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Abstract: Bioactive lipidic compounds of microalgae, such as polyunsaturated fatty acids (PUFA)
and carotenoids, can avoid or treat oxidation-associated conditions and diseases like inflammation or
cancer. This study aimed to assess the bioactive potential of lipidic extracts obtained from Gloeothece
sp.–using Generally Recognized as Safe (GRAS) solvents like ethanol, acetone, hexane:isopropanol
(3:2) (HI) and ethyl lactate. The bioactive potential of extracts was assessed in terms of antioxidant
(ABTS•+, DPPH•, •NO and O2

•assays), anti-inflammatory (HRBC membrane stabilization and
Cox-2 screening assay), and antitumor capacity (death by TUNEL, and anti-proliferative by BrdU
incorporation assay in AGS cancer cells); while its composition was characterized in terms of
carotenoids and fatty acids, by HPLC-DAD and GC-FID methods, respectively. Results revealed a
chemopreventive potential of the HI extract owing to its ability to: (I) scavenge -NO• radical (IC50,
1258 ± 0.353 µg·mL−1); (II) inhibit 50% of COX-2 expression at 130.2 ± 7.4 µg·mL−1; (III) protect
61.6 ± 9.2% of lysosomes from heat damage, and (IV) induce AGS cell death by 4.2-fold and avoid
its proliferation up to 40% in a concentration of 23.2 ± 1.9 µg·mL−1. Hence, Gloeothece sp. extracts,
namely HI, were revealed to have the potential to be used for nutraceutical purposes.

Keywords: lutein; β-carotene; linolenic acid; linoleic acid; lipidic compounds; carotenoids; PUFAs

1. Introduction

The first reports on cyanobacteria date back to the time of Aztecs who used Spir-
ulina (Arthrospira platensis, A. maxima) as food [1]. Nowadays the potential application of
cyanobacteria in our daily lives has been well documented. Such microscopic organisms
are indeed a universal source of a vast array of chemical products with applications in the
feed, food, nutritional, cosmetic, and pharmaceutical industries [1–3]. The last decades
have witnessed the massive development in the production of cyanobacteria through
the improvement of processing methods, with particular emphasis on the extraction of
high-value compounds to be used as nutraceuticals and pharmaceuticals [1,4].

Nevertheless, the exploitation of prokaryotic and eukaryotic microalgae is restricted
to a few strains and most species remain largely unexplored. So far, till 2019, 260 families
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of bioactive compounds were identified in cyanobacteria with a wide range of applica-
tions, e.g., agriculture, pharmacology, cosmetology, or in the food industry; belonging to
10 different classes: alkaloids, depsipeptides, lipopeptides, macrolides/lactones, peptides,
terpenes, polysaccharides, lipids, polyketides, and others [5]. Additionally, 14 major activi-
ties have been listed from the literature, among them are cytotoxicity, anti-inflammatory,
and antioxidant, activities, at which bioactivities are particularly attributed to carotenoids,
chlorophylls, mycosporine-like amino acids, and phycocyanins [5].

Extensive research efforts during the last decades revealed that continued oxidative
stress may activate mechanisms that lead to chronic inflammation—which, in turn, could
mediate chronic diseases like cancer. Oxidative stress occurs due to an imbalance between
the production of free radicals, such as reactive oxygen species (ROS), and their elimination
by natural protective mechanisms, such as antioxidants molecules. This imbalance may
lead to injury of vital biomolecules, cells, and eventually the whole organism [6]. Therefore,
the search for antioxidants or radical scavengers able to neutralize the harmful effects
of oxidative stress has been in order, as they would prevent or treat inflammation or
cancer [7,8].

Cancer is nowadays the 6th leading single cause of death worldwide [9]. This disease
occurs due to an imbalance between the rate of cell proliferation and apoptosis; thus, an
ideal therapy would be based on the ability to restore this balance, by either reducing
cancer cell growth and/or promoting cancer cell death [10]. Gastric cancer ranks as the 5th
most common type of cancer, and is the 3rd in cancer-related death [11]; its development
has been frequently associated with severe inflammation caused by bacterium Helicobacter
pylori [12].

It should be emphasized that it was found long ago that oxidative stress, chronic
inflammation, and cancer development are closely related, particularly in what concerns
their activation pathways—which entail the production of several inflammatory signaling
molecules, like prostaglandins (PGs) as well as oxygen- and nitrogen-derived free radicals,
as schematized in Figure 1 [7], a key characteristic of tumor promoters is their ability to
recruit inflammatory cells and to stimulate them to generate ROS [7,13]. On the other hand,
ROS are usually generated during mitochondrial metabolism and play an important role in
cell signaling and homeostasis. ROS such as NO•, are produced during the inflammatory
process [14] in response to inflammatory stimuli (e.g., cytokines or pathogens)—and some
cases of deregulated inflammatory responses; thus may accordingly promote a state of
chronic oxidative stress and inflammation [15].

The triggering of the inflammatory pathway by lipopolysaccharides (LPS) causes
rapid activation of NOX2 and NADPH oxidase, and release of internal O2

•−. This radical
triggers, in turn, NF-κB phosphorylation, by activating several enzymes—namely cyclooxy-
genase 2 (COX-2), and iNOS which induce the release of PGE2, free radicals like O2

•− and
NO, and the chemokine MCP-1. Other activation products of NF-κB include anti-apoptotic
factors, cell cycle regulators, and adhesion molecules—which may be related to cancer cells’
survival, proliferation, adhesion, invasion and metastasis, and angiogenesis [16]. Of note,
the release of such mediators, like cytokines, may be regulated by secretory lysosomes. In-
deed, secretory lysosomes can secrete or degrade inflammatory cytokines in the regulation
of cytokine release, thus positively and negatively regulating the inflammation, having
a feedback mechanism to adjust the balance of the inflammatory response in cells and
organelles. Furthermore, involvement of a lysosomal membrane protein in the activation of
NF-κB and other pathways suggests that the lysosomal compartments may play a central
role in the inflammatory signaling network—and accordingly, provide a theoretical basis
for the development of anti-inflammatory drug combinations consisting of a lysosomal
inhibitor [17], see Figure 1.

