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Abstract

Specialized pro-resolving mediators (SPMs) have recently emerged as promising therapeutic

approaches for neuropathic pain (NP). We evaluated the effects of oral treatment with the SPM

Maresin 1 (MaR1) on behavioral pain responses and spinal neuroinflammation in male and

female C57BL/6J mice with spared nerve injury (SNI)-induced NP. MaR1, or vehicle, was

administered once daily, on post-surgical days 3 to 5, by voluntary oral intake. Sensory-discrimi-

native and affective-motivational components of pain were evaluated with von Frey and place

escape/avoidance paradigm (PEAP) tests, respectively. Spinal microglial and astrocytic activa-

tion were assessed by immunofluorescence, and the spinal concentration of cytokines IL-1β, IL-

6, IL-10, and macrophage colony-stimulating factor (M-CSF) were evaluated by multiplex immu-

noassay. MaR1 treatment reduced SNI-induced mechanical hypersensitivity on days 7 and 11

in both male and female mice, and appeared to ameliorate the affective component of pain in

males on day 11. No definitive conclusions could be drawn about the impact of MaR1 on the

affective-motivational aspects of pain in female mice, since repeated suprathreshold mechanical

stimulation of the affected paw in the dark compartment did not increase the preference of vehi-

cle-treated SNI females for the light side, during the PEAP test session (a fundamental assump-

tion for PAEP’s validity). MaR1 treatment also reduced ipsilateral spinal microglial and astrocytic

activation in both sexes and marginally increased M-CSF in males, while not affecting cytokines

IL-1β, IL-6 and IL-10 in either sex. In summary, our study has shown that oral treatment with

MaR1 (i) produces antinociception even in an already installed peripheral NP mouse model, and

(ii) this antinociception may extend for several days beyond the treatment time-frame. These

therapeutic effects are associated with attenuated microglial and astrocytic activation in both

sexes, and possibly involve modulation of M-CSF action in males.
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Introduction

Neuroinflammation, a localized form of inflammation occurring within the peripheral and

central nervous system, is critically involved in neuropathic pain (NP) pathophysiology. The

nerve injury-induced neuroinflammatory response is primarily characterized by activation of

glial cells and production of inflammatory mediators (e.g. cytokines and chemokines) [1, 2].

Mounting evidence has revealed changes in morphology, number, and function of both micro-

glia and astrocytes after nerve damage, resulting in peripheral and central sensitization [3, 4].

Ideally, the inflammatory response is a self-limited process that culminates with complete

resolution, enabling the restoration of homeostasis. In fact, the resolution of inflammation is

now recognized as an active and coordinated process, governed by a group of endogenous

chemical mediators, termed as specialized pro-resolving mediators (SPMs) [5, 6]. They include

lipoxins (LXs), produced by metabolism of arachidonic acid, and maresins (MaRs), protectins

(PDs), and resolvins (Rvs), which are biosynthesized from n-3 polyunsaturated fatty acids

(eicosapentaenoic acid (EPA), docosahexaenoic acid (DHA), or docosapentaenoic acid

(DPA)) [6, 7]. By activating G-protein-coupled receptors (GPCRs), SPMs have several pro-

resolving and anti-inflammatory actions, such as cessation of immune cell infiltration, coun-

terregulation of proinflammatory factors, induction of anti-inflammatory mediators, stimula-

tion of efferocytosis (phagocytic clearance of apoptotic cells), antimicrobial killing, and tissue

regeneration [6–8]. Failed resolution can lead to uncontrolled/persistent inflammation, which

has been associated with multiple diseases [7], including NP [9, 10]. Therefore, strategies that

aim to stimulate or accelerate/intensify the resolution of inflammation (in contrast to tradi-

tional strategies that mainly focused on suppressing, blocking, or inhibiting proinflammatory

mediators) have emerged as promising therapeutic approaches to treat inflammation-associ-

ated conditions [7, 8, 11]. In experimental NP models, treatment with SPMs have consistently

resulted in attenuation of nociceptive behaviors and reduction of nerve injury-induced neu-

roinflammation. In fact, SPMs are now acknowledged as a new class of non-immunosuppres-

sive and non-opioid analgesic drugs [9, 12, 13].

Maresin 1 (MaR1; 7R,14S-dihydroxy-4Z,8E,10E,12Z,16Z,19Z-DHA) is a DHA-derived

SPM biosynthesized by macrophages [14], with potent pro-resolving and anti-inflammatory

actions [15]. To date, MaR1 has been shown to activate two classes of receptors: the leucine-

rich repeat containing G protein-coupled receptor 6 (LGR6), a plasma membrane GPCR [16],

and the retinoic acid-related orphan receptor α (ROR-α), a nuclear receptor [17]. MaR1 was

also shown to act as partial agonist of recombinant human leukotriene B4 receptor (BLT1) [16,

18]. Importantly, accumulating evidence has revealed that different cells of the central nervous

system (CNS) express several SPM receptors, including LGR6 and ROR-α, which suggest that

MaR1 may be able to modulate neuroimmune processes by targeting neurons and/or glia [19].

MaR1 antinociceptive actions have been demonstrated in diverse experimental pain mod-

els, including NP models (spinal nerve ligation (SNL) [20], chronic constriction injury (CCI)

[21], radicular pain [22, 23], and vincristine-induced NP [15]), models of inflammatory pain

induced by capsaicin [15], carrageenan, and Complete Freund’s Adjuvant (CFA) [24], and

post-operative pain induced by tibial bone fracture (fPOP) [25]. None of these studies, how-

ever, included female rodents, despite accumulating evidence uncovering robust differences

between sexes in the neuroimmune modulation of pain, which may affect the responsiveness

of male and female subjects to analgesic drugs in preclinical and clinical contexts [26, 27]. The

possible existence of sexual dimorphism in the analgesic efficacy of some SPMs should not be

overlooked, as recently evidenced by Luo et al., who reported that RvD5 showed antinocicep-

tive actions in male, but not female, mice with neuropathic and inflammatory pain [28]. Fur-

thermore, although the oral route is highly relevant due to its unique advantages in clinical
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settings, the effects of orally administered MaR1 have not been evaluated in experimental pain

models.

In the present study, aiming to further explore the therapeutic potential of MaR1 in periph-

eral NP by addressing possible sexual dimorphisms and pursuing administration routes with

higher translational relevance, we assessed the effects of oral treatment with MaR1, using a vol-

untary oral intake protocol, on behavioral responses and spinal inflammatory parameters, in

male and female mice with spared nerve injury (SNI)-induced NP.

Material and methods

Animals

Forty male (n = 20) and female (n = 20) C57BL/6J mice (specific pathogen-free; 7 week-old

upon arrival), purchased from Charles River (Lyon, France), were used in this study. Animals

were housed in same-sex groups of two or four, under controlled temperature (21–24˚C) and

humidity (45–55%) conditions, in a 12 h light/dark cycle (lights on at 8:00 AM). Food and

water were provided ad libitum, and nesting material and cardboard tunnels (one per cage)

were used as environmental enrichment.

