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Abstract
Variational Autoencoders (VAEs) have proven to be effective models for

producing latent representations of cognitive and semantic value. We assess
the degree to which VAEs trained on a prototypical tonal music corpus
of 371 Bach's chorales define latent spaces representative of the circle of
fifths and the hierarchical relation of each key component pitch as drawn
in music cognition. In detail, we compare the latent space of different VAE
corpus encodings — Piano roll, MIDI, ABC, Tonnetz, DFT of pitch, and
pitch class distributions — in providing a pitch space for key relations
that align with cognitive distances. We evaluate the model performance of
these encodings using objective metrics to capture accuracy, mean square
error (MSE), KL-divergence, and computational cost. The ABC encoding
performs the best in reconstructing the original data, while the Pitch DFT
seems to capture more information from the latent space. Furthermore,
an objective evaluation of 12 major or minor transpositions per piece is
adopted to quantify the alignment of 1) intra- and inter-segment distances
per key and 2) the key distances to cognitive pitch spaces. Our results
show that Pitch DFT VAE latent spaces align best with cognitive spaces
and provide a common-tone space where overlapping objects within a
key are fuzzy clusters, which impose a well-defined order of structural
significance or stability — i.e., a tonal hierarchy. Tonal hierarchies of
different keys can be used to measure key distances and the relationships
of their in-key components at multiple hierarchies (e.g., notes and chords).
The implementation of our VAE and the encodings framework are made
available online.

keywords: Symbolic Musical Encodings, Latent Spaces, Variational Autoen-
coders

1. Introduction
One promising avenue in music cognition is using artificial neural networks to
produce latent (or embedding) representations of musical data (Kim, 2022; Qiu,
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Li, & Sung, 2021). In particular, Variational Autoencoders (VAEs) have shown
great potential in generating meaningful and interpretable latent spaces (Roberts
et al., 2018; Guo, Kang, & Herremans, 2022). Latent spaces are a mathematical
representation that allows for manipulating and analyzing data using machine
learning techniques and have been successfully adopted in various applications,
such as music recommendation systems, style transfer, and music generation.
They have shown promising results in improving the quality of generated music
(Roberts et al., 2018; Turker, Dirik, & Yanardag, 2022; Bryan-Kinns et al., 2021;
Mezza, Zanoni, & Sarti, 2023).

Symbolic music is typically represented as a temporal sequence of discrete
symbols. By computing its latent space, symbolic music can be represented as
a continuous geometrical space, where multidimensional vectors represent a
symbol. Geometric spaces of musical symbols have two main appeals. First,
the quality of a musical symbol depends on its spatial relationship with other
symbols, i.e., its configurable properties. Its hierarchical dependencies are
typically shown when projecting symbols segmented on unitary pitch structures,
such as notes and chords. Second, geometrical spaces of low dimensionality
provide a concise summary of relations in a form that is easy to visualize and
intuitive to understand (i.e., the circle of fifths in Figure 1. The continuity
of the space allows mathematical operations to be performed on the symbolic
data, such as similarity comparisons or clustering, making it easier for machine
learning algorithms to learn patterns and generate new music.

The intelligibility and high explanatory power of tonal pitch spaces usually
account for a variety of subjective and contextual factors. Historically, tonal
spaces can be roughly divided into two categories, each anchored to a specific
discipline and applied methods. We have models grounded in music theory
(Cohn, 1997, 1998; Lewin, 1987; Tymoczko, 2010; Weber, 1817-1821), and
models based on cognitive psychology (Krumhansl, 1990; Longuet-Higgins, 1987;
Shepard 1982). Tonal pitch spaces based on music theory rely on musical
knowledge, experience, and the ability to imagine complex musical structures
to explain which structures work. Cognitive psychology intends to capture and
assess the mental processes underlying and relating musical pitch from listening
experiments. Despite their inherent methodological differences, they share the
same motivation to capture intuitions about the closeness of tonal pitch, which
is an important aspect of our experience of tonal music (Deutsch, 1984) and
allow the quantification of pitch relations as distances (e.g., What pitch E or G
is closer to the A major key?).

