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Abstract
This thesis covers the development of decision-support tools to support the management of water systems.
The proposed models incorporate various optimisation techniques, including Data Envelopment Analysis
(DEA), Directional Distance Functions (DDFs), Mixed-Integer Linear Programming (MILP) models, and
Evolutionary Algorithms. The decision support tools proposed in this thesis aim to assess cost-efficiency,
service quality, asset management practices, and infrastructure investment selection in water systems. Con-
sequently, the results obtained reflect the utilities’ accomplishments from multiple perspectives.

The thesis covers five main topics. The first topic involves determining the optimal operating costs of
a group of water supply and wastewater utilities. DEA is utilised to undertake this benchmarking exercise
in collaboration with a regulatory authority for the sector. The use of robust and conditional approaches for
the estimation of efficiency helps mitigate the effect of extreme performers and adjust the efficiency scores
to the context in which the utilities operate.

The second topic focuses on measuring the quality of the service provided by water utilities. A synthetic
performance indicator is introduced to reflect the assessment of service quality, inspired by the framework
developed by the World Bank. According to this framework, utility performance is expressed by the dimen-
sions of reliability, safety, inclusiveness, transparency and responsiveness. The approach proposed uses
directional Benefit-of-the-Doubt (BoD) composite indicator models.

The third topic explores asset management performance. Two Benefit-of-the-Doubt composite indica-
tors are introduced, reflecting both the managerial practices and infrastructure operation conditions, based
on the metrics collected by the sector’s regulator authority. The method is applied to a pool of wholesale
water supply companies, and the performance of the utilities is appraised for a five-year period. The effect
of contextual variables is also evaluated using conditional formulations of BoD models.

The fourth topic is focused on the identification of the appropriate peers and the most suitable targets in
terms of asset management achievements. The Benefit-of-the-Doubt composite indicators developed for the
third topic are enhanced to allow the identification of peers and targets. A sample of retail water operators
is used to test the developed tools.

The fifth topic is dedicated to the identification of efficient portfolios of infrastructure investment
projects. Mixed-Integer Linear Programming (MILP) models are constructed to allow the optimum alloca-
tion of available capital or to maximise infrastructure condition. An evolutionary algorithm is employed to
determine intermediate solutions that provide alternative portfolios. These methods are applied to a pump-
ing station infrastructure of a Portuguese water company, and can guide decision-makers in the selection of
the investments that should be undertaken.

The management of water resources is becoming an increasingly pressing issue in light of climate
change, limited resources to meet human needs, and deteriorating infrastructure with mounting capital
investment needs. The present research presents innovative decision-making models that aim to respond
to these challenges and guide water systems management. Moreover, some of the decision support tools
developed in this work can potentially be adapted for use in other sectors, thereby extending the applicability
of these models beyond the water sector.

keywords: Asset management, Benefit-of-the-Doubt, Benchmarking, Capital investment planning, Com-
posite indicator, Data Envelopment Analysis, Directional Distance Functions, Efficiency Analysis, Evolu-
tionary Algorithms, Mixed-integer Linear Programming, Performance Indicator, Project Selection, Water
Regulation, Water Supply, Wastewater Treatment, Water Systems.
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Resumo
Esta tese abrange o desenvolvimento de ferramentas de apoio à decisão para dar suporte à gestão de sistemas
de água. Os modelos propostos incorporam várias técnicas de otimização, incluindo Análise Envoltória de
Dados (DEA), Funções de Distância Direcional (DDFs), Modelos de Programação Linear Inteira Mista
(MILP), e Algoritmos Evolutivos. As ferramentas de apoio à decisão propostas nesta tese visam avaliar a
eficiência de custos, a qualidade do serviço, as práticas de gestão de ativos e a seleção de investimentos em
infraestruturas em sistemas de água. Consequentemente, os resultados obtidos refletem o desempenho das
empresas de abastecimento de água e de tratamento de águas residuais a partir de múltiplas perspectivas.

A tese inclui cinco tópicos principais. O primeiro tópico envolve a determinação dos custos opera-
cionais ótimos de um grupo de empresas de abastecimento de água e de tratamento de águas residuais.
Utilizou-se DEA para efetuar este exercício de avaliação comparativa em colaboração com uma autoridade
reguladora do sector. A utilização de abordagens robustas e condicionais para a estimação de eficiência
ajuda a atenuar o efeito dos desempenhos extremos e a ajustar as avaliações de eficiência ao contexto em
que as empresas de serviços públicos operam.

O segundo tópico centra-se na medição da qualidade do serviço prestado pelas empresas de água
e saneamento. É introduzido um indicador sintético de desempenho para refletir a avaliação da quali-
dade do serviço, inspirado na abordagem desenvolvida pelo Banco Mundial. De acordo com essa abor-
dagem, o desempenho das empresas é expresso pelas dimensões de confiabilidade, segurança, inclusivi-
dade, transparência e responsividade. O método proposto utiliza modelos direcionais de indicadores com-
pósitos do tipo Benefício da Dúvida (BoD).

O terceiro tópico explora o desempenho em gestão de ativos. São introduzidos dois indicadores com-
pósitos do tipo Benefício da Dúvida, refletindo tanto as práticas de gestão como as condições de operação
das infraestruturas, com base nas métricas recolhidas pela autoridade reguladora do setor. O método é
aplicado a um conjunto de empresas de abastecimento de água em alta, e o desempenho das empresas é
avaliado para um período de cinco anos. Além disso, o efeito das variáveis contextuais é estimado usando
formulações condicionais dos modelos BoD.

O quarto tópico tem foco na identificação dos benchmarks apropriados e dos objetivos mais adequados
em termos dos resultados em gestão de ativos. Os indicadores compósitos do tipo Benefício da Dúvida de-
senvolvidos para o terceiro tópico são aprimorados para permitir a identificação de benchmarks e objetivos
a atingir. Uma amostra de operadores de água em baixa é utilizada para testar as ferramentas desenvolvidas.

O quinto tópico é dedicado à identificação de portfólios eficientes de projetos de investimento em
infraestruturas. Foram propostos modelos de programação linear inteira mista (MILP) de modo a permitir
a melhor aplicação possível do capital disponível ou a maximizar a condição das infraestruturas. Foi usado
um algoritmo evolutivo para determinar soluções intermédias que fornecem portfólios alternativos. Esses
métodos foram aplicados a uma infraestrutura de estação de bombagem de uma empresa portuguesa de
fornecimento de água, e permitem orientar os decisores na seleção dos investimentos a executar.

A gestão dos recursos hídricos está a tornar-se uma questão cada vez mais urgente à luz das alterações
climáticas, dos recursos limitados para satisfazer as necessidades humanas, bem como da deterioração
das infraestruturas, que requerem investimentos de capital muito significativos devido ao envelhecimento
dos ativos. A presente investigação apresenta modelos inovadores para a tomada de decisão, que visam
responder a esses desafios e guiar os esforços de melhoria contínua no setor de água. Além disso, alguns
dos instrumentos de apoio à decisão desenvolvidos neste trabalho podem ser potencialmente adaptados para
utilização em outros setores, alargando assim a aplicabilidade destes modelos para além do setor da água.

Palavras-chave: Gestão de Ativos, Benefit-of-the-Doubt, Benchmarking, Planeamento de Investimento
de Capital, Indicador Compósito, Data Envelopment Analysis, Funções de Distância Direcional, Análise de
Eficiência, Algoritmos Evolutivos, Programação Linear Inteira Mista, Indicador de Desempenho, Seleção
de Projectos, Regulação de Água, Abastecimento de Água, Tratamento de Águas Residuais, Sistemas de
Água.
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CHAPTER 1
Introduction

This chapter contextualises the research topic investigated in this thesis. Section 1.1 states the research

motivation and the reasons for examining the water sector. Section 1.2 presents the research objectives of

the thesis. Section 1.3 showcases the main contributions of the thesis. Finally, the thesis outline is described

in section 1.4.

1.1 Motivation

Access to safe drinking water, sanitation, and hygiene services is critical for human health. How-

ever, current progress towards achieving universal access to these services is slower than required,

and billions of people are at risk of being left without them. The challenges to sustainable water

management are vast and complex, with increasing demand due to population growth, urbanisa-

tion, and pressure from agriculture, industry, and energy sectors. Decades of misuse, poor man-

agement, and contamination have led to water stress and degraded water-related ecosystems, with

far-reaching impacts on human health, economies, and food and energy supplies. Urgent action is

needed to reverse this trend and ensure sustainable access to water resources for all.

According to the United Nations World Water Assessment Programme Report (WWAP, 2016),

more than 40% of the global active workforce, which is over one billion jobs, heavily rely on water.

These water-intensive jobs are present in various sectors, such as agriculture, forestry, inland fish-

eries, mining, power generation, water supply and sanitation, as well as manufacturing industries

like food, pharmaceuticals, and textiles. Moreover, over one-third of the world’s total active work-

force, representing another billion jobs, are moderately water-dependent. These jobs are found

in sectors such as construction, recreation, transportation, and manufacturing and transformation

industries such as wood, paper, rubber/plastics, and metals.

The United Nations has set forth the 2030 Agenda for Sustainable Development, which re-

quires countries to implement a structured process of tracking and assessing their progress towards

achieving the goals and targets. This involves using standardised global indicators that provide a

framework for measuring and evaluating performance. Monitoring and review processes are vital

for promoting transparency, accountability, and continuous improvement towards sustainable de-

velopment. Goal 6 of the 17 Sustainable Development Goals (SDGs) established by the United

Nations (UN) focuses on water and sanitation, aiming to provide safe and accessible drinking wa-

ter and sanitation for everyone. A closer look at the United Nations’ SDGs reveals that all of them,
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in a certain way, prioritise the sustainable use and consumption of water, making Goal 6 the cen-

trepiece for achieving all SDGs. As such, all SDGs can be considered interconnected with Goal 6.

This relationship is illustrated using a water-centric figure (Figure 1.1) presented by Makarigakis

and Jimenez-Cisneros (2019). The figure effectively displays how water is central to achieving

sustainable development across all sectors.

Figure 1.1: The water centric 17 Sustainable Development Goals (Makarigakis and Jimenez-
Cisneros, 2019)

The UN Sustainable Development Goals Report (United Nations, 2022) shows that there has

been an increase in the proportion of the global population with access to safely managed drinking

water and sanitation services. However, there are still significant challenges to overcome. As of

2020, 2 billion people still lack access to safe drinking water, with 1.2 billion people lacking even

basic service, and the majority of those without access to drinking water live in rural areas and least

developed countries. Similarly, access to safely managed sanitation services remains a challenge,

with 2.8 billion people lacking access as of 2020. While the world is on track to eliminate open

defecation by 2030, the increase in access to hand washing facilities with soap and water has been

minimal. Despite improvements, over 829,000 people still die each year from diseases caused by

unsafe water, inadequate sanitation, and poor hygiene practices. To achieve universal coverage by

2030, the rate of progress would need to increase fourfold. While a vast collection of “sustainable

approaches” have been conceptualised and implemented in the water industry since the publication

of UN SDGs, there is still room for improvement to maximise the tangible benefits they provide

(Silva, 2022).

Water and wastewater systems are complex and essential infrastructure systems for societies,
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consisting of pipes, valves, pumps, and reservoirs. However, managing the reliability of these com-

plex networks spread over large territorial areas, while keeping operational costs under control, is

a challenging task. Interruptions to these systems can have significant social and legal implica-

tions, as failures can happen unexpectedly and may have cascading effects on other systems. The

consequences of failures in a water system can be extensive, causing damage to adjacent struc-

tures, disrupting transportation and commerce, and impacting urban life. These asset-intensive

systems require effective management of asset portfolios to sustain their level of service, and

maintenance and preservation initiatives must be in place to minimise interruptions and breakage

events (Mazumder et al., 2018).

Given the essential role of water systems in our daily lives and the challenges faced by these

critical infrastructure networks, it is imperative that we prioritise and accelerate efforts to improve

management practices. This thesis aims to address various aspects of water supply and sanitation

utilities, ranging from cost-efficiency to service quality and asset management, in order to reach

their critical goals. To achieve these objectives, a set of analytical tools and strategies is proposed

to guide decision-making processes. These tools support decision-makers in selecting areas to

focus their efforts and identifying the most effective alternatives to ensure the greatest possible

gains with existing resources. The tools developed are based on frontier methods and optimisation

techniques, which promote transparency through methodological rigour in data treatment. By

leveraging advanced data analytics tools and techniques, water utilities can gain deeper insights

into their operations and identify opportunities for continuous improvement.

It should be noted that this thesis is structured as a compilation of papers, and thus certain

ideas and terminology may be reiterated across different sections.

1.2 Research goals

The main objective of this thesis is to develop innovative models, using mathematical program-

ming techniques, with a particular focus on optimisation and frontier methods, to tackle man-

agement issues faced by water utilities. The goal is to provide support for evaluations both at the

organisational and industry levels. To ensure the practical relevance of the proposed developments,

real-world data from water utilities are utilised in illustrative applications.

This thesis fits into the research of frontier methods and optimisation. The work gives a par-

ticular emphasis to the use of the Data Envelopment Analysis (DEA) technique, including the use

of the Benefit-of-the-Doubt (BoD) approach, for organisational performance measurement. Ad-

ditionally, the research applies optimisation methods, namely Mixed-Integer Linear Programming

(MILP) and evolutionary methods. In this thesis, the mathematical models developed are referred

to as Decision Support Tools (DSTs). These tools, along with the results of their real-world appli-

cations and the interpretation of those results, constitute the primary outcomes of the work.

The connecting thread of this thesis is depicted in Figure 1.2. This figure illustrates the con-

nections between the pressing issues faced by water utilities, the challenges they must address,
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the methods employed in the thesis to build decision support tools, and the resultant utilities’

decision-making processes facilitated by the developed tools.

Figure 1.2: Connecting thread of the thesis

The pressing issues encompass climate change, population growth, regulatory compliance, and

infrastructure deterioration. These issues serve as motivating factors for water utilities to enhance

their management practices and tackle significant challenges head-on.

Within this thesis, the challenges explored revolve around cost-efficiency, service quality, and

asset management. These challenges, in turn, drive the development of decision support tools

based on DEA, BoD, MILP and evolutionary methods. These tools are specifically designed to

assist utilities in making informed decisions regarding continuous improvement actions.

The research goals of this thesis are closely aligned with each decision process facilitated by

the developed tools, ensuring that the objectives of the study are interconnected with practical

applications and real-world utility scenarios.

In the following paragraphs, the research goals of the thesis are introduced.

The first research goal is to develop a model to assess the optimal operational cost (OPEX)

level of a group of wholesale water utilities in a benchmarking exercise. The proposed model is

used to guide decision-making to promote improvements in cost management within utilities.
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The second research goal is to build an assessment tool capable of measuring the service

quality performance of water and wastewater companies. Based on the benchmarking results,

companies and the regulatory authorities can make informed decisions regarding improvement

actions aiming at enhancing service quality.

The third research goal is to develop an assessment model that facilitates both internal and

external benchmarking practices regarding asset management. This model evaluates the oper-

ational results and management features of utilities in relation to their infrastructure. Internal

benchmarking compares a utility’s performance across different years, while external benchmark-

ing compares different utilities against each other. The tools developed through this research can

assist utilities and regulatory authorities in enhancing utility results.

The fourth research goal is to provide a decision tool that enables the identification of the

most suitable peers and achievable targets for asset management in water utilities. The models

developed can be useful to reveal effective practices in asset management and help companies

achieve better results.

Lastly, the fifth research goal to propose tools that can support managers in determining the

most suitable set of infrastructure projects to undertake. These decision support tools contribute

to efficient project selection and execution.

1.3 Main contributions

This section highlights the most significant and innovative aspects of this thesis that represent ad-

vancements beyond the current state-of-the-art in scientific research. It also describes the practical

contributions made by the empirical studies reported in the thesis, based on real-world utility data

from the water sector. Those case studies offer concrete examples of how the developed methods

can drive positive change in the water sector, demonstrating their practical impact on decision-

making process. The following paragraphs outline the specific contributions of each case study,

along with the information regarding the sampling used for each case. The contributions of each

case study are referenced to their respective chapters in the thesis, as indicated in Figure 1.2.

Chapter 4 presents a novel approach for evaluating the efficiency of water utilities that takes

into account their peers’ performance, as well as their operational context. The study uses robust

and robust conditional order-m Data Envelopment Analysis (DEA) models to assess the optimal

OPEX level of water supply and wastewater treatment services operating in the wholesale market.

A standout feature of this work is its emphasis on collaboration with the regulatory authority. This

has allowed for the development of a practical decision-making tool that can guide improvements

in cost-efficiency within the water sector, supporting the activities of both utility managers and

regulators. The data used in this study was collected from the annual results of ten wholesale

water supply utilities and 12 wholesale wastewater utilities, between 2017 and 2021.

Chapter 5 provides an innovative method for evaluating the quality of water utility services,

based on the users’ perspective framework introduced by the World Bank. This novel approach
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utilises the Benefit-of-the-Doubt (BoD) technique to construct composite indicators, and intro-

duces the Deck-of-cards method (DCM) to develop a transparency metric. The study also provides

utilities and regulators with a practical tool for assessing service quality and directing continuous

improvement actions. The data utilised in this study was obtained from the annual reports of ten

wholesale water supply and 12 wholesale wastewater utilities from Portugal. The data collection

period extended from 2016 to 2021.

In Chapter 6, a bi-dimensional asset management evaluation framework is presented, based

on Benefit-of-the-Doubt (BoD) composite indicators. This method is novel in the literature, as it

utilises metrics collected by a regulatory authority from utilities to construct composite indicators

with a focus on asset management practices. Additionally, the method provides a means of bench-

marking utility performance over time, reinforcing its practical relevance in the water sector. The

data used in this study was collected from annual reports of ten wholesale water supply utilities

from Portugal, spanning a period of five years, specifically from 2016 to 2020.

Chapter 7 introduces a method for identifying peers and targets in water retail utilities with

regards to asset management practices based on BoD models, which has not been explored in the

literature. By identifying suitable peers for benchmarking in asset management, utilities can anal-

yse sector best practices and benefit from them. The method also establishes individual targets

for each utility, based on the metrics considered in the assessment, which are more realistic than

the general goals established by the regulatory authority for the whole sector. This facilitates im-

provement actions and strengthens the practical application of the method. The sample employed

in this study consisted of 223 retail water utilities in Portugal, and the data collected pertained to

the year 2020.

In Chapter 8, a new method is presented for selecting and prioritising capital projects in water

utility infrastructures, using the widely recognised Infrastructure Value Index (IVI). This method

utilises optimisation techniques, namely multi-integer linear programming (MILP) and evolution-

ary algorithms, to facilitate investment project portfolio decisions. The IVI has not previously

been used in optimisation methods in the literature, which characterises the innovative feature of

this study. The procedures developed in this work can be utilised by water utilities to guide invest-

ment decisions in infrastructure, supporting enhanced initiatives in asset management. The sample

utilised in this study was obtained from the infrastructure of a water utility based in Portugal.

1.4 Thesis outline

The remainder of this thesis comprises the following chapters:

Chapter 2 examines the pressing issues faced in managing modern water systems, such as cli-

mate change, population growth, regulatory demands and deteriorated infrastructure. These issues

underscore the significance and urgency of this research, as it seeks to provide innovative solu-

tions for enhancing the efficiency and effectiveness of water system management in overcoming

the challenges of cost-efficiency, service quality and asset management.
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Chapter 3 provides a comprehensive introduction to the critical concepts related to the de-

cision support tools that will be explored in greater detail throughout the thesis. These tools are

based on frontier methods such as Data Envelopment Analysis (DEA), including the Benefit-of-

the-Doubt (BoD) approaches and optimisation techniques. Furthermore, the chapter showcases

decision support tools as a means of overcoming these obstacles and achieving desired goals. The

tools can help decision-makers optimise water management strategies and make informed choices,

paving the way for more sustainable and resilient water systems.

Chapters 4, 5, 6, 7 and 8 are dedicated to the empirical studies focusing on achieving the re-

search goals as indicated in Section 1.2, and detailed in Section 1.3. The investigations conducted

within these chapters have led to the publication or submission of papers to reputable journals, with

the intention of making valuable contributions to the existing literature and fostering engagement

within the scholarly community.

Chapter 9 presents the main conclusions of this thesis, including the contributions achieved

and the research limitations. Insights extracted from the illustrative applications and directions for

future research are also highlighted.
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CHAPTER 2
Challenges and trends in water utility

management
This chapter provides an overview of the water utility management issues addressed in this thesis and their
relevance in the current context. The importance of this research lies in the urgent need for improved wa-
ter management practices, as safe and reliable water supply and effective wastewater treatment are crucial
for public health and environmental sustainability. The chapter discusses the pressing issues in water sys-
tem management, such as climate change, population growth, infrastructure deterioration and regulatory
compliance, which require a multidisciplinary approach for effective management strategies. These issues
create challenges that need to be addressed by management in various perspectives such as cost-efficiency,
service quality and asset management. Moreover, the chapter discusses the emerging trends in water utility
management.

2.1 Introduction

Water and wastewater systems are collectively denoted as “water utilities” (ISO, 2007a,b,c). The

management of these utilities involves overseeing and maintaining water supply and sanitation sys-

tems, encompassing a wide range of activities such as planning, designing, constructing, operating,

and maintaining water infrastructure, as well as managing the financial, legal, and regulatory as-

pects of water services. It is essential for all utilities, regardless of their size or location, to manage

every aspect of their operations effectively. This is critical for their long-term sustainability and

for maintaining the communities that they serve strong, safe, and sustainable (Bloetscher, 2011).

Essentially, good management practices should be viewed as tools to enhance utilities’ efficiency

and quality of service and foster continuous improvement. The management processes serve as

an umbrella, protecting managers from the environment and helping them navigate through their

work. Effective water utility management is a challenging task, as it involves a wide range of

activities, including setting goals and targets, monitoring and evaluating performance, managing

resources, and engaging with stakeholders. It also requires the use of innovative technologies and

tools to improve operations and reduce costs (AWWA, 2004).

The idea of water security can be taken as the ultimate objective of managing water systems

at the utility level. Water security is widely recognised as a crucial concept in the pursuit of

sustainable practices in the water sector (Nazemi and Madani, 2018). However, as noted by Marcal

et al. (2021), there is no consensus on a specific definition of water security. In their review of

9
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various frameworks on this concept, these authors advocate for the use of the United Nations’

definition, which defines water security as “the capacity of a population to safeguard sustainable

access to adequate quantities of acceptable quality water for sustaining livelihoods, human well-

being, and socio-economic development; for ensuring protection against water-borne pollution and

water-related disasters; and for preserving ecosystems in a climate of peace and political stability.”

According to Leigh and Lee (2019), managing sustainable urban water systems involves find-

ing a delicate balance that addresses a multitude of priorities, including (i) social objectives for a

fair distribution of water resources and costs, (ii) economic objectives for ensuring water quantity

and quality, and (iii) environmental objectives for providing long-term water supply. The conflicts

between these priorities should be minimised. Furthermore, the focus should be on creating water

systems that are both sustainable and responsive, meaning that they are resilient to disturbances

and possess the ability to adapt and evolve to maintain essential functions while guiding their own

adaptation toward a more desirable state. This paradigm is widely discussed in the literature and

referred to as Sustainable Urban Water Management (SUWM) (Marlow et al., 2013; Brown and

Farrelly, 2009; Keath and Brown, 2009; Hurlimann and Wilson, 2018).

Overall, water utility management is a complex and demanding task, but it is essential for

ensuring that water resources are used sustainably and that communities have access to the water

and sanitation services they need to thrive.

The remainder of this chapter is structured as follows: Section 2.2 presents the main char-

acteristics of water utilities, Section 2.3 discusses the critical challenges in the management of

water utilities, Section 2.4 presents the emerging trends for managing water utilities and Section

2.5 provides the conclusions.

2.2 Water supply and wastewater utilities

This section aims to characterise water utilities for water supply and sanitation and describe their

main elements.

Urbanisation has a profound impact on the natural water cycle, leading to a more intricate

hydrological cycle in urban areas due to various human activities and interventions. This complex

hydrological cycle in urban areas is commonly known as the urban water cycle (UWC), and it com-

prises several components and pathways, as depicted in Figure 2.1. According to Marsalek et al.

(2008), the UWC is a valuable framework for studying the water balance in urban areas. The high

level of interaction among the elements of the UWC, as seen in Figure 2.1, underscores the need

to understand these interactions for effective urban planning and integrated management of urban

water systems. Pinto et al. (2023) emphasise that integrated management of the UWC is crucial

for ensuring the sustainability and resilience of urban water systems. To achieve this, the system

must be viewed as a whole, considering the inter-dependencies of the various elements. Although

these interactions can create complexity, they also present opportunities for synergies and gains in

integrated management. For instance, treated wastewater can be used for non-potable purposes,

reducing the demand for fresh water resources. Franco-Torres et al. (2021) outline that with the
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adoption of a new approach that emphasises the coordinated management of water systems, it is

possible to repurpose stormwater as potable water, assess leaky sewers as source of pollution for

water supply, and take wastewater as a valuable resource for replenishing groundwater aquifers.

As discussed by McConville (2023), there is a growing trend in the sanitation industry to view

wastewater as a resource rather than waste. This has resulted in proposals and implementations

of separate collection systems for various wastewater fractions. Separating wastewater by lev-

els of contamination can simplify the treatment processes since the volumes requiring advanced

treatment will be only a fraction of the total wastewater volumes.

Figure 2.1: Urban Water Cycle (Marsalek et al., 2008)

Although the need for integrating the activities of the UWC has been widely discussed, the

structure of the water industry varies significantly across the globe in terms of activities undertaken

by individual businesses, size, customer base, private sector involvement, competition, regulation,

and oversight. Water businesses typically perform a range of activities including water collec-

tion, transfer, treatment, distribution, sewerage collection and treatment, irrigation, and drainage.

Various factors, such as the source of water, geography, geology, topography, customer type, de-

mand, and density, influence the activities undertaken by water businesses. According to Abbott

and Cohen (2009), in many small to medium-sized markets, water businesses operate as vertically

integrated monopolies, while larger metropolitan areas may present several vertically integrated

entities coexisting with separate local distribution networks.

Abbott and Cohen (2009) highlight the significant capital costs associated with water supply

networks as a major barrier to competition. Compared to energy distribution systems where dis-

tribution infrastructure costs represent only 40% of the supplied electricity, the cost of water and

distribution systems accounts for two-thirds of the water supply, making it expensive to duplicate

and contributing to the creation of natural monopoly conditions. These factors make it difficult for
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new players to enter the market and offer competitive prices, which can ultimately lead to higher

prices and reduced innovation.

Water supply and wastewater services can be managed jointly or as separate “management

entities”. Examples of typical operational stages found in infrastructures of water supply and

wastewater utilities can be seen in Figure 2.2a and 2.2b, respectively.

(a) Water Supply

(b) Wastewater

Figure 2.2: Typical operational stages of water and wastewater utilities (ERSAR, 2021a)

As seen in Figure 2.2a, water supply utilities collect raw water from various sources such as

rivers, lakes, ground water, underground aquifers and reservoirs. Most of these water sources

can not be directly consumed, so they must be treated. The choice of an appropriate treatment

method depends on various factors, with the raw water quality being the primary driver. Filtration,

coagulation, and disinfection are some of the possible treatment methods that can be employed to

achieve suitable water quality (Adedeji and Hamam, 2020).

Pumping is utilised to facilitate the movement of water, including to locations at higher eleva-

tions, by adding energy to the flow and raising pressure levels. They are applicable in various sec-

tions of a water supply system, such as conveying untreated water from the source to a treatment

facility, pressurising water to be distributed to the system, and enhancing pressure in segments

of the system that experience low pressure (i.e., booster pumps). Adduction systems are usually

employed to convey raw water to treatment and treated water to storage tanks.

Storage tanks are used for several purposes, such as meeting variable demands, balancing

operating pressure, and serving as a reserve for emergency and firefighting needs.

Distribution networks consist of various pipe types, such as water transmission mains that

transfer potable water from storage facilities to different parts of the system, including supply

pressure zones or district metered areas. Distribution pipes, which have a smaller diameter than

transmission mains, distribute potable water within local areas. Supply/customer connection pipes

connect individual end-user properties to the water distribution system (Farmani and Sweetapple,

2023).
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In wastewater systems, as displayed in Figure 2.2b, the drainage or collection of wastewater

is primarily done through piped sewer systems. Depending on the terrain and size of the area

being served, pumping stations can be required in the collection and transportation systems. Con-

ventional wastewater treatment uses physical, biological, and chemical processes to purify the

incoming wastewater in response to increasingly stringent treatment standards. Initially, treatment

focused on removing suspended solids and pathogens, known as primary treatment. The devel-

opment of secondary treatment processes in the 1960s was in response to the need for reduction

of dissolved organic matter. In the 1970s, tertiary treatment processes emerged for phosphorus

and nitrogen removal, with widespread adoption in the 1990s. Today, the majority of high-income

countries’ wastewater treatment plants have at least a secondary treatment, if not a tertiary treat-

ment. However, it is important to note that treatment levels vary between countries.

The final stage of the sanitation service chain involves either rejection or reuse of treated

products. Conventional urban sanitation systems in high- and middle-income countries generally

produce effluent water and sewage sludge, which are often released into local waterways. How-

ever, reuse of treated wastewater is becoming more common, especially in water-stressed areas. In

Europe, only slightly over 2% of the treated urban wastewater effluent is currently being reused.

Nevertheless, the European Commission is taking steps to encourage and facilitate water reuse by

developing rules and incentives. In contrast to Europe, Singapore, a country facing water scarcity,

has made significant progress in water reuse. Treated wastewater is used for direct non-potable

use and indirect potable use, meeting over 40% of its total water demand. Meanwhile, reuse of

organic matter and nutrients from sanitation systems is more prevalent worldwide compared to

treated wastewater reuse (McConville, 2023).

2.3 Critical challenges in management of water utilities

To provide a comprehensive understanding of the management of water utilities, it is crucial to

highlight the major challenges that must be tackled. This section aims to provide an overview

of the significant challenges that water utilities encounter in achieving sustainable and effective

management. Subsection 2.3.1 outlines the most pressing issues in the current scenario, while

subsections 2.3.2, 2.3.3, and 2.3.4 delve into specific challenges related to cost-efficiency, ser-

vice quality, and asset management, respectively. Finally, subsection 2.3.5 describes the recent

approaches developed to address these challenge and highlights the contributions of this thesis.

2.3.1 Pressing issues for sustainable and effective management of water utilities

According to Haasnoot et al. (2011), the future of water management is demanding and sometimes

unpredictable due to factors such as climate change, population growth and regulatory pressing

issues. These factors create uncertainties that may require transdisciplinary water management

strategies, making it essential to identify the most sustainable strategy to adopt (Larsen et al.,

2016). Water-related challenges are commonly expressed by professionals using the phrase “too
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much, too little, or too polluted.” This succinct statement captures the three primary issues re-

lated to water management that pose significant challenges in various contexts (Makarigakis and

Jimenez-Cisneros, 2019).

Some urgent concerns currently faced by water utilities are:

• Climate Change

Changes in weather patterns and increasing frequency of extreme weather events can impact

water availability and quality. Climate change impacts water system management particu-

larly in terms of planning, building, and maintenance. The rise in global temperatures is

leading to extreme weather cycles, such as floods and droughts, while sea levels are also

increasing, resulting in droughts in some regions that negatively affect water sources. Addi-

tionally, the combination of decreasing precipitation rates and increasing extraction rates is

putting stress on groundwater supplies. With two-thirds of the world’s mega-cities located

in climate-vulnerable regions, water utilities must improve water resource management and

infrastructure to provide safe water to residents. Diversifying water sources through sus-

tainable practices like groundwater extraction, water trading, conservation, and the use of

recycled or desalinated water is crucial to managing these challenges (Danilenko et al.,

2010; Vairavamoorthy et al., 2008; Wilby, 2007).

• Population Growth

In just the last century, the global population has grown by approximately four times, and

during that same time, human water usage has increased significantly, with agricultural,

industrial, and municipal usage growing approximately five, 18, and 10 times, respectively

(Nazemi and Madani, 2018). In the years to come, water demand is projected to rise notably

due to the global population growth, which could result in water scarcity (Pahl-Wostl et al.,

2016). Population growth is concentrated in regions with less abundant water, including

Sub-Saharan Africa, the Middle East, and Central Asia. A forecast suggests that by 2050,

over 50% of the world population will live in regions that will face water scarcity at least

once a year (Ortega-Ballesteros et al., 2021). Sanitation systems are under similar pressure

to adapt to the increasing demand. As the demand in the water sector increases, putting

pressure on existing water systems, water utilities must find ways to meet this growing

demand while ensuring efficient use of resources.

• Regulatory Compliance

According to Marques and Pinto (2018), the establishment of regulatory agencies is deemed

necessary to protect the welfare of the general public, given the complexity of regulated sec-

tors which make it difficult to ensure their protection. The creation of these agencies is often

a part of the reform process with the aim to enhance the accountability of service providers,

to establish an independent pricing mechanism, and to utilise regulatory expertise. In order

to achieve these goals, autonomous regulatory bodies are endowed with legislative, execu-

tive, and judicial powers, allowing them to supervise operators and enforce the necessary
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rules. Water utilities must adhere to those various regulations and standards related to wa-

ter quality, infrastructure, and service provision. Meeting these requirements may entail

significant efforts and investments in technology, personnel, and infrastructure.

• Infrastructure Deterioration

Many cities and locations with ageing water infrastructure require immediate rehabilitation

to meet the demand. Some drinking water transmission systems in Europe and the United

States are over a century old, with some pipes dating back to the 19th century. Those laid

after World War II typically have a life span of 75 to 100 years, indicating that many are

reaching the end of their design life. Due to those conditions, there has been a 27% in-

crease in water main breaks between 2012 and 2018 in the United States, translating to

an estimated 250,000 to 300,000 breaks annually or a break every two minutes (Ortega-

Ballesteros et al., 2021; ASCE, 2021a). Regarding the wastewater systems, typically their

pipes have a lifespan of 50 to 100 years. As collection systems age, they deteriorate, caus-

ing groundwater and stormwater to infiltrate the networks through cracks and joints. When

collection systems become overwhelmed, sanitary sewer overflows may occur. In North

America, approximately 28% of mains are older than 50 years (ASCE, 2021b). Given this

scenario, infrastructure renewal and replacement ranking has been considered as the most

pressing issue in the sector according to the American Water Works Association Water In-

dustry report for ten consecutive years (ASCE, 2022). The results of decades of little or no

pipe replacement or refurbishment are low pressure and high leakage. Low pressure is a

symptom of systems not being able to cope with expansion. Leakage alone is estimated to

have an equivalent cost of USD 1 billion per year in selected African cities (Rouse, 2013).

Global water losses of 126 billion cubic meters per year, worth USD 39 billion, reflect in-

adequate infrastructure preservation. Saving half of these losses could provide water to 90

million people (Molinos-Senante et al., 2022c).

Effective management is of paramount importance to ensure the efficient and sustainable pro-

vision of water services by utilities. Management is faced with various challenges in the current

scenario, which arise from the constraints listed above that require immediate attention. Although

water utilities face a multitude of challenges (Hasit et al., 2012; EPA, 2017), some of the most

significant include achieving cost-efficiency, maintaining high service quality, and effective asset

management.

2.3.2 The cost-efficiency challenge

Achieving sustainable water use requires a focus on efficiency due to the high cost of operation and

maintenance in water utilities. However, some pricing modes, such as egalitarian pricing, hinder

efficiency and negatively impact sustainability. Bithas (2008), in a study that examined several

pricing modes, advocates that full-cost prices are necessary to promote social equity in the long run

and ensure sustainable water use. Water managers face the challenge of dealing with operational
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costs that are sometimes not covered by prices. Among these costs, energy, which is a significant

operational cost and increasing over time, plays a crucial role in water supply as all stages of water

supply utilities require energy. According to Coelho and Andrade-Campos (2014), the global

energy consumption for water distribution is around 7% of the total energy generated. Pumping

station operations are the primary consumers of energy in water supply systems, accounting for

50-80% of the total energy consumed. In Europe only, the estimated cost of energy for pumping

operations is between 2.9 and 3.9 billion e/year (Reis et al., 2023).

At a broader level concerning cost-efficiency, there are ongoing discussions regarding the most

effective structural arrangements for the water supply and wastewater sectors. This discourse in-

cludes integrating different scopes, such as water and wastewater or bulk and retail operations,

identifying opportunities for economies of scale, and determining management systems and own-

ership (Abbott and Cohen, 2009; González-Gómez and García-Rubio, 2008).

According to a literature review conducted by Berg and Marques (2011), the question of the

optimal size of water utilities is a commonly discussed topic in the water sector. However, the

results of the research on this issue are inconclusive and vary depending on the sample and out-

put mix analysed. The existing studies suggest that there are economies of scale up to a certain

point, but the implications for optimal utility size are unclear. Consolidation of geographically

separate utility operations may reduce managerial overhead costs, but coordination costs may rise,

making decisions slower with larger bureaucracies. Thus, determining the optimal size of utility

operators cannot be generalised, and location-specific factors are more important when evaluating

consolidation or decentralisation.

More research is needed to assess efficiency gains associated with economies of scope, such

as joint provision of drinking water supply with sanitation, or other activities like piped gas, elec-

tricity or urban waste. Vertical integration within water and sanitation utilities, i.e. providing

wholesale and retail services simultaneously, can result in some advantages for drinking water

supply. Economies of density, both in production and customer density, have been identified in

the literature.

Berg and Marques (2011) also discuss the issue of ownership in water utilities and identified

lack of consensus in the literature. While some economic theories suggest that the private sector

performs better, a review of 47 studies found that 18 concluded that private utilities are more

efficient, 12 found public utilities to be more efficient, and 17 were inconclusive. There is some

agreement that private utilities tend to have higher labour productivity but also higher capital

expenses. Historically, the public sector has tended to under invest in infrastructure and has lower

labour productivity.

2.3.3 The quality service challenge

Ensuring safe drinking water and reliable supply and sanitation services is a critical aspect of wa-

ter utility management. Water utilities must invest in water and wastewater treatment technologies

and establish effective water quality monitoring programs to safeguard public health. It involves
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maintaining water quality, preventing contamination, managing water resources, and ensuring ad-

equate storage and distribution systems. Making sure that the drinking water supplied by public

systems is of good quality is a crucial aspect of public health policies (Roeger and Tavares, 2018).

Moreover, the quality of utilities’ services is not limited to the physical quality of water and

wastewater. It also involves ensuring that these services are accessible and reliable. A frequently

used measure of utility performance is the uninterrupted provision of services, with a goal to pro-

vide available service 24 hours a day, 7 days a week (known as continuous supply), being regarded

as the ideal standard (Rawas et al., 2020). As stated by Kumar et al. (2013), assuring reliable and

safe water services is a highly intricate task, particularly in developing countries where piped wa-

ter supply is irregular, with low pressure, high leak rates, and poor maintenance practices along

the supply chain, leading to a significant gap between supply and demand. This inadequate water

supply is also unequally distributed among different consumer categories. Despite being the most

crucial factor in public health, a clean water supply is jeopardised by source contamination, deteri-

orating infrastructure of water distribution systems, leakages, cross-contamination, and unsanitary

practices. Diarrhea is the most frequent cause of illness and death globally, with 88% of these

deaths attributable to a lack of access to safe drinking water and adequate hygiene facilities.

Addressing these complex issues requires the implementation of comprehensive strategies that

encompass infrastructure investment, improved maintenance practices, and equitable distribution

of water resources. By prioritising the quality of services provided, water utilities play a crucial

role in advancing human society. Their efforts contribute to ensuring universal access to clean and

reliable water, a fundamental necessity for the well-being and prosperity of all individuals.

2.3.4 The asset management challenge

Effective management is essential for maintaining the infrastructure and assets required for the

provision of water services. Water utilities are asset-intensive systems, and asset management

practices are vital for ensuring their long-term sustainability. This involves developing and imple-

menting asset management plans to optimise the use of existing infrastructure, identify mainte-

nance and repair needs, and plan for future investments. Regular maintenance, repair, and replace-

ment of ageing assets are needed to ensure an uninterrupted water supply. Many water systems

were built decades ago and have reached the end of their design life. As a result, water utilities

must invest in upgrading and replacing ageing infrastructure to ensure reliable and efficient ser-

vice provision. The neglect of infrastructure preservation, especially water mains and sewers, is a

prevalent problem in many developed regions. These systems have long lifetimes and are difficult

to inspect, resulting in significant service disruptions before any visible deterioration occurs. Wa-

ter charges have been too low to save enough money for necessary replacements. While system

managers acknowledge the need for refurbishment, the political difficulty of increased govern-

ment subsidies or charges has hindered the implementation of renovation programmes. Only in

the United States, the investment in water infrastructure is estimated in USD 1.7 trillion up to 2050.

There is a similar backlog of investment in existing systems in developing countries. Many of the

systems were constructed in colonial times, and, although the cities have grown since that time,
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water supply systems have not been able to keep pace with urban development (Molinos-Senante

et al., 2022c).

The importance of enhancing the resilience of infrastructure, particularly in the context of ex-

treme weather events, is steadily increasing. According to Hallegatte et al. (2019), investing $1 in

enhancing the resilience of critical infrastructure can yield $4 in return. Hence, there is a need for

appropriate actions to be taken towards water-related assets, considering their entire lifecycle and

future generations. This involves developing the capability to: (1) withstand the initial impact of

hazardous events; (2) minimise the adverse effects of such events; (3) quickly adapt to the result-

ing changes; and (4) enhance water-related assets to enhance preparedness against forthcoming

threats and variations (Rezvani et al., 2022).

A common issue with water infrastructure is the transportation and protection of treated water

through the distribution system. Many current systems have poorly maintained and inadequately

sized infrastructure, resulting in low or no pressure in the network, intermittent water supply,

and contamination. Some systems have oversized pipes and pumps, leading to higher costs and

poorer water quality due to excess capacity. This is often due to outdated sizing or declining water

demands. Furthermore, innovative methods for detecting leaks such as analysing water usage data

with advanced metering, pressure loggers, data-mining and inspection with traditional acoustic

methods, thermal imaging, robotic inspection and pressure management can assist water suppliers

in identifying distribution system issues and managing water losses. Other than that, repairing

and replacing underground water infrastructure is costly and complicated, as it may affect other

properties, traffic, and buildings. Various techniques are required to repair the different types of

pipes in a distribution system, making the process even more challenging. Therefore, there is an

urgent need for innovations to efficiently reduce and control water loss and extend the life of pipes

(Milman et al., 2021).

2.3.5 Contributions to address the challenges

In recent years, the scientific community has dedicated considerable efforts towards finding solu-

tions and alternatives to help utilities overcome the challenges they face in managing and oper-

ating their systems. According to a review by Ortega-Ballesteros et al. (2021), there has been a

significant increase in awareness among researchers in this field, leading to a growing number of

scientific publications on this topic since the start of the current century.

Moreover, in the past twenty years, there has been a shift in thinking about urban water man-

agement, which reflects a larger cultural shift towards valuing natural processes and systems, as

opposed to relying solely on technological and mechanistic solutions. This new paradigm rep-

resents a departure from the traditional approach to managing water in cities. New management

frameworks have been developed to tackle current challenges. According to Franco-Torres et al.

(2021), different scholars have launched novel ideas on frameworks for water management, in-

cluding new styles of governance, circular use of resources or modular ecosystem-based infras-

tructures.
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The International Organisation for Standardisation (ISO) has been also promoting actions

aimed at improving the management of water systems. In 2001, the ISO technical committee

ISO/TC 224 was launched to develop guidelines for the activities related to water supply and

wastewater systems. Six years later, ISO/TC 224 released three new ISO standards addressing

water services: ISO 24510 (ISO, 2007a) focusing on the service provided to users of both water

and wastewater systems, ISO 24511 (ISO, 2007b) dealing with management practices of wastew-

ater utilities and ISO 24512 (ISO, 2007c) addressing management practices of drinking water

utilities.

The ISO/TC 224 Standards provide a framework to improve the governance of water services

and promote quality and efficiency. They facilitate dialogue among stakeholders such as con-

sumers, water authorities, utilities, research departments, and laboratories. The standards enable a

mutual understanding of responsibilities and tasks and provide methods and tools to define objec-

tives and specifications and assess performance. They can be applied voluntarily in both industri-

alised and developing countries, and in any setting, whether the utility operator is public or private.

The ISO/TC 224 standards address several key areas, including defining common terminology for

stakeholders, clarifying consumer expectations and service elements, developing optimised man-

agement actions, proposing measurable quality criteria and performance indicators, and enabling

local-scale comparisons of observed results with targets set by water authorities. These standards

promote benchmarking among water utilities and can help protect the environment while meeting

the needs of water users (ISO, 2004).

ISO has taken another important step in promoting effective asset management by publishing

a family of standards in 2014. Comprising of ISO 55000, ISO 55001, and ISO 55002, this frame-

work provides a comprehensive approach for managing any type of assets, whether it be railway

sleepers, brand reputation, or telecommunications networks (ISO, 2014a,b). ISO 55001, specif-

ically, lays out the requirements for effective asset management and creates a system designed

to optimise performance, mitigate risks, and minimise costs throughout the entire asset lifecy-

cle. Organisations can seek certification for compliance with this standard, similar to other ISO

standards like ISO 9001 for quality management systems or ISO 14001 for environmental manage-

ment systems, upon successful implementation of the requirements. It is worth noting that these

management systems have a common foundation in the Deming cycle (PDCA: Plan-Do-Check-

Act), originating in the field of quality management. According to Sousa and Meireles (2022),

the PDCA cycle serves as the inspiration and basis for the sequence of Leadership, Planning,

Support, Operation, Performance, and Improvement, which is shared among all ISO management

standards.

The United Nations has recognised the crucial role of effective water management in achiev-

ing sustainable development. To this end, UNESCO, the scientific arm of the United Nations,

launched the International Hydrological Programme (IHP) to raise awareness among communities

and decision-makers about the significance of water-related issues. Since 1975, IHP has developed

a comprehensive set of 17 worldwide initiatives aimed at creating scientific and technological tools

for evidence-based decision-making, promoting international cooperation through networking, en-
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hancing the science-policy interface, and focusing on education and training for building human

capital at the local, regional, and global levels (Makarigakis and Jimenez-Cisneros, 2019).

The World Bank Group is actively supporting the latest advancements in water management

practices. In 2014, the Bank established the Water Global Practice, which serves as an inte-

grated platform for financing, expertise, and implementation efforts. By combining the Bank’s

global knowledge with local investments, this initiative generates greater capacity for implement-

ing transformative solutions that promote sustainable growth in countries. As part of this effort,

the Bank launched the Utility of the Future (UoF) programme, which offers a novel approach

to planning and implementing reforms aimed at making water utilities more sustainable (Lom-

bana Cordoba et al., 2022).

The European Union (EU) recognises that water has value beyond its usefulness as a resource

for humans, and has taken steps to establish policies for the preservation of aquatic ecosystems as

natural capital. The Water Framework Directive (2000/60/EC) was a significant milestone in this

direction, establishing a new approach to water management that considers its role in supporting

ecosystems. The EU’s more recent action plan for sustainability, the Biodiversity 2030 strategy,

recognises the importance of restoring and preserving nature, including water resources. As part

of this plan, measures such as reducing water pollution, promoting efficient and circular water

use, raising awareness of the natural capital provided by biodiversity and ecosystem services,

and adapting to climate change, will help to protect and restore ecosystems. It is important for

the global community to make a collective effort to protect water resources in order to achieve

sustainable growth (European Commission, 2020).

2.4 Emerging trends in water utility management

This section presents some latest trends in water utility management. With the water sector rapidly

evolving, it is crucial to remain up-to-date with emerging trends that are being adopted to address

the previously discussed challenges in water utility management. Some of those trends include:

• Digitalisation

The integration of advanced Industry 4.0 technologies such as artificial intelligence, the

Internet of Things (IoT), and Big Data can significantly improve the performance and ef-

ficiency of the water sector. The industry is also witnessing the emergence of innovative

technologies like smart water systems, which utilise real-time data analysis and sensors to

monitor and manage water distribution networks, resulting in increased efficiency and re-

duced waste. Furthermore, the implementation of artificial intelligence and machine learn-

ing algorithms can optimise water treatment processes and predict potential system failures

(Silva, 2022).

To achieve a “Smart City” approach to water resource management, infrastructure monitor-

ing, data collection, and analysis, and decision support systems integrating IoT, Big Data,

and blockchain technologies are necessary. Data analysis and the use of computational
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intelligence techniques are critical in this approach for monitoring water consumption, pre-

dicting pipe failures, and forecasting water demand. Decision support systems must incor-

porate multiple tools to address various issues such as ensuring water quality, availability,

and infrastructure maintenance. Anomaly detection tools generate notifications and alarms

to signal abnormalities such as water contamination, distribution network malfunctions, or

cyber attacks on water treatment facilities. Water demand models and simulation tools are

employed to evaluate the effect of new rules on reducing water consumption or forecasting

water demand for residential areas under development. Infrastructure maintenance planning

tools should include pipe failure predictors to reduce the costs associated with unexpected

pipe breaks.

Future developments should focus on integrating different types of data, creating decision

support systems, and standardising methodologies to create large-scale systems for water

infrastructure management (Hangan et al., 2022).

• Increased focus on sustainability and circular economy

The increasing concern about water scarcity in various areas has prompted utilities to ex-

plore methods of minimising water waste and encouraging water conservation. This encom-

passes the promotion of water reuse, the collection of rainwater, and other unconventional

water sources. Moreover, utilities are adopting more sustainable practices in their day-to-

day operations, which entails lowering energy consumption and greenhouse gas emissions

(Silva, 2022).

In the study performed by Larsen et al. (2016), various strategies to improve water pro-

ductivity in the Urban Water Cycle are discussed, including reducing wastewater, reusing

lower-quality water, and regenerating high-quality water from used water. Globally, only

1.7% of water supply is currently reused, primarily for irrigation purposes. The authors also

suggest source separation of waste as a promising trend, which can be implemented at both

the household and device level, such as using a recycling shower that recirculates shower

water in real time. The practice of separating greywater not only conserves water but also

can recover energy and nutrients. Examples of successful source separation initiatives in-

clude China’s 40 million domestic biogas reactors and the almost 100,000 urine-diverting

dry toilets in peri-urban areas of eThekwini, South Africa.

• Infrastructure risk management

Regulatory authorities have shifted towards promoting an integrated risk management ap-

proach to minimise the risk of water system infrastructure failures. This involves imple-

menting several protective barriers such as source water protection, redundant treatment

designs, and continuous monitoring of distribution systems. The adoption of the World

Health Organisation’s Water Safety Plans (WSPs) by over 90 countries is an example of

this approach. The WSPs require the proactive management of all water system assets from

source water to tap, resulting in a decrease in diarrheal diseases, improved communication
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between water system stakeholders, and better overall management of water system assets.

However, implementing risk management approaches necessitates institutional and cultural

change. Water suppliers need to undertake an honest evaluation of their current systems and

practices proactively instead of reacting to risks to be effective (Milman et al., 2021).

• Capacity-building efforts

Historically, ownership has been considered the key factor in improving the management

of water utilities. However, the privatisation movement in the 1980s resulted in incon-

sistent outcomes, with some privatised systems performing no better or even worse than

public ones. In the 1990s and 2000s, interest shifted towards public-private partnerships

or corporatisation initiatives, where state-owned systems were kept under public control but

managed as independent entities. Despite a variety of different structures appearing, success

rates were inconclusive.

It has now been recognised that good management of water utilities is not solely dependent

on ownership, and there is a need to look beyond this factor to understand the reasons

behind the success or failure of these systems. Recently, attention has shifted towards the

institutional and regulatory environments in which these utilities operate, with “governance”

being a key point of discussion.

The focus is on creating an environment that enables water systems to operate effectively,

which includes ensuring accountability and autonomy, providing oversight before new sys-

tems are developed, and designing appropriate incentives for water system management.

Additionally, there is a focus on improving the internal capacity and culture within wa-

ter systems. Studies have shown that successful water suppliers have a strong knowledge

base, human and organisational capacities, a willingness to learn, a focus on customers and

business, effective measurement practices, and a culture of continuous improvement.

The emphasis on improving water management through the enabling environment is ex-

pected to continue, with a specific focus on enhancing capacity-building efforts. This is

already happening with support from national, sub-national governments, and international

donors who are investing resources in water system management. Key activities include

training, creating and promoting self-assessment tools, providing guidance and best prac-

tices, and providing financial support to water suppliers to improve their capacity. Capacity-

building efforts will also likely continue to facilitate the development of water system part-

nerships, which can help build capacity through resource leveraging, taking advantage of

economies of scale, and filling gaps in specific operational or management responsibilities

such as billing, water quality testing, or shared operators (Milman et al., 2021).

Despite a century of efforts to develop successful paradigms, management of piped water

systems remains a significant challenge. Improving the institutional and regulatory envi-

ronment and promoting capacity-building efforts and partnerships are key to addressing the

challenges associated with managing those systems.
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2.5 Conclusion

This chapter has highlighted the critical role of management practices in the water utilities industry

and underscored its importance as a relevant area for research and practical application. The chap-

ter detailed the challenges that water utilities face, including the need to pursue cost-efficiency,

maintain high service quality, and manage assets effectively.

This thesis aims to play a role in supporting the existing management frameworks by intro-

ducing specific decision-making tools designed to address the current challenges faced by water

utilities. The tools intend to guide the development of effective strategies to overcome the afore-

mentioned challenges. Chapter 4 is dedicated to addressing the cost-efficiency challenge, while

chapter 5 focuses on the quality of services. Chapters 6, 7, and 8 are dedicated to deal with issues

related to asset management.

Effective management practices are strongly required for the efficient, sustainable, and reliable

provision of water services by utilities. As previously noted, those practices have been vastly

discussed worldwide. By adopting the mentioned best practices at a broader level, utilities can

ensure the long-term viability of water resources and maintain reliable access to safe water for

their customers.
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CHAPTER 3
Decision support tools for water utility

management
Efficient decision-making is essential for water utilities to address the sector’s significant challenges and
ensure optimal resource utilisation. Decision support tools aid this process by enabling water utility man-
agers to analyse data, assess performance and optimise operations. This chapter offers a comprehensive
introduction to the decision support tools that will be explored in greater detail throughout the thesis, em-
phasising their critical role in addressing the challenges faced by water utilities. The decision support tools
developed in this thesis rely on mathematical programming models based on non-parametric frontier meth-
ods and optimisation. The field of mathematical programming decision models is vast and involves multiple
disciplines. This chapter presents an overview of these techniques and highlights their applications in water
utility management. These tools provide a data-driven and objective basis for management decisions. The
research outcomes will contribute to the literature on water system management and provide practical tools
for decision-makers in the sector to enhance the efficiency and effectiveness of water system management.

3.1 Introduction

According to Wong-Parodi et al. (2020), “decision support tools are the array of computer-based

tools developed to assist sound decision-making”. They can be particularly useful in scenarios

where the volume of data is too large for an individual to rely solely on their intuition for decision-

making, especially when making high-impact choices. Those tools or systems can bridge the

gap of human cognitive limitations by bringing together diverse sources of information, enabling

access to pertinent knowledge, and streamlining the decision-making process. By leveraging their

use appropriately, it’s possible to enhance productivity, efficiency, and effectiveness, ultimately

leading to optimal decision-making (Zhang et al., 2014).

The expressions “decision support tool (DST)” and “decision support system (DSS)” have

been used indistinctly in the literature, although for some scholars, the term DSS is more applied

to broad “computer technology solutions” comprising “sophisticated database management capa-

bilities with access to internal and external data, information and knowledge, powerful modelling

functions accessed by a model management system, and powerful yet simple user interface de-

signs that enable interactive queries, reporting and graphing functions” (Shim et al., 2002). Some

authors have a narrower view of DSS, considering it more as a supporting tool rather than a com-

plete system. As mentioned by Power (1997), operation researchers consider optimisation and

simulation models as true “decision support systems”, allowing the term DSS to encompass a

25
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wide variety of systems, tools, and technologies. It’s worth noting that the definitions and usage of

both terms DSS and DST vary based on the author’s viewpoint, and the terms remain applicable

to different types of information systems that facilitate decision-making (Mir and Quadri, 2009).

In this thesis, we opt to use the term “decision support tools” (DSTs) as computer-based tools

that support decision-making processes by presenting information and analysis in an organised

and systematic way. DSTs can help water utility managers to make more informed decisions by

providing a range of options, outcomes, and potential risks associated with each decision.

In recent years, the availability of massive amounts of data has drastically changed the way

management decisions are made. Decision-makers now have access to more accurate and reliable

information, thanks to the increasing use of data-driven approaches. One such approach is known

as analytics (or business analytics), which Hillier and Lieberman (2014) define as “the scientific

process of transforming data into insight for making better decisions”. The rise of analytics repre-

sented a significant shift in the way that management decisions are made, as DSTs became more

data-driven and agile in the decision-making process.

There are several types of DSTs available for water utility management, including simulation

models (Jeppsson and Hellström, 2002; Cetinkaya et al., 2008; El-Gafy and El-Ganzori, 2012;

Shao et al., 2014), optimisation models (Makropoulos and Butler, 2004; Mala-Jetmarova et al.,

2017, 2018), multi-criteria methods (Mutikanga et al., 2011; Choi and Park, 2001; Kumari and

Wijesekera, 2021; Hajkowicz and Higgins, 2008; Zolghadr-Asli et al., 2021), and data-driven

models (Singh and Mishra, 2021; Di et al., 2019; Myrans et al., 2016).

Simulation models are employed to replicate the behavior of water systems under different

circumstances, such as alterations in water demand, water quality, or climate. Optimisation models

are utilised to identify the most favourable solution to a problem, given a set of constraints and

objectives. Multi-criteria tools are implemented to make decisions when there are various factors

to consider, conflicting criteria and different stakeholder interests. Data-driven models employ

statistical and machine learning techniques to detect patterns and relationships in data, which can

be used to make predictions or classify data.

Bello et al. (2019) present a detailed review of management problems faced by water utilities

and the mathematical decision models used to address those problems. Many of those tools are

used to explain and simulate the behaviour or responses of water networks, and estimate the con-

ditions of the networks under particular operating and loading conditions. Among them, there are

the various types of hydraulic models to determine flow conditions, water quality models, demand

forecasting tools and water leakage models.

With the advent of the fourth industrial revolution, urban water management has evolved into

“smart” as a way to achieve water sustainability. “Smart water management” utilises information,

communication technology and real-time data to tackle water management challenges by inte-

grating digital solutions into urban, regional, and national strategies. Smart technologies, such as

sensors and IoT (Internet of Things) networks, cloud-based technologies, algorithms, and big data

analytics, have been used to achieve water security in urban landscapes and industrial facilities

(Kumar et al., 2013). Automation in complex urban water systems is mainly based on receiving
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feedback from sensors and using computer algorithms to analyse signals and propose specific ac-

tions. The adoption of digitalisation improves efficiency, flexibility, and provides novel services to

society at reduced costs. The European Union has been funding research projects in this direction,

and the water market has been shifting towards digitalised business models. Smart technologies

have facilitated the real-time monitoring, optimisation, and forecasting of freshwater consumption

and pollution, and they serve as decision support tools (Aivazidou et al., 2021; Oberascher et al.,

2022).

By using DSTs, water utilities can make more informed decisions that take into account a range

of factors, such as cost, efficiency, and environmental impact. In addition to supporting decision-

making, DSTs can also help to improve communication and collaboration among stakeholders.

By presenting information in a clear and accessible way, DSTs can help to facilitate discussions

and negotiations among different groups with competing interests.

Two specific types of DSTs are employed in this thesis: optimisation-based tools and frontier

methods. An optimisation model, as defined by Mala-Jetmarova et al. (2018), is a mathematical

representation of an optimisation problem that includes objective functions, constraints, and de-

cision variables. While frontier methods like Data Envelopment Analysis can also be based on

optimisation models, they are typically considered separate sets of tools. As such, in this thesis,

we have chosen to treat them as distinct from each other.