All experimental procedures were carried out in compliance with the national (Portuguese

Decree-Law 113/2013) and international (European Directive 2010/63/EU) guidelines for

experimental research in animals, and specific guidelines for the study of pain (IASP Guide-

lines for the Use of Animals in Research, [29]), with the approval of the local Animal Welfare

Committee and the competent national authority, Direção-Geral de Alimentação e Veterinária
(DGAV–Ref. 0421/000/000/2020).

Monitoring and assessment of animal welfare was performed using a clinical observation/

scoring system described in pages 30–31 of the “Classification and reporting of severity experi-

enced by animals used in scientific procedures: FELASA/ECLAM/ESLAV Working Group

report” [30].

Experimental design and drug administration

Experimental protocol, including research question, key design features, and analysis plan,

was prepared before the study, but was not registered.

Mice were allowed to acclimatize to the animal facility for a minimum of 7 days, followed

by a period of habituation to handling by the experimenter in the testing room.

All animals were subjected to SNI surgery (set as “day 0”) after being randomly allocated

within sex to one of two treatment groups: SNI-MaR1 (n = 20) and SNI-vehicle (n = 20).

MaR1 was purchased from Cayman Chemical (Cat. No. 10878; supplied as a solution contain-

ing 100 μg/mL in 100% ethanol) and was divided in single-use aliquots. Depending on the

treatment group, MaR1 (50 μg/kg) or vehicle were administered once daily on days 3 to 5 (Fig

1), by voluntary oral intake, using a protocol developed by our research group [31]. Due to

their neophobic nature, mice needed a previous 3-day habituation period, during which they

were placed in individual cages (which were used for the same animal throughout the entire

drug-administration protocol) once daily (for 10 min), and presented with a 60-μL drop of

strawberry jam (Doce Froiz Morango extra, Dulces Y Conservas Helios S.A., Spain). On each

treatment day, an aliquot of MaR1 per animal was thawed and further prepared by evaporating

the ethanol with a gentle stream of nitrogen gas until a final volume of ca. 5 μL, and then add-

ing 6 μL of sterile 0.1 M phosphate buffered saline (PBS) pH 7.4, for immediate use. The vehi-

cle solution consisted of 6 μL of PBS plus 5 μL of ethanol. Each mouse was placed into the

respective cage and presented with a 60-μL drop of jam containing the appropriate solution.

Further details regarding the voluntary oral intake protocol (such as data analysis on latency to
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ingestion and discussion of its strengths and weaknesses) can be found in our previous publi-

cation [31].

The treatment scheme selected aimed to increase the translational potential of our findings,

by evaluating the effects of MaR1 treatment when administered after activation and initial

development of SNI-induced inflammatory processes and of mechanical hypersensitivity [32,

33], and was similar to the one used by Gao et al., who reported that daily intrathecal adminis-

tration of MaR1 on postsurgical days 3, 4 and 5 attenuated pain hypersensitivity and neuroin-

flammation in a NP rat model [20]. The choice of the 50 μg/kg MaR1 dose was based on

studies by Moreno-Aliaga’s group, which have reported the administration of MaR1 by oral

delivery (through intragastric gavage) [34–38].

The sensory-discriminative component of pain was evaluated with the von Frey test, before

surgery (baseline), and on days 7 and 11 post-SNI, whereas the place escape/avoidance para-

digm (PEAP) test was performed only once, on day 11, for the evaluation of the affective-moti-

vational component of pain. Each mouse was subjected to either von Frey or PEAP protocols.

Euthanasia and tissue collection were performed on day 12 (Fig 1). The behavioral pain assess-

ment and tissue collection timeline was designed to evaluate the ability of a “short” MaR1

treatment to both reverse the already initiated SNI-induced inflammatory processes and

mechanical hypersensitivity, and prevent the NP chronification.

Based on a biologically relevant effect size-to-standard deviation ratio ca. 1.8 for the behav-

ioral evaluation of pain, we estimated a sample size of 6 experimental units per group, using

InVivoStat power analysis module, for a power of 80% and a significance level of 5%. In this

study, each mouse constituted an experimental unit, since mice could be randomly allocated

to either treated or vehicle group, even though they were housed in groups (the drug vs. vehicle

treatment was individually administered by voluntary ingestion). Since each mouse was sub-

jected to only one test (either von Frey or PEAP), and 6 sets of 4 animals (1 vehicle-treated SNI

male + 1 vehicle-treated SNI female + 1 MaR1-treated SNI male + 1 MaR1-treated SNI female)

were necessary for each test, a total of 2 × 24 animals (2 × 12 males and 2 × 12 females) was

determined as necessary. To further prevent unnecessary use of animals, we decided before-

hand to perform interim analyses of the behavioral results after 4 sets of 4 animals, in order to

ascertain whether or not sex differences were apparent (and, subsequently decide to complete,

or not, the remaining sets [39]). For the von Frey mechanical threshold determination, this

Fig 1. Schematic representation of the experimental design. Male and female mice were randomly allocated within

sex to SNI-MaR1 or SNI-vehicle groups and habituated for 3 consecutive days to voluntarily ingest a strawberry jam.

SNI surgery day was set as day 0. MaR1 or vehicle were administered once daily, from days 3 to 5, by voluntary oral

intake. Behavioral pain responses were evaluated with either the von Frey test (before surgery–baseline, and on days 7

and 11) or the PEAP test (on day 11). Mice were euthanized on day 12.

https://doi.org/10.1371/journal.pone.0287392.g001
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interim analysis revealed no sex-based differences, and we therefore pooled the results from

male and female animals (thereby obtaining n = 8, in excess of n = 6 required by the power

analysis) and did not use the two additional 4-animal sets that would have been needed for the

quantification of sex-based differences. On the other hand, sex effects were evident in the

PEAP test, and therefore in this case the 6 initially-prescribed sets of 4 animals were required.

Therefore, a total of 10 animal sets of 4 animals were used. Upon euthanasia, L3-L5 spinal cord

segments were collected after in situ fixation in half of the animal sets (used for the assessment

of microglial and astrocytic activation, by immunofluorescence), or as fresh tissue in the other

half (used for quantification of cytokines IL-1β, IL-6, IL-10, and macrophage colony-stimulat-

ing factor (M-CSF), by multiplex assays).

Spared nerve injury surgery

NP was induced in 11 weeks-old mice by the SNI model [32]. Mice were anesthetized with an

intraperitoneal (i.p.) injection of ketamine (75 mg/kg) and medetomidine (1 mg/kg). Absence

of a pedal reflex following a firm toe pinch was monitored to ensure appropriate anesthetic

depth. After disinfecting the operative field, a skin incision was made in the longitudinal direc-

tion proximal to the left knee. Then, a section was made through the biceps femoris muscle,

exposing the sciatic nerve and its three peripheral branches. A tight ligation of the tibial and

common peroneal nerves was performed with a 6.0 silk thread (Fine Science Tools), and a 1–2

mm distal section of the nerve stump was removed. The sural nerve was preserved by avoiding

nerve stretching or contact with surgical tools. Muscle and skin were closed in two distinct lay-

ers with 5.0 silk suture (Silkam, B. Braun Medical). Sedation was reversed with atipamezole (2

mg/kg, subcutaneous injection). The surgical site was examined in each animal after euthana-

sia, to confirm that the sural nerve was intact, and no nerve regeneration had occurred. Two

exclusion criteria were set: (1) animals that did not develop mechanical hypersensitivity after

SNI, and (2) animals that, upon post-mortem inspection, showed severed/damaged sural nerve

or signs of tibial/common peroneal nerve regeneration.