Another common strategy followed in the formulation of anti-inflammatory agents is
based on suppressing of production of inflammatory mediators, such as COX-2 inhibitors,
that interfere with the initiation and progression of inflammation-associated diseases [18].
PGs were found in several kinds of tumors, like gastric cancer [19] or colon adenocarci-
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noma [20]; causing tumorigenic effects, such as stimulation of cell growth and angiogenesis,
inhibition of apoptosis, and suppression of the immune system. Several studies also in-
dicate that COX-2 inhibitors can reduce the risk of development of colon, lung, or skin
cancer [21–23], and namely improve therapeutic effects on human cancers in combination
with chemotherapeutic [24].
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) secrete or degrade inflammatory cytokines in regulating
cytokines released by immune cells through a feedback mechanism. Phosphorylation of NF-κB
activates several enzymes, e.g., cyclooxygenase(COX-2), oxidase, and iNOS, thus inducing the release
of prostaglandins (PGE2), O2

•− and other molecules like anti-apoptotic factors, cell cycle regulators,
adhesion molecules that are likely to be related to tumorogenesis, cancer cell growth and proliferation.
The unbalanced increase of the former may lead to tumorogenesis and (among other events) cancer
growth and proliferation.

In practice, the synthetic drugs used to treat these disorders may bring about se-
vere side effects; hence is important to find compounds from biological sources, such
as cyanobacteria, lacking adverse effects [25]. Carotenoids and PUFA from microalgal
sources have indeed been claimed to have anti-cancer and anti-inflammatory properties,
having sometimes an antioxidant-based mechanism of action [26–28]. Some of them have
even been proposed for the treatment and prevention of such chronic diseases [29,30].
Epidemiological studies suggest that carotenoids can prevent free radical-dependent oxi-
dation of LDL, cholesterol, proteins or DNA, by capturing free radicals and thus reducing
stress induced by ROS [31]. Furthermore, PUFA, namely n-3 PUFA, was described to hold
antioxidant and anti-inflammatory effects [32–34].

In the particular case of cancer, some strategies of chemoprevention can be accom-
plished by incorporating antioxidant compounds in the diet, which would block or delay
cancer development, either in the initial phase of carcinogenesis or at the stage of pro-
gression of neoplastic cells to cancer [35]. A clear example is β-carotene, which protective
effect against cancer was intimately associated with its antioxidant role [2] and COX-2
suppression abilities [36]. Moreover, the potential of microalgal lipidic components as
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chemopreventive agents was observed in colon, skin, and stomach cancer [2]. Also, other
carotenoids such as violaxanthin, zeaxanthin, lutein, and fucoxanthin, or ethanol-based
carotenoids-extracts, isolated from microalgae, exhibited antiproliferative activity against
different cancer cells [27,35,37–40].

For this study, a scarcely studied prokaryotic colonial microalga was selected, Gloeothece
sp., with promising bioactive lipidic composition [41]. This study aimed to exploit the
bioactive potential of its lipid extracts, as a new source of antioxidant, anti-inflammatory, and
antitumor compounds—thus forecasting a possible application in the food and nutraceutical
industry. Hence, GRAS (Generally Recognized as Safe) solvents—ethanol, acetone, ethyl
lactate, and a mixture (3:2) of hexane/isopropanol, were selected to extract lipidic bioactive
compounds from Gloeothece sp. [42,43].

2. Results
2.1. Biochemical Composition of Extracts

Gloeothece sp. extracts may have the potential of application in the nutraceutical indus-
try, due to their content in bioactive compounds as carotenoids, polyunsaturated fatty acids
(PUFA), or phenolic compounds. First, a crude characterization of extracts composition in
terms of each family of compounds (mC/mE, %) was done, as depicted in Figure 2.
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phenolic compounds, and other unidentified compounds, obtained with acetone (A),
ethanol (E), hexane:isopropanol (1:1, v/v) (HI) and ethyl lactate (EL).

It can be observed that A and E extracts are mainly composed of fatty acids, ca.
60 and 66%, respectively, most of them PUFA (more than 40%). Extract A also exhibited
the highest percent composition in phenolic compounds (13%, mC/mE), followed by HI
extract (ca. 8%, mC/mE). The contents of carotenoids were ca. 4% in all extracts, except for
E, which reaches 6.5%.

A detailed fatty acids composition, available in Table 1, reveals different profiles in
monounsaturated (MUFA) and polyunsaturated (PUFA) fatty acids, either in terms of
concentration (µgFatty Acid·mgExtract

−1) and content (%, mFatty Acid/mTotal Fatty Acid).
Concerning the MUFA C18:1 n9 c+t (oleic acid, OA), this is the one present in higher

content and the 3rd in terms of all fatty acids. Its content in all extracts ranges between
14.4 (E) and 17.4% (EL), having a higher concentration in extract A,
53.796 ± 2.918 µgFatty Acid·mgExtract

−1—i.e., approximately half of concentration in E, and
one quarter in HI and EL.

In terms of PUFA, E and A exhibited a higher content, 40.7 and 46.0% (mFA/mTFA),
respectively. In another way, HI and EL accounted for 80 and 71.3 (%, mFA/mTFA), respec-
tively, in saturated fatty acids (data not shown).
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Table 1. Fatty acid concentration (µgFatty Acid·mgExtract
−1)± standard deviation and content (mFatty Acid/mTotal Fatty Acid, %)

in each Gloeothece sp. extracts, E—ethanol extract, A—acetone extract; HI (3:2)—Hexane:Isopropanol (3:2, v/v) extract, and
EL—ethyl lactate, in terms of monounsaturated fatty acids (MUFA) and polyunsaturated fatty acids (PUFA).