The remainder of this chapter will discuss the general concepts and the water management

applications of the two types of DSTs used in the thesis. Section 3.2 addresses optimisation and

Section 3.3 covers frontiers methods. A brief conclusion is presented in Section 3.4.

3.2 Optimisation models

This section outlines the general concepts of optimisation techniques in subsection 3.2.1 and their

usage in water utility management in subsection 3.2.2.

3.2.1 Overview of optimisation models

Although the concept of analytics emerged as the world entered the era of “big data”, it has in-

creasingly been integrated into an existing approach called operations research. The principles of

operations research have been used for decades to solve organisational problems using analytical

and numerical methods. They are generally credited with having been introduced into military ser-

vices during World War II, when there was a need to allocate scarce resources efficiently (Hillier

and Lieberman, 2014). As businesses became more complex in the post-war period and computa-

tional resources became available, these ideas rapidly spread throughout management practices.

The essence of operations research, also named as management science, is the model-building

approach, which involves the use of mathematical models to capture the significant features of the

decision under consideration. Models are simplified representations of the real world that must

be easy to understand and incorporate all relevant elements of the decision environment to be

useful in supporting management decisions. Managers should formulate the basic questions to be
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addressed by the model and then interpret the model’s results in light of their own experience and

intuition, recognising the model’s limitations (Bradley et al., 1977).

Models that aim to find optimal solutions, known as optimisation models, are fundamental to

operations research and often rely on mathematical programming techniques. These models iden-

tify the maximum or minimum values of numbers, functions, or systems (Kiranyaz et al., 2013).

By leveraging the power of mathematics, optimisation models help researchers and practitioners

make better decisions, allocate resources efficiently, and solve complex problems in various fields.

A general optimisation model can be illustrated as 3.1, as noted by Kim et al. (2018).

Optimise z = f (x)

subject to g(x) ∈ s1

x ∈ s2

(3.1)

The decision variable, denoted by x in model 3.1, is selected to optimise a certain objective.

This objective is expressed mathematically as z = f (x), where f (x) is commonly referred to as

the objective function. The objective function shows how different choices of x impact the de-

cision maker’s satisfaction in terms of the objective, and can be either maximised or minimised.

However, in choosing the appropriate value for x, a set of constraints must be followed to ensure

that x behaves in a certain way. These constraints are reflected in the formulation above by the

requirements that: (i) g(x) must fall into s1, and (ii) the variable must belong to s2.

As outlined by Datta et al. (2018), optimisation techniques can be categorised in various ways,

based on factors such as the presence of constraints, the number of objectives, and the nature of the

objective function and constraints. Linear programming is used when the objective function and

constraints are linear, while nonlinear programming is used when the objective function and/or

constraints are nonlinear. In cases where there are multiple conflicting objectives, multi-objective

optimisation is used to find a set of optimum non-dominated solutions.

An optimisation problem where all variables can only be integers is known as an all-integer

programming problem. If the variables are restricted to discrete values, it’s called a discrete pro-

gramming problem. When some variables can only be integers, the problem is a mixed-integer

programming problem (MILP). If the optimisation problem only allows design variables to be

either 0 or 1, it’s called a binary programming problem. To solve all-integer and mixed-integer

linear programming problems, specific techniques such as Gomory’s cutting plane algorithm and

Land and Doig’s branch-and-bound algorithm must be employed (Rao, 2009).

According to Bradley et al. (1977), one of the typical applications of all-integer and mixed-

integer programming models are capital-budgeting problems. These problems involve selecting

the most suitable option among various potential investments, such as plant locations, capital

equipment configurations, or research-and-development projects. In many cases, it doesn’t make
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sense to make partial investments in these activities, and the problem can be solved as a “go-no-

go” integer program. This means that the decision variables, denoted as x j, can only take on values

of 0 or 1, indicating whether the jth investment is rejected or accepted.

Offline optimisation is used when time is not a critical factor and users are willing to wait for

optimal or close-to-optimal results. In contrast, online optimisation is used when the job needs to

be solved within seconds or milliseconds, and the focus of the algorithm is on speed (Datta et al.,

2018).

As stated by Sörensen (2015), optimisation algorithms can be broadly classified into two cate-

gories: exact algorithms and heuristics. The key distinction lies in the fact that exact algorithms are

specifically designed to guarantee finding the optimal solution within a finite time frame. However,

the use of exact algorithms is often limited due to the impracticality of exhaustive search in com-

plex problems. This limitation has led to the development of heuristic techniques, which aim to

find good solutions efficiently, even if they are not guaranteed to be optimal. In recent years, there

has been a paradigm shift in perceiving heuristics as a viable field of research, alongside exact

methods. This shift has coincided with the emergence of a new concept known as metaheuris-

tics. Metaheuristics provide a cohesive framework comprising ideas, concepts, and operators for

designing effective heuristic optimisation algorithms. They are advanced strategies for exploring

search spaces using various methods, striking a balance between diversification, which involves

wide exploration of the search space, and intensification, which entails leveraging accumulated

search experience for exploitation (Blum and Roli, 2003).

Nowadays, metaheuristics techniques are widely employed in the field of optimisation, as they

are capable of dealing with complex design problems and generating high-quality solutions in a

reasonable amount of time. Evolutionary algorithms are a type of metaheuristic technique that

falls under the evolutionary computation group. This group includes genetic algorithms, genetic

programming, evolutionary strategies, and differential evolution, among others. Evolutionary al-

gorithms are inspired by the process of natural selection and work by generating a population of

candidate solutions that are then evolved through a process of selection, reproduction, and muta-

tion. This process continues until a satisfactory solution is found or a stopping criterion is met.

Swarm intelligence techniques, such as particle swarm optimisation and ant colony optimisation,

are another group of metaheuristic techniques that are inspired by collective behaviour in nature.

As research and innovation progress in the field of optimisation, these techniques continue to

evolve, providing novel insights and methodologies for addressing complex challenges.

3.2.2 The use of optimisation models as decision support tools in water utility man-
agement

Optimisation models are versatile tools for addressing management problems in water systems.

They are able to minimise costs, reduce discrepancies between measured and simulated values,

or maximise performance indices. Optimisation techniques search for the best possible solution

among all available options. In these models, objective functions for water network problems

are typically limited by constraints that represent physical mass and conservation laws, minimum
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pressure requirements at demand nodes, and other significant inequality or equality restrictions,

depending on the problem at hand. Decision variables can take the form of continuous or discrete

values representing a set of feasible solutions to optimisation problems (Bello et al., 2019).

The design and operation planning of water systems have a long history of using optimisation

methods. This practice dates back to the late 19th century, with the first examples identified by

Mala-Jetmarova et al. (2015). Over the years, the development of computing power has further

boosted the research in this area. As a result, there has been a rapid growth in the development

and use of system analysis methods related to water systems. Mala-Jetmarova et al. (2017, 2018)

reported that more than 300 journal papers have been published in the last three decades alone on

the topics of water systems design and operational optimisation.

Numerous approaches have been proposed and extensively discussed to solve optimisation

problems related to water distribution networks, including enumeration, linear programming, non-

linear programming, dynamic programming, integer programming, stochastic or meta-heuristics,

and hybrid optimisation techniques (Balekelayi and Tesfamariam, 2017) . Among these, the meta-

heuristics technique is favoured due to its ability to find near-optimal solutions within a reasonable

amount of time. Linear programming and genetic algorithms are examples of optimisation tech-

niques that can be used to identify optimal solutions to problems, given a set of constraints and

objectives. These methods can optimise water utility operations by scheduling maintenance activ-

ities, allocating resources, and setting prices (Bello et al., 2019; Savić et al., 2018). Several factors

must be considered in selecting an appropriate optimisation technique. These factors may include

the allowed computation time, the size of the case study, and the desired quality of results. It’s

important to note that there is no one-size-fits-all algorithm that can be applied to all water opti-

misation problems. Therefore, careful consideration of the specific problem at hand is essential in

choosing the most suitable optimisation technique (Balekelayi and Tesfamariam, 2017).

In a survey about optimisation problems in water distribution networks, Ruiz-Vanoye et al.

(2018) highlight the relevant applications of optimisation techniques to solve problems related to

those systems. Those applications include managing water quality, improving chemical transport,

optimising repair costs and selecting piping, pumps and valves. Horne et al. (2016) discuss the use

of optimisation in environmental water decisions. They note that over half of the examined litera-

ture focused on evolutionary techniques. The authors also emphasise the importance of specialised

knowledge and expertise in utilising these tools effectively. However, they point out that stake-

holders have been largely excluded from the model development process in this field, indicating a

need for greater stakeholder involvement.

Among other applications, the use of optimisation for asset management practices is discussed

by Bello et al. (2019). Regarding this matter, it is important to intensify research efforts in devel-

oping a widely-accepted rehabilitation prioritisation model with performance metrics, specifically

for real systems operating under budget constraints. Additionally, there is a need to improve

decision support systems for planning rehabilitation and optimising pipeline maintenance, mak-

ing them more user-friendly and flexible. To achieve this, a novel asset management approach

that incorporates accurate predictions of pipe failure rates, service lifetimes, and appropriate cost
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structures and discount rates for pipeline failures should be proposed.

This thesis employs optimisation methods, specifically MILP and evolutionary algorithms, to

tackle the task of defining a portfolio of investment projects in the water utility sector. Chapter 8

provides a detailed description of the techniques utilised.

3.3 Frontier methods

In this section, an overview and key concepts of frontier methods are presented in subsection

3.3.1, along with their applications in water utility management, which are discussed in detail in

subsection 3.3.2.

3.3.1 Overview of frontier methods

Frontier methods are a set of quantitative techniques used to estimate an efficiency frontier of a set

of entities, known as decision-making units (DMUs). To measure the technical or economic effi-

ciency of DMUs, such as schools, hospitals, utilities, or countries, input and output combinations

to these entities need to be defined. These inputs and outputs are used to create the best-practice

frontier, which includes the most efficient DMUs.

In that sense, frontier methods are used to execute relative performance evaluations, which

are commonly referred to as benchmarking. According to Bogetoft and Otto (2010), this con-

cept involves making a comparison between entities (DMUs) that convert similar resources into

comparable products or services.

As decision support tools, the frontier methods facilitate learning and improve coordination

among the units under assessment. Taking the learning approach, the goal is to acquire new in-

sights. When a relative comparison is undertaken, the units find out how well they are doing and

which are the other units they can learn from. For instance, the breakdown of overall efficiency

into various components can identify specific ways to improve efficiency, such as adjusting the

scale of operations or allocating resources. Further enhancements of the learning perspective al-

low units to customise their benchmarking exercises by choosing comparison peers, objectives,

and aspirations. Regarding the coordination perspective, the objective of benchmarking may be to

address the allocation of tasks and potentially restructure units. Coordination is a crucial aspect

of traditional micro-economic theory and management science that ensures the synchronisation of

various departments and groups to work together in harmony. In order to achieve optimal cost and

performance, benchmarks, tournaments, and bidding schemes are widely used to coordinate oper-

ations in firms and industries. For instance, a bank’s headquarters may benchmark operations to

motivate local managers and allocate resources and staff according to their performance (Bogetoft

and Otto, 2010). Without knowledge of an organisation’s past or present performance, managers

cannot set realistic targets for future performance. Metric benchmarking helps managers and reg-

ulators by quantifying the relative performance of organisations, allowing them to design policies

and incentive programs to improve performance (Berg and Padowski, 2010).
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In frontier methods, the best-practice or efficient frontier represents the maximum output that

can be produced using the available inputs, given the fixed technology and other resources. Pro-

duction functions can be used as mathematical formulations of the relationship between the maxi-

mum level of production outputs and inputs. According to Førsund et al. (1980), the word frontier

may be applied also to production functions since the function establishes a limit to the possible

set of observations. For example, a point can be located below the production frontier meaning

that it is producing less than the maximum possible output, but no points can lie above the pro-

duction frontier. Deviations from this frontier can be used to determine the technical or economic

efficiency of other DMUs (Kalb, 2010).

In the definition of technical efficiency provided by Koopmans (1951), a producer can be

considered technically efficient if producing an additional output requires using more input(s) or

producing less of another output, or if using less of one input requires using more of another input

or producing less of one output. Hence, a technically inefficient producer could produce the same

amount of outputs with a lesser quantity of at least one input, or could generate more of at least one

output using the same amount of inputs. Debreu (1951) and Farrell (1957) developed a method for

assessing technical efficiency, which involves two alternatives: input-oriented and output-oriented.

In the orientation to inputs, the technical efficiency measure is described as the maximum feasible

radial reduction in all inputs, while maintaining the same output level, expressed as one minus that

reduction. On the other hand, in the output-orientation, their measure is defined as the maximum

radial expansion in all outputs that can be achieved while keeping the same input level. In both

cases, a value of one represents technical efficiency, since no radial adjustment is feasible. Any

value other than one shows the degree of technical inefficiency (Fried et al., 2008).

As noted by Kalb (2010), several problems may arise when generating the best practice frontier

from a data set of DMUs and identifying the extent to which deviations from the best practice fron-

tier are due to real inefficiencies or measurement errors. Non-parametric and parametric methods

have been used to estimate best-practice frontiers and deterministic and stochastic approaches

have been identified regarding the deviations from these frontiers.

The use of parametric and non-parametric frontier methods evolved in parallel, leading to the

development of two distinct streams of research and generating intense debate among scholars

(Asmare and Begashaw, 2018). The two strategies differ in that the parametric approach requires

defining a functional form of the efficient frontier, while non-parametric methods estimate the

frontier empirically using sample observations. The need for a defined functional form is the main

disadvantage of parametric methods, while the deterministic nature of the non-parametric methods

represents their primary drawback (Murillo-Zamorano, 2004).

Non-parametric approaches, such as Data Envelopment Analysis (DEA), are primarily deter-

ministic and use mathematical programming techniques, assuming no random noise in the data.

Thus, deviations from the frontier are interpreted solely as inefficiency. On the other hand, para-

metric methods can be either deterministic or stochastic. Stochastic parametric approaches employ

statistical techniques to estimate the production frontier, enabling the differentiation between non-

normal residuals indicating inefficiency and normal residuals representing noise or measurement
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error in the data (Murillo-Zamorano, 2004).

Among the parametric techniques, SFA is the most commonly used method and was indepen-

dently introduced by Aigner et al. (1977) and Meeusen and van Den Broeck (1977). In SFA, an

econometric model is used to construct the efficiency frontier, and deviations from the frontier

are regarded as a combination of random error and inefficiency. The error term is modelled as a

two-sided distribution, typically with a normal distribution with a zero mean, and the inefficiency

term is assumed to be non-negative and follows a one-sided distribution (Asmare and Begashaw,

2018).

Among the non-parametric frontier methods, DEA is the most popular approach. It was origi-

nally introduced by Charnes et al. (1978) as a way to address the frontier estimation proposed by

Farrell (1957) using mathematical programming models with multiple inputs and outputs.

DEA and SFA are widely regarded as the most important methods for evaluating the efficiency

of individual and organisational performance. A bibliometric analysis conducted by Lampe and

Hilgers (2015) tracked the evolution of these methods and identified a constant increase in the

number of publications related to both approaches between 1978 and 2012. DEA has become a

standard technique in Operations Research, while SFA is mainly studied in Economic research.

The study also discusses the main differences between the two techniques, which are summarised

in Table 3.1.

Table 3.1: Distinction between DEA and SFA - Adapted from Lampe and Hilgers (2015)

Data Envelopment Analysis (DEA) Stochastic Frontier Analysis (SFA)

Elements Multi inputs and outputs Single input (output) and multiple output (input)

Algorithm Linear programming Regressions (typically using maximum likelihood estimation)

Consideration of noise Noise is included in the efficiency score rather than Explicitly accommodates noise (stochastic model)

accounted for directly (deterministic model)

Functional form/ input-output Not specified Functional form is specified (e.g. linear, semi-log, double-log)

relation

Factor weights Individual factor weights for each unit No individual factor weights in the basic model

(non-parametric) (parametric)

Recent advancements in DEA and SFA have addressed certain comparative limitations be-

tween the two techniques, as shown in Table 3.1, with new methods in SFA now allowing for

multiple inputs and outputs, and DEA incorporating robust techniques to attenuate its determinis-

tic nature.

This thesis adheres to the non-parametric research stream and focuses on assessing efficiency

using DEA-based models. Furthermore, the thesis explores the application of composite indicators

derived from DEA, as introduced by Cherchye et al. (2007). Directional Distance Functions (DDF)

are employed in the developed models, along with robust and conditional techniques.
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3.3.2 Use of frontier methods as decision support tools in water utility managing

Benchmarking practices in the water sector are commonly employed to assess the performance

of a water utility by comparing it with other utilities or industry benchmarks. By conducting

benchmarking exercises, water utilities can identify areas where they are underperforming and

implement strategies to improve their efficiency and decrease costs (Sala-Garrido et al., 2023).

Literature reviews covering benchmarking methods were issued by Berg and Marques (2011) and

Goh and See (2021).

Frontier techniques have been widely used in water service benchmarking studies since the

1990s. These techniques enable the comparison of the performance of a company or service

in relation to those that define the efficient frontier, which represents the best practice observed

(González-Gómez and García-Rubio, 2008). One example of using frontier methods as decision

support tools is the study conducted by Alsharif et al. (2008) in Palestine. The study used frontier

techniques to determine the efficiencies of municipal water systems and found that water losses

were the primary source of inefficiency. These results can be used by Palestinian policymakers

to prioritise infrastructure rebuilding efforts by starting with the most inefficient municipalities to

minimise water losses.

According to Molinos-Senante et al. (2022b), Data Envelopment Analysis (DEA) and Stochas-

tic Frontier Analysis (SFA) are the two most widely used methods for benchmarking water utili-

ties, each having its advantages and disadvantages, and no definitive conclusion has been reached

on which method is better for assessing water company efficiency. This lack of clarity has

prompted doubts about the applicability of both techniques to benchmarking regulation in the

water sector.

In the literature review conducted by Goh and See (2021), which analysed 142 articles span-

ning 20 years of benchmarking research in water utilities, it was found that DEA is more com-

monly used than SFA in the water sector. The review emphasised DEA’s advantages, including

its capability to combine multiple input-output combinations into a single efficiency measure in

the production frontier and its flexibility, as it does not require a functional form for either pro-

duction or cost functions, in contrast to SFA. The review also highlighted SFA’s ability to account

for the distinction between inefficiency and noise as an advantage. Standard DEA models present

some limitations regarding the sensitivity to outlier data and the inability to allow for statistical

inference. However, these issues have been addressed through the development of robust and con-

ditional approaches. Marques et al. (2014); D’Inverno et al. (2021) and Mergoni et al. (2022) are

examples of applications that use the robust and conditional developments in DEA. SFA meth-

ods have been applied to the water sector since 1993. Some developments of this approach are

Lynk (1993); Bhattacharyya et al. (1995); Estache and Rossi (2002); Saal and Parker (2004) and

Nyathikala et al. (2023).

DEA techniques can be utilised to create composite indicators (CIs), which involve the aggre-

gation of multiple performance metrics to evaluate multidimensional performances. Vilanova et al.

(2015) highlight the difficulties in defining the relative importance of those metrics for constructing
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the overall indicator. Defining weights for the metrics requires creativity and experienced judge-

ment to avoid subjectivity and frequently biased interpretations. However, using a DEA-based

method offers the advantage of being data-driven, avoiding interacting with stakeholders to define

the weights for the metrics. This approach, known as the “Benefit-of-the-Doubt” (BoD) strategy,

which was popularised by Cherchye et al. (2007), has been implemented in various water sector

management studies (Henriques et al., 2020; Mergoni et al., 2022; Sala-Garrido et al., 2021).

Another example of non-parametric method used in benchmarking is Free Disposal Hull

(FDH). Originally developed as an alternative to DEA, FDH relaxes the convexity assumption

of DEA. Although less commonly used than DEA or SFA, it has also been applied in the water in-

dustry. Studies on the applications of FDH in the water sector can be found in Hernández-Sancho

et al. (2011) and Fuentes et al. (2015).

Water utility performance has often been evaluated using both parametric and non-parametric

frontier techniques. The selection of a particular technique can depend on a range of factors,

including data availability, adequate numbers of comparators, the incorporation of environmental

variables, and the size of the companies being assessed. Each frontier technique operates on its

own set of assumptions regarding the treatment of noise and inefficiency, resulting in potential

disparities in efficiency estimates across various models (Molinos-Senante et al., 2022b).

Molinos-Senante et al. (2022b) conducted a study in Chile to compare the effectiveness of

three frontier techniques in estimating efficiency scores for water utilities: DEA, SFA, and StoNED,

which has been mainly used in the electricity sector. The results showed significant differences in

efficiency scores across the three techniques due to their different underlying assumptions. How-

ever, the study highlights the overall inefficiency of the water industry, emphasising the importance

of better management of daily operations and addressing issues such as leakage and unplanned

interruptions. Furthermore, the study suggests that there is no single correct approach when mea-

suring utilities’ performance, and policy makers, regulators, and researchers need to have a good

understanding of industry structure, including costs, outputs, and environmental variables when

conducting benchmarking analysis, as it can impact decision-making processes. Overall, this

research reinforces the need for increased involvement and knowledge of industry structure in

benchmarking analysis for effective decision-making.

Benchmarking practices have become increasingly important in the water sector for identi-

fying areas of inefficiency and implementing strategies to improve utility performance. To this

end, this thesis leverages frontier-based tools to conduct benchmarking exercises for the issues

addressed in Chapters 4, 5, 6 and 7. A detailed explanation of the techniques utilised is presented

in these upcoming chapters.

3.4 Conclusion

This chapter has outlined the utilisation of decision support tools that play a critical role in enhanc-

ing water utility management. The decision support tools developed in this thesis can help water

utility managers overcome challenges in resource efficiency, service quality, and infrastructure
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management, which are critical concerns in the water sector. Furthermore, these tools can support

the water sector’s efforts to cope with emerging trends. They can serve as building blocks for

fostering digitalisation processes, enhancing sustainability, and minimising infrastructure risks.

Finally, the decision support tools presented in this thesis can foster organisational learning and

continuous improvement, which are crucial for building internal capacity and achieving long-term

success. By providing managers with actionable insights and performance benchmarks, these tools

can facilitate the identification of best practices and support a culture of innovation and knowledge-

sharing within water utilities. Overall, the decision support tools presented in this thesis represent

valuable initiatives for enhancing the management and performance of water utilities, and for

supporting the sector’s efforts to address existing challenges.



CHAPTER 4
A decision support model for cost

efficiency assessment of wholesale water
utilities under a regulatory context

This chapter proposes a comparative evaluation instrument designed to measure the efficiency of the water
supply and wastewater treatment managing entities that operate in the wholesale market segment. The pur-
pose of this instrument is to determine the efficient operating cost of each managing entity for the 2017-2021
period. To this end, the non-parametric Data Envelopment Analysis technique was used, adapted to a robust
and conditional approach to mitigate the impact of outliers in estimating the production technology frontier
and understand the influence of the surrounding context on the activity of the entities. The cloudy situation
predicted for the water sector in the coming decades at an international level makes it possible to foresee
several problems in terms of the scarcity of drinking water and access to basic sanitation conditions. For
this reason, this sector assumes ideal characteristics for governance. In fact, through benchmarking, regu-
lation can guide decision-making and control the position of operators in the market, promoting efficiency
improvements. The proposed models were defined together with a European Union country regulatory en-
tity for this sector. The results point to similar mean efficiency scores between both services in the 5 years
in question. However, they revealed the existence of greater heterogeneity between entities managing the
wastewater treatment service than the water supply service. Furthermore, the estimated potential savings
for both ranged from 2% to 3%, approximately. The impact of the Management model and the Typology
of intervention area on the efficiency levels proved to be statistically significant in the water supply service
(only the latter) and the wastewater treatment service (both).

4.1 Introduction

Over the last few years, debates about some of the major challenges of the twenty-first century

have intensified, from pandemics to wars, population growth to poverty, and climate change to

energy crises. However, an issue at the centre of these discussions is often forgotten: the scarcity

of water resources. According to the most recent report of the United Nations (UN; 2022), the

world’s water-related ecosystems are being degraded at an alarming rate, with more than 85% of

the Earth’s wetlands being lost in the past 300 years. Besides, over 700 million people live in

countries with high and critical water stress levels. In the end, the UN predicts that, at the current

rate, 1.6 billion people will lack safely managed drinking water by 2030 and a fourfold increase

37
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in the pace of progress will be necessary to meet water supply and sanitation targets, despite the

progressive convergence of its Member States towards them (Pereira and Marques, 2021, 2022a).

If we narrow our scope to the European context, we encounter a set of policies and strategies

established by the European Commission to halt deterioration in European water bodies and im-

prove their status. First, the Water Framework Directive (2000/60/EC) legislates the quality and

quantity of groundwater and the quality of surface water. Most Central and Northern European

countries have reported their River Basin Management Plans, while most Southern and Eastern

European countries are still up to the public consultation stage. Second, the European Green Deal

intends to guide the efficient use of resources in the sustainable circular economies of the future,

resting on the Circular Economy Action Plan aimed at reducing the pressure on natural resources,

with clean water as one of its primary goals.

However, the scenario for the water sector can be revamped by doing better with less. The

Organisation for Economic Co-operation and Development (OECD; 2015) stated that this sector

is highly aligned with the features of multi-level governance in that water connects all sectors,

places, and people, and its management is both a global and local concern. The monopolistic

nature of this sector (and associated market failures) turns policy-making into an intricate task.

Indeed, the World Bank (1992) had already aligned a country’s quality of governance - how power

is utilised in managing a country’s resources - with its level of development.

Furthermore, the OECD (2015) has also asserted that “water crises are often primarily gover-

nance crises”. Despite lacking evidence supporting a one-size-fits-all solution to address global

water challenges, a highly context-dependent governance framework, enhanced with bottom-up

and inclusive decision-making in designing effective water policies, is key to overcoming bottle-

necks and solving current and future water challenges. Essentially, the robustness of future public

policies should rely on the dimensions of water governance put forward by the OECD (2015): ef-

fectiveness (concerning governance’s contribution to set, implement, and meet targets), efficiency

(concerning governance’s contribution to maximise user sustainable water value for money), and

trust and engagement (concerning governance’s contribution to building public confidence and

democratically involve all stakeholders).

The OECD’s focus is more comprehensive than the user satisfaction-based effectiveness di-

mension (Vilanova et al., 2015). From an economic standpoint, it seeks to minimise resource

consumption to produce the outcomes expected by the users. Fundamentally, it rests on four prin-

ciples: data and information, financing, innovative governance, and regulatory frameworks. In

particular, the latter is seen as a critical principle since regulatory authorities play a major role

in supervising operators, monitoring all areas of water-related services, and deploying policies to

balance the needs and expectations of the stakeholders (Akhmouch and Correia, 2016). Regula-

tion is vital to control the operators’ market position, quality of service, and prices - something

that can be accomplished via benchmarking (Pereira and Marques, 2022b). Benchmarking ac-

tions are recognised as an essential tool to promote efficiency improvements in the water sector

(Henriques et al., 2020). Regardless of the type of regulatory model, the literature has shown that

benchmarking not only empowers the regulatory authority in guiding decision-making but also

https://eur-lex.europa.eu/legal-content/EN/ALL/?uri=celex%3A32000L0060
https://www.consilium.europa.eu/en/policies/green-deal/
https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=COM%3A2020%3A98%3AFIN
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introduces artificial competition in naturally monopolistic sectors and, consequently, incentivises

improvements (Pinto et al., 2017b).

Nonetheless, Mehta et al. (2013) claim that the full potential of benchmarking tools in reg-

ulated sectors, such as urban water supply and sanitation, is yet to be achieved. Therefore, a

systematic effort is needed to develop efficiency measurement tools to monitor water supply and

wastewater treatment operators conducive to improving their price-quality relationship, quality of

service, and system sustainability in the long term.

In this study, we conceive a comparative evaluation instrument to measure the efficiency of

water supply and wastewater treatment service providers operating in the wholesale market seg-

ment in a European Union (EU) country in collaboration with its water and waste services reg-

ulatory authority. The result of this collaboration is to ascertain the efficient operating expendi-

ture (OPEX) of each operator for the 2017-2021 period and support budget drafting for the next

regulatory period, with clear impacts on the country’s contributions towards the aforementioned

European Commission’s Water Framework Directive and European Green Deal policies in terms

of water quality. In particular, we employ the ubiquitous Data Envelopment Analysis (DEA) non-

parametric method, extended to a conditional and robust order-m setting to mitigate the impact of

atypical operators and understand the influence of exogenous factors on the operational activity

of the service providers. This way, our proposal is aligned with the state of the art of scientific

literature on non-parametric efficiency measurement and uses a conditional and robust order-m

approach as a benchmarking tool aimed at improving operational practices through peer learning.

This work is also innovative since it comprehends a collaborative empirical application in the wa-

ter supply and wastewater treatment wholesale market segment. The approach proposed in this

study is innovative in terms of regulation in the European space, placing this country as a pioneer

in terms of formative regulation for wholesale operations. It is tailored to promote continuous

enhancement in the sector by providing regulatory authorities with tools that allow them to define

improvement objectives based on comparisons with the best practices observed in other entities,

taking into account the context in which they operate.

This chapter is structured as follows: Section 4.2 addresses the literature reviewed in the pur-

suit of the knowledge gap and identifies the aspects that differentiate this study from previous

works; Section 4.3 details the methodology proposed for the efficiency analysis; Section 4.4 de-

scribes the case study built alongside the regulatory authority; Section 4.5 presents the results

and discusses their regulatory and decision-making implications; Section 4.6 highlights the main

achievements, limitations, and research prospects of the study.

4.2 Knowledge gap

There are numerous scientific publications regarding efficiency in the water sector, ranging from

articles (see, e.g., Gidion et al., 2019; Fu and Jacobs, 2022) to book chapters (see, e.g., Davis,

2005) and reviews (see, e.g., Vilanova et al., 2015; Santos et al., 2019) to conference proceedings

(see, e.g., Vieira et al., 2015; Dziedzic and Karney, 2014). These studies, and many others in the
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literature, cover different perspectives in which measuring the efficiency of services provided in

this sector is included. When it comes to studies on the efficiency of water supply and wastewater

treatment services, the paradigm is quite different, especially if we consider the two segments

of this market - wholesale and retail. First, focusing on the wholesale market segment was a

request from the country’s regulatory authority, which intended to begin an analytical endeavour

upstream regarding the water supply and wastewater treatment value chain before delving into

any regulatory market changes. Second, addressing potential barriers wholesale market operators

create, in light of the sustainability issues raised in Section 4.1, is crucial for efficient governance,

especially at the local government level (Caplan et al., 2022). Third, to the best of the authors’

knowledge, there are only two studies on the wastewater treatment service (Carvalho and Marques,

2014; Henriques et al., 2020) that partially meet the wholesale market segment requirement - none

of which have provided clear evidence for inefficiencies in the country’s wholesale market. It

should be noted that the number of studies in this area on the retail market segment is vastly

broader, with much more detailed insights into the country, although there is no concrete focus

on this niche of the literature in the analysis at the level of companies, municipalities, regions, or

even other countries. Studies on wholesale water supply are non-existent as far as the authors are

aware.

Indeed, both Carvalho and Marques (2014) and Henriques et al. (2020) conducted a bench-

marking study of the wastewater treatment services operating in the wholesale market segment

in Portugal. Nevertheless, while the former also included water supply operators and the retail

market segment, the latter focused exclusively on wastewater treatment operators in the whole-

sale and retail market segments. First, Carvalho and Marques (2014) studied the existence of

economies of vertical integration between the two market segments, economies of scope between

water supply and wastewater treatment services, and economies of scale in the wholesale mar-

ket segment using robust order-α DEA. The authors considered a total sample of 74 operators

between 2002 and 2008 and evaluated them according to 3 different models (depending on the

type of economies under assessment), always considering Labour costs, Capital costs, and Other

operational costs as inputs and a mix of volumes as outputs (in particular, regarding wastewater

treatment, they have considered the Volume of collected wastewater and the Volume of treated

wastewater). Ultimately, the authors found evidence of economies of scale in wastewater treat-

ment services operating exclusively in the wholesale market segment. Second, Henriques et al.

(2020) proposed a benchmarking framework to support performance-based sunshine regulation in

wastewater treatment services. Using DEA’s ‘Benefit-of-the-Doubt’ (BoD) approach, formulated

with a directional distance function and incorporating weight restrictions, the authors assessed the

performance of a total of 212 wastewater treatment retailers and wholesalers in Portugal in 2018,

considering the three dimensions (user interface suitability, service management sustainability,

and environmental sustainability) and fourteen indicators proposed by the Portuguese regulatory

authority for Water and Waste Services (ERSAR, 2021a) to evaluate the quality of service provided

by wastewater treatment retailers and wholesalers. Their framework also included a second-stage

contextual analysis. At last, the results of this study pointed to an exemplary level of performance
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in 6 of the 12 operators of wastewater treatment services that operate in the wholesale market seg-

ment in the three considered dimensions but did not find evidence of exogenous variables capable

of explaining the dispersion observed in the levels of inefficiency associated with the remaining

operators. However, only 3 of the 200 operators of wastewater treatment services operating in the

retail market segment achieved notable results along the three dimensions, even though, in this

case, there is a positive impact on the quality of service by a larger scale, investment subsidies,

and energy production as well as concessions and urbanisation.

The two studies described above address different aspects of the water supply and wastewater

treatment sector in the wholesale market segment but share some similarities. Table 4.1 encapsu-

lates their main features in terms of application context and model structure.

Table 4.1: Overview of the application context and model structure of studies on efficiency mea-
surement on wholesale water supply and wastewater treatment services.

Reference

Application context Model structure

Country Sample Year(s) Methodology
Indicators

Contextual variables
Inputs Output(s)

Carvalho and
Marques
(2014)

Portugal

74 wholesale
and retail
water supply
and
wastewater
treatment
services

2002-2008 Robust order-α DEA
Labour costs + Capital
costs + Other operational
costs

Volume of delivered water (retail)
+ Volume of delivered water
(wholesale) + Volume of collected
wastewater + Volume of treated
wastewater

-

Henriques
et al. (2020) Portugal

12 wholesale
wastewater
treatment
services +
200 retail
wastewater
treatment
services

2018

Two stage DEA
approach: directional
BoD + hypothesis
tests

Dummy variable (unitary
input)

Physical accessibility of the service
+ Economic accessibility of the
service + Occurrence of floods +
Response to complaints and
suggestions + Coverage of
expenses + Subscription to the
service + Rehabilitation of
collectors + Occurrence of
structural collapses in collectors +
Adequacy of human resources +
Energy efficiency of lifting
installations + Physical
accessibility to treatment + Control
of emergency discharges +
Compliance with the discharge
license + Adequate forwarding of
treatment sludge

Management model + Typology of the
intervention area + Collected wastewater
+ Own energy production + Investment
subsidies

If we extend the scope of our search to the retail market segment, the outcomes are quite

different. There is a myriad of studies in several countries, namely: Ananda (2014) in Australia,

Tourinho et al. (2022b,a) and Pereira and Marques (2022c) in Brazil, Maziotis et al. (2020) and

Molinos-Senante et al. (2020) in Chile, Romano et al. (2018) in Italy, Satoh (2015) and Satoh

(2019) in Japan, Ablanedo-Rosas et al. (2020) and Salazar-Adams (2021) in Mexico, Carvalho and

Marques (2011) and Pinto et al. (2017c) in Portugal, Molinos-Senante and Maziotis (2018) and

Williams et al. (2020) in England and Wales, Ferreira da Cruz et al. (2012) in Italy and Portugal,

De Witte and Marques (2010a) in Australia, Belgium, England, the Netherlands, Portugal, and

Wales, and Ferro and Romero (2011) in Latin America.

Bottom line, similarly to the previously reported publications on the wholesale market seg-

ment, these studies tend to use: labour, capital, and operational costs as inputs; volumes of de-

livered water and collected and treated wastewater as outputs; and geography and ownership as

contextual variables (Tourinho et al., 2022b). The reader interested in water utility benchmarking

is directed to the survey of Berg and Marques (2011) and the bibliometric analysis of Goh and See

(2021) for further information on the subject.
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Note that the vast majority of the studies mentioned above use some form of DEA (mainly

the same approach as Lo Storto (2013)), with only Ferro and Romero (2011) (which also used

DEA), Molinos-Senante and Maziotis (2018), Molinos-Senante et al. (2020), and Williams et al.

(2020) using econometrics resting on the Stochastic Frontier Analysis (SFA) approach. Regarding

robust conditional DEA, the order-m approach is more popular than its order-α counterpart, with

applications of the former being found in the works of De Witte and Marques (2010a), Carvalho

and Marques (2011), and Pinto et al. (2017c). However, while De Witte and Marques (2010a) con-

ducted an international benchmarking study to design performance incentives for water utilities,

both Carvalho and Marques (2011) and Pinto et al. (2017c) attempted to understand the influence

of the operational environment on the Portuguese water utilities.

In the end, as far as we know, no studies apply robust conditional order-m DEA to measure the

efficiency of water supply and wastewater treatment services operating in the wholesale market

segment under a regulatory framework(in this EU country or abroad). Furthermore, there are no

publications that do so as a result of a collaboration between academia and national regulatory

authorities. Hence, the contributions of our proposal are reiterated as being twofold, both in terms

of the scientific innovation of the used models and their empirical application to actual data un-

derlying the regulation of water supply and wastewater treatment companies in the context of this

EU nation.

4.3 Methodology

With the importance of benchmarking as a vital analysis for regulation activities in the water sector

having already been established in Section 4.1, it is time to address its methodologies. Parametric

and non-parametric frontier methods to measure efficiency have been employed in the sector,

ranging from SFA to Data Envelopment Analysis (DEA), respectively, and their adaptations and

extensions. However, Goh and See (2021) say that DEA has become the most popular.

As a non-parametric frontier method, DEA measures the relative efficiency of a homogeneous

set of decision-making units (DMUs) producing multiple outputs from multiple inputs as the radial

distance from each DMU to the estimated production frontier. It returns a group of efficient DMUs,

i.e., benchmarks, and a group of inefficient DMUs. DEA optimises the weighting system that

enables each DMU to yield its best efficiency score. It was designed by Charnes et al. (1978)

based on the concepts proposed by Farrell (1957). Its main advantage concerns the nonnecessity

of specifying the functional form of its frontier a priori, only making some assumptions regarding

the production technology (e.g., convexity, returns-to-scale).

Resting on the literature review conducted in Section 4.2, it is consensual that an input-oriented

VRS DEA model should be adopted in efficiency measurements in this sector. Thus, its envelop-

ment formulation, which seeks the proportional input reduction needed for a certain DMU to

reach the frontier assuming distinct scale sizes among the DMUs, for the DMU under assessment
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(DMU j0) is shown in Model (4.1):

ZI =min θ j0 − ε

(
m

∑
i=1

s−i j0 +
s

∑
r=1

s+r j0

)
(4.1)

subject to
n

∑
j=1

λ jxi j + s−i j0 = θ j0xi j0 , i = 1, . . . ,m

n

∑
j=1

λ jyr j − s+r j0 = yr j0 , r = 1, . . . ,s

n

∑
j=1

λ j = 1

θ j0 is free

λ j, s−i j0 , s+r j0 ⩾ 0,


j = 1, . . . ,n

i = 1, . . . ,m

r = 1, . . . ,s

ε > 0,

where: xi j denotes the value of input i for DMU j; yr j denotes the value of output r for DMU j; θ j0

is a decision variable that denotes the radial efficiency score of DMU j0 ; λ j is a decision variable

that denotes the intensity variables and assumes a positive value in case a specific DMU j is a peer

of DMU j0 ; s−i j0 is a slack variable that denotes potential non-radial adjustments to the input levels

of DMU j0 ; s+r j0 is a slack variable that denotes potential non-radial adjustments to the output levels

of DMU j0 ; and ε is a non-Archimedean infinitesimal.

After computing the optimal solution of Model (4.1), we obtain fully efficient, weakly efficient,

and fully inefficient DMUs. DMU j0 is fully efficient when its efficiency score, θ j0 , is equal to

one and all slacks, s−i j0 for (i = 1, . . . ,m) and s+r j0 for (r = 1, . . . ,s), are equal to zero. A DMU

is weakly efficient when its efficiency score, θ j0 , is equal to one, but at least one slack, s−i j0 for

(i = 1, . . . ,m) or s+r j0 for (r = 1, . . . ,s), is positive. Finally, a DMU is fully inefficient when its

efficiency score, θ j0 , is lower than one. Furthermore, it is possible to compute targets for an

inefficient DMU j0 based on the optimal values of the decision variables of its peers (given by the

symbol ‘*’) according to Expression (4.2) and Expression (4.3):

xT
i j0 =

n

∑
j=1

λ
∗
j xi j = θ

∗
j0xi j0 − s∗−i j0 , i = 1, . . . ,m (4.2)

yT
r j0 =

n

∑
j=1

λ
∗
j yr j = yr j0 + s∗+r j0 , r = 1, . . . ,s (4.3)

Nevertheless, DEA’s deterministic nature poses a disadvantage in the face of outliers since any

atypical observation belonging to the set of DMUs can shape the so-called full frontier. Conse-

quently, their presence may shift that frontier and underestimate the scores of the remaining DMUs
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(Fusco et al., 2020). Therefore, although detecting outliers to be removed from the sample can be

useful, understanding the extent to which they are the best- or worst-performing DMUs may be of

interest, especially in the case of small samples where information is crucial for decision-making

(De Witte and Marques, 2010). The proposal of partial/robust frontiers has been put forward in

the literature to address these issues, essentially in two ways: order-m (Cazals et al., 2002; Daraio

and Simar, 2005, 2007b) and order-α (Aragon et al., 2005; Daouia and Simar, 2007) methods.

In particular, order-m and order-α partial frontiers differ since the former concerns a “discrete”

notion and the latter a “continuous” notion of partial frontiers given the fundamental distinction

between m as a function of n and α as the level of an appropriate non-standard conditional quantile

frontier (Daouia and Simar, 2007). If we look at Section 4.2, there is a quantitative preference in

the literature for order-m methods instead of order-α ones supporting the use of the former over

the latter.

In particular, unlike in the full frontier estimation via Model (4.1), where the model was solved

iteratively per DMU, partial frontier estimation solves Model (4.1) B times per DMU following a

Monte Carlo simulation, where B is a large number. Since we are dealing with an input-oriented

analysis, m DMUs are randomly drawn with replacement among those producing an output level

greater than or equal to the DMU j0 in each B iteration. This subsampling procedure aims to

mitigate the impact of outliers and compare the DMU j0 with less extreme peers1. In the end, the

mean of the efficiency scores computed per b-th iteration, with b = 1, . . . ,B, θ
b,m
j0 is equal to the

robust order-m efficiency score θ̂ m
j0 :

θ̂
m
j0 =

∑
B
b=1 θ

b,m
j0

B
(4.4)

On the one hand, m can be seen as the number of DMUs competing with the DMU j0 to produce

greater or equal output levels. On the other hand, it can be seen as a threshold value for the

robustness analysis. The choice of m is not elementary since the literature mentions that its value

should not be too high or too low because of the possibility of not enveloping all DMUs (Cazals

et al., 2002; Rogge and De Jaeger, 2013). Typically, m should be lower than the number of

sampled DMUs to decrease the probability of super-efficient DMUs. Henriques et al. (2022)

suggest conducting a sensitivity analysis for different m values to support the robustness of the

analysis.

When identifying benchmarks and targets in a robust order-m DEA context, there are some

possibilities to compute them, following Henriques et al. (2022). First, the number of times a

DMU is deemed as a benchmark per partial frontier indicates its benchmarking status. Second, the

intensity variables and the targets can be computed as the mean of all B iterations. Since a partial

frontier produces a tighter envelope around the sampled data, the generated robust efficiency scores

will always be higher than those computed from a full frontier estimation. Thus, the robust target

values will be lower and more realistically achievable.

1Nonetheless, it may lead to the absence of DMU j0 among the subsampled m DMUs. Hence, it may be located
above the partial frontier and be identified as a super-efficient DMU if its efficiency score is greater than one.
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Moreover, understanding the influence of the operational context is of utmost importance in

these types of analyses. Ascertaining the role of specific factors surrounding the sampled DMUs

is usually recognised by the literature as a relevant aspect, typically addressed via a one-stage

approach (where contextual variables are classified a priori as either inputs or outputs and included

in the model or used to guide the sampling procedure) or a two-stage approach (where efficiency

scores are computed in a first stage and parametrically regressed on non-discretionary variables

in a second stage) (Daraio and Simar, 2007b). However, depending on the type of contextual

variable, a mixed approach can be used, for instance, considering continuous/modelling contextual

variables in the first stage and categorical/descriptive contextual variables in the second stage.

Still, according to those authors, there are two issues concerning the bias of first-stage efficiency

scores and the need for specifying the parametric regression model a priori. For this reason,

Daraio and Simar (2005) proposed conditional non-parametric frontier models, whose insights

were integrated into the robust conditional DEA employed here, also in line with Daraio and

Simar (2007b) and De Witte and Kortelainen (2013).

Compared to the robust order-m DEA described above, the robust conditional order-m DEA

demands an adjustment to estimate the unconditional frontier. This way, there is a higher prob-

ability of DMUs that operate in a similar context being drawn together and a lower probability

of DMUs that operate in a different context being drawn together. Accordingly, the mean of the

conditional efficiency scores computed per b-th iteration, with b = 1, . . . ,B, θ
b,m,z
j0 is equal to the

robust conditional order-m efficiency score θ̂
m,z
j0 :

θ̂
m,z
j0 =

∑
B
b=1 θ

b,m,z
j0

B
(4.5)

Note that R version 4.2.1 was the software used to implement the models above and compute

the results. In particular, the ROBUST_DEA and CONDITIONAL_DEA of the RCDEA package

were employed with slight code modifications to enable the benchmark computation.

4.4 Case study

This section covers the application context addressed in this study (Subsection 4.4.1) and the

modelling structure used to address it (Subsection 4.4.2).

4.4.1 Application context

The challenges faced by the water sector and the goals set to tackle them are two key facets of

regulation (Henriques et al., 2020). This case considers an unidentified EU country in which

the regulatory authority developed an integrated approach comprising two perspectives: struc-

tural regulation and behavioural regulation. Although the former concerns organisational aspects

and the latter concerns each utility, both standpoints should interact and evolve (Baptista, 2014b).
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Essentially, the sunshine regulatory model adopted by the regulatory authority is portrayed as col-

laborative rather than restrictive. It uses a set of transparent key performance indicators to evaluate

the service quality of operators according to three dimensions - user interface suitability, service

management sustainability, and environmental sustainability - and, ultimately, enable regulation

by benchmarking to impact the operators’ performances and promote accountability, thus assum-

ing a developmental role in the sector instead of a monitoring and control part.

The market structure of the water sector in that nation is divided into wholesale and retail mar-

ket segments, with the latter being less developed than the former from service quality, resource

management, and sustainability standpoints (ERSAR, 2021a). As justified above, this study fo-

cuses on wholesale water supply and wastewater treatment services, which currently comprehend

17 and 12 operators covering 72% and 96% of the country’s population, respectively. Note that

three entities operate simultaneously as both wholesalers and retailers (ERSAR, 2021a), although

their data sets are completely separate, including cost information.

Bottom line, the water supply or wastewater treatment service providers analysed in this chap-

ter are studied in the 2017-2021 period as pooled five-year samples but must remain anonymous

due to confidentiality issues. In this work, only 10 of the 17 water supply service providers oper-

ating in the wholesale market segment were considered since the remaining 7 provide the service

in very restricted areas. Thus, 50 observations populated all water supply (WS) models, resulting

from 10 observations per year, i.e., five observations per operator. As for the wastewater treatment

service, six instances were removed from the sample. This deletion was due to reasons related to

significant changes in the production technology of these service providers in the years considered

according to the EU country’s regulatory authority. Hence, 54 observations (due to the removal of

6 observations from the initial 60 observations, which resulted from 12 observations per year, i.e.,

five observations per operator) populated all wastewater treatment (WT) models. Additionally,

there are six common operators between the ten water supply and 12 wastewater treatment sets,

i.e., 16 distinct operators in total. In the end, 7 out of the ten sampled wholesale water supply

operators and 10 out of the 12 sampled wholesale wastewater treatment operators are managed

under a municipal or multi-municipal concession agreement, while 3 of 10 and 1 of 12 abide by

a delegated State or municipal management solution, and municipal or inter-municipal services or

associations directly manage 1 of 12.

4.4.2 Modelling structure

The assessment carried out in this chapter required the collaborative construction with the regu-

latory authority of the production activities of the WS and WT service providers operating in the

wholesale market segment. This way, two efficiency measurement models - a robust unconditional

(RU) one and a robust conditional (RC) one - were defined per type of service in the wholesale

market segment, depending on whether or not the modelling contextual variable was included in

the RC model: WS-RC MODEL and WT-RC MODEL if the modelling contextual variable was

considered in the RC model; WS-RU MODEL and WT-RU MODEL if the modelling contextual

variable is not included in the RU model (see Table 4.2).
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Table 4.2: Modelling structure of WS MODELS and WT MODELS.

Model
Indicators Contextual variables

Input Outputs Modelling Descriptive

WS-RC
Total OPEX
(xWS

1 )

Volume of water entering
the system (yWS

1 ) +
Elevated volume of water
(yWS

2 ) + Number of
households with effective
water supply service
(yWS

3 ) + Total length of
pipelines (yWS

4 )

Raw water quality (zWS
1 )

Management model (zWS
2 )

+ Typology of the
intervention area (zWS

3 )

WS-RU
Total OPEX
(xWS

1 )

Volume of water entering
the system (yWS

1 ) +
Elevated volume of water
(yWS

2 ) + Number of
households with effective
water supply service
(yWS

3 ) + Total length of
pipelines (yWS

4 )

-
Management model (zWS

2 )
+ Typology of the
intervention area (zWS

3 )

WT-RC
Total OPEX
(xWT

1 )

Volume of wastewater
treated in treatment
plants (yWT

1 ) + Elevated
volume of wastewater
(yWT

2 ) + Number of
households with effective
wastewater treatment
service (yWT

3 ) + Total
length of collectors (yWT

4 )

Effluent quality (zWT
1 )

Management model (zWT
2 )

+ Typology of the
intervention area (zWT

3 )

WT-RU
Total OPEX
(xWT

1 )

Volume of wastewater
treated in treatment
plants (yWT

1 ) + Elevated
volume of wastewater
(yWT

2 ) + Number of
households with effective
wastewater treatment
service (yWT

3 ) + Total
length of collectors (yWT

4 )

-
Management model (zWT

2 )
+ Typology of the
intervention area (zWT

3 )
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Essentially, the rationale behind the production process shown in Table 4.2 corresponds to the

context of the physical configuration of the wholesale water supply and wastewater treatment sys-

tems according to the regulatory authority. In terms of the total operating costs, all the water that

enters the system through an elevating process and serves retailers through pipelines is considered.

Regarding the total operating costs, all wastewater collected from retailers through collectors and

raised to be subjected to treatment is considered. It should be noted that an elevating process is for

the (waste)water to circulate under pressure and enable it to overcome terrain barriers.

From another angle, following the recommendation of Henriques et al. (2022), we have chosen

values of m equal to the number of DMUs in the samples (m = 50 for WS MODELS and m = 54

for WT MODELS) due to the small sample size of our study. This choice is supported by Daraio

and Simar (2007a) since the authors state that even if m is independent of the sample size, its

values can be fixed by taking into consideration the possible number of competitors of a given

firm, which, in a market with a small number of utilities - as is the wholesale water supply and

wastewater treatment one in this EU country -, it is sensible to consider all of them as potential

competitors. B = 1000 was also chosen as the appropriate number of iterations for each model

since it requires less computational effort. Running a sensitivity analysis on B did not generate

changes, especially for larger values.

4.4.2.1 Input

It is important to note that the operating costs chosen as the input of each model include the Cost of

goods sold and materials consumed, the Cost of external supply and services, the Cost of labour,

and Other operating costs. The regulatory authority considered these four types of cost to be

fundamental for the operational cost structure of wholesale service providers and, consequently,

for the definition of OPEX. In other words, OPEX resulted from the sum of the Cost of goods sold

and materials consumed, the Cost of external supply and services, the Cost of labour, and Other

operating costs. Bear in mind that it does not include structure costs.

4.4.2.2 Outputs

After extensive discussions with the regulatory authority about the duality of operation in the

wholesale and retail market segments, it was concluded that the system characteristics of the two

types of services considered here would be a basis for choosing the outputs (see Subsection 4.4.1).

Therefore, it is essential to consider as outputs the Volume of water entering the system, the Ele-

vated volume of water, the Number of households with effective water supply service, and the Total

length of pipelines in the case of the water supply service and the Volume of wastewater treated

in treatment plants, the Elevated volume of wastewater, the Number of households with effec-

tive wastewater treatment service, and the Total length of collectors in the case of the wastewater

treatment service.
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4.4.2.3 Contextual variables

The selected contextual variables reconcile the evidence found in the literature and the regulatory

authority’s preferences. On the one hand, the chosen descriptive contextual variables were based

on the ones most commonly used in the literature, namely the Management model (concession,

delegation, or direct management) and the Typology of the intervention area (predominantly rural

area, moderately urban area, and predominantly urban area). In particular, regarding the former

(Vilarinho et al., 2023c): in a concession model, the State establishes a long-term public-private

partnership with a third party to operate the system; in a delegation model, the State owns and con-

trols the operation of the system, but delegates its management to an operator via a management

contract; in a direct management model, the State owns and operates the system. Regarding the

latter, its three typologies are derived from the degree of urbanisation of a territory established by

the country’s National Institute for Statistics. On the other hand, the modelling contextual variable

boiled down to the quality of the product, depending on the model: Raw water quality in WS

MODELS and Effluent quality in WT MODELS. Note that the latter was developed internally by

the regulatory authority specifically for this analysis.

Briefly, the modelling contextual variable enters each robust conditional DEA model (WS-RC

MODEL and WT-RC MODEL) in the optimisation process associated with the efficiency measure-

ment, whereas the remaining contextual variables are considered only in a phase after obtaining

the efficiency scores of the four models due to their descriptive nature. Thus, the descriptive

contextual variables are not taken into account for the estimation of the production frontiers.

4.4.2.4 Overview

Finally, the descriptive statistics of all the variables used in the WS MODELS (Table A.1) and the

WT MODELS (Table A.2) in the period 2017-2021 are reported in Appendix A.1.1. Regarding the

descriptive contextual variables, given their use a posteriori and their invariable nature over time,

their descriptive statistics are presented in the same appendix, but in Table A.3.

That being said, bivariate Pearson correlation tests were performed between all potential vari-

ables considered in the discussions with the regulatory authority to validate the choice of inputs

and outputs. These varied between total OPEX, OPEX without structure costs, and structure costs

for inputs and volumes, installed capacities, and socio-demographic indicators for outputs and

modelling contextual variables of WS MODELS and WT MODELS in 136 correlations between

16 variables. These findings attest to the legitimacy of the modelling choices given the compliance

with the isotonicity property of DEA, i.e., the requirement that the relationship between inputs and

outputs is not erratic. For reasons of space, only the results concerning the selected variables are

presented (see Table 4.3 and Table 4.4).

Several positive and statistically significant correlations between the chosen input and the

selected outputs validate the regulatory authority’s choices. Additionally, due to the positive and

statistically significant correlation between almost all pairs of outputs of each model, adding or

replacing some of them with other indicators could have been a reality. Infrastructure-related
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Table 4.3: Bivariate Pearson correlation among the variables selected for WS MODELS.

xWS
1

a yWS
1

b yWS
2

c yWS
3

d zWS
1

e yWS
4

f

xWS
1

a 1 0.886** 0.796** 0.920** -0.591** 0.652**

yWS
1

b - 1 0.924** 0.887** -0.405** 0.310*

yWS
2

c - - 1 0.887** -0.284* 0.161
yWS

3
d - - - 1 -0.406** 0.433**

zWS
1

e - - - - 1 -0.549**

yWS
4

f - - - - - 1
a Total OPEX
b Volume of water entering the system
c Elevated volume of water
d Number of households with effective water supply ser-
vice
e Raw water quality
f Total length of pipelines
** Significance level of 1%
* Significance level of 5%

Table 4.4: Bivariate Pearson correlation among the variables selected for WT MODELS.

xWT
1

a yWT
1

b yWT
2

c yWT
3

d zWT
1

e yWT
4

f

xWT
1

a 1 0.890** 0.646** 0.934** 0.179 0.808**

yWT
1

b - 1 0.697** 0.969** 0.169 0.559**

yWT
2

c - - 1 0.741** 0.300* 0.550**

yWT
3

d - - - 1 0.289* 0.695**

zWT
1

e - - - - 1 0.375**

yWT
4

f - - - - - 1
a Total OPEX
b Volume of wastewater treated in treatment plants
c Elevated volume of wastewater
d Number of households with effective wastewater treat-
ment service
e Effluent quality
f Total length of collectors
** Significance level of 1%
* Significance level of 5%
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indicators, namely, the Number of installations, were a possibility. Nevertheless, the decision was

made by the regulatory authority not to include them due to less strong correlations with other

indicators.

It should be noted the considerable effort by the regulatory authority to provide clean panel

data for all service providers to enable a careful analysis and an in-depth specification of the

variables to be included in the models.

4.5 Results and discussion

This section contains the results and their discussion regarding the measurement of efficiency,

computation of peers, and calculation of the ideal targets of the water supply and wastewater

treatment service providers operating in the wholesale market segment. Subsection 4.5.1, Subsec-

tion 4.5.2, and Subsection 4.5.3 encompass these findings.

4.5.1 Water supply

On average, between 2017 and 2021, if we consider only the entities for which there is evidence

of inefficiency (θ j0 < 1), water supply service providers obtained a mean score of approximately

0.9528 and 0.9541 according to the WS-RU MODEL and the WS-RC MODEL, respectively.

In particular, between 2017 and 2021, 40% of the service providers were considered inefficient,

according to both models. All scores ranged from 0.8731 to 2.5116 and 0.8731 to 1.0000 in the

five considered years, respectively. The influence of outliers is evident when Raw water quality is

not considered a modelling context variable since the service providers are being compared with

very similar peers in the WS-RC MODEL.

Figure 4.1 details the evolution of the mean efficiency scores per year and methodology, con-

sidering all observations each year. The evolution trend of the efficiency scores points to a de-

crease during the period considered according to both models, with the lowest average value being

reached in 2020. Table A.4 in Appendix A.1.2 provides further details on these results.

Ideally, service providers located below the efficient frontier should guide their improvement

process by considering the performance levels observed in one or more peers. It should be noted

that the fact that the study sample was relatively small, combined with using a modelling con-

text variable in the WS-RC MODEL, resulted in an internal benchmarking exercise. External

benchmarking occurred in four cases for the WS-RU MODEL out of 18 inefficient DMUs. Con-

sequently, per year, each inefficient service provider generally has an ideal peer corresponding to

itself in another year. 2017 was the year that emerged more frequently in the generated peers.

Thus, it is relevant to study the role of the descriptive contextual variables on the computed ef-

ficiency scores. Consequently, non-parametric hypothesis tests appear as the indicated approach;

hence, the Kruskal-Wallis H test was applied to the groups of sampled utilities to assess the exis-

tence of statistically significant differences between their efficiency scores. In particular, the null

hypothesis states that k samples are derived from the same population: if the hypothesis is true,

the distribution of the obtained efficiency scores is not statistically significant; otherwise, rejection
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Figure 4.1: Annual evolution of average efficiency scores for the wholesale water supply service
per model.

of the null hypothesis occurs at a significance level of 95% if the p-value is equal to or less than

0.05.

The results presented in Table 4.5 point to the retention of the null hypothesis in all cases

except for the Typology of the intervention area in the WS-RU MODEL, which indicates that this

contextual variable has a statistically significant influence on the efficiency scores of the wholesale

water supply service providers when Raw water quality is not considered.

Table 4.5: p-values of the Kruskal-Wallis H tests for the descriptive contextual variables of the
water supply service.