Recently, data-driven approaches to the construction of pitch spaces have been
pursued from large datasets of symbolic music. Moss, Neuwirth, & Rohrmeier
(2022) explore fundamental tonal relations in musical compositions from a corpus
representative of historical periods with the aim of studying the evolution of
tonal relations across history. Nardelli, Culbreth, & Fuentes (2022) propose a
dynamical score network to represent harmonic progressions from an extensive
musical corpus spanning 500 years of Western classical music. They found
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Figure 1: Dimensions 1 and 2 of the four-dimensional multidimensional scaling
solution of the intercorrelations between the 24 major and minor key profiles
(Circle of fifths), as presented by Krumhansl (1990) from probe-tone experiments.

increased harmonic complexity over the historical evolution of the corpora. Plitsis
et al. (2020) and Prang & Esling (2021) explore a large corpus of monophonic
and polyphonic musical data, respectively, to evaluate the use of symbolic music
encodings in generative models. The former adopts a simple Long-Short Term
Memory (LSTM) structure, for which the ABC notation presented the best
results overall. The latter adopts the MusicVAE architecture, for which a signal-
like representation reflects better reconstruction performance and a latent space
more aligned with cognitive musical qualities. Our paper is in line with both
works, particularly the last one, but our proposed encoding is simpler than theirs.

The choice of musical encoding is fundamental to the performance of machine
and deep-learning techniques in symbolic music tasks, such as generation, tran-
scription, and style recognition (Sarmento et al., 2023). The properties of the
encoding determine the amount and quality of information that can be extracted
from the data and thus influence the accuracy and expressiveness of the gen-
erated output. For instance, selecting an encoding that can capture high-level
semantic features of the data, such as chord progressions or melody patterns,
can potentially improve the musical output (Sarmento et al., 2023). Our paper
explores the effectiveness of VAEs while conditioning the model and its ability to
produce latent spaces that represent the cognitive pitch distances. To this end,
we train VAEs on a prototypical tonal music corpus of 371 Johann Sebastian
Bach's (JSB) chorales and compare the latent space of typical VAE corpus
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encodings — piano roll, MIDI, ABC, Tonnetz, DFT of pitch, and pitch class
distributions. The two latter encodings are proposed in this article and aim
to leverage the potential of the DFT of pitch and pitch class distributions in
exposing higher-level information on interval and pitch content (Amiot 2016).

Our evaluation adopts four-fold objective metrics to evaluate the models' per-
formance: accuracy, mean squared error (MSE), Kullback–Leibler divergence
(KL-divergence), and the computational cost (of each encoding, training the
respective VAE, and extracting the information from the original source). More-
over, we quantify the degree to which the encoding’s latent spaces provide a pitch
space for key relations that align with cognitive distances. In detail, we adopt
intra- and inter-segment distances per key and the key distances across all 12
major or minor transpositions per piece to assess the degree of key segmentation
between keys and their alignment to the circle of fifths. In eliciting VAE latent
spaces with a cognitive, perceptual, and musical theoretical value from tonal
music corpus, we can foresee future endeavors which leverage pitch spaces for
style-specific musical expressions or less studied harmonic systems, such as modal
and microtonal music.

The remainder of this paper is structured as follows. Section 2 describes the
methodology of our paper. Section 3 presents each encoding’s implementation
and characteristics. Section 4 presents our implementation of the VAE model.
Section 5 describes our two-folded approach for evaluating both the model
performance and the effectiveness of latent spaces in representing cognitive
distances between musical pitches. Finally, Section 6 presents the conclusions
and avenues for future work.

2. Methodology
Figure 2 shows the architecture of a system we implemented to compare several
symbolic music encodings. To process encoding based on the same general
properties, we developed a Python 31 framework, relying on the music212 library
to parse music from different sources (e.g., MusicXML, MIDI, ABC).

For each encoding, we perform musical data augmentations by transposing
each piece to all 12 key transpositions per mode. In Section 3, we detail the
augmentation strategies implementation per encoding.

The proposed multi-encoding framework allows the training of our VAE model
using the same methods (i.e., encoding extraction, decoding of the predictions,
augmentation, one-hot encoding, storage, and retrieval of the encoded dataset).
The VAE model's implementation, loss functions, and measures rely on the
Tensorflow3 framework. We detail its implementation in Section 4.

1https://www.python.org/, Last accessed on 07/03/2023.
2http://web.mit.edu/music21/, Last accessed on 07/03/2023.
3https://www.tensorflow.org, Last accessed on 07/03/2023.
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Figure 2: Architecture of the proposed multi-encoding framework. It is con-
structed in a modular way, allowing the training of our VAE model using the
same methods (i.e., encoding extraction, decoding of the predictions, augmen-
tation, one-hot encoding, storage, and retrieval of the encoded dataset). In an
application such as the one we constructed, we would simply need to call the
EncoderFactory class with the encoding’s name and the ModelTrainer class with
the preferred parameters for training the encoding’s dataset.