Fatty Acids
Fatty Acids Concentration and Content (µgFA·mgE−1, %(mFA/mTFA)

E A HI (3:2) EL

C14:1
0.520 ± 0.002 1.495 ± 0.013 0.937 ± 0.001 0.607 ± 0.020

0.3 1.3 2.3 3.3

C16:1
1.046 ± 0.053 2.426 ± 0.158 0.994 ± 0.023 0.869 ± 0.092

0.7 1.7 2.7 3.7

C17:1
6.849 ± 0.012 19.154 ± 2.152 2.517 ± 0.099 1.017 ± 0.187

4.3 5.3 6.3 7.3

C18:1 n9 c+t
22.812 ± 1.118 53.796 ± 2.918 12.910 ± 2.598 a 12.767 ± 1.980 a

14.4 15.4 16.4 17.4

C22:1 n9
0.184 ± 0.010 a 0.849 ± 0.043 0.202 ± 0.057 a 0.317 ± 0.016

0.3 0.2 2.3 3.3

Σ MUFA
31.412 76.870 17.559 15.577

20.0 22.4 8.5 15.6

C18:2 n6 t
24.242 ± 0.597 59.711 ± 3.278 11.683 ± 1.432 6.240 ± 1.510

15.3 16.3 17.3 26.4

C18:2 n6 c
0.406 ± 0.025 0.984 ± 0.012 0.308 ± 0.083 a 0.337 ± 0.008 a

0.3 1.3 2.3 3.3

C18:3n6
1.934 ± 0.030 1.467 ± 0.039 a 1.250 ± 0.152 b 1.267 ± 0.196 a,b

1.2 2.2 3.2 4.2

C18:3 n3
37.233 ± 0.685 96.765 ± 5.713 13.216 ± 0.225 4.575 ± 1.437

23.4 24.4 25.4 18.3

C20:2
0.498 ± 0.009 0.724 ± 0.205 a 0.943 ± 0.701 a 0.289 ± 0.014

0.25 1.3 2.3 3.3

C20:5 n3
0.344 ± 0.023 a - 0.283 ± 0.105 a 0.462 ± 0.071

0.2 - 2.2 3.2

Σ PUFA
64.160 159.651 27.682 13.170

40.7 46.0 11.5 13.2
a,b Same lowercase letters for the same fatty acid mean no significant difference between extracts (p < 0.05).

Among PUFA, C18:3 n3 (α-linolenic acid, ALA) attained the highest content in all extracts,
between 23.4 (E) and 26.4 (EL) % (mFA/mTFA); but with a higher concentration in A (96.765 ±
5.713 µgFA·mgE

−1); followed by E (37.233 ± 0.685 µgFA·mgE
−1), HI

(13.216 ± 0.225 µgFA·mgE
−1), and EL (4.575 ± 1.437 µgFA·mgE

−1). In other way, the PUFA
C18:2 n6 t (linoleic acid, LA) attained the highest concentration, 6.240± 1.510 µgFA·mgE

−1, in
the EL extracts. Note that conjugated linoleic acid (CLA, C18:2 n6 t + C18:2 n6 c), also in high
content (%, mFA/mTFA) and concentration (µgFA·mgE

−1) in E, (15.5%, 60.695 µgFA·mgE
−1),

followed by EL (6.6%, 6.577 µgFA·mgE
−1), HI (5%, 11.991 µgFA·mgE

−1), and A (1.5%, 24.648
µgFA·mgE

−1). Furthermore, C20:5 n3, (eicosapentaenoic acid, EPA) was detected in EL and HI
extracts, in concentration of 0.462± 0.071 and 0.283± 0.105 µgFA·mgE

−1, respectively.
Observing the carotenoid profile and concentration (see Figure 3), extract A—besides

having the highest concentration in total carotenoids, contains a quite different profile from
the others, while E and HI profiles appeared to be similar. In another way, EL contains
the fewest carotenoids and lowest content. Lutein is the most abundant carotenoid in
all extracts, being ca. 35% more concentrated in A (10.73 ± 0.59 µgcarot·mgE

−1) than
in E and HI, and 69% more than in EL, 3.19 ± 0.22 µgcarot·mgE

−1. Neoxanthin is the
second most abundant xanthophyll, with 3.21 ± 0.23 µgcarot·mgE

−1 in A, i.e., 1.5-fold
that of E, 2.1-fold of HI, and 4.1-fold of EL. Moreover, A is the only extract than contains
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zeaxanthin 1.07 ± 0.12 µgcarot·mgE
−1, and the highest concentration of α-carotene, i.e.,

0.53 ± 0.04 µgcarot·mgE
−1, and β-carotene, i.e., 1.60 ± 0.03 µgcarot·mgE

−1.
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Table 2. Comparison of antioxidant capacity of Gloeothece sp. extracts (average± standard deviation),
against the radicals ABTS+•, DPPH•, •NO− and O2

•−, expressed in terms of IC50 (mgExtract·mL−1),
and values of IC50 values (average ± standard deviation) of extracts on cell viability, according to
sulforhodamine B (SRB) assay for gastric cancer cell lines, AGS.

Solvents
Antioxidant Capacity IC50 (mgE·mL−1) SRB IC50

(µgE·mL−1)ABTS•+ DPPH• O2•− •NO−

Ethanol 0.259 ± 0.074
a,b 1.538 ± 0.012 nd 0.637 ± 0.024 241.0 ± 22.5 a

Acetone 0.217 ± 0.009
a 0.978 ± 0.032 nd 0.284 ± 0.090 114.4 ± 6.4

HI 3:2 (v/v) 0.283 ± 0.034
b nd nd 1.258 ± 0.353 23.2 ± 1.9

Ethyl lactate 5.809 ± 0.203 4.016 ± 1.256 nd nd 209.3 ± 11.0 a

a,b Means within the same column, without a common superscript, are significantly different (p < 0.05).
HI—Hexane: isopropanol (3:2) v/v; nd—not determined.

No significant differences were found between E and A extracts (p < 0.05) in ABTS•+

assay, and A extract exhibited the lowest IC50 in DPPH• and •NO− assays. Although the
IC50 for EL extract at •NO− assay could not be calculated in the range of concentrations
tested, it was revealed to have antioxidant capacity.

2.3. Antitumoral Features of Lipidic Extracts

Among the available cancer adenocarcinoma cell lines, AGS highlights as being the
gastric line most used in vitro study models [44]. Hence, antitumor capacities of all extracts
were evaluated through different assays, using AGS cell line as a model. First, the cancer
cell viability was evaluated by Sulforhodamine B assay, and IC50 was determined for each
extract. The IC50 values of each extract were then used to determine whether the extracts
were able to promote cell death via TUNEL assay; and whether the extracts were able to
inhibit cancer cell proliferation, via cell proliferation BrdU assay.
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2.3.1. Evaluation of Cancer Cell Viability by Sulforhodamine B Assay

Sulforhodamine B assay (SRB) uses the protein-binding dye SRB to indirectly assess
cell growth [45,46].

