensive literature review has delved into research development in generalisation, gen-

erative modelling, attention mechanisms, and disentanglement techniques. These components are

essential for this dissertation and will be explored in our methodology. The following chapter

begins this dissertation’s experiments by delving into the assumptions and choices made in the

preliminary work.
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Chapter 4

Under The Hood: Data Choices and
Preliminary Implementations

4.1 Introduction

The paths to achieve the ultimate goal of this dissertation are multifold and need to be better de-

fined. Disentangled representation learning is generally hard to demonstrate quantitatively, and

coupling it with generalisation may yield unexpected results. While the theory and all work done

on synthetic datasets show promising results, the implementation in real-world scenarios is some-

what troublesome since there are too many variables to control; hence, disentangled representa-

tions may not project better generalisation.

The paths chosen for all the work are not unique and were picked based on continuous fore-

thoughts, so some trajectories are arguable. Throughout the following chapters, we elucidate the

reasoning behind the elected methods. Therefore, this chapter serves as an introductory work for

this dissertation, with the sole objective of defining and explaining choices around datasets and

ground rules for the upcoming implementations.

4.2 Datasets

Evaluating generalisability is a tricky task, and there are several ways to do it. However, since the

central intuition behind a generalisable model is shared performance traits between the training

and out-of-distribution data, we define that we aim to improve the out-of-distribution scores of a

model compared to its baseline.

Chest X-ray is the chosen imaging modality since there is a plethora of publicly available data,

and the main task is binary disease classification. Due to time and computational limitations, using

all the available datasets was impossible, so we determined four datasets, one for training and the

others for out-of-distribution testing. The principle behind this selection was to have reputable

datasets and some outliers from different regions worldwide. The selected datasets, detailed in the

coming subsections, are BRAX, CheXpert, MIMIC-CXR and VinDr-CXR.
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4.2.1 BRAX

The Brazilian labelled chest X-ray dataset (BRAX) [92] is an automatically labelled dataset con-

taining 40,967 images from 24,959 radiography studies of 19,351 unique patients. The radio-

graphs were extracted from the PACS of Hospital Israelita Albert Einstein (HIAE) in Brazil, and

experienced radiologists reviewed the fourteen generated labels. One critical particularity of this

dataset is that it comprises a manufacturer ID for the X-ray machine.

BRAX contains the radiographs in both DICOM and PNG format. While processing the im-

ages in PNG format, the authors interpolated the pixel values according to the windowing level

used by the radiologist. In other words, the images in DICOM format may differ from those in

PNG format since they have distinctive brightness and contrast. Figure 4.1 compares some sam-

ples between the original DICOM images and PNG interpolated ones.

Figure 4.1: Differences between original DICOM (top) and sampled PNG versions (bottom) of
the same radiographs.

This dataset will be used for training and validating all the models since it has useful informa-

tion for a classification task responsible for regularising the scanner features. In Section 4.5, we

validate this task by selecting a valid task for the scanner features.

4.2.2 CheXpert

CheXpert [93] is a public chest radiograph dataset, with 224,316 radiographs of 65,240 patients

from Stanford Hospital in the United States of America. It was one of the first large chest X-ray

(CXR) datasets publicly available. CheXpert radiographs are represented in PNG format, and the

authors did not provide information regarding the post-processing methods.

4.2.3 MIMIC-CXR

Medical Information Mart for Intensive Care (MIMIC)-CXR comprises 377,110 images of 227,835

studies from 65,379 Beth Israel Deaconess Medical Center Emergency Department patients be-

tween 2011 and 2016, together with free-text clinical reports [94]. This dataset from the United
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States of America is one of the most extensive and popular CXR datasets publicly available and

provides radiographs in DICOM and JPG formats. The JPG images are interpolated from the

DICOM originals without using the windowing levels.

The DICOM metadata gives insightful information about the X-ray machine. However, this

dataset was not used for training purposes due to its size: the DICOM-format version occupies

around 5.5 Terabytes, which would take a substantial amount of time to transfer and process, and

its storage would be costly.

4.2.4 VinDr-CXR

The last dataset consists of 18,000 images manually annotated by 17 radiologists with 22 la-

bels, collected from Hospital 108 and the Hanoi Medical University Hospital in Vietnam [95].

It encompasses scans from a different region, which may introduce heterogeneity and difficult

generalisation.

Figure 4.2: Random samples from each dataset

As shown in Figure 4.2, the radiographs from these datasets differ substantially. These differ-

ences cause models to underperform in alternative datasets of the same modality. After specifying

the implementation details in section 4.3, we will demonstrate the first results for baseline models

to demonstrate the performance drops.
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4.3 Implementation Details

4.3.1 Disease Task

Atelectasis is described as the collapse of the lung tissue caused by a blockage of the air pathways

or pressure on the lungs [96]. CXR is a helpful tool to diagnose this disease, and Atelectasis is

shared among the four datasets used for this work. There are other concomitant diseases in the

datasets, but Atelectasis has more positive cases in the training dataset. Figure 4.3 describes the

number of samples for positive and negative cases of Atelectasis for each dataset.

Figure 4.3: Number of positive (green) and negative (red) cases for Atelectasis in each dataset.

4.3.2 Data Sampling

A quick analysis shows that there is a significant data imbalance. Positive cases for Atelectasis

correspond only to around 10% of the total training images. Using a pre-trained architecture

resulted in a biased model that would only predict negative instances. To tackle this problem,

we implemented a sampling procedure given by Pytorch’s library, WeightedRandomSampler, that

randomly samples the images according to their weighted distribution. In other words, this method

selects an equal distribution of positive and negative cases at each minibatch, oversampling the

minority class while undersampling the majority class. Throughout the epochs, all the negative

examples should be selected, and to prevent overfitting due to repeated positive images, Data

Augmentation took place, namely random crops, translations and small rotations. The validation

and testing set distribution sampling was the original, and no data augmentation occurred. Images

were resized to 256x256 to increase computational efficiency.

4.3.3 Metrics

The metrics are an indirect way to measure the model’s ability to perform a particular task. Its

choice heavily impacts the overall statements one can make about a model’s performance, espe-

cially when comparing it against others. This subsection explains the insights behind the metrics

chosen for evaluating and comparing all models.

Typical evaluations use Accuracy, F1-Score and Area Under the Receiver Operation Charac-

teristic (AUROC or AUC) for binary classification tasks [97]. Accuracy projects the percentage of
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correct predictions without distinguishing each class’s prevalence. It is one of the most used empir-

ical measures, but it can be meaningless in medical applications or scenarios with data imbalance.

Thus, this work will discard accuracy scores. F1-score is a metric that focuses on the positive

class and evenly balances the estimation of correctly classified examples and the misclassified

ones (recall) and the rate of true positives against samples misclassified as positives (precision).

AUC is the area under the ROC curve that plots the true positive rate against the false positive rate

at various threshold values. These thresholds define the probability limit between the negative and

positive prediction. In the end, this metric measures the ability of a model to distinguish classes

and is widely used in learning with imbalanced datasets.

The initial thought in this work was to use the F1-Score. However, this metric’s feasibility

for this task was discussed after poor initial performance. Many pieces in the literature share a

common approach, using the AUC score as the evaluation metric for objectives similar to ours,

with no mention of the F1-Score. Furthermore, specific articles do disclose the F1-Score; how-

ever, upon examination, it becomes evident that the F1 scores in these cases are notably low and

comparable to the values obtained in our work. After some deliberation, we will use the AUC as

the central evaluation metric for all further discussion and comparison between models. For med-

ical diagnostic purposes, AUC represents a model’s ability to understand divergences between the

positive and the negative classes and the degree of overlapping information. In contrast, the focus

on the false negatives and false positives by the F1-Score can induce the model to a high state of

criticism in more complicated cases where the certainty of a prediction is arguable. For example,

some radiograph studies are labelled as positive by the radiologist after additional information or

exams since the presence of the disease was dubious.