3. Symbolic Music Encodings
Departing from previous research on symbolic music encodings (Prang & Esling,
2021; Briot, Hadjeres, & Pachet, 2017), we compare four popular corpus encodings

— piano roll, MIDI, ABC, and Tonnetz — in providing a pitch space with optimal
model reconstruction performance and pitch relations that align with cognitive
distances. Furthermore, we present two new encodings, relying on the ability of
the Fourier space to describe musical objects and their intrinsic relations: the
DFT of pitch class distributions and the DFT of the piano roll. Sections 3.1 to
3.5 present each encoding and its implementation within our work. We offer an
engaging platform4 for users to explore the encodings through various symbolic
music compositions.

3.1. Piano roll
The piano roll encoding uses a binary vector of ones and zeros representing
each note sequence's timestep. Ones denote note activation, and zeros represent
the non-activated notes. This method is widely used for encoding melodic
and polyphonic music structures and is known for its simplicity. The most
noteworthy limitation, shown in Figure 3, is its inability to determine the end
of each represented note. As shown in Figure 4, we address this limitation
by extending the piano roll encoding to twice its length. The first half of the
encoding pertains to notes starting at the timestep, while the second half refers

4https://nadiacarvalho.github.io/Latent-Tonal-Music/
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to active notes from previous timesteps, i.e., continuations.

Figure 3: Process of Encoding and Decoding the first measure of a "Freuet euch,
ihr Christen alle Bach" (BWV 40/8) as a piano roll (Original encoding, 0-128).
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Figure 4: Process of encoding and decoding the first measure of a "Freuet euch,
ihr Christen alle Bach" (BWV 40/8) as a piano roll. (Using our “continuation”-
based encoding, 0-128 for attack notes and 129-256 for continuation notes).

To compute the augmentations, i.e., transposing the piano roll encoding to a
different key, we rotate the representation vector by the number of half-tones
corresponding to the transposing interval. This process is done separately for
attacks and continuations. First, we rotate the first part of the vector containing
the attacks. Second, we rotate the second part containing the continuations to
maintain the original key's encoding continuity.
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3.2. MIDI-like
Our work adopts the MIDI (Musical Instrument Digital Interface) protocol as
an encoding, as first proposed by Oore et al. (2018). This approach relies
on a vocabulary of four main MIDI events, namely the NOTE_ON event,
the corresponding NOTE_OFF event, the SET_VELOCITY event, and the
TIME_SHIFT event. These events represent each timestep of an input sequence
as a discrete event, handling any form of music with varying degrees of polyphony
and metrical variation. Figure 5 shows the extraction process of the MIDI-like
encoding.

Figure 5: Process of Encoding and Decoding the first measure of a "Freuet euch,
ihr Christen alle Bach" (BWV 40/8) with MIDI-like encoding.
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MIDI-like encoding only has one value per timestep. Therefore, we can perform
augmentation by adding the number of half-tones corresponding to the transpos-
ing interval to the MIDI-like encoded music. Similarly, when the encoding is in
its one-hot form,5 we only need to rotate the encoded music horizontally by the
same number of elements as the transposing interval.

3.3. ABC
ABC notation uses letters, numbers, and symbols to represent musical notes and
rhythms. The system uses basic rules to represent each musical element, such as
pitch, duration, and ornamentation. One of the advantages of ABC notation
is its simplicity and ease of use, as it can be quickly learned by musicians and
non-musicians alike (Sturm et al., 2018).

ABC notation has been mainly applied to monophonic music structures, i.e.,
melodies (Briot, Hadjeres, & Pachet, 2020). We adopt it as a form of textual
representation of vertical or harmonic aggregates. To this end, we developed a
parser from the music21 structures to ABC. Our parser implementation is based
on the Javascript Midi2ABC parser developed by Marmoo.6 The process (see
Figure 6) involves converting a segment of notes into ABC notation by dividing
them by instrument sections and adding headers for each instrument. The chords
and notes are then iterated through and converted to ABC notation, taking into
account component pitches, note duration, tie marks, rests, and tuplets. The
approach ensures correct timing and chord order.

We recognize some limitations in the ABC notation related to the retainment of
correct durations and passing notes, namely due to the middle processing stage
of chordification of the harmonic music texture, as shown in Figure 6 (e.g., the F
in the second voice of the third chord would be lost). However, since the study
focuses on the cognitive distances from musical pitch within a key, the former
problem is not considered critical, as it ultimately may discard some non-tonal
tones or aggregate them into vertical slices. To address the latter issue, we chose
to incorporate passage notes by splitting the tied notes of chords in which one
voice moves, treating them as distinct. This approach allowed us to retain more
information from the original music source in the encoded score, regardless of
possible absent notes.