Despite DMSO being widely described to be cytotoxic depending on its concentration—
yet, it was used to suspend extracts at low and non-cytotoxic concentrations. DMSO was
thus titrated in these cell lines and, it was found that a concentration of 0.25% (v/v) was
innocuous to AGS cells (data not shown).

For each extract, a dose-response curve was established, allowing determination of
the extract’s concentration causing a cell growth inhibition of 50%, as shown in Table 2.

From the results calculated in Table 2, HI extract outstands for its lowest IC50 val-
ues, reaching values 5- to 10-fold lower when compared to the other extracts. IC50 val-
ues determined for each extract were then used to perform the cancer cell death and
proliferation assays.

2.3.2. Evaluation of Cancer Cell Death via TUNEL Assay

TUNEL is a common method for detecting DNA fragmentation that may result from
cell death, either by apoptosis or necrosis [47]. Induction of DNA fragmentation in AGS
cells, treated with the different extracts, at their IC50 by 48 h of treatment, was examined
using TUNEL. The results produced (Figure 4) show that treatment with all four extracts
results in a significantly increased cell death (p < 0.05), yet a stronger effect was observed
for HI extract—which increased AGS cells death by c.a. of 4-fold.
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2.3.3. Evaluation of Cancer Cell Proliferation

Assessment of cell proliferation by BrdU assay is based on the incorporation of BrdU
into their replicating DNA, which can further be detected by immunofluorescence. For
a quantitative approach, samples were analyzed by flow cytometry. Results revealed
an anti-proliferative effect of the HI and EL extracts upon AGS, via 40% of inhibition of
proliferation in ca., while cells treated with the E or A extracts behaved no differently from
the negative control with DMSO (Figure 4), i.e., exhibited no antiproliferative effect.

2.4. Anti-Inflammatory Potential of Lipidic Extracts

The mechanism of inflammation can be partially triggered via the release of ROS, from
activated neutrophils and macrophages, thus leading to damage in macromolecules caus-
ing, namely, lipid peroxidation of membranes. ROS spread inflammation by stimulating
the release of cytokines, regulated by lysosomes, which in turn stimulate the recruitment
of additional neutrophils and macrophages. Lysosome structure conveys a physical and
functional interface among cell organelles, as it plays a role in negative or positive modula-
tion of the production of inflammatory cytokines [17,48]. Furthermore, free radicals are
mediators that induce or sustain inflammatory processes; hence their neutralization by
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antioxidants and radical scavengers are fundamental to reducing inflammation [49]. In this
context, extracts from Gloeothece sp. were screened for their potential anti-inflammatory
features, by resorting to two different assays, one reflecting the stabilization of extracts on
Human red blood cell (HRBC) membrane induced by heat, and another that ascertains the
capacity of such extracts to inhibit the human enzyme COX-2.

2.4.1. Human Red Blood Cell (HRBC) Membrane Stabilization Assay

This assay allows the characterization of the capacity of Gloeothece sp. extracts to pro-
tect erythrocytes from hemolysis when heat is supplied. Since the erythrocyte membrane
is quite similar to the lysosomal one, indirectly is possible to conclude if any Gloeothece
sp. extract holds any capacity in the stabilization of lysosomal membranes [50], and so, if
they have the potential to be used as a non-steroidal drug—the common anti-inflammatory
drug that inhibits lysosomal enzymes or stabilizes their membrane.

Results show that the HI 3:2 (v/v) extract is the most promising as it exhibits a
protection capacity of 61.6 ± 9.6%; nonetheless, EL extract also appears to hold some
potential in protecting HRBC membranes. Conversely, the E and A extracts did not show
significant protective capacity (see Table 3).

Table 3. Anti-inflammatory potential of Gloeothece sp. lipidic extracts, upon the protection of
HRBC membranes (average ± standard deviation) from heat, expressed in percentage of stabiliza-
tion and IC50 (average ± standard deviation) values of extracts obtained at of COX-2 enzymatic
activity inhibition.

Solvents HRBC Stabilization (%) COX-2 Enzymatic Activity Inhibition
IC50 (µgE·mL−1)

Acetone - 116.8 ± 7.7
Ethanol - 198.3 ± 15.2

HI 3:2 (v/v) 61.6 ± 9.2 130.2 ± 7.4
Ethyl lactate 14.8 ± 4.3 -

2.4.2. Cox Human Inhibitory Assay

Cyclooxygenases (COXs) catalyze reactions that lead to the formation of pro-inflammatory
prostaglandins (PG), thromboxanes, and prostacyclins. Hence, the ability of extracts to inhibit
the conversion of AA to Prostaglandin H2 (PGH2) via inhibition of COX-2 was determined. All
concentrations tested exhibit anti-inflammatory activity in vitro, by inhibiting PG production
in a dose-dependent manner. However, the extracts exhibited different behaviors within the
range of concentrations tested, data not shown.

While A and EL at lower extract concentration induces a higher inhibition, a linear
percent of inhibition is of E concentration was observed, whereas a non-significantly
percentage of inhibition variation was detected with HI concentration. In terms of total
inhibition capacity of COX-2 enzymatic activity, one notices that A, E, and HI performed
equally well beyond 50% with no significant differences between them (p < 0.05); however,
the corresponding IC50 values (see Table 3) revealed that A and HI extracts attained the
lowest values, without significant differences (p < 0.05).