Behavioral tests

Behavioral testing was conducted during the light phase by a female experimenter. Animals

were allowed to habituate to the testing room for at least 1h30 before the beginning of experi-

mental procedures.

von Frey test. Mechanical withdrawal threshold (MWT) was assessed with the von Frey

test, using the “ascending stimulus” method [40]. Mice were placed in transparent acrylic cyl-

inders (inner diameter: 8.4 cm; height: 7 cm), wrapped in a grey plastic strip to darken the

inside, on an elevated perforated metal platform. Animals were habituated to the apparatus for

30 min during five days before the first test and, on each test day, for at least 15 min before

beginning the procedure. A series of 9 calibrated von Frey filaments (0.008, 0.02, 0.04, 0.07,

0.16, 0.4, 0.6, 1 and 1.4 g; Stoelting Co., Wood Dale, IL, USA) was perpendicularly applied to

the sural nerve skin territory of the ipsilateral hind paw until bending. Ten stimuli were

applied with each filament over a total period of 30 s (approximately 2 s per stimulus), starting

with the lowest one (0.008 g) and proceeding in ascending order until the MWT (determined

as 2 positive responses in 10 stimulations) was reached [32, 41]. A sudden paw lifting, flinch-

ing, guarding, or licking was considered a positive response.

Place escape/avoidance paradigm test. The PEAP test, which creates a conflict between

an innately aversive light compartment and an aversive noxious mechanical stimulation to the

injured paw in a dark compartment, aims to evaluate the affective/emotional component of

pain [42–44].
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The test was performed in a testing box with 2 compartments interconnected through a

hole (5 × 5 cm). One compartment was transparent, and the other was opaque black (15 × 15

× 20 cm each). The box was positioned on top of a perforated metal floor and a light bulb (330

lm) was placed ca. 5 cm above the uncovered transparent chamber to further illuminate it,

while the dark chamber was covered with a black lid. Two days before the assay, mice were

habituated to the perforated metal floor once for 30 min. On the testing day, animals were

placed within the light side of the testing box and allowed unrestricted movement between the

two areas throughout the test period (30 min). A suprathreshold (1 g) von Frey filament was

applied for approximately 1 s, at 15-s intervals, to the lateral plantar surface of the hind paw

[45]. The ipsi- or contralateral paw was stimulated when the mouse was in the dark or light

chamber, respectively. Thus, each mouse was given the choice to move to the light chamber in

order to escape/avoid the noxious stimulation of the ipsilateral hind paw in the dark side.

Since mice naturally prefer the dark side, the time spent in the light chamber is considered as a

measure of the aversion to noxious stimulation of the injured hind paw relative to aversion to

the bright chamber [43, 45]. Test sessions were recorded using a video camera (Sony Handy-

Cam HDR-CX240E). The box was cleaned with 35% ethanol between subjects to eliminate

potential olfactory cues.

The location of the animal (light or dark side) throughout the test period and the number

of crossings from one side to the other were assessed using Solomon Coder Software (Version

beta 17.03.22; https://solomon.andraspeter.com/). To evaluate the escape/avoidance behavior

of each mouse, in addition to the total time spent in the light chamber and the total number of

midline crossings, total time was binned into six 5-min intervals, and both percentage of time

and accumulated percentage of time spent in the light chamber were further calculated for

each time bin. The shift in preference (difference in % of time spent in the light chamber

between the last and first 5-min time bins) was also calculated [44–48].

Immunofluorescence

Immunofluorescence staining for ionized calcium binding adaptor molecule 1 (Iba-1) and

glial fibrillary acidic protein (GFAP) were performed to assess microglial and astrocytic activa-

tion, respectively.

Animals were deeply anesthetized with sodium pentobarbital (100 mg/kg, i.p. injection)

and perfused through the ascending aorta with 0.1 M PBS pH 7.4 followed by 4% paraformal-

dehyde, for in situ fixation of tissues. Spinal cord L3-L5 segments were collected, post-fixed in

the same fixative for 3 h, and transferred to a 30% sucrose solution with 0.1% sodium azide at

4˚C. The contralateral side was identified with a small cut in the ventral horn. Spinal cord seg-

ments were transversely cut in 30 μm sections (4 series) using a freezing microtome (Leica CM

1325). Sections were stored at −20˚C in a cryoprotectant solution of 30% (m/v) sucrose dis-

solved in phosphate buffer 0.1 M and 30% (v/v) ethylene glycol, until being used in immuno-

fluorescence assays.

Free-floating spinal cord sections (one series of each animal) were washed in 0.1 M PBS,

treated with 1% sodium borohydride in PBS for 30 min, washed again in PBS and PBS with

0.3% Triton X-100 (PBST), and incubated for 2 h with a blocking solution containing 0.1 M

glycine and 10% normal horse serum (NHS, Gibco, Cat. No. 16050130) in PBST. Then, the

sections were incubated with primary rabbit polyclonal antibodies against Iba-1 (1:1000; Fuji-

film Wako, Cat. No. 019–19741, RRID:AB_839504; antigen: synthetic peptide—Iba1 C-termi-

nal sequence; batch number: PTH4470) or GFAP (1:500; Dako/Agilent, Cat. No. Z0334,

RRID:AB_10013382; immunogen: GFAP isolated from cow spinal cord; batch number:

20071831), diluted in PBST with 2% NHS, for 3 overnights at 4˚C or 1 overnight at room

PLOS ONE Maresin 1 ameliorates spared nerve injury-induced neuropathic pain in mice

PLOS ONE | https://doi.org/10.1371/journal.pone.0287392 June 22, 2023 6 / 24

https://solomon.andraspeter.com/
https://doi.org/10.1371/journal.pone.0287392


temperature, respectively. Sections were washed in PBST and then incubated for 1 h with

Alexa Fluor-594 donkey anti-rabbit polyclonal secondary antibody (1:1000; Invitrogen, Cat.

No. A21207, RRID:AB_141637; batch number: 2066086). Finally, after repeated washing with

PBST and PBS, sections were mounted on gelatin-coated slides, dried overnight at 4˚C and

coverslipped with Prolong Gold antifade reagent with DAPI (Invitrogen Ltd., Cat. No.

P36941). In order to establish the specificity of the immunostaining, negative controls were

performed by replacing the incubation with primary antibody solutions by PBST with 2%

NHS only.