3.4. Tonnetz
Chuan & Herremans (2018) introduced an extended Tonnetz musical encoding
based on the Tonnetz graphical representation proposed by Euler (1739). Music
theorists and musicologists have long used the Tonnetz to investigate tonality
and tonal spaces.

5One-hot encoding is a technique used to represent categorical data as binary vectors.
6Implementation is available at https://github.com/marmooo/midi2abc, last seen

07/03/2023.
Online converter is available at https://marmooo.github.io/midi2abc/, last seen 07/03/2023.
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Figure 6: Process of Encoding and Decoding the first measure of a "Freuet euch,
ihr Christen alle Bach" (BWV 40/8) with the ABC encoding.

The construction of the Tonnetz typically involves using 12 pitch classes, with
nodes arranged in a circle-of-fifth sequence. Nodes to the right create a cycle of
perfect fifths, while nodes to the left form a cycle of perfect fourths. Triangles in
the network represent a triad, with the parallel major and minor triads connected
vertically by sharing a baseline (see Figure 7).

Our approach employs the expanded Tonnetz version proposed in Chuan &
Herremans (2018), utilizing a 24-by-12 matrix where each node represents a
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Figure 7: Prototypical Tonnetz representation. Three nodes forming a triangle
in the network represent a triad, such as the ones in bold, representing the C
minus chord triad.

pitch (not a pitch class, as in the traditional Tonnetz). The pitch register
information is maintained (from C0 to C#8), determined by the proximity
to the central column's pitch. Nodes on the same horizontal line exhibit the
circle-of-fifth relationship. The expansion of the traditional one-octave Tonnetz
facilitates simultaneous pitch modeling, which is critical to encoding polyphonic
music.

We further extend the approach by duplicating the matrix horizontally to capture
attacks and continuations, using a piano roll-like approach where active notes
are encoded as ones and non-active notes as zeros (see Figure 8). However,
as each pitch appears at multiple positions in the matrix, all pitch positions
must be activated for each pitch. This makes computing Tonnetz augmentations
challenging, so transposed versions of symbolic music are encoded as new Tonnetz
encodings.

3.5. DFTs of Pitch and Pitch Class Distributions
From previous work on adopting Fourier space to describe musical objects
and their intrinsic relations (Quinn, 2006; Yust, 2015; Amiot, 2016; Bernardes
et al., 2016), we adopt two different encodings based on the discrete Fourier
transform (DFT) of pitch distributions. The first applies the DFT on a binary
pitch distribution of m = 128 elements, similar to a piano roll, i.e., a binary
vector representation where active notes are represented as ones. The second
reduces such distribution to the 12 pitch classes, wherem = 12. We adopt the
non-trivial or non-symmetrical output of the DFT, which results in m/2 + 1
complex numbers. The resulting vector can be converted into magnitude and
phase information from which musical objects can be interpreted. Magnitudes
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Figure 8: Process of Encoding and Decoding the first measure of a "Freuet euch,
ihr Christen alle Bach" (BWV 40/8) with the Tonnetz encoding. For legibility
purposes, the continuations are below the attacks.

encode the interval content of the represented pitch, and phases encode the
degree to which musical objects or vectors share common tones.

To represent a pitch class distribution using the Discrete Fourier Transform
(DFT), we first extract the pitch class information from the notes and chords
into a two-dimensional array of 24 columns per timestep. Its position depends
on whether it is attacked (first 12) or continued. The resulting pitch information
is transformed using the DFT per note attacks and continuations (see Figure 9).
The first component of the list represents the number of attack activations, fol-
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lowed by a zero, while the 25th component represents the number of continuation
activations, also followed by a zero.

Figure 9: Process of Encoding and Decoding the first measure of a "Freuet euch,
ihr Christen alle Bach" (BWV 40/8) with the encoding based on DFT from
Pitch Class Distribution.
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To perform the second DFT encoding, shown in Figure 10, we use a similar
process to the first half. However, instead of creating a two-dimensional array
with 24 zeros per timestep, we compute a piano roll of 256 elements, with 128
elements for attack activations and 128 for continuations. We then apply the DFT
separately on the attacks and continuations, extracting only the non-symmetrical
components, which are the first 64 components for each DFT output. Finally,
we concatenate the two DFT vectors into a unique representation.