MODEL Management model Typology of the intervention area
WS-RU 0.915 0.001*

WS-RC 0.371 0.415
* Significance level of 5%

Additionally, accounting for the statistically significant differences in the distribution of effi-

ciencies in the WS-RU MODEL in terms of the Typology of the intervention area, it is necessary

to perform paired Mann-Whitney U tests to understand the source of statistically significant differ-

ences among intervention areas. Table 4.6 presents the results of these tests already adjusted for

the Bonferroni correction. Indeed, the comparisons revealed statistically significant differences

for ‘Predominantly rural area’ vs. ‘Moderately urban area’ and ‘Predominantly rural area’ vs.

‘Predominantly urban area’. The same did not occur for ‘Moderately urban area’ vs. ‘Predom-

inantly urban area’. In other words, predominantly rural areas are distinct from moderately and

predominantly urban areas, evident in their higher mean efficiency scores (1.2379 vs. 1.0012 and

1.2379 vs. 0.9702, respectively). We could not detect statistically significant differences in the

WS-RC MODEL due to the small sample size, and the robust conditional model compares service

providers operating in a similar context, which further reduces the comparison potential.
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Table 4.6: p-values of the Mann-Whitney U tests for the Typology of the intervention area in the
WS-RU MODEL.

Typology of the intervention area
Predominantly rural area Moderately urban area Predominantly urban area

Typology of the intervention area
Predominantly rural area - 0.012* 0.001*

Moderately urban area - - 0.473
Predominantly urban area - - -

* Significance level of 5%

At last, to test the relevance of operating simultaneously in the wholesale and retail market seg-

ments on the computed efficiency scores, another Mann-Whitney U test was applied to the groups

of sampled utilities. However, the null hypothesis was retained in both the WS-RU MODEL and

the WS-RC MODEL, implying that operating in the two market segments or only in the wholesale

one does not significantly influence the efficiency scores.

4.5.2 Wastewater treatment

On average, between 2017 and 2021, if we consider only the entities for which there is evidence of

inefficiency (θ j0 < 1), wastewater treatment service providers obtained a mean score of 0.9378 and

0.9507 according to the WT-RU MODEL and the WT-RC MODEL, respectively - values some-

what similar to those generated by the WS-RU MODEL and the WS-RC MODEL. In particular,

between 2017 and 2021, 25% of the service providers were considered inefficient, according to

both models. All scores ranged from 0.8266 to 3.0230 and 0.8380 to 1.0000 in the five considered

years, respectively. In this case, the influence of outliers is evident when Effluent quality is not

considered a modelling context variable since the service providers are being compared with very

similar peers in the WT-RC MODEL.

Figure 4.2 details the evolution of the mean efficiency scores per year and methodology, con-

sidering all observations each year. The evolution trend of the efficiency scores points to an in-

crease during the period considered according to the WT-RU MODEL and a slight decrease ac-

cording to the WT-RC MODEL. Table A.5 in Appendix A.1.2 provides further details on these

results.

As for the water supply service, service providers located below the efficient frontier should

guide their improvement process by considering the performance levels observed in one or more

peers. Once again, it should be noted that the fact that the study sample was relatively small,

combined with using a modelling context variable in the WT-RC MODEL, resulted in an internal

benchmarking exercise. External benchmarking occurred in six cases for the WT-RU MODEL out

of 16 inefficient DMUs. Consequently, per year, each inefficient service provider generally has an

ideal peer corresponding to itself in another year. 2018 was the year that emerged more frequently

in the generated peers.

Thus, it is relevant to study the role of the descriptive contextual variables on the computed

efficiency scores. Similarly to the previous service, non-parametric hypothesis tests in the same

conditions appear as the indicated approach. This way, the results presented in Table 4.7 point
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Figure 4.2: Annual evolution of average efficiency scores for the wholesale wastewater treatment
service per model.

to the rejection of the null hypothesis in all cases except for the Management model in the WT-

RC MODEL, which indicates that the remaining contextual variables statistically influence the

efficiency scores of the wholesale wastewater treatment service providers.

Table 4.7: p-values of the Kruskal-Wallis H tests for the descriptive contextual variables of the
wastewater treatment service.

MODEL Management model Typology of the intervention area
WT-RU 0.001* < 0.001*

WT-RC 0.314 0.007*

* Significance level of 5%

Additionally, accounting for the statistically significant differences in the distribution of ef-

ficiencies in the WT-RU MODEL in terms of the Management model and the Typology of the

intervention area and the WT-RC MODEL in terms of the Typology of the intervention area, it

is necessary to perform paired Mann-Whitney U tests to understand the source of statistically

significant differences among management models and intervention areas. Table 4.8, Table 4.9,

and Table 4.10 present the results of these tests already adjusted for the Bonferroni correction.

First, the comparisons of the results of the Management Model of the WT-RU MODEL revealed

statistically significant differences for ‘Concession’ vs. ‘Delegation’ and ‘Concession’ vs. ‘Di-

rect management’. In other words, concession models are distinct from the delegation and direct

management models, which is evident in their lower mean efficiency scores (1.0509 vs. 1.0520

and 1.0509 vs. 1.6406, respectively). This finding implies that when the State only participates in

an operator’s capital instead of owning or operating it, the service seems less efficient. However,

note that only one operator is managed under a delegation model and another one under a direct

management model, which means that these results should be interpreted cautiously. We could

not detect statistically significant differences in the WT-RC MODEL due to the small sample size

and the fact that the robust conditional model compares service providers operating in a similar
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context, which further reduces the comparison potential. Second, comparing the results of the

Typology of the intervention area of the WT-RU MODEL revealed statistically significant differ-

ences for ‘Predominantly rural area’ vs. ‘Moderately urban area’ and ‘Predominantly rural area’

vs. ‘Predominantly urban area’. In other words, predominantly rural areas are, once again, distinct

from moderately and predominantly urban areas, which is evident in their higher mean efficiency

scores (1.2464 vs. 1.0603 and 1.2464 vs. 0.9755, respectively). Third, comparing the Typology

of the intervention area results from the WT-RC MODEL revealed statistically significant differ-

ences for ‘Moderately urban area’ vs. ‘Predominantly urban area’. In other words, moderately

urban areas are distinct from predominantly urban areas, given their higher mean efficiency scores

(0.9984 vs. 0.9664).

Table 4.8: p-values of the Mann-Whitney U tests for the Management model in the WT-RU
MODEL.

Management model
Concession Delegation Direct management

Management model
Concession - 0.032* 0.013*

Delegation - - 1.000
Direct management - - -

* Significance level of 5%

Table 4.9: p-values of the Mann-Whitney U tests for the Typology of the intervention area in the
WT-RU MODEL.

Typology of the intervention area
Predominantly rural area Moderately urban area Predominantly urban area

Typology of the intervention area
Predominantly rural area - < 0.001* 0.001*

Moderately urban area - - 1.000
Predominantly urban area - - -

* Significance level of 5%

Table 4.10: p-values of the Mann-Whitney U tests for the Typology of the intervention area in the
WT-RC MODEL.

Typology of the intervention area
Predominantly rural area Moderately urban area Predominantly urban area

Typology of the intervention area
Predominantly rural area - 1.000 0.072
Moderately urban area - - 0.007*

Predominantly urban area - - -
* Significance level of 5%

Finally, an additional Mann-Whitney U test was applied to the groups of sampled utilities to

test the relevance of operating simultaneously in the wholesale and retail market segments on the

computed efficiency scores. Once again, the null hypothesis was retained in both the WT-RU

MODEL and the WT-RC MODEL, implying that operating in the two market segments or only in

the wholesale one does not significantly influence the efficiency scores.
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4.5.3 Estimated savings

Finally, the total OPEX target an inefficient service provider needs to achieve based on the compar-

ison with the values of its peers in order to become efficient must be known. Indeed, for regulatory

purposes, it is recommended that such targets should be estimated via robust conditional models

to ensure a more homogeneous comparison since they correspond to a more complete and conser-

vative approach in terms of what is considered to be the effective potential for improvement in the

sector. Nonetheless, we present the results of both models for comparison purposes.

Therefore, using Expression (4.2), it is estimated that the sum of the ideal total OPEX for

the considered period varies between 13,431,583.54 C and 13,699,473.68 C for the water supply

service and between 19,188,431.38 C and 26,590,580.70 C for the wastewater treatment service.

This would allow average annual savings between 2.13% and 2.18% for the former and 2.36%

and 3.22% for the latter. Figure 4.3 and Figure 4.4 show the total potential annual savings for

each service based on these targets. It should be noted that the ideal total OPEX values are com-

puted based on the outputs produced by each service provider, which justifies the reported annual

variations.

Figure 4.3: Potential annual savings for the water supply service.

It should be noted that entities for which there is evidence of super-efficiency (θ j0 > 1), in line

with Mergoni et al. (2022), are DMUs that are doing better than the average m DMUs they are

compared with (De Witte and Schiltz, 2018), which means that they do not need to reduce OPEX

and their optimal OPEX value is the same as their original one.

4.6 Conclusion

This work addressed the problem of measuring the efficiency of the water supply and wastewater

treatment service providers operating in the wholesale market segment in an EU country between

2017 and 2021. For this purpose, two methodologies with consolidated theoretical bases were

employed in collaboration with the country’s regulatory authority, being able to benchmark these
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Figure 4.4: Potential annual savings for the wastewater treatment service.

services, avoid the impact of outliers, and allow the understanding of contextual factors. Funda-

mentally, the country’s regulatory authority was involved in every process step, from selecting the

sample and choosing suitable inputs, outputs, and contextual variables to critically analysing the

results.

Nonetheless, robust conditional models should be considered the more accurate and conserva-

tive instruments for regulatory purposes. The regulatory authority saw such models as invaluable

regulation tools with plenty of potential for future regulatory frameworks, such as monitoring

service quality and setting efficient water tariffs. Moreover, by adopting a sunshine regulation

strategy, the regulator can leverage the findings of this study to simulate market competition and

encourage the operators to meet benchmark efficiency levels. Hence, they can ascertain the best

practices of their peers and attain more favourable OPEX levels.

The results point to similar efficiency scores between the wastewater treatment service and

the water supply service in the five years in question, although being slightly higher in the former

(1.08 and 0.99 vs. 0.99 and 0.98 for the robust approach and the conditional approach to each

service). In addition, it is estimated that, for the level of production of the service providers in

each service, it is possible to save 2.13% (robust approach) and 2.18% (conditional approach) and

2.36% (robust approach) and 3.22% (conditional approach) of their respective average yearly total

OPEX, which corresponds to 2,739,894.74 C (robust approach) and 2,686,316.71 C (conditional

approach) for the former and 5,318,116.14 C (robust approach) and 3,837,686.28 C (conditional

approach) for the latter. It should be noted that the Management model and the Typology of the

intervention area showed statistically significant differences in terms of their role in influencing

the efficiency scores obtained.

As main limitations, we point out three aspects. First, the availability and quality of some

data motivated the use of Raw water quality and Effluent quality in their present form (devel-

oped internally by the regulatory authority specifically for this analysis) as proxies. Second, the

positive and statistically significant correlation between almost all pairs of outputs of each model

could motivate the addition or replacement of some of them by other indicators. Third, the con-
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ditional nature of one of the methodologies transforms an external benchmarking exercise (given

the comparison of a service provider with others) into an internal benchmarking exercise (since

each service provider, when inefficient, becomes its own peer); for this reason, and allied to the

reduced sample size, it was not possible to study the impact of the modelling contextual variables

on the results by comparing the use of conditional and non-conditional models. The continued

improvement of these shortcomings will lead to results even more suited to the fine-tuning of this

collaborative regulatory framework, which will result in more transparent regulation and more

efficient governance of the water sector. Alternative DEA methodologies should also be consid-

ered, e.g., window DEA to deal with the multi-period nature of the samples, meta-frontier DEA

to account for the categorical contextual variables, and output-side weight restrictions based on

the regulatory authority’s preferences. Multi-criteria decision analysis-based approaches should

also be considered to incorporate multiple stakeholders’ value judgements further and ease the

consensus-reaching process.



CHAPTER 5
Assessing the quality of service of water
utilities from a customer perspective to

support sunshine regulation
This work delves into the crucial role of service quality in the water supply and sanitation sector. Despite ex-
tensive research and implementation of quality management practices in this sector, a universally accepted
definition of quality is still lacking, resulting in various service quality assessment procedures that are diffi-
cult to compare. To address this issue, the World Bank launched the ‘Utility of the Future’ (UoF) program,
aiming to guide water service providers in their efforts to become future-focused utilities that offer reliable,
safe, inclusive, transparent, and responsive services through best-fit practices. Building upon the framework
provided by the UoF program, this study proposes the Water Utility Service Quality Index (WUSQI) - a
composite indicator that reflects the quality of service provided by water supply and sanitation utilities from
a customer perspective. Based on Data Envelopment Analysis, the Benefit-of-the-Doubt approach is em-
ployed to assign weights for aggregating the indicators representing the diverse performance dimensions.
The study operationalises the WUSQI to assess the quality of Portuguese wholesale water and wastewater
companies using data collected by the national regulator of water and waste services. A Multiple Criteria
Decision Analysis technique, the Deck of Cards method, is used to specify an indicator of transparency
from the information made available by the regulated utilities. The results show the effectiveness of this
tool for evaluating and measuring service quality at the company level. Additionally, the findings highlight
areas for improvement in the utilities’ performance. By enabling companies and regulators to identify areas
for improvement, the WUSQI can support the delivery of high-quality services to customers.

5.1 Introduction

Quality is a multifaceted concept studied extensively in management and it has become critical

for the success of many industries. However, due to its intangible nature, there is still a lack

of consensus on its precise definition, which has evolved over time and in the literature. Qual-

ity encompasses dimensions such as performance, reliability, durability, aesthetics and customer

satisfaction, making it complex and challenging to define universally. According to van Keme-

nade and Hardjono (2019), quality is a “fuzzy and vague concept” that cannot be measured with

certainty since it depends on individual interpretation.

Defining and measuring quality becomes even more complex when it pertains to services.

Unlike products, services are intangible and their quality highly depends on the perceptions of

59
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the users (Sousa and Voss, 2002). Public services, such as water supply and sanitation, involve

multiple stakeholders with varying priorities and goals. As a result, the concept of quality in

these contexts can be interpreted in diverse ways and requires careful consideration of the needs

and expectations of all involved stakeholders. In such an environment where users cannot easily

switch to a different service provider, maintaining high levels of quality becomes critical to protect

their interests and ensure continuity of services. The lack of competition can also reduce the

motivation for providers to maintain high-quality service levels, emphasising the importance of

measuring quality and taking actions to ensure high-quality standards (Sala-Garrido et al., 2021).

Collaboration and coordination among stakeholders are crucial to establishing clear standards for

quality in public services, contributing to the well-being of society as a whole. The provision of

safe and dependable water and sanitation services (WSS) is vital to safeguarding public health. To

attain this objective, it is essential to prioritise the delivery of high-quality services.

Reaching a high level of service quality in the water sector requires a new management ap-

proach that ensures continuity of operations, encourages continuous improvement, develops strate-

gic capabilities, and creates efficient and sustainable business models. To support utilities in this

endeavour, the World Bank has developed the ‘Utility of the Future’ (UoF) programme (Lom-

bana Cordoba et al., 2021), which aims to ignite, materialise and maintain transformation efforts

in the water and sanitation sector. The UoF programme guides utilities, particularly in developing

countries, to become future-focused and to provide high-quality services, by promoting best-fit

practices that enable them to operate in an efficient, resilient, innovative and sustainable manner.

It considers that the ultimate objective of water and sanitation utilities is to provide quality services

that are reliable, safe, inclusive, transparent and responsive.

In the approach adopted by the World Bank, the quality of WSS is measured following a

customer-centred perspective. Performance indicators are suggested for the individual dimensions

of reliability, safety, inclusiveness, transparency and responsiveness. Based on the indicator val-

ues, the utilities are classified at world-class, well-performing, good, basic and elementary levels

for each dimension. The programme proposes separate indicators to evaluate each dimension of

quality of the provided services but does not recommend any method to aggregate these dimen-

sions into a single indicator reflecting the overall quality of service levels.

In fact, composite or synthetic indicators are commonly utilised to measure the quality of

services as they can effectively condense complex, multi-dimensional information and support

decision-makers. Composite indicators (CIs) offer advantages such as being easier to interpret

than a battery of many separate indicators. CIs are also able to track progress over time and

minimise the set of indicators that need to be monitored while preserving the underlying informa-

tion. However, CIs may send misleading policy messages if poorly constructed or misinterpreted

(Nardo et al., 2008).

This study aims to develop a CI that reflects the quality of service provided by water supply

and sanitation utilities from the customer perspective, following the UoF approach. The resulting

index is named Water Utility Service Quality Index (WUSQI). Among the numerous techniques

employed to build CIs, we employ the Benefit-of-the-doubt approach (BoD) popularised by Cher-
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chye et al. (2007), based on Data Envelopment Analysis (DEA). This method was selected for

its capability to assign weights that are the most favourable for the unit under consideration, in

comparison to its peers in the sample for aggregating the various metrics. This approach mitigates

potential objections from the entities being evaluated, making it a suitable approach for public

services under regulation, such as water and sanitation services. The study also uses the Deck of

Cards Method (DCM) (Figueira and Roy, 2002; Corrente et al., 2021), a Multiple Criteria Decision

Analysis (MCDA) technique, to construct an indicator that reflects the transparency dimension of

utilities’ services.

The strategy developed in this study is applied to a case study of the Portuguese wholesale

water and wastewater firms taking advantage of the reliable and vast data collection system pro-

vided by the Portuguese regulatory authority for this sector. To the authors’ knowledge, the BoD

technique has not yet been employed to construct CIs based on a customer-centred perspective of

quality. The framework proposed by the World Bank in the UoF programme has not been utilised

to construct CIs to express the quality of service provided by water utilities, highlighting the nov-

elty of this research. The use of the DCM in this context represents another innovative feature of

the study.

The proposed method can support regulators in evaluating water companies’ performance from

a customer-centred perspective, making informed decisions that positively impact service quality

levels. In some countries, such as England and Wales, service quality is a key input in setting

tariffs (Maziotis et al., 2017; Molinos-Senante et al., 2022a). This study can also provide valu-

able insights for water companies by identifying customer satisfaction factors, allowing them to

improve service delivery. Overall, the relevance of the study relies on the potential to support

improvements in the quality of service provided by water companies, benefiting customers and

the broader society as a whole. While the primary focus of the UoF programme lies in improving

water utilities in developing countries, the method is applied to a European context to demonstrate

its practical relevance and applicability at a global level.

The structure of the remaining parts of this chapter is as follows: Section 5.2 provides a concise

literature review. Section 5.3 outlines the methodology proposed, while Section 5.4 discusses

the case study, which serves as an illustrative example of the method’s strength and practical

application. Section 5.5 presents and analyses the results. Lastly, in Section 5.6, the conclusions

of the study are presented and potential avenues for future research are explored.

5.2 Literature Review

This section examines the literature on measuring service quality levels. Subsection 5.2.1 provides

an overview of various methodologies regardless of the sector, whereas Subsection 5.2.2 focuses

on the specific evaluation of service quality in the water sector.
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5.2.1 Assessment of quality of services

Quality is a vital and intricate element of business strategy, impacting customer satisfaction, firm

profitability and economic growth. It drives competition among firms and shapes markets, with

customers seeking high-quality products and services. However, despite its significance, there is

still a lack of agreement on the precise definition of quality. Reeves and Bednar (1994) suggest that

instead of trying to create a single definition of quality that encompasses all the aspects of existing

concepts, it is more effective to weigh the trade-offs of these definitions and select the one that

best suits the practitioners’ requirements. Similarly, when discussing quality definitions related

to tangible products, Garvin (1984) recommends using the distinction between various quality

perspectives for business advantage, ensuring that quality serves as a ‘competitive weapon’.

The study by Reeves and Bednar (1994) examined the strengths and weaknesses of the differ-

ent perspectives on defining quality. These include the excellence definition, which views quality

as a higher achievement; the value definition, which sees quality as an added value for the or-

ganisation; the specification definition, which emphasises conformance to specifications; and the

customer definition, which focuses on meeting or exceeding expectations of the customers. These

perspectives are widely discussed in management literature and applied to assess and measure the

level of quality of different businesses.

We summarise the strengths and weaknesses of quality definitions, according to Reeves and

Bednar (1994), in Table 5.1. By examining the content of the table, we see that measuring quality

as excellence can be challenging, while the specification definition primarily focuses on internal

processes and may not adequately evaluate service quality. As a result, the value and customer

definitions are more suitable for assessing service quality and are, indeed, the most commonly

used approaches for this assessment.

Table 5.1: Strengths and weaknesses of quality definitions. Adapted from Reeves and Bednar
(1994).

Definition Strengths Weaknesses

Excellence
– Strong marketing and human re-

sources benefits.
– Universally recognisable – high

achievement.

– Little practical guidance.
– Measurement difficulties.
– Rapid change of excellence attribute.

Value
– Multiple attributes.
– Focused on internal and external ef-

ficiency.

– Questionable inclusiveness.
– Quality and value are different con-

structs.

Specification
– Precise measurement.
– Force disaggregation of consumer

needs.

– Consumers do not know or care
about internal specifications.

– Inappropriate for services.
– Specifications may become obsolete.
– Internally focused.

Customer
– Applicable across industries.
– Responsive to market changes.
– All-encompassing definition.

– Most complex definition.
– Difficult to measure.
– Customers may not know their ex-

pectations.
– Confusion between customer service

and customer satisfaction.
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Other scholars have also been engaged in the ongoing discourse about the concept of quality,

acknowledging that it is not a matter of resolution, but rather a constantly evolving idea (Golder

et al., 2012; Elshaer, 2012; Kenyon and Sen, 2016). This ambiguity regarding the definition of

quality has also been prevalent in the context of services. In contrast to the concept of quality used

for physical products, the assessment of the quality of services (QS) places a greater emphasis on

customer perception and marketing (Sousa and Voss, 2002). As Harvey (1998) points out, service

quality assessment is unique to each market segment and can be classified into two main compo-

nents, reflecting both the outcomes desired by the customer and the efforts that customers must

undertake to achieve those outcomes. Additionally, the outcomes desired by the customer must

be achieved by examining the performance of internal processes and aligning them with customer

perceptions to ensure the desired outcomes are achieved. Due to the intangible nature of the ser-

vice results, potential discrepancies between perception and reality are more significant in services

than in goods. This fact may explain the reason why service quality has been more extensively

studied in marketing than in operations, in contrast to product quality which is predominantly

researched in the operations field.

Extensive literature reviews, such as Wen et al. (2022) and Zhang et al. (2021), indicate that

there has been a growing focus on QS in quality management research. Numerous studies have

highlighted its importance (Carnerud, 2017; Zhang et al., 2021; Lo and Chai, 2012; Sánchez-

Franco et al., 2022). This trend is expected to continue in the future, potentially leading to further

advancements in the field.

Prasad and Verma (2022) presented a literature review on the main methods used to measure

QS and pointed out directions for future research. According to these authors, the most popular

approach to measure service quality was introduced by Parasuraman et al. (1988). This scale -

entitled SERVQUAL - comprises five dimensions, namely reliability, responsiveness, empathy,

assurance and tangibility. The dimension of reliability pertains to the capability to provide the

assured service with consistency and precision. The responsiveness dimension focuses on the

promptness and willingness to assist customers. The dimension of empathy refers to the level of

care and personalised attention provided to customers by the company. The assurance dimension

is linked to the expertise and politeness of employees and their capacity to encourage trust and

confidence. Finally, the tangibility dimension assesses physical attributes, such as equipment,

facilities and the appearance of the staff. The SERVQUAL approach sees QS as the agreement

between customers’ expectations and their perceptions of the provided service. SERVQUAL has

been vastly used in a wide range of services and has shown the potential to be applied both to

private (Saleh, 1991; Reidenbach and Sandifer-Smallwood, 1990; Newman, 2001; Awasthi et al.,

2011; Pakdil and Aydin, 2007; Tan and Kek, 2004; Bojanic and Rosen, 1994) and public services

(Wisniewski, 1996, 2001). For reviews of this method, see Asubonteng et al. (1996) and Ladhari

(2009). As noted by Asubonteng et al. (1996), while SERVQUAL is a popular tool used to measure

service quality, it has been criticised for its limitations, including its assumption that customers

have a clear idea of what they expect from a service and the applicability of its five dimensions to

all types of services. In search of a better measure of service quality, researchers should continue to
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explore alternative approaches that are more appropriate for different types of services and better

capture the nuances of customer expectations and experiences.

A strong measurement strategy is essential for improving QS. Metrics communicate organisa-

tional priorities and can track progress, compare performance and identify areas for improvement.

A precise measurement system for the quality of services enables early detection of deviations and

highlights service improvements. Ultimately, it fosters continuous learning and growth (Harvey,

1998).

5.2.2 Assessment of quality of services in the water sector

The service quality in the water sector has been addressed in the literature under different ap-

proaches: (i) general performance assessments incorporating QS elements, following the quality-

as-value definition, and (ii) QS measurement following the customer-centred perspective.

The first approach includes studies that aim to measure QS with a broader perspective, us-

ing the value definition. Although the results are often referred to as measures of service qual-

ity, they are actually reflections of overall performance levels. Such studies usually encompass

customer-related measures and also integrate additional metrics that may not be directly tied to

the customer’s perspective, such as environmental sustainability, investment compliance, financial

performance, asset management and human resources productivity.

Water services have been incorporating customer-centric aspects into their performance as-

sessments since 1999 when English and Welsh water companies began implementing the overall

performance assessment (OPA) methodology (Molinos-Senante et al., 2022a). In the literature, ac-

cording to Picazo-Tadeo et al. (2008), the first paper that took a customer perspective into account

when measuring water utilities’ overall performance was that by Saal and Parker (2001). Since

then, this strategy has been employed by several scholars (Woodbury and Dollery, 2004; Picazo-

Tadeo et al., 2008; Kumar and Managi, 2010; Maziotis et al., 2017; Molinos-Senante and Maziotis,

2018; D’Inverno et al., 2021; Mocholi-Arce et al., 2021; Henriques et al., 2022; Molinos-Senante

et al., 2022d; Chang et al., 2022; Duarte et al., 2009; Pinto et al., 2017a; Molinos-Senante et al.,

2019; Sala-Garrido et al., 2021; Molinos-Senante et al., 2022a). Many of those works aim to pro-

duce composite indicators (CIs) usually referred to as indices of service quality. These studies are

displayed in Table 5.2.

In 2008, a collaborative effort between the International Water Association and the Inter-

American Development Bank resulted in the development of an initiative aimed at establishing

a universally recognized model in the assessment of water utility performance. This initiative,

known as AquaRating, serves as a performance system that enables the characterization and eval-

uation of utilities through the application of key performance indicators and the implementation

of best practices. AquaRating has gained recognition as a reference model by regulators, gov-

ernments, and development agencies. It encompasses eight distinct areas of evaluation, including

quality of service, investment planning and implementation efficiency, operating efficiency, busi-

ness management efficiency, access to service, corporate governance, financial sustainability, and
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environmental management. This comprehensive approach highlights AquaRating as a system

dedicated to enhancing the overall value delivered by utilities (Krause et al., 2018).

The second approach employed to address the quality of water and sanitation services (WSS)

measures QS in a more focused view, using the customer definition. In this group, a prevalent

method is to examine customer satisfaction, which is often achieved through surveys that em-

ploy satisfaction drivers to analyse users’ perceptions of these services. This strategy was em-

ployed by Abubakar (2016) and Ohwo and Agusomu (2018) in Nigeria. Ammar and Saleh (2021)

and Murrar et al. (2020) applied the SERVQUAL model in Palestine with a similar approach.

SERVQUAL was also utilised by Kassa et al. (2017) in Ethiopia to investigate urban water sup-

ply services. Other studies using customer satisfaction surveys are Kumasi and Agbemor (2018),

Tessema (2020), and Rustinsyah (2019). Although surveys are commonly used to collect data,

they can be expensive and subjective due to challenges in designing the survey, selecting the ap-

propriate type and method of application, and using statistical methods for analysis. For that

reason, performance indicator systems have been developed to conduct QS assessments, focusing

on the customer perspective.

Both value-based and customer-based approaches utilise composite indicators as a strategy to

evaluate the quality of service (QS). This approach involves gathering diverse metrics from reliable

sources, such as regulators or the companies themselves, and consolidating them into a composite

or synthetic indicator that effectively represents the provided service quality levels. By employing

this method, a comprehensive and representative assessment of QS can be achieved.

Palomero-González et al. (2022) argue that while CIs are widely used in research on services

and in the water sector, they have not yet been extensively used in particular analysis of service

quality under customers’ perceptions. To the best of the authors’ knowledge, three studies have

developed CIs following the customer-centred quality concept for water utilities: Karnib (2015)

in Lebanon, Molinos-Senante et al. (2017) in Chile and Palomero-González et al. (2022) in Spain.

However, CIs have been developed for the same purpose under the value-based concept of qual-

ity explicitly or under the denomination of overall performance. Table 5.2 summarises the main

characteristics of the studies that employ CIs to measure QS. In Table 5.2, the studies identified

as adopting a value-concept of quality are the ones that incorporate at least one of the metrics not

directly linked to the customer perspective. Those studies include measures of environmental sus-

tainability, investment compliance, financial performance, asset management and human resources

productivity. Developing an indicator that reflects the overall performance level of a utility may

offer the advantage of being more comprehensive, which could explain the wider usage of this

approach. However, it is worth noting that customer-centred approaches to measuring quality of

service (QS) can be highly valuable for managers and regulators. By considering the variables that

shape customers’ perceptions, decision-making processes can become more informed and aligned

with the needs and expectations of the users. According to Palomero-González et al. (2022),

the outcomes of such assessments can significantly enhance the understanding of customers’ per-

ceived quality in an objective, quick, simple and cost-effective manner. This fact emphasises the

relevance of this study.
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Table 5.2: Studies with CIs to evaluate the quality of services in the water sector.

Reference Quality concept Composite indicator Sample Metrics Method

Karnib (2015) Customer
Quality of
service
index (QSI)

4 regional water
authorities
in Lebanon

4 metrics for 4 years:
i. Network coverage
ii. Water consumption
iii. Continuity of water supply
iv. Water quality

Fuzzy
inference
model

Molinos-Senante et al. (2017) Customer

Quality of
service to
customers
index

19 water and
wastewater
companies
in Chile

7 metrics:
i. Water supply pressure
ii. Water supply quality
iii. Wastewater treatment
quality
iv. Water supply continuity
v. Wastewater collection
continuity
vi. Billing accuracy
vii. Complaints

Ratios of
Shephard’s
distance
function
to access
performance
changes
over time

Palomero-González et al. (2022) Customer

CI to
measure the
quality
of water
supply based
on users’
perceptions

32 municipalities
in Valencia, Spain,
receiving water
from the same
company

6 metrics:
i. Network quality
ii. Water quality
iii. Water price
iv. Complaints
v. Inconvenience caused by
upgrading the network
vi. Continuity of service

MCDA model
with common
weights
based on DEA

Duarte et al. (2009) Value

Global
index
of service
quality

15 water supply
companies in
Portugal

20 metrics
from the regulator
authority in
Portugal
grouped in
3 dimensions

Normalisation
using fuzzy sets and
aggregation
by weighted average +
Three different options
are used to obtain weights
from a panel of experts

Pinto et al. (2017a) Value QSI

99 retail
water supply
companies in
Portugal

16 metrics
from the regulator
authority in
Portugal

ELECTRE
Tri-nC (MCDA)

Molinos-Senante et al. (2019) Value
Synthetic index
of quality of
service

40 rural
drinking water
systems in Chile

14 metrics
with weights
estimated by
different stakeholders

Analytical
Hierarchical
Process
(MCDA) +
Monte Carlo
simulation

Sala-Garrido et al. (2021) Value
CI of
quality of
service

24 water and
wastewater
companies
in Chile

7 metrics:
i. Investment compliance,
ii. Investment to improve the QS
iii. Network reposition
iv. Non-revenue water
v. Interruptions of water supply
vi. Obstructions in the sewerage network
vii. Payment accuracy

BoD using
undesirable metrics +
Nerlove–Luenberger
super efficiency
metric

Molinos-Senante et al. (2022a) Value
Quality of
service index

24 water and
wastewater
companies
in Chile

10 metrics:
i. Non-revenue water
ii. Network reposition
iii. Investment compliance
iv. Water meter operability
v. Interruptions in drinking water provision
vi. Obstructions in sewerage network
vii. Payment accuracy
viii. Compliance with drinking water quality
ix. Compliance with wastewater discharge
x. Water supply pressure

Goal programming

D’Inverno et al. (2021)
Value

Water
Utility
Performance
CI

93 Italian
water companies

8 metrics:
i. Return on assets
ii. Return on Equity
iii. Earnings before interest,
taxes, depreciation,
and amortisation
margin
iv. Financial autonomy
v. Autonomy from third parties
vi. Water losses
vii. Target time to do new connections
viii. Target time to repair breakdowns

BoD Model
with Directional
Distance Function
Robust
and conditional
approaches

Henriques et al. (2022)
Value

Performance
assessment CI

199 retail
wastewater companies
and 10 wholesale
wastewater
companies
in Portugal

14 metrics
from the regulator
authority in
Portugal

Directional BoD
models
for desirable
and undesirable
indicators
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To create a CI that accurately represents service quality, one of the crucial steps is to identify

the appropriate set of performance metrics that can be combined into a single index. In the water

and sanitation sector, performance indicators are frequently utilised to assess various aspects of

utility performance in order to identify areas that require improvement. Alegre et al. (2017) has

compiled a comprehensive collection of indicators that can be used in the sector. Regulators have

taken advantage of the various available metrics to better understand and support the performance

of companies.

The Water and Waste Services Regulatory Authority in Portugal (ERSAR) provides one of the

most widely studied sets of performance indicators in the literature. Every year, ERSAR collects

a vast set of metrics from water supply, wastewater, and solid waste service providers in Portugal,

and these reports can be accessed on ERSAR’s website. This is part of the “sunshine regulation”

policy adopted by the Portuguese regulatory authority, which involves openly publishing these

metrics.

ERSAR has been reviewing and enhancing its performance indicator system over time. In

2022, the fourth generation of indicators was introduced, with the first set of results scheduled for

release in 2023. The most recent data available pertains to the third generation of indicators, which

covers the period spanning from 2016 to 2021. Detailed information regarding these indicators can

be found in ERSAR’s Technical Guide 22 (ERSAR and LNEC, 2021). ERSAR’s performance in-

dicator system for water supply and wastewater services comprises 14 primary metrics, grouped

into three subsystems: (i) Adequacy of the Interaction with the User, (ii) Service Management

Sustainability, and (iii) Environmental Sustainability. The first subsystem reflects the defence of

user interests. The second subsystem, which reflects the sustainability of the managing entity,

encompasses the economic, financial, infrastructural, operational and human resource capacity

necessary to ensure regular and continuous service provision to users. The third subsystem fo-

cuses on environmental sustainability and includes aspects related to the environmental impact of

the managing entity’s activities, particularly with regard to the conservation of natural resources

(ERSAR, 2021a).

ERSAR refers to its overall performance appraisal system as a “quality of service measurement

system”. However, it is important to note that the evaluation method considers various factors

beyond just user experience metrics. Therefore, the approach can be characterised as a value-

centred quality evaluation system, as described by Reeves and Bednar (1994).

Numerous publications have used ERSAR’s data, including Duarte et al. (2009), Pinto et al.

(2017a), Henriques et al. (2022), Mergoni et al. (2022), and Vilarinho et al. (2023c,d).

After selecting the appropriate metrics to be used in constructing the CI, the next step is to

decide on the aggregation technique to be employed. As indicated in Table 5.2, there are various

methods available for this purpose. The Benefit-of-the-Doubt (BoD) approach, which is based

on Data Envelopment Analysis, has been utilised in constructing CIs in numerous fields. One

of its advantages is that it allows for the assignment of specific and most favourable weights for

combining the various metrics. This approach is particularly suitable for regulated markets such

as water and wastewater services, where there may be disagreements among operators regarding
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the relative importance of the different metrics. For this reason, the BoD technique is chosen to be

employed in this study. As seen in Table 5.2, BoD models have not been used to express QS under

a customer-centred perspective in water utilities, representing a novel contribution of this work.

A new approach to using performance indicators for quality of service evaluation in water

and sanitation utilities has been proposed by the World Bank through its ‘Utility of the Future’

(UoF) programme. This programme was first introduced in 2021 (Lombana Cordoba et al., 2021)

and was updated to version 2.0 in the following year (Lombana Cordoba et al., 2022). The UoF

programme has set out ambitious objectives that comprise a complete management strategy to

foster the development of the utilities and elevate WSS “beyond the next level". The relevance

and objectives of this programme are referred in page ix of Lombana Cordoba et al. (2022) as

follows:

Poor service frequently stems from a vicious cycle of dysfunctional political envi-

ronments and inefficient practices. Global forces—including climate change, water

scarcity, population growth, and rapid urbanisation—exacerbate these challenges to

providing high-quality, sustainable WSS service delivery. Therefore, WSS utilities re-

quire a new approach to planning and sequencing reforms to provide WSS services in

a sustainable manner. The UoF programme provides this new approach, building on

an extensive body of knowledge on utility performance improvement.

The UoF programme’s ultimate objective is to enhance and maintain the quality of services

provided by water and sanitation utilities, which is the topmost priority of the management model

presented by the World Bank. This quality-based management strategy requires utilities to be

reliable, secure, inclusive, transparent and responsive, which are the dimensions that form the

measurement framework proposed by the programme for QS evaluation. In order to be deemed re-

liable, utilities must provide a continuous 24/7 supply of WSS. Adherence to water and wastewater

quality standards represents safety. Inclusiveness requires that no individual or group is excluded

from receiving service. To be considered transparent, WSS should provide clear and accurate in-

formation regarding their finances, operations and performance. To attain responsiveness, utilities

should provide clients with timely and high-quality responses to ensure their satisfaction.

The programme examines each QS dimension using one or more performance indicators, but

it does not develop a CI to reflect the overall quality of WSS services. Instead, it assigns a per-

formance level from one to five for each metric, classified as elementary (1), basic (2), good (3),

well-performing (4), or world-class (5). Those values for the metric levels are averaged for each

dimension, and the utility’s QS is assessed by analysing each dimension’s performance level.

The UoF programme suggests metrics that can be collected by the utilities reflecting the pro-

gramme dimensions. The suggested metrics can be seen in Table 5.3.
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Table 5.3: Suggested metrics in the World Bank’s ‘Utility of the Future’ (UoF) Programme to
assess service quality for water and sanitation systems. Adapted from Lombana Cordoba et al.
(2022)

Dimension Metric

Reliability

Continuity (hours per day on average)

Continuity (customers with 24/7 supply) (%)

Availability (liters/capita/day)

Availability of fecal sledge management emptying

services (provided 24 hours after service requested) (%)

Safety
Water quality (samples meeting

all standards for drinking water quality) (%)

Wastewater and fecal sludge treatment (%)

Inclusiveness
Drinking water coverage (%)

Sanitation service coverage (%)

Transparency

Key information disclosure (%)

Applications of practices to generate clear information(%)

Applications of practices for ensuring accurate information (%)

Responsiveness

Customer satisfied with service (%)

Grievances satisfactorily resolved within seven days (%)

Sewer blockage complaints addressed within 48 hours (%)

This study aims to propose a method to integrate the UoF programme’s dimensions into a

composite performance indicator, which has not yet been addressed in the literature, representing

another novelty in this work.

5.3 Methodology

In this section, the proposed methodology is described in two stages. The first stage, in Sub-

section 5.3.1, describes the Deck of Card Method. In the second stage, in Subsection 5.3.2, the

calculation of the Water Utility Service Quality Index (WUSQI) using the BoD technique is de-

tailed.

5.3.1 The Deck of Cards method

In this subsection, the Deck of Cards method (DCM) is presented. This method will be used as a

support tool to build one of the metrics used in the QS assessment.

The DCM is a Multiple Criteria Decision Analysis (MCDA) method that has gained popular-

ity due to its simple and intuitive approach, as outlined by Corrente et al. (2021). This method

is utilised to assign values to preference parameters in MCDA models, such as the relative im-

portance of criteria in outranking methods or values representing evaluations of alternatives on

considered criteria and weights of criteria. In this study, we will describe the application of the

DCM to convert a scale with various levels of criteria into a continuous interval scale, while taking

into account the strength of preferences between the different levels.

As explained by Corrente et al. (2021), in the DCM, when using a discrete scale to evaluate a

criterion, each level can be represented by a card that decision-makers can physically manipulate

and arrange in their order of preference. The objective is to convert this discrete scale into a

continuous scale usually ranging from 0 to 1. The conversion allows decision-makers to assign
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numerical values that reflect the intensity of their preferences for each level. Typically, the least

preferred level is assigned a value of 0, while the most preferred level is assigned a value of 1. To

determine the values of intermediate levels, decision-makers must define the strength of preference

between each sequential pair of levels. The interval between two consecutive levels is filled with

blank cards, and the number of cards in each position reflects the relative importance of the upper

level compared to the lower level. The numerical scale can now be determined by considering the

total number of cards in the deck, including both level cards and blank cards.

For better clarification, let us consider an example. Suppose that the criteria E presents four

levels, l1, l2, l3, l4. The order of preference determined by the decision-makers is l1 ≺ l2 ≺ l3 ≺ l4
(≺ meaning “strictly less preferred than”). The decision-makers place one blank card between l1
and l2, two blank cards between l2 and l3 and four blank cards between l3 and l4. This means that

the significance of l3 compared to l2 is judged to be higher than the significance of l2 compared to

l1, and the significance of l4 compared to l3 is considered to be higher than the significance of l3
compared to l2. The resulting deck of cards is illustrated in Figure 5.1.

Figure 5.1: Deck of Cards method (DCM) example.

In this example, if the value 0 is assigned to l1 and 1 is assigned to l4, the remaining level

values are given based on their position in the deck. Since there are eleven cards in the deck and

ten spaces between cards, each card position is assigned a value between 0 and 1, in intervals of

(1−0)/10 = 0.1. Therefore, the value for l2 is 0.2 (since it is the third card in the deck, the value

is calculated as 0+(3−1)×0.1 = 0.2) and the value for l3 is 0.5 (being the sixth card in the deck,

the value results in 0+(6−1)×0.1 = 0.5).

5.3.2 Calculation of the WUSQI using the BoD technique

This subsection explains the strategy used to calculate the CI WUSQI, which involves using a BoD

linear programming model.

BoD models are DEA-based models that can handle multiple outputs representing various

metrics to be aggregated and a dummy input with a unitary value for all decision-making units

(DMUs). This approach was initially proposed by Melyn and Moesen (1991) to assess macroeco-

nomic performance and popularised by Cherchye et al. (2007). The BoD model employed in this

study for aggregating the chosen metrics collected from ERSAR’s data set is based on a Direc-

tional Distance Function (DDF) proposed by Zanella et al. (2015). The DDF-based BoD model

can handle both desirable and undesirable metrics without requiring any adjustment of measure-

ment scales. Desirable metrics are the ones for which a better performance corresponds to higher

values. Conversely, undesirable metrics are characterised by lower values indicating better per-

formance. The set of mathematical expressions in Model (5.1) defines the Directional Distance

Function BoD model used in this study.
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BoD models are used to perform a comparative performance assessment of a set of entities,

commonly referred to as DMUs. To perform the complete assessment of the set of DMUs, Model

(5.1) must be run and solved n times, being n the total number of DMUs. The outcomes of the

model are the decision variables’ values, which include v as the dummy input, and the weights

ur for the desirable metrics r, and pk for the undesirable metrics k. The total number of desirable

metrics is s, and the total number of undesirable metrics is l. The desirable and undesirable metrics

are represented as yr j and bk j, respectively, for DMUs j (where j ranges from 1 to n). The values

yr j0 and bk j0 correspond to the metrics of the DMU under assessment, denoted as j0. The index r

pertains to the set of desirable metrics (with r ranging from 1 to s), and the index k pertains to the

set of undesirable metrics (with k ranging from 1 to l).

minimise β j0 =−
s
∑

r=1
yr j0ur +

l
∑

k=1
bk j0 pk + v

subject to
s
∑

r=1
gyur +

l
∑

k=1
gb pk = 1

−
s
∑

r=1
yr jur +

l
∑

k=1
bk j pk + v ≥ 0 j = 1, . . . ,n

ur ≥ 0, r = 1, . . . ,s

pk ≥ 0, k = 1, . . . , l

v ∈ R

(5.1)

The direction in which desired metrics expand and undesired ones contract towards the ‘best-

practice frontier’ is indicated by the directional distance vector, which is specified as (gy,−gb).

The choice of the direction vector used in DEA/BoD models can impact the results obtained and

has been discussed by many scholars. Depending on the objective of the study, several solutions

have been proposed in the literature. Rogge et al. (2017) presents alternatives for the vector to

set the directions of improvement for desirable and undesirable outputs in BoD models. In this

study, we adopt the values of (gy,−gb) as (yr j0 ,−bk j0), following Zanella et al. (2015) and Rogge

et al. (2017). This approach enables each DMU to improve by following the path indicated by its

specific metrics and the resulting CI value can be interpreted proportionally.

The performance level of DMU j0 is represented by the factor β j0 in model (5.1), which

represents the objective of the model. The minimum value of β j0 determined by optimisation

indicates the maximum possible expansion of desirable metrics and contraction of undesirable

metrics while satisfying the constraints in the model. This allows DMU j0 to choose the weights

that are the most favourable to it. The associated CI, WUSQI j0 for j0, is obtained as 1/(1+β j0),

with a range of 0 to 1, where 1 indicates the highest level of performance. If WUSQI j0 < 1, it
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means that there is a linear combination of other DMUs that performs better overall. If WUSQI j0 =

1, DMU j0 is on the best-practice frontier, which implies that none of the other DMUs evaluated

performs better than it does.

To limit the range of the assigned weights, weight restrictions must be incorporated into the

model. Zanella et al. (2015) suggest a method for implementing weight restrictions known as AR-

I restrictions, which employ virtual weights. Virtual weights in this case mean the product of each

DMU’s metric by its respective weight. These constraints take into account a hypothetical aver-

age DMU whose metrics are equal to the average of all values observed in the DMUs included in

the sample, represented by (ȳr, b̄k). In this strategy, percent-based constraints are formulated and

included in the BoD model using the virtual weights of the average DMU. According to Zanella

et al. (2015), the use of AR-I restrictions provides the benefit of being identical for all DMUs

and represents the optimal choice for constructing CIs and rankings. These restrictions are the

most commonly used weight restrictions in BoD models. The weight restrictions, as presented in

Expressions (5.2), are included in the BoD model following Zanella et al. (2015). Lower bounds

expressed as percentages (φr and φk, respectively for desirable and undesirable indicators) are em-

ployed to ensure that no weights are equal to zero, preventing any indicator from being completely

disregarded in the calculation of WUSQI, and assigning a minimum level of importance to the in-

dicator. On the other hand, upper bounds expressed as percentages (ψr for desirable and and ψk for

undesirable indicators) are employed to impose maximum levels of importance on the indicators.

φr ≤ ur ȳr

∑
s
r=1 ur ȳr+∑

l
k=1 pk b̄k

≤ ψr, r = 1, . . . ,s

φk ≤ pk b̄k

∑
s
r=1 ur ȳr+∑

l
k=1 pk b̄k

≤ ψk, k = 1, . . . , l
(5.2)

In order to evaluate the service quality of each DMU j0, it is necessary to solve the BoD model

separately for each DMU. The resulting WUSQI j0 value represents the performance of the DMU

in terms of service quality.

The contribution of each metric to the determination of WUSQI j0 represents a piece of valu-

able information for decision-makers. It provides crucial insights into the performance of DMUs

relative to others, highlighting areas of strength and weakness. This knowledge enables decision-

makers to allocate improvement efforts more effectively. The BoD technique allows extracting

this information from the model results.

In standard BoD/DEA models, which are limited to analysing situations with only desirable

metrics, the strengths and weaknesses of the DMUs can be identified by the magnitude of the vir-

tual weights, computed as the values of each metric multiplied by the associated optimal weight

(uryr,r = 1, . . . ,s ). In these models, higher virtual weights indicate strengths of the DMUs, as

the models assign higher weights to metrics with superior performance. Conversely, lower virtual

weights indicate weaknesses of the DMUs, as they are assigned to metrics with inferior perfor-

mance.
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BoD models based on the Directional Distance Function (DDF), such as Model (5.1), include

both desirable and undesirable indicators in the optimisation underlying the performance esti-

mation. Consequently, in these models the magnitude of virtual weights cannot be interpreted

directly as a sign of good performance in that dimension, as in this case a strength is signalled by

high virtual weights of desirable metrics and low virtual weights of undesirable metrics.

To address this limitation, we estimate the relative strengths of the each DMU by the nor-

malised values associated with the specification of the weight restrictions in the form of Assur-

ance Regions type I (AR-I), as shown in (5.2). The AR-I weight restrictions are independent of the

units of measurement and express in relative terms the contribution of each metric to the overall

performance. Note that the denominator of these restrictions encompasses both undesirable and

desirable metrics, ensuring that the sum of the relative virtual weights for all metrics results in

100%. This approach provides a suitable means to breakdown the contribution of each metric to

the overall performance score. Accordingly, higher magnitude of the relative virtual bounds esti-

mated in the optimisation process indicate strengths, both for desirable indicators and undesirable

indicators ( ur ȳr

∑
s
r=1 ur ȳr+∑

l
k=1 pk b̄k

, r = 1, . . . ,s; pk b̄k

∑
s
r=1 ur ȳr+∑

l
k=1 pk b̄k

, k = 1).

The formulation of AR-I weight restrictions as presented in (5.2) was proposed by Zanella

et al. (2015), and these authors reinforce the use of these restrictions to enable the relative impor-

tance of the metrics. However, it is noteworthy that, to the best of the authors’ knowledge, the

application of AR-I restrictions to express strengths and weaknesses of DMUs in DDF models

has not been explored in the existing literature. Thus, this study makes a novel contribution by

exploring the interpretation of by-products (optimal weights) of the performance assessment.

5.4 Case study

In this section, the data set obtained from ERSAR and the metrics chosen to compute the WUSQI

are introduced in Subsection 5.4.1. In Subsection 5.4.2, the computation of the metric representing

the transparency dimension for water utilities is described. In Subsection 5.4.3 the final data set for

WUSQI determination is presented. Finally, in Subsection 5.4.4, the bounds used in the model’s

weight restrictions are determined.

5.4.1 ERSAR’s data set for the determination of the WUSQI

In this subsection, the data set used in this illustrative case study is introduced and the metrics to

be aggregated composing the WUSQI are presented.

The data used to compute the WUSQI was obtained from the reports issued by ERSAR for the

water sector. For this study, the data set includes the entire period covered by the “third generation”

of ERSAR’s metrics, spanning from 2016 to 2021. In Portugal, the water sector is characterised

by a division between wholesale or bulk utilities and retail utilities, each encompassing distinct

management entities. Wholesale utilities primarily focus on providing services to the retail market,

while retail utilities directly cater to the final users.
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The study focused on the set of water wholesale utilities in Portugal that provide both water

supply and sanitation services. To evaluate the performance of these distinct business areas, two

separate analyses are conducted. In the study, the DMUs are defined as a combination of the utility

and the year. This means that each utility can be compared with all the other utilities in the sample,

as well as with its own performance in different years.

The justification for focusing on the wholesale segment in this study stems from the highly

fragmented nature of the retail market, which encompasses over 200 utilities. By choosing to

concentrate on the wholesale segment, with a smaller yet representative sample, the study aims

to present a more thorough demonstration of the developed method’s full potential. This decision

enables a deeper exploration of the method’s capabilities and a more comprehensive understanding

of its applicability within the water sector.

The study includes the following water supply utilities: Águas de Santo André (AdSA), Águas

do Algarve (AdA), Águas do Centro Litoral (AdCL), Águas do Douro e Paiva (AdDP), Águas do

Norte (AdN), Águas do Vale do Tejo (AdVT), Águas do Vouga (AdVouga), Águas Públicas do

Alentejo (AgDA), Empresa Portuguesa de Águas Livres (EPAL), and Infraestruturas e Concessões

da Covilhã (ICOVI). AdDP was established in 2017, so data for this utility is available only from

2017 to 2021. Therefore, the total number of DMUs for the water supply sector is 59.

The wastewater utilities considered for the study are: Águas da Serra (AdSerra), AdSA, AdA,

AdCL, AdN, AdVT, Águas do Tejo Atlântico (AdTA), AgDA, Associação de Municípios de Terras

de Santa Maria (AMTSM), Saneamento da Península de Setúbal (SIMARSUL), Saneamento do

Grande Porto (SIMDOURO), and Tratamento de Águas Residuais do Ave (TRATAVE). For AdTA,

SIMARSUL, and SIMDOURO, the data available is from 2017 to 2021. Therefore, the total

number of DMUs in the wastewater sector is 69.

In this study, the available metrics from ERSAR’s database collected annually from Portuguese

wholesale water utilities were examined. Following a thorough screening process, metrics that

accurately represent the dimensions of the UoF programme were chosen. To ensure the robustness

of this selection, we sought the input of experts in the water sector, with in-depth knowledge of

ERSAR regulatory mechanisms.

The selected metrics are presented in Table 5.4 comprising the water supply and wastewater

utilities. However, we found that there were no specific metrics available in ERSAR’s data set

to measure the dimension of transparency. To overcome this limitation, we elaborated a metric

that captures the transparency dimension of the UoF program by using the Deck of Card method

(DCM), as explained in Subsection 5.3.1. The final determination of the transparency metric is

presented in Subsection 5.4.2. This approach allowed us to comprehensively evaluate the Por-

tuguese water utilities’ performance across all dimensions of the UoF program.

The Water Utility Service Quality Index (WUSQI) for the water supply business is determined

by combining the metrics AA01a, AA02a, AA03a, AA04a, and AA05a, which are collected from

ERSAR’s data set and the new metric Transp-AA, derived from the DCM. On the other hand, the

WUSQI for the wastewater business is formed by the composition of the metrics AR01a, AR02a,

AR03a, AR13a, and AA04a, obtained from ERSAR’s data set, and the metric Transp-AR, derived
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Table 5.4: ERSAR metrics to compose the Water Utility Service Quality Index (WUSQI).

Dimension Water Supply (AA) Wastewater (AR)

Metric ERSAR Definition Metric ERSAR Definition

Inclusiveness AA01a - Service physical
accessibility (%)

Percentage of the total number
of households located in the area
of intervention of the utility for
which there are wholesale infras-
tructures connected or with the
possibility of connection to the re-
tail system.

AR01a - Service physical ac-
cessibility (%)

Percentage of the total number
of households located in the area
of intervention of the utility for
which there are wholesale infras-
tructures connected or with the
possibility of connection to the re-
tail system.

AA02a - Service economic
accessibility (%)

Average proportion of income
spent on the water supply service
based on a consumption of 120
m3/year and an average income
per household in the system’s area
of intervention.

AR02a - Service economical
accessibility (%)

Average proportion of income
spent on the sanitation service
based on a consumption of 120
m3/year and an average income
per household in the system’s area
of intervention.

Reliability AA03a - Occurrence of
supply failures (no./delivery
point /year)

Weighted average number of sup-
ply failures per delivery point per
year. The weighting factor is the
number of households with effec-
tive service depending on each de-
livery point.

AR03a - Flood occurrence
(no./100 km sewer.year)

Frequency of flooding incidents
originating from the public sewer
network, calculated as the number
of incidents per 100 kilometres
of sewer on public roads and/or
properties per year.

Safety AA04a - Safe water (%) Percentage of water that is con-
trolled and of good quality, de-
termined by multiplying the com-
pliance rate of required sampling
with the percentage of compliance
with the specification values set
forth in the legislation.

AR13a - Effectiveness in ac-
complishing legal parameters
of wastewater discharge (%)

Percentage of the equivalent pop-
ulation served by treatment facil-
ities that ensure compliance with
the discharge requirements, both
in terms of periodicity of moni-
toring and compliance with dis-
charge legal limits.

Responsiveness AA05a - Reply to sugges-
tions and complaints (%)

Percentage of written complaints
and suggestions that received a
written response within the legal
deadline

AR04a - Reply to suggestions
and complaints (%)

Percentage of written complaints
and suggestions that received a
written response within the legal
deadline

Transparency Indicators are not available Indicators are not available

from the DCM as well. In the context of ERSAR, the acronym AA refers to water supply (“Água

de Abastecimento” in Portuguese), while the acronym AR represents wastewater (“Água Residual”

in Portuguese).

A careful observation of Table 5.4 reveals that the metrics AA02a, AR02a, AA03a, and AR03a

are the only ones that are undesirable, meaning that their results are better when they present lower

values. This characteristic is important in the aggregation process as explained in Subsection 5.3.2.

5.4.2 Determination of the transparency metric

This subsection details how the metric to reflect transparency in the quality of services of water

utilities is developed through the application of the Deck of Cards method (DCM).

The current data set of metrics gathered by ERSAR from service providers lacks a metric that

represents the dimension of transparency. According to the definition of transparency provided by

the UoF programme, it refers to the availability, reliability and accuracy of the information that

a utility provides about its operations. To address this gap, a new metric for transparency was

developed using the information contained in ERSAR’s data set.

In the data set reported from the utilities to ERSAR, a classification of the estimated reliability

level for each reported metric is included, as outlined in Table 5.5. If a metric is not reported, it

is indicated as “NR”. When determining a utility’s transparency level, the amount of missing data

and the reliability of the reported information are both taken into account. A service provider is
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considered more transparent if it reports a higher proportion of data and the reported information

is more reliable.

To create a transparency scale, the DCM was utilised, as detailed in Subsection 5.3.1. The first

step in this process is to define the levels of transparency in order of preference. For this study,

the preferred order is straightforward: NR ≺ ∗≺ ∗∗ ≺ ∗∗∗. The second step involves determining

the strength of preference between each sequential pair of levels by placing blank cards between

each pair. To ensure the credibility of this step, ERSAR’s staff was consulted. Their involvement

ensures the robustness of the decision-making process undertaken by water sector experts.

Table 5.5: Metric reliability in ERSAR data set. Adapted from ERSAR and LNEC (2021).

Reliability band of the Associated concept
Information source

*** Data based on extensive measurements,
reliable records, procedures, investi-
gations or analyses adequately doc-
umented and recognised as the best
method of calculation.

** Generally the same as above, but with
some non-significant flaws in the data,
such as some documentation being miss-
ing, old calculations, reliance on uncon-
firmed records, or the inclusion of some
data by extrapolation.

* Data based on estimates or extrapola-
tions from a limited sample.

In this study, according to the opinion collected from the experts, five blank cards were inserted

between the NR and * levels, three between the * and ** levels, and one between the ** and ***

levels, as illustrated in Figure 5.2. Using this approach, a continuous transparency scale ranging

from zero to one was obtained, with values of 0.000 for NR, 0.500 for *, 0.833 for **, and 1.000

for ***.

A new metric for transparency is then created for each reported metric, and the average of

all the transparency values provided by a utility in a given year is used to determine the annual

transparency metric for that utility.

Figure 5.2: Transparency metric construction via the Deck of Cards method.

5.4.3 Final data set for the determination of the WUSQI

This subsection presents the final data set comprising the metrics that will be aggregated to con-

struct the Water Utility Service Quality Index (WUSQI).

The data sets for both groups of utilities are not always complete, as some metrics were not

reported by the utilities. To address this issue, the study first attempted to use the metric reported

by the same utility in the previous year, recognising that it may provide the best available repre-

sentation of its performance. If the metric was also not reported in the previous year, the approach
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recommended by Kuosmanen et al. (2002), Morais and Camanho (2011), and Henriques et al.

(2020) was employed to handle the missing data instances, which consists of using a small value

equal to the minimum value of each desirable metric as a replacement. In the case of undesir-

able metrics, the missing instances were replaced with a large number equivalent to the maximum

value of each metric. This process ensures that the DMU’s performance evaluation is not unfairly

affected by the lack of data.