Images of the stained sections were acquired using 2.5 × and 10 × objectives, using a fluo-

rescence microscope (Axio Imager.Z1, Zeiss, Germany), through an AxioCam MRm digital

camera with AxioVision 4.6 software (Carl Zeiss MicroImaging GmbH), under the same

image acquisition settings. Using the open-source software Fiji [49], Iba-1 and GFAP fluores-

cent intensities were measured in images captured with a 10 × objective. Images were first con-

verted to 8-bit grayscale and mean grey values were measured within a rectangle region of

fixed dimensions (266 × 159 μm) comprising the medial two thirds of the dorsal horn (laminae

I-III) [50]. The ipsilateral and contralateral sides were evaluated, and the average ipsilateral/

contralateral ratio was calculated to normalize the data. Samples severely damaged in the

region of interest were not analyzed and only animals with a minimum of 5 sections available

were included in the statistical analysis.

Multiplex assay

After being deeply anesthetized with i.p. sodium pentobarbital (100 mg/kg), mice were trans-

cardially perfused through the ascending aorta with ice-cold phosphate-buffered saline (PBS)

0.1 M pH 7.4. Spinal cords (L3-L5 segments) were collected, snap-frozen in liquid nitrogen

and stored at −80˚C. Frozen samples were homogenized in cold lysis buffer (300 μL/10 mg of

tissue) composed by 50 mM Tris-HCl pH 7.4, 150 mM NaCl, 1% IGEPAL, and protease

(cOmplete, Mini Protease Inhibitor Cocktail, Roche) and phosphatase (PhosSTOP Phospha-

tase Inhibitor Cocktail, Roche) inhibitors. Tissues were sonicated in a bath sonicator (3 × 5

min, at 4˚C) and then centrifuged (12 000 × g, 4˚C, 10 min). Supernatants were aliquoted and

stored at −80˚C until multiplex assay was performed. Total protein concentration was quanti-

fied by the Bradford method using bovine serum albumin as a standard.

Proinflammatory IL-1β and IL-6, anti-inflammatory IL-10, and M-CSF, which is involved

in the regulation of microglial development, proliferation, and maintenance [51], were simul-

taneously quantified in each sample using the Milliplex MAP Mouse Cytokine/Chemokine

Magnetic Bead Panel kit (Merck Millipore), according to the manufacturer’s protocol, on a

Luminex 200TM xMAPTM Technology analyzer (Luminex Corp., TX, USA) which uses a dual-

laser flow cytometry-based technology. Before the assay, the protein concentration of each

sample was adjusted to 2 mg/mL with lysis buffer. In brief, this immunoassay involves incubat-

ing the protein extract with fluorescent-coded magnetic beads pre-coated with capture anti-

bodies, followed by biotinylated detection antibodies and streptavidin-phycoerythrin

conjugate. Raw data analysis (mean fluorescence intensity) was performed using a standard

five parameter logistic (5-PL) curve fit created by the Luminex xPONENT Software (version

3.1). Results are presented as picograms per mg of total protein content.

Statistical analyses

Statistical analyses were performed with InVivoStat 4.3.0 (Cambridge, UK), a statistical soft-

ware package that uses R as its statistics engine [52]. Assumptions for the use of parametric

analysis were ascertained using diagnostic plots: Normal probability plot, for the assumption of
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normal distribution of the residuals, and Predicted vs. Residuals plot, for the assumption of

homogeneity of the variance. Log10 transformation was applied to von Frey MWT, since the

original values fulfilled neither of the required assumptions.

Results from the PEAP test (total time in light, shift in preference, total number of cross-

ings), immunofluorescence and multiplex quantifications were analyzed with single measure

parametric analysis (ANOVA), with factors Treatment (MaR1, vehicle) and Sex (male, female).

Log10-transformed MWTs (von Frey testing) and time spent in the light chamber in each

5-min bin (PEAP testing) were analyzed with repeated measures parametric analysis (mixed

model), with Treatment and Sex factors, and Time as the repeated factor (corresponding to

Day in the analysis of von Frey results; and 5-min time bins, in the analysis of data from the

PEAP test). Planned comparisons were further conducted to separately assess between- and

within-groups’ differences, using the least significant difference (LSD) test and corrected with

Holm’s procedure for multiple comparisons. Correlation analyses were performed with Pear-

son’s correlation coefficient.

In both single and repeated measures procedures, when no Sex main effects or interactions

were detected, data from males and females within the same treatment group were pooled [53,

54]. In vivo procedures were divided into several mini-experiments, or blocks, such that each

block contained an integer multiple of the 4-mice set described in Experimental design and
drug administration section, and statistical analysis accounted for the blocking factor, when-

ever a blocking effect was detected.

Graphic illustrations were created with GraphPad Prism 9.2.0 for Windows (San Diego,

California, USA). Results are expressed as predicted means (95% confidence interval, CI),

unless otherwise stated. The significance level was set at 5%.

Results

Effects of MaR1 treatment on SNI-induced mechanical hypersensitivity

The von Frey test was performed to assess the effects of MaR1 treatment on SNI-induced

mechanical hypersensitivity. Since no significant differences between sexes were found, the

final analysis did not include the factor Sex (as described in Statistical analyses section). One

animal did not develop mechanical hypersensitivity after SNI and therefore was excluded from

the study.

Repeated measures parametric analysis revealed significant main effects of treatment (F(1,

13) = 5.00, P = 0.044) and time (F(2, 26) = 93.06, P< 0.0001). MWTs did not differ between

treatment groups at baseline (SNI-MaR1 vs. SNI-veh, P = 0.91). After surgery, a significant

decrease of the MWTs was observed in SNI-mice (for both SNI-veh and SNI-MaR1: BL vs. day

7, P = 0.0002; BL vs. day 11, P = 0.0002; Fig 2; S1 Fig), confirming the development of SNI-

induced mechanical hypersensitivity. Treatment with MaR1 increased log10-transformed

MWTs by 18.4% (SNI-MaR1 vs. SNI-veh, P = 0.037) on day 7, and by 20.2% (SNI-MaR1 vs.
SNI-veh, P = 0.020) on day 11.

Effects of MaR1 treatment on escape/avoidance behavior after SNI

To dissociate the complex and multidimensional pain experience of SNI-mice, the PEAP test

was used on day 11 as a measure of the emotional/affective component of NP [43]. An under-

lying assumption of this test is that mice naturally prefer the dark compartment. In our study,

all individuals spent more than 50% of the overall time in the dark chamber (Fig 3C), which

confirms animals’ innate preference, although large inter-individual variability was observed

in individual time bins (S2 and S3 Figs), which has been reported in other rodent pain models

as well [44, 55]. Upon repeated suprathreshold mechanical stimulation of the affected paw in
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the dark compartment, SNI-mice are expected to gradually increase their preference for the

light side during the test session.

Although some studies have used the total time spent in light as primary outcome measure

in the PEAP test [46, 56–60], other parameters, more informative about the behavior through-

out the test, may also be used as indicators of escape/avoidance, to better reflect the associative

learning process that underlies this assay. In order to get an understanding of changes in mice

behavior during the 30-min test period, we started our analysis by plotting the time spent in

light on two graphs: individual and accumulated time spent in the light area for each 5 min bin

of PEAP testing (Fig 3A and 3B). Visual inspection of the graphs shows that the behavioral pat-

tern of vehicle-treated SNI male and female mice were qualitatively different. Indeed, when

analyzing the individual or accumulated time in light, the mixed model analysis revealed not

only a statistically significant main effect of Time bin (individual time in light: F(5, 100) = 3.93,

P = 0.003; accumulated time in light: F(5, 100) = 2.60, P = 0.030), but also a Sex × Time bin
interaction (individual time in light: F(5, 100) = 2.65, P = 0.027; accumulated time in light: F(5,

100) = 3.64, P = 0.005).