Figure 10: Process of Encoding and Decoding the first measure of a "Freuet
euch, ihr Christen alle Bach" (BWV 40/8) with the encoding based on DFT
from Pitch. For legibility, we only show the output of the first four timesteps.

We use the circular frequency shift property of the DFT to augment each encoded
timestep. Changing the pitch or pitch classes only affects the phases of the DFT
and not the magnitudes. To compute the new phases of the encoding, we first
compute the DFT of the pitch class (or pitch) distribution with only the second
component activated. For each complex component of the output, we calculate
and store its phase, using
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a(z) = atan2(Im(z)/Re(z)) (1)

Then, to augment a specific song by a transposition t, we rotate the angles of the
original DFT components (attacks and continuations are processed individually),
resulting in a new component with real and imaginary parts, such that:

Re(z + t) = Re(z) ∗ cos(t ∗ a(z)) − Im(z) ∗ sin(t ∗ a(z)) (2)

Im(z + t) = Re(z) ∗ sin(t ∗ a(z)) + Im(z) ∗ cos(t ∗ a(z)) (3)

4. VAE Model
We employ a VAE model (Kingma & Welling, 2013) to train and compare the
latent space-generated encodings. VAEs are generative neural network models
that can learn a compressed representation of data, such as images or music, by
encoding it into a low-dimensional latent space. VAEs are designed to generate
new data samples that resemble the input data by sampling from the learned
latent space (Kingma & Welling, 2013).

A VAE consists of two main components: 1) an encoder, e(x) : Rx,Rz, that maps
the input data to a lower-dimension latent space, and 2) a decoder, d(x) : RzRx,
that maps the latent space back to the input space, so that:

x̂ = d(e(x)) ≈ x (4)

During training, VAEs minimize a loss function that ensures the generated data
samples are similar to the input data while encouraging the distribution of latent
variables to follow a prior distribution, such as a Gaussian distribution. This
loss function is defined by two parts (Equation 5): the reconstruction loss, which
evaluates how closely the output matches the input, and 2) the KL-divergence
loss, which quantifies the discrepancy between the learned latent space and a
prior distribution.

log pθ(x) = Eqϕ(z|x)[log[pθ(x, z)
qϕ(z|x) ]] + DKL(qϕ(z|x)||pθ(z|x)) (5)

This encourages the model to generate diverse and realistic samples. In the
symbolic music domain, we note the widely known MusicVAE (Roberts et al.,
2018), which introduced a hierarchical decoder, the conductor, that first outputs
embeddings for subsequences of the input and then uses these embeddings to
generate each subsequence, independently.
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Figure 11: Variational Encoding Implementation used in our experiments. En-
coder and Decoder are LSTM layers with 1024 units.

To explore the correspondence between latent space structure and human tonal
perception, we opted for a flat baseline recurrent VAE model instead of the
more powerful MusicVAE, enabling a comparative study of latent spaces and
reconstruction possibilities across different representations. Figure 11 shows the
implementation of the VAE. It consists of two recurrent LSTM layers with 1024
units, serving as encoder and decoder, respectively. We employ a categorical
cross-entropy reconstruction loss function for tokenized one-hot encoded data
(e.g., MIDI-like and ABC formats) and a binary cross-entropy reconstruction loss
function for multi-hot encoded data (e.g., piano roll and Tonnetz formats). For
DFT-encoded data, which consists of float values, we use an MSE reconstruction
loss function. To minimize the loss function and optimize model parameters
during training, we use the Adam optimizer with an initial learning rate of 10E-4
and a batch size of 256. Finally, we employ a latent size of 256 for all musical
encodings, which significantly reduces the input dimensionality while preserving
sufficient information for accurate reconstruction (Prang & Esling, 2021). All
VAE models were trained using these parameters.
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5. Evaluation, Results, and Discussion
5.1. Evaluation
In this section, we present a twofold evaluation strategy of the six musical
encodings described in Section 3 trained in the VAE model defined in Section
4 to assess 1) the quality of musical embeddings in reconstructing data and
training the network and 2) the alignment of latent spaces to key relations and
distances in cognitive-led spaces. Ultimately, we aim to assess the effectiveness
of each musical encoding in training a VAE and the ability of the latent space
to capture tonal relations from the input embeddings and define a data-driven
pitch space. Our evaluation and generated latent spaces adopt the JSB chorales
as a test dataset, extracted from the music21 library. The dataset is composed of
195 chorales in a major key (53%) and 176 in a minor key (47%), with G Major
(14%), A minor (12%), and G minor (11%) being the most representative keys.
On average, a chorale is constructed of 84 chords. We use 60% of the chorales
from the dataset for training and the other 40% for testing. The training chorales
are then augmented by transposing (up and down) the encoding to the twelve
keys.