4.3.4 Training and Optimization

The hyperparameters across all implementations vary, depending on the task and complexity of

the idea explored. This subsection discloses the base hyperparameters, and any variations to these

values are referenced in each corresponding chapter. Models were trained with a batch size of 16,

trying to reduce the binary cross entropy loss value. Adam optimiser [98] is used for updating the

weights of the model’s parameters, with an initial learning rate of 1×10−4 that decays by a factor

of 0.1 after the plateauing of the AUC metric, using Pytorch’s ReduceLROnPlateau object. After

50 epochs of training, the checkpoint of interest is the one that portrays the highest AUC score.

We use 5-fold cross-validation for the implementations discussed in the coming chapters; in this

chapter, only one fold was used since it was for baseline comparisons and definitions.

4.4 Baseline Selection

Research begins with the definition of a baseline, serving as the comparator against all proposed

changes in this dissertation. This baseline should be tailored to the main objectives of the work,

being fair and straightforward so that no unwanted disturbances affect the results. Thus, we trained

four disease classifiers for Atelectasis using the BRAX dataset and conducted out-of-distribution
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testing. Three were well-established pre-trained frameworks, while the last was a custom encoder.

Each network is detailed in the following paragraphs, culminating in presenting performance re-

sults and nominating the Baseline architecture.

The first two models are ResNet-18 [99] and DenseNet-121 [100], the shallowest variations

of some of the most used CNNs for Deep Learning, hence being strong candidates for the base-

line network. Recalling the discussion in section 3.1, we use Pytorch’s implementation of the

pre-trained superficial variations with fewer parameters to reduce overfitting and improve gener-

alisability.

The third model is based on the ViT architecture, discussed in subsection 2.5.4. The attention-

focused candidate is a solid choice to compare performance between Transformers and CNNs, the

main foundations of deep networks. Furthermore, this network is one of the top performers on

the popular image classification benchmark, ImageNet [101]. We used the ViTModel framework

made available in the HuggingFace’s library.

Finally, the last model is a simple custom encoder, with one initial convolutional layer fol-

lowed by four ResNet’s basic encoding blocks. The primary motivation behind this encoder was

to create a more controllable scenario for better discussion throughout the experiments taking

place in the following chapters. Furthermore, the simplicity of this encoder allows straightforward

implementations for further tests. We used the minimum number of basic encoding blocks that

achieve similar in-distribution results compared with the other networks.

Table 4.1 displays the in and out-of-distribution AUC scores of these networks.

Table 4.1: Atelectasis Prediction AUC Scores in percentage (%) for the four baseline candidates.

In-Distribution Out-of-Distribution

Model BRAX CheXpert VinDr-CXR MIMIC-CXR

DenseNet-121 85.36 83.01 666999...888111 888222...666444
ResNet-18 888777...222222 888333...333222 65.09 81.53
Custom Encoder 85.78 75.50 59.04 72.00
ViT 75.01 66.29 63.22 62.63

This early analysis reveals similar results in the in-distribution test set across three models,

with the ViT underperforming; hence, fitting an architecture to extract meaningful patterns for

predicting the disease in the BRAX dataset is possible, and most architectures can do it. However,

the out-of-distribution results show a substantial difference between DenseNet-121, ResNet-18

and the others. The pre-trained CNNs achieve much better results than the ViT and the custom

encoder.

4.4.1 CNNs vs. Transformers

Comparing the three architectures proposed in the literature, the CNN models outperform ViTs

considerably. Looking at the number of parameters of each network, a particular justification

arises: the number of parameters of the ViT is significantly higher than the CNNs. While ViTs
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achieved better scores for the ImageNet [101] benchmark, it has been shown that these networks

fail to propagate the local relations to the bottom layers for specific tasks with low data availabil-

ity [75].

The convolutional operations in CNNs project filters across local regions of an image, creating

the assumption that neighbouring pixels relate to each other [102]. This assumption translates

into higher spatial inductive bias than with ViT, which focuses more on global dependencies and

relationships between different patches of the image (neighbours and distant). Ultimately, the high

inductive bias of the CNNs leads to better generalisation performance compared to the ViT archi-

tecture when there is data limitation [103]. However, this high inductive bias is only sometimes

advisable since it can lead to overfitting [104].

4.4.2 CNNs vs. custom Encoder

The custom encoder also underperforms in out-of-distribution testing compared to the literature

CNNs. The complex relations between each layer and blocks of the very deep CNNs allow these

architectures to learn higher-order dependencies and biases that can help with their generalisation

ability.

4.4.3 Final Remarks

ResNet-18 and DenseNet-121 can effortlessly solve the disease classification task and generalise

well, to a certain degree. However, for the sake of this work, we chose to select the custom encoder

as the baseline. While this decision may contradict the results obtained, some valid arguments

elucidate our reasoning, such as:

• The custom encoder is a flexible network, easily adjustable for all approaches;

• There are no a priori network assumptions to overshadow the impact of the modifications;

• The custom encoder has similar performance for in-distribution inference;

• It reflects the real-world problems in AI companies that usually use shallower architectures

for cost savings.

4.5 Scanner Features Evaluation

The process of disentangling characteristics begins with defining the tasks that interpolate to these

features. The choice of task is crucial as it must relate accurately to the traits we wish to distinguish

and be entirely separate from the other task. This subsection analyses possible side tasks and

selects the elected one to regularise disentanglement for better disease classification generalisation.

The first task corresponds to the already-defined disease classification, the model’s primary

goal. In order to make this task’s performance invariant to different datasets, one should pick

patterns that distinguish CXR images from the data pool. Figure 4.2 clearly depicts the discrepancy
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between the radiographs from other distributions, raising the assumption that this variability is

related to the X-ray scanner. Therefore, the second task will correlate to a certain extent to the

scanner variability. The following segments discuss two possible classification tasks explored to

promote scanner feature regularisation.

4.5.1 Manufacturer ID classification

As mentioned in subsection 4.2.1, the BRAX dataset identifies the manufacturer from the X-

ray machine. Different manufacturers tune their X-ray scanners in distinctive ways, leading to

variability in the final image. Thus, the manufacturer ID classification task seems a good contender

for the scanner features regularisation.

There are five different manufacturers, each assigned to an integer to promote anonymity. We

deployed a classifier with a DenseNet-121 backbone to evaluate the pattern extraction capabili-

ties this task encouraged. This classifier performed well, with a testing accuracy of 99.75%, so

meaningful image patterns resonated with the scanner manufacturer. We generated GradCAM

and Guided BackPropagation interpretability maps using MONAI’s library [105] to understand

the regions the model focused on, displayed in Figure 4.4.

Figure 4.4: GradCAM (top) and Guided BackPropagation (bottom) interpretability heat-maps
for the manufacturer ID classifier. Each column represents one image example. Images were
randomly selected and will be the same for the following comparations.

Evaluating the GradCAM interpretability maps, the model focused predominantly on some

details and watermarks outside the region of interest of the radiograph. The Guided BackPropa-

gation maps have minor activations only on the watermarks. We can say that this classification

was out of scope regarding the disease classification task. To prevent this behaviour, we added

140x140 cropping in random locations of the image to the training data augmentation. The per-

formance dropped to 97.04% accuracy, but the GradCAM interpretability maps shown in Figure

4.5 indicate a better pattern extraction by the new classifier, meaning that performing random crop

to the images for ID manufacturer classification induced the model to focus on regions-of-interest
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Figure 4.5: GradCAM (top) and Guided BackPropagation (bottom) interpretability heat-maps for
the manufacturer ID classifier using a random crop of 140x140. Each column represents one image
example. Images were randomly selected and will be the same for the following comparations.

more compatible with the disease task. However, the Guided BackPropagation maps are still not

ideal.

4.5.2 Windowing Settings cluster classification

(a) Window Width versus Window Level
plot.

(b) Image Examples from each cluster.
Each number represents a cluster created.

