

Building an automated MLOps pipeline and recommending
an open-source stack to deploy a Machine Learning Applica-
tion

William Inouye Almeida

Dissertation

Master in Modelling, Data Analysis and Decision Support Systems

Supervised by
Prof. Doutor João Gama

Prof. Doutor Bruno Veloso

2023

ii

iii

Acknowledgements

I would like to thank the institution FEP and all the MADSAD teachers that make this

master’s degree one of the best in Europe and reference in the field of Data Analytics. Es-

pecially to my advisor and co-advisor that accepted my thesis Prof. Doutor João Gama and

Prof. Bruno Veloso and helped me when needed.

iv

v

Resumo

O termo Machine Learning Operations (MLOps) tem proliferado desde o final de 2018 de-

vido à dificuldade de implantar modelos de Machine Learning (ML) na produção e garantir

o gerenciamento sustentável do ciclo de vida do ML. Esta dissertação aborda esses desafios

a desenvolver um pipeline completo de CI/CD usando ferramentas de aprendizado de má-

quina de código aberto, guiadas pela metodologia CRISP-ML(Q) e pela estrutura do modelo

de maturidade do Google. O pipeline implementado permite a implantação de um aplicativo

de ML e o monitoramento contínuo do desempenho do modelo, acionando o retreinamento

quando necessário. O estudo se concentra em uma tarefa de aprendizado supervisionado

usando a API da Web do Spotify para classificar as faixas em listas de reprodução de humor,

especificamente felizes e tristes. A seguir a metodologia CRISP-ML(Q), esta pesquisa atende

aos padrões MLOps e garante a integração bem-sucedida dos sistemas ML na produção.

Além disso, a pilha MLOps escolhida, abrangendo ferramentas como Git, DVC, GitHub

Actions e MLflow, facilita o controle de versão de código e dados e a criação de modelos ML

reproduzíveis. O requisito de escalabilidade é demonstrado usando Spotify Web API e Stre-

amlit. Além disso, o aspecto de monitoramento de MLOps é abordado usando relatórios

claros para avaliar a qualidade dos dados, o desvio de dados e o desempenho da classificação

do modelo. Os resultados indicam que o pipeline desenvolvido atende aos requisitos do

MLOps e mostra a explicabilidade e os aspectos responsáveis da IA ao empregar a biblioteca

Shap para identificar as principais características nas previsões do modelo. No geral, esta

dissertação atinge com sucesso seus objetivos pretendidos, entregando um projeto MLOps

abrangente que combina as melhores práticas da indústria de ML com ferramentas de

MLOps de código aberto.

Palavras-Chave: MLOps, Machine Learning, Automação de pipeline, Ferramentas de código aberto.

vi

vii

Abstract

The term Machine Learning Operations (MLOps) has been proliferating since late 2018 due

to the difficulty of deploying Machine Learning (ML) models into production and ensuring

sustainable management of the ML lifecycle. This dissertation addresses these challenges by

developing a complete CI/CD pipeline using open-source machine learning tools, guided by

the CRISP-ML(Q) methodology and Google's maturity model framework. The implemented

pipeline allows deployment of an ML application and continuous monitoring of model per-

formance, triggering retraining when needed. The study focuses on a supervised learning

task using the Spotify Web API to sort tracks into mood playlists, specifically happy and sad.

Following the CRISP-ML(Q) methodology, this research meets MLOps standards and en-

sures the successful integration of ML systems into production. Additionally, the chosen

MLOps stack, spanning tools such as Git, DVC, GitHub Actions and MLflow, facilitates

code and data versioning and building reproducible ML models. The scalability requirement

is demonstrated by utilizing the Spotify Web API and Streamlit. In addition, the MLOps

monitoring aspect is addressed using Evidently reports to assess the data quality, data drift

and classification performance of the model. The results indicate that the developed pipeline

meets the MLOps requirements and shows the explainability and responsible aspects of the

AI when employing the Shap library to identify the main features in the model predictions.

Overall, this dissertation successfully achieves its intended goals, delivering a comprehensive

MLOps project that combines ML industry best practices with an open-source MLOps stack.

Keywords: MLOps, Machine Learning, Pipeline Automation, Open-source tools.

viii

ix

Glossary

AI Artificial Intelligence

CI/CD Continuous Integration/Continuous Delivery

CRISP-ML(Q) Machine Learning applications with Quality assurance methodology

CT Continuous Training

DAG Directed Acyclic Graph

DEVOPS Development and Operations

ML Machine Learning

MLOPS Machine Learning Operations

x

xi

Table of Contents

1 Introduction .. 2
1.1 Problem Definition and Motivation ... 2
1.2 Objectives ... 3
1.3 Dissertation Structure ... 3

2 Literature Review ... 4
2.1 Relationships between DevOps and MLOps .. 4
2.2 MLOps Requirements .. 5
2.2.1 Versioning and Reproducibility .. 5
2.2.2 Containerization and Orchestration .. 6
2.2.3 Scalability ... 7
2.2.4 Monitoring ... 7
2.2.5 Explainability and Responsible AI ... 7
2.2.6 MLOps Maturity Model .. 9
2.3 ML End-To-End Life Cycle ... 11
2.3.1 Business & Data Understanding .. 12
2.3.2 Data Preparation .. 12
2.3.3 Modelling ... 13
2.3.4 Model Evaluation ... 13
2.3.5 Model Deployment .. 14
2.3.6 Monitoring and Maintenance ... 14
2.4 MLOps Main Open-Source Tools .. 15
2.5 MLOps Key Challenges ... 16
2.6 Literature GAP .. 18

3 Data and Methodology ... 20
3.1 Data ... 20
3.1.1 Collection ... 20
3.1.2 Description .. 20
3.2 Methodology .. 21
3.3 MLOps Open-Source Stack ... 23

4 Results and discussion ... 26
4.1 Business & Data Understanding ... 26
4.1.1 Planning of the project .. 26
4.1.2 Data Extraction .. 28
4.1.3 Exploratory Data Analysis .. 28
4.2 Data Preparation .. 34
4.3 Modelling .. 34
4.4 Model Evaluation .. 36
4.5 Model Deployment ... 42
4.6 Monitoring and Maintenance... 44
4.6.1 Monitoring phase ... 44
4.6.2 Maintenance phase ... 46
4.7 Answering key research questions... 48

5 Conclusions and future works .. 50
References ... 52
Appendixes ... 54

xii

xiii

List of Tables

Table 1. Main MLOps Open-Source Tools. .. 16
Table 2. Dataset description adapted from Spotify (2023). ... 21
Table 3. Chosen MLOps Open-Source Stack. .. 23
Table 4. Evaluation metrics extracted from MLflow. ... 38

xiv

xv

List of Figures

Figure 1. Summary of DevOps and MLOps principles. ... 5
Figure 2. Comparison of MLOps Maturity Models. .. 10
Figure 3. MLOps level 2: CI/CD automated pipeline (Google, 2023). 11
Figure 4. CRISP-ML(Q) framework adapted from Studer et al. (2020). 12
Figure 5. Framework of the chosen MLOps stack. ... 24
Figure 6. MLOps stack in adapted Google’s maturity model framework (Google, 2023). ... 27
Figure 7. Descriptive statistics of the numerical variables... 29
Figure 8. Outliers’ detection tables. ... 29
Figure 9. Pearson’s correlation matrix of numerical features. ... 30
Figure 10. Pair plots of numerical features .. 31
Figure 11. Target variable distribution. ... 32
Figure 12. Distributions of categorical features. ... 33
Figure 13. Normalized contingency tables of the categorical features.................................... 33
Figure 14. Example of the train pipeline code from the Extra Trees model. 35
Figure 15. Example of the MLflow UI server. ... 36
Figure 16. Precision and recall scatter plot from MLflow. .. 37
Figure 17. Mean CV and f1 scores scatter plot from MLflow. ... 37
Figure 18. Shap feature importance summary plot. ... 39
Figure 19. Shap dependency plot between energy and danceability... 40
Figure 20. Shap scatter plot duration_ms. ... 41
Figure 21. Shap scatter plot popularity. .. 42
Figure 22. Streamlit application: User input features example. ... 43
Figure 23. Data Drift report summary. .. 44
Figure 24. Data Drift report popularity distribution. ... 45
Figure 25. Classification report: quality metrics. ... 46
Figure 26. DVC pipeline illustration. .. 47
Figure 27. GitHub Actions CI/CD pipeline. .. 47
Figure 28. EDA: Top 20 artists. ... 54
Figure 29. EDA: Top 20 albums. ... 55
Figure 30. EDA: Top 20 followers. ... 56
Figure 31. Example of a model stored in the MLflow server. ... 56
Figure 32. Streamlit application: Csv uploader example. ... 57
Figure 33. Danceability variable statistical description example. .. 57
Figure 34. Pearson correlation matrix example. .. 58
Figure 35. Test classification report. ... 58
Figure 36. Classification report: confusion matrix. .. 58
Figure 37. Classification report: quality metrics by class.. 59

https://uporto-my.sharepoint.com/personal/up202100604_up_pt/Documents/Master%20Thesis/MADSAD_William_Almeida_202100604-v3.docx#_Toc144151673
https://uporto-my.sharepoint.com/personal/up202100604_up_pt/Documents/Master%20Thesis/MADSAD_William_Almeida_202100604-v3.docx#_Toc144151675
https://uporto-my.sharepoint.com/personal/up202100604_up_pt/Documents/Master%20Thesis/MADSAD_William_Almeida_202100604-v3.docx#_Toc144151679

1

2

1 Introduction

Machine Learning Operations (MLOps) adapt the Development and Operations

(DevOps) methodology from software development, which consists of a rapid deployment

cycle for Machine Learning (ML) systems (Mäkinen, 2021). The relatively new term MLOps

started to gain relevance in late 2018 and is also understood as the standardization and auto-

mation of the complete ML lifecycle (Treveil et al., 2020).