5.1.1. Model Performance

To evaluate each encoding’s ability to reconstruct the source data, we examine
the 1) accuracy, 2) MSE, and 3) KL-divergence scores for every ten-timestep
segment.

Accuracy measures how well the reconstructed sequence matches the original
sequence and is reported in percentage. The highest accuracy score of 100%
results from reconstructed sequences closely matching the original sequences
(Briot & Pachet, 2018). MSE reckons the average squared difference between
the reconstructed and original sequences. A lower MSE score indicates that
the reconstructed sequence closely matches the original sequence (Briot &
Pachet, 2018). KL-divergence estimates the difference between two probability
distributions. In the context of sequence reconstruction, it measures the difference
between the original and reconstructed sequence's probability distributions. A
lower KL-divergence score, close to zero, indicates reconstructed sequences closely
matching the original sequence's probability distribution (Prokhorov et al., 2019).

Additionally, we analyze the computational cost associated with training each
musical encoding on the VAE and provide insights into the intelligibility and
invariant procedure of the encodings.

5.1.2. Latent Space Analysis

To inspect the alignment of the VAE latent space trained from different encoding
to cognitive-driven tonal space, we adopt a twofold strategy. First, we project
twelve annotated transpositions of a JSB chorale onto the latent space, dividing
them into ten-timestep segments. Second, assuming each key is a cluster,
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we compute cluster metrics and non-parametric circular statistics methods to
evaluate its performance. In other words, we aim to find how well each key
transposition is segmented and whether their spatial arrangement follows the
circle of fifths. Figure 12 shows the latent space of the choral “Ich dank dir, lieber
Herre” (BWV 347) in A major. The choral is projected in all 12 major keys
using a DFT of pitch distribution encoding. When the originally projected choral
is in the minor mode, we transpose it to the remaining 11 minor keys. While
plotting the latent space, we adopt the Camelot Wheel’s7 colors and key colors
and key enumerations (numbers 1-12 are keys B to E, by fifth intervals, while
the following letter, A or B, is the minor and major mode, respectively).

Figure 12: Latent space of the choral “Ich dank dir, lieber Herre” (BWV 347)
in A major, transposed into the remaining 11 major keys from a DFT of pitch
distribution encoding. We adopt the Camelot Wheel for coloring and numbering
the clusters in the latent space (i.e., the keys B to E, arranged by fifths, are
represented by numbers 1 to 12, followed by a B for the piece’s major mode). Each
key's cluster centroid is denoted by a colored star that matches the respective
key.

In detail, the key-annotated music segments from the encoded musical data in
all 12 keys are returned as a list of tuples. Then, we process each segment’s
tuples through the pre-trained model's encoder to create its latent space. To
visualize and reduce the computational complexity of the evaluation metrics,
we employ principal component analysis (PCA) to reduce the multidimensional

7Davis, Mark, “Harmonic Key Selection”, Camelot Sound, http://www.camelotsound.com
/Easymix.aspx. Last accessed on 07/03/2023.
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latent space data to two dimensions while retaining as much of the original data
variation as possible (Pearson, 1901). Finally, we calculate their intra-segment
distances per key and inter-key distances from the resulting space to identify if
they exist as separate entities and somehow align with the expected fuzzy cluster
behavior from cognitive space. Within the tonal music context, the fuzzy nature
of the resulting clusters is expected due to the shared pitch between keys. Two
neighbor keys typically have one different pitch element and share the remaining
collection of pitches. Therefore, a perfect key cluster separation is not expected.
Furthermore, we compute the order in which the keys are located in the space
and thus their relationships, which, as shown in Figure 1, align with the circle of
fifths. Distances in the latent space are understood as the proximity or relation
between two segments. Therefore, the smaller the distances, the more related
the two segments are expected to be.

We adopt two cluster-evaluation metrics, namely the Davis-Bouldin score (Davies
and Bouldin, 1979) and Dunn index (Dunn†, 1974), to assess the intra-segment
distances per key and inter-key distances from the latent spaces. Each of the 12
key transpositions per dataset chorale is understood here as a cluster. These
measures roughly capture the silhouette per key (i.e., intra-segment distances
per key) and the segregation between keys. In detail, the Davis-Bouldin score
and Dunn index capture the degree to which the resulting latent space provides
a compact and well-separated key cluster. The Davis-Bouldin score is lower
for better-separated clusters and higher for poorly separated clusters. For the
Dunn index, we adopt as intra-cluster metric (or cluster diameter) the average
Euclidean distance across all key cluster segments and, as inter-cluster metric,
the distance between each cluster's nearest neighbors. The Dunn Index score
results from the ratio between the inter-cluster and intra-cluster distances. It
aims to be maximized, indicating better separated and compact clusters.