Figure 4.6: Windowing Settings Clusters

In Section 2.2.2, we delved into radiologists’ techniques to refine specific tissues of interest

in radiography analysis using windowing settings. The PNG images from the BRAX dataset
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were sampled considering these settings, meaning the radiographs vary in contrast and brightness

levels. Given that the Window Center and Window Width values are available in the metadata,

the idea was to use this information as the scanner features indicator. However, the values for

the windowing settings have a broad range, and a linear regression model may not be stable for

coupled training with a classifier. To address this, we plotted the Window Width against the

Window Center in Figure 4.6a and determined that a cluster classification approach would be

more suitable.

We generated three clusters for windowing settings, and the differences between the radio-

graphs of each group are illustrated in Figure 4.6b.

We obtained similar predictive performance after implementing a classifier with the same

backbone as the previous subsection. However, the interpretability maps shown in Figure 4.7 trans-

late a broader perception of the radiograph, compared to the last task, highlighting the changes in

contrast and brightness throughout each image.

Figure 4.7: GradCAM (top) and Guided BackPropagation (bottom) interpretability heat-maps for
windowing settings classifier. Each column represents one image example.

4.5.3 Scanner Features Task Selection

Both tasks evaluated promote feature extraction since the model reached convergence for both

scenarios. Nevertheless, the produced interpretability maps from the windowing settings cluster

classification delineate similar intentions to our assumptions of how the scanner features vari-

ability should behave. The broad focus on the chest and regions of high-frequency values for

intensity indicates the source of variability we intend to study. Additionally, although the differ-

ent manufacturers can introduce variability, the same manufacturer’s scanner can apply dissimilar

acquisition parameters and windowing levels. This may lead to conflicts, for example, in cases

of similar images with distinct manufacturers and vice-versa. Therefore, the windowing settings

cluster classification is the chosen task to act as the scanner features evaluation.
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4.6 Conclusion

Generalisation in Deep Learning has a variety of solutions. Multiple approaches can effectively

improve models’ performance in out-of-distribution scenarios. Therefore, it was crucial to estab-

lish some ground rules to obtain a controllable environment for all experiments in this exploratory

project.

Most established settings are based on assumptions and discussions at an early stage of the

project, so their rationale can suffer changes throughout the following chapters. However, chang-

ing the pathway delineated in this chapter in the middle of the dissertation due to newly formed

impressions would lead to higher variability and entropy in all implementations. These implemen-

tations would be hard to compare, and the thesis would lose its structural integrity and flow. Thus,

the tasks selected for disease and scanner features extraction, alongside the metrics used and the

baseline model, will remain constant throughout this work.

The subsequent chapters demonstrate all the solutions explored for generalisation based on

this chapter’s foundations. We begin by using a simple multi-task training setting that can un-

dergo some regularisation. Then, we take advantage of the attention module to promote further

feature separation. Finally, in a unified manner, we incorporate the main findings into a VQ-VAE

backbone.
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Chapter 5

Multi-Task Encoding and Equal
Probability Loss

5.1 Introduction

The initial experiments to improve generalisation involve making subtle modifications to the base-

line encoder. As we work with two distinct classification tasks, the encoder must integrate two

classifying branches into its architecture. Therefore, this chapter examines the performance dif-

ferences between the disease-only baseline and a model trained in a multi-task (MT) setting.

This multi-task approach is presented in two iterations. The first iteration corresponds to a

simple MT scenario without explicit regularisation. The second one integrates one extra term in

the training objective, explained in the following section.

5.2 Equal Probability Regularisation

This attempt to improve the generalisability of the baseline encoder is based on an essential rule

of disentanglement: the factors of variation of a particular feature should not hold any information

about other features. The abstract values displayed at the bottom of an encoder network make

checking for feature overlap between vectors troublesome.

Theoretically, a latent space containing information about a particular feature is valuable for a

correct prediction; hence, one can train a classifying head to learn how to make this inference. The

opposite affirmation also applies, so if a latent space does not contain information about a feature,

the classifying head will not reach any predictive value. Thus, this method tries to replicate this

idea. The model has a pair of classifiers, each with its particular latent space and classifying

head. The classifying head uses its correspondent latent space to learn how to extract meaningful

information for the desired task.

Moreover, a classifying head in the other latent space should output no informative prediction.

In other words, this cross-classification (or fake classification) output should be similar to a random

prediction.
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For example, taking the disease-classifying head and using it in the windowing cluster latent

space would result in the output of two logits. This fake prediction, after activation, should portray

two neurons with a probability of 50%. The windowing clusters classifying head should output

three neurons with around 33% probability each.

5.3 Materials and Methods

An architecture was created with the custom encoder backbone that results in a fully connected

output. This fully connected layer is proceeded by two independent fully connected layers, each

with a classifying head responsible for its task.

The first iteration uses a simple Multi-Tasking training objective, demonstrated by equation

5.1.

L = BCE(ŷdis,ydis)+CE(ŷclus,yclus)

=− 1
N

N

∑
i=1

[yidis · log(ŷidis)+(1− yidis) · log(1− ŷidis)]

− 1
N

N

∑
i=1

yiclus · log(ŷiclus), (5.1)

where ŷdis and ydis are the estimated and ground truth labels for disease, and ŷclus and yclus are

the predicted and ground truth labels for the windowing cluster. Regarding the second training

procedure, we introduce equal probability loss, which enforces equal probabilities when perform-

ing the fake prediction. After obtaining the fake logits for each prediction, an activation function

transforms the logits into probabilities for each class that undergoes a Mean Squared Error estima-

tion compared with the respective value for equal likelihood across the different classes. Figure

5.1 illustrates the procedure of this regularisation, and equation 5.2 describes the updated training

objective with the added term.

Figure 5.1: Architectural procedure of the Equal Probability Loss. The encoding is shared until
the latent space. Then, each task is separated into an independent network in a MT setting.
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L = BCE(ŷdis,ydis)+CE(ŷclus,yclus)+Eq_Prob(ŷ f ake,eq_probabilities)

=− 1
N

N

∑
i=1

[yidis · log(ŷidis)+(1− yidis) · log(1− ŷidis)]

− 1
N

N

∑
i=1

yiclus · log(ŷiclus)+
MSE(ŷ f akedis ,eq_probdis)+MSE(ŷ f akeclus ,eq_probclus)

2
, (5.2)

where ŷ f akedis and ŷ f akeclus are the fake output probabilities for disease and windowing cluster,

and eq_probdis and eq_probclus are vectors containing the equal probabilities for each task: 50%

for disease and around 33% for the windowing cluster.

The two classifying heads are responsible for extracting the relevant information for predictive

purposes and outputting the fake logits. These assignments can disaccord at the early stages of

training, and the objective of equal probability regularisation is to promote independence in the

latent space. Therefore, each training step involves two forward propagations. The first performs

the classification tasks and updates the weights for all model’s parameters. The second forward

utilises frozen classifying heads to obtain the values for the equal probability term. This train-

ing step configuration ensures that the changes do not hinder classification performance in the

classifier heads, motivating weight updates in the rest of the network.

5.4 Results and Discussion

Table 5.1: 5-fold AUC results in percentage(%) - Testing inference for the simple multi-task setting
model with no explicit regularisation.

In-Distribution Out-of-Distribution
Fold BRAX MIMIC-CXR-JPG CheXpert VinDr-CXR

0 85.06 73.57 75.65 63.46
1 84.56 79.06 78.17 69.65
2 85.22 77.48 77.91 66.45
3 86.25 74.55 77.58 62.09
4 87.11 70.71 72.47 63.24

Average 888555...666444 777555...000777 777666...333666 666444...999888
STD 1.03 3.29 2.39 3.07

Tables 5.1 and 5.2 show the 5-fold cross-validation AUC scores obtained for the MT model

without and with equal probability regularisation, respectively. Table 5.3 compares the average

AUC results with the performance of the Baseline model.