2.5. Cytotoxicity

For a putative application of Gloeothece sp. extracts as a nutraceutical ingredient, it
is mandatory that extracts do not exhibit any cytotoxicity to non-cancer cells. Therefore,
cytotoxicity effects upon HCMEC cells were assessed after 24 h (see Figure 5A) and 48
h (see Figure 5B), using DMSO 1% as a negative control. Results show that A extract
is cytotoxic, although its cytotoxicity decreases after 48 h. However, promising results
were observed concerning the E extract, since there was no evidence of cytotoxicity at
all concentrations tested. On the other hand, both HI and EL extracts were not lethal up
to 100 µg·mL−1; the highest concentrations tested were toxic, although toxicity decreases
with time.
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3. Discussion

Drugs commonly used to treat inflammation and cancer raise severe side effects, such
as toxicity and decreased life quality [51,52]. In this regard, this work aimed at making
a preliminary test of Gloeothece sp. extracts to be eventually used as a natural source in
nutraceuticals, and/or as a potential chemopreventive agent—based on the composition
in carotenoids and PUFA, coupled with antioxidant, antitumoral, and anti-inflammatory
features. Pearson correlations were calculated (data not shown) between composition
(carotenoids and PUFA) and bioactive features, however possible synergetic effects among
the molecules, that were not possible to measure, may contribute to its bioactive potential.
Hence, these features will be discussed separately, and then in an integrated manner.

3.1. Antioxidant Capacity of Lipidic Crude Extracts

The antioxidant capacity of cyanobacterial carotenoids is well established—particularly
concerning lutein and β-carotene [27,29,30,53], and long-chain fatty acids such ω3
PUFA [30,32]. Analyzing the extract contents in PUFA (see Table 1), carotenoids (see
Figure 2) and, it results of total antioxidant capacity, it is possible to correlate extract
concentration of carotenoids and PUFA with antioxidant bioactivity—at which A extract,
stands out due to its lowest IC50 values at all antioxidant assays. As observed previously,
lutein probably contributes the most to said bioactivity, owing to its higher concentra-
tion [54]. However, other carotenoids (e.g., β-carotene and neoxanthin) should not be
overlooked owing to their concentrations, as well as such PUFA as 18:1 n9, 18:2 n6, and
18:3 n3 based on the IC50 values of Gloeothece sp. extracts (A > E > HI > EL). Particularly, a
correlation was found with C18:2 n6 (r = 1, p < 0.083).

Concerning the specific radical’s scavenger capacity, results reveal the same trend,
particularly in NO• assay, in which the lowest IC50 was again observed in the A extract.
The high concentration of total carotenoids and PUFA, namely lutein and C18:2 n6, may
account for their important antioxidant role (r = 1, p < 0.083), as reported before [55–57].

Although the IC50 values for the O2
•− assay could not be found at the tested concen-

trations, some scavenging effects were detected at E and EL extracts—data not shown.
Hence, owing to the antioxidant scavenging capacity of A and E extracts against NO•

and O2
•− radicals in vitro, a similar capacity is expected in vivo—with a preventive role of

chronic inflammatory diseases, cancer, or neurodegenerative disorders [58,59].

3.2. Antitumoral Features of Cyanobacterial Extracts

Unlike observed with antioxidant capacity, the most promising extracts, in terms of
inducing AGS cell death and cell proliferation, are HI and EL extracts; where it cannot be
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established a clear correlation of antitumor capacity and high content in carotenoids and
fatty acids.

Despite a possible interaction of all extracts’ compounds, some evidence relate such
bioactivities with some compounds identified in Gloeothece sp. extracts, such as phenolic
compounds. Although these compounds have not been characterized, the content in
aromatic compounds is described to exert effects in bioactivities, particularly in antitumor
and anti-inflammatory agents [60].

From a nutraceutical point of view, dietary supplementation of β-carotene in animal
models of colon carcinogenesis has revealed anticancer capacities for that compound [61],
as well as growth-inhibitory and pro-apoptotic effects in human colon cancer cell lines [36].
It has also been demonstrated that such chemopreventive activity is dose-dependent, a
high dose proving to be harmful and likely to have a proliferative effect upon some cancer
cells lines [1]; this may explain why the HI and EL extracts, characterized by the lowest
levels of β-carotene and lowest IC50 values, exhibited the best results upon cancer cell
death and proliferation. Additionally, such xanthophylls, violaxanthin have been found to
possess antiproliferative activity against different cancer cells [35], and in fact, HI extract
exhibited the highest level of violaxanthin.

Some PUFA, particularly ω-3, have been reported to possess in vitro and in vivo
anticancer effects, via modulation of tumor growth or increase of cell death rate [62,63],
this is the particular case of EPA, able to inhibit some cancer cell lines proliferation in a
dose-dependent and time-dependent manner [62]. However, particular attention should
go to LA. Studies reveal that treatment of AGS and MKN cells with linoleic acid (C18:2n6),
in which EL extract has the higher content, led to an increase in a proapoptotic protein
expression and a decrease of an anti-apoptotic protein expression, as well as inhibits
the production of PGE2 and activity of telomerase by suppressing COX-2 and hTERT
expression, in a dose-dependent manner [64,65], which may be in line with our results
in AGS cell death. Indeed, in our study, a correlation was found between cell death and
C18:2n6 content (r = 1, p < 0.083).

It should be noted that the antitumoral IC50 value for the HI extract (23.2 ± 1.9 µg·mL−1)
is lower than other hexanoic extracts reported before for human colon carcinoma cell line
(HCT116), for example for Chlorella ellipsoidea and C. vulgaris which IC50 value was ca.
41µg·mL−1 and equivalent to the one obtained with pure lutein (21.02 ± 0.85 µg·mL−1) [39].
Also, correlation was found for AGS cell proliferation and content of C18:1 n9, C18:2 n6, C18:3
n3 and β-carotene contents (r = 1, p < 0.083).

3.3. Anti-Inflammatory Potential of Lipidic Crude Extracts

The anti-inflammatory potential of Gloeothece sp. extracts was assessed by two assays.
In the HRBC assay, HI extracts stood out in terms of inhibition capacity of 61%; hence, this
HI extract may potentially stabilize cell membrane and thus prevent stress-induced decay,
as well as stabilize the lysosomal membrane. This feature is crucial in the prevention of an
anti-inflammatory response induced by the release of lysosomal constituents, which cause
further tissue inflammation and damage upon extracellular release [50].