Due to the sensitivity of the DEA method to extreme values in the data set, outliers were re-

placed following the method proposed by Zanella et al. (2013). An outlier is identified, according

to Montgomery (2012), as an observation that lies beyond the limits of 1.5 times the distance be-

tween the third quartile and the first quartile of the data, known as the interquartile range (IQR).

Therefore, values higher than each metric’s median plus 1.5 times IQR were replaced by the me-

dian plus 1.5 times IQR, and values lower than each metric’s median minus 1.5 times IQR were

replaced by the median minus 1.5 times IQR. This ensures that atypical observations are replaced

with values closer to the centre of the distribution.

DEA formulations typically require positive inputs and outputs, although this requirement can

be relaxed, as discussed by Charnes et al. (1991). In the study, the zero values were replaced with

a small positive number of 0.0001, following Bowlin (1998) and Sarkis (2007).

The descriptive statistics for the metrics that compose the WUSQI are displayed in Table 5.6.

Table 5.6: Metrics for constructing Water Utility Service Quality Index (WUSQI).

Utilities’ group Dimension Metric code Metric description N Average Standard Minimum Maximum

Deviation

Water Supply (AA)
Inclusiveness

AA01a Service physical accessibility (%) 59 93.47 9.03 79.00 100.00

AA02a Service economical accessibility (%) 59 0.18 0.05 0.12 0.28

Reliability AA03a Occurrence of supply failures 59 0.01 0.01 0.00 0.02

(no./delivery point /year)

Safety AA04a Safe water (%) 59 99.79 0.20 99.36 100.00

Responsiveness AA05a Reply to suggestions and complaints (%) 59 77.80 27.47 40.00 100.00

Transparency Transp-AA Transparency metric from DCM 59 0.89 0.04 0.80 0.97

Wastewater (AR)

Inclusiveness
AR01a Service physical accessibility (%) 69 96.17 5.32 82.50 100.00

AR02a Service economical accessibility (%) 69 0.19 0.09 0.02 0.37

Reliability AR03a Flood occurrence (no./100 km sewer.year) 69 7.96 8.36 0.00 25.55

Safety AR13a Effectiveness in accomplishing legal 69 96.21 4.32 86.50 100.00

Responsiveness AR04a Reply to suggestions and complaints (%) 69 77.45 38.44 0.00 100.00

Transparency Transp-AR Transparency metric from DCM 69 0.89 0.06 0.71 0.99

The study examined the correlation between the metrics utilised in building the WUSQI. The

calculated Pearson correlation coefficients indicate that there is no strong relationship between

the metric pairs used to construct each CI.The absolute values of the coefficients in Figure 5.3 are

considerably far from one, with only four coefficients marginally exceeding 0.5. Consequently, the

lack of a strong correlation provides evidence for incorporating all the variables into the models.
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(a) Correlation between pairs of
metrics - water supply (AA)

(b) Correlation between pairs of
metrics - wastewater (AR)

Figure 5.3: Pearson correlation coefficients between pairs of metrics.

5.4.4 Determination of bounds used in weight restrictions

This subsection details the determination of the lower and upper bounds used in AR-I weight

restriction of the BoD models.

In order to solve the BoD models, it is necessary to define the lower bounds φr and φk for

desirable and undesirable metrics, respectively, as well as the upper bounds ψr and ψk for desirable

and undesirable metrics, respectively. These bounds are utilised in the weight restrictions, as

outlined in Expressions (5.2).

The lower bounds in weight restrictions guarantee that no weights are assigned null values,

thereby ensuring that all metrics are taken into account in the computation of WUSQI. This is

crucial for enabling suitable discrimination of the WUSQI value because, if many weights are set

to zero, a considerable number of DMUs could be considered best-performing and the compar-

ative performance evaluation would not discriminate differences among performance levels. In

this study, weight restrictions are utilised to determine the relative significance of the metrics. It is

important to highlight that the lower bounds φr for desirable metrics and φk for undesirable metrics

set a minimum threshold for the relative contribution of a metric. In fact, the AR-I weight restric-

tions in the BoD model impose that the model cannot assign weights that result in lower relative

significance than those specified thresholds. Consequently, lower values of φr and φk contribute to

better discrimination of lower performances of the DMUs, effectively revealing their weaknesses.

However, if φr and φk are set too low, the WUSQI values may lack discrimination. Therefore, it

is necessary to search for a balance that allows for both the differentiation of WUSQI values and

more precise identification of DMUs’ weaknesses. The lower bounds φr and φk were set to 0.05

in the study for both water supply and wastewater analysis. Different values ranging from 0.01

and 0.10 were tested. After running this sensitivity analysis, the intermediate value of 0.05 was

chosen to strike a balance between the discrimination of WUSQI values and the identification of

weaknesses.

The upper bounds ψr and ψk are utilised to restrict the maximum level of relative importance

assigned to different metrics in the performance assessment. In consultation with experts with
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extensive knowledge of regulation in the Portuguese water sector, it was determined that the spe-

cific characteristics of the wholesale market recommend that the responsiveness dimension should

be given less relative importance than the other dimensions reflecting inclusiveness, reliability,

safety and transparency. This is due to the limited real-time contact with the final user that oc-

curs in wholesale water services. This decision is based on the recognition that complaints and

suggestions from customers in the wholesale segment are infrequent and typically not considered

critical factors for service quality assessments. Treating this dimension with equal significance as

the others could potentially yield outcomes that do not accurately reflect the actual requirements

for quality service in this specific market segment. Consequently, the upper bound for the respon-

siveness dimension, represented by metrics AA05a and AR04a for water supply and wastewater

utilities respectively, was set at 0.15. This implies that the relative importance of responsiveness

in the assessment ranges from 5% to 15%. In contrast, the upper bounds for the remaining metrics

were not specified, indicating that the relative importance of these metrics can be greater or equal

to 5%. This ensures that the relative importance assigned to these metrics remains flexible while

adhering to reasonable limits in terms of the lower bounds.

By incorporating expert input and setting these upper bounds, the assessment framework

achieves a balanced consideration of the metrics, taking into account the unique characteristics

of the wholesale market in Portugal. This approach ensures that the evaluation remains aligned

with the actual requirements and expectations for quality service in this segment.

5.5 Results and discussion

The BoD models were computed for the two different businesses, water supply and wastewater.

Since the DMUs comprise a combination of utility and year, each model computation included

the data for all utilities over the six years of analysis. Descriptive statistics, presented in Table 5.7,

offer a summary of the obtained results. The statistics of WUSQI reveal that there is potential for

improvement in both sectors. Furthermore, when examining the yearly averages of WUSQI for

each year, a relative stability in the performance in both sectors is observed, indicating that the

businesses have maintained a certain level of service quality over time.

Results of the WUSQI’s computation, including the relative importance or contributions for

each dimension, are displayed in Table B.1 (Appendix B.1) and Table B.2 (Appendix B.2) for

water supply and wastewater utilities, respectively. The relative importance of the dimensions is

determined by the contributions of the metrics related to each dimension. Note that the relative

importance of the dimension of Inclusiveness is determined by summing the contributions of the

two metrics that form this dimension.

In the following subsections, a more detailed analysis of the results is provided for each group

of utilities. Specifically, Subsection 5.5.1 examines the quality of service evaluations for water

supply utilities, while Subsection 5.5.2 focuses on the same evaluations for wastewater utilities.

Finally, Section 5.5.3 offers insights derived from the geographical distribution analysis of both
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Table 5.7: Descriptive statistics for Water Utility Service Quality Index (WUSQI).

Water Supply (AA) Wastewater (AR)

Year Average Std. Dev. Min. Max. Average Std. Dev. Min. Max.

2016 0.917 0.046 0.851 0.972 0.951 0.043 0.891 1.000

2017 0.925 0.059 0.840 0.993 0.931 0.050 0.845 1.000

2018 0.917 0.067 0.840 0.998 0.926 0.049 0.836 1.000

2019 0.941 0.045 0.856 0.995 0.928 0.060 0.828 1.000

2020 0.943 0.039 0.875 0.996 0.938 0.064 0.800 1.000

2021 0.929 0.060 0.830 1.000 0.938 0.049 0.878 1.000

Overall 0.929 0.052 0.830 1.000 0.935 0.052 0.800 1.000

groups of utilities for 2021, the most recent year under examination. These insights aim to provide

support for future improvement initiatives.

5.5.1 Results for water supply utilities

In this subsection, the results of the assessment for the group of utilities that provide water supply

services are presented and discussed.

The evolution of the WUSQI in water supply utilities from 2016 to 2021 is depicted in Fig-

ure 5.4. It is evident from the graph that AdDP consistently outperformed all other utilities during

this period. Moreover, AdDP’s performance showed an upward trend over time, reaching the

maximum WUSQI score of 1 in 2021, making it the only water supply utility to achieve this feat.

Therefore, AdDP is an ideal candidate for identifying best practices in service quality within the

sector.

Figure 5.4: Evolution of the Water Utility Service Quality Index (WUSQI) from 2016 to 2021 in
water supply utilities.
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Throughout the analysis period, three utilities consistently outperformed the sector average,

displaying the lowest variation in performance over the years: AdDP, AdSA, and AdVouga. AdA

also performed above average throughout the period, with the exception of 2018.

On the other hand, AgDA and AdVT consistently performed below the sector average, with

some variation observed in both companies. Notably, AgDA displayed an upward trend in WUSQI

over the past four years.

In terms of performance variation, Figure 5.4 highlights that AdCL, AdN, EPAL, and ICOVI

exhibited higher fluctuations over the years. AdCL experienced a significant decline in perfor-

mance in the last three years, while ICOVI’s performance dropped only in the most recent year.

However, AdN and EPAL managed to improve their performance and achieve relative stability in

recent years.

The analysis presented in Figure 5.4 provides a comparative view of the performance varia-

tions and trends for each utility throughout the analysed period. By employing the BoD technique,

the assessment highlights the strengths of each utility which minimises objections or complaints

that may arise regarding the importance of the various metrics used in the evaluation. By ex-

amining the trends depicted in Figure 5.4, decision-makers can discern the utilities’ performance

trajectory and identify notable patterns. The graph reveals the utilities’ ability to maintain or im-

prove their standings, as well as areas where they may require additional attention.

The relative importance of each metric to utilities’ performance was obtained based on AR-I

weight restrictions, using the resulting weights of each metric from the computation of the BoD

model. Figure 5.5 presents the importance of each dimension in the case of water supply utilities.

In Figure 5.5, each utility is presented through a bar chart that showcases its performance across

different years of analysis. The height of each bar corresponds to 100% total performance. Within

each bar, coloured regions indicate the relative importance of different dimensions in determining

the quality of service (QS) performance. By examining the size of these coloured regions, we

can easily grasp the respective contributions and relative significance of each dimension to the

utility’s performance. Larger coloured regions within the bars indicate superior performance in

the corresponding dimensions, highlighting the strengths of the utility in a given year. Conversely,

smaller coloured regions in the bars signify weaknesses of the utilities in the dimensions they

represent. This visual representation provides a concise and intuitive means of comprehending the

impact of each dimension on the QS delivered by the utilities.

The contribution of each dimension to the QS performance of the utilities effectively highlights

the strengths and weaknesses of the utilities, as evidenced by several examples. For instance, the

bar chart of the top-performing AdDP utility in Figure 5.5 emphasised its inclusiveness, which

remained consistently strong over the years. Inclusiveness was also the primary strength for AdSA,

AgDA and ICOVI across the whole period. In contrast, for AdN, AdVT and EPAL, the dimension

of safety emerges as the most significant throughout the analysed period. This finding highlights

the importance placed on safety in their QS performance.

The importance of dimensions varies for the remaining utilities over the years, indicating fluc-

tuations in areas of improvement. This variation underscores the dynamic nature of the utilities’



82

Figure 5.5: Relative importance of each dimension in the Water Utility Service Quality Index
(WUSQI) - water supply utilities.

performance, with dimensions exhibiting different levels of importance at different points in time.

It is worth noting that in this analysis, only one dimension emerged as a significant strength for

each utility in a given year. The weaknesses of the utilities can be identified among the remaining

dimensions.

Analysing this information is not always straightforward, as the contribution values in a DMU

assessment are not easily comparable between different DMUs. These values represent relative

importance, holding significance only for the performance of each specific DMU. We can examine

the values of the safety dimension as an example of this complexity. The results of the performance

metrics of the water supply utilities are displayed in Figure 5.6. A look at the graph reveals that,

the safety levels, represented by the indicator AA04a (% safe water), are consistently high in

Portugal. All the wholesale utilities maintained safety levels above 99% throughout the entire

period. In particular, as shown in Figure 5.6, AdSA achieved the maximum value of 100% in

safety for all years.

However, in the comparative analysis with other DMUs, AdSA’s main strength was identified

as inclusiveness in the performance assessment, rather than safety, as displayed in Figure 5.5.

Furthermore, it is important to note that while AdSA performed better in terms of safety compared

to other utilities such as AdVT, EPAL, and AdN, which identified safety as their main strength,

we cannot definitively claim that those utilities are safer than AdSA. In fact, it can be stated that

inclusiveness emerged as the strongest dimension for AdSA, while safety remained the dominant

dimension for AdVT, EPAL, and AdN. Upon analysing the plots for the inclusiveness metrics,

AA01a and AA02a, in Figure 5.6, it is clear that AdSA stands out as a top performer for both

of them. It is important to note that while AA04a and AA01a are desirable metrics, with higher

values indicating better results, AA02a is an undesirable metric where lower values indicate better

performance.
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Figure 5.6: Metrics of water supply utilities from 2016 to 2021.

Lavigne et al. (2019) highlight the complexity of such comparisons, pointing out that a poorly

performing DMU may exhibit a relative strength in a specific metric, which could be a weakness

for a highly-performing DMU, despite the latter performing better overall in that metric.

By considering both the importance of dimensions and the results of the WUSQI, utilities can

pinpoint areas that require improvement and make informed decisions to enhance their overall

service quality. A notable example is ICOVI’s decline in performance in 2021, where decision-

makers should concentrate on addressing identified weaknesses. In this specific case, a closer

examination of metric values reveals a significant deterioration in ICOVI’s reliability. Specifically,

the number of supply failures per delivery point (AA03a) reached the highest level within the entire

sample, indicating the worst performance in this regard. This clear indication highlights a critical

area for ICOVI to prioritise and improve upon. The radar chart shown in Figure 5.7 provides

a visual representation of ICOVI’s metrics in 2021, as well as the sector’s average for the same

year. These metrics have been normalised on a scale that considers the sector’s average as 100 to

ensure comparability. Notably, the undesirable metric AA03a demonstrates a significantly poorer

performance compared to the sector’s average in the same year.

One important aspect to consider when analysing the presented results is the role of the reg-

ulator in suggesting continuous improvement actions for the utilities. Based on the performance

of each utility in different dimensions, the regulator can provide guidance to companies on how to

improve their service quality. For instance, for utilities that consistently underperform in specific

metrics, the regulator can provide targeted support to address the issue. This could include setting

specific targets for improvement, technical assistance or even imposing fines for non-compliance.

On the other hand, for utilities that excel in certain dimensions, such as AdDP in inclusiveness, the

regulator can recognise their success and encourage them to share their best practices with other
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Figure 5.7: Comparison between the performance of ICOVI and the average performance of the
sector in all metrics for 2021

utilities.

5.5.2 Results for wastewater utilities

This subsection displays and discusses the results of the assessment for the group of utilities that

provide wastewater services.

Figure 5.8 illustrates the progression of the WUSQI in wastewater utilities between 2016 and

2021. In this analysis, ten DMUs emerged as top performers, achieving the highest WUSQI score

of 1. Notably, each year included in the analysis featured its own set of top performers. In 2016,

AMSTM and AdSA stood out, followed by AdSA in 2017, AdSerra in 2018, AdSA in 2019, and

both AdVT and SIMDOURO in 2020. Lastly, in 2021 AMSTM, AdSerra, and TRATAVE claimed

the top spot in 2021. These utilities’ metrics for quality of service in those years can serve as

benchmarks for the wastewater sector. Additionally, AdSerra, AdVT, SIMDOURO and TRATAVE

consistently performed above the sector’s average throughout the entire analysis period. On the

other hand, AdA, AdN, AgDA, and SIMARSUL, consistently fell below the sector’s average. The

other utilities exhibited more variability in their performance across the period.

The visualisation presented in Figure 5.8 proves to be a powerful tool for detecting significant

changes in performance. It enables the identification of utilities that have achieved relative sta-

bility over time, exemplified by AdSerra, which consistently maintained a WUSQI value between

0.992 and 1.000. On the other hand, it also highlights utilities that have experienced remarkable

variations, such as AMTSM. By closely examining and analysing these variations and trends,

decision-makers can gain valuable insights into the underlying factors driving performance fluctu-

ations within the utilities. These insights can inform strategic decision-making processes, allowing

for targeted interventions and improvement initiatives where they are most needed.

In the context of wastewater utilities, Figure 5.9 displays the relative importance assigned to

each dimension based on their respective metrics, which can be interpreted in the same way as in

the water supply sector.

By examining the bar charts, we can gain insights into the relative importance of various

dimensions in the quality of service (QS) performance of different utilities across different areas.
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Figure 5.8: Evolution of the Water Utility Service Quality Index (WUSQI) from 2016 to 2021 in
wastewater utilities.

AgDA, AMTSM and SIMARSUL, for example, exhibited consistent strength in inclusiveness

throughout the entire analysis period. On the other hand, AdN and SIMDOURO consistently

showcased strong safety as their most significant dimension across all the years under evaluation.

The other utilities, however, demonstrated more diversity in their primary strengths.

Notably, in the case of wastewater utilities, multiple strengths were identified in each utility

for a particular year, which distinguishes them from the water supply sector. For instance, in 2021,

AdSerra showcased a relative importance of 38.97% in reliability, making it its major strength for

that year. This utility was also strong in inclusiveness that accounted for 35.10% of the relative

importance in this year. Transparency accounted for 15.83%, and responsiveness and safety for

5.09% and 5.00%, respectively. These figures reveal the main weaknesses for AdSerra in 2021, as

safety and responsiveness scored relatively lower compared to the other dimensions. Therefore,

AdSerra should prioritise improvement actions aimed at addressing these weaknesses.

To gain a deeper understanding of the wastewater utilities’ results, it would be worth examining

the factors that contributed to the top-performing utilities’ success. Specifically, investigating the

specific policies or practices that the top performers implemented to reinforce their strengths and

achieve the highest WUSQI scores could provide valuable insights. If commonalities among these

utilities are identified, they could be replicated by other wastewater utilities to enhance their service

quality.

Furthermore, it would be advantageous to investigate the variations in the performance of other

utilities and determine the factors that contributed to their inconsistent service quality, such as the

weak reliability levels of many of the low-performing wastewater utilities. It is possible that exter-

nal factors, such as severe weather events like heavy rainfall, may have influenced the reliability

metric, which is linked with flood occurrence in wastewater systems. Moreover, internal factors
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Figure 5.9: Relative importance of each dimension in the Water Utility Service Quality Index
(WUSQI) - wastewater utilities.

like management practices and resource allocation could have also impacted their performance.

Regulators can identify best practices and areas for improvement by analysing the top-performing

and bottom-performing utilities, as well as those with more variability in their performance. This

analysis can inform the development of policies and guidelines that promote continuous improve-

ment in service quality across the wastewater sector.

5.5.3 Geographical distribution insights comparing water supply and wastewater
utilities

This subsection provides additional insights into the assessment results by highlighting the geo-

graphical distribution of the water utilities. Specifically focusing on the year 2021, the analysis

combines both groups of utilities, aiming to support future improvement initiatives.

In Figure 5.10, the maps depict the locations of each utility’s headquarters along with their

evaluation results for the latest year of analysis, 2021. The symbols used in the maps represent

different performance levels: a star indicates top-performing utilities, a top-pointing triangle rep-

resents utilities performing above average except for the top performers, and a bottom-pointing

triangle represents utilities performing below average. Additionally, the colour of each symbol

signifies the dimension in which the utilities excel, reflecting their main strength.

The results of the most recent year analysed reveal that inclusiveness and safety are the pre-

dominant strengths among utilities in Portugal. Additionally, six companies, namely AdA, AdCl,

AdN, AdSA, AdVT, and AgdA, operate in both the water supply and wastewater sectors. Re-

markably, five of these companies consistently excel in the same strength for both water supply

and wastewater services. Specifically, AdCl, AdSA, and AgdA demonstrate a strong emphasis on

inclusiveness, while AdA and AdN prioritise safety as their main strength. As these companies

operate in both water supply and wastewater segments, it can be inferred that there is a consistent
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Figure 5.10: Results for Water Utility Service Quality Index (WUSQI) assessment in 2021.

approach to management practices across both areas. This alignment in priorities may indicate a

deliberate and strategic focus on inclusiveness and safety throughout their operations. Such con-

sistency in managerial practices across sectors reflects a shared commitment to excellence and

suggests the presence of effective strategies in place to address these key dimensions.

5.6 Conclusion

This study proposes the Water Utility Service Quality Index (WUSQI) as a composite indicator

that reflects the quality of service provided by water supply and sanitation utilities from a customer

perspective. The WUSQI rests on the framework introduced by the World Bank’s ‘Utility of the

Future’ (UoF) programme, which aims to reflect the reliability, safety, inclusiveness, transparency

and responsiveness of the services offered by water sector companies. The Benefit-of-the-Doubt

(BoD) approach, based on Data Envelopment Analysis (DEA), is employed to assign weights for

aggregating various metrics. The Deck of Cards method (DCM), a Multiple Criteria Decision

Analysis (MCDA) technique, is used to define the transparency metric, which was not available in

the examined data set.

We apply the WUSQI to assess the quality of Portuguese wholesale water and wastewater firms

and find that it is an effective tool for performing a quality service level benchmarking exercise

and uncovering performance trends over time. While the UoF programme was originally designed

to address water sector needs in developing countries, this study showcases its applicability in a

European context, specifically within the water sector of Portugal. By selecting Portugal as a case

study, the study highlights the method’s capabilities and its relevance in assessing service quality

in a developed country setting.
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The study’s findings have significant implications for the water supply and sanitation sector,

where measuring and ensuring high levels of service quality is crucial for public health and well-

being. The WUSQI can help utilities and regulators identify strengths and weaknesses, set targets

and track performance over time. By adopting a customer-centred perspective and measuring

quality along multiple dimensions, the WUSQI encourages utilities to improve their services con-

tinuously and to foster trust and satisfaction among customers. Compared to value-centred broader

approaches to determining service quality, the WUSQI’s focus on the customer perspective repre-

sents a significant advantage in terms of enhancing the knowledge of customers’ perceived quality

in an objective and effective way.

This study makes several innovative contributions to the literature. First, it applies the BoD

technique to measure the service quality of water utilities from a customer perspective. Moreover,

the AR-I weight restrictions in the BoD model are utilised to reveal the relative importance of the

various dimensions. The study also uses the UoF framework as a basis for developing the method-

ology, which is a novel application of this framework. Finally, the study develops a transparency

metric by utilising the DCM method with the data set provided by ERSAR.

One notable strength of this study is the integration of expert opinion in key stages of the

methodology, such as the definition of metrics and the construction of the transparency metric

using the DCM. This inclusion of expert input enhances the applicability of the study to the context

of water wholesale utilities in Portugal. By incorporating expert knowledge and insights, the study

benefits from a comprehensive understanding of the industry and can provide more accurate and

meaningful results.

One limitation of the study is that it does not consider the diverse environments in which

utilities operate. The regulator may need to take this into account when analysing the results

and developing improvement strategies for the utilities. Additionally, changes in the regulatory

framework or in the market conditions may also affect the performance of the utilities. Introducing

contextual variables into the model could provide more insights into the utilities’ performance and

address this limitation.

Subsequent studies could also focus on the group of utilities that operate retail systems that are

closer to end-users. Analysing the performance of these utilities would provide valuable insights

into the specific challenges and opportunities they face in delivering water services directly to

consumers, thereby complementing the findings of this study focused on wholesale utilities.

In conclusion, the WUSQI represents a valuable tool for assessing and measuring the quality

of water supply and sanitation services, thereby contributing to the water sector’s improvement and

the achievement of the Sustainable Development Goals. The study’s relevance lies in its emphasis

on the importance of adopting a customer-centred approach to service quality measurement, which

encourages further research on the subject, especially in the context of other public services. It is

expected that the WUSQI fosters collaboration and coordination among stakeholders, leading to

the provision of high-quality and reliable water and sanitation services.



CHAPTER 6
The measurement of asset management

performance of wholesale water
companies

This chapter aims to present innovative methods to enhance the knowledge on asset management practices
in the water sector, by exploring the performance of Portuguese water supply companies operating in the
bulk market. Two Benefit-of-the-Doubt (BoD) Composite Indicators are developed to highlight different
aspects of asset management approaches. The first reflects organisations’ performance in maintaining their
infrastructures at acceptable operational levels, and the other reveals their maturity in asset management
practices. Robust and conditional approaches for estimating the BoD indicators are applied, allowing to
obtain results that account for the effect of contextual variables on companies’ performance. Additionally,
the performance of the companies is analysed over a 5-year period. The results show that there is significant
room for improvement given the indicators’ values estimated in the benchmarking analysis. The type of
management systems and areas of intervention (urban, semi-urban or rural) are factors that present signifi-
cant impact in asset management performance. The analysis of trends in the evolution of performance over
time revealed improvements both in the companies’ managerial practices and operational results.

6.1 Introduction

Sustainability can be defined as development that “meets the needs of the present without com-

promising the ability of future generations to meet their own needs" (Brundtland, 1987). This

notion entails balancing three key interconnected factors: economic growth, social inclusion, and

environmental preservation. Water availability and its associated services substantially impact all

of these elements, making water essential for supporting economic activity, improving societal

well-being, and protecting the environment (Connor, 2015). Goal 6 of the United Nations’ Sus-

tainable Development Goals (SDGs) is to “ensure the availability and sustainable management of

water and sanitation for all". This goal is closely interlinked with the other SDGs, which demands

a structured strategy for managing the resources required to meet the intended targets associated

with SDG 6 (Hall et al., 2016).

The infrastructures designed to provide water services demand special attention due to the se-

rious consequences in case of failures or leakages. A simple water main break can lead to damages

or failures to adjacent infrastructures, such as roads, oil or gas distribution systems, besides the

direct effects of water supply shortages (Mazumder et al., 2018). Under the framework of asset

89
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management, organisations can employ an integrated strategy to ensure that assets will fulfil the

intended goals. According to the United Nations Technical Committee for Asset Management

Systems (TC-251), asset management represents a key enabler contributing to the achievement

of SDGs by organisations. Consequently, there is a natural alignment between asset management

and the desires represented in the SDGs (ISO/Technical Committee 251, 2018), which is specially

important in what concerns public service utilities, such as water, gas and electricity companies.

Asset management is defined by ISO 55000 as a “coordinated activity of an organisation to

realise value from assets”. By covering strategy, safety, environment, cost, risk and life cycle, this

approach represents more than an extension of maintenance. Value realisation entails balancing

costs, risks, opportunities, and performance rewards. However, the concept of value will vary de-

pending on the demands of each organisation and its stakeholders (ISO, 2014a). ISO 55001:2014

(ISO, 2014b) is the international standard that specifies the requirements for an organisation to

develop an asset management system including a comprehensive set of tools, rules, processes, and

information systems to ensure that the management objectives are satisfied.

According to Luís and Almeida (2021), the adoption of asset management strategies in the

water sector was triggered by different reasons around the world. The regulation was the primary

motivator in the United Kingdom, whilst in Australia and New Zealand the first issue was main-

tenance optimisation. In the United States and Canada, the critical issue was concerned with asset

ageing and deterioration, while in the Netherlands, the emphasis was on establishing and ensuring

service levels.

In the first decade of the twenty-first century, the concept of asset management began to be in-

ternalised in the water sector in Portugal. Despite the significant involvement of the leading agents,

the results of the dissemination and application of asset management are not yet visible in a uni-

form manner in the national panorama (Luís and Almeida, 2021). The water, wastewater and solid

waste services are overseen in Portugal by ERSAR, Entidade Reguladora dos Serviços de Águas

e Resíduos, the sector’s regulatory authority. ERSAR’s monitoring process relies on the compar-

ison of operators based on performance indicators that are made public. This practice, known as

sunshine regulation, has successfully encouraged performance improvement in the sector, praising

good practices alongside exposing companies to “embarrassment” for bad performance (Marques

and Pinto, 2018).

The extensive set of indicators requested annually by ERSAR to the sector’s operators allows

the analysis of companies’ performance in multiple facets. This study explores asset management

practices by selecting and analysing the metrics collected by ERSAR and which are clearly related

to that field to perform benchmarking. More specifically, this study is focused on Portuguese water

supply companies operating at the bulk level and evaluates performance trends from 2016 to 2020.

The information provided by ERSAR is used to construct composite indicators (CIs) that ag-

gregate the selected metrics to obtain a summary measure that incorporates multiple dimensions.

The technique utilised to build the CIs is the Benefit-of-the-Doubt approach (BoD), popularised

by Cherchye et al. (2007) based on Data Envelopment Analysis (DEA) models. The BoD method

was chosen for its ability to estimate the most favourable weights for the unit under consideration
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when compared to the peers in the sample, so no water company can object to those weights,

making this strategy appropriate for sunshine regulation purposes. The robust and conditional for-

mulations in the BoD approach are employed to overcome the effect of outliers and to assess the

influence of the environment on companies’ performance. A novel visualisation framework for

the assessment of companies’ performance is also presented.

Benchmarking studies using data collected by regulatory bodies are common in the literature.

However, to the best of our knowledge, there are no benchmarking studies using those data with a

specific focus on water system’s asset management. In summary, this work aims to fill this liter-

ature gap by developing two complementary composite indicators focused on asset management

performance (namely, the Resource and Infrastructure Sustainability Index and the Asset Man-

agement Maturity Index). The practical relevance of the proposed approach is demonstrated using

the information collected by ERSAR to compare the bulk water supply companies operating in

Portugal in the period from 2016 to 2020. This period corresponds to the most recent ERSAR’s

framework described as “third generation of indicators”. The composite indicators developed in

this work are used to compare the performance of different companies in a given year (a cross

sectional approach), as well as to reveal performance trends over a five-year period. This novel

evaluation method using ERSAR’s data with focus on asset management represents the innovative

contribution of this study.

The relevance of this study is justified by the urgent need to establish improvement processes

in the management of assets at water systems. Sustainability is a major driver for enhancing water

distribution system management. Water is a crucial resource for human life and according to Vieira

et al. (2020b), 30% to 40% of treated water is lost worldwide due to degradation of water system

infrastructures. Water and wastewater systems are deteriorating all around the world. Furthermore,

because the water sector is capital intensive, and infrastructure expenditures are intended to last for

a long time, physical asset management must be particularly efficient. According to Marlow and

Burn (2008), efficient asset management requires the appropriate selection of metrics related to the

inputs and outputs. Monitoring key performance indicators must be an effective practice, capable

of providing feedback on the implementation of strategies, in order to guide decision-making and

promote improvements in the sector.

The remaining parts of this chapter are structured as follows: section 6.2 presents a brief liter-

ature review, an overview of the water sector in Portugal is discussed in section 6.3, the proposed

methodology is explained in section 6.4, the case study is detailed in section 6.5, section 6.6 dis-

cusses the results, and the conclusions are presented in section 6.7.

6.2 Literature review

The literature review presents the approaches available for benchmarking in the water sector in

subsection 6.2.1, and subsection 6.2.2 discusses the use of performance measurement techniques

in the field of asset management.
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6.2.1 Benchmarking approaches using performance indicators in the water sector

The concept of benchmarking or relative performance assessment implies a systematic compar-

ison between similar entities, known as Decision Making Units (DMUs). Examples of entities

that can be considered as DMUs include groups of companies, organisations, countries, projects,

among others. The main objective of a benchmarking approach is to foster performance improve-

ment, which can happen implicitly by drawing the attention of DMUs to the issues highlighted

in comparative studies. However, more explicitly, benchmarking may lead to incentives or re-

wards for the DMUs under evaluation, in the form of salary plans, tariff regulations or budget

rules. This practice is especially useful when applied in monopoly regulations (Afsharian et al.,

2022). Benchmarking practices can also help in conflict resolution by redirecting the focus of

stakeholders to performance improvements (Berg, 2007).

Marques and De Witte (2010) describe the benefits of benchmarking public service activities.

These authors highlight two different perspectives applied in benchmarking approaches: i) metric

benchmarking, which allows organisations to evaluate performance and compare it with competi-

tors, and ii) process benchmarking, where the companies map their internal processes and look for

best practices in the industry to enable superior performance. In that sense, metric benchmarking

identifies what to improve, whereas process benchmarking emphasises how to improve. However,

in many cases, because different companies do not typically share information about their perfor-

mance among themselves, benchmarking studies can only be conducted with the involvement of

regulatory entities, who receive data from companies that operate in natural monopoly contexts.

To this extent, the aim of the regulators is to stimulate, support and monitor benchmarking pro-

cesses among organisations, set rules and standards of comparison, collect and publish results,

and find out where to improve. This process can contribute to identify best practices and guide the

design of strategies for improvement.

Regulators seek to create a pseudo-competitive environment, which stimulates companies to

raise their efficiency levels and reduce their prices (Heesche and Asmild, 2022). Independent

regulators have legislative, executive, and judicial authority to monitor several operators by en-

forcing the required regulations. The governance system of regulators is discussed by Marques

and Pinto (2018), emphasising their independence and responsibility, the interaction with policy-

makers, operators, and customers, as well as their internal processes including judgement criteria

and transparency. Those authors conclude that deficient governance systems may lead to excessive

governmental influence in regulator’s activities impacting their transparency and accountability.

The governance model that became prominent in the recent decades, known as yardstick com-

petition, reinforces the comparison of the regulated firm’s performance with that of other firms in

the same sector (Marques, 2006). Benchmarking instruments applied by the regulator are always

included in the various types of yardstick competition. The incentive for the operators to improve

their efficiency comes from the information received from other firms so that the regulatory pro-

cess becomes an artificial competition process among them. Marques (2006) explains that there

are two main approaches in yardstick competition. The first strategy, which often has more au-
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thoritarian characteristics, uses benchmarking to set pricing and decide the operators’ tariffs. It is

known as price yardstick competition. In contrast, the second one, known as sunshine regulation,

represents a lighter variant of yardstick competition and includes a comparison and public debate

on the operators’ performance.

In water utilities, regulators perform a macro or top-down benchmarking to get information

about the operators’ level of performance and set policy targets for the sector. At the same time,

the companies themselves use bottom-up benchmarking, looking at their performance to perform

a diagnosis and identify areas or activities to improve (Marques and De Witte, 2010).

Performance indicators can be used to perform benchmark analysis at different levels, and

global measures of efficiency are commonly employed by regulators to get information about the

operator’s performance. They are usually employed as decision support tools to prioritise im-

provement actions and analyse the effect of previous measures (Vilanova et al., 2015). The use of

indicators for performance benchmarking has become a crucial strategy to promote improvements

within the water sector (Henriques et al., 2020). For an comprehensive discussion about the choice

of indicators in the water sector, see Vilanova et al. (2015) and Alegre et al. (2017).

Models based on Data Envelopment Analysis (DEA), originally developed by Charnes et al.

(1978), represent very useful tools to support benchmarking processes. Non-parametric techniques

such as DEA differ from methods that employ production functions with theoretical imposed

functional forms or engineering standards. DEA is a data-driven non-parametric method that

assesses performance against the best practices observed in a set of DMUs (Afsharian et al., 2022).

In a literature review covering 190 studies on water services performance published between

1969 and 2008, Berg and Marques (2011) report that 34% of the studies reviewed use non-

parametric methods and, among them, 72% apply DEA. In a more recent review, Goh and See

(2021) confirm the interest in DEA methods in water sector research, since the term “DEA" rep-

resents 33.80% of author’s keywords used among the studies reviewed that were published from

2000 to 2019. Several benchmarking works applying DEA have dealt with the efficiency of water

systems worldwide: Thanassoulis (2000a,b) and Walker et al. (2019) in United Kingdom, Byrnes

et al. (2010) in Australia, Wang et al. (2018) in Canada, Berg and Lin (2008) in Peru, Alsharif

et al. (2008) in Palestina, Dong et al. (2018) in China, Marques et al. (2014) in Japan, Lo Storto

(2018), D’Inverno et al. (2021) and Romano and Guerrini (2011) in Italy, among others. Bogetoft

(1995, 1994) developed techniques based on DEA to deal with the regulatory agencies’ incentive

mechanisms. Those incentive schemes were also addressed in a cross-country study performed

by De Witte and Marques (2010a) that compared the water sector from the Netherlands, England

and Wales, Australia, Portugal and Belgium. The results suggest that the incentives have positively

impacted the sector’s efficiency. In a specific study that examines the adoption of the sunshine reg-

ulation in the Netherlands, De Witte and Saal (2010) describe the effectiveness of this approach

examining data from different periods before and after the employment of sunshine regulation, by

using DEA methods. Those authors conclude that the adoption of sunshine regulation beneficially

resulted in higher productivity, that was transferred to customers as price reductions.

Techniques based on DEA may also be employed for the construction of composite indicators
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(CIs). CIs entail the combined analysis of a set of performance indicators to compare multiple-

dimensional activities. According to Vilanova et al. (2015), even though the collection of data and

generation of multiple indicators represent a complicated process, the aggregation of those indi-

cators into an overall measure of performance may be even more challenging involving creativity

and experienced judgement. The use of a method based on DEA presents the advantage of being

data-driven, avoiding the extensive interaction with stakeholders to decide the relative importance

of indicators. This strategy known as the “Benefit-of-the-Doubt” (BoD) approach overcomes the

concerns about the need for normalisation and identification of “right” weights, allowing an easy

and intuitive interpretation of results (Cherchye et al., 2007; Nardo et al., 2008). BoD models

were initially proposed for macroeconomic performance assessment (Melyn and Moesen, 1991)

and have been extensively applied in many areas such as transportation (Gruetzmacher et al.,

2021), competitiveness (Bowen and Moesen, 2011; Lafuente et al., 2020), human development

(Rogge, 2018; Van Puyenbroeck and Rogge, 2020), quality of life (Morais and Camanho, 2011),

social inclusion (Verbunt and Rogge, 2018), public health (Pereira et al., 2021), environmental

performance (Zanella et al., 2013), and active ageing of population (Amado et al., 2016).

The standard DEA models, including BoD, present the inconvenience of being too sensitive to

outliers and not allowing statistical inference. Several approaches have been proposed in the liter-

ature to tackle these issues. For example, detection outlier procedures or robust approaches have

been introduced to mitigate the impact of outlying observations (see all the discussion in Henriques

et al., 2022). In addition, one-stage or two-stage approaches have been suggested to investigate

the influence of external conditions on the efficiency estimates (see for example De Witte and

Marques, 2010b; Bădin et al., 2014). In this vein, the works of Henriques et al. (2020); Molinos-

Senante et al. (2015); Dong et al. (2017); Romano and Guerrini (2011) applied DEA methods to

evaluate water systems.

An alternative method was developed by Daraio and Simar (2005, 2007a) to compute condi-

tional scores while accounting for the influence of external factors directly in the efficiency score

estimation (conditional approach). Then, the influence of exogenous variables on the performance

is estimated using a smoothed non parametric regression between the ratio of conditional and un-

conditional efficiencies. However, those studies allowed the appraisal of the context factors using

only continuous variables. De Witte and Kortelainen (2013) introduced the use of both continuous

and discrete variables as external factors. Since then, many studies have adopted that approach

for evaluating water systems, such as De Witte and Marques (2010a), Marques et al. (2014),

D’Inverno et al. (2021), Mergoni et al. (2022).

In the literature review issued by Berg and Marques (2011), about 35% of the non parametric

studies analysed the context of water utilities using explanatory exogenous factors, and more than

twenty different variables were identified as being used in those studies. Those exogenous vari-

ables include customer density, proportion of non-residential customers, peak factor, and water

losses. Tourinho et al. (2022b) presented an overview of the contextual variables used in studies

that deal with performance of water supply systems. According to those authors, the most frequent

contextual variables used in the literature are: ownership, regional differences, scope of services,
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customer density, population density, water source, water losses and peak factor (ratio between the

highest and the average water consumption within a month).

6.2.2 Performance measurement in asset management

Indicators are frequently used to measure performance and make decisions in asset management.

At the strategic level, an asset management system emphasises key performance indicators in

conformity with higher-level objectives. By doing that, the alignment between asset management

objectives and business objectives can be pursued (Gavrikova et al., 2020). Galar et al. (2014)

and Cecconi et al. (2019) discuss the popularity of indicators as decision-making tools for asset

management. The selection of the most suitable performance indicators for asset maintenance

was addressed by Gonçalves et al. (2015), and Dutuit and Rauzy (2015) analysed ‘importance

measures’ applied to complex components. Attwater et al. (2014) investigated the state of play of

performance measurement for asset management systems. Their findings revealed that it is still an

unsettled issue how to measure the performance of asset management systems. Further research is

needed to understand the linkage between organisation performance, asset performance and asset

management performance.

Galar et al. (2014) compares the use of individual indicators versus aggregated metrics in the

form of composite indicators to measure asset management performance. At the core of this dis-

cussion, there is the possible loss of information that arises when aggregating many indicators and

the resulting misconception or misunderstanding of the actual phenomenon. This idea is counter-

balanced by the fact that an aggregate indicator can be more intuitive and simpler to communicate

for managers. For this reason, in asset management, weight summations using aggregating weights

provided by specialists are the most frequently used, even though direct ratios between pairs of

indicators are also frequently employed (e.g., the maintenance cost divided by the asset replace-

ment value). Statistical techniques can also be used to perform aggregated metrics. Galar et al.

(2014) also highlight the use of some statistical techniques such as principal component analysis

(PCA) in setting suitable weights. Other types of aggregation strategies found in the literature are

the fuzzy logic (Jasiulewicz-Kaczmarek and Żywica, 2018; Famurewa et al., 2014) and Analytical

Hierarchical Process (AHP) (Hassan and Khan, 2012). To our knowledge, asset management per-

formance at the corporate level has not been measured using composite indicators based on BoD

and it is therefore the object of this work. Due to the complexity of this subject and the many

dimensions involved, a vast unexplored area of research exists (Galar et al., 2014).

6.3 The water sector in Portugal

In recent decades, Portugal has gone through substantial changes related to water supply services,

mainly concerning service access, quality of service and structure of the market. Before 1993,

the public sector had full ownership of water services. That was modified by Executive Law No.

372, which promoted the water sector restructuring, allowing the private capital to participate in

the sector and establishing a regulatory authority to deal with water services. Since this period the
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service coverage increased from 81% to 96% and the acceptable level of water quality raised from

50% to 99% (Marques and Simões, 2020).

In the Portuguese water sector, the national regulatory agency, ERSAR, specifies a set of key

performance indicators and collects data for each operator. Following the sunshine regulation

approach, the results are publicly disclosed. The powers of ERSAR are not coercive, and the

regulator does not actively engage in the pricing formulation process (Gonçalves et al., 2014).

Another consequence of the updated water sector organisation after 1993 is the separation

between bulk or wholesale systems and retail systems, which occurred both in the water and

wastewater businesses (Marques, 2008). The water supply wholesale companies are responsible

for water abstraction, treatment and storage before distributing the water to the retail companies

that supply water to end-users.

Portuguese water companies can currently be managed according to three different models,

namely direct management, delegation and concession. In the direct management model, munici-

palities, municipal services and associations of municipalities own and operate the water services,

usually without participation of private companies. The delegation model works with a municipal

company or a company established in partnership with the State (municipal or state company),

parishes, or user associations. In the delegation system, the company is owned and controlled

exclusively by the State (central, municipal or both), without a contract of concession. However a

contract of management must be celebrated, defining goals and tariff policies for the operator. In

the concession, a municipal concessionaire or public–private partnership with municipalities and

other private operators is established under a long term contract, usually from 30 to 50 years. The

participation of private capital is allowed mainly in the delegation and concession models, and

eventually in the direct management in case of partnership with State or municipalities (Marques

and Berg, 2011; Pérez et al., 2019; ERSAR, 2021a).

According to the annual report issued by ERSAR in 2021 (ERSAR, 2021a,b), in Portugal,

there are ten companies operating in the wholesale water supply market. Those companies and

their identification codes used in the study are: Águas de Santo André (A1), Águas do Algarve

(A2), Águas do Douro e Paiva (A3), Águas do Centro Litoral (A4), Águas do Norte (A5), Águas do

Vale do Tejo (A6), Águas do Vouga (A7), Águas Públicas do Alentejo (A8), EPAL (A9) and ICOVI

(A10) . The wholesale companies are predominantly managed by concession (seven companies).

The other three wholesale companies are managed by delegation. The retail water sector includes

233 companies, and most of them are managed directly by municipalities.

The indicator system used by ERSAR for benchmarking practices is detailed in Technical

Guide 22 (ERSAR and LNEC, 2021). The volume of information annually acquired from the

operators is vast, comprising water, wastewater and solid waste services. In the case of water

supply companies, the performance indicator system of ERSAR presents 14 main metrics, grouped

in three different dimensions: i) Adequacy of the Interaction with the User, ii) Service Management

Sustainability and iii) Environmental Sustainability.

The ERSAR indicators directly related to asset management are included in the subgroup

Infrastructure Sustainability, in the dimension of Service Management Sustainability. The other
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subgroups in this dimension are Economic Sustainability and Physical Productivity of Human

Resources. The Infrastructure Sustainability subgroup contains two main indicators: pipeline

rehabilitation (%/year) and occurrence of pipeline failures (number of failures/100 km/year).

The dimension Environmental Sustainability in subgroup Efficiency of Utilisation of Environ-

mental Resources includes also two indicators that are related to asset management and its effect

on the use of resources: actual water losses (m3/year) and energy efficiency of pumping stations

(kWh/(m3.100m)).

Additional metrics regarding asset management status are also collected by ERSAR, including

the Infrastructure Knowledge Index, the Infrastructure Asset Management Index, the Infrastructure

Current Value and the Infrastructure Replacement Cost. All this information has been informed

annually by wholesale and retail companies.

The Portuguese water sector has been explored by several works that employed benchmarking

techniques using DEA, such as Marques (2006), De Witte and Marques (2010a) and Henriques

et al. (2022). ERSAR’s indicators in a BoD composite-indicator approach are utilised by Hen-

riques et al. (2020) to identify best practices and foster continuous improvement in wastewater

operators. Mergoni et al. (2022) employs also ERSAR’s indicators in a BoD approach to evalu-

ate the environmental performance of Portuguese utilities. The quality of water supply service is

evaluated by Pinto et al. (2017a,c) using ERSAR’s metrics. Those benchmarking studies take ad-

vantage of using indicators developed under the procedures of ERSAR system, such as submission

of data, validation and processing of results (Pinto et al., 2017a). None of these studies applied

ERSAR metrics to assess the performance of water companies with a focus in asset management,

which reinforces the innovative nature of this research.

In terms of asset management performance, the water systems in Portugal present quite hetero-

geneous results. In a survey conducted by the Specialised Commission for Asset Management from

the Portuguese Association for Water Distribution and Drainage (APDA - Associação Portuguesa

de Distribuição e Drenagem de Águas) in 2019, the results, including both retail and wholesale

companies, show that in 54% of the companies do not follow asset management practices. From

the companies that claim to have an asset management system, 41% do not set objectives for asset

management and 57% work on asset issues using staff that is not dedicated only to that task. Only

4% of the water supply companies present a certification in ISO 55001. A considerable number of

companies do not undertake asset condition analysis, and when they do, visual inspections prevail.

Many businesses still do not do preventative maintenance. There is a significant reliance on pa-

per and spreadsheet-based records. These results are worse in retail companies compared to bulk

systems (APDA, 2019). Based on such findings, there is a significant space for enhancement.

6.4 Methodology

The methodology we propose consists of three steps. The first one consists of identifying the

metrics that should be considered in the construction of the composite indicators (CIs). The second

one deals with the development of a deterministic approach to compute the CIs. Finally, the third
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step describes the calculation and evaluation of the robust and conditional CIs, accounting for

contextual factors.

6.4.1 Construction of composite indicators (CIs)

This subsection presents the method of selecting the measures used for building the CIs in this

study. For the construction of the CIs, we selected metrics among the data collected by ERSAR

that reflect asset management practices in two distinct perspectives. Those metrics are aggregated

to generate two different composite indicators.

Luís and Almeida (2021) explain that the practical results of adopting an asset management

philosophy do not become apparent immediately after the start of asset management development

programs in organisations. These programs typically require several years to effectively imple-

ment an asset management culture before the full material benefits become visible. As a result,

managerial practices may be implemented, but the tangible results may not instantly reflect their

impact on company performance. This fact supports the approach adopted in this study to develop

one indicator that indicates tangible operational achievements (Resource and Infrastructure Sus-

tainability Index - RISI) and another that represents the maturity stage in management systems

(Asset Management Maturity Index - AMMI).

6.4.1.1 The Resource and Infrastructure Sustainability Index - RISI

The first CI is related to the companies’ performance for the activities that aim to keep their

infrastructures at suitable and sustainable operational levels. In that sense, the companies’ tan-

gible results in asset management can be expressed by this indicator. We named this indicator

as Resource and Infrastructure Sustainability Index (RISI). The RISI is made up of the following

ERSAR metrics: pipeline rehabilitation (AA09a), occurrence of pipeline failures (AA10a), actual

water losses (AA12a) and energy efficiency in pumping stations (AA13a).

The choice of these metrics has been driven by the available data collected by ERSAR and

supported by previous studies, as those metrics are considered critical to monitor the performance

of assets in water systems. The rate of pipeline rehabilitation and failures in water mains in Por-

tugal and the importance of monitoring those indicators is discussed by Marques and Monteiro

(2001), Ferreira and Carriço (2019), Cabral et al. (2019) and Santos et al. (2022). The use of water

losses as one key indicator for the sector is detailed by Marques and Monteiro (2001, 2003) and

Machado et al. (2009). Moreover, Loureiro et al. (2020) studied the energy efficiencies in water

systems and concluded that inefficiencies are more related to the conditions of infrastructure and

network layouts than to pumping issues.

All those metrics are included in the set of the aforementioned 14 main indicators required by

ERSAR’s system. Pipeline rehabilitation (AA09a) and occurrence of pipeline failures (AA10a)

are included in the dimension Infrastructure Sustainability, and are directly related to assets’ per-

formance. The other two metrics, actual water losses (AA12a) and energy efficiency in pumping
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stations (AA13a), are included in the dimension Efficiency in the utilisation of environmental re-

sources, but they reflect the impact of assets’ performance on the use of the available resources.

According to the Technical Guide 22 issued by ERSAR (ERSAR and LNEC, 2021), the

pipeline rehabilitation metric (AA09a) is defined as the annual average percentage of supply and

distribution pipelines older than ten years that were rehabilitated in the last five years. This metric

is designed to assess the level of sustainability of service management, reflecting a continuous

practice of pipeline repair to ensure their progressive renewal and appropriate average age of the

network. The occurrence of pipeline failure (AA10a) is calculated as the number of pipeline faults

per hundred kilometres. The actual water losses (AA12a) is the average daily volume of losses

per unit of pipeline length in a year, expressed in cubic meters per pipeline kilometres in a day

(m3/km.day). This metric reflects the level of sustainability in the water supply service when util-

ising water as an environmental resource. Berg and Marques (2011) explain that the water-loss

variable can be used as a proxy for inadequate maintenance costs, and recommend that it is mod-

elled as an undesirable output. Finally, the energy efficiency in water pumping stations (AA13a) is

defined as the normalised average energy usage for water pumping, indicating the sustainability of

the assets in terms of using energy. It is expressed in kilowatt-hours by cubic meters per hundred

meters of elevation.

Three of the metrics employed to compose RISI are undesirable, meaning that lower values

are expected to denote better performance: AA10a, AA12a and AA13a. Only the metric AA09a

that measures the pipeline rehabilitation is desirable, meaning that higher values indicate that the

performance is better.

6.4.1.2 The Asset Management Maturity Index - AMMI

The second CI designed from ERSAR metrics expresses the focus of the companies in manage-

rial practices regarding their physical assets. ERSAR highlights the importance of those aspects

and requests water operators information about the knowledge of the their assets (Infrastructure

knowledge index - PAA31a) and the features of the management systems they have implemented

(Infrastructure asset management index - PAA32a). Those two facets of the companies’ manage-

rial practices represent crucial aspects of water systems’ management. They used to be expressed

by only one metric in the earlier versions of ERSAR’s indicator system. However, ERSAR decided

to specify these two indicators to obtain more detailed information, such as data about non-buried

assets and a greater focus on data records in geographical information systems rather than on paper

(ERSAR and LNEC, 2017). We propose to integrate the two indicators in the form of the Asset

Management Maturity Index (AMMI).

The Infrastructure knowledge index (PAA31a) aims to assess the company’s knowledge about

the infrastructure of the water supply service in its area of intervention (ERSAR and LNEC, 2021).

The accuracy of asset information is crucial for successful asset management, and it depends

on the quality of the data stored and the way the information is managed. The selection and

specification of the data to be collected, and the quality of the strategic information systems where

the information is stored and made available to users, are essential aspects of asset information
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management. Furthermore, the effectiveness of linking the various information systems is also

important, so that data from different information systems can be cross-referenced.

It is essential to evaluate the data quality regarding its accuracy, the scale used, consistency

and reliability as well as ensuring a proper geo-referencing of data to manage infrastrutures. In

addition, data storage must be reliable, and the flow of information must be ensured at all stages

of the data system processes, including acquisition, evaluation, recording, updating, archiving and

use. All those aspects are reflected in the Infrastructure knowledge index (ERSAR and LNEC,

2017).

The Infrastructure knowledge index is calculated by adding the scores taken from the com-

pany’s answers to a questionnaire. The total score results from the sum of the question scores and

may vary between 0 and 200. The questionnaire is divided into classes covering different topics,

as follows:

(a) class A - Existence of infrastructure engineering drawings and layout,

(b) class B - Information recorded on pipelines and connection branches,

(c) class C - Information recorded on other infrastructure,

(d) class D - Information recorded on measuring equipment,

(e) class E - Information recorded on the state of conservation of infrastructures,

(f) class F - Information recorded on interventions in the public network,

(g) class G - Interconnection between the Geographic Information and other company’s infor-

mation systems and recording of risk factors.

According to ERSAR and LNEC (2021), the Infrastructure asset management index (PAA32a)

is also determined by adding the score attributed to a set of questions related to the assessment of

the company’s asset management system concerning:

(a) general asset management framework,

(b) documentation and communication,

(c) strategic planning

(d) tactical planning

(e) operational planning

This index may vary between 0 and 200. ERSAR takes advantage of the existence of inter-

national asset management reference standards, ISO 55000 and ISO 55001 (ISO, 2014a,b), and

includes many of the principles and requirements present in the standard into the organisational

aspects indicated in the Infrastructure asset management index (ERSAR and LNEC, 2017). There-

fore, following ISO 55001, the companies are encouraged to deal with relevant internal and exter-

nal features, major stakeholders, appropriate planning, leadership and commitment, responsibility
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and authority definitions, proper procedures and documentation, process controls, continuous im-

provement actions and other managerial aspects.

Both the Infrastructure knowledge index - PAA31a and the Infrastructure asset management

index - PAA32a are only provided in their aggregate form, with no information about the partial

scores that give rise to them. If detailed information about these partial scores were available, the

composite indicator might be constructed including the specific scores of each question.

6.4.2 Deterministic approach for CI calculation

In this subsection, we describe the first approach applied to the calculation of the composite indi-

cators which is the standard deterministic CI. The CI is computed from BoD linear programming

models. BoD models are DEA models that handle multiple outputs, corresponding to several met-

rics to be aggregated, and a dummy input with a unitary value for all DMUs. The outputs, in this

case, are the selected metrics collected from ERSAR. We employed the BoD model based on a

Directional Distance Function (DDF), as formulated by Zanella et al. (2015). This model can deal

with desirable and undesirable outputs, without needing to adjust the scales of measurement. The

weights formulation of the Directional Distance Function BoD CI model is presented in (6.1).

minimise β j0 =−
s
∑

r=1
yr j0ur +

l
∑

k=1
bk j0 pk + v

subject to
s
∑

r=1
gyur +

l
∑

k=1
gb pk = 1

−
s
∑

r=1
yr jur +

l
∑

k=1
bk j pk + v ≥ 0 j = 1, . . . ,n

ur ≥ 0, r = 1, . . . ,s

pk ≥ 0, k = 1, . . . , l

v ∈ R

(6.1)

In formulation (6.1), yr j and bk j are, respectively, the desirable and undesirable indicators for

DMUs j ( j = 1, . . . ,n) and the values of yr j0 and bk j0 represent the indicators of the DMU j0 under

assessment. The index r stands for the set of desirable outputs (r = 1, . . . ,s) and the index k stands

for the set of undesirable outputs (k = 1, . . . , l). The model’s decision variables are the weights,

where v is associated with the dummy input, ur is associated to the desirable outcomes r, and pk

with the undesirable outcomes k. The total number of DMUs is n, the total number of desirable

outputs is s and the total number of undesirable outputs is l.

The directional distance vector is specified as (gy,−gb), indicating the direction of expansion

of desired outputs and contraction of undesired ones. The decision about the direction vector
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used in the models is critical since it can influence the computed scores. Several solutions have

been presented in the literature depending on the study’s objective. Fried et al. (2008) address

different options for applying direction vectors to guide the improvement of inputs and outputs in

DEA models. Those authors discuss suggestions for the vectors’ selection and advocate that this

decision should be made according to the research purpose. Rogge et al. (2017) also explores al-

ternatives for the vector to set the directions of improvement for desirable and undesirable outputs

in BoD models. In this work, following Zanella et al. (2015) and Rogge et al. (2017) we choose

the values of (gy,−gb) as being equal to (yr j0 ,−bk j0). In this case, each DMU can improve by fol-

lowing the path indicated by its specific output metrics, allowing for a proportional interpretation

of the resulting composite indicator value.

The factor β j0 in (6.1) expresses the inefficiency level of DMU j0, representing the maximum

expansion of desirable outputs and contraction of undesirable outputs that is feasible to satisfy the

model’s restrictions. The minimum feasible level of β j0 is determined by optimisation, such that

the DMU j0 under assessment can select the weights that show it in the best possible light. The

value of CI associated with j0, can be obtained as 1/(1+β j0). Consequently, the CI score ranges

from 0 to 1, where 1 represents the best performance level. The deterministic CI is referred in this

work as CI j0 . If CI j0 < 1, there is a linear combination of other DMUs that dominates in terms of

overall performance. If CI j0 = 1, the DMU j0 is located in the best-practice frontier, meaning that

it is not outperformed by any of the others DMUs included in the assessment.

Weight restrictions must also be included in the model to prevent assessments that could disre-

gard certain indicators by assigning them weights equal to zero. A more detailed discussion about

the several kinds of weight restrictions for DEA models is available in Wong and Beasley (1990),

Allen et al. (1997) and Sarrico and Dyson (2004), among others. Zanella et al. (2015) proposes a

formulation for AR-I restrictions in BoD models, using virtual weights restricted in terms of the

proportional importance of the variables. These restrictions consider a hypothetical DMU whose

outputs are equal to the average of all values observed in the DMUs in the sample, represented

by (ȳr, b̄k). The virtual weights of the “average DMU” are then constrained by percentage-based

restrictions. The use of those AR-I restrictions presents the advantage of being identical for all

DMUs, and according to Zanella et al. (2015), they represent the best choice to construct com-

posite indicators and ranks. The AR-I restrictions are the most used weight restrictions in BoD

models. In this study, only lower bounds expressed as percentages are used (φr and φk, respectively

for desirable and undesirable indicators). Following Zanella et al. (2015), the weight restrictions

are added to the BoD model and formulated as shown in (6.2). By avoiding zero weights, all

indicators are given some degree of importance when computing the composite indicators.
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AR-I weight restrictions

ur ȳr

∑
s
r=1 ur ȳr+∑

l
k=1 pk b̄k

≥ φr, r = 1, . . . ,s

pk b̄k

∑
s
r=1 ur ȳr+∑

l
k=1 pk b̄k

≥ φk, k = 1, . . . , l

(6.2)

A detailed explanation of the BoD model formulation and the use of weight restrictions AR-I

is available in Zanella et al. (2015), D’Inverno and De Witte (2020) and Van Puyenbroeck et al.