In-distribution testing results show a slight decrease in performance for both models. This in-

dicates that the added task affects the model’s convergence ability, but not significantly. Regarding

out-of-distribution, the MT settings fail to overcome the Baseline in the CheXpert and MIMIC-

CXR testing while obtaining performance gains of 1.5% in VinDr-CXR inference. Focusing on
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Table 5.2: 5-fold AUC results in percentage(%) - Testing inference for the simple multi-task setting
model with equal probability regularisation.

In-Distribution Out-of-Distribution
Fold BRAX MIMIC-CXR-JPG CheXpert VinDr-CXR

0 85.17 75.05 76.80 56.59
1 86.75 72.36 74.48 67.42
2 86.11 75.87 79.06 62.32
3 85.20 74.26 77.21 65.91
4 85.27 74.20 74.00 72.61

Average 888555...777000 777444...333555 777666...333111 666444...999777
STD 0.70 1.30 2.08 5.97

Table 5.3: Average AUC results in percentage (%). Comparison between the baseline model and
the two multi-tasking approaches.

In-Distribution Out-of-Distribution
BRAX MIMIC-CXR-JPG CheXpert VinDr-CXR

Baseline 888666...000777±000...444111 777666...000555±111...999888 777666...999555±111...999111 63.35±3.30
MT - no regularisation 85.64±1.03 75.07±3.29 76.36±2.39 666444...999888±333...000777

MT - Eq. Prob. 85.70±0.70 74.35±1.30 76.31±2.08 64.97±5.97

the Equal probability regularisation, one can see that this model underperformed the simple MT

architecture against expectations.

One possible explanation for the underperforming model may be contradicting training dy-

namics due to the joint training procedure. Having a shared encoder for disease and windowing

cluster classification that suffers updates for both tasks in the same batch cycle may induce over-

shadowed backpropagation. Therefore, we developed a third model with modified training dynam-

ics. This model underwent two separate training cycles for each epoch. The first cycle focused on

adapting the model to the windowing cluster classification, and the second cycle centred on fitting

the model for disease classification. The equal probability loss term is split at each cycle. The head

for disease classification freezes when adapting the model to windowing cluster classification and

vice versa. This new training procedure allows the model to gain more confidence in its updates,

promoting shared parameters with more meaningful information.

Table 5.4: Average AUC results in percentage (%). Addition of the average AUC results for the
new training dynamics.

In-Distribution Out-of-Distribution
BRAX MIMIC-CXR-JPG CheXpert VinDr-CXR

Baseline 888666...000777±000...444111 76.05±1.98 777666...999555±111...999111 63.35±3.30
MT - no regularisation 85.64±1.03 75.07±3.29 76.36±2.39 64.98±3.07

MT - Eq. Prob. regularisation 85.70±0.70 74.35±1.30 76.31±2.08 64.97±5.97
MT - Eq. Prob. new dynamics 84.86±0.24 777666...999333±111...222111 76.69±1.95 666666...111777±333...111999
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As seen in Table 5.4, the AUC scores for in-distribution testing dropped. However, out-of-

distribution results demonstrate a significant performance increase across all datasets compared

with the previous MT approaches. This approach is also more competitive against the Baseline,

surpassing it in the MIMIC-CXR inference while closing the gap for CheXpert.

The positive results indicate that with this alternated procedure, the model is not controlled

by possible contradicting gradients and can explore more weight configurations to solve the main

training objective. This leads to a stronger encoder fitted adequately for extracting meaningful in-

formation for both classifiers. Using the equal probability term decreases variability caused by dif-

ferent windowing settings, improving the disease classifier performance during out-of-distribution

testing.

5.5 Conclusion

Incorporating a multi-tasking setting into the baseline encoder proved beneficial to generalisation.

While the first two approaches did not meet the expected results, changing the training dynamics

significantly improved out-of-distribution performance.

Promoting disentanglement between the two tasks using equal probability regularisation ef-

fectively removed some factors for variability in the disease classification task. Thus, we confirm

assumptions made regarding the prevalence of windowing clusters’ classification and the align-

ment with our overall objectives for the dissertation.

However, regularising the bottom layers may prove to be insufficient to ensure feature in-

dependence. The following chapters provide more profound studies revolving around the same

foreground, making changes in higher layers of the encoder while linking attention mechanisms

and generative models.
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Chapter 6

Attention-based Regularisation

6.1 Introduction

The variability in the windowing settings started to be explored in Section 2.2 and displayed

promising results for generalisation improvements in medical multi-centre data. However, the

equal probability regularisation, presented in Chapter 5, can only promote disentanglement at the

bottom of the encoder since most parameters are shared between the disease and windowing clus-

ter classification tasks.

This chapter introduces a novel approach to try enforcing the feature separation early in the

encoding process, using data and model-centric techniques. The combination of particularities in

the windowing settings sampling, previously discussed, with attention modules in a contrastive

scenario can mitigate the effect of variability in windowing levels for disease classification. Ulti-

mately, the model should be more robust in different distributions, hence promoting generalisabil-

ity.

6.2 Contrastive Attention for Early Feature Separation

As stated in section 2.3, the encoding process reduces the input’s spatiality into richer high-

dimension representations. This phenomenon occurs gradually throughout the network, meaning

that feature maps at the top of the model still hold substantially sparse information about the input

image. Furthermore, in a multi-task classification scenario like ours, an early bifurcation in the

network gives each task a considerable amount of differentiated parameters, with weight updates

reflecting only on that specific task’s performance.

The sparse feature maps can undergo regularisation before the bifurcation. An attention mod-

ule highlights the relevant information of an input based on a particular inquiry. Therefore, this

attention module could use the early feature maps to select the regions of interest for further en-

coding. Additionally, by having two distinct attention modules, each responsible for a task, we

can have two different perspectives on the same input.
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If these maps receive coordination to be independent, we can promote disentanglement in the

downstream processes. However, since they are located at the beginning of the network, a rigid

control could destabilise the training procedure, as some regions of interest can still be shared

between tasks.

On this premise, we set a contrastive learning setting that takes advantage of the availability

of both original and sampled images in the BRAX dataset. These pairs of images present the

same radiograph but with different contrast and brightness levels. At an abstract level, the dis-

ease is still present, so disease-related activations remain unchanged. However, the windowing

cluster has changed, so windowing-related activations should be modified accordingly. Thus, our

implementation rests on feeding the model pairs of images from the same radiograph, extracting

activation maps from each task, and encouraging similarity between disease-related maps while

discouraging similarity between windowing-related maps.

Section 6.3 provides further details about this implementation, while Sections 6.4 and 6.5

discuss the results obtained and the main takes from this approach, respectively.

6.3 Methods and Implementation

As introduced in the previous section, two images from the same case, representing the original

and the radiologist’s view of a radiograph, are inputted into a model. This model is regularisable

in a contrastive setting by producing independent disease and windowing cluster attention maps

for each interpretation. The contrastive loss term approximates the disease attention maps while

differentiating the windowing settings’ attention maps. Equal Probability Loss is also applied to

ensure disentanglement at the bottom layers of the network. The following subsections detail our

implementation and regularisation process.

6.3.1 Proposed Approach

To achieve the objectives set for this chapter, we made some changes to the baseline encoder archi-

tecture, defined in Section 4.4. After the first encoding block, the network undergoes a bifurcation,

generating two branches, one for encoding the disease information and the other for windowing

cluster classification. These branches are asymmetrical: the cluster predictor comprises one extra

encoding block, while the disease classifier has three more encoding processes. We empirically

observed that the windowing cluster classification is easier than disease prediction since it focuses

on sparse information. Thus, one extra encoding block is enough for the cluster classification task.

The step that branches the network relies on the attention module. We included two inde-

pendent convolutional attention maps inspired by Zhang et al., each representing a task [8]. This

way, we ensure that the model selects the relevant information for each task at an early stage, and

further regularisation, explained in subsection 6.3.2, propagates invariable Atelectasis prediction.