One of the main issues emerging in the field of ML recently is the difficulty of deploying

ML models in production. Only a tiny percentage of ML models can reach production

(Symeonidis et al., 2022). Furthermore, even models currently in production are managed by

data scientists as manual ML workflows (Kreuzberger et al., 2022).

Therefore, for ML professionals, the deployment phase to production, automating model

retraining and monitoring are the biggest challenges because, unlike software development,

ML models depend not only on the code but also on the extremely volatile data, and the

maintenance is strenuous (Mäkinen, 2021; Ruf et al., 2021).

1.1 Problem Definition and Motivation

Since the ML Models in an enterprise can take anywhere from six to 18 months to reach

production, and most models have a small lifetime, this delay between the starting an ML

project and deploying the model it usually means that the production model is no longer

conforming to real-world data (Liu et al., 2020; Salvucci, 2021).

For this reason, at the end of this master’s in data analytics, it is essential to understand

the end-to-end life cycle of the ML system, including what is needed to build a model, using

all the steps of MLOps methodology from business and data understanding to ML model

deployment, monitoring, and retraining.

Furthermore, many software solutions must be used at different stages of the ML lifecy-

cle. These solutions have recently evolved into open-source and commercial choices. How-

ever, commercial platforms have major disadvantages, obviously the high cost; they are also

not 100% transparent and lack the flexibility generated by modularity (Ruf et al., 2021).

Thus, in this dissertation only open-source tools are used to develop the ML model.

Furthermore, the next subsection presents the complete solution to the defined problem.

3

1.2 Objectives

The four objectives of the dissertation are listed below. They summarize the research

effort and results of the literature review and the development and operationalization of the

ML model.

1. Recommend open-source MLOps tools based on ease of use and simplification of

the MLOps stack.

2. Build an explainable ML classification model using the Spotify Web API and follow

the CRISP-ML(Q) methodology.

3. Enhance the ML model with the MLOps CI/CD pipeline to enable ML application

deployment.

4. Monitor ML model performance in production with trigger retraining when needed.

1.3 Dissertation Structure

The structure of this dissertation is organized as follows. This first section is an intro-

duction that describes the problems, motivations, and objectives.

The second section presents a literature review with the main topics related to ML and

MLOps relevant to the dissertation. The third section explains the data used and the meth-

odology of the project. Moreover, this section also shows the stack of MLOps chosen to

fulfil the first objective.

Section four will present all stages of development of the ML model following the

MLOps methodology and show the results achieved, with objectives two, three and four

fulfilled.

Finally, in the fifth and last section, conclusions are drawn, and suggestions for future

work related to MLOps are presented.

4

2 Literature Review

This chapter presents the literature review on the main topics related to MLOps. It starts

with the origin of MLOps methodology, explaining the relationships between DevOps and

it. The following subsection is about the requirements for building an MLOps system and

what is the maturity model that can be achieved. Next, the ML lifecycle based on the CRISP-

ML(Q) framework is explained. In the fourth subsection, the leading open-source MLOps

tools are presented with the functionalities they perform. The final subsection describes the

main challenges that MLOps systems need to solve to survive over time.

2.1 Relationships between DevOps and MLOps

DevOps is a set of practices based on Agile software development principles that appear

in 2008/2009. They were created to approximate the developers and operators, encouraging

communication, knowledge sharing and team collaboration to deliver software faster and

with better quality. The main pillars, process, principles, or even best practices of DevOps

are called Continuous Integration (CI) and Continuous Delivery (CD) (Gift & Deza, 2021;

Kreuzberger et al., 2022; Mäkinen, 2021; Salvucci, 2021).

CI is a practice that aims to reduce the software development process cycle to identify

errors as quickly as possible and correct them, consequently improving quality. To achieve

this goal, code needs to be integrated at rapid and frequent intervals, facilitating software

development automation. CD is a process that aims to test and deploy code to quickly and

reliably deliver software enhancements to end users (Gift & Deza, 2021; John et al., 2021;

Praveen Gujjar & Kumar, 2022; Salvucci, 2021; Symeonidis et al., 2022).

Since DevOps principles in software development have been used in the industry for

more than 10 years, industry experts and academics are transferring this knowledge to auto-

mate and operationalize ML systems, which are also software with the peculiarity of having

a component of ML model. This process to automate ML process using DevOps best prac-

tices is often called MLOps. Both, have the goal of reducing development time until the

software goes into production, and the team is responsible for the entire lifetime of the

solution with a collaborative team composed of developers and operators (Gift & Deza,

2021; Kreuzberger et al., 2022; Salvucci, 2021).

5

Nevertheless, there are important differences between them. While DevOps focuses on

testing the code, MLOps also needs to test the data, validate the model, and ensure model

quality. Another key difference is related to types of monitoring, when an organization's

strategy changes, this can lead to ML model degradation, hence covariate-shift and pre-shift

monitoring may be required, instead than monitoring latency in software traditional devel-

opment. Finally, the CI and CD pipelines need to be built on MLOps, ensuring that CI in-

cludes data and the ML models, and the CD contains the training pipeline and the final model

prediction. In addition, MLOps have one more key practice called Continuous Training (CT)

with the aim of ensuring that ML models have an automatic trigger to retrain them when

needed to improve model performance (Garg et al., 2021; John et al., 2021; Salvucci, 2021;

Symeonidis et al., 2022).

Figure 1. Summary of DevOps and MLOps principles.

2.2 MLOps Requirements

In this subsection, a literature review of the most important state-of-the-art requirements

to build a sustainable MLOps system using DevOps best practices adapted to the MLOps

context was performed.

2.2.1 Versioning and Reproducibility

Data and model versioning are key challenges to building reliable ML models. Because

of various reasons, training models have random weights, the data sources will eventually be

6

updated, and the models will degrade, due to changing business decisions or data, over time.

The main advantages of model versioning are enabling the rollback of a model if something

unforeseen happens and allows different models to be used in different timeframes. On the

other hand, data versioning is essential to follow the evolution of data over time. The union

of both types of versioning make it possible to have model reproducibility, thus ensuring

that the model can be shared with other teams and produce the exact results in a production

environment (Lakshmanan et al., 2020; Ruf et al., 2021; Salvucci, 2021; Treveil et al., 2020).

2.2.2 Containerization and Orchestration

Containerization is a technology that uses a series of instructions to build a container

called an image. This image encapsulates the code and its dependencies, allowing it to run

on different computing platforms. Additionally, an image can reference multiple images,

which can scale its usage. Also, container solution is a growing trend to be used as an alter-

native to virtual machines as various containers can run on just one operating system, which

is more efficient in terms of computational power (Mäkinen, 2021; Salvucci, 2021; Treveil et

al., 2020).

The key advantages of using containers are enabling the ML model to production with-

out dependency on a single hardware and facilitating logging, monitoring, scaling and crash

recovery, important aspects of MLOps architecture. Nevertheless, for large-scale applica-

tions, it is essential to have a container orchestration tool to make it simple to automate,

deploy and communicate with other teams about containers (Garg et al., 2021; Silva, 2021).

Another essential type of orchestration in MLOps is the workflow, which uses directed

acyclic graphs (DAGs) to represent the order of execution of steps considering relationships

and dependencies. The main purpose of orchestration is to build the pipeline logic to deter-

mine which steps need to be performed and the expected results of them, for example it is

possible to set a threshold to trigger the start of a pipeline if the accuracy of the ML model

falls below this level or otherwise do not activate the pipeline (Kreuzberger et al., 2022; Lak-

shmanan et al., 2020).

7

2.2.3 Scalability

Scalability is a common challenge in ML workflows. This challenge can manifest itself in

the stages of data collection and pre-processing, training, and service, and in the retraining

model in the production phase. The dataset size is one of the essential requirements for

choosing the right tool depending on the solution. Furthermore, the infrastructure necessary

to process large amounts of data to train the ML models may be time-consuming and com-

putationally expensive, so this needs to be considered, as it can be necessary, for example, to

have a specific GPU for processing the ML workload (Lakshmanan et al., 2020; Treveil et al.,

2020).

2.2.4 Monitoring

The monitoring step is crucial because ML models’ performance degrades over time, and

new data can generate the need to retrain the model in production, so if they do not have

warnings or triggers, this can have a negative impact on business decisions. It is also a key

factor to monitor the model metrics in production to detect the detachment between the

model predictions and reality. In addition, there is a second level that the ML models need

to be monitored, at a resource level, because in the production environment, it is essential to

realize if the system is online, the speed of requests is being processed as expected, and the

use of the CPU, RAM and network are as designed. (Salvucci, 2021; Sculley et al., 2015;

Treveil et al., 2020). This second concern is typical of the DevOps topic, but the principle is

the same for MLOps.