To assess the degree to which the key positions from latent space align with the
circle of fifth in cognitive spaces, we adopt a non-parametric sample circular
correlation coefficient measure. In detail, we apply the circular non-parametric
Kendall's Tau, as proposed by Fisher and Lee (1982), to measure the degree of
association between a circular sequence of keys in fifths and the resulting order
of keys in each latent space. Tau correlation coefficient ranges between -1 and
1, where -1 indicates a perfect negative association, 0 indicates no association,
and 1 indicates a perfect positive association between two variables. Optimal
correlations for our problem result from maximizing the absolute value of the
Tau coefficient, as both -1 and 1 capture the order of the keys in circles of fifths
(see Figure 13).

5.2. Results and Discussion
5.2.1. Model Performance

Table 1 presents objective results on the model’s reconstruction performance.
Interestingly, KL-divergence and MSE demonstrate consistent outcomes, while
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Figure 13: Latent Spaces extracted from the Pitch DFT of two chorales in all
twelve key augmentations, whose Kendall’s Tau coefficient is 1 (Fig. a) and -1
(Fig. b). The order of the circle of the fifths is exactly equal, but the clusters
are sequenced in either anti- or clockwise direction. We adopt the Camelot
Wheel for coloring and numbering the clusters in the latent space (i.e., the keys
B to E, arranged by fifths, are represented by numbers 1 to 12, followed by a B
for the piece’s major mode). Each key's cluster centroid is denoted by a colored
star that matches the respective key.

accuracy does not reflect the same encoding order.

The encoding with the best accuracy in music reconstruction is ABC notation
(83%), closely followed by MIDI-like (77%), the two DFT methods (77% and 76%).
Both ABC and MIDI-like encodings, which use categorical one-hot encoding,
performed well in all three measures by presenting the lowest values for both
KL-divergence and MSE scores. Therefore, they are expected to capture the
most information from the original chorales, aligning with the results of Plitsis
et al. (2020).

Interestingly, the Pitch Class Distribution DFT achieved a higher accuracy
score than the Pitch DFT, which suggests that the fewer features of the latter
may lead to better accuracy results. However, DFT methods resulted in higher
KL-divergence and MSE scores, indicating that the reconstructed sequence and
its probability distribution have poorer matching when compared to the original
sequence. At the same time, this may be interpreted as a sign that these models
are learning a more informative latent space (Ucar, 2019).

The multi-hot encoded musical encodings (piano roll and tonnetz) have the
poorest model performance, as reflected by the remarkably low accuracy scores.
Moreover, these representations are still prone to overfitting despite our effort
to minimize it through the regularisation techniques, such as dropout and data
augmentation.
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Musical
Encoding

Reconst.
Accuracy

(%)
KL MSE

Time per
Epoch
(min)8

Embedding
Time

(min)9

Piano roll <1 12.48 1.4E-02 ∼50 ∼2
MIDI-like 77.4 .80 8.0E-04 ∼2h30 ∼2
ABC 82.6 .54 6.7E-03 ∼5h30 ∼3
Tonnetz <1 35.29 1.9E-02 ∼55 ∼3
PC DFT 77.3 136.02 6.5E-01 ∼1h10 ∼5
P DFT 75.6 472.79 9.1E-01 ∼1h10 ∼20

Table 1: Results on the model’s reconstruction performance. PC DFT and P
DFT stand for Pitch Class DFT and Pitch DFT.

In terms of computational cost, the piano roll had the shortest training time,
closely followed by the tonnetz encoding. The DFT encodings had similar
training times, although not as low as the previous two. In contrast, the ABC
and MIDI-like encodings require much more sequences to train than the others,
even with the same sequence length. Consequently, they require significantly
longer training times. However, both models converge in higher values of accuracy
(and lower KL-divergence and MSE) when compared to the remaining encodings.
Notably, training the musical embedding from ABC notation requires a longer
time per epoch compared to the others.

During the process of extracting information from the original symbolic music,
the Pitch DFT exhibits the slowest performance by a substantial margin, taking
almost four times longer than the second-worst performing method, the DFT of
pitch class. In contrast, the remaining musical encodings require nearly equal
amounts of time for feature extraction, with the piano roll achieving the best
performance by less than five seconds.