Figure 6.1 gives a technical perspective on the proposed architecture.
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Figure 6.1: Diagram detailing the blocks involving the Proposed Architecture.

6.3.2 Regularisation Process

The prediction processes require using the Binary Cross-Entropy Loss for disease classification

and the Cross-Entropy Loss for windowing cluster classification, depicted in equations 6.1 and

6.2, respectively.

Ldis = BCE(ŷdis,ydis) =− 1
N

N

∑
i=1

[yidis · log(ŷidis)+(1− yidis) · log(1− ŷidis)] , (6.1)

where ŷdis and ydis correspond to the estimated and ground truth labels for disease classification,

respectively.

Lclus =CE(ŷclus,yclus) =− 1
N

N

∑
i=1

yiclus · log(ŷiclus), (6.2)

where ŷclus and yclus are the predicted and ground truth labels for windowing cluster classification,

respectively.

For the equal probability technique, represented in equation 6.3, as described in Chapter 5,

we use two distinct Adam optimizers at each training step. One can access and update all model

parameters, while the other discards any change on the classifying heads since they are frozen.

This process implies that two propagation steps occur at each training step.

Leq_prob = Eq_Prob(ŷ f ake,eq_probabilities) (6.3)

The contrastive learning term applies Mean Squared Error Loss between the pair of original, odis,

and sampled, sdis, flattened disease attention maps (equation 6.4), and Pytorch’s Cosine Embed-

ding Loss for the dissimilar vectors, oclus and sclus, to the flattened windowing attention maps,

characterized by equation 6.5.

Lattndis = MSE (odis,sdis) =
1
N

N

∑
n=0

(odisn − sdisn)
2 (6.4)
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Lattnclus =CosEmbed (oclus,sclus) = max
(

0,
oclus · sclus

|oclus||sclus|

)
(6.5)

Equation 6.6 summarises the training objective for this approach.

Ltotal = Ldis +Lclus +Lattndis +Lattnclus +Leq_prob (6.6)

For inference, only the disease output is considered. Figure 6.2 provides a visualization of the

whole training procedure to facilitate comprehension.

Figure 6.2: Proposed Training Procedure. The original/sampled image pairs go through the model
in each training cycle, generating the environment for contrastive learning and equal probability
regularisation.

6.4 Results and Discussion

The proposed technique is promising if it can score higher AUC scores in the out-of-distribution

inference compared to the baseline network, with no compromises in the in-distribution testing.

With that said, Table 6.1 displays the AUC scores in percentage for disease classification in the

BRAX dataset, while Table 6.2 shows the results for out-of-distribution inference in the CheXpert,

MIMIC-CXR and VinDr-CXR datasets.

The proposed framework slightly outperforms the baseline at in-distribution testing. Thus,

the introduced regularisation does not negatively affect in-source performance, meaning that in

a closed system with no data distribution fluctuations, the model is as functional as the baseline.

This scenario is beneficial for single-centre clinical purposes.
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Table 6.1: AUC scores for Atelectasis in percentage (%) between the baseline encoder and the
attention-based model - In-distribution testing.

In distribution testing
FOLD BRAX

Baseline Proposal
1 86.04 84.88
2 85.41 86.58
3 86.09 86.98
4 86.34 86.40
5 86.46 86.69

Average 86.07±0.41 888666...333111±000...888222

Table 6.2: AUC scores for Atelectasis in percentage (%) between the baseline encoder and the
attention-based model - Out-of-distribution testing.

Out-of-distribution testing
FOLD MIMIC-CXR-JPG CheXpert VinDr-CXR

Baseline Proposal Baseline Proposal Baseline Proposal
1 72.77 77.91 75.95 75.17 61.07 67.77
2 75.83 77.39 79.50 76.21 65.23 70.43
3 76.47 80.18 75.41 81.46 61.46 71.17
4 77.58 79.84 78.46 78.86 60.69 68.78
5 77.58 75.87 75.41 74.08 68.28 67.90

Average 76.05±1.98 78.24±1.79 76.95±1.91 77.16±2.99 63.35±3.30 69.21±1.53

Out-of-distribution testing evidences that the method improves AUC performance in the three

datasets. The improvements are less noticeable in CheXpert and MIMIC-CXR compared to the

VinDr-CXR; however, the quantity of samples in the first two is substantial, meaning that a slight

change in scoring is noteworthy.

6.4.1 Ablation Study

Compared to the baseline model, this approach modified the architecture and the training pro-

cedure. Focusing on the training scheme, one can argue that the improvements verified in the

previous subsection could arise from the availability of more data as a way of data augmentation.

Consequently, we performed an ablation study to ensure that the performance gains are not only

derived from doubling the amount of training samples. This study consisted of training the base-

line encoder with both the original and the sampled versions of the radiographs and repeated the

out-of-distribution inference. As Table 6.3 suggests, including more data improves the baseline

encoder performance in the CheXpert dataset, surpassing our proposed architecture. However,

it performs considerably worse for both MIMIC-CXR and VinDr-CXR. Therefore, the increased

predictive power does not come from simple data augmentation but from the changes applied in

our proposal.
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Table 6.3: AUC scores for Atelectasis in percentage (%) - Ablation Study.

Out-of-distribution testing
MIMIC-CXR-JPG CheXpert VinDr-CXR

W/ Augm. Proposal W/ Augm. Proposal W/ Augm. Proposal
Avg. 75.75±2.94 78.24±1.79 79.12±2.10 77.16±2.99 63.40±4.23 69.21±1.53

Using attention maps regularised by contrastive learning at an early stage of the network cre-

ated a model more robust to out-of-distribution testing. This model’s disease classification capa-

bility is not affected by the variability induced by the radiographs’ different contrast and brightness

levels.

6.5 Conclusion

Including attention modules in our baseline model for a contrastive learning setting resulted in

an effective solution to overcome performance hits in medical multi-centre data. Our approach

achieves higher AUC scores in distinct distributions by leveraging the variability in the training

dataset induced by the radiologist’s windowing settings. The windowing parameters, generally

overlooked for Deep Learning solutions, hold great potential for improving generalisation.

Tinkering with attention modules showed a promising technique for improving generalisation.

Their adaptability and functionality characteristics provide an opportunity to explore their poten-

tial further. Therefore, the next chapter will continue experiments using attention-related methods.



Chapter 7

Learning Neural Discrete
Representations with Attention: A
Unified Approach

7.1 Introduction

The previous chapter successfully combined different techniques, such as attention modules and

contrastive learning, to take advantage of data variability, namely the windowing settings applied

by radiologists, to improve disentanglement, producing better generalisation results for Atelectasis

prediction. However, other models can benefit from these adaptations. Thus, this chapter focuses

on a different class of model, namely one famous generative architecture, the VQ-VAE. This is

a natural next step in this study, mainly because of all the work published referencing generative

models for improved disentanglement practices, as presented in Sections 3.2.2 and 3.4.

In a nutshell, VAEs are generative networks composed of an encoder that learns how to pa-

rameterise the input data into a latent space, the latter being used by the decoder component to

reconstruct the initial image. In VQ-VAE, the authors propose a new parameterisation method

that uses discrete latent variables inspired by vector quantisation (VQ) instead of continuous, ran-

dom latent variables.

Using VQ, the input of the decoder corresponds to samples drawn from an embedding table

that are the closest to the representation provided by the encoder. In other words, slightly differ-

ent inputs may be parameterised similarly because the most comparable feature vectors remain

unchanged. Therefore, issues regarding variability can be filtered by this discretisation, allowing

an increased robustness to the model. Additionally, our end goal involves disease classification,

a discrete task with only two results; thus, applying discretisation at an early stage may improve

performance.

In this chapter, our focus is on VQ-VAE. We begin implementing this network using the BRAX

dataset solely for image generation purposes. As we progress, implementations gradually change

the original architecture, fine-tuning it to improve generalisation qualities at Atelectasis prediction.
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With that said, the changes applied represent similar techniques discussed in previous chapters to

encapsulate all the work done in this dissertation without going out of scope. We also use an

adversarial component in one of the methods, further explained in the following sections.