The time spent in light during the course of the test was significantly increased only in vehi-

cle-treated SNI male mice (Fig 3A and 3B). In this subgroup, the differences between the last

and the first two time bins were statistically significant (individual time in light: 5-min bin vs.
30-min bin, P = 0.026, 10-min bin vs. 30-min bin, P = 0.032; accumulated time in light: 5-min

bin vs. 30-min bin, P = 0.006, 10-min bin vs. 30-min bin, P = 0.007). In fact, male vehicle-

treated SNI mice displayed a 16% shift in preference by the end of experiment (Fig 3D), which

Fig 2. MaR1 treatment reduced spared nerve injury (SNI)-induced mechanical hypersensitivity in the ipsilateral

hind paw. Mechanical withdrawal thresholds (MWTs) were assessed before surgery (baseline, BL), and on days 7 and

11. Data were analyzed with repeated measures parametric analysis (mixed model), with factors Treatment and Time.

Holm’s procedure was used to correct for multiple comparisons. Mean predicted values of log10-transformed values

(95% CI) from the analysis are presented. P-values for statistically significant main effects/interactions and planned

comparisons are indicated. SNI-veh, n = 7; SNI-MaR1, n = 8. A female mouse from the SNI-vehicle group did not

develop mechanical hypersensitivity after SNI and was therefore excluded from the study. Individual

log10-transformed values are presented in S1 Fig.

https://doi.org/10.1371/journal.pone.0287392.g002
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Fig 3. Effects of MaR1 treatment in the motivated pain escape/avoidance behavior, on day 11 after spared nerve

injury (SNI). The timeline of preference of SNI animals throughout the 30-min test period was different in male and

female mice, and only SNI-vehicle male mice significantly shifted their preference to the light side, as assessed by

inspection of the time spent in the light chamber (%) (A), and the accumulated time in light (B), in time bins of 5 min. No

statistically significant differences were found in the total time spent in the light chamber (%) (C); the shift in preference

(difference in % of time spent in the light chamber between the last and first 5-min time bin) (D); or the total number of

crossings between chambers (E). Nevertheless, the escape/avoidance behavior was attenuated in male MaR1-treated mice

as compared to their vehicle-treated controls. Data from graphs A and B were analyzed with repeated measures parametric

analysis (mixed model), with factors Treatment, Sex and Time bin, and are presented as mean predicted values (95% CI)

(individual values are shown in S2 and S3 Figs), whereas data from graphs C-E were analyzed with single measures

ANOVA, with factors Treatment, and Sex, and are presented as individual values and mean predicted values (95% CI). In

both cases, Holm’s procedure was used to correct for multiple comparisons. P-values for statistically significant main

effects/interactions and planned comparisons are indicated.♂-SNI-veh, n = 6; ♂-SNI-MaR1, n = 6; ♀-SNI-veh, n = 6;
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demonstrates that the aversiveness of mechanical stimulation of the injured paw was higher

than the aversiveness of the light chamber. In contrast, some female SNI-vehicle mice spent

more time in the light chamber in the beginning of the assay (particularly when compared to

MaR1-treated females, although the difference was not statistically significant; S2B and S3B

Figs), and then increased their preference for the dark chamber (Fig 3D), which contradicts

the PEAP assumption.

Although conclusions about MaR1 effects on SNI-females are hindered by the erratic

behavior displayed by vehicle-treated SNI female mice, all vehicle-treated SNI males exhibited,

as expected, an increase in light preference over the course of the test, which validates the use

of the PEAP test in male SNI-mice under our test conditions. No statistically significant differ-

ences were found between vehicle- and MaR1-treated mice on the degree of aversion to the

noxious stimuli, as assessed by the analysis of the time spent in light throughout the 30-min

period of testing (Fig 3A and 3B), the total time in light (Fig 3C), and the shift in preference

(Fig 3D). We also measured the total number of crossings from one side of the testing box to

the other side, which has been considered as an index of general motor activity in the PEAP

test [44, 46, 61]. Again, there were no significant differences between male and female SNI-

mice treated with MaR1 or vehicle. Thus, locomotor activity/exploration are unlikely to have

confounded the results. Additionally, a global correlation analysis of our results showed that

the number of crossings was positively correlated with the total time in light (number of cross-

ings vs. total time in light: correlation coefficient = 0.760; test statistic = 5.478; P< 0.0001; Fig

3F).

Nevertheless, although the mean behavior of male SNI-mice from both groups was rela-

tively similar during the first time bins (which can be explained by the fact that animals are

still “learning” that the dark chamber is associated with increased unpleasantness; Fig 3A and

3B), statistically significant differences between the time spent in light in the last and the first

time bins, as already mentioned, were observed in the vehicle-treated, but not MaR1-treated,

SNI-mice. Indeed, although the difference did not reach statistical significance, male mice

treated with MaR1 developed a 58% lower shift in preference during the test than their vehi-

cle-treated male counterparts (Fig 3D). Taken together, the behavior of MaR1-treated males

appears to reflect an attenuation of the escape/avoidance behavior induced by mechanical

stimulation of the injured paw, which is compatible with amelioration of the affective compo-

nent of pain.

Effects of MaR1 treatment on SNI-induced spinal microglial and astrocytic

activation

To assess whether treatment with MaR1 affected glial activation after SNI surgery, immunore-

activity for Iba-1 (marker of microglial activation) and GFAP (marker of astrocytic activation)

were evaluated on the dorsal horn of spinal cords collected on day 12.

Since no significant differences between sexes were found, the final analysis did not include

the factor Sex (as described in Statistical analyses section). When compared to vehicle-treated

mice, treatment with MaR1 reduced Iba-1 staining intensity by 11.1% (F(1, 16) = 5.25,

P = 0.036; Fig 4A and 4C), and reduced GFAP staining intensity by 10.1% (F(1, 16) = 4.54,

P = 0.049; Fig 4B and 4D), which indicates attenuation of microglial and astrocytic activation,

respectively.

♀-SNI-MaR1, n = 6. A positive correlation was found between the total time in light and the total number of centerline

crossings (F). Pearson’s correlation coefficient analysis included all animals (N = 24).

https://doi.org/10.1371/journal.pone.0287392.g003
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Effects of MaR1 treatment on spinal concentration of cytokines

We also assessed whether the spinal concentrations of pro- and anti-inflammatory cytokines

were modulated by MaR1 treatment in SNI-mice.