2.2.5 Explainability and Responsible AI

Assessing whether an ML model is ready for the production environment often uses

metrics such as accuracy, precision, recall, and mean squared error. However, these metrics

cannot provide the whole truth, as they do not tell why the ML model achieves the predic-

tions, only measure how close the prediction is to the test set. The solution for this issue is a

growing field in ML called interpretability or explainability of the models (Lakshmanan et

al., 2020).

8

The field of explainability is intrinsically linked to the area of Responsible AI, which

aims to find the best practices for building fairness in AI systems. This area has two main

principles, and intentionality means that the AI projects must have unbiased data sources,

which guarantees multiple checks and can be explained by humans. The second is accounta-

bility, which is a central control of all AI initiatives to understand which teams use what data

sources to build which ML models, making it easier to comply with regulations and organize

the insights into the business processes (Lakshmanan et al., 2020; Treveil et al., 2020).

Explainability can help with some of the big problems data scientists have in building

and deploying ML models. Model debugging is one of them because it is essential to under-

stand why the model performs better or worse in determined features to identify how to

engineer new features, drop redundant ones and improve the overall model performance.

Another problem that occurs during the monitoring phase after deployment is data drift, as

it is important to explain how concept drift in features may impact the model outcomes and

feature contributions. The last issues are model transparency and audit, as organizations seek

transparency in the model prediction to make decisions with a certainty of effects to the end

users and audit the data to comply with regulations and internal audit (Bhatt et al., 2020).

Explanation methods depend on three main factors: data modality, model type and pre-

diction task (Klaise et al., 2020). The first refers to the complexity of the dataset. If it con-

tains different types of data like images and text, they have more complexity because these

types of data have different statistical properties. Second, some models are easier to explain,

such as linear regression or decision trees. However, models like neural networks, known as

black box models, are hard to explain. Finally, whether the prediction task is, classification or

regression must be considered, as it affects the calculation of explanation methods.

The most used techniques of the explanation methods are partial dependence plots

which identify the marginal impact of the features on the predicted outcome; subpopulation

analyses, which explain how the model handles specific subpopulations; individual model

predictions, normally using Shapley values, which show how the value of each feature con-

tributes to a specific prediction; what if analysis, that is useful to explain the sensitivity of

the prediction due to the inputs (Treveil et al., 2020).

9

2.2.6 MLOps Maturity Model

To implement the fully automated MLOps pipeline using the CI, CD and CT principles

cited in subsection 2.1, there are some steps that organizations or ML professionals need to

climb, called the MLOps maturity model.

Two of the main technology companies in the ML field, Google, and Microsoft, devel-

oped their own MLOps maturity model framework. It is explained both because the concepts

will be important further in the thesis.

According to Google (2023), there are 3 levels of MLOps maturity. Level 0: manual pro-

cess, level 1: ML pipeline automation and level 2: CI/CD pipeline automation.

At level 0: manual process, every process is manual, from data analysis to model valida-

tion, normally handled by data scientists using notebooks to experiment until they develop a

viable model. Furthermore, the good MLOps practices cited in subsection 2.2 do not exist

at this level, as data and model versioning, pipeline orchestration, model monitoring, explain-

ability, CI and CD are completely ignored. This level is still very common in organizations

but is only sufficient if the model is rarely changed or trained. For real world applications

the model often fails due to changes in data and business decisions.

At level 1: ML pipeline automation, the main purpose is to develop a pipeline automation

to achieve CT. At level 1 is possible to have faster experiments thanks to the pipeline orches-

tration that allows to prepare the whole pipeline towards production. Through the CT prin-

ciple, the ML model is trained with new data in a production environment, using pipeline

triggers. The symmetry among experimental and operational environments is also achieved

using the same pipeline in pre-production and production environments. Furthermore, the

pipeline construction needs to have reusable, composable, and potentially shareable compo-

nents in the ML pipeline, and must be containerized to be reproducible. Howsoever is pos-

sible to continuous delivery the ML models to production.

Some additional components can be used at level 1 to enable CT, such as data and model

validation, feature store, which is a centralized repository where features can be accessed for

training, metadata management that stores information from each execution of the ML pipe-

line to debug errors and ML pipeline triggers which are automatic triggers to retrain ML

models with new data according to defined criteria.

In level 2: CI/CD pipeline automation, there are 6 stages to achieve a fully automated

CI/CD pipeline. The first is development and experimentation, where the ML professional

10

tries orchestrating different algorithms and ML models. The output is the source code of

the ML pipeline that goes to a source repository. The second stage is continuous pipeline

integration, where the source code is built through various tests, and the outputs are pipeline

components, such as packages and artifacts.

After that, in stage 3: pipeline continuous delivery, pipeline components from the CI

stage are deployed to the target environment. The fourth stage is automated triggering, where

the pipeline runs automatically in production due to a trigger or schedule. The trained model

output from this step goes to the model registry.

The next stage is model continuous delivery, where the trained model is served as a pre-

diction service, finally, in the monitoring stage, collects live data of the performance of the

model. The final output is a trigger to return to the first stage or to run the pipeline in stage

four.

According to Microsoft (2023), There are five levels of MLOps maturity. Level 0: No

MLOps, level 1: DevOps but no MLOps, level 2: Automated Training, level 3: Automated

Model Deployment and level 4: Full MLOps Automated Operations.

Levels 0, 2 and 4 are very similar to the Google maturity framework, however Microsoft

added two intermediate levels. At level 1: DevOps but no MLOps, is also a manual process,

but the main differences are that data is collected automatically and exist basic integration

tests for the model. At level 3: Automated Model Deployment, the key differences from

Figure 2. Comparison of MLOps Maturity Models.

11

level 2 is that an automatic deployment is managed by CI/CD pipeline and each model re-

lease has unit and integration tests.

In this master's thesis, the concepts adopted follow the Google maturity model frame-

work due to the simplicity and better detail provided in figure 3. In summary, the two frame-

works are very similar, but Microsoft divides it into two more levels, which makes the appli-

cation more complex, in this case it is a simple project that will be executed by only one

person.

Figure 3. MLOps level 2: CI/CD automated pipeline (Google, 2023).

2.3 ML End-To-End Life Cycle

There was no standard ML lifecycle process model. For this reason, the Cross-Industry

Standard Process model for Data Mining (CRISP-DM) is often used as an alternative. How-

ever, this methodology is not complete because of two reasons. The first is that ML models’

performance degrades over time, so after deployment is necessary to have a monitoring and

maintenance phase. The second is that CRISP-DM does not have a quality assurance meth-

odology, which is essential to mitigate risks of each phase of the development and

12

deployment of ML applications (Studer et al., 2020).

In this subsection, the phases of Cross-Industry Standard Process model for the devel-

opment of Machine Learning applications with Quality assurance methodology (CRISP-

ML(Q)) proposed by Studer et al. (2020) are detailed. Since this methodology was made to

solve the issues mentioned above, this thesis adapts its phases to fulfill the objectives con-

sistently.

2.3.1 Business & Data Understanding

The first step in developing ML applications is to ensure the project is viable. Neverthe-

less, before that, it is necessary to define the scope of the ML application and define the

success criteria of the business and ML model.

So, what is usually done is to build a Proof of Concept (PoC) to understand the use of

the ML model in a reduced scope. In addition, it is also relevant to verify the legal constraints

and the requirements of the application. After feasibility confirmation, the data can be col-

lected, and the data quality is checked. Finally, it is crucial to document all the aspects of the

data, such as requirements, statistical properties etc. To serve as the basis for quality assurance

in ML model development.

2.3.2 Data Preparation

The data preparation phase aims to set up a data set to the next phase, but this process

is not linear. For example, if is error data is found in modelling, it is necessary to come back

to adjust the data. This phase starts with selecting data, which includes feature selection,

Figure 4. CRISP-ML(Q) framework adapted from Studer et al. (2020).

13

where the best features are selected through a filter, wrapper or embedded methods and bad

quality data are discarded. Furthermore, it might be essential to deal with unbalanced classes

using over-sampling or under-sampling strategies for data selection.

The next step is data cleaning to detect and correct errors in the data, which can include

noise reduction, and elimination of missing values through data imputation techniques, such

as imputing mean or median values, interpolated, or replacing by other special value.

After that, in the construction stage, it may be necessary, depending on the ML task, to

perform feature engineering and data augmentation, using techniques like PCA, one-hot en-

coding and clustering. The final step is data standardization, where the input data formats,

and the normalization process are unified to avoid the risk of bias to features on larger scales.

2.3.3 Modelling

The main objective in the modelling phase is to build an ML model or even several mod-

els that fit the business criteria and can meet the requirements and constraints established in

the first phase. To build a modelling strategy, it is quintessential to define the quality measures

of the model. Depending on the ML task, the six measures of ML models can have different

weights, they are: performance, robustness, scalability, explainability, model complexity and

resource demand.

Furthermore, in the modelling stage, there are model selection, model specialization, in-

corporating domain knowledge, and model training tasks. Some optional tasks that depend

on the ML model are using unlabeled data and pre-trained models, model compression and

ensemble methods to outperform individual models.

In this phase, to obtain a robust ML solution, it is crucial to ensure the reproducibility

of the model. Two levels of reproducibility need to be ensured, the method and the results.

It is important to emphasize that it is part of the method reproducibility to produce experi-

mental documentation containing the model changes and their causes to improve the model

quality measures.