As seen before, the ability to inactivate COX-2 is indicative of the potential of an
extract to be used as an anti-inflammatory drug. All extracts of Gloeothece sp. exhibited that
ability, some of them having a dose-dependent response, like E extracts. However, extract
A exhibited the best performance at a concentration of 75 µg·mL−1, inhibiting in ca. 57%
of COX-2 enzymatic activity; however, the possible application of A extracts use must be
discarded due to its cytotoxicity to HCMEC cells. Nonetheless, HI extract follows as most
promising due to ca. 48% of inactivation capacity and with no cytotoxicity associated.

A number of anti-inflammatory molecules obtained from microalgae have been shown
to display high antioxidant capacity, that is in the composition of A and HI, such as β-
carotene, lutein, zeaxanthin, and ω3 PUFA [66]. Some of the anti-inflammatory abil-
ity could be attributed to violaxanthin. This xanthophyll isolated from C. ellipsoidea
showed anti-inflammatory activity when it was tested on LPS-stimulated RAW 264.7
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mouse macrophages, by inhibiting NF-κB activation and NO and prostaglandin E2 (PGE2)
production [67].

3.4. Potential of Application of Gloeothece sp. Extracts

Chemoprevention consists of the use of pharmaceutical drugs, or nutritional supple-
ments to reduce the risk of developing or having a recurrence of cancer. Several in vitro
and animal studies showed the chemopreventive properties of a few metabolites from
microalgae (e.g., carotenoids, fatty acids, polysaccharides, and proteins), namely against
colon and skin cancer [2].

Performance recorded for Gloeothece sp. extracts, particularly the A and HI shows that
they are a promising source in the eventual formulation of some nutraceutical products
bearing antioxidant, anticancer, and anti-inflammatory capacities. But despite the notable
antioxidant features of the A extract, particularly its ability to inhibit the radical NO•, its
potential application as a nutraceutical is limited due to its cytotoxicity.

Experimental and epidemiological evidence reported before suggests that anti-
inflammatory drugs may also decrease the incidence of some types of cancer, as well
as tumor burden and volume [68,69]. An attempt to provide a global overview of the
potential of action of HI and A extracts is conveyed by Figure 6.
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Figure 6. Schematic representation of how the HI (red cross) and A (yellow cross) extracts may modulate oxidative stress,
inflammation, and cancer development. The HI extract protects membranes of secretory lysosomes, thus avoiding the
release of inflammatory cytokines and consequent feedback mechanism. The phosphorylation of NF-κB is activated. A
is able to reduce the produced NO radicals. HI and A are able to suppress cyclooxygenase (COX-2), and subsequent
release of prostaglandins (PGE2), as well as anti-apoptotic factors, cell cycle regulators, adhesion molecules related to
tumorogenesis, cancer cell growth, and proliferation. HI extract is able to inhibit cancer-related events such as cancer growth
and proliferation.
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Hence, the HI extracts of Gloethece sp. appeared to be the most promising as a chemo-
preventive agent in the nutraceutical industry because of their features as (1) antioxidant
namely high total antioxidant capacity and scavenging capacity against -NO• radical;
(2) antitumor induction of cell death upon AGS cells, along with anti-proliferative ef-
fects; and (3) anti-inflammatory, namely inability to inhibit COX-2 expression while
protecting lysosomes.

4. Materials and Methods
4.1. Microorganism Source and Biomass Production

Gloeothece sp. (ATCC 27152) was purchased from ATCC—American Type Culture
Collection (USA), and kept at 25 ◦C, using Blue Green (BG11) as culture medium [70].
For biomass production, in 4 L batch culture, first, a pre-inoculum, with an initial optical
density of 0.1 at 680 nm, was cultivated for 10 days in 800 mL of BG11 medium, buffered at
pH 8 with Tri-(hydroxymethyl)-aminomethane hydrochloride (Tris-HCl)—ensuring that
the microorganism was at the exponential growth phase at the time of inoculation for
biomass production. Hence, biomass production was started with an initial optical density
of 0.1 in BG11 medium buffered at pH 8 and was produced for 14 days under a continuous
illumination with fluorescent BlOLUX lamps, with an intensity of 150 µmolphoton·m−2·s−1,
and air bubbling at a flow rate of 0.5 L·min−1. Biomass was then collected by centrifugation
at 18× g for 10 min, the supernatant was rejected and pellet freeze-dried, and stored under
gaseous nitrogen until analyses were performed.

4.2. Extract Preparation

Extracts from Gloeothece sp. were obtained from 200 mg of lyophilized biomass, using
four alternative food-grade solvents (Fisher Chemical, New Hampshire, EUA): ethanol
(E), acetone (A), a mixture (3:2) of hexane/isopropanol (HI), and ethyl lactate (EL), as
previously tested [41].

4.3. Chemical Characterization of Extracts

Fatty acids and carotenoids are among the most widely known bioactive compounds
found in microalgae, which possess a high interest in the nutraceutical and pharmaceutical
markets; hence, solvent extracts were evaporated and residue composition was determined
for each Gloeothece sp. extract, as detailed below.

4.3.1. Profile and Content of Polyunsaturated Fatty Acids

The weighted residue was submitted to direct transesterification to produce fatty
acid methyl esters according to the acidic method described by Lepage and Roy [71],
after modifications introduced by Cohen et al. [72] using acetyl chloride (Sigma-Aldrich,
St. Louis, MO, USA) as catalyst. The internal standard used was heptadecanoic (C17:0,
Sigma-Aldrich, St. Louis, MO, USA) acid and esters were analyzed in a Varian Chrompack
CP-3800 gas chromatograph (GC), using a flame ionization detector, and quantified with
the software Varian Star Chromatography Workstation (USA, Version 5.50). Helium was
employed as the carrier gas in splitless mode and the silica CP-WAX 52 CB (Agilent) column
was used. The injector and detector were maintained at 260 and 280 ◦C, respectively, and
the oven heating program was the same as described before [42]. To identify PUFA,
chromatographic grade standards of fatty acids were used in methyl ester form CRM47885
(Supelco, St. Louis, MO, USA). Concentrations of each polyunsaturated fatty acid (PUFAs)
were determined and mean values were used as a datum point.