No statistically significant differences between sexes or treatment groups were found on IL-

6 (largest F = 3.13, P = 0.115; Fig 5B), IL-10 (largest F = 2.78, P = 0.134; Fig 5C) or IL-1β,

although a marginal main effect of Sex was found in the latter cytokine (F(1, 8) = 5.25,

P = 0.051; Fig 5A). Indeed, in SNI-vehicle groups, IL-1β values tended to be higher in females

than in males. In addition, analysis of M-CSF values revealed main effects of both Sex (F(1, 8)

= 10.25, P = 0.013) and Treatment (F(1, 8) = 6.43, P = 0.035) factors. M-CSF concentrations

were higher in MaR1-treated SNI-males when compared to either their vehicle-treated con-

trols (borderline P-value of 0.053) or MaR1-treated SNI-females (P = 0.035) (Fig 5D).

Fig 4. MaR1 treatment reduced spared nerve injury (SNI)-induced microglial and astrocytic activation on day 12. Representative images of the

immunofluorescence staining with Iba-1 (microglial marker) and GFAP (astrocytic marker) in the spinal cord of mice (scale bar: 100 μm) (A). Quantification

of Iba-1 (B) and GFAP (C) staining intensities in the dorsal horn is represented as the ipsilateral/contralateral ratio of mean fluorescence intensity. Data were

analyzed with single measures ANOVA, with factor Treatment. Holm’s procedure was used to correct for multiple comparisons. Individual values and mean

predicted values (95% CI) from the analysis are presented. P-values for statistically significant comparisons are indicated. SNI-veh, n = 9; SNI-MaR1, n = 9. As

previously referred, a female mouse from the SNI-vehicle group did not develop mechanical hypersensitivity after SNI and was therefore excluded from the

study. Additionally, a male SNI-MaR1 mouse was excluded from the immunofluorescence analysis due to processing-associated tissue damage.

https://doi.org/10.1371/journal.pone.0287392.g004
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Discussion

In the present study, oral treatment with MaR1 attenuated SNI-induced mechanical hypersen-

sitivity and spinal glial activation in male and female mice. Furthermore, on day 11, male

MaR1-treated mice appeared to show less escape/avoidance behavior than their vehicle-treated

counterparts. Although not statistically significant, this difference is corroborated by more

than one PEAP outcome measures used, and suggests MaR1 is able to ameliorate the affective

component of pain in SNI-male mice. On the other hand, no definitive conclusions about the

effects of MaR1 treatment on females could be drawn, since no increase in preference for the

light side was detected in vehicle-treated SNI female mice, which by itself contradicts one of

the fundamental assumptions of the PEAP test. No treatment effects were detected on spinal

IL-1β, IL-6, and IL-10 values on day 12, but M-CSF concentrations were marginally higher in

MaR1-treated SNI males.

Fig 5. Effects of MaR1 treatment on spinal inflammatory cytokines after spared nerve injury (SNI) on day 12. MaR1 treatment did not influence the spinal

concentrations of interleukin (IL)-1β (A), IL-6 (B), and IL-10 (C), and increased macrophage colony-stimulating factor (M-CSF) values in males (D). Data

were analyzed with a single measures ANOVA, with factors Treatment and Sex. Holm’s procedure was used to correct for multiple comparisons. Individual

values and mean predicted values (95% CI) from the analysis are presented. P-values for statistically (or marginally) significant main effects/interactions and

planned comparisons are indicated.♂-SNI-veh, n = 3; ♂-SNI-MaR1, n = 3; ♀-SNI-veh, n = 3; ♀-SNI-MaR1, n = 3.

https://doi.org/10.1371/journal.pone.0287392.g005
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On the behavioral assessment of analgesic effects of MaR1 treatment

through voluntary oral administration

Our results expand previously reported data showing antinociceptive actions of MaR1 treat-

ment on different peripheral NP models. In most of the referred studies, MaR1 was intrathe-

cally administered–non-compressive lumbar disk herniation (daily MaR1 administration

during the first 3 postsurgical days; daily behavioral testing for mechanical and thermal hyper-

sensitivity up to postsurgical day 7 [22, 23]); spinal nerve ligation (daily MaR1 administration

from postsurgical days 3 to 5; daily hypersensitivity assessment up to postsurgical day 7 [20]);

chronic constriction injury (single MaR1 injection 1 week after injury; hypersensitivity assess-

ment up to 24h post-MaR1 dosing [21])–although there is also one publication, by Serhan

et al., reporting the antinociceptive effects of systemic MaR1 treatment in the vincristine-

induced model of peripheral NP (i.p. injection of MaR1 shortly before administration of the

chemotherapeutic agent vincristine reduced mechanical hypersensitivity between days 1 and

14 [15]). Our results not only further demonstrate the effectiveness of systemically adminis-

tered MaR1 in a peripheral NP model, but specifically show for the first time that MaR1

administered through a voluntary oral protocol can ameliorate pain hypersensitivity in a NP

model already installed, and maintain those antinociceptive effects for at least for six days

beyond the treatment time window. Our results further add to the still scarce evidence show-

ing that SPMs are orally bioactive, i.e. resist degradation in the acidic gastric milieu and reach

therapeutic levels in plasma. LXs and aspirin-triggered analogs displayed potent anti-inflam-

matory actions when administered ad libitum via drinking water or through oral gavage [62,

63]. Likewise, oral RvD1 has demonstrated potent immunoresolving actions, and proved to

elevate RvD1 plasma concentrations [64, 65], and to reduce the pro-inflammatory environ-

ment in the CNS, promoting an anti-inflammatory phenotype of microglia [66]. Recently, a

series of papers by Moreno-Aliaga’s group has described several beneficial actions of MaR1

administered by oral gavage in diet-induced obese mice [34–38], demonstrating that MaR1 is

orally bioactive as well. The use of an oral route of administration, particularly by a non-stress-

ful method, increases not only the translational potential of our findings but also their validity,

since increased well-being and lower stress levels in the experimental animals produce better

behavioral results [31].

On the assessment of the affective component of pain: Effects of MaR1 treatment in the

escape/avoidance behavior of SNI mice. Thus far, evaluation of SPMs’ analgesic effects on

peripheral NP models has almost exclusively relied on conventional reflexive pain measures,

except for a study by Xu et al. showing that pretreatment with PD1 reduced spontaneous pain

as assessed by a conditioned place preference test [12, 67]. Since pain is a complex and multidi-

mensional experience, tests that only assess the sensory experience of pain do not reflect the

global impact of antinociception. Thus, preclinical pain studies should also evaluate the affec-

tive component of pain [68, 69]. Operant learning assays, such as the PEAP test, have been

proposed to test the motivational/aversive aspects of pain, thereby reflecting its emotional and

unpleasant nature in humans [70, 71]. Our results suggest amelioration of the affective compo-

nent of pain in MaR1-treated males and show that, when confronted with a choice, male

C57BL/6J mice with SNI perform a purposeful behavior response to escape/avoid the noxious

mechanical stimulation of the injured hind paw, on day 11 after surgery. Conversely, vehicle-

treated SNI females do not develop preference for the light compartment throughout the test.

On the applicability of the PEAP test in mice

The PEAP test has been increasingly used in rodent models of peripheral NP, generally reveal-

ing the development of an associated aversive behavior (e.g. [45, 47, 59–61]; but see also [56]).
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However, one should keep in mind that conclusions drawn from the PEAP test may depend

on methodological variables (e.g. frequency of stimulus application, force of the von Frey fila-

ment or test duration) [61], on the sex/strain/species tested, and on the outcome measures

analyzed (e.g. total time in light or measures that take into consideration changes in behavior

throughout the test period).