(2021).

In case there are no undesirable indicators among the components to be aggregated in the CI,

the BoD model and the AR-I weight restrictions can be simplified as shown in (6.3).

minimise β j0 =−
s
∑

r=1
yr j0ur + v

subject to
s
∑

r=1
gyur = 1

−
s
∑

r=1
yr j0ur + v ≥ 0 j = 1, . . . ,n

ur ≥ 0, r = 1, . . . ,s

v ∈ R

AR-I weight restrictions

ur ȳr
∑

s
r=1 ur ȳr

≥ φr, r = 1, . . . ,s

(6.3)

6.4.3 Robust and conditional approaches for CI calculation

This subsection describes the generation of CIs following the robust and conditional approaches.

Some limitations on the use of the deterministic CI have been discussed in the literature,

namely its great sensitivity to outliers in the sample and the difficulty in performing statistical

inference. These limitations can be overcome by the use of the robust CI approach. The condi-

tional approach allows accounting for the effect of exogenous contextual variables in a single stage

when constructing CIs. Since its initial conceptualisation by Cazals et al. (2002) and Daraio and

Simar (2005, 2007a), these techniques have been applied, revised and enhanced by an extensive

number of studies: De Witte and Kortelainen (2013); Rogge et al. (2017); De Witte and Schiltz
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(2018); Lavigne et al. (2019); D’Inverno and De Witte (2020); Fusco et al. (2020); Mergoni et al.

(2022), among others.

In line with this stream of the literature, the computation of the robust CI is performed by

drawing (for a very large number of times) at random with replacement units from the original

set of DMUs and computing the CI estimates for each sample through the resolution of the BoD

model. If a sample of size m is considered, the resulting CI will reflect the comparison with the

best-practice frontier composed only by DMUs included in the sample of size m. If this sampling

and calculation process is performed B times, where B is typically a high number, the effect of the

outliers on the average efficiencies will be lessened since they will not appear in all the collected

samples. The resulting robust CI, referred as CIm
j0 in this study, is the average of the CIs generated

for all B samples of size m, as shown in (6.4), where CIb,m
j0 is the CI of DMU j0 calculated using

sample b.

CIm
j0 =

1
B

B

∑
b=1

CIb,m
j0 (6.4)

When the results are calculated, it may happen that, for a given sample, the DMU under

assessment ( j0) is not included in that sample, such that it may be more efficient than all the

DMUs in the sample. In this case, the DMUs would be classified as “super-performing” and its

score, β
b,m
j0 , would have a negative value. The more negative β

b,m
j0 is, the higher the performance

of the DMU, so CIb,m
j0 should increase as β

b,m
j0 decreases. However, this can not happen if CIb,m

j0

is calculated as 1/(1+β j0). A solution to this problem is suggested by Mergoni et al. (2022) by

modifying the calculation of CIb,m
j0 to adapt for the case of negative values of β

b,m
j0 as detailed in

(6.5).

CIb,m
j0 =


1

1+β
b,m
j0

, if β
b,m
j0 ≥ 0;

log10(1−β
b,m
j0 )+1, if β

b,m
j0 < 0

(6.5)

Figure 6.1 displays both functions applied to calculate CIb,m
j0 . The original formulation (in

blue), besides of being discontinued in β
b,m
j0 =−1, yields negative values for CIb,m

j0 if β
b,m
j0 <−1.

This curve does not reflect the proportional increments in performance expected for the CI when

the units are “super-performing”. On the other hand, the proposed formulation when β
b,m
j0 < 0

(in red) follows a similar trend as the original formulation for positive values of β
b,m
j0 allowing

the value of CIb,m
j0 to increase as the performance of the DMUs improves. Therefore, following

Mergoni et al. (2022), the robust CIs proposed in this study are computed using the expressions in

(6.5). This applies also for the computation of the robust conditional CIs as presented hereinafter.
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Figure 6.1: Comparison between the expressions used to calculate CI.

In order to account for the influence of the contextual variables, the robust conditional ap-

proach or, simply conditional approach, needs to be employed. This strategy is used to adjust the

CIs to allow fairer comparisons by forcing the DMUs assessment to be performed with more sim-

ilar DMUs according to exogenous characteristics. The procedure is analogous to the robust CI

strategy, using B samples of size m and computing the CI as the average of all samples. The differ-

ence between this strategy and the robust approach is that instead of performing random sampling

from a uniform distribution, the sampling is conducted using a similarity function. The similarity

is measured using a kernel function estimated using the contextual variables. There are currently

computing models to deal with both continuous and categorical context or exogenous variables

(Li and Racine, 2003). The conditional CI, referred to as CIm,z
j0 , is computed as the average of the

conditional CIb,m,z
j0 for B samples as shown in (6.6).

CIm,z
j0 =

1
B

B

∑
b=1

CIb,m,z
j0 (6.6)

After computing CIm,z
j0 , the significance and the direction of influence of the contextual vari-

ables can be evaluated. The score ratio between the robust CI and the robust conditional CI

(CIm
j0/CIm,z

j0 ) is non-parametrically regressed against the exogenous variables. Partial plots showing

the variables’ confidence intervals for different levels of the exogenous variables can be generated,

and non-overlap intervals indicate that the effect of the context is significant.

If the ratio is decreasing as the environmental variable increases (that is, the regression plot

displays a negative slope), it means that the conditional score is larger than the unconditional one

just because compared among units more similar in terms of the contextual variables. In that sense,

the environment plays an unfavourable role when it comes to the performance evaluation. On the

contrary, if the regression plot displays a positive slope, the environment plays a favourable role.

For a more detailed explanation, see Rogge et al. (2017); D’Inverno et al. (2021). For an analogous

approach using DEA efficiency scores, see Walker et al. (2019).
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6.5 Case study

This section details the case study analysed by the research. In subsection 6.5.1, the primary data

set containing the metrics collected by ERSAR that form the composite indicators is presented.

Subsection 6.5.2 displays the variables utilised to characterise the environment in which the com-

panies operate.

6.5.1 Data collected

The study employs the metrics collected by ERSAR during five years, from 2016 to 20201, to

construct the CIs RISI (Resource and Infrastructure Sustainability Index) and AMMI (Asset Man-

agement Maturity Index) as detailed in subsection 6.4.1 .

The methods developed for comparative performance, such as those based on DEA, provide

better results if the number of DMUs is large. Thanassoulis (2000a) explains that one way to in-

crease the number of DMUs is to treat each unit as a separate comparative entity in distinct units

of time, through the use of a panel data. By doing that, the basic assumption to consider is that the

technology remains stable over time to enable meaningful comparisons of performance. Given the

observed time span and the nature of the water industry, this assumption is verified. The infrastruc-

ture cannot be changed rapidly as the investments in assets are primarily underground and deemed

to last several decades. In that sense, the DMUs in this study are formed by the combination of

company and year. For example, DMU A1-2016 means that the data of company Águas de Santo

André (A1) for 2016 is being assessed. By choosing this strategy, the companies can be compared

not only with other companies but also with themselves in different years, allowing the evaluation

of their performance over time. Since Águas do Douro e Paiva (A3) was created in 2017, only

four years of data are available for this company. Therefore the number of DMUs employed in the

study is 49 instead the expected number of 50, considering that there are ten companies for five

years of evaluation.

An examination in the data set indicates that two data instances are missing: the values for the

metric AA13a for DMUs A5-2016 and A8-2020. The procedure recommended by Kuosmanen

et al. (2002), Morais and Camanho (2011) and Henriques et al. (2020) for treatment of missing

data in DEA was used in this case. Since the metric is undesirable, a large value corresponding

to the maximum value of metric AA13a in the sample was assigned to both DMUs. This implies

that the absence of data cannot favour the DMU in the performance assessment.

The descriptive statistics for the data related to the metrics that compose both CIs are presented

in Tables 6.1 and 6.2.

1ERSAR reports are available online in https://www.ersar.pt/pt/site-publicacoes/Paginas/edicoes-anuais-do-
RASARP.aspx.
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Table 6.1: Metrics that compose RISI.

ERSAR Code Metric description Metric definition No. Obs. Mean St. Dev. Min. Max.

AA09a Pipeline Rehabilitation Average annual percentage of pipelines with life higher 49 0.19 0.31 0 1.3

(%/year) than ten years rehabilitated in the last five years.

AA10a Occurrence of Pipeline Failure Number of failures in pipelines per 100 km 49 7.92 8.78 1 40

(no/100 km.year) in a year.

AA12a Actual water losses Actual water losses due to leakages and overflows per 49 6.46 8.13 0.1 31.4

(m3/km.day) unit of pipeline length.

AA13a Energy efficiency in pumping Average normalised energy consumption of pumping 49 0.47 0.12 0.36 0.73

stations (kWh/m3.100m) stations.

Table 6.2: Metrics that compose AMMI.

ERSAR Code Metric description Metric definition No. Obs. Mean St. Dev. Min. Max.

PAA31a Infrastructure Knowledge Score of evaluation of the knowledge of the several 49 170.37 20.08 111 197

Index (Score 0-200) infrastructures in different classes ranging from 0 to 200.

PAA32a Infrastructure Asset Management Score of evaluation in a questionnaire about asset 49 109.06 83.9 0 200

Index (Score 0-200) management practices ranging from 0 to 200.

The correlation among the various metrics employed to build the CIs was investigated. The

estimated Pearson correlation coefficients do not reflect a significant association between the pairs

of metrics used in each CI, as the resulting absolute values of the coefficients are not close to one,

as shown in Table 6.3. In this scenario, the low correlation supports incorporating all variables

into the models.

Table 6.3: Pearson correlation coefficients - RISI and AMMI metrics.

CI Pair of Metrics Pearson Correl.

Coefficient

AA09a-AA10a 0.334

AA09a-AA12a 0.047

RISI AA09a-AA13a 0.362

AA10a-AA12a -0.210

AA10a-AA13a 0.253

AA12a-AA13a -0.284

AMMI PAA31a-PAA32a 0.357

6.5.2 Exogenous contextual variables

Four characteristics covering various contexts in which the organisations operate were chosen to

analyse the influence of the background on their performance. The four factors are expressed also

by variables collected and publicised by ERSAR on the annual report. Two of those variables, the

management system and the typology of intervention area are categorical, and the other two, the

volume of activity and the pipeline network length are continuous.

Variable PAA02a identifies the company’s management system, and reflects the market struc-

ture of the water sector in Portugal. The companies Águas Públicas do Alentejo (A8), EPAL (A9)

and ICOVI (A10), are operated by delegation, whereas all the other wholesale companies are op-

erated by concession. This status remains for the whole period from 2016 to 2020.
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Variable PAA14a reflects the typology of intervention area, in which the companies are clas-

sified as operating in rural, urban, or semi-urban settings. This criterion is mostly determined

by population density. The urban companies are Águas do Douro e Paiva (A3) and EPAL (A9),

the rural companies are Águas de Santo André (A1), Águas Públicas do Alentejo (A8) and ICOVI

(A10). The remaining five companies operate in semi-urban environment. The companies’ status

also does not change during the assessment period.

Table 6.4 presents the statistics for categorical exogenous variables between 2016 and 2020.

Table 6.4: Categorical exogenous variables.

ERSAR Code Description Definition Obs. Number of companies and

percentage per category

PAA02a Management System Concession or Delegation. 49
Concession - 7 (69.4%)

Delegation- 3 (30.6%)

PAA14a Typology of Intervention Area
Rural areas, semi-urban

areas or urban areas.
49

Rural - 3 (30.6%)

Semi-urban - 5 (51.0%)

Urban - 2 (18.4%)

The two continuous exogenous factors are represented by variables PAA50a and dAA15a.

Variable PAA50a indicates a company’s volume of activity, meaning the total billed volume of

water supplied by the company per year. Variable dAA15a expresses the pipeline network length

of the company in kilometres.

According to Haider et al. (2014), water supply systems include vertical components and linear

components. Examples of vertical components are treatment plants, pumping stations and storage

tanks, and the linear components include the water mains and pipeline networks. The linear com-

ponents are usually much more expensive representing from 60% to 80% of the total cost of the

water system. Therefore, the variable dAA15a was chosen to reflect the amount of assets that the

company manages. Both continuous exogenous variables included are proxies of the company’s

size, but they are not strongly correlated with each other. The Pearson correlation coefficient is

0.377 and the p-value is 0.008.

Table 6.5 displays the descriptive statistics of the continuous exogenous variables. The effects

of problematic and small samples have been already discussed by Henriques et al. (2022). Fol-

lowing those authors, and in order to maintain consistency in the study, we choose to include the

two continuous variables as discrete variables (a similar approach can be found also in D’Inverno

et al. 2021). Therefore those variables are split in two classes: above and below the median.

Table 6.5: Continuous exogenous variables.

ERSAR Code Description Definition Obs. Mean St. Dev. Median Min. Max.

PAA50a Volume of Activity Volume of water 49 60,680,458 62,916,421 30,448,818 978,630 215,392,064

supplied (m3/year)

dAA15a Pipeline network Total length of 49 1009.0 1148.4 497 26.8 3578.8

length pipelines (km)
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6.6 Results and discussion

In this section, the study’s results are presented and discussed in three stages. The first part dis-

cusses the results of the calculation of the deterministic CIs and robust non-conditional (or simply

robust) CIs. The second stage presents the estimation of the robust conditional (or simply con-

ditional) CIs and the findings regarding the effect of contextual conditions on asset management

performance. The last part presents a visualisation tool conceived to enable the combined analysis

of both AMMI and RISI.

6.6.1 Deterministic and robust composite indicators’ results

This subsection presents the findings from the calculation of the deterministic and robust CIs.

The deterministic CIs calculation follows the procedure detailed in subsection 6.4.2. Since

RISI presents undesirable outputs, they are computed through the resolution of BoD model 6.1.

For the AMMI calculation, BoD model 6.3 is employed, where only desirable outputs are consid-

ered. For the weight restrictions shown in 6.2 and 6.3, the values of parameters φr and φk were set

to be equal to 0.05. Different values of φr and φk from 0.02 to 0.10 were tested, and the results

remained very stable. After running this sensitivity analysis, an intermediate value of 0.05 was

chosen.

For the robust CIs calculation, a sensitivity analysis was performed to decide the value of

bootstrapping sample size m. Daraio and Simar (2007a) explain that there are no fixed rules

neither automatic procedures to select the value of m. This value is typically an integer number

smaller than n. These authors recommend to perform a sensitivity analysis, choosing several

levels of m and evaluating the number of super-performing units. This number should decrease as

m increases. In small dimension samples, the choice of m as being equal to the number of DMUs is

recommended by Henriques et al. (2022). Following those authors, we choose for both indicators

to use m = n = 49. Furthermore, at this level there is already a substantial decrease on the number

of super-performing units and on the average CI values. The number of bootstrapping replications

is chosen as B = 2000. The results are obtained using packages Rglpk (Theussl and Hornik, 2019)

and lpSolve (Berkelaar et al., 2023) in R program.

Table 6.6 shows the descriptive statistics for RISI results and Table 6.7 displays the similar

information for AMMI results. Looking at the averages of both indicators, a significant room for

improvement can be noticed. Note that lower average scores signal a larger degree of heterogeneity

among firms, taking the best-observed practices of the sample in a five-year period as reference.

The CIs for all DMUs are reported in Table C.1 in Appendix C.1.

Table 6.6: Descriptive statistics for RISI results in deterministic and robust unconditional ap-
proaches.

Average St. Dev. Min Q1 Median Q3 Max

Deterministic RISI CI (CI j0) 0.799 0.079 0.637 0.771 0.801 0.840 1.000

Robust Unconditional RISI CI (CIm
j0) 0.835 0.092 0.646 0.796 0.834 0.877 1.138
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Table 6.7: Descriptive statistics for AMMI results in deterministic and robust unconditional ap-
proaches.

Average St. Dev. Min Q1 Median Q3 Max

Deterministic AMMI CI (CI j0) 0.861 0.111 0.602 0.762 0.866 0.979 1.000

Robust Unconditional AMMI CI (CIm
j0) 0.865 0.110 0.606 0.768 0.873 0.979 1.004

A close look at the results for AMMI reveals that half of the DMUs present a CI above 0.866

in the deterministic case and above 0.873 in the robust unconditional analysis. Overall, the CIs

allows the identification of the poorly performing companies and the highly performing ones, to

guide improvements of the former by looking at the good practices of the latter.

Both indicators suggest that there is potential room for improvement among the companies. As

the BoD model assigns the weights to each metric in the most favourable way, the underperforming

companies cannot complain about the fairness of the evaluation. The highest ratings given to

the top performers may not always indicate that there is no potential for further improvement

in absolute terms. It simply means that, based on the data available, these companies represent

the best observed performance in the period under consideration. The evolution of productivity

levels over time is captured by the movement of the best-practice frontier, whereas cross-sectional

assessments of efficiency only evaluate the distance to the frontier at a given moment in time. This

benchmarking exercise can be beneficial to the determination of policies both for the regulatory

entity and the companies themselves.

6.6.2 Effect of exogenous contextual variables

This subsection presents the calculation of robust conditional CIs, which reveals companies’ per-

formance taking into account the operating context. Besides the use of R packages Rglpk (Theussl

and Hornik, 2019) and lpSolve (Berkelaar et al., 2023), in this analysis the np package was em-

ployed in R software to perform sampling according to the similarity level of DMUs and also to

execute the non parametric tests of significance (Hayfield and Racine, 2008). The np package

focuses on kernel approaches that are suitable for the combination of continuous and categorical

data.

As previously discussed, the continuous variables need to be converted to discrete ones in this

analysis due to the small sample size. For the same reason, the effect of exogenous factors can

not be addressed using one model combining all variables as discussed in Henriques et al. (2022).

The computation of the conditional CIs and significance tests has to be performed individually

for each exogenous variable in a first stage. In a second phase, only the significant variables are

included in the final calculation to generate the conditional CIs. The potential for omitted variable

bias in this case may be a concern, yet this method was deemed valid as the aim of the analysis

was to pursue evidence of correlation, not necessarily causal relationships. The option to include

one variable at a time furthers a practical approach that enables the identification of the contextual

factors influencing the outcomes.
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Figure 6.2 reports the results obtained for the Conditional BoD model considering the variable

PAA02a (Management System). The confidence intervals shown in Figure 6.2 do not overlap,

and the p-value of the hypothesis test used to compare the groups (Kernel regression significance

test) is smaller than 2.22× 10−16 in both cases, which means that the difference between con-

cession and delegation management systems is significant regarding the performance measured

by both indicators. The score ratio between robust and robust conditional CIs for the delegation

management system in both indicators is higher, indicating that the delegation environment is

more favourable for the performance in both perspectives of RISI and AMMI. We hypothesise

that this fact is concerned with the more experience the delegation companies have already got in

asset management practices. Historically, the emphasis on asset management began in Portugal

with delegation-managed firms. Since 2006, EPAL, one of the largest delegation firms, has been

the first wholesale water provider to focus on asset management procedures. It was also the first

wholesale company in the country to acquire ISO 55001 certification (Luís and Almeida, 2021).

(a) RISI (b) AMMI

Figure 6.2: Effect of each exogenous variable - management system.

The ownership and management approaches of water systems have been extensively discussed

in the literature, with controversial results. In the review conducted by Berg and Marques (2011),

out of 47 studies focusing on that issue, 18 found that private water companies perform more

efficiently than the public ones, 12 concluded that public water utilities are more efficient than the

privates, and 17 reach inconclusive results. In general, the private sector tends to improve labour

productivity but often increases capital expenses, and the opposite holds for the public sector. We

highlight that those studies do not emphasise only asset management practices, but efficiency in

general. Furthermore, in the management systems for the bulk companies in Portugal, the public

control is more direct in the delegation system than in the concession.

The results for the conditional CI approach using variable PAA14a (Typology of Intervention

Area) can be seen in Figure 6.3. The results for the kernel regression significance test in this

case indicate that this contextual factor is also significant for the companies’ performance in asset

management. The p-values are less than 2.22×10−16, both for RISI and AMMI.

In the case of RISI, rural environment is more favourable, achieving higher values in the score

ratios between the robust and conditional CIs. A possible reason for that may be related to the fact
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that the rural water networks are younger in Portugal, mainly due to the expansion in investments

towards the rural areas in recent decades. Younger water assets have reduced chances of deteriora-

tion and leakage, which may explain why rural settings operate more efficiently. Rurality has been

already studied as an exogenous factor in the context of global efficiency by Walker et al. (2019),

that concluded that higher population densities in urban setting are more favourable to increase

the efficiency due to scale economies.

The urban environment score ratio, on the other hand, is much higher than the other settings

for the AMMI, suggesting that urban enterprises have superior asset management systems. This

phenomenon might be connected to urban companies’ knowledge of their assets. Since the In-

frastructure knowledge index, required by ERSAR, is a component of AMMI, the information the

companies retain about their assets affects the result of that indicator. In urban settings, the assets’

inventories and records are more accurate, which may explain this finding.

(a) RISI (b) AMMI

Figure 6.3: Effect of each exogenous variable - typology of intervention area.

The results obtained from the analysis of the conditional CIs employing the variable PAA50a

(Volume of activity) are displayed in Figure 6.4. As previously stated, the level “High” in the

graph includes the DMUs that present the volume of activity higher than the median of all DMUs,

while the DMUs labeled “Low” have a lower volume of activity than the median. In this case, the

differences between the groups were found to be non-significant for both indicators. The p-values

are 0.399 for RISI and 0.231 for AMMI, revealing that the volume of activity expressed by the

amount of water supplied by the wholesale companies does not affect their performance in asset

management. Water systems are considered large by the European Commission, if they supply

more than 1000 m3 of water per day or serve more than 5000 people (European Commission,

1998). Looking at the data in Table 6.5, we can see that all the companies included in this analysis

provide a larger volume of water than 1000 m3/day, and at this scale no difference can be noticed

among the analysed companies in asset management regarding the volume of activity.

Similar results are seen for variable dAA15a (Pipeline network length). The graphs in Figure

6.5 suggest that there are no significant differences regarding the two levels of pipeline network

length considered in the analysis. As previously noted, the two categories are “Low” for less than

the median of all DMUs and “High” for larger than the median.



113

(a) RISI (b) AMMI

Figure 6.4: Effect of each exogenous variable - volume of activity.

After the effect of all variables is evaluated individually, the robust conditional CIs are com-

puted utilising the two factors considered significant: Management system and Typology of inter-

vention area. The resulting CIs are also shown in Table C.1 in Appendix C.1 and the descriptive

statistics are displayed in Table 6.8.

In the conditional assessment, the companies are predominantly compared to more similar

units. Also in this case, it is possible to identify potential room for improvement. Once more, the

companies found poorly performing are granted the fairness of the assessment and cannot blame

the evaluation system.

Table 6.8: Descriptive statistics for RISI and AMMI in robust conditional approach.

Average St. Dev. Min Q1 Median Q3 Max

Robust Conditional RISI CI (CIm,z
j0 ) 0.891 0.088 0.667 0.829 0.913 0.953 1.057

Robust Conditional AMMI CI (CIm,z
j0 ) 0.906 0.084 0.615 0.865 0.898 0.998 1.000

(a) RISI (b) AMMI

Figure 6.5: Effect of each exogenous variable - pipeline length
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6.6.3 Visualisation framework for the combined analysis of asset management di-
mensions

A visualisation model inspired by the BCG (Boston Consulting Group) matrix (Hax and Majluf,

1983) was created to enable for the combined analysis of companies in both indicators (RISI

and AMMI) in an integrated manner. In this framework, the companies under assessment are

classified according to the value of the CIs compared to the median of the entire sample. Figure

6.6 distinguishes four categories to illustrate the companies’ performance compared to peers, as

follows:

(a) Stars - when both RISI and AMMI are higher than their median values. In this case, the com-

panies provide tangible results and demonstrate consistent asset management techniques,

compared to peers.

(b) Soldiers - when RISI is higher than median and AMMI is lower or equal than median. In this

category, the companies take good care of the assets, meaning that the assets are maintained

in suitable operational conditions compared to peers, but management strategies are not

properly implemented.

(c) Infants - In this class, both RISI and AMMI are lower or equal than the medians. The

Infants give the first steps in the organisation for asset management and their operational

performance is worse compared to peers.

(d) Learners - The Learners present AMMI higher than the median and RISI lower or equal than

the median. They have been working on robust management systems but their achievements

in asset management are worse than most of their peers.

Figure 6.6: Visualisation model - RISI and AMMI.

The complete classification for all the companies is presented in Table C.1 in Appendix C.1.

Figure 6.7 displays the positions of the companies for the first and last years considered in the

robust conditional assessment to highlight the changes in both CIs across time. When the data for
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2016 and 2020 are compared, a tendency towards increasing both indicators can be noticed for

most companies, suggesting an improvement in the sector’s asset management practices.

Looking at the AMMI results, all the companies present better results for their management

practices, between the first and the last years of evaluation. The same comparison for the RISI

results reveals only two exceptions to this trend: the companies Águas de Santo André (A1) and

Águas do Vale do Tejo (A6). Águas de Santo André (A1) displays significantly worse results for

water losses (AA12a), which raised from 0.5 m3/km.day in 2016 to a range between 1.8 and

2.6 m3/km.day in the following years. The unfavourable trend is also repeated for the energy

efficiency in pumping stations (AA13a) which was 0.49 kWh/m3.100m in 2016 and jumped to

values superior to 0.62 kWh/m3.100m from 2017 . This company is also disfavoured by the lack

of investment in network rehabilitation, as metric AA09a is null for the whole period, and by the

significant number of pipeline failures (AA10a), which are higher than the sector average for all

years. As a result of this poor performance, Águas de Santo André dropped from the category

Soldier to Infant in 2017, and remained in the same category since then. The case of Águas do

Vale do Tejo (A6) is different since the worsening in RISI is minimal. This company presents

relatively stable results over time, but when the metrics between 2016 and 2020 are compared, the

number of failures in pipelines (AA10a) increased from 6 to 7 failures per 100km.year.

In all the other cases, improvements are noticed in both indicators. This information may be

utilised as a motivator to continue with asset management practices in the future.

The use of combinations of company and year as units of assessment allow for the comparison

of a firm’s performance with itself across time. This procedure is known as internal benchmarking

(see also Piran et al. (2021), for further details on this topic). The visualisation framework may

be used to depict the progression of the companies’ performance throughout the period under

assessment. Figure 6.8 displays examples for three companies.

Figure 6.7: Visualisation model - Comparison between the first and the last year of assessment.

The progression of company Águas do Algarve (A2) is presented in Figure 6.8a. This or-

ganisation has consistently learned from implementing managerial approaches over the years. It

started in 2016 already as a Star, and by keeping the performance in managerial features at a high
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level, it keeps improving its operational results, remaining always in the same category. Águas

do Norte (A5) has also been improving its management system compared to peers over the years,

being certified in ISO 55001 in 2019. The tangible results have also been improving as shown in

Figure 6.8b, even though an unsustainable major progress from 2016 to 2017 led to a decline in

2018. Since 2019, the company performs as a Star. The results of Águas do Vouga (A7) depicted

in Figure 6.8c indicate that the company has also learned from the implementation of managerial

approaches over the years. Its operational results have improved, and finally, in 2020, it performs

as a Star.

By analysing each company’s evolution individually through the 2x2 matrix, one can identify

in which period the company adopted best practices and better understand what actions are re-

quired to support improvements. The fact that performance can be evaluated in two dimensions,

using the joint visualisation of managerial elements (AMMI) and tangible results (RISI), may

support the companies’ overall internal analyses.

A first policy recommendation for a given company should be to analyse its evolution over

time through an internal benchmarking process. If there is change between categories, or even

if there is a variation in performance within the same category, the company can use the periods

when its performance was superior and try to determine which factors led to that success. Next,

the company should analyse the performance of its peers, especially those that are subject to the

same context, and try to set targets based on the results of these peers that may help the company

improve its performance.

6.7 Conclusion

Among the main findings of this work, a novel approach to benchmark wholesale water supply

companies regarding asset management practices is developed using Benefit-of-the-Doubt (BoD)

directional distance models to construct composite indicators (CI). The BoD models provide an

innovative way of applying the metrics collected annually by the Portuguese regulatory authority,

ERSAR. This strategy benefits from reliability of ERSAR’s data and well-established procedures

for monitoring companies and acquiring information. This study is the first to use these data

to evaluate the success of organisations in terms of asset management methods, which fills an

important gap in the literature.

In addition to the traditional deterministic strategy for generating CIs, robust and conditional

approaches are used to allow statistical inference and examine the influence of contextual factors

on firms’ performance. The findings suggest that companies with a management system based

on a delegation model show better asset management performance. Furthermore, a rural setting

appears to be more favourable for achieving good operational results in assets, whereas better

management systems are expected to benefit from urban environments.

The findings of this study enable water businesses to understand better where they stand in

terms of asset management performance compared to other firms and themselves over time. These

findings are highly relevant because they may help organisations make better decisions about
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(a) A2 - Águas do Algarve (b) A5 - Águas do Norte

(c) A7 - Águas do Vouga

Figure 6.8: Examples of three companies’ evolution from 2016 to 2020

where to focus on promoting continuous improvement efforts related to asset management tech-

niques, which represent a vital issue in the water industry. Furthermore, the insights uncovered by

this research may be used by the regulator to set policy targets for the water sector following the

objectives of the sunshine regulation method and promoting the overall efficiency of the sector. A

visualisation model for the combined evaluation of the two CIs is also presented, and examples of

companies’ evolution across the assessment period are discussed.

The presented study gathers in an innovative way a number of relevant aspects. First, it makes

use of reliable and accurate data collected from the regulatory entity in the Portuguese water

industry. Second, the BoD technique is suitable to reduce potential conflicts in the evaluation

assessment, since companies cannot complain about the fairness of the aggregating scheme (being

by design the most favourable one). Third, the conditional analysis favours the comparison of

units under a more similar context, allowing for an even fairer analysis. Finally, the strategy

combining internal and external benchmarking allows the assessment of a company over time and

the visualisation model enables the combined evaluation of operational results and managerial

enablers.
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Some limitations of the study derive from the small sample size used. As a result, the con-

textual variables cannot be all included in a single model and the interaction between all variables

cannot be investigated. The reduced sample size also prevents the use of continuous exogenous

variables in their original form. The investigation can be extended to the 234 Portuguese retail

companies in future developments. A larger sample size may allow a more detailed analysis of

contextual factors. Furthermore, the envelopment formulation of BoD models may be used to de-

termine the best peers and targets regarding asset management practices for this broader sample

of companies.

The proposed tools and the overall analysis should encourage the companies and the regulator

to collaborate for a richer collection of indicators associated with the assets and asset management

practices. For example, in most of the cases, companies do not report relevant information such

as the Infrastructure Value Index, the Infrastructure Current Value and the Infrastructure Current

Value. A richer dataset can help the regulator and the companies better identify the best practices,

enhance internal management, and design policies to foster a continuous improvement of asset

management activities.



CHAPTER 7
Guiding improvements in asset

management through the identification
of peers and targets in retail water

companies
This chapter aims to present an evaluation of the performance of water supply utilities operating at the retail
level in Portugal concerning asset management practices. The study’s main innovative feature is identifying
peers and targets to guide improvements in the sector. Reliable data collected by the regulatory authority for
water and waste services in Portugal (ERSAR) are employed to design two composite indicators reflecting
different dimensions of asset management: operational conditions and management systems. Based on the
Data Envelopment Analysis technique, the Benefit-of-the-Doubt model is employed in robust and condi-
tional formulations. The role of the context on utilities’ performance is also investigated. The results show
that the direct management model is unfavourable concerning developing structured management systems,
whilst urban environments favour managerial advancement. Rural and semi-urban environments favour
“good” operational results in infrastructures. The pool of peers obtained for each utility and the quantifi-
cation of targets based on the observed achievements by those peers facilitates the search for industry best
practices and promotes continuous improvement. Given the high heterogeneity in asset management per-
formance within the sector, the utility-specific target-setting approach illustrated in this chapter can support
a regulatory policy review for determining more realistic goals.

7.1 Introduction

Providing access to clean water is of utmost importance for the health and well-being of all in-

dividuals. Water is essential for human life and increasingly needed to produce energy, generate

food, manufacture products, and provide services. According to the latest Global Water Security

Report, the percentage of the world’s population using safely managed drinking water increased

from 70% to 74% between 2015 and 2020. However, this rate is insufficient to meet the target

set by the United Nations Sustainable Development Goals of achieving universal access to water

by 2030. Two billion people were still lacking access to water services in 2020 (United Nations,

2022). This problem is further exacerbated by climate change, which brings more frequent and se-

vere droughts, floods, and increasing sea levels. Additional challenges include population growth,

119
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urbanisation, and lack of infrastructure maintenance and management. Consequently, it is nec-

essary for the water sector to become more resilient so that it can withstand shocks and stresses

(Lombana Cordoba et al., 2022).

These challenges require that water infrastructures are maintained in reliable conditions. Un-

fortunately, the majority of water systems are in severe disrepair due to the short-term and narrow

focus strategies used in the sector, which have resulted in the deferment of necessary investments.

According to a recent report by EurEau - the European Federation of National Associations of

Water Services representing 30 European countries, the rate of water loss in Europe was found to

be 25.1% (EurEau, 2021). The report also revealed substantial discrepancies in the rates among

member countries, with the Netherlands reporting the lowest rate at 5%, while Bulgaria had the

highest rate at 61%. According to the American Association of Civil Engineers (ASCE, 2021a),

water mains break every two minutes in the United States, resulting in the loss of 6 billion gallons

of treated water daily. This volume is equivalent to filling more than 9,000 swimming pools, and

equates to US$ 7.6 billion lost in 2019.

Urban water infrastructures are capital-intensive, expensive, long-lasting, and exclusive as-

sets, which cannot be shared by multiple service providers, and represent a significant portion

of municipal public assets’ value. Asset management, a modern expression for a centuries-old

practice that focuses on managing infrastructure assets, has emerged as a more comprehensive

and well-devised strategic approach over the past few decades (Amaral et al., 2017). It represents

a potential solution to deal with water infrastructures, ensuring the economic health and welfare

of modern communities (Alegre, 2010). Formalised since 2014 in a series of international stan-

dards, the ISO 55000 (ISO, 2014a), asset management involves an extensive system that requires

organisations to balance cost, risk, performance and life cycle and extract the maximum value

from their physical assets. Almeida et al. (2021) discuss that asset management techniques and

principles allow an organisation to structure a governance model to achieve sustainable levels of

service and performance. To ensure integration and successful implementation, asset management

should be grounded in plan-do-check-act (PDCA) principles and divided into three levels of plan-

ning: strategic, tactical, and operational. At each level, defined objectives, assessment criteria and

targets, diagnosis, action plan development, and implementation are key activities that should be

undertaken for effective asset management (Alegre, 2010).

Benchmarking is a common practice in organisational management used to evaluate processes

against best practices of peer entities in an industry or sector. When the best-in-class entities are

identified, the managers are able to set targets that enable them to learn from others, measure

their performance and guide improvements. This research is aimed at performing a benchmarking

exercise with a set of Portuguese water utilities operating at the retail level, by focusing on their

asset management practices.

Asset management applications were introduced in the Portuguese water sector in the begin-

ning of century XXI, and even though some improvement effort has been carried out, the results

are not uniform among all operators (Luís and Almeida, 2021). Different ownership and man-

agement structures coexist, resulting in significant heterogeneity in governance mechanisms and
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asymmetrical access to funding that are necessary to cope with necessary investments. More than

200 utilities operate in the retail market and most of them are directly controlled by municipalities.

Those service providers are responsible for the storage and distribution of treated water received

upstream by larger-scale utilities operating the bulk market. The bulk or wholesale utilities extract,

treat and distribute water to the retail market in Portugal.

In Portugal, the regulatory agency ERSAR (acronym in Portuguese for Water and Waste Ser-

vices Regulation Authority) annually gathers a vast collection of metrics that are suitable for

benchmarking purposes. Several of those metrics reflect asset management factors that can be

employed to assess the performance of the retail water operators. These indicators are used as

input data for this research.

The Benefit-of-the-Doubt (BoD) technique based on Data Envelopment Analysis (DEA) is

applied to construct composite indicators, in order to measure the performance of the various

utilities in two dimensions: assets’ condition and managerial features. Additionally, the role of

the context in which those utilities operate was also taken into consideration in the benchmarking

study. Finally, suitable peers and targets for operators are determined.

The relevance of the study relies on the critical conditions presented by the Portuguese water

sector in terms of asset management and the urgent needs to foster improvements in this area. The

use of ERSAR metrics to perform benchmarking studies in the retail water market in Portugal has

been explored by several studies (Marques, 2006; De Witte and Marques, 2010a; Henriques et al.,

2022; Mergoni et al., 2022; Pinto et al., 2017a,c; Amaral et al., 2022, 2023). The study developed

by Vilarinho et al. (2023c) focused exclusively on asset management practices, but covered only

the bulk market. The development of a methodology to identify the most appropriate benchmark

counterparts and targets for a set of water retailers concerning asset management practices has yet

to be covered in the literature, representing the main contribution of this chapter.

The remainder of the chapter is divided into the following sections: section 7.2 provides a

short literature review, section 7.3 explains the methodology, section 7.4 gives details about the

case study, section 7.5 displays the results and discusses the findings, and, finally section 7.6

presents the conclusions.

7.2 Literature review

The literature review includes a discussion about benchmarking practices using DEA applica-

tions in retail water utilities (subsection 7.2.1), the characterisation of the Portuguese water sector

(subsection 7.2.2), and a discussion of asset management features of the water sector in Portugal

(subsection 7.2.3).

7.2.1 Benchmarking practices in retail water companies

Benchmarking is a common practice used to compare performance with standards, aiming to iden-

tify areas for improvement. Metric benchmarking employs indicators to measure an entity’s per-

formance over time and compare it to its peers. Entities can thereby evaluate how they measure up
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against industry standards or observed practices of peers, track progress toward goals, explore best

practices, and optimise operations and resource utilisation. Developing a reliable benchmarking

method enables spotlighting the better and worse performing service providers, setting incentives

on organisation performance and offering visibility on the processes and mechanisms that work

and those that do not work (Mumssen et al., 2018).

Marques and De Witte (2010) detail the vital role of benchmarking practices in the perfor-

mance the water sector. Regulators often evaluate the efficiency of utilities using a set of practices

known as “yardstick competition” that is utilised when direct competition between public service

providers is not possible. The main idea of yardstick competition is to compare the performance

of service providers in the same sector creating an artificial competition between them. The key

advantages of yardstick competition include incentives to boost information sharing and open-

ness, as well as efficiency, innovation, and quality of service. As a result of yardstick competition,

the knowledge acquired from other utilities is used to redirect the incentive of the utility under

examination to enhance its efficiency. Yardstick competition is performed in the water sector us-

ing two approaches. The first one, known as price yardstick competition, employs benchmarking

practices to set tariffs. The second approach to yardstick competitions is often softer and involves

mandatory benchmarking mixed with open disclosure of performance data with no relation to price

setting. This lighter mode of yardstick competition is known as sunshine regulation and has been

implemented in many countries, such as Australia, Argentina, Holland, Denmark and Portugal.

Sunshine regulation became popular in the water sector, and is sometimes employed as an initial

step toward more demanding and tighter regulation processes (Marques, 2006).

In a benchmarking context, a systematic process can be helpful to estimate efficiencies and

obtain by-products of the measurement exercise corresponding to targets for inputs and outputs

and peers that serve as benchmarks for each utility. Data Envelopment Analysis (DEA) mod-

els can address these requirements. Among the techniques available, Marques (2006) champi-

oned using DEA as the most consensual and widespread approach for evaluating water systems.

Non-parametric approaches, including DEA, differ from those using engineering standards or pro-

duction functions with conceptually stipulated functional forms. DEA, established initially by

Charnes et al. (1978), is a data-driven, non-parametric approach that evaluates performance com-

pared to best practices identified across a group of units known as DMUs (Decision Making Units).

The use of DEA identifies an efficient best-practice frontier, and inefficient units are rated based on

their distance from that frontier. The calculations are performed using linear programming models

to identify the optimal weights applied to inputs and outputs, from which the efficiency scores are

obtained.

The selection of an appropriate reference set is of critical importance when conducting bench-

marking activities. It requires organisations to identify a peer group in their sector or industry that

presents proper performance measures from which to learn. DEA-based applications facilitate the

establishment of best practices and benchmarks, as ultimately DEA analyses offer information

on both target setting and peer identification. Methodologically, in DEA, for a particular DMU

under assessment, only a section of the DEA efficiency frontier should be considered the common
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best-practice frontier. This common best-practice frontier will be the facet of the DEA efficiency

frontier spanned by a set of technically efficient DMUs, which can be seen as a common reference

group. This reference set represents the DMU’s peers. Targets will then result from projections

of this DMU toward the common best-practice frontier. Selecting the peer set that provides the

closest targets ensures the identification of the globally most similar best practices. Therefore, the

DMU can identify the easiest way to improvement (Ruiz and Sirvent, 2016, 2022). Thanassoulis

et al. (2008) explains that targets represent the levels of inputs and outputs that render a DMU

efficient. These authors highlight that, by focusing on observed operating practices, DEA tends to

be very useful in providing a starting point for setting performance targets. Simplified and inter-

active procedures incorporating user preferences have been applied to target identification. Their

relevance lies on improving nontechnical users’ comprehension of the evaluation process which

supports the organisational learning (Pereira et al., 2021).

DEA applications can be used to aggregate several metrics in the form of a composite in-

dicator (CI), which is known as the “Benefit-of-the-Doubt” (BoD) approach. This strategy was

proposed to evaluate macroeconomic performance by Melyn and Moesen (1991) and popularised

by Cherchye et al. (2007). Zanella et al. (2015) explain that there are only output measures to

be aggregated in a BoD, so all DMUs are assumed to be similar regarding the inputs. Thus, a

unitary input is considered in the BoD as opposed to a standard DEA linear programming model

that presents inputs and outputs. Being based on DEA, the BoD method is data-driven and avoids

the need for consultation with stakeholders to determine the aggregation weights for the individual

metrics. Additionally, since the weights generated as outcomes of a BoD model can handle the

conversion of units, the metrics can be employed using their own units of measurement, avoiding

the need for normalisation. BoD models are also used to identify peers (Lavigne et al., 2019;

Zanella et al., 2013; Morais and Camanho, 2011) and targets (Wüst and Rogge, 2021; Pereira

et al., 2021).

The efficiency of water and wastewater operators has been vastly explored in the literature with

studies performed worldwide, including Australia (Byrnes et al., 2010), Brazil (Tourinho et al.,

2022a,b), Canada (Wang et al., 2018), China (Dong et al., 2018), Italy (Romano and Guerrini,

2011; Lo Storto, 2018; D’Inverno et al., 2021), Japan (Marques et al., 2014), Palestina (Alsharif

et al., 2008) , Peru (Berg and Lin, 2008), United Kingdom (Walker et al., 2019; Thanassoulis,

2000a,b) among others. Several works using DEA have investigated the Portuguese water sector

(Marques, 2006; De Witte and Marques, 2010a; Henriques et al., 2022; Mergoni et al., 2022;

Amaral et al., 2022). Literature reviews covering benchmarking practices in water systems can

be found in Berg and Marques (2011), that analysed 190 benchmarking studies using quantitative

methods and Goh and See (2021), that reviewed 142 articles published between 2000 and 2019 on

that subject.

The DEA approaches available in the literature include the computation of robust efficiency

scores to minimise the effect of outliers and robust conditional efficient scores, that allow statisti-

cal inference and adjust the scores produced according to the environment. The robust and robust

conditional approaches have been widely employed to evaluate water systems (e.g. De Witte and
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Marques 2010a, Mbuvi et al. 2012, Marques et al. 2014, D’Inverno et al. 2021, Mergoni et al.

2022). The effect of the context is characterised by a separate set of data from variables that do

not enter directly in the computation of the scores but are used to guide the sampling process of

the DMUs under evaluation. Carvalho and Marques (2011), in their study of overall performance

measurement in 66 Portuguese water utilities, explain that the influence of the operational environ-

ment on efficiency must be taken into account. The comparison between water utilities operating

under highly diverse contexts should be avoided. Therefore studies that do not adjust the efficiency

measurement to the context in which the utilities operate can lead to unrealistic scores.

In a fragmented and heterogeneous market that is typical from the retail water sector, bench-

marking exercises based on DEA/BoD models present the ideal fit for sunshine regulation prac-

tices, given their capacity to consider the environment in which utilities operate, identify genuine

reference peers, and suitable performance targets. Those features support the selection of those

tools for this study. Another benefit that reduces the chance of complaints in case of undesirable

results is the flexibility that DEA-based techniques offer to determine the most favourable weights

for each DMU.

7.2.2 The water market in Portugal

The Portuguese water sector experienced a complete structural reconfiguration by implementing

new public policies for water and waste services initiated in 1993. Since then, Portugal has suf-

fered a substantial transformation in social well-being, with relevant impacts on the environment

and public health. Baptista (2014a) describes that the public water systems served only 81% of

the homes on Portugal’s mainland in 1993. Regarding water quality, just 50% of the population

was supplied with safe water according to national and European legislation. The service cur-

rently covers 96% of residential units with a quality above 99% (ERSAR, 2021a,b). Despite the

notable geographical discrepancies between urban and rural regions, as roughly 99% of urban

residences have access to public water supply services, compared to less than 90% in rural ar-

eas, the water sector reforms in Portugal represent an outstanding achievement (Baptista, 2014a).

Paul Reiter, former Executive Director of the International Water Association (IWA), has referred

to this success as the ‘Portuguese miracle’. The progress can be attributed to establishing a co-

herent public policy, implementing major reforms in the legal and institutional frameworks, and

practicing sound strategic planning (Alegre et al., 2020). This implementation involved an overall

perspective integrating various components, such as strategic planning, legislation, institutional

framework, governance systems, introducing competition1, access targets and quality of service

goals, tariff and tax policy, labour force qualification, information publishing, promotion of re-

search and development, and construction of the infrastructure (Baptista, 2014a).

1Given the natural monopoly characteristics of the water industry, the concept of competition needs to be clarified.
Baptista (2014a) refers to it as “virtual competition”. The benchmarking among utilities as well as the introduction of
different models of governance have enabled competition to increase and ultimately the efficiency and quality of the
services to improve.
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The rising financial inflows that supported the structural transformations of the Portuguese

water sector were motivated by the entry to the European Union in the 1990s. The European inte-

gration clearly accelerated the reversal of the state’s authority over the financial sector, stimulating

the creation of a private banking system. The wave of privatisations across the Portuguese econ-

omy was led by the development of capital markets in the new robust banking sector, and signifi-

cant investments were made in the water sector with the help of external financing (Teles, 2015).

During the time of the Strategic Plan for Water Supply and Wastewater Services (PEAASAR

I) from 2000 to 2006, Portugal invested between 5 and 6 billion euros in construction, expansion,

or rehabilitation of infrastructure for water supply and wastewater treatment (Alegre, 2010).

Until 1993, the local municipalities were exclusively responsible for the provision of water.

The only exception was the state-owned utility EPAL (Empresa Pública de Águas de Lisboa),

which supplied Lisbon. The Decree-Law no. 372/93 instituted the participation of private capital

in the sector through concessions. The sector’s property remained with the State, but, in many

cases, the management was given to the private sector, which was supposed to bring more in-

vestments, mainly from European funds (Pato, 2011). Water supply and wastewater management

were divided into bulk and retail services as part of the sector’s corporatization process. Bulk

or wholesale companies are capital-intensive and multi-municipal. They include water abstrac-

tion, treatment, lifting, and abduction, while retail services include storage and final distribution

to end-consumers. The retail utilities are also in charge of tariff setting and collection.

Regarding wastewater services, bulk companies are responsible for wastewater elevation, trans-

port, treatment, and disposal (ERSAR, 2021a). The municipalities remained as minor shareholders

of the multi-municipal bulk companies, but their actual control was then limited to the retail sector.

The central state concentrated investment efforts in the bulk sector, so several municipal conces-

sions were created to enable the entry of private capital to support the needs of retail systems.

Under those concessions, celebrated as public-private partnerships, the municipalities leveraged

the investment capacity without jeopardising their control. The rural population in Portugal’s most

remote locations was the socioeconomic category that, in relative terms, gained the most from the

water sector’s investments. Moreover, the introduction of private capital to enable investments in

retail utilities benefited large construction companies that received generous contracts for infras-

tructure projects and, in many cases, managed to acquire the retail concessions (Teles, 2015).

There are now three main options available for managing Portuguese water utilities: direct

management, delegation and concession. Municipalities and associations of municipalities con-

trol and run the water services under the direct management model, often without the involvement

of private businesses. The delegation model is applicable to parishes, user organisations, munic-

ipal companies or companies created in collaboration with the State (municipal or state utilities).

Without a concession agreement, the State (central, local or both) owns and controls the utility

directly under the delegation system. In this case, a contract of management must be signed,

defining goals and tariff policies for the operator. In the concession model, a public-private part-

nership with municipalities and other private operators is created under a long-term contract, often

ranging from 30 to 50 years. Private capital may participate primarily through the delegation and
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concession models, and subsequently through direct management in cases of partnerships with the

government or local governments (Marques and Berg, 2011; Pérez et al., 2019; ERSAR, 2021a).

Carvalho and Marques (2016) explain that the water and wastewater sectors in Portugal present

a clearly unique market structure. Only a few nations, like Belgium, The Netherlands, and Ro-

mania, have separate wholesale and retail marketplaces. The retail water sector in Portugal is

highly fragmented, with a large number of utilities, which is partially explained by the fact that

the municipalities handle the majority of the services. The direct management of water provision

is currently adopted by 158 municipalities (68% of the total), but these utilities cover only 26%

of the population, being more frequent in rural areas with lower population densities. Another

type of direct management occurs when a self-managed utility is created under the ownership of

one or more municipalities. This model covers 22% of the population in Portugal. Although the

utilities using the direct management model still prevail in the retail water sector, there has been a

trend toward corporatisation of the sector in the last two decades. At the beginning of the 2000s,

the concession and delegation management models counted only for 20% of the population, while

today, they account for around half, more than doubling their share in the sector (ERSAR, 2021a).

Various research projects have looked at the market structure of the Portuguese water sector.

Marques (2008), Correia and Marques (2011) and Marques and Simões (2020) studied Portugal’s

general efficiency of public and private utilities. In all those studies, the results favoured private

utilities compared to public ones. The possibility of scale economies in eventual mergers and scope

economies by integrating water and wastewater systems have been also examined. Correia and

Marques (2011) found increasing returns of scale and decreasing economies of scope, suggesting

that there are no advantages in the joint production of water and wastewater activities. Marques

and De Witte (2011) concluded that the number of retail water utilities in Portugal should be

reduced from more than 200 to around 60 to operate at the optimal scale. As a result, each utility

should serve an average population of between 160,000 and 180,000 people.

Regarding scope, this study did not recommend joint activities of water and wastewater by the

same utility. Pinto et al. (2017c) identified 40,000 customers as the optimal scale for water utilities.

Carvalho and Marques (2016) and Marques and Carvalho (2014) also pointed out opportunities for

economies of scale. Moreover, these studies identified some opportunities for merging bulk and

retail operators and water and wastewater activities. Carvalho and Marques (2014) concluded that

there are economies of vertical integration between wholesale and retail activities and economies

of scale in water utilities. However, diseconomies of scope were found, suggesting that the utilities

should choose only one specialisation between water and wastewater activities. Marques and Berg

(2011) investigated how regulatory contracts for infrastructure deal with risk. They concluded that

risk is a major concern when the public and private sectors collaborate and must be addressed in

regulatory contracts. Tariff structure (Pinto and Marques, 2015; Marques and Berg, 2011; Martins

et al., 2020, 2013; Gonçalves et al., 2014; Silvestre and Gomes, 2017), quality of service (Pinto

et al., 2017a; Duarte et al., 2009) and sustainability (Pérez et al., 2019; Mergoni et al., 2022) have

also been relevant themes of study in the water market in Portugal.
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The establishment of a regulatory entity for the sector made mandatory the use of market-

oriented management practices. The Water and Waste Services Regulation Authority (ERSAR),

the regulating body for the whole water and waste industry, was created in 2009 after being

founded in 1995 as the Supervisory Commission for Concessions. ERSAR’s role rests on the

idea that a natural monopoly should be controlled to guarantee proper protection to costumers,

but keeping the market efficiency (Santos et al., 2018). Sunshine regulation has been adopted by

ERSAR as an incentive for the utilities to improve their performance and has been addressed by

several studies (e.g. Gonçalves et al., 2014; Marques, 2006; Marques and Pinto, 2018; De Witte

and Marques, 2010a; Cardoso et al., 2012). Following the sunshine regulation model, a set of

comprehensive performance measures is established and collected by ERSAR from utilities op-

erating in the sector, and their outcomes are made available to the public. Since the regulator

is not actively involved in the pricing formulation process, ERSAR’s authority is not coercive

(Gonçalves et al., 2014). In Portugal, sunshine regulation can be a particularly suitable approach

due to the high inefficiency levels and the fragmented structure of the Portuguese market. Besides

that, this practice can help minimise the existing political interference in the sector and increase

transparency. Portugal faces the challenge of improving the performance of its utilities, which

cannot be accomplished solely by publicising performance indicators (Marques, 2006). Thus, a

structured methodology is needed to tackle this challenge, which supports the relevance of this

study.

7.2.3 Asset management practices in the Portuguese water sector

The sustainable management of water infrastructure in Portugal has become a prominent issue in

recent years and has resulted in various measures. The Decree-Law 194/2009, effective in 2013,

required the existence of an asset management system in all water supply services and urban

wastewater management services serving 30,000 people and above. In response to this law, ER-

SAR, jointly with LNEC (Laboratório Nacional de Engenharia Civil - National Civil Engineering

Laboratory) and the Technical University of Lisbon, released technical guidelines that described a

framework for integrated asset management. Several relevant research and collaboration projects

have been conducted at the national and international levels as a result of LNEC’s active leadership

in asset management research, development, training and awareness efforts. Additionally, many

utilities were used to test and design a decision support software for asset management. Portugal

has hosted several conferences, seminars, courses and meetings on this subject. There has also

been an intense activity on academic training, as shown by the recent development of multiple

master and doctorate dissertations on this topic at Portuguese universities. For more detail on

this process, see Matos and Baptista (1999), Alegre (2010), Leitão et al. (2016) and Amaral et al.

(2017).

Alegre et al. (2020) highlighted that the primary goal of the reform process, started in 1993,

was the creation of new infrastructures to improve the availability and quality of services. How-

ever, in recent years the focus has been shifted toward the value maximisation of existing infras-

tructures in a long-term perspective to ensure sustainable service delivery. The massive investment
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of 13 billion Euros from 1993 to 1999 was mainly applied to bulk systems, which is noteworthy

given the country’s population of approximately ten million. The significant asset portfolio gener-

ated by this spending has a high value, although some assets are too old, complex and demanding

in management. Therefore, effective asset management is a priority to ensure that the value of

these assets is maintained and sustainable water services are provided.

In 2015 a new strategic plan for the water sector, the PENSAAR 2020 (Plano Estratégico de

Abastecimento de Água e Saneamento de Águas Residuais - Strategic Plan for Water Supply and

Wastewater Sanitation 2020), was launched bringing the management of the sectors’ assets to the

centre of the discussion. As explicitly stated in the Plan: “The strategy should be less centred in

new infrastructures to increase the served population and focuses more on the management of the

sector assets, its operations and the quality of the provided services with an overall sustainability”

(Frade et al., 2015). The plan determines five strategy axis, being Axis 3 dedicated to the optimisa-

tion and efficient use of the existing resources. This axis establishes six operational objectives, as

follows: (i) optimisation of the installed capacity use and increase of service adhesion; (ii) reduc-

tion of physical water losses; (iii) control of rainwater to foul sewerage; (iv) efficient management

of assets and rehabilitation increase; (v) upgrade resources and sub products; (vi) allocation and

efficient use of the water resources.

The control of water losses, one of the objectives of Axis 3 of PENSAAR 2020, is commonly

researched in this field. According to the study conducted by EurEau (2021), Portugal experiences

a high rate of water losses, with an estimated 30% of the total water supply being lost. Marques

and Monteiro (2001) indicated a critical low level of asset rehabilitation and non-existence of pre-

ventive maintenance as the responsible for the considerable volume of water losses. Those authors

suggest a set of indicators to monitor and control water losses. Marques and Monteiro (2003) also

reinforce that the high volume of water losses in Portugal is associated with the focus on building

new assets instead of giving more attention to the existing systems’ operation and maintenance.

This study also recommends the application of performance indicators to control losses. The min-

imisation of water losses is discussed by Machado et al. (2009) that reports a case study in a bulk

water system. The use of energy resources is the focus of the research conducted by Loureiro

et al. (2020) that proposed a comprehensive framework assessment for energy efficiency and con-

cluded that energy inefficiencies are related to water losses or network layout, not to pumping

inefficiencies.

The rehabilitation of water assets is considered vital in increasing the efficiency of water utili-

ties. Ferreira and Carriço (2019) analysed practical applications of asset management approaches

by comparing alternatives for rehabilitation strategies employing performance indicators. It was

found that decreasing proactive management spending may result in future problems and unantic-

ipated costs. A case study describing rehabilitation of infrastructures in a utility in the Algarve

region is described by Cabral et al. (2019), and the results indicate that the assets’ economic valu-

ation accuracy is essential to determine a rehabilitation strategy. The application of a performance

assessment framework for water systems tested in two Portuguese retail water utilities by Santos

et al. (2022) identified vulnerable areas to flooding and the need for rehabilitation investments.



129

Carriço et al. (2012) developed a methodology to prioritise rehabilitation interventions, using the

technique ELECTRE III.

The current situation underlined by PENSAAR 2020 displays an inadequate rehabilitation rate,

lack of asset knowledge and difficulties in ensuring cost recovery. For the current rehabilitation

rates to be sustainable, pipes would need to last, on average, 100 and 200 years for water and

wastewater networks, respectively. There are also serious problems of economic and financial

sustainability. Over 3.5 million people, or 33% of the country’s population, are served by utilities

that do not ensure cost recovery. A large number of utilities are not able to quantify the actual

cost of their services. The strategic plan also addresses new tariff regulations and utility mergers

(Amaral et al., 2017).

The development of a strategy to implement effective asset management systems is also at

the core of PENSAAR 2020’s Axis 3. Those methodologies should complement and support the

approach initiated by ERSAR and LNEC. In that sense, the structured procedure developed by

Cardoso et al. (2012) include elements of strategic, tactical and operational planning. It was tested

in four operators with different characteristics, focusing on the diversity of the utilities to ensure

flexibility.

Leitão et al. (2016) presented the results of a collaborative project led by LNEC comprising

asset management system implementations in 19 retail water utilities, covering different sizes,

management models and scope (water, wastewater, storm water). The utilities took advantage

of the simultaneous implementation process by sharing difficulties and solutions, and at the end,

they could successfully develop their own strategic and tactical plans. This process proved to

be successfully suited for the water industry scenario in Portugal and many of the strategic and

tactical plans developed were actively applied to the systems.

The water systems in Portugal show highly diverse results in terms of asset management per-

formance. The results of a survey conducted by the Specialised Commission for Asset Manage-

ment from the Portuguese Association for Water Distribution and Drainage (Associação Por-

tuguesa de Distribuição e Drenagem de Águas - APDA) in 2019, using data from bulk and retail

utilities, indicate that asset management practices are not used by 54% of those utilities. Asset

management goals are not established by 41% that declare to have implemented an asset man-

agement system. Besides that, 57% of those utilities do not dedicate personnel exclusively to

asset-related activities. Many of those utilities do not perform preventive maintenance, do not

analyse their assets’ condition and record their data on paper and spreadsheet records (APDA,

2019). Amaral et al. (2017) mention the highly fragmented market structure, the politicised na-

ture of municipal water utility management and the existing accounting procedures as some of the

main barriers to spreading asset management best practices. When discussing the applicability of

asset management to small and medium utilities, Alegre (2010) reinforces the option to establish

realistic targets and network connections with relevant peers for sharing problems and solutions.