2.3.4 Model Evaluation

The model evaluation mainly consists of validating the performance of the trained ML

14

models on a test set, which is the pre-split portion of the original dataset, to be able to

measure performance metrics. Furthermore, the robustness of the models must be ad-

dressed using noisy or erroneous input data. It is also a best practice to increase explainability

to end users to provide trust and facilitate decision-making based on the models.

Finally, there is the decision, which can be automatic or manual, if the ML model satisfies

the success criteria to be deployed. Otherwise, the process returns to the modelling phase or

even ends in this phase.

2.3.5 Model Deployment

The model deployment phase starts by defining inference hardware. Here needs to be

chosen the requirements of the hardware, and solving decisions such as the availability of

CPU and GPU or whether it is more efficient cloud services or an embedded system. With

that solved, it is essential to evaluate the models under production condition to understand

if the production data is like the training data.

The next steps are to ensure that the users are comfortable with the final solution. This

can be tested via a prototype. It is also important to minimize the risks of errors. One com-

mon alternative is to roll back the model to a previous version if something unforeseen

happens.

Finally, in the deployment strategy task, it is essential to perform an incremental roll-out

of the model, as it is possible that errors still exist. Thus, the cost of correcting them can be

minimized.

2.3.6 Monitoring and Maintenance

After deploying the ML model, it is essential to monitor and maintain the models’ per-

formance. ML models’ performance decreases over time because their evaluation is done

based on train data, but real world data can change the model accuracy very quickly (Treveil

et al., 2020). Additionally, model performance can be degraded by hardware performance

and updates to the software stack.

Therefore, the best practice to avoid model degradation is continuous monitoring to

decide whether the model needs to be retrained as quickly as possible. This leads to the next

15

task, updating the model with new data, returning to the modelling phase. Adjusting the

current model with the new data is recommended to save time. Finally, the automation of

the update task allows achieving the CI, CD and CT of the model.

2.4 MLOps Main Open-Source Tools

Open-source MLOps tools are used by half of all IT companies worldwide, and that

number is expected to grow to over 65% by 2023 as the open-source stack provides an easier,

more reliable, and rapid delivery to manage end-to-end ML application lifecycle. However,

no tool automates the entire ML lifecycle. They are specialists in different tasks and may have

overlapping functionality. In addition, they often require an environment in Python and R

languages (Hewage & Meedeniya, 2022; Ruf et al., 2021; Symeonidis et al., 2022).

Table 1, only open-source tools are filtered and compared in terms of functionality,

adapted from the works of Hewage & Meedeniya (2022), Ruf et al. (2021) and Symeonidis

et al. (2022). For the comparison of the MLOps tools, the features Data Versioning (DV),

Experimentation (EX), Code Versioning (CV), Experiment Tracking (ET), Pipeline Orches-

tration (PO), Artifact Tracking (AT), Model Registry/Versioning (MRV), Model Deploy-

ment/Serving (MDS), and Model Monitoring (MM) were chosen.

16

 MLOps Open-Source Stack

Tools DV EX CV ET PO AT MRV MDS MM

Git x

Git LFS x

GitLab x

Dolt x

LakeFs x

DVC x x x

Jupyter Notebook x

Google Colab x

Tensor Board x

GitHub Actions x

Apache Airflow x

ZenML x

Kedro x x

Polyaxon x x x

Kubeflow x x x

MLflow x x x x

BentoML x x

Clear ML x x x x x x

MLrun x x x x x

ModelDB x x x x

TensorFlow Serving x

Streamlit x

Heroku x

Evidently x

Prometheus x

Grafana x

Table 1. Main MLOps Open-Source Tools.

In Section 3, it is described which of the above MLOps open-source tools was chosen

to build the ideal stack used in the rest of the development of the thesis.

2.5 MLOps Key Challenges

ML Systems have many technical challenges because the maintenance phase after deploy-

ment is often difficult and expensive over time. Furthermore, these systems have all the

17

traditional software development issues plus the special concerns of the ML field. These

problems can be difficult to notice as they do not occur at code level but at the system level

(Sculley et al., 2015).

The technical problems can be classified as eroded boundaries due to the complex mod-

els, data dependencies costs, feedback loops, Anti-patterns in ML systems, configuration debt

and changes in the external world. The first challenge’s main example is called entanglement,

which is related to the impossibility of independence of the features, entangling them. This

is valid for hyperparameters, data selection, sampling methods etc. However, there are two

strategies to mitigate it: isolate the models and serve ensembles or detect the changes in

prediction behavior when they happen (Sculley et al., 2015).

The data dependencies problem emerges from the matter that ML code is only a tiny

part of the ML system, and complex data dependencies can be built without a tool for track-

ing the unstable and underutilized dependencies. This issue is also related to data quality, as

it is essential to understand the quality of the sources of data to train the ML models with

consistency (Lakshmanan et al., 2020; Sculley et al., 2015).

Feedback loops are necessary to have a real-time updating of the ML systems, however,

they can influence their behavior, which can be even more difficult to notice if it occurs

gradually. This effect can happen directly, where the model influences the selection of its

own future training data or indirectly (hidden), where two systems influence each other. To

mitigate this, the best practices are to use randomization or isolate the parts of the data

influenced by the ML model (Sculley et al., 2015).

Most ML systems are used just as an infrastructure and a tiny part to learn or prediction,

and this can lead to import problems in design patterns. Two common reasons are known as

glue code and pipeline jungles. The first means the use of generic packages code that, over

time, freezes the ML system to the logic of specific packages, which can be mitigated using

APIs that allows infrastructure reusability (Sculley et al., 2015).

The second is a kind of glue code for pipelines that, over time, becomes so complex that

it needs expensive integration tests. To have efficient pipelines is essential to build compatible

these three main pipelines: data manipulation, model creation and deployment. Also, it is

crucial to use the same data to preprocess all of them (Sculley et al., 2015; Symeonidis et al.,

2022).

Configuration debt in ML systems is a very common challenge because there are many

configurable options, such as the features to select, specific algorithms settings and data

18

selection. All these possibilities make the configurations hard to change, when necessary,

which can be expensive and time-consuming (Sculley et al., 2015).

The ML system must deal with the inevitable changes in the real world, thus incurring

maintenance costs. For this reason, it is essential to continuously monitor the accuracy of

the models and the entire system. Data monitoring helps to find outliers and drift to train

the model with correct data. On the other hand, model monitoring for high maturity systems

monitors in addition to model accuracy, sustainability, robustness, fairness and explainability.

Also, as the external world changes in real-time, it's important to build automated response

systems to avoid manual work (Sculley et al., 2015; Symeonidis et al., 2022).

In addition to the technical challenges, there are also organizational ones. This type of

challenge involves MLOps need cross-functional heterogenous teams to accomplish their

goals, but it can lead to lower productivity in the long run. One of the causes is the lack of

great experts in ML field, and another is that the organization's culture does not promote

good communication practices between teams and can have multiple definitions of what a

successful ML model is for each of them. For these reasons, it is quintessential to transform

the culture into a product-oriented mindset to improve business outcomes (Kreuzberger et

al., 2022; Lakshmanan et al., 2020; Sculley et al., 2015).

2.6 Literature GAP

The core MLOps topics were covered in this chapter, namely the prerequisites for per-

forming MLOps, CRISP-ML(Q) the ML end-to-end life cycle approach, some of the key

MLOps open-source tools, and the main technical issues that arise when the ML model is

deployed.

The main GAP found in the literature review is a lack of straightforward real world end-

to-end MLOps projects that can be done using the best practices found in the MLOps re-

quirements subsection and following the steps suggested by CRISP-ML(Q) methodology.

This is necessary to have a professional automated CI/CD pipeline to deploy ML models

with consistency rather than just running the ML model in a notebook environment.

19

20

3 Data and Methodology

This section presents the data used in this work, including how the data was collected

and the description of the variables. Also, the work methodology to achieve the objectives

defined in section one is described. In addition, the MLOps stack chosen to develop, deploy

and monitor the ML pipeline is presented.

3.1 Data

There are two common model deployment methods: model-as-a-service through Repre-

sentational state transfer (REST) API endpoints, and embedded model (Ruf et al., 2021;

Treveil et al., 2020).

These kinds of deployments allow easy interaction with input data, so it is possible to

use this technology to extract the data of this project. The data was extracted from Spotify

Web API, using REST principles. According to Spotify (2023), it provides metadata about

tracks, artists, albums, and playlists from the Spotify Data Catalogue.

3.1.1 Collection

To perform data collection from Spotify API, the first step is to get the authorization

credentials from the user’s account of Spotify or create one if necessary. The next, is in-

stalling and using “Spotipy” Python library which provides an easier interface with the API

interface.

One good way to extract the data is through playlists; choosing songs by track or artist is

more efficient. The playlists extracted were the “Top Hits” by year made by Spotify, because

it contains very popular songs from different years without duplicates tracks. Thus, the Top

Hits from 2005 to 2022, and each with 100 songs, making a total dataset of 1800 different

tracks and additional 100 from the most updated top 100 playlist to be used as new data.

3.1.2 Description

The variables extracted from Spotify Web API are described in table 2. The mood col-

umn was created to be the target variable which indicates 1 for the happy songs and 0 for

21

the sad songs, based on the valence feature that will be excluded in further analysis.