Additionally, we observed that augmenting the piano roll and MIDI-like embed-
dings is a simple and fast task. However, the process of augmenting the DFTs,
Tonnetz, and ABC encodings is slow, particularly for the latter two. To address
this, we pre-computed and saved the augmentations prior to training, allowing
us to load them during the training preparation phase.

5.2.2. Latent Space Analysis

Table 2 presents the average and standard deviation values for the cluster and
key-distance metrics, allowing us to evaluate the alignment between the latent
space of each musical encoding and cognitive spaces.

The latent space trained on Pitch DFT encoding demonstrates the best align-
ment with cognitive spaces, surpassing other encodings in all three metrics, as
anticipated due to its high accuracy and KL-divergence values, and in line with
the preference for signal-based encoding concluded in Prang & Esling, (2021).
It presents the most condensed and seamless representation in the latent space,
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Musical
Encoding

Davis-Bouldin
Score

Dunn
Index

Kendall’s
Tau

Piano roll 32.8 ± 17.8 .0005 ± .0005 .11 ± .08
MIDI-like 55.9 ± 35.3 .0001 ± .0001 .15 ± .14
ABC 66.9 ± 55.0 .00003 ± .00003 .11 ± .09
Tonnetz 33.0 ± 21.6 .0006 ± .0007 .11 ± .08
Pitch Class DFT 37.3 ± 59.1 .0006 ± .0006 .11 ± .08
Pitch DFT 8.1 ± 5.5 .0008 ± .0009 .44 ± .32

Table 2: Average and standard deviation values for the cluster and key-distance
metrics

outperforming other encodings by a large margin. The piano roll, Tonnetz, and
Pitch Class DFT encodings also show relatively good results, while the MIDI-like
and ABC encodings have the worst scores in all three metrics, indicating poorer
clustering performance.

Upon analyzing Pitch DFT, there are several noteworthy insights. First, around
16% of chorales display Kendall Tau's absolute values exceeding .9, indicating a
strong alignment with the cognitive pitch space. Moreover, major key chorales'
latent spaces appear to be more efficient in capturing these distances, with 87%
of chorales that have Kendall Tau's absolute values greater than .9 being in a
major key. Surprisingly, the findings also reveal that longer chorales are better at
capturing these distances. About 30% of chorales containing over 114 slices show
Tau absolute values greater than .9, in contrast to only 10% of chorales with less
than 64 slices exhibiting such values. Based on conventional assumptions, we
would anticipate that longer chorales, which are more susceptible to modulations,
would have latent spaces that are more ambiguous and, therefore, less aligned
with the cognitive pitch space.

6. Conclusions and Future Work
Our paper explores the performance of VAEs in reconstructing tonal symbolic
music and eliciting latent representations of cognitive and musical theoretical
value. We trained VAEs on a prototypical tonal music corpus of 371 Bach's
chorales, represented as six different symbolic music encodings (i.e., Piano roll,
MIDI, ABC, Tonnetz, DFT of pitch and pitch class distributions) and evaluated
the degree to which the latent spaces defined by the different VAE corpus en-
codings align with cognitive distances from musical pitch, based on objective
reconstruction performance metrics (accuracy, MSE, and KL-divergence), compu-
tational performance, and clustering metrics (Davis-Bouldin Score, Dunn Index,
and Kendall's Tau). Our VAE implementation and the encodings framework are
available online at https://github.com/NadiaCarvalho/Latent-Tonal-Music. Fur-
thermore, on our website https://nadiacarvalho.github.io/Latent-Tonal-Music/,
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we offer an engaging platform for users to explore the encodings through various
symbolic music compositions.

The results showed that the ABC VAE performed best in the data reconstruction
performance metrics, while the proposed Pitch DFT VAE latent space is better
aligned with a common-tone space where overlapping objects within a key are
fuzzy clusters, which impose a well-defined order of structural significance or
stability, i.e., a tonal hierarchy. In sum, ABC encodings would be preferable
when there is an interest in preserving the original symbolic musical structures,
while Pitch DFT VAEs can produce more diverse and varied generative models.
Moving forward, we plan to conduct a more in-depth analysis of the data
reconstructed using this encoding.

The findings suggest potential for exploring pitch spaces in less structured
harmonic or pitch systems, such as modal and microtonal music. While many
existing pitch spaces accurately represent the distances across various hierarchies
(e.g., pitches, chords, and keys), there are currently no such spaces available for
non-tonal music expressions, as far as we know.
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