Benchmarking studies have been undertaken in Portugal employing asset management ele-

ments. Santos et al. (2022) performed a comparison assessment of two Portuguese retail utilities,

using a multi-dimensional performance framework, where infrastructural sustainability is one of
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the examined dimensions. The results show the potential of an assessment framework to support

planning and monitoring of activities and investments.

Targets for asset management were also proposed by Ferreira and Carriço (2019), that per-

formed a case-study in a water supply system in Lisbon. This study evaluated the operator’s

performance in fulfilling the proposed tactical objectives by the use of thirteen metrics.

The comprehensive set of metrics that ERSAR annually requests from the sector’s retail oper-

ators under the sunshine regulation strategy enables a multifaceted assessment of utilities’ perfor-

mance. Those metrics were already employed to undertake benchmarking studies in the literature.

Pinto et al. (2017a,c) used those metrics to evaluate quality of service; Henriques et al. (2020)

assessed the general performance of wastewater operators, Mergoni et al. (2022) evaluated en-

vironment achievements and Amaral et al. (2022) addressed the techno-economic efficiency of

wastewater utilities using ERSAR’s metrics. The study developed by Vilarinho et al. (2023c) se-

lected metrics related to asset management practices to construct composite indicators following

the BoD approach. The role of the environment was also examined including contextual vari-

ables. However, that study focused on wholesale utilities, a different market, and emphasised the

progress of utilities along a five-year period. This study aims to extend the developments of that

research by focusing on the retail water market and the role of the context is also explored. More

importantly, the use of ERSAR’s metrics to identify peers and targets for the retail water opera-

tors in asset management performance represents the main innovative contribution of this work.

The relevance of this study relies on the need for immediate actions due to the unsatisfactory wa-

ter infrastructure conditions, both in Portugal and worldwide, from which considerable room for

improvement can be noticed.

7.3 Methodology

The proposed methodology includes three stages covering the development of the BoD methods

employed in the study. First, the standard computation of the CIs using a deterministic approach is

presented. The techniques employed to determine the peers and targets are explained in the second

stage. Finally, the robust and conditional methods are discussed.

7.3.1 Calculation of the standard deterministic composite indicator

This subsection explains how the composite indicator can be computed using the standard deter-

ministic BoD model. The standard deterministic CI, which is the baseline method used to calculate

the composite indicators, is described in this subsection. BoD linear programming models and the

metrics aggregated as outputs are employed to generate the CIs.

The BoD Model (7.1) is used when only desirable metrics are aggregated. Desirable metrics

are the ones that are targeted to increase, so better performance results correspond to higher values.

On the contrary, lower values are preferable for undesirable metrics.
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maximise β j0

subject to
n
∑
j=1

yr jλ j ≥ yr j0 +gyβ j0 r = 1, . . . ,s

n
∑
j=1

λ j = 1

λ j ≥ 0, j = 1, . . . ,n

β j0 ∈ R

(7.1)

The BoD Model (7.2) based on the Directional Distance Function (DDF) and introduced by

Zanella et al. (2015) is employed to handle both desirable and undesirable metrics.

maximise β j0

subject to
n
∑
j=1

yr jλ j ≥ yr j0 +gyβ j0 r = 1, . . . ,s

n
∑
j=1

bk jλ j ≤ bk j0 −gbβ j0 k = 1, . . . , l

n
∑
j=1

λ j = 1

λ j ≥ 0, j = 1, . . . ,n

β j0 ∈ R

(7.2)

BoD Models (7.1) and (7.2) are presented in their envelopment formulation, often employed

in peer identification for benchmarking purposes. In the BoD models, yr j represents the desirable

metrics, whereas bk j represents the undesirable ones. r is an index for desirable metrics, ranging

from 1 to the total number of desirable metrics s, while k represents each undesirable metric,

ranging from 1 to the total number of undesirable metrics l. The parameters yr j0 and bk j0 are the

values of desirable and undesirable metrics observed for the DMU j0 under assessment.

The BoD model must be solved n times, where n represents the number of assessed DMUs.

For each DMU under evaluation denoted as j0, the values of the decision variables λ j and β j0 are

obtained as the solution of the BoD model. The variable β j0 represents the factor by which the

desirable metrics should proportionally increase and the undesirable metric should proportionally

decrease toward the best-practice frontier. Note that the model’s objective function aims to max-
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imise β j0 , by finding the optimal results for the DMU under assessment. As discussed by Lavigne

et al. (2019), the values of λ j identify how relevant other DMUs are for representing the bench-

mark against the DMU under assessment. Therefore, λ j different from zero identify the peers; the

higher their values the more relevant the peer is.

The direction of expansion of the desirable metrics and reduction of the undesirable ones is in-

dicated by the Directional Distance Vector defined as (gy,−gb). The direction vector used in DEA

and BoD models is a crucial factor that can impact the calculated scores. To address this issue,

various solutions have been proposed in the literature, depending on the research objectives. Fried

et al. (2008) and Rogge et al. (2017) have discussed different options for selecting the direction

vectors in DEA and BoD models. In this study, the values of (gy,−gb) were used as (yr j0 ,−bk j0),

following Zanella et al. (2015) and Rogge et al. (2017) , so that each DMU may guide its improve-

ment using the values of its own performance metrics. This results in a proportional interpretation

of the composite indicator value.

Since the maximum feasible level of β j0 is obtained by optimisation, DMU j0 under assess-

ment is given the best possible results. The CI for j0 is calculated as 1/(1+ β j0). The best-

performing DMUs are located in the best-practice frontier, meaning that for those DMUs neither

the reduction of undesired metrics nor the expansion of desirable metrics is required. For those

instances, the obtained score for β j0 equals zero, and for CI j0 is equal to 1. For all the other cases

in the deterministic approach, β j0 is a positive number, meaning that CI j0 ranges from 0 to 1.

7.3.2 Determination of peers and targets for benchmarking

This subsection explains how the peers and targets are obtained in the standard deterministic BoD

model. The first set of constraints, one for each s desirable metric, in Models (7.1) and (7.2) are

shown in expression (7.3).

n

∑
j=1

yr jλ j ≥ yr j0 +gyβ j0︸ ︷︷ ︸
Target

r = 1, . . . ,s (7.3)

For each r desirable metric, the right-hand side term of expression (7.3) is the sum of the

observed desirable metric of the DMU under assessment yr j0 and its expansion toward the best-

practice frontier gyβ j0 . Therefore we can say that yr j0 +gyβ j0 defines the target for each desirable

metric that DMU j0 should have to reach the best-practice frontier.

Following the same rationale, the targets for the undesirable metrics are displayed in the set

of l constraints in (7.4) taken from Model (7.2). The values of each undesirable metric bk j0 are

subtracted by gbβ j0 , representing each indicator’s contraction toward the best-practice frontier.

n

∑
j=1

bk jλ j ≤ bk j0 −gbβ j0︸ ︷︷ ︸
Target

k = 1, . . . , l (7.4)

If there are no undesirable metrics, such as displayed in (7.1), the calculation of the targets is

conducted only using expression (7.3).
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The linear programming model generates a vector of values of λ j ( j = 1, . . . ,n) for each DMU

under evaluation. The peers of DMU j0 are the DMUs that present λ j different from zero, and

their obtained intensity values highlight their role in the benchmarking exercise.

7.3.3 Use of robust and conditional approaches for composite indicators

This section explains how CIs are generated, and peers and targets are determined using the robust

and robust conditional (or simply conditional) approaches.

The robust approach for computing composite indicators was developed to overcome the high

sensitivity that the deterministic technique displays in presence of outliers and atypical observa-

tions in the sample. The conditional approach is employed to provide adjustments to the CIs by

accounting for the influence of external contextual variables. Those techniques have been devel-

oped initially by Cazals et al. (2002) and Daraio and Simar (2005, 2007a), and have been employed

and extended by numerous research such as De Witte and Kortelainen (2013); Rogge et al. (2017);

De Witte and Schiltz (2018); Lavigne et al. (2019); D’Inverno and De Witte (2020); Fusco et al.

(2020); Mergoni et al. (2022).

The robust method for estimating CIs involves computing a BoD model many times using

randomly selected sub-samples from the collection of DMUs instead of doing so only once as

the deterministic approach. This sampling procedure, known as bootstrapping, is performed with

replacement, meaning that each unit can be drawn many times in the same sample. The number

of sub-samples, denoted as B, is often a very high number, large enough to minimise the effect

of outliers in calculating averages. The arithmetic average of the several CIs (CIb,m
j0 ) produced

for each sub-sample yields the final robust CI for a given DMU. The effect of extreme values

will be mitigated in the computation of the average CI, because they will be not present in all the

sub-samples. The resulting robust CI, referred as CIm
j0 , is expressed by (7.5).

CIm
j0 =

1
B

B

∑
b=1

CIb,m
j0 (7.5)

It is possible that the DMU being evaluated ( j0) is not included in the sub-sample used for

BoD calculation, and that this DMU is better-performing than all the DMUs in the sub-sample.

In this case, β
b,m
j0 displays a negative value and the value of CIb,m

j0 , obtained from the expression

1/(1+β
b,m
j0 ), does not express the proportional performance improvement expected for a better-

performing DMU. Besides that, if β
b,m
j0 is lower than -1, 1/(1+β

b,m
j0 ) can assume negative values,

and if β j0 equals -1, CI cannot be obtained. This situation does not reflect the “super-performing”

nature of those DMUs. Following Mergoni et al. (2022), we employ an alternative way to compute

CIb,m
j0 , when β

b,m
j0 is negative, in order to solve this problem. This alternative solution is shown in

(7.6).
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CIb,m
j0 =


1

1+β
b,m
j0

, if β
b,m
j0 ≥ 0;

log10(1−β
b,m
j0 )+1, if β

b,m
j0 < 0

(7.6)

The conditional approach accounts for the contextual variables in the computation process, al-

lowing the CIs to be adjusted by comparing the DMUs with more similar units. In that sense, fairer

evaluations can be performed. As in the robust approach, B sub-samples of size m are collected,

but not randomly. The sub-sample collection is performed according to a similarity function. A

kernel function developed according to the contextual factors is employed to estimate the simi-

larity between the DMU under evaluation and the other DMUs. The context can be characterised

using continuous or categorical variables that can be included in the same model (Li and Racine,

2003). The BoD model is solved B times for each DMU j0 and the CIs for each sub-sample b,

designated as CIb,m,z
j0 , are computed according to the expressions shown in (7.6). The average of

CIb,m,z
j0 for a total of B sub-samples represents the conditional CI, as indicated in (7.7).

CIm,z
j0 =

1
B

B

∑
b=1

CIb,m,z
j0 (7.7)

The influence of the contextual variables can be assessed by looking at the score ratio be-

tween the robust CI and the conditional CI (CIm
j0/CIm,z

j0 ). Using non-parametric regression between

the score ratios and the contextual variables, partial plots with bias-corrected bootstrapped non-

parametric confidence intervals can be obtained. Confidence intervals that don’t overlap reveal a

statistically significant relationship between the contextual variable and the utilities’ performance

(see also D’Inverno et al., 2021).

A significantly higher score ratio for a given level of the contextual variable indicates that the

context is more favourable for better performance at this level. This happens when the condi-

tional and the robust scores are similar, that is, irrespective of whether the unit under evaluation is

compared against more similar units or not.

In the case of the robust and conditional BoD approaches, a set of λ j values is generated for

each computation. In each of the B computations, a number of DMUs for which λ j is different

from zero can be identified as a peer for the DMU under assessment. This makes the number of

peers in those approaches to increase significantly compared to the standard BoD approach. As

previously discussed, the relevance of a peer for benchmarking purposes increases as the intensity

value λ j increases. Lavigne et al. (2019) explain that the most relevant peers in the case of robust

and conditional approaches are given by the higher average values of λ j in B samples collected.

7.4 Case study

This section presents the data used in the study in three parts. The first one (subsection 7.4.1)

presents the metrics used for the construction of two different and complementary composite in-
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dicators (CIs). The second part (subsection 7.4.2) details the dataset used to build the composite

indicators (CIs). Finally, the third part (subsection 7.4.3) presents the data about the exogenous

variables employed to characterise the context.

7.4.1 Metrics employed for the composite indicators (CIs)

The metrics utilised to construct the CIs in this study are described in this subsection.

Two distinct composite indicators are created by combining those metrics. The strategy for

developing two different indicators is justified by the fact that improvements in managerial as-

pects of asset management usually take some time to generate operational benefits in a utility’s

performance (Luís and Almeida, 2021). Therefore, one of the CIs reflects the business’s observ-

able operational achievement: the Resource and Infrastructure Sustainability Index (RISI). On the

other hand, the evolution of the management system maturity is assessed by the Asset Management

Maturity Index (AMMI). These two composite indicators have been introduced by Vilarinho et al.

(2023c), but used to assess the Portuguese wholesale utilities and to provide a different empirical

analysis.

The Resource and Infrastructure Sustainability Index (RISI) is composed by the metrics:

pipeline rehabilitation (AA09b), occurrence of pipeline failure (AA10b), actual water losses (AA12b)

and energy efficiency in pumping stations (AA13b). All the data reported by the water operators

to ERSAR have been analysed in order to choose the metrics. In line with the literature review,

which emphasises the importance of water losses, mains failure, mains rehabilitation and energy

usage for managing infrastructures in water systems, those metrics have been selected to compose

the RISI. They comprise the information on the operational performance of the utilities’ assets

reported to ERSAR and reflect the tangible results of asset management. The definition of the four

metrics and their units of measurement are displayed in Table 7.1. The letter “b” presented in all

ERSAR’s metric codes indicates that the metrics come from retail utilities (“baixa” in Portuguese)

to distinguish from the metrics collected from wholesale utilities that present the letter “a” (“alta”

in Portuguese).

The annual report issued by ERSAR (ERSAR, 2021a) presents the results of the main per-

formance metrics and their general reference values. ERSAR determines the reference values for

the metrics that compose the RISI in three levels: good, medium and unsatisfactory. This study

considers the “good” or desirable level as the ERSAR’s goal for the utility.

The metric Pipeline Rehabilitation (AA09b) is the average yearly percentage of pipelines with

an age greater than ten years undergoing rehabilitation during the previous five years. This metric

aims to determine whether there is a continuous practice of pipeline restoration to guarantee their

continuous renewal and an acceptable average age of the network. ERSAR defines this metric as

higher than 1%, with a good result between 1% and 4%. Values above 4% are considered medium.

However, the pipeline networks in Portugal are, on average, far from being at a good level, with

the average result for the retail water utilities being at most 0.6% in all years from 2016 to 2020.
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The second metric in RISI is the Occurrence of Pipeline Failure (AA10b), which is intended

to evaluate the occurrence of pipeline faults that can cause water losses and potential supply inter-

ruptions. It measures the number of failures per 100 km of pipelines per year. ERSAR considers

a positive (“good”) outcome for this metric to be less than 30 occurrences per 100 kilometres per

year. Retail operators had an average of 38 to 42 between 2016 and 2020, regarded as a medium

level.

The metric Actual Water Losses (AA12b) assesses the water losses in leakages and overflows,

defined as the daily volume of real losses divided by the extension of the utilities’ pipelines. ER-

SAR collects this information using two different units of measurement. This metric is expressed

in litre per branch per day for denser pipeline networks, with more or equal to 20 connection

branches per kilometre. If the pipeline network density is inferior to 20 branches per kilometre,

the water losses are measured in cubic meters per kilometre per day. According to ERSAR, the

good result for water losses is lower than 100 litres per branch per day for the denser-network

utilities and inferior to 3 cubic meters per kilometre per day for the remaining utilities. According

to these limits, the actual losses in Portugal are at the medium level for the less dense networks

ranging from 125 to 137 litres per branch per day from 2016 to 2020. For high-density utilities, the

average performance in water losses is better. This average was 2.6 cubic meters per kilometre per

day in 2020. In this study, the variable density of branches per kilometre of a pipeline, collected by

ERSAR with the code PiAA01b, was employed to transform the units of measurement, enabling

all the water loss data to use the same unit. Because most utilities present a density superior to 20

branches per kilometre, all the data were converted to litres per branch per day.

The fourth metric that composes RISI is the energy efficiency in pumping stations (AA13b).

This metric aims to assess the use of energy resources by the management entities. It is defined as

the average normalised energy consumption of the pumping facilities. The performance may be

judged as medium up to a value of 0.54 kilowatts per year per 100 meters elevation; however, the

good performance result may be at most 0.4.

The second CI developed for asset management measurement is the Asset Management Matu-

rity Index (AMMI). The AMMI is composed by two metrics: the Infrastructure Knowledge Index

(PAA31b) and the Infrastructure Asset Management Index (PAA32b). Those are the only metrics

that reflect managerial elements directly related to asset management in the dataset collected by

ERSAR. They were selected because they are the two critical facets of managing infrastructures

in water systems, (1) the knowledge about the assets and (2) the organisational systems that were

implemented.

The Infrastructure Knowledge Index expresses the level of knowledge that the utilities hold

about their assets. It is measured as a score taken from a questionnaire issued by ERSAR, using

a scale from 0 to 200. This metric deals with the existence of engineering drawings and other

records, as well as detailed information about asset conservation and the interventions performed.

This information is crucial for water supply operators’ business, considering that part of water

systems’ assets is buried and constructed to last for many years.

The second metric that composes the AMMI is the Infrastructure asset management index,
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which reflects the features of the management systems that the water utilities have implemented.

The Infrastructure asset management index is also measured using the scores taken from a ques-

tionnaire issued by ERSAR on a scale from 0 to 200. The questionnaire used to generate the

Infrastructure asset management index deals with the utilities’ management systems, assessing

aspects such as general asset management framework, strategic, tactical and operational planning,

documentation and communication. The elements included in the questionnaire used for the com-

putation of the Infrastructure asset management index are inspired by the international standard

for asset management, the ISO 55001 (ERSAR and LNEC, 2017). Table 7.1 displays the metrics

that compose AMMI with their definition and the codes employed by ERSAR.

7.4.2 Data used for building the composite indicators

This subsection details the data employed to build the two proposed composite indicators: the RISI

(Resource and Infrastructure Sustainability Index) and the AMMI (Asset Management Maturity

Index).

Pipeline Rehabilitation (AA09b) is a desirable metric for the metrics employed for the RISI.

On the other hand, Occurrence of Pipeline Failure (AA10b), Actual water losses (AA12b) and

Energy Efficiency in Pumping Stations (AA13b) represent undesirable metrics. For the AMMI,

the Infrastructure Knowledge Index (PAA31b), and the Infrastructure Asset Management Index

(PAA32b) are desirable metrics.

The research includes indicators acquired by ERSAR and widely publicised on the regulator’s

website in line with the sunshine regulation policy. ERSAR has regularly reviewed its assessment

system and the indicators that make it up to ensure they are consistent with its strategic goals. This

study looked at the third generation of indicators, which covered the years 2016 through 2020, and

selected the data from 2020 to perform the benchmarking assessment2.

A list of 233 water utilities at the retail level may be found in the ERSAR dataset for 2020. The

dataset is incomplete since many utilities have not reported their results, and multiple missing data

are present. The operators included in the sample studied were only those who have provided data

for at least two metrics used in the RISI and presented no missing data in the metrics of AMMI.

This approach guaranteed the consistency and practical relevance of the obtained results. We

removed ten utilities from the original sample, resulting in a final number of 223 water operators

for evaluation3. Even after removing these utilities, the remaining sample still accounts for 95.7%

of the total number, representing a significant proportion of the original dataset. The remaining

missing data instances were treated following the procedure employed by Kuosmanen et al. (2002),

Morais and Camanho (2011) and Henriques et al. (2020). For the desirable metrics, a small value

equal to the minimum value of each metric replaced the missing data. In the case of undesirable

metrics, the missing instances were changed to a large number equivalent to the maximum value

2The data is available in ERSAR’s website: https://www.ersar.pt/pt/site-publicacoes/Paginas/edicoes-anuais-do-
RASARP.aspx.

3The utilities removed from the sample for presenting missing data are: APIN, CM de Cabeceiras de Basto, CM de
Caminha, CM de Idanha-a-Nova, CM de Marco de Canaveses, CM de Monchique, CM de Paredes, CM de Santo Tirso,
CM de Vila Nova de Paiva, and CM de Vila Viçosa.
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of each metric. This procedure ensures that the DMU cannot benefit from the lack of data for

its performance evaluation. Several scores of the Infrastructure Asset Management Index, one

of the AMMI’s components, present a value of zero in 2020. This fact reflects the low level of

maturity in many retail water utilities concerning the development of management systems. The

same situation occurs for the metric Pipeline Rehabilitation, one of the RISI components, meaning

that those utilities could not recover their pipelines as expected.

However, a few utilities presented zero occurrences of failures in pipelines, which is another

component of the RISI and represents the best result for this undesirable metric. In general, DEA

formulations require that the inputs and outputs are positive. Even though, this “positivity prop-

erty” can be relaxed, as detailed by Charnes et al. (1991), we chose to replace the zero values

with 0.01, a small positive number as recommended by Bowlin (1998) and discussed by Sarkis

(2007). Since the BoD model emphasises the indicators for which the DMU performs best, an

indicator with a minimal value would not be expected to contribute to any bias in the efficiency

assessment. Table D.1 in Appendix D.1 displays the list of the evaluated utilities (DMUs) with the

identification codes used in the study ranging from B1 to B223.

Table 7.1: Metrics for constructing the composite indicators.

CI Metric Code Metric description Metric definition ERSAR’s goals N Average St. Dev. Min. Max.

AA09b Pipeline Rehabilitation Average annual percentage of pipelines with life higher ≥ 1 223 0.58 0.86 0.01 5.40

(%/year) than ten years rehabilitated in the last five years.

RISI AA10b Occurrence of Pipeline Failure Number of failures in pipelines per 100 km ≤ 30 223 53.12 70.30 0.01 350.00

(no/100 km.year) in a year.

AA12b Actual water losses Actual water losses due to leakages and overflows per ≤ 100 223 173.74 169.05 2.00 706.30

(l/branch.day) unit of pipeline length.

AA13b Energy efficiency in pumping Average normalised energy consumption of pumping ≤ 0.4 223 1.71 1.27 0.35 3.24

stations (kWh/m3.100m) stations.

AMMI PAA31b Infrastructure Knowledge Evaluation score of the knowledge of the several 200 223 132.20 41.93 29.00 200

Index (Score 0-200) infrastructures in different classes ranging from 0 to 200.

PAA32b Infrastructure Asset Management Evaluation score in a questionnaire about asset 200 223 40.17 67.94 0.01 200

Index (Score 0-200) management practices ranging from 0 to 200.

The descriptive statistics for the data related to the metrics that compose both CIs are presented

in Table 7.1. Looking at the average results of the metrics in 2020 (Table 7.1) and comparing them

with ERSAR’s goals, the asset-management-related metrics perform worse than the ideal levels.

In terms of the operational metrics, the average AA09b is less than 1%, the average AA10b is

greater than 30, the average AA12b is much higher than 100 and the AA13b significantly surpasses

0.4. The managerial metrics also indicate poor average outcomes. PAA31b and PAA32b are

far below the ideal score of 200. The benchmarking exercise performed in this study indicates

realistic targets for the operators to pursue, in comparison with the market best-performs. Given

this scenario, such targets may not always reach the expected goals set by ERSAR.

7.4.3 Data used as exogenous variables

This subsection presents the data employed to characterise the environment in which the utilities

under evaluation operate.
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Contextual factors were selected among the data reported by the retail water utilities to ER-

SAR to characterise the environment in which the utilities operate. Four contextual variables or

exogenous variables were chosen: the management system, the typology of intervention area, the

geographic location and the volume of activity.

The management system indicates the kind of utility ownership, according to the models avail-

able for the water sector in Portugal. Municipalities own and operate most retail water utilities

directly, 74.4% in 2020. Direct management is thus the management system of 166 retail water

utilities. The remaining 25.6% are divided in Concession (12.6%) and Delegation (13.0%).

The typology of intervention area is mainly related with the population density. According to

the kind of intervention area, the water operators can be classified in urban, semi-urban or rural.

Based on this criterion, most of the utilities (147) are rural, representing 65.9% in 2020. Other 55

utilities (24.7%) are considered semi-urban and only 21 (9.4%) utilities are urban.

The geographic location is based on the region of Portugal where the utility primarily operates.

This classification is based on the European Union’s Nomenclature of Territorial Units for Statis-

tics (NUTS) standard. At its second level, known as NUTS 2, the locations presented in ERSAR’s

reports for mainland Portugal are Algarve, Alentejo, Centre, Lisbon and North.

The volume of activity expressed as the metric PAA50b represents the amount of water (in

m3) supplied by the operator in a year. This metric can be used as a proxy for the utility size and

is available in ERSAR’s reports. However, following Mergoni et al. (2022), we chose to charac-

terise the context by classifying the utilities as small, medium and large. We use the approach of

the Drinking Water Directive, Council Directive 98/83/EC (European Commission, 1998). This

directive defines the limit between small and large utilities as 1,000 m3/day of average supplied

water volume or 5,000 persons in the population served. Small utilities were defined in this study

as those that provide less than 1,000 m3/day. Only 63 utilities fall under this threshold; thus,

the remaining 160 operators were split into groups of 80 units each, including medium and large

utilities.

Table 7.2 presents the statistics for the exogenous variables in 2020.

7.5 Results and discussion

This section presents and discusses the study’s findings in three parts. The computation of compos-

ite indicators using the deterministic, robust and robust conditional approaches is presented in the

subsection 7.5.1. Subsection 7.5.2 describes the identification of peers and targets for benchmark-

ing practices. The role of the environment on the performance of the water utilities is discussed in

subsection 7.5.3.

7.5.1 Composite Indicator results

The results from the calculation of the CIs are presented and discussed in this subsection.

The methods explained in subsections 7.3.1 and 7.3.3 are employed to compute the determin-

istic, robust unconditional and robust conditional CIs. BoD Model 7.2, which can handle both
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Table 7.2: Categorical exogenous variables.

ERSAR Code Variable Categories Obs. Number of utilities and

Description percentage per category

PAA02b
Management

System

Concession,

Delegation or

Direct Management

223

Concession - 28 (12.6%)

Delegation- 29 (13.0%)

Dir. Manag. - 166 (74.4%)

PAA14b
Typology of

Intervention Area

Rural areas,

Semi-Urban areas

or Urban areas

223

Rural - 147 (65.9%)

Semi-urban - 55 (24.7%)

Urban - 21 (9.4%)

NUTS2
Geographic

Location

Alentejo,

Algarve,

Centre,

Lisbon or

North

223

Alentejo - 54 (24.2%)

Algarve - 18 (8.1%)

Centre - 68 (30.5%)

Lisbon - 16 (7.2%)

Norte - 67 (30.0%)

PAA50b
Volume of

Activity

Small,

Medium

or Large

223

Small - 63 (28.3%)

Medium - 80 (35.9%)

Large - 80 (35.9%)

desirable and undesirable metrics, calculates the RISI. BoD Model 7.1 calculates the AMMI since

this indicator only includes desirable metrics. The R program solved the BOD models using the R

program’s packages Rglpk (Theussl and Hornik, 2019) and lpSolve (Berkelaar et al., 2023). An ad-

ditional R package, the np package (Hayfield and Racine, 2008), was used to handle the collection

of sub-samples according to the similarity level of DMUs in the robust conditional approach. This

R package was also used to compute the bias-corrected bootstrapped non-parametric confidence

intervals of the utilities’ performance concerning the environment.

For the robust and robust conditional CIs, the values of the parameters m and B must be

determined. B is often a high number, and for this study, the value of 2,000 was employed for B.

According to Daraio and Simar (2007a), there are no formal guidelines for choosing m, but for

smaller values of m, the presence of numerous “super-performing units” might be problematic.

Therefore a sensitivity analysis is recommended to select a value of m. Figure 7.1 shows two

graphs that present the resulting percentage of “super-performing” DMUs in each of the robust

CIs’ computations for several values of m. These findings led to the choice of m = 80 for both

CIs since, at this value, the proportion of “super-performing” units reduces, whereas it remains

relatively stable at higher values.

The CI scores obtained with the deterministic, robust and robust conditional techniques are

shown in Table D.1 in Appendix D.1 for all DMUs. Table 7.3 presents the descriptive statistics

for both composite indicators. A close look at the average of both indicators reveals that the

performance of the retail water operators in asset management may be significantly improved.

A combined visualisation model shown in Figure 7.2, based on the BCG (Boston Consulting

Group) matrix, is displayed, following Vilarinho et al. (2023c), to enable the joint analysis of water

operators in both indicators (RISI and AMMI). Considering that the robust conditional approach
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(a) % Super-performing DMUs for
RISI relative to the value of m

(b) % Super-performing DMUs for
AMMI relative to the value of m

Figure 7.1: Sensitivity analysis for m selection

provides the most accurate and fair comparison of the utilities, this version of the composite indi-

cators was used to represent the performance of the utilities in the following analyses. The 2×2

matrix in Figure 7.2 divides the utilities according to the median of their robust conditional indi-

cators. Figure 7.2 classifies the utilities’ performance into four categories, as listed below, to show

how they operate compared to their competitors:

(i) Stars. These utilities present better operational results and better management systems than

their peers. In this category, both RISI and AMMI are higher than the median values.

(ii) Soldiers. This group takes care of the assets, keeping their operational conditions, but in

comparison to their counterparts, the management procedures are not effectively estab-

lished. For the Soldiers, the RISI is higher than the median while the AMMI is lower or

equal.

(iii) Infants. This category gives the initial moves in the organisation for asset management, and

they show worse tangible results than their peers. The Infants present both RISI and AMMI

below or equal to the medians of all utilities.

(iv) Learners. Although these utilities have been working on effective management systems,

they have performed poorly than most of their counterparts regarding operational results in

asset management. This group’s AMMI is above the median, while its RISI is equal to or

lower than the median.

Table 7.3: Descriptive statistics for RISI and AMMI Results.

CI CI Formulation Average St. Dev. Min Q1 Median Q3 Max

Deterministic RISI CI (CI j0) 0.697 0.161 0.529 0.535 0.656 0.818 1.000

RISI Robust Unconditional RISI CI (CIm
j0) 0.766 0.214 0.530 0.585 0.731 0.879 2.082

Robust Conditional RISI CI (CIm,z
j0 ) 0.824 0.161 0.533 0.667 0.856 0.985 1.076

Deterministic AMMI CI (CI j0) 0.669 0.213 0.145 0.510 0.675 0.840 1.000

AMMI Robust Unconditional AMMI CI (CIm
j0) 0.670 0.213 0.145 0.511 0.676 0.841 1.005

Robust Conditional AMMI CI (CIm,z
j0 ) 0.719 0.218 0.148 0.562 0.741 0.925 1.001
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Figure 7.2: Visualisation model - RISI and AMMI.

Table D.1 in Appendix D.1 outlines all utilities’ classifications in 2020. A summary of the

classification is shown in Table 7.4 and the distribution of the 223 utilities is presented in Figure

7.3.

Table 7.4: Summary of utilities’ categories
in asset management performance.

Class Count %

Infant 71 31.8%

Learner 41 18.4%

Soldier 41 18.4%

Star 70 34.4%

A correlation test was conducted to verify if improved performance on the AMMI dimension

is associated with better performance on the RISI dimension. The results for Pearson correlation

show that even though the correlation is significant (p-value=0), the correlation coefficient (ρ) is

only 0.325, indicating that the correlation is not strong between the two CIs. These results suggest

that the maturity in asset management systems is not necessarily associated with good operational

performance in the short term. As previously discussed, it takes time for management efforts to

generate operational results.

It is possible to examine the results obtained by some utilities and compare them with past

data collected from the literature to illustrate the potential impact of the conversion of managerial

actions in asset management into operational results. A group of 19 water retailers simultaneously

started to implement asset management practices in 2012-2013 as described by Leitão et al. (2016).

At the end of this collaborative project, each utility issued strategic and tactical plans aiming to

develop asset management practices. These plans in most cases were effectively implemented.

One of those utilities, SMAS de Almada, was the only utility in Portugal operating exclusively

in the retail market to hold the international certification in asset management, ISO 55001. The

results from the computation of RISI and AMMI in 2020 for those 19 utilities are encouraging, as

14 of them have achieved the status of Star. Three of the remaining five utilities had been merged
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into other systems, making their results incomparable. This trend is an indication of the positive

operational results that can be achieved with the implementation of managerial practices.

Figure 7.3: Results for RISI and AMMI in 2020
Conditional Approach - All Retail Utilities.

The ten best performers and the ten worst performers in both dimensions are presented in Table

7.5. In the case of AMMI, 11 top-performance utilities are presented because the value of AMMI

for the 10th and 11th utility is the same. Their position in the 2x2 Matrix is also shown in Figure

7.4. DMU B45 is identified in black colour in Figure 7.4 because it is classified both as Bottom 10

RISI and as Bottom 10 AMMI. DMUs B115, B123 and B165 also also identified in black colour

because they are classified both as Top 10 RISI and as Bottom 10 AMMI.

Table 7.5: Top 10 and bottom 10 performers in each composite indicator.

RISI Top 10 Performers RISI Bottom 10 Performers AMMI Top 10 Performers AMMI Bottom 10 Performers

Code Utility Code Utility Code Utility Code Utility

B163 CM de Sousel B68 CM de Castelo de Paiva B44 CM de Alfândega da Fé B133 CM de Penedono

B168 CM de Vale de Cambra B120 CM de Moura B4 Águas da Figueira B90 CM de Gouveia

B119 CM de Mora B101 CM de Manteigas B13 Águas de Gondomar B57 CM de Arronches

B164 CM de Tábua B70 CM de Castro Daire B61 CM de Barreiro B115 CM de Mondim de Basto

B123 CM de Nisa B116 CM de Monforte B66 CM de Bragança B45 CM de Alijó

B60 CM de Barrancos B109 CM de Miranda do Douro B191 Indaqua Fafe B112 CM de Moimenta da Beira

B165 CM de Tabuaço B179 CM de Vila Nova de Foz Coa B192 Indaqua Feira B123 CM de Nisa

B63 CM de Bombarral B110 CM de Mirandela B193 Indaqua Matosinhos B117 CM de Montalegre

B115 CM de Mondim de Basto B45 CM de Alijó B195 Indaqua Santo Tirso/Trofa B98 CM de Lousada

B75 CM de Condeixa-a-Nova B180 CM de Vila Pouca de Aguiar B196 Indaqua Vila do Conde B165 CM de Tabuaço

B201 INOVA

A closer look at the AMMI outcomes from Table 7.5 reveals that the majority of best perform-

ers are managed by concession or delegation (8 utilities), located in urban or semi-urban areas (8

utilities) and are large (9 utilities). However, all of the worst performers are small and managed

directly by the municipalities, most of which are located in rural areas (9 utilities). In the case

of RISI, no patterns can be observed between the top and bottom performers and the context in

which they operate. The trends observed in AMMI results are analysed in more detail using the

CI conditional techniques in subsection 6.6.2.
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Figure 7.4: Top 10 performers and bottom 10 performers in both dimensions.

7.5.2 Identification of peers and targets

This subsection addresses the designation of utility peers for best-practice identification and se-

lecting the most suitable benchmarking targets for individual utilities.

The targets for the desirable metrics assigned for each utility are obtained from the expressions

7.3 present in Models 7.1 and 7.2. The targets for the undesirable metrics in Model 7.2 are obtained

from expression 7.4. These targets represent the projection of the performance metrics toward

the efficient best-practice frontier, meaning that if the utility under evaluation can leverage its

performance to reach those objectives, it will reach the benchmarking level compared to the other

utilities. After the BoD models are solved, using the robust conditional approach, the descriptive

statistics for the targets in RISI and AMMI are presented in Table 7.6.

From the results in Table 7.6, one can notice that the average target values do not reach the

goals established by ERSAR, meaning that in several cases utilities may achieve levels comparable

to their peers without complying with the regulator’s objectives. Given the poor performance of

the retail operators in these metrics, this result indicates that a revision of ERSAR policy in setting

up the goals for asset management targets may be necessary.

Table 7.6: Descriptive statistics for the composite indicators’ targets.

Robust Cond. DEA/BoD Targets

CI Target ERSAR’s Average N Average St Dev Min Max

goals Performance

TG_AA09b - Pipeline Rehabilitation (%/year) ≥ 1 0.58 223 0.66 0.91 0.01 5.40

RISI TG_AA10b - Occurrence of Pipeline Failure (no/100 km.year) ≤ 30 53.12 223 31.82 41.22 0.01 350.00

TG_AA12b - Actual Water Losses (l/branch.day) ≤ 100 173.74 223 111.63 121.54 2.00 706.30

TG_AA13b - Energy Efficiency in Pumping Stations (kWh/m3.100m) ≤ 0.4 1.71 223 1.00 0.78 0.35 3.24

AMMI TG_PAA31b - Infrastructure Knowledge Index (Score 0-200) 200 132.2 223 184.70 17.55 71.67 200.0

TG_PAA32b - Infrastructure Asset Management Index (Score 0-200) 200 40.17 223 43.91 72.16 0.01 200.0

Figures 7.5 and 7.6 display the distribution of the desirable and undesirable metrics’ targets,
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respectively, alongside the distribution of the actual metrics (observed performance). The black

squares in the box plots of Figures 7.5 and 7.6 indicate the averages and the red triangle is the goal

determined by ERSAR. Looking at the box plots and the values of standard deviations in Table

7.6, it is noticeable that the variation among the targets is considerable, reinforcing the sector’s

heterogeneity regarding asset management practices.

(a) Pipeline rehabilitation (b) Infrastructure Knowledge
Index

(c) Infrastructure Asset Man-
agement Index

Figure 7.5: Comparison between the distributions of actual performances and targets for the de-
sirable metrics

(a) Occurrence of pipeline
failure

(b) Actual water losses (c) Energy eff. in pumping sta-
tions

Figure 7.6: Comparison between the distributions of actual performances and targets for the un-
desirable metrics

This heterogeneity is also seen when the results are analysed in each category assigned in the

research (Table 7.7). Even for the Stars, considered the top-performing category, it is noticeable

that given their current performance, the goals set by ERSAR look unrealistic in many cases.

Table 7.7: Average metrics and average targets in each category.

CI Performance and Target for each metric

Number Average AA09b AA10b AA12b AA13b PAA31b PAA32b

Class of RISI AMMI Average Average Average Average Average Average Average Average Averag Average Average Average

Units Performance Target Performance Target Performance Target Performance Target Performance Target Performance Target

INFANT 71 0.600 0.539 0.27 0.40 77.61 29.15 210.82 77.20 2.63 1.04 99.32 185.41 4.37 7.97

LEARNER 41 0.639 0.883 0.37 0.51 60.07 32.32 179.06 91.44 2.05 1.07 154.61 175.32 50.88 54.22

SOLDIER 41 0.961 0.530 1.08 1.11 36.44 34.61 227.90 217.77 1.42 1.34 99.98 188.40 4.08 6.18

STAR 70 0.930 0.918 0.71 0.74 33.99 32.59 101.28 96.23 0.76 0.72 171.29 187.30 91.35 96.43

The peers of the utilities are identified as the ones that present the intensity variable λ j differ-

ent from zero as an output of the BoD models. The peer set for a given DMU represents its closest

anchor on the best-practice frontier, meaning a potentially suitable choice to guide improvements.
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In robust and robust conditional approaches, this peer set is more extensive due to the high number

of efficient frontiers (B = 2000 in this study). The average of λ j for the sub-sample of B interac-

tions in which the peer was actually selected to compose the sub-sample gives the relevance of the

peers.

Following Lavigne et al. (2019), we built an intensity matrix for each CI presenting the average

values of λ j that identify the peers for the robust conditional case. The intensity matrix is a n by n

matrix (223×223 in this study), where each row represents a vector of intensities for the evaluated

DMUs. The vectors of intensities include the average values of λ j for each peer identified. One

part of the intensity matrix generated in the computation of RISI is displayed in Table 7.8 to

illustrate this process. In Table 7.8, it is possible to notice that all utilities in this part of the

intensity matrix except B7 and B8 are peers of themselves, meaning that they were identified as

efficient in some or all B sub-samples. The utility B4 - Águas da Figueira presents a λ j equal to 1

when compared to itself, which means that it was the only utility included in the efficient frontier in

all the B computations performed for its robust conditional BoD assessment. A different situation

is noticed for the utility B7 - Águas de Alenquer. In this case, B4 - Águas da Figueira is found as

being a relevant peer for B7 with λ j equal to 0.87. The complete intensity matrices are too large

to be displayed in the text, but are available upon request to the authors.

Table 7.8: Partial intensity matrix for RISI:
Average λ j values in the robust conditional approach.

utility B1 B2 B3 B4 B5 B6 B7 B8 B9 B10

B1 - AGERE 0.80 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

B2 - Águas da Azambuja 0.00 0.06 0.00 0.00 0.00 0.16 0.00 0.00 0.00 0.00

B3 - Águas da Covilhã 0.00 0.00 0.14 0.00 0.02 0.01 0.00 0.00 0.00 0.00

B4 - Águas da Figueira 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00

B5 - Águas da Região de Aveiro 0.00 0.00 0.00 0.17 0.20 0.00 0.00 0.00 0.00 0.00

B6 - Águas da Teja 0.00 0.00 0.00 0.00 0.00 0.99 0.00 0.00 0.00 0.00

B7 - Águas de Alenquer 0.00 0.00 0.00 0.87 0.00 0.00 0.00 0.00 0.00 0.00

B8 - Águas de Barcelos 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

B9 - Águas de Carrazeda 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.93 0.00

B10 - Águas de Cascais 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.07

In the DEA/BoD conditional approach, the selection of samples is not random; utilities that

are more alike, and operating in similar environments, have a higher probability of being included

in the B sub-samples considered. Therefore, as highlighted by Lavigne et al. (2019), higher values

of λ j indicate that the peer is more relevant because it is comparable in performance and operating

environment.

Table 7.9 illustrates the results of the benchmarking assessment using one utility, SM de Al-

cobaça - B206, as an example, employing the robust conditional BoD approach. The table displays

the value of each metric alongside the computed targets and ERSAR’s goals. SM de Alcobaça is

classified as Infant, and the calculated targets for most of the metrics are generally realistic and

do not reach ERSAR’s expectations. For the only two metrics for which this utility’s performance

is acceptable according to ERSAR’s goals, pipeline failures and water losses, the assigned targets

are more challenging than the ones set by the regulator. In that sense, this example reveals the

BoD technique’s ability to provide more suitable targets for each particular DMU.
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Table 7.9: Example of target and peer determination:
DMU B206 - utility SM de Alcobaça.

CI Metric component of CI Unit ERSAR’s Actual DEA/BoD Peer

Goals Performance Targets Performance

RISI

AA09b - Pipeline Rehabilitation %/year ≥ 1 0.5 0.6

0.4 (B100);

0.6 (B66);

2.1 (B201).

AA10b - Occurrence of Pipeline Failure no./(100km.year) ≤ 30 27 19

19 (B100);

20 (B66);

7 (B201).

AA12b - Actual Water Losses l/(branch.day) ≤ 100 71 50

6 (B100);

35 (B66);

108 (B201).

AA13b - Energy Effic. in Pumping Stations kWh/(m3.100m) ≤ 0.4 0.86 0.61

0.95 (B100);

0.47 (B66);

0.35 (B201).

AMMI
PAA31b - Infrastructure Knowledge Index score 200 85 169

147 (B28);

186 (B66);

190 (B201).

PAA32b - Infrastructure Asset Manag. Index score 200 80 159

184 (B28);

200 (B66);

200 (B201).

In the calculation for RISI, 64 peers were identified for SM de Alcobaça - B206, while in

AMMI model, 39 peers were determined. The three most relevant peers of SM de Alcobaça

presenting the highest values of λ j , according to the performance in RISI are CM de Mangualde

- B100 (λ100 = 0.21), CM de Bragança - B66 (λ66 = 0.18) and INOVA - B201 (λ201 = 0.11).

Regarding AMMI, the three most relevant peers are INOVA - B201 (λ201 = 0.39), CM de Bragança

- B66 (λ66 = 0.16) and Águas do Planalto - B28 (λ28 = 0.10). The performance metrics of the

peers of SM de Alcobaça are presented in Table 7.9 as well. SM de Alcobaça should look at their

performance and learn from their practices. This exercise is facilitated because they share similar

environments as the peer selection generated from the BoD conditional approach.

The entire list of targets and peers is available upon request from the authors.

7.5.3 Role of context on the utilities’ performance

This subsection presents and discusses the role of contextual factors on the utilities’ performance

in asset management.

As explained in subsection 6.4.3, the partial plots with bias-corrected bootstrapped non-parametric

confidence intervals of the score ratios (between the robust CI and conditional CI) can be used to

assess the relationship between the context and the utilities’ performance. The partial plots are

obtained using the np package in R (Hayfield and Racine, 2008).

Considering the variable Management System (PAA002b), partial plots with confidence inter-

vals are shown in Figure 7.7.

Regarding RISI, no differences are noticed for the different management systems, as shown

in Figure 7.7a. Regarding AMMI, the partial plots in Figure 7.7b reveal that the performance of

the utilities directly managed by the municipalities is significantly different from the ones man-

aged by concession and delegation. Specifically, the direct management system displays score

ratios significantly lower and an unfavourable role on the utilities’ AMMI performance. A direct

management system implies that the water utility is managed and controlled exclusively by the

public sector (municipalities). The other two management systems assume the responsibility of a
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(a) RISI (b) AMMI

Figure 7.7: Effect of exogenous variable - management system.

designated utility for the services, either through a concession contract or a delegation from the

public sector. From the results in Figure 7.7b, concession and delegation models have been more

successful in implementing structured practices to manage their infrastructures. The concession

and delegation utilities often specialise in the water supply sector and may present more proficient

administration. The fact that those utilities present higher maturity in management systems can

leverage their operational results in the future.

The effect of the typology of intervention area in asset management performance is displayed

in Figure 7.8.

(a) RISI (b) AMMI

Figure 7.8: Effect of exogenous variable - typology of intervention area.

Regarding RISI, the urban environment is less favourable for operational results, as the graph

in Figure 7.8a reveals. The younger infrastructure in Portugal’s rural and semi-urban areas may

be why urban regions have inferior operational performance. Several extension projects have been

carried out in Portugal to expand pipeline networks into rural areas in recent decades. More recent

water systems are more likely to be free of leakages or failures, which comprise the RISI metrics.

On the other hand, regarding AMMI, urban settings are more favourable to maturity in man-

agement systems, as indicated by the AMMI score ratio in Figure 7.8b. Better knowledge about

their assets (such as accurate engineering drawings and records) may explain the better perfor-

mance in management systems by urban utilities. Notice that the Infrastructure knowledge index

is one of the components of AMMI.
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Regarding the geographic location, Figure 7.9 displays the partial plots for both indicators’

performance scores. Results from RISI (Figure 7.9a) and AMMI (Figure 7.9b) show that the geo-

graphic regions present similar performance in both dimensions of asset management performance

measurement.

(a) RISI (b) AMMI

Figure 7.9: Effect of exogenous variable - geographic location

Concerning the volume of activity, the partial plots displayed in Figure 7.10 confirm that the

volume of activity makes no statistically significant difference in the performance of both RISI

and AMMI.

(a) RISI (b) AMMI

Figure 7.10: Effect of exogenous variable - volume of activity.

7.6 Conclusion

This research contributes to the literature by providing a novel method to identify peers and targets

for benchmarking asset management practices in the retail water sector. The benchmarking exer-

cise is carried out using the Portuguese water sector. This unique market is fragmented, displaying

hundreds of operators and, is heterogeneous in many facets, such as governance, utility size and

service scope. The country’s regulatory authority policies actively focus on benchmarking, mak-

ing this topic relevant. Rather than increasing investments in new assets, the national strategic

policy for the industry encourages strengthening current infrastructure management (Frade et al.,

2015).

Moreover, the current state of infrastructure preservation is inadequate, making this subject

even more critical. The study provides new and adaptable tools for the regulators and utilities
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to strengthen sunshine regulation practices. Official metrics issued by the regulatory authority

(ERSAR) are employed to construct two Composite Indicators (CIs) reflecting the managerial

practices and operational performance of asset management in 223 retail operators. Benefit-of-

the-Doubt (BoD) directional distance models enable the computation of the indicators. They are

employed to identify the most suitable peers and targets for the benchmarking exercise, represent-

ing this study’s innovative contribution. A visualisation model for the combined assessment of the

two CIs is also provided.

To facilitate statistical inference and investigate the relationship between contextual elements

and utility performance, robust and conditional techniques are utilised in addition to the determin-

istic strategy for building CIs. The most recent models of concession or delegation favour a better

performance in managerial practices but do not influence the operational results. The operation in

urban areas is favourable for managerial practices but unfavourable for operational results. The

performance for tangible results and management features is not sensitive to the volume of water

supplied and the geographical location in mainland Portugal.

The targets generated are specific for each operator and reflect the most suitable way to pursue

and conduct improvements. The fact that those targets, in most cases, fall short of ERSAR’s

ideals means that the utilities may need to follow specific and more realistic pathways for their

performance. In that sense, the regulatory authority can take advantage of the procedure detailed in

this study, setting individual and feasible targets for the sector’s operators. By identifying a group

of peers for benchmarking asset management practices, the study offers guidance on where to look

for recommendations in this highly fragmented and diverse scenario of retail water businesses. The

methodology outlined in this study has the potential to be replicated in other developed countries

facing similar challenges related to the maintenance and renewal of water supply and sanitation

infrastructures, as long as the necessary data is available.

The main limitations of the study rely on the data set available. Even though the data are re-

liable and provided by an official source, the information gathered needs to be enlarged in several

aspects, such as investment details and preservation of vertical assets, such as storage tanks. The

results of studies like this can reinforce the practical importance of this information and stimulate

the regulatory authority and the operators to expand the collected data set. Furthermore, the study

did not involve stakeholders such as regulatory authorities, and other relevant groups in the bench-

marking exercise. Including these groups might have provided valuable insights from different

perspectives, and incorporating their preferences into the models could have added value to the

research and enhanced its practical applicability. Future research can look at the progression of

the asset management practices over time, determine each utility’s strengths and weaknesses, and

explore other perspectives of ERSAR’s metrics, such as environmental issues or quality of service.

Further studies could also examine how different ownership and governance structures, such

as private sector participation and public-private partnerships, affect asset management practices.

Comparing the asset management practices and operational performance of retail water operators

in Portugal with those in other countries facing similar challenges could provide valuable insights.

Furthermore, examining the effectiveness of different benchmarking methods and tools for im-
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proving asset management and investigating the role of regulatory policies on asset management

practices in the retail water sector could be worthwhile research avenues to pursue.
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CHAPTER 8
Investment project selection in water
systems’ asset management through

optimisation
This chapter aims to present a new method for selecting infrastructure investment projects in the field of
asset management. A significant challenge in asset management is the selection of investment projects for
infrastructures, which often relies on subjective judgement and lacks structured decision support methods.
This challenge is particularly complex in water systems due to the diverse and heterogeneous nature of the
components requiring investment. While the Infrastructure Value Index (IVI) is widely used to characterise
assets and support investment decisions in the water sector, its application in optimisation models for gen-
erating efficient project portfolios remains unexplored. To address this research gap, this study introduces
optimisation models for generating investment portfolio plans in water systems’ asset management. The
proposed approach includes two mixed-integer linear programming (MILP) models that determine optimal
solutions and an evolutionary algorithm that offers sub-optimal alternative investment selection plans to
provide decision-makers with additional choices for balancing optimal outcomes. The primary contribution
of this research is the combined utilisation of MILP and evolutionary algorithms, integrating the IVI into
the decision-making process. These tools provide decision-makers with structured methods for defining
investment plans and minimising the subjective elements typically associated with such processes. To illus-
trate the effectiveness of the models, a case study is presented involving a pumping station of a Portuguese
water company. The results demonstrate the practical application and benefits of the proposed approach
in optimising investment decisions. This research contributes to advancing asset management practices by
integrating quantitative optimisation techniques and leveraging the IVI, thereby enhancing the objectivity
and efficiency of investment planning in water systems’ asset management.

8.1 Introduction

The selection of efficient investment project portfolios is paramount for businesses heavily rely-

ing on infrastructure. However, due to the inherent complexity of this task, subjective decision

processes often prevail over structured methods. This problem has been recently addressed in the

field of asset management.

Infrastructure networks such as roads, power systems, and water systems are crucial for as-

suring the development of modern economies. An integrated approach is required to operate and

153



154

renew those multi-asset systems, which is the focus of the asset management research field. As-

set management adopts a holistic concept to asset business problems by covering strategy, safety,

environment, cost, risk and life cycle. According to ISO 55000, an organisation can translate its

objectives into asset-related activities, plans and decisions to “realise value from assets” (ISO,

2014a). This standard emphasises the relevance of investment decisions among the main strengths

of asset management strategies. Identifying the most effective way to invest the available budget

represents a critical task for managers, motivating the development of decision tools to guide those

choices. Furthermore, the standard emphasises that achieving value requires a balance of costs,

risks, and performance benefits, implying that asset management practices entail “trade-offs” that

can be evaluated using decision support methods.

Water supply infrastructures are vital systems for human societies. These systems consist of

various interconnected components like pipes, pumping stations, treatment plants, and reservoirs,

and the reliability of each component can have varying effects on the overall system. Additionally,

maintaining the reliability and sustainability of these systems often requires substantial and fre-

quent capital expenditures. As a result, selecting the most appropriate project portfolio is crucial

for the water sector.

This work proposes to develop mathematical programming models for capital expenditure

project selection in multi-asset systems. A case study based on data from a real-world water

supply company is discussed. The Infrastructure Value Index (IVI), an indicator developed in the

Portuguese water sector, which is obtained as the ratio between an infrastructure’s current value

and its replacement cost, is employed in the models’ formulation.

The IVI, proposed by Alegre (2008), has gained global recognition as a valuable tool for

characterising water service infrastructure (Alegre and Covas, 2010; Ramos-Salgado et al., 2022;

Cabrera Rochera et al., 2019). The IVI has gained widespread utilisation globally and is increas-

ingly acknowledged as a standard indicator in the water sector, which may be attributed to its

simple and intuitive concept. Thus, a growing objective in the water sector is to maintain water

infrastructures at the desired IVI level, making it a natural choice for integration into an optimisa-

tion approach. Surprisingly, this potential has remained unexplored in the literature, serving as a

strong motivation for this research.

Two mixed-integer linear programming models are constructed to generate optimal project

portfolios: one aims to improve infrastructure conditions, and the other to reduce capital require-

ments. The first model aims to maximise the IVI by effectively utilising the available budget to

execute projects, while the second model aims to minimise the required investments while main-

taining the IVI at a pre-defined level. Additionally, sub-optimal solutions are offered through

evolutionary algorithms enhancing decision-making flexibility and striking a balance between the

two optimal approaches.

The novelty of this research lies in integrating the IVI into an optimisation framework, a

groundbreaking approach not yet explored for selecting an efficient portfolio of investment projects

in asset management. This study makes a substantial and innovative contribution to the field by

incorporating the IVI into optimisation tools. The methods presented in this study offer several
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advantages: they enable the allocation of limited capital towards the most critical needs, provide

flexibility in selecting the optimal solution, and are straightforward to implement and commu-

nicate. As a result, these methods support consistent prioritisation decisions, underscoring the

relevance and practicality of this research.

This chapter unfolds as follows. A brief literature review is presented in Section 8.2. The

proposed methodology is described in Section 8.3. The case study is introduced in Section 8.4.

The results are discussed in Section 8.5, and the conclusions and opportunities for further works

are presented in Section 8.6.

8.2 Literature review

The literature review covers the decision models utilised for project selection in asset management

(subsection 8.2.1), and their applications to the water sector (subsection 8.2.2).

8.2.1 Decision models for project selection in asset management

Project portfolios are collections of projects put together for an organisation. Most companies

define a budget for capital expenditure (CapEx) projects once a year, and there are usually more

potential projects to be implemented than the available capital allows. Those projects compete

for scarce resources, such as people, time and capital, so an evaluation process to define a portfo-

lio of CapEx projects is usually needed. The portfolio is picked from a pool of potential project

candidates without exceeding the company’s resources in accordance with its restriction and or-

ganisational requirements (Urli and Terrien, 2010).

Historically, methods for portfolio selection have emerged in the field of operations research.

These studies have their origins in capital budgeting, financial portfolio management, and project

scoring techniques, and they date back to the 1950s (Liesiö et al., 2021). Project assessments are

traditionally performed by applying a discounted cash flow analysis, which involves measures like

payback, internal rate of return and net present value (NPV). Nevertheless, according to Yeo and

Qiu (2003), those approaches do not reflect the dynamic reality of businesses. Finance and man-

agement students learn that the NPV should guide the selection of projects. In practice, however,

the NPV analysis represents a modest approach in a decision-making process that includes several

variables. The NPV model does not account for the complex activity of selecting projects (Saiz

et al., 2022). Besides that, all ordinary economic methods require estimating costs and financial

results or profits for the project under consideration. The assessment of project costs may be an

arduous and time-consuming task, especially in the early phases of the project, but the profit ap-

praisals can be even more challenging. The problem is that infrastructure asset projects indirectly

support several efforts to produce profits, but they seldom generate direct revenues for a business.

Therefore, the estimation of project costs may be quantifiable, while the expected cash return is

often unpredictable (Gurgur and Morley, 2008). In general, more structured decision models for

investment selection can better support the organisation’s strategy while considering local objec-

tives, benefits and restrictions (Koppinen and Rosqvist, 2010).
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Analytic accuracy, traceability, transparency, and resolution of conflicts between stakeholders

or decision-makers are the main advantages of using decision models that have been increasingly

applied for asset management problems. Kabir et al. (2014) published a literature review focused

on the application of multicriteria decision-making (MCDM) techniques for asset management

that revealed considerable growth in the number of papers recently published in this area.

As assets deteriorate with age, the demand for maintenance normally grows, and a decision

must be made whether to continue with regular maintenance or to conduct a renewal project. Dias

et al. (2021) argue that the degradation of assets is stochastic, which makes intervention planning

a challenging task in a multi-asset scenario. Therefore, researchers often adopt the assumption of

continuous asset deterioration to simplify their methods, making them more suitable for high-level

strategies. Cabral et al. (2019) highlight the knowledge gap regarding asset degradation, which

leads to a common practice of using a simplified linear depreciation approach. These authors stress

that the clarity of linear depreciation is preferable to seem sophisticated but unreliable methods,

as sufficient data for non-linear depreciation is often scarce.

Petchrompo and Parlikad (2019) identified project selection as one of the most common ap-

plications of decision methods in asset management, together with a maintenance policy decision,

intervention schedule, spare parts management, asset prioritisation, and resource allocation. Re-

garding project selection, those authors discuss that in the case of multi-asset systems, most deci-

sions tend to be based on subjective judgement due to the complex characterisation of the many

heterogeneous assets comprising the system. Defining objectives that yield benefits for the organ-

isation and its stakeholders is usually challenging for those arrangements, where several types of

assets may require different metrics. One approach to addressing this issue is to establish a stan-

dard metric that can be assigned to every asset in the portfolio. Some works utilised a condition

assessment scale as the common metric for assets (Farran and Zayed, 2015; Orcesi et al., 2016).

Fwa and Farhan (2012) developed a two-stage model in which different asset classes are evaluated

using their specific index in the first stage, and all the metrics are combined in the second stage.

Gharaibeh et al. (1999, 2006) proposed an efficiency index to allocate capital performing trade-

off assessments among asset categories in transportation facilities. Falls et al. (2006) proposed

the Asset Service Index (ASI) that combines the performance of various kinds of assets. This

index applied to civil infrastructures measures deviations from an asset’s expected condition due

to actions or changes that could impact deterioration. The ASI can be applied to different asset

categories, but it depends on developing a specific performance model for each type of asset. A

more straightforward approach was proposed by Alegre (2008) in the formulation of the Infras-

tructure Value Index (IVI), used by the sector of water and wastewater. The IVI formulation is

the current value of an infrastructure divided by its replacement cost, and the estimation of those

parameters are based on the assessment of assets’ replacement costs and service lives, incorporat-

ing the forecasts of remaining useful lives. Extending assets’ lives by even a small proportion can

generate significant savings. The impacts of investment projects on assets’ service lives can be

incorporated in the IVI prediction and are applied in this work.