Variables Description

1 artist Singer or band name

2 album Album name

3 track_name Song name

4 release_date Release date of the song

5 popularity Popularity of the song from 0 to 100

6 genres Name of the first genre associated with the artist

7 sub-genres Name of the second genre associated with the artist

8 explicit Boolean value if the track has explicit lyrics

9 followers Number of the followers of the artist

10 track_id The unique ID of the track

11 danceability Describes how suitable a track is for dancing from 0 to 1

12 energy Represents a perceptual measure of intensity and activity from 0 to 1

13 key Integers map to pitches using standard Pitch Class notation, if no key = -1

14 loudness The overall loudness of a track in decibels (dB)

15 mode Indicates the modality, major (1) or minor (0) of a track

16 speechiness Detects the presence of spoken words in a track from 0 to 1

17 instrumentalness Predicts whether a track contains no vocals from 0 to 1

18 liveness Detects the probability of presence of an audience in the recording from 0 to 1

19 valence Describes the musical positiveness conveyed by a track from 0 to 1

20 tempo The overall estimated tempo of a track in beats per minute (BPM)

21 duration_ms Duration of the song in milliseconds

22 time_signature Notational convention to specify how many beats are in each bar from 3 to 7

23 mood
Indicates mood of the track 1 (happy), if the valence is greater or equal to 0.5
and 0 otherwise

Table 2. Dataset description adapted from Spotify (2023).

3.2 Methodology

The methodology will adapt the steps explained in subsection 2.3, based on CRISP-

ML(Q) from Studer et al. (2020), the ML lifecycle framework.

1. Business & Data Understanding: in this phase, it is important to emphasize that

22

the goal of this ML task is to perform the techniques of supervised learning to clas-

sify the tracks in mood playlists, namely happy and sad playlists, using the target var-

iable “mood”. Also, an Exploratory Data Analysis (EDA) is performed to understand

the behavior of the variables and analyze the data quality.

2. Data Preparation: In order to have data prepared to be modelled, it is crucial to

perform data cleaning, feature engineering to select the variables, data augmentation

and finally, the standardization of the variables, presented in subsection 3.1.2, for the

model.

3. Modelling: As explained in subsection 2.3.3, the first step is to define the quality

metrics of the model. After that the model is trained, in this case using the classifi-

cation algorithms from supervised learning, and the last step is to improve the per-

formance of the mode, if necessary, with AutoML or ensemble methods.

4. Model Evaluation: In this phase, the trained model has the performance evaluated,

after the robustness is determined, and the model explainability can be improved by

the techniques of subsection 2.2.5. Finally, the model needs to be ready to be de-

ployed to advance to the next level.

5. Model Deployment: First the model is deployed; next the models are evaluated

under production conditions, and to minimize error rollback points are built in the

ML pipeline.

6. Monitoring and Maintenance: In the final phase, is monitored the performance

of the model is monitored over time and create triggers to automatically retrain the

models when needed to obtain the CI/CD pipeline automation, explained in subsec-

tion 2.2.6.

To finalize the methodology, the specific Spotify API was chosen because it is one of the

most well-known open APIs used for training different machine learning models. Addition-

ally, because it is an API rather than a simple csv file, it has more flexibility to scale the same

pipeline, which is more efficient for MLOps project. Also, this simple ML classification

23

assignment was chosen because it speeds up pipeline tests since it doesn't necessitate a lot of

complex calculations like a deep learning challenge for example.

3.3 MLOps Open-Source Stack

The right choice of tools is essential to have an efficient MLOps system in each func-

tionality and the connectivity between them. There is no silver bullet to accomplish this task.

However, it is possible to follow some guidelines. It is often recommended to use fewer tools

with high compatibility to be easier to manage, so the main challenge is to find the balance

between flexibility and stack compatibility (Symeonidis et al., 2022).

 MLOps Open-Source Stack

Tools DV EX CV ET PO AT MRV MDS MM

Git x

DVC x x x

GitHub Actions x

Jupyter Notebook x

MLflow x x x x

Streamlit x

Evidently x

Table 3. Chosen MLOps Open-Source Stack.

Table 3 shows the filtered table presented in Section 2, with only the chosen MLOps

tools. It followed the guidelines of choosing fewer tools as possible with easy connectivity

between them, preserving all functionalities to have a complete ML pipeline that allows the

management of the ML lifecycle.

In Figure 5, it is possible to visualize better the connections between the tools and the

saving of tools made, mainly when choosing DVC and MLflow, which are flexible tools with

multiple functionalities. Also, Git as code versioning tool and Jupyter notebook as experi-

mentation environment were chosen because they are standards in ML filled. In addition, the

language of this project is Python because it is the most common language for machine

learning projects, providing numerous libraries and methods to perform ML tasks.

Furthermore, GitHub Actions was chosen because it is a tool inside GitHub repository

that provides an easy way to create CI/CD pipelines. Streamlit also is convenient to integrate

24

with a GitHub account and has a simple interface to deploy ML applications in cloud. Lastly,

Evidently has predefined monitoring reports that can be used with few lines of code.

Figure 5. Framework of the chosen MLOps stack.

In the next chapter, an in-depth examination of the main issues explored in the literature

review will be given. By answering the questions below, it is hoped to gain a better under-

standing of the subject and provide useful information. Each issue is thoroughly explored,

evaluated, and debated, resulting in a complete and informative chapter.

1. How can the CRISP-ML(Q) technique be used to create a consistent ML project?

2. How and why to use every open-source technology listed in table 3?

3. How are the open-source tools linked to one another?

4. What are the best models for categorizing Spotify tracks as happy or sad?

5. How to create a CI/CD pipeline and deploy a machine learning application?

6. How should the ML model be efficiently monitored and retrained?

7. How should the best ML model results be explained using the MLOps requirement

of explanability and responsible AI?

25

26

4 Results and discussion

The purpose of this chapter is the description the results of this dissertation, organized

by the topics explained in the methodology based on CRISP-ML(Q).

Furthermore, the choices of the MLOps stack are detailed with the aim of better under-

stand the functionalities of each tool and how they integrate, using Google’s maturity model

showed in subsection 2.2.6, to achieve the goals established in the first chapter.

4.1 Business & Data Understanding

In this phase was planned the complete development of the ML application based on

the MLOps stack chosen and the framework of the Google maturity model. It also created

the Python script to extract the data from Spotify API and finally performed the EDA from

the features and target variables to get insights from the raw data.

4.1.1 Planning of the project

The planning of this project needed to consider the ML tools described in the previous

chapter and the integration between them. Figure 6 shows a modified version of Google’s

maturity model with the chosen MLOps stack and the necessary remote repositories that will

be used.

The orchestrated experiments will be done using MLflow Tracking component, which

allows easy comparison of the model parameters and metrics experiments in a centralized

UI. To help with the experimentation, the data and model analysis will be performed in Ju-

pyter notebooks.

In MLOps projects, it is a very important aspect to have all the code versioned, for this

will be used the Git version control tool together with GitHub as a remote repository to not

lose any historical information during the code update steps of the project.

As mentioned in Chapter 2, the CI/CD pipeline automation is a fundamental principle

that came from DevOps to MLOps and needs to be done to reach the most advanced level

of MLOps. In this project, this step will be done using GitHub Actions inside the GitHub

repository and, as a dependency, will demand the Python packages to be installed that will

be available in a text file named “requirements.txt”.

The CI/CD pipeline also will need to call the pipeline to work properly. The pipeline is

27

going to be built some Python scripts files and, together with DVC, besides versioning the

data of the project, have the functionality that enables to create DAGs, which makes the

pipeline automated, simpler to maintain and easy to use in GitHub Actions.

All the data and metadata outputs generated by the pipeline will be stored in DagsHub

remote repository connected with GitHub repository and in the MLflow server offered by

DagsHub, which uses the Model Registry component. It is important to point out, as shown

in figure 6, that changes in the feature store make the automated pipeline run again.

In the final steps will be necessary to serve the ML model using one more time MLflow

components to deploy the model in Steamlit, which allows to easily build ML applications,

to be used as a prediction service in Python language and make deployment in Streamlit

public cloud connected directly to the GitHub repository. The last tool is Evidently which

will comply with the performance monitoring functionality, which generates html reports for

better understanding when the performance of the ML model degrades to manually trigger

the pipeline to start the necessary steps in the pipeline.

Figure 6. MLOps stack in adapted Google’s maturity model framework (Google, 2023).

28

4.1.2 Data Extraction

The data extraction script was developed in six main steps.

1. Spotify account authentication through “Spotipy” library. To accomplish this task was

necessary to create a “.env” local file to secure the login and password of my personal Spotify

account because all the final code is pushed to GitHub public remote repository, which is

visible to everyone.

2. Get the playlists links from Spotify application. This was a manual step necessary to

get the top 100 tracks playlists between the years 2005 and 2022 and 100 additional tracks

from top 100 songs playlist, which updated the songs every week, to serve as the new updates

data to test the ML models over the time.

3. Development of two functions to build the raw data frame, in the first function is

selected all the features and the target variables better described in subsection 3.1.2 from the

API, next a loop is created to extract every variable from each track of one playlist and in

the end is created a data frame. The second function was made for the necessity of a loop

creation for multiple playlists and concatenating them in a unique data frame.

4. Execution of both functions, for the 2005 to 2022 top 100 tracks playlists, the second

function is used to result in 1800 rows data frame. For the new songs, as it is only one playlist,

the first function was enough to generate the 100 rows data frame.

5. Function to clean the genres and sub-genres features. This step was essential because

the genres were extracted as an array with all the genres from each track. So, this function

created the genres and sub-genres columns with the top two genres from the songs.