4.3.2. Profile and Content of Carotenoids

To determine the content in carotenoids of the extracts, high-performance liquid
chromatography (HPLC) was applied as an analytical technique as detailed before [54].
The residue was weighed and resuspended in acetone: acetonitrile (9:1); 8-β-apo-carotenol
(Sigma-Aldrich, St. Louis, MO, EUA) was used as internal standard. Standards were
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purchased from CarotNature, Lutein (No. 0133, Xanthophyll, (3R,3′R,6′R)-β,ε-Carotene-
3,3′-diol with 5% Zeaxanthin with 96% purity), β-carotene (No. 0003, β, β-carotene) with
96% purity) and β-apo-carotenol (No. 0482, 8′-Apo-β-caroten-8′-al) with 97% purity). The
elution times of the chromatographic standards were: 14.4 min for lutein and 34.4 min for β-
carotene. Identification was by comparison of retention times and UV–visible photo-diode
array spectra, following the procedure by Guedes [54].

4.4. Antioxidant Effects of Lipidic Extracts

The antioxidant capacity of each extract was evaluated via four spectrophotometric
assays: two assessed total antioxidant capacity (ABTS+•, DPPH•); while the other two were
more specific for two biological radicals, superoxide (O2

•−) and nitric oxide (•NO−)—with
the later be known to be correlated with inflammation processes.

A positive control, Trolox, was used to validate the antioxidant capacity of extracts
and putatively establish a calibration curve but comparing the antioxidant capacity of the
extracts, their IC50 values were established. A dilution series was accordingly prepared for
each extract, with concentrations ranging from 0.440 to 7 mg·mL−1—for ethanol, acetone,
and HI extracts, and from 1.5 to 24 mg·mL−1 for ethyl lactate extract, in Phosphate Buffered
Saline (PBS) containing 5% of DMSO. Each antioxidant assay was performed in triplicate,
as described in the following sub-sections.

4.4.1. ABTS+• Scavenging Capacity

The total antioxidant capacity was determined as the capacity to decrease the ab-
sorbance of blue/green chromophore 2,2′-Azino-bis (3-ethylbenzothiazoline-6-sulfonic
acid) (ABTS•+) (Alfa Aesar, Massachusetts, US). Absorbance was accordingly determined
at 734 nm, upon the reaction of the extract with ABTS•+ for 6 min—as previously optimized
by Guedes et al. [54].

4.4.2. DPPH• Scavenging Capacity

The antioxidant capacity was determined, in triplicate, by reacting each extract with
2,2-diphenyl-1-picrylhydrazyl (DPPH•) (Sigma-Aldrich (St. Louis, MO, USA), after an
incubation period of 30 min at room temperature in dark. The scavenging reaction was
monitored at 515 nm, as implemented before by Amaro et al. [41].

4.4.3. Superoxide Radical (O2
•−) Scavenging Capacity

Superoxide radicals are generated by the NADH/PMS system. The extract antioxidant
capacity was determined by monitoring the absorbance of the reaction mixture, at 560 nm
and room temperature, for 2 min, as previously performed by Amaro et al. [41].

4.4.4. Nitric Oxide Radical (•NO−) Scavenging Capacity

Each extract was incubated with sodium nitroprusside, for 60 min at room temperature,
in the light. Griess reagent was added afterward, and the chromophore reaction was carried
out in the dark for 10 min; absorbance was read at 562 nm [41].

4.5. Anticancer Effects of Gloeothece sp. Extract
4.5.1. Cancer Cell Culture

Human gastric carcinoma cell line AGS CRL-1739 (obtained from ATCC, USA) derived
from fragments of a tumor resected from a patient who had received no prior therapy,
were maintained in RPMI1640 (Invitrogen, Thermo Fisher Scientific, Waltham, MA, USA)
supplemented with 10% FBS (Lonza, Basel, Switzerland) and kept at 37 ◦C, in a humidified
5% CO2 incubator.

4.5.2. Cancer Cell Viability Sulforhodamine B Assay

Solvents of each extract were evaporated by rotavapor and extracts resuspended with
the minimum amount of dimethyl sulfoxide (DMSO) (AppliChem, Darmstadt, Germany),
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thus producing in concentrations of 130, 150, 120, and 450 mg·mL−1, for acetone, ethanol,
HI and ethyl lactate extracts, respectively.

AGS cells in a concentration of 1 × 104 were seeded in 96-wells plates and treated
for 48 h with different concentrations of microalgal extracts (0 to 550 µg·mL−1 whenever
possible) or DMSO (AppliChem, Darmstadt, Germany) as negative treatment control (0.05%
v/v). As a positive control, DMSO 100%, was used to validate the antitumoral capacity
of extracts. Then cells were fixed by the addition of 50 µL of cold 50% trichloroacetic acid
(Merck Millipore, Kenilworth, NJ, USA) to each well, and incubating the plates at 4 ◦C for
1 h. Next the fixation step, the plates were washed three times with deionized water and
dried at room temperature. The cells were then stained with 50 µL of 4% sulforhodamine B
(SRB) (Sigma-Aldrich, St. Louis, MO, USA) in 1% acetic acid (Mallinckrodt Baker, Deventer,
The Netherlands) for 30 min and then washed three times with deionized water. After
the plates were dry, the cells were solubilized with 100 µL of 10 mM unbuffered Tris Base
(Sigma-Aldrich, St. Louis, MO, USA), and the optical density at 510 nm was measured
using the fluorimeter SynergyTM 4 Multi-Mode Microplate Reader (Biotek, Winooski, VT,
USA). Results were plotted as dose-response curves, and the IC50 for each extract was
found and expressed as µgE·mL−1.

4.5.3. Cancer Cell Death TUNEL Assay

AGS cells were cultured in 6-well plates in a concentration of 7.5 × 105, and treated
for 48 h with the microalgal extracts at the IC50 found at the SRB assay, for 48 h. DMSO
(AppliChem, Darmstadt, Germany) was used as a positive control treatment. Cells were
washed and trypsinized and the pellet obtained was fixed in 3 mL of ice-cold methanol
for 15 min. Then, cells were washed and resuspended in 500 µL of PBS. Incubation
with TUNEL reaction mix (1:9:10 concerning the Dilution Buffer reagent, according to
manufacture instructions—In Situ Cell Death Detection Kit Fluorescein, Roche, Mannheim,
Germany) was done for 1 h, at 37 ◦C, in the dark. Then, data were acquired using a BD
Accuri C6 flow cytometer (BD Biosciences, San Jose, CA, USA).