Optimisation methods have been often applied as decision-making tools for asset management.
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On the literature review prepared by Chen and Bai (2019), 337 articles published between 1975

and 2018 were examined, covering a broad range of optimisation applications to asset manage-

ment. The authors highlight that optimisation methods have become increasingly popular since the

2000s taking advantage of mathematical analysis, and presenting a high potential to support asset

management decision-making problems. Optimisation can handle large sets of asset data with

the help of powerful computers, finding solutions for complex problems. Moreover, optimisation

can promote the best use of available resources, deal with uncertainties and different management

outcomes, examine their trade-offs and involve multiple objectives. The most common optimi-

sation tools employed for infrastructure maintenance, rehabilitation or renewal project selection

are linear programming (Abiri-Jahromi et al., 2009; Grivas et al., 1993; Park and Lim, 2021) and

heuristic methods as, for instance, genetic algorithms (Juan et al., 2010; Miyamoto et al., 2000;

Tack and J. Chou, 2002). Multi-criteria decision aiding tools have been also used for decision

tools for asset management (Kiss and Tanczos, 1998; Bana e Costa et al., 2006; Fiorencio et al.,

2015) as well as Data Envelopment Analysis (Rogers and Louis, 2007; Tavana et al., 2015)

In general, asset project selection problems can be classified into two types: budget allocation

and budget planning. The problem of budget planning minimises the necessary funding over a

planning horizon, subject to specific requirements at the asset level. This kind of problem is often

solved when the necessary budget for investments in assets is unknown. That is different from the

budget allocation problem, that is resolved when the limit of the available capital is known. In this

case, the problem is solved to maximise the portfolio efficiency, based on the defined objective,

or to minimise costs, subject to some budget constraints (Gao et al., 2012; France-Mensah and

O’Brien, 2018). In this work, optimisation models are developed to address both problems.

8.2.2 Applications of decision models for investment project selection in the water
sector

Water supply systems are a typical example of a multi-asset network that may need significant

capital expenditures to maintain their performance and service quality at the required levels. In-

vestment projects in water systems are justified by expansion needs, adaptation to new demands

by consumers or legislation, or obsolescence of materials and technologies, in addition to dete-

rioration caused by ageing infrastructure. Thus, investments in water systems must be continu-

ous, throughout the life cycle of the assets. The deterioration in water system components may

cause service interruptions, requiring continuous rehabilitation. One vital aspect of companies in

the water sector is the social and legal implications of interrupting services. Moreover, different

infrastructure assets are often interconnected, and the interruptions in water systems can cause

cascading effects in other assets, such as roads and electrical networks . An appropriate level

of reliability must be ensured for those systems, such that interruption and breakage events are

avoided as much as possible.

Optimisation models applying genetic and evolutionary algorithms are frequently used in wa-

ter facilities, such as Dandy and Engelhardt (2001), Wang and Chen (2016), Shin et al. (2016),

Zangenehmadar et al. (2020), Dridi et al. (2008) to minimise the cost of repairing or replacing
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pipe networks. Ramos-Salgado et al. (2021) also propose a genetic algorithm for optimising pipe

replacement works based on their proximity and renewal priorities. Other approaches for priori-

tising repair and replacement actions utilise multi-criteria decision aid (Carriço et al., 2012) and

logistic regression (Rifaai et al., 2022). Those studies address pipe replacement and do not con-

sider infrastructure project selection in multi-asset systems. For a comparison between studies that

cover replacement prioritisation methods, see Ramos-Salgado et al. (2022).

The use of performance indicators is common in the field of wastewater and water systems,

as seen in works like Santos et al. (2019), Haider et al. (2014), and Matos et al. (2003), which

present lists of indicators that address various aspects of these systems. Decision methods using

performance indicators have often been used for intervention selection and prioritisation of action

plans in water companies. Indicators that express performance regarding water leakages (Cavazz-

ini et al., 2020), sustainability (Han et al., 2015; Lee and Burian, 2020, 2019) and resilience (Liu

et al., 2020a,b) have been proposed.

The Infrastructure Value Index (IVI) introduced by Alegre (2008) has been discussed world-

wide as a tool to characterise water service infrastructure and address investment planning to

overcome risks (Alegre and Covas, 2010). According to Ramos-Salgado et al. (2022), the IVI

is the most commonly used water infrastructure indicator in the European scientific literature.

Meanwhile, Cabrera Rochera et al. (2019) notes that it is quickly becoming a norm to assess the

condition of water infrastructure. The IVI standard calculation is straightforward to understand,

determined by finding the ratio between the current value of the infrastructure and the cost of

replacing it. The infrastructure’s current value is often estimated based on assets’ useful lives.

An alternative calculation of the IVI was proposed by Alegre et al. (2014) and better detailed

by Amaral et al. (2016), determining current values based on the performance of selected ser-

vice indicators, which overcomes the difficulties associated with obtaining current values through

assessment of useful lives

Regarding the use of the IVI for investment planning, Alegre et al. (2014) discuss how this

indicator varies over time as a consequence of a given investment plan, using the estimation of an

infrastructure’s level of service to predict the long-term IVI. New formulations for long-term IVI

considering the effect of capital investments were proposed by Vieira et al. (2020a,b) and Costa

(2021). The authors discuss the impact of a set of planned projects on the IVI, but the selection

of optimum project portfolios is not explored. Recent works have used the IVI to address future

investment scenarios in conjunction with other indicators as the Infrastructure Degradation Index

(IDI), developed by Cabrera Rochera et al. (2019) and the Asset Sustainability Index (ASI), intro-

duced by Urrea-Mallebrera et al. (2019). Cabral et al. (2019) emphasise the economic valuation

of assessing incorporating assets’ condition to plan rehabilitation interventions.

The IVI can help prioritise investments as infrastructure projects often aim to extend the life

of assets and thus change the IVI value. Moreover, since the IVI formulation only requires the

estimation of assets’ service lives and replacement costs, it can be applied to a wide range of

asset classes in different sectors. The previous studies that use the IVI focus primarily on pip-

ing replacement. However, rehabilitation initiatives are carried out in many types of assets, such
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as instrumentation systems or electrical boardrooms, that do not necessarily require complete re-

placement. Investment projects with expenses lower than their replacement costs can be carried

out for these assets aiming to extend their service lives.

The IVI is still a topic that needs further exploration, especially regarding the uncertainties

regarding its central concepts like the estimation of replacement costs, depreciation curves, and

service lives (Cabral et al., 2019). Despite its limitations, IVI, as the primary metric in this work,

was favoured due to its widespread recognition in infrastructure management and simplicity in

conveying information about asset conditions, making it a valuable tool for managerial decisions.

The novelty of this work relies on the use of optimisation models, including MILP and evolu-

tionary algorithms developed to (i) provide flexibility of alternatives to decision-makers, compris-

ing maximisation of assets’ condition, informed by the IVI, minimisation of capital expenditure

keeping a particular condition, or intermediate solutions between the optimal extremes; (ii) include

several kinds of assets, not being limited to pipe replacements, and (iii) possibility of considering

alternatives either for performing renewal projects, partial rehabilitation initiatives, or expansion

investments.

The problem addressed in the study concerns the selection of an optimal project portfolio for

investments to minimise the subjective nature inherent in such processes. The research objective

is to develop a structured decision-support tool based on optimisation methods to offer improved

alternatives for decision-makers while maintaining flexibility to adapt to real-world contexts. The

primary goal is to provide various viable solutions, allowing decision-makers to select the most

appropriate outcome that aligns with their needs. By offering different options, the approach

strikes a balance between informed recommendations and the ability to tailor the portfolio to each

situation’s unique requirements and constraints. By reducing subjectivity and enhancing decision-

making effectiveness, this research enhances the overall quality of project portfolio selection in

investment processes.

8.3 Methodology

The research methodology we propose consists of three main stages. The first one presents the

initial characterisation of the assets analysed based on the definition of their technical condition.

This is expressed by the IVI values estimated at the beginning of the planning period, followed

by the quantification of the effect of potential investment projects on the IVI. The second stage

involves the development of two optimisation models that are designed to answer the main research

questions, as follows:

(i) RQ1 - How can a project plan for investments in assets be determined to maximise the

overall IVI of an infrastructure?

(ii) RQ2 - How can an investment plan be determined to maintain the IVI of an infrastructure

within the recommended limits during the whole period, whilst minimising the amount of

capital required for investment projects in assets?
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RQ1 aims to solve a budget allocation problem and RQ2 deals with a budget planning prob-

lem. The results obtained in the optimisation models enable the analysis of the evolution of the

IVI for individual assets, groups of assets and the complete infrastructure, given the alternative

scenarios considered. The third stage in the research methodology assesses the trade-offs between

the outputs of the two optimisation models using a multi-objective approach.

8.3.1 IVI assessment

The IVI can be obtained by the ratio of the Infrastructure Current Value, ICV, and its replacement

cost, IRC. It ranges from 0 to 1, or 0% to 100%, where higher values mean that the infrastructure

is new or well preserved since its current value is close to the present acquisition cost of a similar

infrastructure. The infrastructure has deteriorated if the IVI is low, as its current value is small

compared to its replacement cost.

As stated by Alegre et al. (2014), the IVI of well-maintained infrastructures should be between

40% and 60%. Higher IVI values are found for young infrastructures or older infrastructures

recently subjected to expansion or rehabilitation, and lower values result from reduced levels of

maintenance or renovation. In that sense, applying capital investments to assets can raise the IVI,

and maximising IVI values within the recommended range can be consistently employed in project

selection for asset management. On the other hand, if no asset investments are performed, the ICV,

and consequently the IVI, decreases over time due to ageing. Thus, deciding where and when to

invest to reach acceptable IVI levels represents a relevant management problem. Investments that

make the IVI too high should also be avoided, so that priority in the use of resources is directed

to more deteriorated infrastructures. Furthermore, if investments are concentrated in very short

periods, and assets have the same expected lifetime, they will all have to be replaced in a short

time window, preventing a balanced distribution of investments overtime.

Determining the Infrastructure’s Current Value (ICV) and Replacement Cost (IRC) is neces-

sary to obtain the IVI, so valuation approaches for both terms should be defined. The ICV and

the IRC can be estimated as the sum of all current values and the sum of all replacement costs,

respectively, associated with the individual assets that compose the infrastructure or the group of

assets under evaluation (Alegre et al., 2014). The replacement costs represent the cost of substitut-

ing assets with other ones with the same characteristics. These costs can be assessed by technical

evaluation, accounting for currently available technology and, eventually, acquisition costs, for

which the effect of inflation can be considered (Alegre and Covas, 2010).

However, estimating the current value of an asset can be challenging since the trivial way

to provide value to an existing asset is to consider it as a new one. Alegre and Covas (2010)

take into account the annual depreciation, so the product of an asset’s remaining useful life, or

residual life, multiplied by its annual depreciation gives its current value. Those authors estimate

the annual depreciation using an economic method, that deals with the changes in the asset’s

economic value, the update in its useful life and future resultant cash-flows. In this theoretical

approach, the annual depreciation is obtained as the replacement cost of the asset, divided by the

total useful life. Therefore, the three key parameters necessary to estimate the IVI for groups of
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assets or infrastructures are assets’ useful lives, residual lives and replacement costs (Alegre and

Covas, 2010; Alegre et al., 2014). If those concepts are combined, the IVI formulation in period t

introduced by Alegre (2008) is given by (8.1) .

IV It =

N
∑

i=1

rlit×rcit
uli

N
∑

i=1
rcit

(8.1)

where for asset i in period t, rlit is the residual life, uli is the useful life, and rcit is the replacement

cost. A particular case of expression (8.1) is the IVI for a single asset i, which can be estimated by

the ratio between its residual life and useful life, as demonstrated in (8.2).

IV Iit =

rlit×��rcit
uli

��rcit
=

rlit
uli

(8.2)

The comparison of expressions (8.1) and (8.2) shows that the IVI for groups of assets or com-

plete infrastructures is a weighted average of single assets’ IVI, with the weights corresponding to

the assets’ replacement costs.

There are different ways to estimate assets’ useful lives, residual lives and replacement costs.

The standard technical useful lives for each kind of asset in water facilities are suggested by the

Portuguese regulatory agency, ERSAR - Entidade Reguladora dos Serviços de Águas e Resíduos

(Alegre and Covas, 2010). Given the values for an asset’s useful life, the most trivial way to obtain

its residual life is to subtract the asset’s age from its useful life.

However, the residual lives can be impacted by the actual condition of the assets, so an ad-

justed residual life (rlad j
it ) must be determined to obtain more accurate estimates of the IVI. Alegre

and Covas (2010) present an asset classification according to its preservation condition based on

the infrastructure conservation classification from U.S. Environmental Protection Agency. That

classification can be used as an input to adjust asset’s residual life.

After the asset’s adjusted residual life (rlad j
it ) is determined by examining its conservation and

functionality, the useful life (ulad j
it ) is obtained by adding the asset’s age (a), as shown in (8.3).

ulad j
it = rlad j

it +ait (8.3)

The IVI at the beginning of the planning period for groups of assets and complete infrastruc-

tures can be defined using (8.1) (for t = 0), assuming that replacement costs, adjusted residual and

adjusted useful lives have been previously estimated.

After determining the IVI for the base year, we need to analyse how the initial value of adjusted

residual lives and adjusted useful lives are affected by a certain amount of capital invested in

assets during the planning period. That is the foundation for developing the optimisation models

to choose the most suitable portfolio of projects.

Note that investment projects can be targeted at a single asset or at several assets. In this

research, projects involving several assets will require the subdivision of their impact at the asset
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level, and consequently, the data required for the optimisation should be collected for individual

assets.

Consider the new parameter ∆ip representing the increment that each project p induces to the

remaining life of an asset i. The estimation of this parameter may be difficult in real-world con-

texts, especially if company data is not detailed at the asset level. The involvement of experienced

company staff or expert opinion may be critical for obtaining robust estimates of this parameter.

As assets may benefit from more than one project, consider Pi the total amount of potential

projects assigned to a given asset i. In this instance, the estimation of rlad j
it should consider the

impact in the asset’s residual life of carrying out several projects. The adjusted residual life of asset

i in the year t, after the projects p are carried out, is given by (8.4). This expression establishes a

relationship between the residual life in t and t −1, so it incorporates the decrease in residual life

by one year from t to t −1.

rlad j
it = rlad j

i(t−1)−1+
Pi

∑
p=1

∆ip (8.4)

The asset’s adjusted useful life, ulad j
it , can be expressed as (8.5) by adding the asset’s age to its

residual life.

ulad j
it = rlad j

i(t−1)−1+
Pi

∑
p=1

∆ip︸ ︷︷ ︸
rlad j

it

+ai(t−1)+1︸ ︷︷ ︸
ait

(8.5)

Expressions (8.4) and (8.5) need to be adjusted to convey the values of rlad j
it and ulad j

it in terms

of the parameters’ initial value. Equations (8.6) and (8.7) express them using the residual life

characterisation at the start of the planning horizon, rlad j
i0 (in t = 0). Note that ait = ai0 + t.

rlad j
it = rlad j

i0 − t +
t

∑
j=1

Pi

∑
p=1

∆ip (8.6)

ulad j
it = rlad j

i0 +ai0 +
t

∑
j=1

Pi

∑
p=1

∆ip (8.7)

The single asset IVI considering the effect of investment projects can be properly formulated

using (8.2), (8.6) and (8.7), resulting in expression (8.8).

IV Iit =

rlad j
i0 − t +

t
∑
j=1

Pi

∑
p=1

∆ip

rlad j
i0 +ai0 +

t
∑
j=1

Pi

∑
p=1

∆ip

(8.8)

Consequently, the IVI for complete infrastructures can be obtained using expression (8.8) for

single assets, weighted by their replacement costs, as shown in (8.9). This formula is equivalent

to expression (8.1), but it allows the explicit incorporation of the effect of investments projects on
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assets executed during the planning horizon.

IV It =

N
∑

i=1
IV Iit × rcit

N
∑

i=1
rcit

(8.9)

8.3.2 Optimisation models

The optimisation models will answer the two proposed research questions. The first optimisation

model, described in section 8.3.2.1, selects a project portfolio from a pool of potential projects that

maximises the overall IVI of the infrastructure, given the budget available for investments in assets

in the planning horizon. Hence, the formulation of this method addresses the first research question

(RQ1) posed in this study. The objective of the second optimisation model presented in section

8.3.2.2 is to establish an investment project plan that maintains the IVI of the infrastructure within

given threshold levels (e.g., between 40% and 60%) during the planning horizon, minimising the

amount of capital invested. Therefore, the proposed model developed in section 8.3.2.2 answers

Research Question 2 (RQ2).

8.3.2.1 Optimisation model 1: IVI maximisation

Suppose that a company has a list of potential asset investment projects for the following years.

The parameters representing the increment in the residual life of asset i (∆ip) and the amount of

capital required for the investment (Cip) characterise the projects that are candidates for selection.

It is important to assign project candidates for all assets such that the optimisation can choose the

projects that should be executed.

The company goal is to select which projects will be executed each year, considering a limited

capital availability. If no investments are performed, the IVI tends to decrease over time, so it

would be advantageous to use the available capital to extend assets’ residual and useful lives and

raise the IVI for the complete infrastructure.

The model’s binary decision variables are defined as xipt to indicate whether an investment

project is carried out in year t.

xipt =

1 if project p is carried out in asset i and in year t;

0 otherwise.

Therefore, to answer the first research question, we maximise the sum of all the infrastructure’s

annual IVI values (IV Isum) for an investment planning period of T years starting on year 1. The
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objective function can be seen in (8.10).

max IV Isum =
T

∑
t=1

N
∑

i=1
IV Iit × rci0

N
∑

i=1
rci0

(8.10)

Note that the IVI of the infrastructure in year t (IV It) is a weighted average of the IV Iit for the

assets i that compose the infrastructure. The weights are the replacement costs of the individual

assets (rcit). For optimisation purposes, the weights are assumed as constant along the planning

period (i.e., disregarding the effects of project actions on assets). This approach is focused on the

acquisition costs, and thus we consider in the objective function the replacement costs in t = 0.

Equation (8.11) estimates the IVI of an individual asset i in time period t accounting for the

impact of the investment projects selected for execution during the planning horizon. We associate

a binary decision variable xipt to the parameter representing the service life extension of asset i with

project p (∆ip) in the expression (8.8) that estimates the individual assets IVI (IV Iit).

IV Iit(xipt) =

rlad j
i0 − t +

t
∑
j=1

Pi

∑
p=1

∆ip × xip j

rlad j
i0 +ai0 +

t
∑
j=1

Pi

∑
p=1

∆ip × xip j

,

∀i ∈ {1,2, . . . ,N}, ∀p ∈ {1,2, . . . ,Pi}, ∀t ∈ {1,2, . . . ,T}

(8.11)

We highlight that equation (8.11) is not linear. Therefore, proper mathematical transformations

are applied to obtain a linear programming formulation and solve it in a standard mathematical

programming software. The details of the linearisation process are presented in Appendix E.1.

Therefore, constraints (8.11) are replaced by the linear constraints (E.4), (E.5), (E.6), (E.7) and

(E.8).

Constraints (8.12) impose that a project p in asset i is executed only once during the planning

period.
T

∑
t=1

xipt ≤ 1, ∀i ∈ {1,2, . . . ,N}, ∀p ∈ {1,2, . . . ,Pi} (8.12)

Constraint (8.13) limits the capital applied in projects during the planning horizon to the total

available budget at the company (Btotal). In this expression, Cip represents the amount of capital

required for investment project p in asset i .

T

∑
t=1

N

∑
i=1

Pi

∑
p=1

Cip × xipt ≤ Btotal (8.13)

Constraints (8.14) and (8.15) assure that capital expenditure is balanced along the planning

horizon. These constraints allow for a certain degree of flexibility (α%) around the annual average
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of the available capital.

N

∑
i=1

Pi

∑
p=1

Cip × xipt ≤ (1+α)× Btotal

T
, ∀t ∈ {1,2, . . . ,T} (8.14)

N

∑
i=1

Pi

∑
p=1

Cip × xipt ≥ (1−α)× Btotal

T
, ∀t ∈ {1,2, . . . ,T} (8.15)

Constraints (8.16) set the upper bound (U) for the infrastructure’s IVI for each year of the

planning horizon.
N
∑

i=1
IV Iit × rci0

N
∑

i=1
rci0

≤U, ∀t ∈ {1,2, ...,T} (8.16)

Constraints (8.17) and (8.18) ensure that for projects including multiple assets, the sub-projects

at asset level must be managed as a unique project, and thus should be scheduled for the same

period t. In expressions (8.17) and (8.18), Sk represents each set k of projects p in assets i that

are scheduled for the same period t. K is the total amount of project sets. |Sk| is the number of

elements in set Sk, and M is a large integer number. The auxiliary decision variables wkt determine

the execution of the set of projects.

∑
i,p∈Sk

xipt ≥ |Sk|−M× (1−wkt), ∀k ∈ {1,2, . . . ,K}, t ∈ {1,2, . . . ,T} (8.17)

∑
i,p∈Sk

xipt ≤ M×wkt , ∀k ∈ {1,2, ...,K}, t ∈ {1,2, . . . ,T} (8.18)

wkt =

1 if set of projects k is carried out in year t;

0 otherwise.

The resulting formulation of the optimisation Model 1 can summarised as follows:

Maximise (8.10)

Subject to (8.11), (8.12), (8.13), (8.14), (8.15), (8.16), (8.17), (8.18)

xipt ∈ {0,1},wkt ∈ {0,1}, ∀i ∈ {1,2, . . . ,N},

∀p ∈ {1,2, . . . ,Pi}, ∀t ∈ {2,3, . . . ,T}, ∀k ∈ {1,2, . . . ,K}

The values obtained for the decision variables xipt determine which investment projects shall be

selected, and the year they should be executed.

8.3.2.2 Optimisation model 2: Investment minimisation to maintain IVI within target limits

We now develop a new optimisation model to determine the minimum amount of capital that

upholds the IVI of the infrastructure at a certain level. As in Optimisation Model 1, we propose a
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list of project candidates and estimate parameters ∆ip and Cip for each potential project.

The same binary decision variables xipt of Optimisation Model 1 are used in Optimisation

Model 2.

The objective function, defined in (8.19), minimises the total capital expenditure (Ctotal),

which corresponds to the sum of the annual expenditures (Cannual
t ).

min Ctotal =
T

∑
t=1

Cannual
t (8.19)

Constraints (8.20) express Cannual
t as the sum of expenditures associated with the projects that

are selected in the optimisation for execution in year t.

Cannual
t (xipt) =

N

∑
i=1

Pi

∑
p=1

Cipt × xipt , ∀t ∈ {1,2, . . . ,T} (8.20)

Constraints (8.21) set the lower bound (L) for the infrastructure’s IVI for all the years in the

planning period, according to the target levels

N
∑

i=1
IV Iit × rci0

N
∑

i=1
rci0

≥ L, ∀t ∈ {1,2, . . . ,T} (8.21)

Similarly to the optimisation of Model 1, it can also be added to Model 2 a constraint to prevent

the IVI of the infrastructure to raise above the target upper bound (U), as shown in (8.16). Alterna-

tively, the constraints may set the lower bound for a single asset’s IVI, instead of the infrastructure

IVI, as shown in (8.22).

IV Iit ≥ L, ∀i ∈ {1,2, . . . ,N}, ∀t ∈ {1,2, . . . ,T} (8.22)

The remaining constraints of Model 2 are identical to those imposed to Optimisation Model

1: Constraints (8.11) estimate the IVI of individual assets i for period t accounting for the impact

of the investment projects selected for execution during the planning horizon. Constraints (8.12)

impose that a project is selected only once for the planning period. Constraints (8.17) and (8.18)

assure that several projects at the asset level are managed together as a unique project.

The resulting formulation of the optimisation Model 2 can summarised as follows:

Minimise (8.19)

Subject to (8.11), (8.12), (8.16), (8.17), (8.18), (8.20), (8.21),

xipt ∈ {0,1}, wkt ∈ {0,1}, ∀i ∈ {1,2, . . . ,N},

∀p ∈ {1,2, . . . ,Pi}, ∀t ∈ {2,3, . . . ,T}, ∀k ∈ {1,2, . . . ,K}
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8.3.2.3 Analysis of the IVI evolution during the planning period

In both optimisation models, the decision variables xipt identify the projects that should be carried

out during the planning period. Note that these projects are specified at the asset level, and the IVI

of all individual assets (IV Iit) for the entire planning horizon (t = 1, . . . ,T ) can be calculated using

(8.11). With this information, it also is possible to compute the IVI for the complete infrastructure

and groups of assets using (8.9).

To obtain a more precise estimation of the IVI, the replacement costs can be adjusted to reflect

the changes due to project execution. Alegre and Covas (2010) argue that adjustments in asset

replacement costs due to changes in service live expectations are usually subjective and complex.

Although we chose to keep those costs constant for the specification of the optimisation mod-

els, as this simplifies computations by avoiding non-linear expressions, we use a more robust

specification of replacement costs for the analysis of the evolution of the IVI in a post-optimisation

stage. Vieira et al. (2020a,b) and Costa (2021) present formulations for replacement costs that con-

sider different parameters for renewals, replacements and expansions. We used expression (8.23),

proposed by Costa (2021), to reflects how the replacement cost of an asset i changes from period

t to t +1 after the execution of an investment project.

rci(t+1) = rcit × (1−βi)+Ci (8.23)

In expression (8.23), βi corresponds to the percentage of the asset i deactivated by an in-

vestment project involving replacements or renewals. If an expansion is performed without any

planned deactivation for asset i, βi is zero; if the asset is totally decommissioned, βi equals one.

The replacement cost of the asset is increased by the amount invested (Ci).

Based on this approach, it is necessary to estimate the parameter βip for all potential projects

to obtain the assets’ replacement costs in all years of the planning horizon.

Expression (8.24) represents the adjusted replacement cost of an asset. It is obtained from

(8.23), incorporating the decision variables xipt and allowing the execution of more than one

project in an asset.

rcad j
i(t+1)(xipt) = rcad j

it × (1−
Pi

∑
p=1

βip × xip(t+1))+
Pi

∑
p=1

Cip × xip(t+1) (8.24)

Having assets’ IVI and their adjusted replacement costs available, it is possible to calculate

the overall IV It of the infrastructure and the IVI of groups of assets in each year of the planning

period using (8.9). This procedure was used for the analysis of the results discussed in section 8.5,

for both optimisation models.

8.3.3 Multi-objective optimisation

The linear programming models presented in earlier subsections produce optimal project plans

that meet two distinct goals: maximise the IVI and minimise the capital expenses. It may be
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advantageous to give the decision-maker some alternate choices that represent trade-offs between

the optimal solutions.

According to Yang (2014), multi-objective optimisation problems often lack a single optimal

solution that simultaneously optimises all the objective functions due to potential conflicts between

objectives. In such cases, trade-offs or compromises need to be made, often requiring a reformu-

lation of the problem. One commonly used approach is the weighted sum method, where all the

multi-objective functions are combined into a single objective function by assigning weights to

each objective. However, this method has drawbacks, as it transforms the original multi-objective

problem into a single-objective one, which may not preserve the problem’s inherent complex-

ity. The choice of weighting coefficients can be arbitrary, and the resulting solutions depend on

these coefficients. Additionally, generating a well-distributed set of points along the Pareto front,

which represents the optimal trade-offs between objectives, is typically challenging. Moreover,

the weighted sum method is applicable only to convex Pareto fronts, limiting its scope to han-

dling other Pareto front shapes. We chose to use a multi-objective strategy based on evolutionary

algorithms to produce other project plans that might represent intermediate solutions to the two

original objectives. Evolutionary algorithms are particularly suitable to solve multi-objective opti-

misation problems because they are less susceptible to the shape or continuity of the Pareto front.

Due to the population-based nature of those algorithms, several elements of the non-dominated

frontier can be generated in a single run, allowing the selection of the most appropriate solution

according to different trade-off measurements. Evolutionary algorithms are widely employed to

offer reliable approximate solutions to problems that are inherently challenging to solve efficiently

using other techniques, such as mathematical programming. In cases where finding an exact solu-

tion for combinatorial problems is computationally demanding, evolutionary algorithms provide a

valuable alternative by producing near-optimal solutions that meet the required objectives.

We propose an algorithm based on NSGA-II (Deb et al., 2002) to solve the multi-objective

problem. All individuals from th population, with rankk and distancek, comprise a parent popu-

lation Pg of P size. Selection, crossover, and mutation operators create an offspring population of

Qg of P. A combined population Rg = Pg ∪ Qg, of 2P size, is sorted according to non-domination

rank and crowding distance to choose exactly P population members to the new population Pg+1

(Deb et al., 2002). The selection is performed through the binary tournament selection algorithm.

This algorithm randomly samples two solutions of Pg and compares them according to rankk and

distancek. The best one is chosen for the following procedures. Pairs of selected solutions are

randomly formed. These pairs can go through crossover and mutation to create an offspring pop-

ulation Qg.

8.3.3.1 Coding

An individual k encodes a solution of project assignment. Figure 8.1 exemplifies an individual

for a problem with 4 assets, 2 projects for each assets in the planning horizon t1 to t5. The binary

matrix represents the project assignment for each year. zip = 1 means that project p is carried out

in asset i.
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Figure 8.1: An example of binary matrix encoding representing each potential solution k in the
population.

8.3.3.2 Population Initialisation

The initial population Pg is randomly generated with size P = 100 (empirically defined). The

individuals are initialised considering the constraints (8.12), (8.17), (8.18) (Section (8.3.2.1)). For

constraints (8.12), the project p in asset i is carried out only once during the planning horizon.

Constraints (8.17) and (8.18) ensure the sub-projects should be realised in the same year t.

8.3.3.3 Population Evaluation

The individuals from the population are evaluated for each one of the objective values, f1 (IVI)

and f2 (Total capital expenditure).

f1: max IV Isum =
T

∑
t=1

N
∑

i=1
IV Iit × rci0

N
∑

i=1
rci0

f2: min Ctotal =
T

∑
t=1

Cannual
t

(8.25)

In the case of infeasible solutions, the fitness value also incorporates this information through

a penalty costs p1 and p2. Equation (8.25) represents the penalty function regarding the IVI

constraints. The first portion is related to each period s that violates constraint (8.21), and the

second portion for each period q that violates constraint (8.16).

p1: min PenaltyIV I =

(
L−

N
∑

i=1
IV Iis × rci0

N
∑

i=1
rci0

)
+

( N
∑

i=1
IV Iiq × rci0

N
∑

i=1
rci0

−U
)
,

∀s ∈ S, ∀q ∈ Q

(8.26)

Equation (8.27) represents the penalty function regarding capital expenditure. The first portion

is related to each period g that violates constraint (8.14), the second portion for each period h that

violates constraint (8.15) and the last one when the amount of capital for all years exceeds the total
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available budget at the company.

p2: min PenaltyC =

( N

∑
i=1

Pi

∑
p=1

Cip × xip(g+1)− (1+α)×
N

∑
i=1

Pi

∑
p=1

Cip × xipg

)
×10 +

(
(1−α)×

N

∑
i=1

Pi

∑
p=1

Cip × xiph −
N

∑
i=1

Pi

∑
p=1

Cip × xip(h+1)

)
×10 +

( T

∑
t=1

N

∑
i=1

Pi

∑
p=1

Cip × xipt −Btotal
)
×10,

∀g ∈ G, ∀h ∈ H

(8.27)

8.3.3.4 Nondominated Sorting Approach

As defined in Deb et al. (2002), in NSGA-II every individual k is associated with two attributes:

rankk and distancek.

If two solutions have different non-domination levels (different non-dominated frontiers), we

choose the solution k with the lower rankk. Otherwise, if two k1 and k2 solutions belong to the

same frontier (rankk1 = rankk2), then we prefer the solution that is located in a less crowded region

(that is, higher distancek) (Rampazzo et al., 2015).

8.3.3.5 Crossover and Mutation

A population of parents is built through binary tournament. Pairs of parents from this population

are selected to generate pairs of offspring.

The uniform crossover is applied to each pair of selected solutions, thus generating two off-

spring. A mask with a uniform distribution is created, each individual has a 50% chance to copy

the gene from parent1 and the other 50% from parent2. For offspring1 when mask values is 0,

the genes are copied from parent1, while for offspring2 the genes are copied from parent2. When

mask values is 1, for offspring1 the genes are from parent2 and for offspring2 from parent1.

The mutation process complements the crossover, as it allows a larger search space to be

explored. For each offspring, two columns of the individual k are randomly selected:

1. if the two projects are carried out in the same year, a new year and a new value ∈ {0,1} are

randomly selected.

2. if the two projects are carried out in different years, the project assignment is swapped.

The offspring population is evaluated by calculating the fitness.The operators of classification

and agglomeration are evaluated, considering the merge between both the original and the off-

spring population. After selecting the next population, a percentage pe of the worst individuals

are replaced with the best individuals. We considered empirically pe as 0.1, thus, 10% of the

population is replaced. The process is repeated with the new population until the total number of

generations is attained, this parameter have been empirically defined as 200.
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8.4 Case study

A Portuguese water supply company, Águas do Douro e Paiva (AdDP), responsible for water ab-

straction, treatment, and provision in the region of Porto (Portugal), provided the data to demon-

strate the applicability of the proposed technique. The company has already started to apply the

IVI in its asset management procedures to test its suitability to monitor the performance of assets

in a real-world context.

The data provided includes asset information and the amount of investment planned for the

next five years for the Jovim Pumping Station (Jovim PS). This infrastructure includes two dif-

ferent pumping stations (PS 1 and PS 2), each one with four electric pump groups. PS 1 has a

lifting capacity of 1,347 l/s and reaches a manometric height of 57.1 m.w.c., and PS 2 has a lifting

capacity of 2,718 l/s and 56.2 m.w.c..

Twenty-one assets were identified in Jovim PS. The breakdown of the infrastructure including

component group and asset level is presented in Table 8.1. In the same table, the assessments

of useful life, replacement cost and asset condition coefficient c, for the year before the planning

period (t0), are available for that infrastructure. The coefficient c is obtained from Table 8.2, used

to assess the conservation status of the assets.

Table 8.1: Asset data for Jovim PS Infrastructure in t0

Asset Description Group Age State of Theoretical total Replacement
(years) condition (c) useful life (years) cost (e)

1 Jovim Building Civil Work 22 1.2 50 645,000.00
2 Jovim Piping Civil work 22 1.2 40 645,000.00
3 Electrical boardroom in PS 2 Electrical facilities 22 2.1 15 250,000.00
4 Electrical boardroom in PS 1 Electrical facilities 22 1.9 15 250,000.00
5 Transformer substation in PS 1 Electrical facilities 22 1.7 15 224,000.00
6 Transformer substation in PS 2 Electrical facilities 22 1.6 15 280,000.00
7 Generator group in PS 2 Equipment 21 1.5 20 20.000.00
8 Instrumentation, automation, Equipment 9 1.0 15 100,000.00

control and measurement
9 Pumping group 1 in PS 1 Equipment 19 1.4 20 180,000.00

10 Pumping group 2 in PS 1 Equipment 19 1.4 20 180,000.00
11 Pumping group 3 in PS 1 Equipment 19 1.4 20 180,000.00
12 Pumping group 4 in PS 1 Equipment 19 1.4 20 180,000.00
13 Pumping group 1 in PS 2 Equipment 21 1.3 20 285,312.39
14 Pumping group 2 in PS 2 Equipment 21 2.1 20 285,312.39
15 Pumping group 3 in PS 2 Equipment 21 1.3 20 285,312.39
16 Pumping group 4 in PS 2 Equipment 21 2.1 20 285,312.39
17 Ventilation in PS 1 Equipment 22 1.7 15 20,000.00
18 Ventilation in PS 2 Equipment 22 1.3 15 20,000.00
19 Pressure Tank 1 Equipment 9 1.7 40 56,388.62
20 Pressure Tank 2 Equipment 9 1.7 40 56,388.62
21 Pressure Tank 3 Equipment 9 1.6 40 88,917.66

Note: PS = Pumping Station.
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Table 8.2: Conservation status classification proposed by U.S. EPA (Alegre, 2008)

State of condition (c) Description Required rehabilitation rate
1 In perfect condition 0%
2 It has minor anomalies 5%
3 Presents anomalies that require significant curative maintenance 10-20%
4 Requires renewal 20-40%
5 Practically unusable asset >50%

The company has defined the assets’ adjusted residual lives for t0, rlad j
i0 , considering the em-

pirical expression (8.28) proposed by Costa (2021)

rlad j
i0 = uli −

(
uli
5

× c
)
×
(

ai0

uli

) 1
c+1

(8.28)

where ai0 is the known age of an asset i in period t = 0, and its useful technical life, uli, is obtained

based on the recommendations of the Portuguese regulatory agency (Alegre and Covas, 2010).

After the adjusted residual lives are determined, the adjusted useful lives can be obtained using

expression (8.3).

The company plans to invest 665,000e in asset projects for Jovim PS in the following five

years. For this 5-year period, considering the current condition and the residual life of the assets,

the company is able to establish a list of possible projects that can be selected for execution. In

the case study considered, 42 hypothetical potential projects, or project ideas, were proposed for

selection and execution during the period considered. Certainly, after this 5-year period, new in-

vestments will have to occur to maintain the IVI at the desired levels and, the method of selecting

these new projects can be performed again, taking into account the updated and more accurate

condition of the assets. The 42 candidate projects are presented in Table 8.3. The values of pa-

rameter βip reflect the percentage of the original asset’s decommissioning after investment project

execution. The values for Cip represent the planned budget for each project. The parameter ∆ip

represents the potential extension in the asset’s useful life generated by each project. The company

decided that two sets of projects involving ventilation assets (17 and 18) must be managed as a

unique project: P17a/P18a and P17b/P18b.
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Table 8.3: Portfolio of hypothetical project candidates

Project (Pip) βip ∆ip Cip Project (Pip) βip ∆ip Cip

(e) (e)

P1a 0.10 6,37 64,500.00 P1b 0.20 12.75 129,000.00

P2a 0.10 5,47 64,500.00 P2b 0.20 10.94 129,000.00

P3a 0.20 5.97 50,000.00 P3b 0.40 11.95 100,000.00

P4a 0.20 6,10 50,000.00 P4b 0.40 12.20 100,000.00

P5a 0.20 6.22 44,800.00 P5b 0.40 12.45 89,600.00

P6a 0.20 6.29 56,000.00 P6b 0.40 12.58 112,000.00

P7a 0.20 6.98 4,000.00 P7b 0.40 13.95 8,000.00

P8a 0.10 2.17 10,000.00 P8b 0.20 4.34 20,000.00

P9a 0.10 3.35 18,000.00 P9b 0.20 6.70 36,000.00

P10a 0.10 3.35 18,000.00 P10b 0.20 6.70 36,000.00

P11a 0.10 3.35 18,000.00 P11b 0.20 6.70 36,000.00

P12a 0.10 3.35 18,000.00 P12b 0.20 6.70 36,000.00

P13a 0.10 3.57 28,531.24 P13b 0.20 7.14 57,062.48

P14a 0.20 6.49 57,062.48 P14b 0.40 12.99 114,124.96

P15a 0.10 3.57 28,531.24 P15b 0.20 7.14 57,062.48

P16a 0.20 6.49 57,062.48 P16b 0.40 12.99 114,124.96

P17a 0.20 6.22 4,000.00 P17b 0.40 12.45 8,000.00

P18a 0.20 6.48 4,000.00 P18b 0.40 12.96 8,000.00

P19a 0.10 4.12 5,638.86 P19b 0.20 8.23 11,277.72

P20a 0.10 4.12 5,638.86 P20b 0.20 8.23 11,277.72

P21a 0.10 4.18 8,891.77 P21b 0.20 8.36 17,783.53

The following rules were applied to estimate the project parameters and test the optimisation

models. In future implementations, these parameters should be determined based on the com-

pany’s knowledge:

• βip: The proposed set of hypothetical projects for the case study includes two projects for

each asset with βip = 0.10 and βip = 0.20 for the assets presenting an IVI greater than

40.0% in t0. For low-IVI assets, being less than 40.0%, that demand higher investments, the

candidate projects present βip = 0.20 and βip = 0.40.

• ∆ip: This parameter is estimated as being proportional to the ratio between the capital in-

vested in the project (Cip) and the asset’s replacement cost, as in (8.29). For this estimation,

the values already known for t0 were employed. From expression (8.29), a project capi-

tal investment applied to an asset representing, for example, 10.0% of its replacement cost

should increase the asset’s useful life by 10.0%.

∆ip =
Cip

rci0
×ulad j

i0 (8.29)

• Cip: The values of the required capital for the projects were estimated as the cost to reestab-

lish the decommissioned parcel of the asset (βip), or equivalent to a parcel of the asset’s

replacement cost that had been decommissioned, calculated as Cip = βip × rci0.

.

8.5 Results and discussion

The two mixed-integer optimisation models were solved using IBM ILOG CPLEX version 20.1.0.0.

The computational time needed to solve Optimisation Model 1 was approximately 57 minutes,
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while Optimisation Model 2 was solved within the predefined one-hour time limit, resulting in a

gap of 0.38%. The lower (L) and upper bounds (U) for IVI were set to 40% and 60%, respec-

tively, following the recommendations of Alegre et al. (2014). Regarding the parameter α used

in constraints (8.14) and (8.15) in Optimisation Model 1, a sensitivity analysis was performed to

verify the variation of the objective (IV Isum). The results are shown in Figure 8.2. From the rate
dy
dx = 0.0963 in the trendline, we see that the incremental gain in the IV Isum (y axis) is minimal

when varying α (x axis). With this sensitivity analysis, we see that the model is robust and has

minor sensitivity to the value of α . Therefore, α was assumed as 0.5 to allow a certain flexibility

in capital expenditures among the years under analysis.

α IV Isum Number of
Selected Projects

0.2 2.201 23
0.3 2.211 22
0.4 2.221 19
0.5 2.232 23
0.6 2.221 19
0.7 2.249 21

Figure 8.2: Sensitivity analysis for parameter α

The outcomes of Optimisation Models 1 and 2 are identified in this work as Optimal Plans 1

and 2, respectively. Optimisation Model 1 is designed to provide an answer to Research Question

1 (RQ1), while Optimisation Model 2 is formulated to address Research Question 2 (RQ2).

Each one of the plans was designed to reach a different objective. The analysis of models’

outcomes is performed using the average IVI of individual assets for the whole planning period,

the overall IVI for the infrastructure and the IVI for the three different groups of assets: civil work,

equipment and electrical facilities.

A no-investment condition was used for comparison to illustrate the effect on the IVI of post-

poning or avoiding asset investments. In that situation, the company would not invest any capital

in its assets during the period, so the IVI calculation is performed as per the procedure described

in subsection 8.3.2.3, but using xipt equal to 0 in all assets and years.

8.5.1 Determination of IVI at the beginning of the planning project period

Following the methodology described in Subsection 8.3.1, the average IVI for individual assets

and IVI for the infrastructure and category groups can be seen in Table 8.4. The detailed results at

the beginning of the planning horizon (t0) are shown in Table E.1 in Appendix E.2.

From those results, the overall IVI for Jovim PS, with a value of 46%, is currently at an

acceptable level. However, the IVI values for nine assets (out of 21) are below 40%, including all

from the electrical facilities group. This suggests that electrical facilities demand more attention

in terms of asset conservation.
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Table 8.4: IVI values for Jovim PS infrastructure in year t0

Single Asset’s Infrastructure Civil Equipment Electrical
Average work facilities
42.1% 46.0% 62.6% 44.3% 28.4%

8.5.2 Results of optimisation models

The optimal project plans generated from Optimisation Models 1 and 2 are presented in Table 8.5.

The table displays the year of execution for each selected project, considering that, if a project Pip

has been selected, the resulting decision variable xipt equals 1.

Table 8.5: Selected projects for each year of the planning horizon (t1 to t5) from Optimisation
Models 1 and 2

Asset Optimal Plan 1 Optimal Plan 2
Group Project Year Project Year Project Year Project Year
Civil P1a - P1b - P1a - P1b -
work P2a - P2b - P2a - P2b -

P3a t1 P3b - P3a t5 P3b -
Electrical P4a t1 P4b - P4a t1 P4b -
facilities P5a t1 P5b - P5a t4 P5b -

P6a t2 P6b - P6a t2 P6b -
P7a t3 P7b - P7a - P7b t2
P8a t4 P8b - P8a - P8b -
P9a t1 P9b - P9a t1 P9b -
P10a - P10b t3 P10a t1 P10b -
P11a t3 P11b - P11a t1 P11b -
P12a t3 P12b t5 P12a t1 P12b -
P13a t2 P13b t3 P13a - P13b t4

Equipment P14a t2 P14b - P14a t5 P14b -
P15a t1 P15b t4 P15a t1 P15b -
P16a t2 P16b - P16a t4 P16b -
P17a t1 P17b t5 P17a t2 P17b -
P18a t1 P18b t5 P18a t2 P18b -
P19a t5 P19b - P19a - P19b -
P20a - P20b - P20a - P20b -
P21a t5 P21b - P21a - P21b -

Table 8.6 shows the quantity of projects and the capital expenditure along the planning hori-

zon. Optimal Plan 1 includes 23 projects and represents the portfolio that maximises the overall

infrastructure’s IVI during the planning period utilising the available capital of 665,000e. This

plan displays an efficient way to apply the capital, aiming to raise the infrastructure’s IVI.

A total of 15 projects are included in Optimal Plan 2. According to this plan, 488,519e is the

minimum capital necessary to maintain the IVI of the infrastructure above the recommended limit

of 40% and below 60% along all the planning horizon. The outcomes of Optimal Plan 2 show that

it is possible to save 26.5% of the available capital and still maintain the overall IVI within the

desired range.

Note that the investments for ventilation assets coded as P17a and P18a are both planned for t1
in Optimal Plan 1 and for t2 in Optimal Plan 2. The set P17b and P18b was also selected together

for t5 for Optimal Plan 1, but in this case, neither one was selected for Optimal Plan 2. In all the

situations that those pairs of projects could be selected, they were selected together, which means

that they can be managed as a unique project.

Figure 8.3 presents the blox-plot of assets’ IVI values considering a no-investment scenario

and both optimal plans. With no investments applied to assets, the average IVI is 37.0%. Optimal
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Table 8.6: Number of projects and budget per year of the planning horizon of Optimal Plans 1 and
2

Optimal Plan 1 Optimal Plan 2

Year Projects Budget Projects Budget

(No.) (e) (No.) (e)

t1 7 199,331 6 150,531

t2 4 198,656 4 72,000

t3 5 133,062 0 0

t4 2 67,062 3 158,925

t5 5 66,531 2 107,063

Total 23 664,643 15 488,519

Plan 1 can increase the average IVI to 44.5%. This is the maximum possible increment with the

company’s available budget.

In Optimal Plan 2, the average IVI of the individual assets reaches 42.4%, which represents a

5% reduction over the result of Optimal Plan 1, with savings of 26.5% in the capital. The box-plot

for Optimal 2 Plan shows that the data’s median is below 40.0%, meaning that more than half

of the assets present an IVI value lower than 40.0%, even though the infrastructure’s IVI is kept

within the recommended range.

Figure 8.3: Distribution of IVI individual values for each scenario in the planning horizon
(t1 to t5).

Suppose the company sets a more challenging objective to raise the IVI of individual assets

above 40% for the planning period. This scenario was analysed using the alternative constraints

(8.22) detailed in subsection 8.3.2.2. The capital required is 78.6% higher than planned, totalling

1,187,838e. Besides the more significant amount of necessary investments, the companies often

prefer to keep the IVI of the complete infrastructure within the control bounds, instead of targeting

IVI ranges for individual assets. Low-IVI assets can be tolerated, since the companies usually

monitor closely the assets’ performance employing reliable estimates of risk.

The resulting IVI values for the overall infrastructure and equipment groups are presented in

Figure 8.4. The graphs in Figure 8.4 compare the overall IVI and asset group’s IVI in Optimal

Plans 1 and 2, generated from both optimisation models. The comparison is also performed with

a no-investment condition. If the optimal plans and the no-investment scenario are compared, the

graphs show that investments are crucial to maintain the IVI at acceptable levels. If no investments

are performed, the assets’ deterioration will decline the IVI. It can also be noticed that most of the
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time, Optimal Plan 1, with a higher amount of capital invested in asset projects, can keep the IVI

at higher levels than Optimal Plan 2.

(a) Overall IVI (b) Civil Work IVI

(c) Equipment IVI (d) Electrical Facilities IVI

Figure 8.4: Overall and group IVI in different scenarios: zero investment and Optimal Plans 1 and
2.

The overall infrastructure’s IVI is presented in Figure 8.4a. This graph shows that both Optimal

Plans can keep the overall IVI over time at an acceptable level (between 40.0% and 60.0%).

Examining the IVI in the different component groups, no investments were proposed for civil

work assets during the considered time frame, so the IVI for the civil work group decreases and

is identical in all the cases, as shown in Figure 8.4b. Moreover, at the end of t6, it is still at an

adequate level (54.1%).

Figure 8.4c displays the equipment group. As it represents 15 out of 21 assets, the trends

observed for this group are similar to the overall trends observed in Figure 8.4a. The majority

of projects for both optimal plans involve assets from this group. In Optimal Plan 1, this group

presents an acceptable IVI for all years. However, this group presents values of IVI under the

lower bound of 40.0% for t3, t4 and t5 in Optimal Plan 2.

Finally, Figure 8.4d shows that the electrical facilities group’s IVI drops from 28.4% to 12.1%

with no investment in five years, and the available capital in both plans is insufficient to keep the

IVI at an acceptable level. The observed low-IVI levels indicate the necessity to monitor the risks

more closely in electrical facilities.

The considerations about results of IVI for groups of similar components and overall infras-

tructures are frequent in the literature (Alegre et al., 2014; Vieira et al., 2020a,b; Cabrera Rochera
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et al., 2019). Those approaches help to focus managers’ attention on problematic areas and com-

pare different infrastructures. However, a closer assessment of individual assets’ IVI may be useful

to accurately identify areas of significant risks. If a group of assets or infrastructure presents an

acceptable IVI, it does not necessarily mean that there are no potential problems among their

components.

8.5.3 Results of multi-objective optimisation

The genetic algorithm was implemented using Python Programming Language. The average com-

putational time was approximately one hour. It is important to note that the computational times

of the genetic algorithm cannot be directly compared with CPLEX. The genetic algorithm was de-

signed to address a multi-objective optimisation problem, whereas the MILP models solving using

CPLEX address a single objective optimisation problem. As discussed in subsection 8.3.3, besides

generating Optimal Plans 1 and 2, additional project plans were identified using a multi-objective

technique based on NSGA-II. The trade-off between the objectives of Optimisation Models 1 and

2 is presented in Figure 8.5, where Plans A, B, C and D represent the alternate project plans. Those

alternative asset investment plans are made available to decision-makers so that they may find new

possibilities that are more suited to their strategic goals. As seen in Figure 8.5, the alternate plans

represent intermediate solutions between the objectives of Optimal Plans 1 and 2.

Figure 8.5: Objective function values from Optimal Plans 1 and 2 and alternate project plans from
multi-objective optimisation.

The number of projects and capital necessary to implement them in each year are displayed

in Table 8.7. The list of selected projects in Plans A, B, C and D is presented in Table E.2 in

Appendix E.3.

The trade-offs between the optimal solutions for each of the alternative plans, can be obtained

by solving equation (8.30) to determine the weights γ1 j and γ2 j for the linear combination of

optimal values in Optimisation Models 1 and 2, where j represents each of the alternate plans A,

B, C and D. Table 8.8 displays the trade-off values.(
IV Isum

Plan j

Ctotal
Plan j

)
= γ1 j ×

(
IV Isum

opt1

Ctotal
opt1

)
+ γ2 j ×

(
IV Isum

opt2

Ctotal
opt2

)
, j = A,B,C,D. (8.30)
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Table 8.7: Alternate project plans from multi-objective optimisation

Plan A Plan B Plan C Plan D

Year Projects Budget Projects Budget Projects Budget Projects Budget

(No.) (e) (No.) (e) (No.) (e) (No.) (e)

t1 5 127,233 3 149,063 5 196,656 4 186,125

t2 4 190,125 4 182,223 7 161,423 4 183,023

t3 3 73,423 5 83,278 2 75,062 4 75,809

t4 2 68,000 2 68,000 2 68,000 4 108,000

t5 3 90,000 3 76,340 2 68,340 3 71,278

Total 17 548,781 17 558,903 18 569,482 19 624,235

Table 8.8: Trade-off in Alternate Solutions compared to Optimal Solutions

Optimal Plans

Plan j IV Isum
opt Ctotal

opt

Optimal Plan 1 2.232 664,643

Optimal Plan 2 2.107 488,519

Alternate Plans Trade-offs

Plan j IV Isum
Plan j Ctotal

Plan j γ1 j γ2 j

Plan A 2.132 548,781 62.5% 37.5%

Plan B 2.151 558,903 59.0% 41.0%

Plan C 2.162 569,482 53.6% 46.4%

Plan D 2.178 624,235 17.7% 82.3%

The results show that the influence of Optimisation Model 1 is higher in the alternate plans A,

B and C and the influence of Optimisation Model 2 is higher in Plan D. The choice of the solution

to be implemented will depend on the strategic plan defined by the company, based on the priority

assigned to each of the objectives.

8.6 Conclusion

This work provided a novel approach to select capital investment initiatives for asset management

in multi-asset systems, using the Infrastructure Value Index. Developing new formulations that

reflect the impact of investment projects on assets’ conditions made it possible to establish pro-

cedures based on mixed-integer linear programming and evolutionary models and test them using

real-world data from a Portuguese water supply company.

Previous studies have evaluated the effect of investment projects on the Infrastructure Value

Index but have not considered the possibility of improving it by optimal capital allocation. This

work fills this gap in the literature by introducing MILP optimisation models to determine optimal

investment project plans using two distinct objectives: IVI maximisation and capital expenses

minimisation. Furthermore, the trade-offs between the models are discussed and alternate project

plans are generated using a multi-objective approach based on genetic algorithms. The proposed

models can be tailored to each situation by incorporating specific constraints according to the

company’s goals.
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The optimisation models were applied to a real-world case study and the outcomes were dis-

cussed. The results showed that the proposed approach could effectively prioritise investment

projects in assets. The information required to develop the models includes estimating some

parameters for all the project candidates, and the proper characterisation of the assets to define

residual lives, useful lives and replacement costs. This methodology can be generalised to other

sectors where decision-making tools are important to support asset management.

The project parameters, e.g. residual life increment coefficients, decommissioning coeffi-

cients, and project capital expenses can be reasonably determined by the company’s technical

staff. This evaluation is facilitated by their specific knowledge about the assets and can lead to

precise capital allocation forecasts when running the optimisation models. The models’ feasibility

depends on the input project data. For example, in Optimisation Model 2, where a minimum level

of IVI is demanded, the model may be infeasible if the project investments and decommissioning

coefficients are too low. On the other hand, if the parameters are estimated at a too high level,

the resultant investment will not reflect the minimum capital necessary to maintain the IVI at a

certain level. This work considers that a portfolio of potential project candidates is given by the

company, so the determination of optimum levels for project parameters is out of our scope and

can be addressed in future developments.

The proposed optimisation models reinforce the role of the IVI as the leading driver for se-

lecting asset projects. However, some limitations may be present in that approach. One of them

is related to the estimation of risks. A primary objective of any investment plan is to decrease

the risk of asset failures. This assumption is implicitly present in the developed models under the

estimation of service lives since the models assume that lower values of the IVI imply higher risks,

mainly due to the asset’s ageing. However, risks can appear from different sources, under several

circumstances other than ageing affecting assets’ operational conditions. Another limitation con-

cerns the value that potential assets’ renewal or replacement initiatives can add to the business.

Those actions can bring new functionalities, technological advances, or other efficiency gains that

the presented models do not consider.

The IVI is a simple and easily communicable metric, but it does not take into account other

useful aspects in project selection, such as the functional condition of the asset, its structural state,

hydraulic, environmental or customer satisfaction performance. However, despite these limita-

tions, the IVI has the potential to guide investments aimed to enhance infrastructures’ sustainabil-

ity and reliability in a global and generalised manner, providing support for managers that can be

complemented by more detailed analysis.

Future developments may consider new optimisation drivers complementary to those reflected

in the current models. Further research is also needed to address the uncertainties in the IVI

calculation related to key concepts such as replacement costs, depreciation rates, and service life.



CHAPTER 9
Conclusions

This chapter provides the main conclusions drawn from this thesis. Section 9.1 discusses the extent to which
the research objectives were achieved and the primary contributions of this doctoral research. In Section
9.2, the limitations of this research are acknowledged. Section 9.3 highlights the key insights that emerged
from the studies undertaken. Finally, Section 9.4 suggests potential areas for future research.

9.1 Fulfilment of the research objectives

The primary objective of this thesis was to develop innovative models using mathematical pro-

gramming techniques, specifically optimisation and frontier methods, to address management

challenges faced by water utilities. This objective was successfully achieved by developing tools

that tackle cost-efficiency, service quality, and asset management challenges and by applying these

tools in practical cases using real-world data from the water sector.

The thesis consists of five studies, organised into chapters, which involve methodological de-

velopments and practical demonstrations using real data. These studies align with the defined

objective of the thesis, and the accomplishment of the objective through these studies is presented

in chapters 4, 5, 6, 7, and 8. The subsequent paragraphs detail the achievements of each study in

addressing the management challenges faced by water utilities.

Chapter 4 explored the assessment of cost-efficiency of water supply and wastewater utilities

over a five-year period. A method was proposed to guide improvements in cost-efficiency within

the water sector, using DEA models that were applied to a sample of utilities.

Chapter 5 aimed to address the service quality challenge by offering a decision support tool,

based on a BoD model, to evaluate the quality of services provided by the utilities from the per-

spective of customers. The performance trends over a span of six years are analysed.

Chapter 6 provided a method to assess water utilities’ asset management by integrating two

different perspectives that focus on managerial practices and operational results. The proposed

method employs BoD composite indicators in a benchmarking analysis conducted over a five-year

period. This enables utilities to compare their performance over time and against other utilities.

In Chapter 7, the asset management challenge is also addressed, and the main innovative con-

tribution of this chapter is a tool to identify suitable peers and individual targets for benchmarking

asset management performance, using BoD composite indicators.
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Chapter 8 developed a method to select infrastructure capital projects of water utilities, focus-

ing on the asset management challenge as well. This methods employs optimisation techniques,

namely mixed integer linear programming (MILP) and evolutionary algorithms.

The contributions detailed in each chapter validate the achievement of the thesis’s main ob-

jective by providing decision support tools to address the proposed management challenges of the

utilities.

9.2 Limitations of the research

The research presented in this thesis has successfully achieved all the proposed objectives. How-

ever, it is important to acknowledge that there are limitations to the studies conducted. The specific

limitations in each study are discussed in their respective chapters, but some general limitations

are highlighted here.

An important limitation to note in this thesis is the availability and quality of data. The decision

models developed require accurate and comprehensive data for analysis. However, in the water

sector, data collection and recording can often be incomplete or inconsistent, posing challenges to

the application of the models.

In the empirical cases of the studies, the data was obtained from reliable sources such as

regulators or utilities, but it did not always meet the exact requirements for building decision

support tools. For example, in Chapter 4, the metric raw water quality used in the decision model

had to be developed by the regulator as it was not available initially. Additionally, Chapter 6 faced

difficulties due to the limited sample size, and Chapter 5 lacked a transparency metric, highlighting

the limitations posed by the data available.