6. Export the data frames to csv files. This final step exports both data frames individually

in two csv files to be used in the next phases of the project.

4.1.3 Exploratory Data Analysis

The Exploratory Data Analysis (EDA) consisted of analyzing the raw data generated in

the data extraction phase. For this analysis, both csv files were imported and concatenated,

which generated a data frame with 1900 tracks. The objective is to better understand the

data to make the necessary treatments in the data preparation phase.

The first analysis was an overview of the content of the study dataset. It was discov-

ered the top 20 artists and albums using the number of tracks and top 20 most followed

29

artists, which can be seen in figures 28, 29 and 30 in appendix.

 To provide a comprehensive analysis of the numerical features was made a simple sta-

tistical description. In the figure 7, it is easy to realize that “followers” and “duration_ms”

have the greatness of values much higher than the other variables and “loudness”

have only negative values. These insights will need to be addressed in the future of this

project.

Figure 7. Descriptive statistics of the numerical variables.

The next step concerning numerical features is outlier detection. This analysis consists

of detecting the upper and lower outliers for each variable using the Interquartile Range

(IQR) method, whose upper outliers are those higher than the third quartile plus 1.5 times

the IQR and the lower outliers below the first quartile minus 1.5 times the IQR. In figure 8,

the only feature that deserves some attention is the “followers” with more than 10% of

outliers, but it is not possible to exclude outliers because they have a small number of artists

with a greater number of followers and at the same time tracks, as can be seen in figures 28

and 30 in the appendix, so it is preferable to keep them. The other variables only have a small

number of outliers, for this are not very important for deepening.

Another common analysis is the identification of missing values, but in this dataset, only

Figure 8. Outliers’ detection tables.

30

the genres and sub-genres have approximately 1 % and 16 % of missing values respectively,

which will be addressed in the data preparation part.

In order to improve the understanding of the relationship between the numerical varia-

bles and their relationship with the target, it was plotted Pearson’s correlation matrix in figure

9.

Figure 9. Pearson’s correlation matrix of numerical features.

Most of the numerical variables do not have any relevant relationship with each other,

except for the energy with loudness with a 0,72 positive index, what makes sense because

usually loud music tends to be energetic. In addition, the features with the strongest relation-

ship with the target are danceability, energy and loudness. However, even they are not very

high.

Finally, the distribution of the numerical features and their behavior in relation to the

target was examined. For this reason, was made the pair plot in figure 10 which orange rep-

resents music that tends to be happy and blue otherwise. It is possible to realize that the

behavior of the three variables with the strongest positive relationships with the target, which

were found in Pearson’s correlation matrix, are also visible in the right tail of the distribution

plots. The higher the values, the greater the tendency to be a happy song.

31

Figure 10. Pair plots of numerical features

One key aspect of EDA is to understand the target distribution to identify if there is a

relevant imbalance between the classes. As it is shown in figure 11, the classes are close to

being perfectly balanced, the mood equals “1” corresponds to 51,74 % and equals “0” to

48,26 % of the data. Therefore, the imbalance issue is not relevant to this project.

32

Figure 11. Target variable distribution.

Another fundamental aspect that requires examination is the relationship between the

categorical features and the target. Three distributions are plotted in figure 12 to show that

the features “speechiness”, “liveness”, and “instrumentalness” are constants or practically

constants in the target value “0”, which will not provide much information for building the

classification ML models.

The three categorical that are not constants. It is important to understand if exists some

relevant association between these variables and the target classes. With this aim, it was built

three normalized crosstabs of the categorical features “mode”, “explicit”, and “time_signa-

ture” and the target.

After this, it was performed the chi-square test of independence, which can be seen in

figure 13, “mode” feature has a p-value of more than 19 % which does not reject the null

hypothesis indicating independence between them. On other hand, “explicit” and “time_sig-

nature” have a p-value of 0,23 % and 0,05 %, respectively much lower than the standard 5

% of the test, so it indicates that the null hypothesis is rejected, and there is a significant

association between the variables, what can indicate that both variables provide useful infor-

mation for predicting the target.

33

Figure 12. Distributions of categorical features.

Figure 13. Normalized contingency tables of the categorical features.

34

4.2 Data Preparation

Building upon the previous findings, this section explores the development of the data

preparation Python script intending to generate preprocess data output.

The first step was to import both csv files generated from the data extraction script

described in subsection 4.1.2. After that, the data types were improved to consume the min-

imum memory as possible. This is an important step to guarantee scalability of the model if

the dataset increases over time.

In addition, with the discoveries from EDA phase, it was possible to understand that the

genres and sub-genres columns need a treatment. The first transformation was replacing the

missing values for zeros and using a label encoder to convert the names of the genres to

numbers to make further calculations easier and avoid problems when building the ML mod-

els.

Another EDA finding was that the variables “speechiness”, “liveness”, “instrumental-

ness” can be considered as constants, so it is better to drop them from the dataset together

with “valence” (it was converted to the target), “artist”, “album”, “track name”, “re-

lease_date”, “track_id” that are not relevant to the ML model, they are only for illustrative

purposes.

After the end of data cleaning, the last part consisted of exporting three csv files. One

is composed of the 1800 tracks from the 2005 to 2022 playlist, and the second is the new

music dataset from the top 100 tracks that is updated every week. They were separated to be

used in the monitoring phase that will be better explained in the specific topic. The final file

is concatenated from the two previous datasets that will serve as input for the next modelling

phase.

4.3 Modelling

The objective of the modelling phase is to build a pipeline to train classification super-

vised models to predict the target variable “mood”. To accomplish this goal was necessary

to first import the complete preprocess data from the data preparation phase, split the data

in training and test, next build a training pipeline, select the models which are going to ex-

periment with, and save and register the model in a server repository to be used in the next

phases.

35

The building of the training pipeline was considered one insight from the EDA, which

discovered that the features have different scales and compared to other popular technique

like Min Max scaler it is more suitable when features have non-uniform scales, so a standard

scaler was used to avoid this issue. The first step performed was feature selection to under-

stand the ideal number of features that can maximize the mean scores of the cross-validation

five times, which tested the model in different samples.

After finding the ideal number of features, the train pipeline was composed of 1. stand-

ard scaler, 2. the ideal number of features and 3. the classification model. To improve even

more, the model was necessary to do hyperparameter optimization, which was performed

using random search cross-validation, which avoids excessive calculations and used the cross-

validation mechanism to avoid overfitting.

Figure 14. Example of the train pipeline code from the Extra Trees model.

The final steps to train the model are fit and evaluate, which will be better explained in

the next section. In addition, because this is an MLOps project, the MLflow tool was used

to save the input features, evaluation metrics and hyperparameters in the MLflow linked to

the DagsHub repository, which offers a free MLflow server. Finally, the model is saved and

registered in the same server with all the dependencies to be reproducible in the deployment

phase.

Figure 31 in appendix shows how MLflow store encapsulates a model with all packages

required to train the model, the environment dependencies, and the model as a “Pickle” file.

One important aspect that needs to be discussed is the choice of models. It was per-

formed in Jupiter notebook, several experiments using Python AutoML tools such as Pycaret

and Tpot, indicating that the better-performing models are LightGBM, XGBoost, Random

Forest, Extra Tree Classifier and Gradient Boosting. So, these five models were submitted to

every step previously mentioned in this section.

36

Figure 15. Example of the MLflow UI server.

Figure 15 shows the MLflow UI server in the DagsHub, where it is possible to analyze

the models trained in various experiment versions with their metrics and hyperparameter.

After the evaluation phase, the registered model can be prioritized to advance to the staging

and production stages to be deployed.

4.4 Model Evaluation

A function to return the main classification evaluation metrics was created in the model

evaluation phase. It was calculated four metrics that used as input for the target test data and

the target prediction: accuracy, precision, recall, f1 score. Additionally, the other two metrics

were calculated that used target test data and the target prediction probabilities ROC AUC

and average precision. The last metric was the mean of cross-validation score five times.

These metrics were incorporated into the model training script described in the last sec-

tion, and the results were stored in the MLflow storage. To compare the five trained, it was

possible to use the MLflow UI visuals available in figures 16 and 17.

These figures show a scatter plot, comparing the five models according to precision and

recall and the mean cross-validation score and f1 score. In both, it is possible to realize that

the Random Forest model has the best results.

37

Figure 16. Precision and recall scatter plot from MLflow.

Figure 17. Mean CV and f1 scores scatter plot from MLflow.

The complete results of the evaluation metrics are available in table 4, in six out of seven

metrics Random Forest achieves superior results, only losing the average precision for the

Extra Tree Classifier. However, it is important to note that these results are only valid for

these specific tracks dataset, and overtime, when the part of the dataset with new tracks will

be updated, these metrics can change.

38

Table 4. Evaluation metrics extracted from MLflow.

In conclusion, the Random Forest with the hypermeters below is the best model for this

experiment according to the metrics and will be deployed in the next section.

1. Max depth = 9,

2. Minimum samples leaf = 2,

3. Minimum samples split = 7,

4. Number of estimators = 84.

For the best Random Forest model, it was performed the model’s explanation using Shap

Python library, which contains the method Shapley Additive Explanations, as better dis-

cussed in subsection 2.2.5, explainability and responsible AI are fundamental aspects in any

ML model to make it understandable and useful for a broader audience and not only be a

black box that gives an output prediction that no one can trust.