Most PEAP studies published so far have used rats. Considering the existence of behavioral

differences between rats and mice that may influence their behavior in the PEAP test (e.g.

mice are known to be more active and take longer to habituate to new environments than rats

[72]), more studies are necessary to expand the validity of this test to NP mouse models as

well. In this context, our findings add to the still scarce evidence of the applicability of the

PEAP test in mice with peripheral NP. Using a protocol similar to ours, Grégoire et al.
reported that SNI induced motivated pain avoidance in male CD1 mice, 7 months after sur-

gery [45]. Other studies with mice have used modified protocol versions, including von Frey

filaments ranging from low intensity to clearly suprathreshold (even to naïve animals) stimulus

forces (0.07–6 g), and/or including unstimulated reference baselines (additional 5–10 min of

free exploration periods at the beginning of the test) [59, 73, 74]. Santello et al. reported that

male C57BL/6J mice switched their preference from the dark to the light compartment of the

PEAP box, 7–8 days after CCI [74]. Using male and female subjects, Gan et al. reported a

higher total time spent in light in C57BL/6J SNI-mice than in sham controls, on postsurgical

days 14–16 [59, 73].

A clear lack of PEAP test results for female rodents have insofar precluded conclusions

about the validity of the PEAP test for the assessment of the motivated pain avoidance behavior

in females with peripheral NP. Indeed, ours is one of the first studies to evaluate the behavior

of female rodents in this paradigm. Although Gan et al., as already mentioned, have previously

used both male and female mice, their results were pooled together and it is not clear whether

differences or similarities between sexes were taken into consideration [59, 73]. Moreover,

considerable methodological differences and the use of different measures as indicators of

escape/avoidance behavior hamper direct comparisons with our study. By analyzing not only

the total time in light, but also measures more focused on changes of behavior throughout the

test period, our results showed that, under our conditions, the repetitive stimulation was not

sufficiently aversive/unpleasant to push females out of the preferred dark side, raising the pos-

sibility that the PEAP test may not be appropriate to ascertain emotional pain behavior in

female C57BL/6J mice with SNI-induced NP. Previous studies have associated lower force/fre-

quency of mechanical stimulation with a decrease in the degree of escape/avoidance behavior

in rats [61]. However, we used a suprathreshold von Frey filament in order to provide a consis-

tently noxious stimulus. Therefore, we hypothesize that SNI effects on other non-specific

behavioral responses, such as anxiety state, might have biased SNI females’ behavior in the

PEAP test. In fact, there is a clear resemblance between the PEAP and the light/dark

box (LDB) test, which measures the anxiety-like behavior. In the LDB test, increased time

spent in the light compartment and multiple transitions between chambers are suggested to

reflect low levels of anxiety [75]. Curiously, we found a positive global correlation between

these two parameters in the PEAP test, suggesting that they are indeed mutually related. Since

more anxious individuals may spend more time in the dark side, false negatives may occur

[44]. Nevertheless, the overall time spent in light did not differ between male and female vehi-

cle-treated SNI mice in our study, and evidence of anxiety-like behavior following SNI has

been inconsistent [76, 77], with some studies suggesting that nerve injury does not primarily

induce anxiety-like behaviors in male C57BL/6 mice [78, 79], although studies with female

mice are still lacking. Moreover, previous studies found no correlation between the PEAP

behavior and anxiety levels in rodent pain models, suggesting that PEAP responses are not
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confounded by the animals’ state of anxiety [44, 48, 80]. Likewise, changes in locomotor activ-

ity do not appear to induce alterations in PEAP behavior [44], while differences in cognitive

learning and/or memory impairment remains a potential contributor to individual variability,

due to the potential influence on the learning process that is required in the PEAP test [48].

On the other hand, although our results, in line with the previous study by Grégoire et al. [45],

validate the herein described PEAP protocol for male mice, the methodology may have to be

adapted for female mice. For instance, Refsgaard et al. have validated the PEAP test in female

C57BL/6J mice with inflammatory pain following a protocol with considerable differences,

namely the application of a 4 g von Frey filament at 10-s intervals. Since mice display many

transitions between chambers, the authors suggested that the development of spatiotemporal

associations with the two different stimuli is hindered by the consequent short duration of

each stay and introduced a 20-min training session that consisted of restricting each mouse for

two 5-min periods in each of the two areas immediately before the test period [44]. Further

studies to better understand the natural behavior of male and female mice in the PEAP testing

apparatus (e.g. comparing the behavior of non-treated naïve and SNI animals on the PEAP

box without mechanical stimulation), may enable optimization of test conditions.

On the neuroinflammatory mechanisms underlying MaR1 actions

Mechanistically, we focused on neuroinflammation, specifically in the spinal cord. Systemi-

cally administered SPMs have been reported to act on the CNS, indicating that they are able to

cross the blood-brain barrier, which is further supported by the fact that SPMs are small lipo-

philic molecules (similarly to what occurs for their precursors, DHA and EPA) [19, 81]. Also,

intravenous or intraperitoneal treatments with MaR1 have resulted in attenuation of neuroin-

flammation, in models of spinal cord injury (SCI) [82], and experimental autoimmune

encephalomyelitis (EAE) [83]. Specifically, in these models, systemically administered MaR1

has been shown to modulate several processes in the spinal cord, namely reduction of pro-

inflammatory cytokines and immune cells counts, redirection of macrophage polarization

towards an anti-inflammatory phenotype, and silencing of major inflammatory intracellular

signaling cascades (e.g. STAT1, STAT3, STAT5, p38, ERK1/2) [82, 83]. Furthermore, in NP

models, MaR1 attenuated nociception through several spinal mechanisms, such as suppression

of NF-κB activation, restoration of synaptic integrity, or inhibition of NLRP3 inflammasome-

induced pyroptosis [20, 22, 23]. Moreover, MaR1 has been shown to inhibit NP-induced spinal

microglial and astrocytic activation, as assessed by analysis of Iba-1 and GFAP immunoreac-

tivity, either after intrathecal [20] or local application to the nerve [21]. Our results corroborate

the ability of MaR1 to attenuate both microglial and astrocytic activation in NP models, and

extend it to the oral administration route. Nevertheless, it cannot be concluded whether MaR1

effects on glial cells result from direct or indirect actions. Curiously, a previous study has

reported that minocycline–widely used as a suppressor of microglial activation–improved the

affective dimension of pain in NP patients [84]. These results suggest a possible role of MaR1

effects on microglia on the apparent amelioration of the escape/avoidance behavior in MaR1--

treated males.