7.2 VQ-VAE for Image Generation

The first task involves checking if VQ-VAE achieves an acceptable image reconstruction quality

using the BRAX dataset. Since we are using a VAE, widely used for disentanglement purposes,

we need to guarantee successful image reconstruction to ensure that the model is correctly param-

eterising the input images. This section details the changes made to the training environment and

displays some examples of the obtained reconstructions.

7.2.1 Implementation Details

We used the VQ-VAE Pytorch architecture implementation available on GitHub (https://

github.com/zalandoresearch/pytorch-vq-vae). We tried to recreate the same initial-

isation parameters without compromising the depth of our baseline encoder. The main difference

between the two architectures is the lack of Batch Normalisation layers in the VQ-VAE since they

can negatively impact image reconstruction performance by removing intricate details of unique

samples in a batch.

Some hyperparameters differ from the ones established in Chapter 4. The learning rate was set

to 2× 10−4 to follow the authors’ implementation, and the number of training epochs increased

to 100 due to a higher convergence window. The training objective is the one used in the original

work, already portrayed in Equation 3.2.

7.2.2 Results and Discussion

Figure 7.1 illustrates the quality of the image reconstruction obtained. The model converged cor-

rectly, and compared with the original images, the reconstructions maintain the essential details.

There is visible noise, and the images lose some sharpness. Nonetheless, the overall brightness

and contrast are correctly transferred, and the anatomical structures are still visible, meaning that

this VQ-VAE can extract meaningful distributions from the BRAX dataset.

While some may contend that the superior quality of the images is solely due to the short en-

coding pathway, it is essential to note that the objective of this endeavour is not to have state-of-the-

art image generation capabilities. Instead, the focus is enforcing top layers to generate adequate

Disentangled Representations. In conclusion, these preliminary findings effectively showcase the

potential of VQ-VAEs.

https://github.com/zalandoresearch/pytorch-vq-vae
https://github.com/zalandoresearch/pytorch-vq-vae
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Figure 7.1: Original (top) and reconstructed images (bottom) from BRAX testing set.

7.3 VQ-VAE for Disentangled Disease Classification)

The positive results in image generation led to a thorough analysis of VQ-VAE capabilities for

Atelectasis prediction. Consequently, this architecture underwent several modifications, gradually

increasing the implementation complexity. All the changes are based on the previous chapters

and will be explained in the following subsections. Since there are many results to analyse, the

discussion will be concentrated in a single subsection, making it easier to compare the different

methodologies.

7.3.1 Disease-Only Classification

The first change was to take the quantised representation of the input image and put it through a

disease classifier. Since there is only one encoding block at the VQ-VAE parameterisation, this

classifier has three additional encoding blocks to mimic the structure of the baseline encoder.

This implementation does not have a multi-task scenario in order to evaluate the immediate

impact of vector quantisation in disentanglement.

7.3.2 Multi-Task Scenario without Regularisation

Adding a windowing cluster classifier to the VQ-VAE brought two additional iterations. The first

one uses a shared quantised parameterisation of the input for both disease and windowing cluster

predictions. Since the vector quantisation is shared, there may be some overlap in the embeddings

used for each task. The second iteration has independent vector quantisation procedures for each

task to prevent information leakage and, subsequently, more variability in disease prediction. The

windowing cluster classifier uses one encoding block.
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These iterations can translate the impact of the shared discretisation pathway in the model’s

performance in out-of-distribution settings.

7.3.3 Multi-Task Scenario with Attention-Based Embeddings

Until now, the embedding space used for quantisation was randomly initialised and suffered up-

dates so that the chosen vectors were closer to the input feature maps. This implementation utilises

the attention mechanism inspired by Vision Transformers as the embedding space.

The main goal of this approach is to merge the convolutional feature extraction from the encod-

ing block with the patch-oriented global attention pooling employed by the Vision Transformer.

Convolutional feature extraction creates assumptions based on pixel interactions with neighbour-

ing pixels. At the same time, the attention mechanism allows for a broader focus on the radio-

graph’s areas of interest.

By incorporating attention mechanisms into the embedding process, the vector quantisation

procedure can select the most relevant attention vectors based on their proximity to the convolu-

tional feature vectors. This fusion of convolutional and attention-based approaches enriches image

encoding, potentially enhancing disentanglement. We assign independent attention mechanisms

Figure 7.2: Architecure for the multi-task scenario using an attention-based embedding space.

to each classifier to ensure feature separation and independence between disease classification and

windowing cluster prediction. This step allows the model to focus separately on disease-related

and windowing-related aspects within the input data, facilitating disentanglement. For a visual

representation of this architecture, refer to Figure 7.2. These independent attention maps can

further undergo regularisation, which will be discussed in detail in the following subsections.

7.3.4 Attention-Based Embeddings with Contrastive Learning

This method uses the same foreground as in Chapter 6, so the model receives a pair of origi-

nal/sampled images of the same radiograph. The attention maps undergo contrastive regulari-
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sation, which ensures similarity between the disease attention maps while separating the ones

responsible for the windowing clusters. The training loss terms do not change compared with

Chapter 6.

7.3.5 Attention-Based Embeddings with Adversarial Learning

The final methodology introduces the concept of adversarial training introduced in Section 3.4.

The adversarial environment involves two small networks, advdis and advclus, responsible for gen-

erating one task’s attention map using the other. In other words, these networks aim to predict one

set of attention maps using the features and information intended for a different task.

The objective of the adversarial networks is to minimise the MSE loss between the predicted

attention map and the original one, contradicting the primary objective of having independent

attention maps. Thus, by adding the adversarial term to the training loss, as seen in Equation 7.1,

the model is enforced to widen the differences between the attention maps, further ensuring feature

separation.

min
Ldis,Lclus,Lvqvae

max
advdis,advclus

= Ldis +Lclus +Lvqvae +Ladvdis +Ladvclus (7.1)

The adversarial network comprises four convolutional operations using a kernel size of 1 and

gets updated after each training cycle using Adam’s optimiser with a learning rate of 1×10−4.

7.4 Results and Discussion

Table 7.1: Average AUC scores in percentage (%) - Comparison between the baseline and the
proposed methodologies.

In-Distribution Out-of-Distribution

BRAX MIMIC-CXR CheXpert VinDr-CXR

Baseline 888666...000777±000...444111 76.05±1.98 76.95±1.91 666333...333555±333...333000
VQ-VAE Disease Only 85.27±0.93 76.78±2.40 77.82±2.15 59.82±7.59

MT - Shared Embeddings 84.52±0.80 75.60±1.89 79.48±1.48 58.61±4.59
MT - Separate Embeddings 84.77±1.06 777777...222333±111...222666 777999...666222±222...111111 59.04±4.06

Attention Embeddings 83.41±1.20 75.46±1.60 77.98±1.68 59.07±5.00
Attention Emb. - Contrastive 83.82±0.92 75.16±1.28 78.35±2.09 58.59±5.99
Attention Emb. - Adversarial 82.48±1.21 76.31±1.78 77.98±1.94 58.59±3.57

Table 7.1 offers a summarised perspective of the performance of the different techniques ap-

plied to VQ-VAE. Due to the extensive testing, only the average AUC scores are presented for

each dataset. Appendix A entails the results for each fold and implementation.

In-distribution testing displays a significant drop in performance across all models compared

to the Baseline. The decreased AUC scores in the BRAX dataset are consistent with the increased

amount of regularisation performed. The VQ-VAE objective differs considerably from a common
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encoder such as the baseline. The additional complexity inherent in the parameterisation tech-

niques for the Encoder-Decoder architecture may undermine the extraction of meaningful patterns

essential for disease classification. The data limitations of the BRAX dataset can also exacer-

bate this problem. In a real-world scenario, if the primary goal of a model is the straightforward

predictive performance on a stationary dataset, this implementation is not advisable.