In figure 18, the feature importance has been plotted using Shap, where it shows each

track as a point distributed on each feature, the red indicates high values and blue low values

of the features, and the positive x-axis indicates the contribution towards a happy song and

the negative x axis in the direction of a sad song.

Metrics Gradient Boosting Random Forest XGBoost Extra Tree Classifier LightGBM

accuracy 0.721 0.753 0.716 0.703 0.708

average precision 0.806 0.802 0.79 0.808 0.794

f1 score 0.725 0.756 0.719 0.72 0.707

mean cv score 0.687 0.692 0.691 0.692 0.688

precision 0.737 0.768 0.734 0.7 0.732

recall 0.714 0.745 0.704 0.74 0.684

ROC AUC 0.789 0.808 0.792 0.798 0.788

39

Figure 18. Shap feature importance summary plot.

Then, the features “danceability” and “energy” have the most significant impacts on pre-

dicting the target, and the higher values from both features are associated with happy songs

and the lower values with sad songs. However, in the dependence plot in figure 19, between

these two variables, even though they have similar impacts, many tracks with lower values of

danceability have higher values of energy, indicating that they are not the same tracks with

high energy and high danceability. In conclusion, both features are important to predict the

target.

40

Figure 19. Shap dependency plot between energy and danceability.

The shap summary plot has two other features with interesting behaviors. The “dura-

tion_ms” has opposite impact in relation to the previous features. It shows that higher values

of this feature have higher contributions to sad songs, and lower values tend to have lower

contributions to happy songs.

41

Figure 20. Shap scatter plot duration_ms.

The second feature is “popularity”, which is the opposite of “duration_ms”. It shows

that higher values of this feature have lower contributions to sad songs, and lower values

tend to have higher contributions to happy songs. The behaviors of these two features are

clearer in the scatter plots where in the case of “duration_ms” in figure 20, the tracks with

higher durations have greater negative impacts, and in “popularity” plot the tracks with lower

popularity have greater positive impacts, it shown in figure 21.

42

Figure 21. Shap scatter plot popularity.

4.5 Model Deployment

After evaluating the models and selecting the best one, it is time to deploy the model

with its prediction power to an ML application using the Streamlit tool and public cloud to

be used as a prediction service as mentioned in subsection 4.1.1.

To pursue this goal, the first step was building a prediction function to be called in the

application script code. This function’s input is the best model that is stored in MLflow server

and the data in data frame or a csv file format. On the other hand, the outputs are going to

be a list of predictions and one of the predictions probabilities to serve as the confidence

of the predictions.

To continue this phase, building a Python script to run the Streamlit application was

quintessential. It was called “Music Mood Prediction App” and got two main functionalities

to make the predictions with the best model: 1. Manual input of the values of the features

by the user; 2. Csv file uploader as an input of the features. The last step is to deploy the

application to the Streamlit public cloud that was connected to the GitHub repository where

43

the script is located.

Figure 22. Streamlit application: User input features example.

Figure 22 shows an example of the execution of manual user input functionality. In this

case, with the features input of a song, that can be altered in the sidebar to test how the

changes affect the prediction and probabilities in a straightforward manner. The best model

predicts that a track with these feature values will be a sad song with a probability of 92,26

%.

Figure 32 in appendix illustrates the case of a Csv uploader that contains the features of

ten tracks, which can be seen as a data frame. It works the same way as the first case but

allows the upload of real songs from Spotify to test if they are happy or sad with the corre-

spondent prediction probabilities.

44

4.6 Monitoring and Maintenance

4.6.1 Monitoring phase

To monitor the data and the best classification model performance, five html reports

were created using Evidently tool: 1. Data quality; 2. Data drift; 3. Target drift; 4. Test classi-

fication; 5. Classification performance.

The first step, as in the previous phases, was the creation of a Python script where it was

received as inputs the preprocess data split into two files, one with the playlists from 2005 to

2022 and the other with the top 100 new tracks, both generated in the data preparation phase.

In the code was necessary to map the features in numerical and categorical, specify the target

variable and create a column with the predictions, using the predictions function from the

deployment phase. Finally, it was possible to call Evidently library to create the reports having

as standard the reference data as the dataset with old tracks and the current data as new tracks

dataset.

The data quality report aims to provide a detailed statistical comparison between the two

datasets and can also be used to improve the EDA analysis.

In figures 33 and 34 in appendix, both datasets are very similar, looking for the example

of the danceability variable and the correlation between the numerical features.

The data drift and target reports are used to detect if the two datasets have significant

changes concerning the input features, target, and prediction distributions. This can help to

decide if the model needs to be retrained due to a degradation in the model performance

over time. Evidently uses a standard algorithm of data drift for larger data, which are con-

sidered more than 1000 observations, for the calculation of the numerical features the Was-

serstein distance and for the categorical Jensen-Shannon distance are used, both with confi-

dence level of 0.95.

Figure 23. Data Drift report summary.

45

Figure 23 shows that of the nine columns analyzed, seven had drifts. Only the target and

the predictions do not have drift, so all the numerical variables presented in the datasets had

some degree of drift. What may be distorted as the reference dataset has 1800 tracks and the

current only 100. However, this behavior needs to be monitored over time to confirm that

this is or is not a trend of the new data to retrain the model.

In figure 24, it can be observed the distribution of the variable “popularity”, the one with

the greatest drift. The clear trend is that new tracks have higher popularity than old ones.

Figure 24. Data Drift report popularity distribution.

The other two reports test, measure and analyze the classification performance and

should be used together to obtain the complete picture of the classification model.

Figure 35 in appendix shows the five tests presented in the test classification report that

can serve as a summary of the classification report. The first test demonstrates no drift in

the target variable using the threshold of 0,1. The following four tests measure the main

quality metrics: precision, recall, f1 and accuracy score in both datasets to understand if they

have significant differences, always using a threshold with confidence intervals. For this case,

it was not received any warnings. However, it is important to analyze overtime with new

tracks added to look up changes in behavior.

46

Figure 25. Classification report: quality metrics.

The two figures 36 and 37 in appendix and the summary above were extracted from the

classification performance report. After the evaluations provided from the test classification

report, it is good to visualize in more detail what are the differences between the reference

and current datasets. As expected, there are no great changes in the metrics between the

datasets.

4.6.2 Maintenance phase

The purpose of the maintenance phase is to guarantee that the whole process is sustain-

able over time. To accomplish this goal, the pipeline must be automated with respect to the

CI/CD principle that came from DevOps and the CT added from MLOps methodology.

To make the pipeline easier to manage, DVC functionality was used to create DAGs as

mentioned in subsection 2.2.2. The construction of DAGs is done through a “Yaml” file

where the name of the stages is specified, the command to execute the correspondent Py-

thon script built in the previous sections and dependencies and outputs.

Figure 26 is the illustration available in DagsHub, via integration when the DVC “Yaml”

file is in the repository. It is shown that all code all managed by Git and all data are managed

by DVC to maximize efficiency and ensure versioning. An important factor to note is the

stages are extraction, preparation, training, and monitoring because the evaluation and de-

ployment phases are imported in the same way as Python libraries when necessary, and the

code of the Streamlit application only uses the deployed model.

47

Figure 26. DVC pipeline illustration.

After building the DVC pipeline, it becomes possible to start it using only one command:

DVC repro. Furthermore, this command only activates the stages that have changed. For

example, if it is necessary to delete a feature in data preparation, the pipeline will not extract

the data again, only from preparation forward, which ensures the minimum execution time

in each cycle.

Figure 27. GitHub Actions CI/CD pipeline.

The last step to achieve the CI/CD pipeline is to automate using GitHub Actions to

make it possible to execute the local pipeline in a remote environment. As shown in figure

27, it takes several steps configured in a “Yaml” file in GitHub. The first step is prior to the

48

“Yaml” file development, which is the registration of all local environment variables in

GitHub secrets to be accessed by GitHub Actions.

Then, to start the “Yaml” file is necessary to establish a trigger to the pipeline. In this

case was the execution of a push to GitHub but it could be a pull request or something

else. Next, Ubuntu was selected as the operating system, and the variables stored in secrets

were loaded. After this was performed, a checkout was to update the working directory,

create a cache to store the memory of the pipeline steps and install Python, DVC and all

the dependencies available in the “requirements.txt”.

With these steps, the virtual environment is configured, and the pipeline data can be

pulled from the DagsHub repository and the entire can be run with only the DVC repro

command which makes this process as simple as possible. The last steps are to clean the

environment variables and push the final data to DagsHub.

Finally, it is important to explain that to complete the continuous deployment part, the

same push to GitHub activates the Streamlit public cloud connected to the repository,

which automatically deploys the most updated code to the application.

4.7 Answering key research questions

In Chapter 4, all seven questions that were established at the end of Chapter 3 were an-

swered. The first question was addressed throughout Chapter 4, which was guided by the

CRISP-ML(Q) methodology, which allowed organizing the project and ensuring that each

step was fulfilled.

The second issue was also addressed, as each open source tool was explained how and

at what stage, as well as the reasons why they are used. The third was addressed mainly in

subsection 4.1.1 and illustrated by figure 6. Next, sections 4.3 and 4.4 answered question 4,

which showed how the best ML classification models for the problem were modeled and

evaluated, as well as the comparison among them in table 4.