4.5.4. Cancer Proliferative Assay

AGS cells were cultured in 6-well plates containing a concentration of 7.5 × 105

and treated with the extracts at the IC50 found at the SRB assay, for 48 h, using DMSO
(AppliChem, Darmstadt, Germany) as positive control treatment. 5-Bromo-2′-deoxyuridine
(BrdU) (BrdU labeling and detection kit 1, Roche, Mannheim, Germany) was incorporated
in the cell culture medium at the ratio of 1:1000, and underwent incubation for 1 h, at 37 ◦C.
Straightaway the following incubation, the cells were harvested, washed with PBS, fixed in
1 mL of ice-cold methanol for 30 min, washed again, and resuspended in 500 µL of PBS.
This was followed by the incubation with 1 mL of HCl 4 M (Mallinckrodt Baker, Deventer,
The Netherlands), for 20 min, two washing steps with PBS, a blocking step (PBS containing
0.5% Tween 20 and 0.05% BSA), and finally 1 h incubation at room temperature with the
primary antibody against BrdU (1:20, Bu20a, Dako, Glostrup, Denmark). Next, the cells
were further washed with PBS and incubated with the secondary antibody labeled with
FITC (1:200, polyclonal rabbit anti-mouse, Dako, Glostrup, Denmark), for 30 min at room
temperature washed two times and resuspended in 500 µL of PBS. Data acquisition was
performed with a BD Accuri C6 flow cytometer (BD Biosciences, San Jose, CA, USA).

4.6. Anti-Inflammatory Effects of Extracts

To assess the anti-inflammatory potential of the lipidic extracts, two assays were
performed. The Human red blood cell (HRBC) membrane stabilization assay, induced by
heat, was used first; it allowed to observe if any extract holds the potential to stabilize
lysosomal membranes. The second assay is specific to a prostaglandin-endoperoxide
synthase, human COX-2 enzymatic activity inhibition—and helps conclusion on whether
any extract has the potential to be used as a non-steroidal anti-inflammatory agent. The
study was conducted according to the guidelines of the Declaration of Helsinki, and ap-
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proved by the Institutional Ethics Committee of CIIMAR (protocol code 001/2020 and date
of approval 8 June 2020).

4.6.1. Human Red Blood Cell (HRBC) Membrane Stabilization Assay

Human fresh blood was collected intravenously to heparinized tubes, from a healthy
volunteer that was not taking any non-steroidal anti-inflammatory drugs (NSAIDs) for
2 weeks before the experiment. Blood was centrifuged at 700× g for 10 min and super-
natant (plasma) was removed. Hence human red blood cells (HRBC) were washed three
times with an equal volume of isotonic PBS (10 mM sodium phosphate buffer(Alfa Aesar,
Massachusetts, US) pH 7.4) and then reconstituted at 40% (v/v) suspension. Salicylic acid
at 500 µg mL−1 was used for positive control and PBS with 20% of DMSO (AppliChem,
Darmstadt, Germany) for negative control.

Each extract, prepared as explained in Section 2.2, at concentrations of 130, 150,
120, and 450 mg·mL−1, for A, E, HI, and EL, respectively, were resuspended in PBS
containing 20% of DMSO, and then mixed in 1:1 (v/v) with a solution of HRBC in 2% in
PBS. Samples were incubated at 56 ◦C for 20 min, cooled in tap water, and centrifuged at
700× g for 5 min, and the supernatant was collected. The absorbance of the supernatant
was measured spectrophotometrically at 560 nm using a microplate reader (Thermofisher
GO, New Hampshire, EUA) [73]. The percentage of inhibition was calculated for each
extract as:

% inhibition = [(AbsE − AbsEB) − AbsC]/AbsC × 100 (1)

where AbsE denotes supernatant absorbance after reaction with extract; AbsEB denotes
extract absorbance at 560 nm; and AbsC denotes the control absorbance of PBS with
20% of DMSO.

4.6.2. Cox Human Inhibitory Screening Assay

The anti-inflammatory potential of the extracts was assessed via an enzyme inhibitory
assay—inhibition of COX-2 enzymatic activity, using the COX-2 Enzyme Activity Assay
Kit (Cayman Chemical, Michigan, MI, US), according to the manufacturer’s instructions.
Dried lipidic extracts were diluted in DMSO, and assayed at different concentrations—75,
125, and 250 µg·mL−1.

In this assay, arachidonic acid (AA) served as a substrate for the human recombinant
COX-2 enzyme, thus leading to the production of prostaglandin. The assay measures
PGF2α produced by SnCl2 reduction of COX-derived PGH2. The PGF2α levels pro-
duced in the presence versus absence of test products were quantified through an enzyme
immunoassay—using an antibody that binds to all major prostaglandin compounds, results
are expressed in percent of inhibition, calculated according to kit instructions.

4.7. Cytotoxicity Evaluation

Cytotoxicity of the extracts was evaluated by measuring the viability of Human
Cardiac Microvascular Endothelial Cells (HCMEC) obtained from the American Type
Culture Collection (ATCC). Cells were seeded in a 96-well plate with a final concentration
of 10 × 104 cells mL−1 with Dulbecco’s Modified Eagle Medium (DMEM) (Sigma-Aldrich
(St. Louis, MO, USA) for 24 h.

The cellular viability was assessed by the mitochondrial-dependent reduction of 3-(4,5-
dimethylthiazole-2-yl)-2,5-diphenyltetrazolium bromide (MTT) (Sigma-Aldrich (St. Louis,
MO, USA) to formazan, quantified by optical density measurement at 510 nm, as described
by Lopes et al. [74]. Several concentrations of the extracts were tested: 50, 100, 200, and
300 µg·mL−1—using DMSO 1% as negative control and DMSO 20% as the positive control.
The assay was independently repeated four times, with duplicate extracts. Cytotoxicity was
expressed as a percentage of cell viability, considering the values of the negative control as
100% viability.
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