Regarding out-of-distribution inferences, the analysis compartmentalises into three discus-

sions listed below.

• Baseline and VQ-VAE Disease-Only Classification: Despite lower in-distribution scores,

the VQ-VAE Disease classifier outperforms the Baseline model in the MIMIC-CXR and

CheXpert datasets. The VQ-VAE backbone efficiently removes variability for Atelectasis

prediction, contributing to a better generalisation.

• VQ-VAE Multi-Task Classification: Comparing the two iterations proposed for the multi-

task setting, it is clear that using a separate embedding space for each classifier increased

performance in all datasets. This improvement resonates with the distinct embedding spaces

preventing overlapping quantisation vectors for disease and windowing cluster classifica-

tion. With the overlap, these embeddings suffer parameter updates according to both tasks,

preventing task-exclusive weight modifications. Thus, independent discretisation modules

ensure a more robust feature separation, promoting disentanglement.

• VQ-VAE with Attention-based Embedding Space: Substituting the embedding space for

an attention module did not meet the expected results. The three models using attention-

based embedding spaces achieved similar AUC metrics for out-of-distribution inference,

indicating no significant difference between them. Unlike in Chapter 6, the contrastive

learning apparatus did not effectively promote the invariability of the disease attention maps.

We can draw the same conclusion from the adversarial regularisation. While it is impossible

to state what happened clearly, one can argue that the increased complexity in the training

objective overwhelms the number of images available for training and that there can be

some contradiction between training terms. An instance of this is when the attention module

undergoes regularisation to align with the convolutional feature maps. This causes the two

different attention maps to try and merge into a similar representation of the convolutional

feature maps, which goes against the primary goal of inter-independence.

Overall, the results clearly show that the VQ-VAE model that performs multi-task classifica-

tion using independent embedding spaces is the one that achieves higher out-of-distribution scores

across all datasets, even surpassing the baseline.

The discussion did not mention the VinDr-CXR AUC scores due to the VQ-VAE’s poor perfor-

mance on this dataset. The high standard deviation values also translate the significant variability

in AUC scores across folds. This effect is not prevalent in the other datasets, as well as the per-

formance drop. This phenomenon may have to do with the VAE backbone of the VQ-VAE. One

essential task the model performs is image encoding and decoding, which forces the model to
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discard all the irrelevant variability in a dataset. However, the VinDr-CXR radiographs are sig-

nificantly different from the ones used for the other datasets, as it was possible to see in Figure

4.2. This heterogeneity is not introduced to the VQ-VAE during training, so the model is not able

to successfully encode enough information of the VinDr-CXR image to the latent space. We can

observe this encoding difficulty by comparing the image reconstruction results from the testing

sets of BRAX, MIMIC-CXR, CheXpert and VinDr-CXR, displayed in Figures 7.1, 7.3a, 7.3b and

7.3c, respectively.

(a) MIMIC-CXR testing set.

(b) CheXpert testing set.

(c) VinDR-CXR testing set.

Figure 7.3: Original (top) and Reconstructed (bottom) images from the out-of-distribution
datasets.

The reconstructions hold less detail on VinDr-CXR compared with the other datasets. In

some cases, even the lung cavity is not correctly delineated. In addition, this dataset contains

samples with inverse pixel intensities not mentioned in the metadata. All these factors explain the
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Table 7.2: AUC scores for the two best models, in percentage (%)

In-Distribution Out-of-Distribution

BRAX MIMIC-CXR-JPG CheXpert VinDr-CXR

MT - Sep. Embed. 84.77±1.06 77.23±1.26 777999...666222±222...111111 59.04±4.06
Attn. Contrast. Learning 888666...333111±000...888222 777888...222444±111...777999 77.16±2.99 666999...222111±111...555333

low scores obtained in Chapters 5 and 6, further witnessed in VQ-VAE, a network with stricter

encoding.

Table 7.2 displays the final comparison between this chapter’s best model and the dissertation’s

current state-of-the-art. VQ-VAE with multi-task classification using distinct embedding spaces

leads CheXpert AUC scores by around 2.5 percentual points while underperforming in MIMIC-

CXR by 1%. The attention-based classifier is significantly better at in-distribution inference and

VinDr-CXR testing.

That said, the Chapter 6 implementation remains the better performer globally. The strict pa-

rameterisation nature of the VQ-VAE severely impacted the performance in VinDr-CXR, being

this an extreme example of data heterogeneity. Nevertheless, the VQ-VAE backbone shows po-

tential, and its image generation capabilities could be advantageous for multimodal applications.

7.5 Conclusion

This chapter resulted in an extensive exploration of the architecture of VQ-VAE for Atelectasis

prediction. Using the techniques studied in previous chapters, we wanted to conclude this disser-

tation by integrating everything and evaluating the performance of VAEs, known for their image

generation qualities and disentanglement potential.

Regarding image reconstruction, VQ-VAE successfully captured meaningful information from

the data through Vector Quantisation, and the generated images could effortlessly detail the major-

ity of anatomical structures available in the radiograph. These preliminary results were promising

for the Atelectasis prediction tasks.

Disease classification was inserted in VQ-VAE using several architectures and training proce-

dures. After filtering all the results, the higher-complexity methods did not develop any improve-

ments compared to the baseline. The superior out-of-distribution AUC scores came from the more

straightforward techniques, namely the disease-only classification and the multi-task setting with

separate embedding spaces. The attention-based approaches underperformed substantially, even

when using contrastive or adversarial learning, pointing to a probable saturation of the training

objective.

The comparison made between the two best techniques in this dissertation unveiled that the

VQ-VAE is marginally inferior to the attention-based contrastive regularisation presented in Chap-

ter 6. Nevertheless, VQ-VAE poses an interesting approach to tackle disentanglement, and further
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fine-tuning could present exciting developments. Some of these techniques will be discussed in

the subsequent chapter.
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Chapter 8

Conclusions and Future Work

8.1 Conclusion

In this thesis, we aimed to explore possible pathways to improve deep neural models’ ability to

generalise using disentanglement representation learning. Promoting this feature separation can

be done in several forms, so we searched for methodologies to help us achieve our goal. In the

Introduction of this document, we formulated two investigation questions that would serve as mo-

tivation for the following developments. The development began by understanding the underlying

topics for this dissertation, such as how X-rays are produced and which parameters affect the final

image result or different methodologies that severely impacted the world of deep neural networks,

like the attention module and generative models. Based on the gained knowledge, we aimed to

prospect published work that shared some goals with our dissertation, such as achieving disentan-

glement with attention modules or VAEs or applying contrastive learning to data-centric scenarios.

A thorough literature review referenced the findings that shaped our assumptions and line of work.

Ultimately, the foundations set allowed us to conduct interesting experiments, which addressed the

following questions:

• Which factors of variability influence the disease prediction performance of Deep Learn-
ing solutions in out-of-distribution medical data?

In X-ray imaging, we understood that there were many possible occasions where variability

could be introduced in the final radiograph, beginning at the generation of the X-ray radi-

ation and ending at the type of processing and storing the X-ray exam undergoes. Each of

these steps has many parameters that can be tuned and heavily influence the final result,

such as the tube current and voltage, the exposure, the windowing settings applied by the

radiologist, and the sampling procedure done in post-processing. The experiments we per-

formed concluded that the windowing settings applied to a radiograph had predictive value

to a deep neural network, thus leading us to assume the existence of meaningful character-

istics that could impact the disease classification. This hypothesis was further confirmed

when building models that focused on removing the impact of the windowing settings in
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the disease classification, and the gains in performance reflect the influence of this param-

eter. Other factors were indirectly confirmed to influence the disease prediction, such as

the demographics of the data and the patient positioning. Poor results for the VinDr-CXR

dataset indicate that the disease prediction had some demographic bias. Additionally, the

initial observations made in the VinDr-CXR radiographs pointed to heterogeneity in patient

positioning compared to the other evaluated datasets. Limitations in the training dataset

prevented further investigation into other possible factors of variation, such as exposure or

tube voltage.