The stakeholder collaboration varied across the different chapters of the study. The most exten-

sive collaboration occurred in Chapter 4, where close collaboration was established with a water

sector regulatory authority. Additionally, Chapter 8 received validation from the participating util-

ity, AdDP. However, in Chapter 5, the collaboration was limited to consulting water sector experts

during specific stages of the research. In the remaining studies, collaboration with regulators and

utilities was not possible. Incorporating preferences and insights from regulators and utilities in

these studies could have significantly enhanced the accuracy and practicality of the results. By

involving stakeholders closely, a more comprehensive understanding of the industry’s needs and

requirements could have been obtained, leading to more meaningful outcomes.

Overall, while the limitations mentioned above did not significantly impact the achievement

of the proposed objectives, they do provide opportunities for future research and improvements in

the application of decision support tools in the water sector.

9.3 Insights from the illustrative applications

The improvements in methodology demonstrated in this thesis enabled the acquisition of valuable

insights regarding the management of water utilities. Those main insights collected from the
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illustrative applications are presented in the following paragraphs.

Insight 1: Prioritising the collection of comprehensive and reliable data from utilities can
facilitate informed decision-making and yield numerous benefits.

All the studies presented in this thesis highlight the importance of robust data collection and

analysis. Investing in a comprehensive data collection and recording process can provide signifi-

cant benefits by allowing the data to be utilised in decision support tools to generate insights for

both the organisation and the broader sector. However, it is important to note that simply collect-

ing more data does not always lead to better decision-making outcomes. It is critical to identify

the most important data and focus on collecting and analysing those in a structured and efficient

manner. Furthermore, the utilisation of decision support tools can help to streamline data analysis

and identify patterns and trends that may not be immediately apparent through manual analysis.

Insight 2: By combining internal and external benchmarking, organisations can identify
significant opportunities for improvement.

Chapters 4, 5, and 6 demonstrate the effectiveness of combining internal and external bench-

marking to identify improvement opportunities. By using a combination of the utility and year

to form DMUs, these studies allow for comparisons between different utilities as well as the util-

ity’s performance in different years. This approach enables a utility to not only compare itself

with peers but also to evaluate its own performance over time, leading to a more comprehensive

analysis of improvement opportunities. Chapter 4 highlights the effectiveness of this approach, as

cost-efficiency benchmarking using a conditional approach identified improvement opportunities

only within utilities and their own performances in different years, which can be considered a form

of internal benchmarking.

Insight 3: Customer-oriented performance assessments can pinpoint precise opportuni-
ties to enhance quality and improve overall performance.

Chapter 5 highlights the importance of adopting a customer-centric approach to service qual-

ity measurement, which can provide more specific and detailed guidance on where improvements

can be made. By focusing on the customer’s perspective, utilities can pinpoint precise opportu-

nities to enhance quality and improve overall performance. This approach encourages utilities to

continuously improve their services, foster trust and satisfaction among customers.

Insight 4: Implementing a structured asset management system may not yield immediate
improvements in operational performance.

The evaluation of asset management performance was conducted through two different per-

spectives in Chapters 6 and 7: management practices and operational results. This approach

proved to be effective in providing insights into the benefits of investment in infrastructure man-

agement practices over the long term. As highlighted in the literature, investment in infrastructure

management practices takes time to yield tangible outcomes. This finding is further supported by

the empirical studies conducted in these chapters. The results reveal that favourable outcomes in

management practices do not always translate immediately into positive operational results. Thus,

a long-term approach to implementing asset management systems, with continuous monitoring

and evaluation of their effectiveness, is crucial for achieving positive operational results.



184

Insight 5: Management systems and different areas of intervention present significant
impact to utilities’ performance.

In Chapters 4, 6, and 7, management models (concession, delegation, or direct management)

and the typology of intervention areas (rural, urban, semi-urban) were considered as contextual

variables to improve the fairness of comparisons between utilities. The results indicate that these

factors significantly impact utilities’ performance in terms of cost efficiency and asset manage-

ment. Specifically in the case of asset management, both retail (Chapter 7) and wholesale oper-

ations (Chapter 6) were significantly impacted by these contextual variables. Therefore, to gain

a comprehensive understanding of utility performance in these areas, it is important to consider

these factors.

Insight 6: Customised performance targets based on benchmarking exercises using ac-
tual performance data may be more effective in guiding improvements than generic goals.

In Chapter 7, the BoD technique was used to establish performance targets for utilities in terms

of asset management. By comparing the specific targets derived from the analysis with the general

goals suggested by regulatory authorities, we observe that the latter are often overly ambitious

in comparison to the typical performance of the sector. This implies that attaining these generic

goals may not be a practical approach for utilities. The tailored target-setting approach provided

by the BoD tool offers a more effective way for utilities to enhance their performance. By tailoring

targets to each utility’s current level of performance, the tool provides a realistic and achievable

framework for improvement.

Insight 7: Identifying a peer group for benchmarking asset management practices can
provide valuable guidance and recommendations, particularly in a highly fragmented busi-
ness sector.

In Chapter 7, we explore the use of benchmarking to assess asset management performance

in a diverse and fragmented retail water market. To identify suitable peers for comparison and

improvement, we developed a method that provides specific efficient peers for each utility. This

is particularly relevant in a highly fragmented business sector, where identifying a suitable peer

group can be challenging. This approach proves to be valuable in guiding utilities and helping

them identify their most appropriate peers for benchmarking purposes, and gain awareness into

best practices and recommendations for improvement.

Insight 8: Optimisation techniques can be an effective tool to guide investment decisions.
In Chapter 8, we present optimisation tools that were developed to assist with the decision-

making process for defining an investment project portfolio for water systems’ infrastructure. This

model can be a valuable resource in guiding investment decisions, especially when combined with

other methods that can provide additional drivers for selecting the most appropriate project plan.

9.4 Directions to further research

In previous chapters, several directions for future research have been identified. In this section, we

highlight some key features that can guide further investigation in this field. The use of decision
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support tools in water utility management presents a broad range of research possibilities that can

be explored in numerous ways.

One promising avenue for research is to further investigate the impact of contextual variables,

such as management systems and intervention areas, on the performance of utilities. A more

comprehensive understanding of how these factors influence performance can provide valuable

insights for the sector’s management. Additionally, by collecting and analysing necessary infor-

mation to characterise the environment in which utilities operate, other contextual variables could

be evaluated, leading to more effective management of the sector.

Another area for further research is gaining a deeper understanding of the structure of the water

sector. This involves comparing public and private operations, determining optimal operational

size, and deciding on the scope of operations and vertical integration. For example, it remains

unclear whether it is advantageous for a utility to operate in both water supply and sanitation or

provide services to both wholesale and retail markets.

Decision support tools can be more effective when incorporating stakeholder preferences.

Stakeholder feedback can be used to develop more tailored decision support tools that address

the needs of a wide range of stakeholders, including utility management, customers, and regula-

tors.

Additionally, the inclusion of more drivers for investment decisions in infrastructure can com-

plement and expand the model developed using the Infrastructure Value Index, leading to more

precise project portfolios.

Another important area to be incorporated into decision support tools is risk management. Risk

management can help utilities identify and manage potential risks associated with their operations,

such as financial, operational, or environmental risks. This can lead to better decision-making,

improved performance, and increased resiliency.

Decision support tools can also address emerging challenges in the water sector, such as the

increasing need for digitalisation and integration with new connectivity technologies, as well as

integration with environmental issues and the circular economy. By incorporating these challenges

into decision support tools, utilities can ensure they are prepared to tackle the challenges of the

future.

Finally, comparing utility performance in different countries is another promising area for

research. This can help utilities identify best practices in other countries and adapt them to their

own operations, leading to improved performance and efficiency.
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APPENDIX A
Appendix to Chapter 4

A.1 Descriptive statistics

A.1.1 Variables

Table A.1: Descriptive statistics of the variables used in WS MODELS.

Year Variable Mean Standard
deviation Minimum Maximum

2017

xWS
1 12,395,102.16 10,033,834.25 395,495.00 26,460,650.66

yWS
1 63,980,827.14 68,994,925.54 2,151,337.00 229,002,657.80

yWS
2 95,400,689.13 124,276,267.73 133,220.00 411,152,726.57

yWS
3 363,978.80 315,610.54 13,100.00 831,458.00

yWS
4 1,038.84 1,196.51 26.80 3,592.50

zWS
1 2.58 1.04 1.01 4.00

2018

xWS
1 12,279,225.73 9,902,925.74 452,405.58 27,994,392.92

yWS
1 61,546,785.64 65,922,840.17 1,671,349.70 218,116,734.10

yWS
2 75,926,301.82 74,837,040.63 97,320.00 216,991,501.40

yWS
3 363,978.80 315,610.54 13,100.00 831,458.00

yWS
4 1,038.84 1,196.51 26.80 3,592.50

zWS
1 2.62 1.09 1.01 4.00

2019

xWS
1 12,534,473.63 10,031,587.68 434,584.29 28,867,824.39

yWS
1 63,238,860.53 66,926,146.21 2,295,527.00 221,836,249.50

yWS
2 79,291,274.48 78,851,433.83 92,899.28 227,531,526.53

yWS
3 363,978.80 315,610.54 13,100.00 831,458.00

yWS
4 1,038.84 1,196.51 26.80 3,592.50

zWS
1 2.38 1.16 1.00 4.00

2020

xWS
1 12,885,563.17 10,454,720.57 493,640.65 30,304,818.28

yWS
1 63,486,330.01 66,564,159.78 1,853,111.00 221,124,927.50

yWS
2 87,498,453.77 91,680,391.39 90,282.00 291,069,399.21

yWS
3 363,978.80 315,610.54 13,100.00 831,458.00

yWS
4 1,038.84 1,196.51 26.80 3,592.50

zWS
1 2.35 1.16 1.00 4.00

2021

xWS
1 12,220,446.01 9,690,404.96 462,896.00 26,894,013.72

yWS
1 63,376,911.69 66,530,277.81 1,974,214.00 221,716,594.60

yWS
2 82,765,968.47 79,201,694.49 80,448.00 238,510,635.86

yWS
3 363,978.80 315,610.54 13,100.00 831,458.00

yWS
4 1,038.84 1,196.51 26.80 3,592.50

zWS
1 2.38 1.17 1.00 4.00
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Table A.2: Descriptive statistics of the variables used in WT MODELS.

Year Variable Mean Standard
deviation Minimum Maximum

2017

xWT
1 13,436,619.49 13,472,594.14 412,369.17 40,721,908.47

yWT
1 42,102,229.49 52,517,519.75 4,271,902.30 183,032,070.20

yWT
2 39,564,638.97 49,220,985.12 198,887.00 149,159,693.48

yWT
3 321,232.10 332,894.80 17,489.00 1,127,557.00

yWT
4 523.84 530.60 31.20 1,645.00

zWT
1 3.59 1.51 1.00 5.00

2018

xWT
1 13,965,105.88 13,493,353.61 381,752.16 40,073,630.51

yWT
1 47,561,707.67 55,896,640.65 4,542,814.00 194,233,441.50

yWT
2 29,316,932.93 48,280,960.23 278,201.00 152,651,482.29

yWT
3 321,232.10 332,894.80 17,489.00 1,127,557.00

yWT
4 523.84 530.60 31.20 1,645.00

zWT
1 3.59 1.51 1.00 5.00

2019

xWT
1 14,622,204.20 14,300,805.38 1,235,023.21 43,327,904.80

yWT
1 46,021,939.12 53,178,253.80 4,241,844.20 185,062,474.90

yWT
2 46,484,766.47 65,437,777.76 286,984.00 184,199,337.79

yWT
3 321,903.70 332,220.02 24,205.00 1,127,557.00

yWT
4 520.90 533.55 28.00 1,645.00

zWT
1 3.99 1.26 1.00 5.00

2020

xWT
1 14,013,753.63 13,757,954.24 472,208.75 45,183,937.02

yWT
1 44,040,373.08 51,521,976.35 4,908,142.00 193,585,060.80

yWT
2 52,290,736.79 80,634,323.06 311,960.00 275,252,931.11

yWT
3 296,744.08 313,109.01 17,489.00 1,127,557.00

yWT
4 479.03 500.67 28.00 1,645.00

zWT
1 3.65 1.44 1.00 5.00

2021

xWT
1 14,787,598.11 14,392,195.05 507,821.70 47,817,730.33

yWT
1 46,818,113.98 51,478,321.80 4,843,681.00 184,164,595.40

yWT
2 45,322,787.43 59,286,303.73 327,424.00 185,498,401.74

yWT
3 296,744.08 313,109.01 174,89.00 1,127,557.00

yWT
4 479.03 500.67 28.00 1,645.00

zWT
1 3.65 1.44 1.00 5.00
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Table A.3: Management model and typology of intervention area per model.

Descriptive
contextual
variable

Description Relative frequency

zWS
2

Concession 70%

Delegation 30%

zWS
3

Predominantly rural area 30%

Moderately urban area 50%

Predominantly urban area 20%

zWT
2

Concession 83%

Delegation 8%

Direct management 8%

zWT
3

Predominantly rural area 25%

Moderately urban area 50%

Predominantly urban area 25%
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A.1.2 Efficiency scores

Table A.4: Descriptive statistics of the efficiency scores generated by WS MODELS.

Model Sample perspective Type Mean Standard deviation Minimum Maximum

WS-RU

Full - 1.0660 0.2650 0.8731 2.5116

MANAGEMENT MODEL

Concession 1.0457 0.1826 0.8901 1.9882

Delegation 1.1132 0.4017 0.8731 2.5116

Direct management - - - -

TYPOLOGY OF THE INTERVENTION AREA

Predominantly rural area 1.2379 0.4383 0.9056 2.5116

Moderately urban area 1.0012 0.0620 0.8901 1.2176

Predominantly urban area 0.9702 0.0444 0.8731 1.0002

WS-RC

Full - 0.9835 0.0299 0.8731 1.0000

MANAGEMENT MODEL

Concession 0.9868 0.0247 0.9043 1.0000

Delegation 0.9757 0.0394 0.8731 1.0000

Direct management - - - -

TYPOLOGY OF THE INTERVENTION AREA

Predominantly rural area 0.9916 0.0188 0.9388 1.0000

Moderately urban area 0.9832 0.0274 0.9043 1.0000

Predominantly urban area 0.9719 0.0452 0.8731 1.0000

Table A.5: Descriptive statistics of the efficiency scores generated by WT MODELS.

Model Sample perspective Type Mean Standard deviation Minimum Maximum

WT-RU

Full - 1.0837 0.3332 0.8266 3.0230

MANAGEMENT MODEL

Concession 1.0509 0.3146 0.8266 3.0230

Delegation 1.0520 0.0327 1.0285 1.1084

Direct management 1.6406 0.4701 1.1009 1.9607

TYPOLOGY OF THE INTERVENTION AREA

Predominantly rural area 1.2464 0.5277 0.9787 3.0230

Moderately urban area 1.0576 0.2627 0.8266 1.9607

Predominantly urban area 0.9755 0.0578 0.8380 1.0474

WT-RC

Full - 0.9881 0.0321 0.8380 1.0000

MANAGEMENT MODEL

Concession 0.9861 0.0344 0.8380 1.0000

Delegation 1.0000 0.0000 1.0000 1.0000

Direct management 1.0000 0.0000 1.0000 1.0000

TYPOLOGY OF THE INTERVENTION AREA

Predominantly rural area 0.9930 0.0204 0.9258 1.0000

Moderately urban area 0.9984 0.0061 0.9703 1.0000

Predominantly urban area 0.9664 0.0523 0.8380 1.0000



APPENDIX B
Appendix to Chapter 5

B.1 Results for water supply utilities - WUSQI and contributions of
each dimension

Table B.1: Water supply utilities - WUSQI and contributions of each dimension.

Relative importance of WUSQI dimensions
Company Year CI Inclusiveness Reliability Safety Responsiveness Transparency

AdSA

2016 0.952 80.0% 5.0% 5.0% 5.0% 5.0%
2017 0.958 80.0% 5.0% 5.0% 5.0% 5.0%
2018 0.957 80.0% 5.0% 5.0% 5.0% 5.0%
2019 0.958 80.0% 5.0% 5.0% 5.0% 5.0%
2020 0.959 80.0% 5.0% 5.0% 5.0% 5.0%
2021 0.955 80.0% 5.0% 5.0% 5.0% 5.0%

AdA

2016 0.972 10.0% 5.0% 75.0% 5.0% 5.0%
2017 0.970 10.0% 5.0% 75.0% 5.0% 5.0%
2018 0.846 80.0% 5.0% 5.0% 5.0% 5.0%
2019 0.984 10.0% 5.0% 65.0% 15.0% 5.0%
2020 0.977 10.0% 5.0% 75.0% 5.0% 5.0%
2021 0.986 10.0% 5.0% 65.0% 15.0% 5.0%

AdCL

2016 0.965 10.0% 5.0% 75.0% 5.0% 5.0%
2017 0.978 10.0% 5.0% 65.0% 15.0% 5.0%
2018 0.982 70.0% 5.0% 5.0% 15.0% 5.0%
2019 0.856 80.0% 5.0% 5.0% 5.0% 5.0%
2020 0.875 70.0% 5.0% 5.0% 15.0% 5.0%
2021 0.875 70.0% 5.0% 5.0% 15.0% 5.0%

AdDP

2017 0.993 70.0% 5.0% 5.0% 15.0% 5.0%
2018 0.998 70.0% 5.0% 5.0% 15.0% 5.0%
2019 0.995 70.0% 5.0% 5.0% 15.0% 5.0%
2020 0.996 70.0% 5.0% 5.0% 15.0% 5.0%
2021 1.000 70.0% 5.0% 5.0% 15.0% 5.0%

AdN

2016 0.884 10.0% 5.0% 75.0% 5.0% 5.0%
2017 0.942 10.0% 5.0% 75.0% 5.0% 5.0%
2018 0.840 10.0% 5.0% 65.0% 15.0% 5.0%
2019 0.961 10.0% 5.0% 65.0% 15.0% 5.0%
2020 0.961 10.0% 5.0% 65.0% 15.0% 5.0%
2021 0.966 10.0% 5.0% 65.0% 15.0% 5.0%

AdVT

2016 0.901 10.0% 5.0% 65.0% 15.0% 5.0%
2017 0.840 10.0% 5.0% 65.0% 15.0% 5.0%
2018 0.841 10.0% 5.0% 65.0% 15.0% 5.0%
2019 0.900 10.0% 5.0% 65.0% 15.0% 5.0%
2020 0.902 10.0% 5.0% 65.0% 15.0% 5.0%
2021 0.842 10.0% 5.0% 65.0% 15.0% 5.0%

AdVouga

2016 0.938 10.0% 5.0% 75.0% 5.0% 5.0%
2017 0.935 10.0% 5.0% 75.0% 5.0% 5.0%
2018 0.945 10.0% 5.0% 5.0% 5.0% 75.0%
2019 0.945 10.0% 5.0% 5.0% 5.0% 75.0%
2020 0.943 10.0% 5.0% 5.0% 5.0% 75.0%
2021 0.941 10.0% 5.0% 5.0% 5.0% 75.0%

AgDA

2016 0.856 70.0% 5.0% 5.0% 15.0% 5.0%
2017 0.843 70.0% 5.0% 5.0% 15.0% 5.0%
2018 0.841 70.0% 5.0% 5.0% 15.0% 5.0%
2019 0.886 80.0% 5.0% 5.0% 5.0% 5.0%
2020 0.896 70.0% 5.0% 5.0% 15.0% 5.0%
2021 0.917 80.0% 5.0% 5.0% 5.0% 5.0%

EPAL

2016 0.851 10.0% 5.0% 65.0% 15.0% 5.0%
2017 0.850 10.0% 5.0% 65.0% 15.0% 5.0%
2018 0.976 10.0% 5.0% 65.0% 15.0% 5.0%
2019 0.975 10.0% 5.0% 65.0% 15.0% 5.0%
2020 0.972 10.0% 5.0% 65.0% 15.0% 5.0%
2021 0.974 10.0% 5.0% 65.0% 15.0% 5.0%

ICOVI

2016 0.939 80.0% 5.0% 5.0% 5.0% 5.0%
2017 0.944 80.0% 5.0% 5.0% 5.0% 5.0%
2018 0.944 80.0% 5.0% 5.0% 5.0% 5.0%
2019 0.945 80.0% 5.0% 5.0% 5.0% 5.0%
2020 0.946 80.0% 5.0% 5.0% 5.0% 5.0%
2021 0.830 80.0% 5.0% 5.0% 5.0% 5.0%

191



192

B.2 Results for wastewater utilities - WUSQI and contributions of
each dimension.

Table B.2: Wastewater utilities - WUSQI and contributions of each dimension.

Relative importance of WUSQI dimensions
Company Year CI Inclusiveness Reliability Safety Responsiveness Transparency

AdSerra

2016 0.992 35.10% 38.97% 5.00% 5.09% 15.83%
2017 0.997 34.08% 39.03% 5.65% 5.10% 16.14%
2018 1.000 34.08% 39.03% 5.65% 5.10% 16.14%
2019 0.999 34.08% 39.03% 5.65% 5.10% 16.14%
2020 1.000 10.00% 38.30% 5.00% 5.50% 41.20%
2021 1.000 35.10% 38.97% 5.00% 5.09% 15.83%

AdSA

2016 1.000 37.12% 38.57% 5.00% 5.00% 14.31%
2017 1.000 32.57% 46.37% 5.00% 5.00% 11.06%
2018 0.932 10.00% 5.00% 5.00% 5.00% 75.00%
2019 1.000 40.83% 44.17% 5.00% 5.00% 5.00%
2020 0.996 40.83% 44.17% 5.00% 5.00% 5.00%
2021 0.922 80.00% 5.00% 5.00% 5.00% 5.00%

AdA

2016 0.906 80.00% 5.00% 5.00% 5.00% 5.00%
2017 0.894 70.00% 5.00% 5.00% 15.00% 5.00%
2018 0.908 80.00% 5.00% 5.00% 5.00% 5.00%
2019 0.872 10.00% 5.00% 75.00% 5.00% 5.00%
2020 0.888 10.00% 5.00% 65.00% 15.00% 5.00%
2021 0.881 10.00% 5.00% 75.00% 5.00% 5.00%

AdCL

2016 0.950 80.00% 5.00% 5.00% 5.00% 5.00%
2017 0.941 10.00% 5.00% 75.00% 5.00% 5.00%
2018 0.917 10.00% 5.00% 75.00% 5.00% 5.00%
2019 0.928 10.00% 5.00% 75.00% 5.00% 5.00%
2020 0.929 10.00% 5.00% 65.00% 15.00% 5.00%
2021 0.886 70.00% 5.00% 5.00% 15.00% 5.00%

AdN

2016 0.902 10.00% 5.00% 75.00% 5.00% 5.00%
2017 0.890 10.00% 5.00% 75.00% 5.00% 5.00%
2018 0.919 10.00% 5.00% 65.00% 15.00% 5.00%
2019 0.915 10.00% 5.00% 65.00% 15.00% 5.00%
2020 0.911 10.00% 5.00% 65.00% 15.00% 5.00%
2021 0.904 10.00% 5.00% 65.00% 15.00% 5.00%

AdTA

2016 0.929 80.00% 5.00% 5.00% 5.00% 5.00%
2017 0.949 10.00% 5.00% 65.00% 15.00% 5.00%
2018 0.935 70.00% 5.00% 5.00% 15.00% 5.00%
2019 0.929 10.00% 5.00% 65.00% 15.00% 5.00%
2020 0.925 70.00% 5.00% 5.00% 15.00% 5.00%
2021 0.951 70.00% 5.00% 5.00% 15.00% 5.00%

AdVT

2017 0.959 10.00% 31.46% 38.54% 15.00% 5.00%
2018 0.939 10.00% 5.00% 65.00% 15.00% 5.00%
2019 0.993 11.68% 32.12% 36.20% 15.00% 5.00%
2021 1.000 11.68% 32.12% 36.20% 15.00% 5.00%
2020 0.986 10.25% 40.55% 5.00% 15.00% 29.21%

AgDA

2016 0.891 70.00% 5.00% 5.00% 15.00% 5.00%
2017 0.874 70.00% 5.00% 5.00% 15.00% 5.00%
2018 0.846 70.00% 5.00% 5.00% 15.00% 5.00%
2019 0.849 70.00% 5.00% 5.00% 15.00% 5.00%
2020 0.800 80.00% 5.00% 5.00% 5.00% 5.00%
2021 0.878 70.00% 5.00% 5.00% 15.00% 5.00%

AMTSM

2016 1.000 77.87% 5.00% 5.00% 5.00% 7.13%
2017 0.845 74.76% 5.00% 6.28% 5.00% 8.96%
2018 0.836 74.30% 5.00% 5.00% 5.00% 10.70%
2019 0.828 80.00% 5.00% 5.00% 5.00% 5.00%
2020 0.927 80.00% 5.00% 5.00% 5.00% 5.00%
2021 1.000 80.00% 5.00% 5.00% 5.00% 5.00%

SIMARSUL

2017 0.917 70.00% 5.00% 5.00% 15.00% 5.00%
2018 0.923 70.00% 5.00% 5.00% 15.00% 5.00%
2019 0.892 70.00% 5.00% 5.00% 15.00% 5.00%
2020 0.878 70.00% 5.00% 5.00% 15.00% 5.00%
2021 0.912 70.00% 5.00% 5.00% 15.00% 5.00%

SIMDOURO

2017 0.939 10.00% 5.00% 75.00% 5.00% 5.00%
2018 0.954 10.00% 29.51% 50.49% 5.00% 5.00%
2019 0.939 10.00% 5.00% 75.00% 5.00% 5.00%
2020 1.000 10.00% 29.51% 50.49% 5.00% 5.00%
2021 0.958 10.00% 5.00% 65.00% 15.00% 5.00%

TRATAVE

2016 0.970 80.00% 5.00% 5.00% 5.00% 5.00%
2017 0.988 70.00% 5.00% 5.00% 15.00% 5.00%
2018 0.988 70.00% 5.00% 5.00% 15.00% 5.00%
2019 0.991 70.00% 5.00% 5.00% 15.00% 5.00%
2020 0.996 10.00% 5.00% 5.00% 5.00% 75.00%
2021 1.000 49.03% 35.97% 5.00% 5.00% 5.00%



APPENDIX C
Appendix to Chapter 6

C.1 Composite indicators (CIs) and categories for all wholesale wa-
ter utilities in each year

Table C.1: CIs and categories for all wholesale water utilities in each year

Year Company ID Company Category Deterministic CI Robust CI Robust Conditional CI
RISI AMMI RISI AMMI RISI AMMI

2016 A1 Águas de Santo André Soldier 0.713 0.764 0.732 0.770 0.918 0.823
A2 Águas do Algarve Star 0.854 0.978 0.883 0.979 0.928 0.998
A4 Águas do Centro Litoral Infant 0.724 0.735 0.750 0.740 0.771 0.750
A5 Águas do Norte Infant 0.823 0.841 0.846 0.848 0.888 0.880
A6 Águas do Vale do Tejo Soldier 0.803 0.851 0.836 0.852 1.001 0.868
A7 Águas do Vouga Infant 0.823 0.602 0.853 0.606 0.893 0.615
A8 Águas Públicas do Alentejo Infant 0.754 0.709 0.818 0.714 0.754 0.842
A9 EPAL Learner 0.764 0.993 0.788 0.996 0.911 0.999
A10 ICOVI Infant 0.665 0.670 0.686 0.676 0.667 0.794

2017 A1 Águas de Santo André Infant 0.653 0.764 0.663 0.770 0.765 0.822
A2 Águas do Algarve Star 0.858 0.978 0.887 0.979 0.933 0.998
A3 Águas do Douro e Paiva Star 0.811 0.891 0.840 0.898 0.974 0.917
A4 Águas do Centro Litoral Learner 0.775 0.918 0.794 0.925 0.826 0.937
A5 Águas do Norte Star 0.874 0.935 0.908 0.942 0.987 0.954
A6 Águas do Vale do Tejo Soldier 0.801 0.859 0.838 0.860 1.009 0.876
A7 Águas do Vouga Infant 0.821 0.708 0.855 0.708 0.885 0.722
A8 Águas Públicas do Alentejo Infant 0.772 0.734 0.831 0.739 0.773 0.872
A9 EPAL Star 0.787 0.993 0.824 0.996 0.956 0.999
A10 ICOVI Infant 0.877 0.703 0.936 0.709 0.877 0.835

2018 A1 Águas de Santo André Infant 0.659 0.764 0.671 0.770 0.790 0.822
A2 Águas do Algarve Star 0.865 0.978 0.904 0.979 0.950 0.998
A3 Águas do Douro e Paiva Star 0.793 1.000 0.820 1.000 0.938 1.000
A4 Águas do Centro Litoral Infant 0.769 0.881 0.788 0.887 0.819 0.898
A5 Águas do Norte Learner 0.816 0.935 0.843 0.942 0.908 0.954
A6 Águas do Vale do Tejo Infant 0.776 0.860 0.799 0.860 0.855 0.884
A7 Águas do Vouga Infant 0.861 0.866 0.928 0.873 0.913 0.887
A8 Águas Públicas do Alentejo Soldier 0.939 0.738 0.988 0.744 0.940 0.876
A9 EPAL Star 0.791 0.993 0.827 0.996 0.960 0.999
A10 ICOVI Learner 0.695 0.760 0.752 0.765 0.734 0.902

2019 A1 Águas de Santo André Infant 0.637 0.802 0.646 0.808 0.733 0.863
A2 Águas do Algarve Star 0.880 0.979 0.914 0.980 0.995 0.999
A3 Águas do Douro e Paiva Star 0.809 1.000 0.832 1.000 0.942 1.000
A4 Águas do Centro Litoral Learner 0.788 0.904 0.810 0.911 0.842 0.923
A5 Águas do Norte Star 0.826 0.981 0.855 0.988 0.939 1.000
A6 Águas do Vale do Tejo Infant 0.778 0.862 0.799 0.863 0.863 0.894
A7 Águas do Vouga Soldier 0.880 0.867 0.947 0.875 0.922 0.894
A8 Águas Públicas do Alentejo Soldier 1.000 0.738 1.046 0.744 1.001 0.879
A9 EPAL Star 0.799 0.993 0.834 0.996 0.963 0.999
A10 ICOVI Learner 0.786 0.801 0.871 0.808 0.833 0.949

2020 A1 Águas de Santo André Infant 0.660 0.825 0.672 0.832 0.833 0.885
A2 Águas do Algarve Star 0.898 0.979 0.932 0.980 1.002 0.999
A3 Águas do Douro e Paiva Star 0.801 1.000 0.823 1.000 0.929 1.000
A4 Águas do Centro Litoral Learner 0.778 0.896 0.799 0.902 0.831 0.914
A5 Águas do Norte Star 0.811 0.981 0.839 0.988 0.922 1.000
A6 Águas do Vale do Tejo Soldier 0.801 0.862 0.836 0.863 0.997 0.894
A7 Águas do Vouga Star 1.000 0.869 1.138 0.876 1.057 0.901
A8 Águas Públicas do Alentejo Infant 0.818 0.724 0.850 0.730 0.819 0.861
A9 EPAL Star 0.775 1.000 0.807 1.004 0.932 1.000
A10 ICOVI Infant 0.710 0.703 0.776 0.709 0.767 0.836
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APPENDIX D
Appendix to Chapter 7

D.1 Composite indicators (CIs) for all retail water utilities in 2020

Table D.1: CIs and categories for all retail water utilities in 2020.

Utility ID Utility Category
Deterministic CI Robust CI Robust Conditional CI
RISI AMMI RISI AMMI RISI AMMI

B1 AGERE STAR 0.961 0.895 1.004 0.896 0.997 0.897
B2 Águas da Azambuja LEARNER 0.665 0.705 0.694 0.709 0.849 0.997
B3 Águas da Covilhã STAR 0.735 0.715 0.771 0.716 0.909 0.743
B4 Águas da Figueira STAR 0.938 1.000 1.018 1.002 1.000 1.000
B5 Águas da Região de Aveiro STAR 0.706 0.930 0.761 0.931 0.866 0.939
B6 Águas da Teja STAR 0.767 0.730 0.922 0.731 0.998 0.817
B7 Águas de Alenquer LEARNER 0.792 0.980 0.831 0.985 0.836 1.000
B8 Águas de Barcelos LEARNER 0.607 0.980 0.819 0.982 0.850 0.980
B9 Águas de Carrazeda STAR 0.825 0.675 0.846 0.675 0.993 0.743
B10 Águas de Cascais LEARNER 0.747 0.990 0.772 0.994 0.854 0.995
B11 Águas de Coimbra STAR 0.824 0.955 1.013 0.956 1.000 0.970
B12 Águas de Gaia LEARNER 0.730 0.885 0.741 0.886 0.737 0.887
B13 Águas de Gondomar STAR 1.000 1.000 1.051 1.003 1.000 1.000
B14 Águas de Ourém STAR 0.839 0.850 0.876 0.851 0.911 0.850
B15 Águas de Paços de Ferreira STAR 0.751 0.825 0.948 0.833 0.999 0.839
B16 Águas de Paredes STAR 1.000 0.975 1.276 0.976 1.000 0.975
B17 Águas de S. João INFANT 0.750 0.580 0.768 0.580 0.790 0.593
B18 Águas de Santarém STAR 0.797 0.955 0.833 0.960 0.976 0.998
B19 Águas de Santo André STAR 1.000 0.820 1.012 0.821 1.000 0.904
B20 Águas de Valongo STAR 0.747 0.975 0.818 0.976 0.868 0.975
B21 Águas de Vila Real de Santo António LEARNER 0.629 0.865 0.670 0.866 0.717 0.865
B22 Águas do Alto Minho STAR 0.590 0.715 0.661 0.716 0.976 0.746
B23 Águas do Baixo Mondego e Gândara LEARNER 0.539 0.720 0.563 0.721 0.664 0.745
B24 Águas do Interior - Norte SOLDIER 0.699 0.660 0.751 0.661 0.873 0.688
B25 Águas do Lena STAR 0.785 0.845 0.872 0.846 0.997 0.995
B26 Águas do Marco INFANT 0.536 0.735 0.591 0.736 0.797 0.735
B27 Águas do Norte LEARNER 0.537 0.770 0.569 0.771 0.713 0.825
B28 Águas do Planalto STAR 1.000 0.920 1.057 0.925 1.000 0.927
B29 Águas do Porto STAR 1.000 0.985 1.038 0.986 1.000 0.987
B30 Águas do Ribatejo STAR 0.818 0.740 0.844 0.741 0.956 0.768
B31 Águas do Sado STAR 0.797 0.950 0.820 0.956 0.896 0.956
B32 AMBIOLHÃO INFANT 0.638 0.665 0.646 0.665 0.678 0.675
B33 Aquaelvas SOLDIER 0.768 0.470 0.782 0.470 0.976 0.517
B34 Aquafundalia SOLDIER 0.642 0.440 0.731 0.440 0.972 0.492
B35 Aquamaior STAR 0.767 0.815 0.811 0.816 0.988 0.896
B36 Aquanena STAR 0.814 0.870 0.879 0.871 0.969 0.922
B37 CARTÁGUA INFANT 0.532 0.555 0.546 0.555 0.715 0.589
B38 CM de Aguiar da Beira INFANT 0.534 0.375 0.550 0.375 0.613 0.422
B39 CM de Alandroal LEARNER 0.573 0.840 0.640 0.841 0.811 0.963
B40 CM de Albufeira LEARNER 0.533 0.805 0.569 0.810 0.734 0.961
B41 CM de Alcácer do Sal INFANT 0.547 0.425 0.590 0.425 0.636 0.448
B42 CM de Alcochete INFANT 0.699 0.480 0.708 0.480 0.746 0.555
B43 CM de Alcoutim STAR 0.637 0.765 0.786 0.766 0.984 0.824
B44 CM de Alfândega da Fé STAR 0.620 0.990 0.652 0.991 0.872 1.001
B45 CM de Alijó INFANT 0.532 0.265 0.559 0.265 0.534 0.271
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Utility ID Utility Category
Deterministic CI Robust CI Robust Conditional CI
RISI AMMI RISI AMMI RISI AMMI

B46 CM de Aljezur INFANT 0.532 0.445 0.575 0.445 0.652 0.495
B47 CM de Aljustrel LEARNER 0.547 0.780 0.564 0.781 0.600 0.822
B48 CM de Almeida INFANT 0.535 0.465 0.672 0.465 0.631 0.522
B49 CM de Almodôvar SOLDIER 0.632 0.595 0.725 0.595 0.955 0.668
B50 CM de Alter do Chão INFANT 0.554 0.295 0.613 0.295 0.791 0.331
B51 CM de Alvito LEARNER 0.539 0.730 0.586 0.731 0.700 0.820
B52 CM de Amares SOLDIER 0.924 0.625 1.024 0.626 0.995 0.636
B53 CM de Anadia INFANT 0.533 0.510 0.539 0.510 0.560 0.547
B54 CM de Arganil LEARNER 0.787 0.715 0.799 0.716 0.826 0.868
B55 CM de Armamar INFANT 0.532 0.510 0.555 0.510 0.648 0.518
B56 CM de Arraiolos INFANT 0.532 0.455 0.582 0.455 0.746 0.510
B57 CM de Arronches INFANT 0.532 0.245 0.552 0.245 0.667 0.275
B58 CM de Arruda dos Vinhos LEARNER 0.638 0.840 0.644 0.841 0.676 0.916
B59 CM de Avis SOLDIER 0.539 0.465 0.643 0.465 0.924 0.522
B60 CM de Barrancos SOLDIER 1.000 0.495 1.114 0.495 1.009 0.556
B61 CM de Barreiro STAR 0.787 1.000 0.839 1.000 0.971 1.000
B62 CM de Belmonte INFANT 0.532 0.535 0.537 0.535 0.576 0.601
B63 CM de Bombarral STAR 0.878 0.930 0.996 0.931 1.005 0.996
B64 CM de Borba INFANT 0.535 0.455 0.551 0.455 0.576 0.575
B65 CM de Boticas SOLDIER 1.000 0.585 1.064 0.586 1.002 0.594
B66 CM de Bragança STAR 0.849 1.000 0.959 1.002 0.977 1.000
B67 CM de Cadaval LEARNER 0.533 0.790 0.558 0.791 0.636 0.995
B68 CM de Castelo de Paiva INFANT 0.533 0.350 0.548 0.350 0.558 0.357
B69 CM de Castelo de Vide INFANT 0.548 0.330 0.587 0.330 0.634 0.371
B70 CM de Castro Daire INFANT 0.529 0.365 0.532 0.367 0.542 0.595
B71 CM de Castro Marim INFANT 0.557 0.575 0.711 0.576 0.822 0.635
B72 CM de Castro Verde INFANT 0.534 0.495 0.580 0.495 0.580 0.522
B73 CM de Celorico da Beira INFANT 0.532 0.465 0.575 0.465 0.611 0.521
B74 CM de Chaves LEARNER 0.575 0.855 0.586 0.856 0.651 0.918
B75 CM de Condeixa-a-Nova SOLDIER 1.000 0.555 1.036 0.556 1.003 0.595
B76 CM de Constância LEARNER 0.532 0.680 0.569 0.681 0.611 0.762
B77 CM de Crato INFANT 0.532 0.460 0.552 0.460 0.604 0.516
B78 CM de Cuba SOLDIER 0.539 0.550 0.637 0.550 0.872 0.617
B79 CM de Entroncamento LEARNER 0.532 0.710 0.552 0.711 0.664 0.846
B80 CM de Espinho LEARNER 0.684 0.775 0.692 0.777 0.856 0.902
B81 CM de Estremoz SOLDIER 0.727 0.700 0.735 0.701 0.881 0.738
B82 CM de Évora INFANT 0.601 0.360 0.721 0.360 0.653 0.376
B83 CM de Felgueiras INFANT 0.700 0.595 0.725 0.595 0.774 0.598
B84 CM de Ferreira do Alentejo STAR 0.722 0.885 0.777 0.886 0.957 0.934
B85 CM de Figueira de Castelo Rodrigo INFANT 0.622 0.660 0.648 0.661 0.842 0.739
B86 CM de Fornos de Algodres LEARNER 0.539 0.695 0.617 0.696 0.667 0.968
B87 CM de Fronteira INFANT 0.532 0.560 0.552 0.560 0.584 0.628
B88 CM de Gavião STAR 0.533 0.700 0.592 0.701 0.919 0.786
B89 CM de Golegã INFANT 0.688 0.425 0.703 0.425 0.803 0.477
B90 CM de Gouveia INFANT 0.532 0.260 0.564 0.260 0.674 0.279
B91 CM de Grândola STAR 0.604 0.930 0.874 0.931 0.980 0.981
B92 CM de Guarda INFANT 0.532 0.395 0.552 0.395 0.572 0.419
B93 CM de Lagoa INFANT 0.533 0.620 0.550 0.621 0.644 0.656
B94 CM de Lagos SOLDIER 0.818 0.595 0.839 0.596 0.919 0.629
B95 CM de Lamego INFANT 0.532 0.405 0.569 0.405 0.766 0.434
B96 CM de Loulé INFANT 0.531 0.445 0.540 0.445 0.570 0.472
B97 CM de Lourinhã LEARNER 0.532 0.785 0.582 0.786 0.646 0.842
B98 CM de Lousada SOLDIER 1.000 0.165 1.079 0.165 1.000 0.177
B99 CM de Macedo de Cavaleiros LEARNER 0.740 0.820 0.748 0.821 0.800 0.833
B100 CM de Mangualde STAR 0.713 0.755 1.131 0.756 0.999 0.810
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Utility ID Utility Category
Deterministic CI Robust CI Robust Conditional CI
RISI AMMI RISI AMMI RISI AMMI

B101 CM de Manteigas INFANT 0.530 0.505 0.534 0.505 0.547 0.568
B102 CM de Marinha Grande STAR 0.761 0.880 0.825 0.881 0.996 0.934
B103 CM de Marvão LEARNER 0.530 0.375 0.535 0.377 0.571 0.986
B104 CM de Mealhada SOLDIER 0.616 0.595 0.688 0.596 0.894 0.702
B105 CM de Mêda INFANT 0.603 0.415 0.672 0.415 0.765 0.467
B106 CM de Melgaço STAR 0.927 0.820 1.039 0.821 1.000 0.833
B107 CM de Mértola LEARNER 0.656 0.655 0.821 0.655 0.821 0.779
B108 CM de Miranda do Corvo SOLDIER 0.754 0.490 0.861 0.490 0.994 0.525
B109 CM de Miranda do Douro INFANT 0.532 0.580 0.556 0.580 0.537 0.589
B110 CM de Mirandela INFANT 0.532 0.525 0.549 0.525 0.535 0.534
B111 CM de Mogadouro SOLDIER 1.000 0.430 1.060 0.430 1.001 0.438
B112 CM de Moimenta da Beira INFANT 0.590 0.260 0.593 0.260 0.605 0.265
B113 CM de Moita INFANT 0.614 0.680 0.630 0.681 0.848 0.680
B114 CM de Monção INFANT 0.723 0.575 0.734 0.575 0.778 0.586
B115 CM de Mondim de Basto SOLDIER 0.855 0.265 1.093 0.265 1.004 0.271
B116 CM de Monforte INFANT 0.529 0.395 0.530 0.395 0.541 0.443
B117 CM de Montalegre SOLDIER 0.615 0.215 0.661 0.215 0.914 0.222
B118 CM de Montemor-o-Novo STAR 0.763 0.750 0.796 0.751 0.975 0.790
B119 CM de Mora STAR 1.000 0.815 1.090 0.816 1.014 0.996
B120 CM de Moura INFANT 0.531 0.510 0.537 0.510 0.556 0.537
B121 CM de Mourão INFANT 0.532 0.635 0.548 0.636 0.606 0.719
B122 CM de Nelas LEARNER 0.566 0.830 0.587 0.831 0.657 0.890
B123 CM de Nisa SOLDIER 0.926 0.225 1.029 0.225 1.010 0.252
B124 CM de Óbidos INFANT 0.532 0.650 0.558 0.650 0.599 0.697
B125 CM de Odemira LEARNER 0.590 0.945 0.614 0.946 0.674 0.999
B126 CM de Oleiros LEARNER 0.590 0.755 0.675 0.756 0.800 0.846
B127 CM de Oliveira de Frades SOLDIER 0.845 0.640 0.868 0.641 1.001 0.717
B128 CM de Oliveira do Hospital SOLDIER 0.535 0.630 0.596 0.631 0.886 0.676
B129 CM de Ourique LEARNER 0.576 0.860 0.610 0.861 0.716 0.964
B130 CM de Palmela LEARNER 0.769 0.635 0.792 0.636 0.821 0.776
B131 CM de Penalva do Castelo INFANT 0.532 0.370 0.568 0.370 0.592 0.415
B132 CM de Penamacor INFANT 0.532 0.555 0.554 0.555 0.602 0.622
B133 CM de Penedono SOLDIER 0.776 0.280 0.791 0.280 0.969 0.287
B134 CM de Pinhel INFANT 0.553 0.465 0.590 0.465 0.690 0.499
B135 CM de Pombal STAR 0.867 0.895 0.891 0.896 0.942 0.960
B136 CM de Ponte da Barca SOLDIER 0.658 0.730 0.748 0.731 0.883 0.741
B137 CM de Ponte de Sor SOLDIER 1.000 0.590 1.084 0.590 1.001 0.622
B138 CM de Portel INFANT 0.532 0.555 0.559 0.555 0.669 0.623
B139 CM de Porto de Mós INFANT 0.683 0.570 0.738 0.570 0.816 0.611
B140 CM de Póvoa de Lanhoso LEARNER 0.629 0.910 0.951 0.911 0.803 0.924
B141 CM de Póvoa de Varzim INFANT 0.535 0.525 0.592 0.525 0.723 0.525
B142 CM de Proença-a-Nova SOLDIER 0.578 0.415 0.830 0.415 0.960 0.447
B143 CM de Redondo LEARNER 0.547 0.875 0.587 0.876 0.638 0.982
B144 CM de Reguengos de Monsaraz STAR 0.666 0.780 0.994 0.781 0.991 0.822
B145 CM de Resende INFANT 0.532 0.325 0.549 0.325 0.621 0.333
B146 CM de Ribeira de Pena SOLDIER 0.723 0.610 0.831 0.611 0.950 0.620
B147 CM de Rio Maior INFANT 0.532 0.630 0.556 0.631 0.579 0.666
B148 CM de Sabugal INFANT 0.531 0.335 0.538 0.335 0.592 0.422
B149 CM de Santiago do Cacém SOLDIER 1.000 0.610 1.192 0.611 1.000 0.637
B150 CM de São Brás de Alportel STAR 0.740 0.785 0.749 0.786 0.879 0.853
B151 CM de São João da Pesqueira INFANT 0.537 0.585 0.597 0.585 0.813 0.594
B152 CM de São Pedro do Sul INFANT 0.669 0.590 0.679 0.591 0.785 0.632
B153 CM de Sátão STAR 0.735 0.880 0.811 0.881 0.999 0.985
B154 CM de Seia INFANT 0.653 0.645 0.756 0.645 0.820 0.691
B155 CM de Seixal INFANT 0.540 0.615 0.563 0.616 0.709 0.615
B156 CM de Sernancelhe SOLDIER 0.650 0.315 0.672 0.315 0.908 0.323
B157 CM de Serpa LEARNER 0.534 0.840 0.585 0.841 0.594 0.956
B158 CM de Sertã INFANT 0.532 0.650 0.558 0.651 0.598 0.697
B159 CM de Sesimbra SOLDIER 0.888 0.665 0.969 0.666 1.000 0.737
B160 CM de Silves INFANT 0.655 0.675 0.666 0.676 0.750 0.700
B161 CM de Sines STAR 0.872 0.765 0.902 0.766 0.999 0.836
B162 CM de Sobral de Monte Agraço INFANT 0.532 0.545 0.553 0.545 0.623 0.584
B163 CM de Sousel SOLDIER 1.000 0.555 1.088 0.555 1.076 0.623
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Deterministic CI Robust CI Robust Conditional CI
RISI AMMI RISI AMMI RISI AMMI

B164 CM de Tábua SOLDIER 1.000 0.315 1.464 0.315 1.012 0.355
B165 CM de Tabuaço SOLDIER 1.000 0.145 1.211 0.145 1.005 0.148
B166 CM de Tarouca LEARNER 0.529 0.705 0.534 0.709 0.568 0.964
B167 CM de Terras de Bouro INFANT 0.538 0.360 0.561 0.360 0.615 0.367
B168 CM de Vale de Cambra STAR 1.000 0.985 2.082 0.986 1.024 0.999
B169 CM de Valpaços STAR 1.000 0.600 1.279 0.601 1.003 0.925
B170 CM de Vendas Novas LEARNER 0.532 0.715 0.556 0.716 0.568 0.851
B171 CM de Viana do Alentejo STAR 0.853 0.830 0.982 0.831 0.915 0.931
B172 CM de Vidigueira LEARNER 0.532 0.670 0.618 0.671 0.782 0.752
B173 CM de Vieira do Minho INFANT 0.533 0.715 0.606 0.716 0.702 0.725
B174 CM de Vila de Rei STAR 1.000 0.680 1.316 0.681 1.002 0.762
B175 CM de Vila do Bispo INFANT 0.531 0.435 0.541 0.435 0.573 0.489
B176 CM de Vila Flor INFANT 0.539 0.625 0.547 0.625 0.612 0.634
B177 CM de Vila Nova de Cerveira SOLDIER 1.000 0.705 1.114 0.706 1.000 0.714
B178 CM de Vila Nova de Famalicão INFANT 0.682 0.650 0.691 0.651 0.727 0.654
B179 CM de Vila Nova de Foz Coa INFANT 0.532 0.315 0.562 0.315 0.536 0.321
B180 CM de Vila Pouca de Aguiar INFANT 0.530 0.565 0.533 0.565 0.533 0.575
B181 CM de Vila Velha de Ródão INFANT 0.560 0.575 0.603 0.575 0.685 0.644
B182 CM de Vila Verde STAR 0.763 0.765 0.784 0.769 0.861 0.765
B183 CM de Vimioso SOLDIER 0.740 0.645 0.754 0.646 0.939 0.654
B184 CM de Vinhais SOLDIER 1.000 0.405 1.082 0.405 1.000 0.414
B185 CM de Vouzela LEARNER 0.534 0.705 0.564 0.706 0.561 0.790
B186 EMAR de Portimão STAR 0.743 0.800 0.775 0.801 0.887 0.812
B187 EMAS de Beja STAR 0.805 0.985 0.879 0.986 0.934 1.000
B188 EPAL STAR 0.973 0.990 0.997 0.999 1.000 1.000
B189 Esposende Ambiente STAR 0.539 0.905 0.683 0.906 0.903 0.910
B190 FAGAR - Faro STAR 0.821 0.925 0.844 0.930 0.930 0.993
B191 Indaqua Fafe LEARNER 0.535 1.000 0.589 1.001 0.828 1.000
B192 Indaqua Feira STAR 0.832 1.000 1.008 1.001 1.000 1.000
B193 Indaqua Matosinhos STAR 1.000 1.000 1.027 1.005 1.000 1.000
B194 Indaqua Oliveira de Azeméis STAR 0.728 0.970 0.784 0.979 0.956 0.987
B195 Indaqua Santo Tirso/Trofa STAR 0.645 1.000 0.984 1.001 1.000 1.000
B196 Indaqua Vila do Conde STAR 0.835 1.000 0.996 1.001 1.000 1.000
B197 INFRALOBO SOLDIER 0.758 0.635 0.878 0.636 0.925 0.648
B198 INFRAMOURA STAR 0.872 0.980 0.911 0.981 0.999 0.995
B199 INFRAQUINTA STAR 1.000 0.985 1.106 0.986 1.000 1.000
B200 INFRATRÓIA SOLDIER 0.778 0.515 0.796 0.515 0.963 0.528
B201 INOVA STAR 1.000 1.000 1.103 1.003 1.000 1.000
B202 Penafiel Verde STAR 0.855 0.870 0.896 0.871 0.979 0.875
B203 SIMAR de Loures e Odivelas STAR 0.787 0.835 0.822 0.836 0.946 0.835
B204 SIMAS de Oeiras e Amadora STAR 0.818 0.945 0.936 0.947 1.000 0.979
B205 SM de Abrantes STAR 0.907 0.915 1.004 0.916 1.000 0.972
B206 SM de Alcobaça INFANT 0.646 0.425 0.690 0.426 0.776 0.521
B207 SM de Castelo Branco STAR 0.943 0.910 1.074 0.911 1.000 0.971
B208 SM de Nazaré LEARNER 0.645 0.770 0.654 0.771 0.695 0.839
B209 SMAS de Almada STAR 0.787 0.885 0.798 0.887 0.920 0.929
B210 SMAS de Caldas da Rainha STAR 0.710 0.800 0.757 0.801 0.882 0.849
B211 SMAS de Leiria SOLDIER 0.820 0.585 0.839 0.585 0.920 0.620
B212 SMAS de Mafra STAR 0.941 0.835 0.990 0.836 1.000 0.936
B213 SMAS de Montijo SOLDIER 0.927 0.460 0.978 0.460 1.000 0.510
B214 SMAS de Peniche LEARNER 0.639 0.770 0.716 0.771 0.821 0.818
B215 SMAS de Sintra STAR 0.743 0.795 0.772 0.796 0.985 0.795
B216 SMAS de Torres Vedras LEARNER 0.746 0.700 0.768 0.701 0.799 0.743
B217 SMAS de Vila Franca de Xira LEARNER 0.787 0.730 0.820 0.731 0.853 0.807
B218 SMAS de Viseu SOLDIER 0.818 0.530 0.886 0.530 0.896 0.562
B219 SMAT de Portalegre SOLDIER 0.604 0.395 0.680 0.395 0.954 0.427
B220 SMEAS de Maia STAR 0.571 0.745 0.628 0.746 0.926 0.746
B221 Taviraverde STAR 0.675 0.975 0.725 0.979 0.897 1.000
B222 Tejo Ambiente INFANT 0.532 0.610 0.547 0.610 0.597 0.631
B223 VIMÁGUA STAR 0.874 0.845 0.904 0.849 0.979 0.874



APPENDIX E
Appendix to Chapter 8

E.1 Linearisation of the equation to determine the individual assets’
IVI

This section details the steps needed to convert equation (8.11) in linear constraints for the optimisation
model described in item 8.3.2.2.

IV Iit(xipt) =

rlad j
i0 − t +

t
∑
j=1

Pi
∑

p=1
∆ip × xip j

rlad j
i0 +ai0 +

t
∑
j=1

Pi
∑

p=1
∆ip × xip j

Two auxiliary decision variables, kit and yipt , are employed for the linearisation, according to equations
(E.1) and (E.2).

kit =
1

rlad j
i0 +ai0 +

t
∑
j=1

Pi
∑

p=1
∆ip × xip j

(E.1)

yipt = kit × xipt . (E.2)

Therefore, equation (8.11) can be rewritten as:

IV Iit(xipt) = kit × (rlad j
i0 − t +

t

∑
j=1

Pi

∑
p=1

∆ip × xip j). (E.3)

By replacing the new variables (kit and yipt ) in (E.3), we obtain the linear equation (E.4). This equation
defines IV Iit in function of the new decision variables kit and yipt .

IV Iit(kit ,yipt) = (rlad j
i0 − t)× kit +

t

∑
j=1

Pi

∑
p=1

∆ip × yip j,

∀i ∈ {1,2, . . . ,N}, ∀t ∈ {1,2, . . . ,T} (E.4)

The constraints (E.5) are derived from expression (E.1), and the constraints (E.6), (E.7) and (E.8) are
obtained from (E.2). Expressions (E.6), (E.7) and (E.8) associate the binary variables xipt with the variables
yipt and kip. The constant M is a large integer number.

(rlad j
i0 +ai0)× kit +

t

∑
j=1

Pi

∑
p=1

∆ip × yip j = 1, ∀i ∈ {1,2, . . . ,N}, ∀t ∈ {1,2, . . . ,T} (E.5)
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yipt ≤ kit , ∀i ∈ {1,2, . . . ,N}, ∀p ∈ {1,2, . . . ,Pi}, ∀t ∈ {1,2, . . . ,T} (E.6)

yipt ≤ Mxipt , ∀i ∈ {1,2, . . . ,N}, ∀p ∈ {1,2, . . . ,Pi}, ∀t ∈ {1,2, . . . ,T} (E.7)

yipt ≥ kit −M(1− xipt), ∀i ∈ {1,2, . . . ,N}, ∀p ∈ {1,2, . . . ,Pi}, ∀t ∈ {1,2, . . . ,T} (E.8)
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E.2 Jovim Pumping Station asset data before the planning period

Table E.1: Asset data for t0 - Jovim PS Infrastructure

Asset Replacement Adjusted Adjusted Current IV Ii0

Cost residual life useful life Value

rci0 rlad j
i0 ulad j

i0 cvi0

(e) (years) (years) (e) %

1 645,000 41.7 63.7 422.368 65.5

2 645,000 32.7 54.7 385.511 59.8

3 250,000 7.9 29.9 65,878 26.4

4 250,000 8.5 30.5 69,644 27.9

5 224,000 9.1 31.1 65,659 29.3

6 280,000 9.4 31.4 84,060 30.0

7 20,000 13.9 34.9 7,959 39.8

8 100,000 12,7 21,7 58,480 58.5

9 180,000 14.5 33.5 77,967 43.3

10 180,000 14.5 33.5 77,967 43.3

11 180,000 14.5 33.5 77,967 43.3

12 180,000 14.5 33.5 77,967 43.3

13 285,312 14.7 35.7 117,428 41.2

14 285,312 11.5 32.7 100,768 35.3

15 285,312 14.7 35.7 117,428 41.2

16 285,312 11.5 32.5 100,768 35.3

17 20,000 9.1 31.1 5,862 29.3

18 20,000 10.4 32.4 6,417 32.1

19 56,388 32.2 41.2 44,067 78.1

20 56,388 32.2 41.2 44,067 78.1

21 88,917 32.8 41.8 69,767 78.5



202

E.3 Alternative project plans from multi-objective optimisation

Table E.2: Selected projects for each year of the planning horizon (t1 to t5) from Multi-objective Optimisa-
tion

Asset Plan A Plan B Plan C Plan D

Group Project Year Project Year Project Year Project Year Project Year Project Year Project Year Project Year

Civil P1a - P1b - P1a - P1b - P1a - P1b - P1a - P1b -

work P2a - P2b - P2a - P2b - P2a - P2b - P2a - P2b -

P3a t4 P3b - P3a t4 P3b - P3a t4 P3b - P3a t4 P3b -

Electrical P4a t5 P4b - P4a - P4b t2 P4a - P4b - P4a t5 P4b -

facilities P5a - P5b - P5a t2 P5b - P5a - P5b - P5a - P5b t2

P6a t2 P6b - P6a t1 P6b - P6a t2 P6b - P6a t2 P6b -

P7a t5 P7b - P7a - P7b t5 P7a t2 P7b - P7a t4 P7b -

P8a - P8b t2 P8a - P8b t3 P8a t2 P8b - P8a t5 P8b -

P9a t1 P9b t3 P9a - P9b - P9a t2 P9b t1 P9a t3 P9b t4

P10a t4 P10b - P10a t4 P10b t3 P10a t4 P10b t2 P10a t4 P10b t1

P11a - P11b - P11a - P11b t1 P11a t1 P11b - P11a - P11b t1

P12a t1 P12b t5 P12a - P12b - P12a t3 P12b - P12a t3 P12b -

P13a t1 P13b t1 P13a - P13b t1 P13a t1 P13b t1 P13a t2 P13b t1

Equipment P14a - P14b - P14a - P14b - P14a t1 P14b - P14a t1 P14b -

P15a t3 P15b t2 P15a t2 P15b t5 P15a t2 P15b t5 P15a t3 P15b -

P16a t2 P16b - P16a - P16b - P16a t3 P16b - P16a - P16b -

P17a - P17b - P17a - P17b t3 P17a - P17b - P17a - P17b -

P18a - P18b - P18a - P18b t3 P18a - P18b - P18a - P18b -

P19a - P19b - P19a - P19b t5 P19a - P19b t5 P19a - P19b t5

P20a t1 P20b - P20a - P20b t3 P20a - P20b - P20a - P20b t3

P21a t3 P21b - P21a t2 P21b - P21a t2 P21b - P21a t2 P21b -
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