In section 4.5 and subsection 4.6.2, question 5 was explained, about what was the de-

ployment of the ML application on Streamlit and how to maintain it using a CI/CD pipe-

line that was built on GitHub Actions. On the other hand, subsection 4.6.1 addressed ques-

tion 6, answering how to properly monitor an ML model. Finally, the last question was an-

swered in section 4.4, with the use of Shap it was possible to make the ML model algo-

rithm more explainable to the audience.

49

50

5 Conclusions and future works

The present study successfully addressed the research objectives by developing an entire

CI/CD pipeline using only open-source machine learning tools, which allowed the deploy-

ment of an ML application and monitoring of the production model to be retrained when

necessary. To accomplish this, it was essential to follow the CRISP-ML(Q) steps and Google’s

maturity model framework to ensure that the MLOps project would be consistent with the

best practices of the ML industry.

The CRISP-ML(Q) methodology was an important design guide, as in addition to

providing the additional step of monitoring and maintenance over CRISP-DM, which is the

quintessence for achieving MLOps standards, it maintains the traditional steps for achieving

deployment of an ML Application. Moreover, Google’s maturity model framework provided

the architecture that helped choose the MLOps stack and the integration between the tools

to achieve level 2: CI/CD automated pipeline.

The choice of the MLOps stack also fulfilled the requirements expressed in chapter 2.

The tools Git and DVC ensured code and data versioning, respectively, of the entire pipeline

and the repositories GitHub and DagsHub, together with the user interface of MLflow turn

possible to have reproducible ML models packed with all necessary dependencies.

Another key requirement was the orchestration to achieve an automated pipeline. This

was accomplished using DVC to build DAGs of each pipeline stage and then automated

with GitHub Actions each time a push command is made from the local machine to the

GitHub repository. In this specific project, it was unnecessary to use containers to store the

dependencies. Just a text file was enough, but it could also have been used without problems.

The scalability requirement could be achieved by HTTP requests using Spotify web API.

However, as one limitation of this dissertation due to only one CPU being available, it was

downloading the data of 1900 tracks so as not to be a very time-consuming computation

task on the data extraction and modelling phases. Also, Streamlit has a 1 GB limit to deploy

as a public application, which means that scaling would not be an issue at this stage of de-

velopment because the Python code file of the application is light. The heavy part was the

stored data on DagsHub which has 10 GB of space and for the 1900 tracks it only used less

than 1 MB of storage so there is plenty of headroom to scale.

The MLOps monitoring requirement was accomplished using Evidently reports, which

allowed for identifying data quality, data and target drift and the model classification

51

performance by comparing the reference data and the new data. This is to understand if the

model metrics degraded over time and need to be retrained. As one of the limitations, the

built trigger was manual, parsing the monitoring reports and then retraining the model and

replacing the best model to deploy. However, it could have been done automatically, for ex-

ample, setting a threshold of model accuracy and hooking it to the pipeline, but this devel-

opment would not be trivial.

The last requirement concerned explainability and responsible AI. This step was per-

formed in the evaluation stage using the best model: Random Forest. To complete this task

the Shap library was used and discovered that the “danceability” and “energy” were the fea-

tures with higher contributions to the target predictions.

Therefore, this thesis fulfilled the objectives proposed in the first chapter, executing the

main steps of the CRISP-ML(Q) methodology and the MLOps requirements to obtain a

consistent real world end-to-end MLOps project, in addition to providing a complete review

of the MLOps tools with their functionalities and connections between them, an optimized

MLOps stack was selected, and an automated CI/CD pipeline was delivered for continuous

improvement of an ML application.

In future works, the possibility of increasing the number of tracks through the Spotify

API and creating an automatic trigger has already been mentioned. Also, it would be inter-

esting to test different MLOps stacks and compare efficiency, extract data through other

APIs, and perform other ML tasks like regression, unsupervised learning, recommender sys-

tems or deep learning applications. Finally, to optimize the quality of the automated pipeline,

tests can be created between major phases to ensure the quality of inputs and outputs.

52

References

Bhatt, U., Xiang, A., Sharma, S., Weller, A., Taly, A., Jia, Y., Ghosh, J., Puri, R., Moura, J. M.

F., & Eckersley, P. (2020). Explainable machine learning in deployment. FAT* 2020 -

Proceedings of the 2020 Conference on Fairness, Accountability, and Transparency, 648–657.

https://doi.org/10.1145/3351095.3375624

Garg, S., Pundir, P., Rathee, G., Gupta, P. K., Garg, S., & Ahlawat, S. (2021). On Continu-

ous Integration / Continuous Delivery for Automated Deployment of Machine

Learning Models using MLOps. Proceedings - 2021 IEEE 4th International Conference on

Artificial Intelligence and Knowledge Engineering, AIKE 2021, 25–28.

https://doi.org/10.1109/AIKE52691.2021.00010

Gift, Noah., & Deza, Alfredo. (2021). Practical MLOps: Operationalizing Machine Learning Mod-

els (First).

Google. (2023). MLOps: Continuous delivery and automation pipelines in machine learn-

ing. https://cloud.google.com/architecture/mlops-continuous-delivery-and-automa-

tion-pipelines-in-machine-learning

Hewage, N., & Meedeniya, D. (2022). Machine Learning Operations: A Survey on MLOps Tool

Support. https://doi.org/10.48550/arXiv.2202.10169

John, M. M., Olsson, H. H., & Bosch, J. (2021). Towards MLOps: A Framework and Ma-

turity Model. Proceedings - 2021 47th Euromicro Conference on Software Engineering and Ad-

vanced Applications, SEAA 2021, 334–341.

https://doi.org/10.1109/SEAA53835.2021.00050

Klaise, J., van Looveren, A., Cox, C., Vacanti, G., & Coca, A. (2020). Monitoring and explaina-

bility of models in production. http://arxiv.org/abs/2007.06299

Kreuzberger, D., Kühl, N., & Hirschl, S. (2022). Machine Learning Operations (MLOps): Over-

view, Definition, and Architecture.

Lakshmanan, V., Robinson, S., & Munn, M. (2020). Machine Learning Design Patterns Solutions

to Common Challenges in Data Preparation, Model Building, and MLOps (R. Novack, C. Col-

lins, B. Kelly, C. Roumeliotis, & H. Bauer Forsyth, Eds.; First Edition). O’Reilly Media,

Inc.

Liu, Y., Ling, Z., Huo, B., Wang, B., Chen, T., & Mouine, E. (2020). Building A Platform for

Machine Learning Operations from Open Source Frameworks. IFAC-PapersOnLine,

53(5), 704–709. https://doi.org/10.1016/j.ifacol.2021.04.161

53

Mäkinen, S. (2021). Designing an open-source cloud-native MLOps pipeline [Master, University of

Helsinki]. http://www.cs.helsinki.fi/

Microsoft (2023). Machine Learning operations maturity model. https://learn.mi-

crosoft.com/en-us/azure/architecture/example-scenario/mlops/mlops-maturity-

model

Praveen Gujjar, J., & Kumar, V. N. (2022). Demystifying MLOps for continuous delivery of

the product. Asian Journal of Advances in Research, 13(3), 19–23.

Ruf, P., Madan, M., Reich, C., & Ould-Abdeslam, D. (2021). Demystifying mlops and pre-

senting a recipe for the selection of open-source tools. Applied Sciences (Switzerland),

11(19). https://doi.org/10.3390/app11198861

Salvucci, E. (2021). MLOps-Standardizing the Machine Learning Workflow Thesis on Big Data.

Università di Bologna.

Sculley, D., Holt, G., Golovin, D., Davydov, E., Phillips, T., Ebner, D., Chaudhary, V.,

Young, M., Crespo, J.-F., & Dennison, D. (2015). Hidden Technical Debt in Machine Learn-

ing Systems.

Silva, L. (2021). Architectural redesign and evaluation of an open source MLOps platform: a case study

of Apache Marvin-AI [Master]. Universidade Federal de São Carlos.

Spotify (2023). Web API | Spotify for Developers. https://developer.spotify.com/docu-

mentation/web-api/

Studer, S., Bui, T. B., Drescher, C., Hanuschkin, A., Winkler, L., Peters, S., & Mueller, K.-R.

(2020). Towards CRISP-ML(Q): A Machine Learning Process Model with Quality Assurance

Methodology. http://arxiv.org/abs/2003.05155

Symeonidis, G., Nerantzis, E., Kazakis, A., & Papakostas, G. A. (2022). MLOps - Defini-

tions, Tools and Challenges. 2022 IEEE 12th Annual Computing and Communication

Workshop and Conference, CCWC 2022, 453–460.

https://doi.org/10.1109/CCWC54503.2022.9720902

Treveil, M., Omont, N., Stenac, C., Lefèvre, K., Phan, D., Zentici, J., Lavaoillotte, A., Miya-

zaki, M., & Heidmann, L. (2020). Introducing MLOps: How to Scale Machine Learning in the

Enterprise (First Edition). O’Reilly Media, Inc.

54

Appendixes

Figure 28. EDA: Top 20 artists.

55

Figure 29. EDA: Top 20 albums.

56

Figure 30. EDA: Top 20 followers.

Figure 31. Example of a model stored in the MLflow server.

57

Figure 32. Streamlit application: Csv uploader example.

Figure 33. Danceability variable statistical description example.

58

Figure 34. Pearson correlation matrix example.

Figure 35. Test classification report.

Figure 36. Classification report: confusion matrix.

59

Figure 37. Classification report: quality metrics by class.