• Which deep neural mechanisms and training procedures promote feature indepen-
dence for improved generalisation?

After establishing a simple network without specific tuning for feature independence as the

baseline, we made architectural modifications and tried different training procedures and

regularisations to achieve disentangled features. In a multi-task scenario, adding a regu-

larisation promoting no information leakage and alternated training improved some out-of-

distribution AUC scores. However, since the bifurcation for the independent tasks was at

the bottom of the encoder, there was room for improvement. Thus, we made the encoder

separation at an early stage, controlled by attention maps regularised in a contrastive set-

ting, promoting disease invariance while varying the windowing settings. This model sub-

stantially surpassed the baseline, meaning that these techniques promoted disentanglement,

leading to a better generalisation. In the end, motivated by the disentangling capabilities of

generative models, particularly VAEs, we implemented methods based on previous findings

to enclose all the work made. The unified approach unexpectedly underperformed, leading

to speculation regarding the use of a saturated training objective. However, the behaviour of

the VQ-VAE in a multi-task setting with independent embedding spaces showed prominent

results, indicating that further studies should occur regarding minor regularisations to the

VQ-VAE for better disentanglement. Summarising all the findings, attention maps and the

VQ-VAEs showed the most prospective results for promoting feature independence.

This thesis successfully explored and answered the initial research questions, opening new

views on promoting more generalisable models in the medical field. In the subsequent section, we

outline future research directions to inspire further advancements in the field of generalisation.

8.2 Future Work

8.2.1 Generating all windowing settings samples for each radiograph

Only one sampled image using the windowing settings was available for each original image. We

performed preliminary tests to replicate the sampled version of the original radiograph using the

metadata information. While slight differences existed between the images, applying the three

representations of the windowing settings from the original image was possible. Therefore, if we
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generated all the possible sampling levels for each original image, we could significantly increase

the size of the training dataset. The higher number of samples would improve the generalisation

capability through data augmentation. Additionally, the three distinct classes could motivate an

ordinal regularisation, inspired by Albuquerque et al. [106], to the windowing settings cluster

attention maps: the windowing levels can be ordered in terms of the degree of change of brightness

and contrast. Thus, the amount of contrastive regularisation made to the attention maps of the

windowing levels clusters could be smaller in samples closer to the original image, gradually

increasing until the furthest sample. This new method could promote a more sensible approach to

feature independence, further enhancing generalisability.

8.2.2 Experimenting with other training datasets and scanner features

The main reason behind not experimenting with other possible factors of variability, like exposure

or tube voltage, was that the BRAX dataset did not have that information available for all images.

Adding to its relatively small size, we had to compromise to use only the metadata information

present in the majority of cases. With that said, MIMIC-CXR is an excellent dataset, with enough

samples and interesting acquisition details. If one could ignore its heavy storage requirements,

checking the effects of other variability candidates on the disease prediction could be interesting.

Ultimately, several factors of variation could be encoded and combined into a vector, removing

the maximum amount of confounders from the disease prediction.

8.2.3 Performing a thorough study of the training dynamics from epoch to epoch

One of the problems discussed in this thesis is the probable saturation of the training objective

alongside contradicting terms for fitting the model. Thus, it would be interesting to compare the

training dynamics of each model trained, particularly the evolution of model parameter weights

from epoch to epoch. Some intriguing articles [107] create analytics systems that visually demon-

strate the rich dynamics of training a model, and others even evaluate disentanglement using these

same training dynamics [108]. These techniques facilitate the comprehension of our models’ be-

haviour, elucidating some conflicting situations that may be hindering performance.

8.2.4 Using other generative models as sources for disentanglement

The study using VQ-VAE for promoting feature separation provided prospecting results about the

capabilities of these models regarding disentanglement. Thus, other classes of generative mod-

els could be tested, such as VQ-VAE 2, GANs or the popular Diffusion Models. The higher

complexity and computational costs limited their implementation in this dissertation. However,

various peer-reviewed articles uncover the disentanglement abilities of GANs [109, 110] and Dif-

fusion Models [111, 112]. Additionally, the quality of image reconstruction is superior to VAEs

and could be helpful in the future prospects of the CAGING project regarding the generation of

privatised radiographs.
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Appendix A

Extensive 5-fold Cross Validation
Results for VQ-VAE Experiments

Table A.1: 5-fold AUC scores in percentage (%) for VQ-VAE with Disease-Only Classification

In-Distribution Out-of-Distribution

Fold BRAX MIMIC-CXR-JPG CheXpert VinDr-CXR

0 83.77 76.40 79.48 54.18
1 85.60 76.63 77.18 62.98
2 85.93 78.42 78.18 70.70
3 86.04 79.35 79.79 59.82
4 85.02 73.09 74.46 51.44

Average 888555...222777 777666...777888 777777...888222 555999...888222
STD 0.93 2.40 2.15 7.59

Table A.2: 5-fold AUC scores in percentage (%) for VQ-VAE Multi-Task with Shared Embedding
Space

In-Distribution Out-of-Distribution

Fold BRAX MIMIC-CXR-JPG CheXpert VinDr-CXR

0 83.83 76.85 80.38 55.76
1 85.83 75.66 78.30 66.29
2 84.71 75.56 80.75 56.08
3 84.10 72.53 77.50 55.47
4 84.14 77.40 80.47 59.47

Average 888444...555222 777555...666000 777999...444888 555888...666111
STD 0.80 1.89 1.48 4.59
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Table A.3: 5-fold AUC scores in percentage (%) for VQ-VAE Multi-Task with Independent Em-
bedding Spaces

In-Distribution Out-of-Distribution

Fold BRAX MIMIC-CXR-JPG CheXpert VinDr-CXR

0 84.52 76.34 77.58 62.64
1 84.61 75.50 77.06 56.20
2 86.60 78.08 80.97 56.86
3 83.91 77.70 81.15 55.32
4 84.19 78.51 81.33 64.16

Average 888444...777777 777777...222333 777999...666222 555999...000444
STD 1.06 1.26 2.11 4.06

Table A.4: 5-fold AUC scores in percentage (%) for VQ-VAE with Attention-based Embedding
Space

In-Distribution Out-of-Distribution

Fold BRAX MIMIC-CXR-JPG CheXpert VinDr-CXR

0 84.96 74.59 77.20 60.43
1 81.89 74.17 77.20 51.45
2 84.08 78.17 80.98 62.89
3 82.64 74.79 77.32 56.96
4 83.49 75.56 77.21 63.64

Average 888333...444111 777555...444666 777777...999888 555999...000777
STD 1.20 1.60 1.68 5.00

Table A.5: 5-fold AUC scores in percentage (%) for VQ-VAE with Attention-based Embedding
Space - Contrastive Regularisation

In-Distribution Out-of-Distribution

Fold BRAX MIMIC-CXR-JPG CheXpert VinDr-CXR

0 84.36 75.98 78.63 50.49
1 84.54 75.50 80.50 57.50
2 83.50 74.32 76.21 60.02
3 82.33 76.59 80.22 57.73
4 84.35 73.43 76.19 67.20

Average 888333...888222 777555...111666 777888...333555 555888...555999
STD 0.92 1.28 2.09 5.99
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Table A.6: 5-fold AUC scores in percentage (%) for VQ-VAE with Attention-based Embedding
Space - Adversarial Regularisation

In-Distribution Out-of-Distribution

Fold BRAX MIMIC-CXR-JPG CheXpert VinDr-CXR

0 82.90 78.33 78.75 60.43
1 80.74 74.67 78.70 61.83
2 82.22 76.89 79.79 56.45
3 84.10 74.23 74.71 53.37
4 82.42 77.41 77.93 60.86

Average 888222...444888 777666...333111 777777...999888 555888...555999
STD 1.21 1.78 1.94 3.57
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