It is widely accepted that activated glia produce and release numerous mediators, including

proinflammatory cytokines, chemokines, and growth factors, which are able to modulate excit-

atory and inhibitory synaptic transmission, and further act on glia cells, sustaining neuroin-

flammation [85]. Therefore, one would expect the reduction of spinal glia activation to reduce

spinal pro-inflammatory cytokines. Indeed, other authors have reported reduced spinal pro-

inflammatory cytokines during (or up to 2–4 days after) intrathecal or local (to the nerve)

treatment with MaR1, in peripheral NP models [20–23]. Similarly, attenuated spinal IL-1β and
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IL-6 values have also been reported during systemic treatment with MaR1, in SCI and EAE

models [82, 83]. We did not detect differences in spinal IL-1β and IL-6 values between vehicle-

and MaR1-treated SNI mice. These results, although in apparent contradiction with previously

reported data, may be due to the fact that cytokines were evaluated only 7 days after MaR1

treatment cessation. Although the antinociceptive effect of the MaR1 treatment between post-

injury days 3 and 5 was still present on day 11, no treatment-associated reduction in the proin-

flammatory cytokines IL-1β and IL-6 could be detected at this later timepoint. However, the

fact that we used the whole L3-L5 spinal cord segment (both ipsi- and contralateral parts) for

the cytokines determination might have contributed as a “dilution” factor, rendering the detec-

tion of differences in protein concentrations between experimental groups more difficult. We

did not detect any effects of MaR1 treatment in spinal IL-10 either, which is in line with previ-

ous studies in NP models [21, 82]. Indeed, MaR1 has been suggested to preferentially modulate

pro-inflammatory, rather than anti-inflammatory, cytokines [82].

We have also detected higher spinal M-CSF levels in males than in females, and a male-spe-

cific increase in M-CSF levels upon MaR1 treatment. Mounting evidence has implicated

injured sensory neuron-derived M-CSF in the modulation of NP via central actions on micro-

glia [86]. However, pain-inducing effects of M-CSF are sexually dimorphic, since intrathecal

administration of M-CSF is sufficient to induce mechanical hypersensitivity in male, but not

female, mice [87, 88]. This effect is reportedly associated with similar microglial proliferation

in both sexes, as assessed by Iba-1 immunoreactivity [88], while transcriptomic profiling and

morphological analysis reveal robust microglial activation only in males [87]. Okubo et al.
reported that early phase (from post-surgical 0 to 40h) intrathecal treatment with a M-CSF

receptor inhibitor significantly reduced mechanical hypersensitivity in SNI male rats for up to

post-surgical day 3, while a later treatment, starting only 12 days after SNI, had no effects on

mechanical hypersensitivity [89], which suggests that spinal M-CSF/M-CSF receptor signaling

may be important to the initiation but not the maintenance of NP [86]. Consistent with that

finding, the effects of minocycline, a non-specific microglial inhibitor, also seem to be limited

to the early phase of nerve injury-induced mechanical hypersensitivity [90, 91]. Therefore, we

speculate that MaR1 administration reduced or did not alter M-CSF values, and a compensa-

tory mechanism (or a rebound effect) might have been triggered in males after treatment com-

pletion. The slight increase of M-CSF values supposedly occurred only in a later phase and,

thus, was not associated with changes in pain hypersensitivity. Curiously, we have recently

observed a similar result in male SNI-mice treated with a selective inhibitor of the NADPH

oxidase 2, an enzyme whose primary function is the production of reactive oxygen species

(ROS) [92]. Indeed, mounting evidence has been revealing an important relationship between

M-CSF signaling and oxidative status [93, 94]. Therefore, since MaR1 may modulate ROS pro-

duction through several mechanisms [95–97], we speculate that the drug-induced increase in

M-CSF values might be associated with ROS modulation. Nevertheless, further work is neces-

sary to confirm this observation, and to ascertain potential underlying mechanisms.

On other limitations of the study and future directions

Further mechanistic studies are warranted to explain the antinociceptive effects of MaR1

observed in this study. We focused on the inflammatory events in the SC, but, since a systemic

administration route was used and MaR1 was previously shown to contribute to NP patho-

physiology by peripheral mechanisms as well, future studies should assess drug actions on the

periphery. For instance, in a peripheral nerve injury model, MaR1 has shown to reduce the

number of damaged DRG neurons, promote injured nerve regeneration (regulated neurite

outgrowth through the PI3K–AKT–mTOR signaling pathway) and inhibit muscle atrophy
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[21]. In addition, in vitro studies have shown that MaR1 inhibits TRPV1 currents in DRG neu-

rons and promotes injured nerve regeneration [15, 21]. Considering that (i) DRG macro-

phages contribute to NP initiation and maintenance [98], (ii) MaR1 is synthesized by

macrophages, and (iii) SPMs are both regulators of macrophage responses and effectors in

macrophage-mediated responses [99], evaluation of the macrophage response in the DRG

would also be relevant in the future. On the other hand, disclosing how systemically adminis-

tered MaR1 induces changes in the spinal cord warrants further investigation. Other MaR1

doses and treatment schemes, including longer treatment protocols, should also be evaluated.

Finally, as already mentioned, oral administration of MaR1 has previously demonstrated sev-

eral beneficial actions on rodent models, and our results further suggest potential effects of

MaR1 on the SNI model through this route. MaR1 may promote its own synthesis through

enhancement of the MaR1/RORα/12-lipoxygenase circuit [100]. Indeed, in order to enable the

pursuit of an oral administration route for MaR1, future studies should evaluate the pharma-

codynamics and the pharmacokinetic profile of MaR1 after oral administration, as already

reported for other SPMs [64].

Conclusions

In conclusion, our study contributes to the knowledge about the therapeutic potential of

MaR1 in peripheral NP, by including female subjects and evaluating both sensory and affective

components of pain, upon MaR1 administration through voluntary oral intake. Our findings

show that MaR1 attenuates SNI-induced mechanical hypersensitivity in both male and female

mice. In males, MaR1 also appeared to ameliorate the affective component of pain, which has

been understudied in this field. The therapeutic effects observed are associated with attenuated

microglial and astrocytic activation in both sexes, and possibly involve modulation of M-CSF

action in males. Moreover, our results suggest that the PEAP test may not be appropriate to

evaluate the emotional pain behavior in female C57BL/6J mice with SNI-induced NP, under-

scoring the need to include females in preclinical pain studies.

Supporting information

S1 Fig. Individual mechanical withdrawal thresholds (MWTs, log-10 transformed values),

assessed before surgery (baseline, BL), and on days 7 and 11 after spared nerve injury

(SNI) surgery. SNI-veh, n = 7; SNI-MaR1, n = 8.

(TIF)

S2 Fig. Individual behavior of male (A) and female (B) mice throughout the PEAP test period,

on day 11 after spared nerve injury (SNI), presented as time spent in the light chamber (%) in

time bins of 5 min throughout the 30-min test period. ♂-SNI-veh, n = 6; ♂-SNI-MaR1, n = 6;

♀-SNI-veh, n = 6; ♀-SNI-MaR1, n = 6.

(TIF)

S3 Fig. Individual behavior of male (A) and female (B) mice throughout the PEAP test period,

on day 11 after spared nerve injury (SNI), presented as accumulated time spent in the light

chamber (%) in time bins of 5 min. ♂-SNI-veh, n = 6; ♂-SNI-MaR1, n = 6; ♀-SNI-veh, n = 6;

♀-SNI-MaR1, n = 6.

(TIF)
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