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Resumo 
 

O termo Machine Learning Operations (MLOps) tem proliferado desde o final de 2018 de-

vido à dificuldade de implantar modelos de Machine Learning (ML) na produção e garantir 

o gerenciamento sustentável do ciclo de vida do ML. Esta dissertação aborda esses desafios 

a desenvolver um pipeline completo de CI/CD usando ferramentas de aprendizado de má-

quina de código aberto, guiadas pela metodologia CRISP-ML(Q) e pela estrutura do modelo 

de maturidade do Google. O pipeline implementado permite a implantação de um aplicativo 

de ML e o monitoramento contínuo do desempenho do modelo, acionando o retreinamento 

quando necessário. O estudo se concentra em uma tarefa de aprendizado supervisionado 

usando a API da Web do Spotify para classificar as faixas em listas de reprodução de humor, 

especificamente felizes e tristes. A seguir a metodologia CRISP-ML(Q), esta pesquisa atende 

aos padrões MLOps e garante a integração bem-sucedida dos sistemas ML na produção. 

Além disso, a pilha MLOps escolhida, abrangendo ferramentas como Git, DVC, GitHub 

Actions e MLflow, facilita o controle de versão de código e dados e a criação de modelos ML 

reproduzíveis. O requisito de escalabilidade é demonstrado usando Spotify Web API e Stre-

amlit. Além disso, o aspecto de monitoramento de MLOps é abordado usando relatórios 

claros para avaliar a qualidade dos dados, o desvio de dados e o desempenho da classificação 

do modelo. Os resultados indicam que o pipeline desenvolvido atende aos requisitos do 

MLOps e mostra a explicabilidade e os aspectos responsáveis da IA ao empregar a biblioteca 

Shap para identificar as principais características nas previsões do modelo. No geral, esta 

dissertação atinge com sucesso seus objetivos pretendidos, entregando um projeto MLOps 

abrangente que combina as melhores práticas da indústria de ML com ferramentas de 

MLOps de código aberto. 

 

Palavras-Chave: MLOps, Machine Learning, Automação de pipeline, Ferramentas de código aberto. 
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Abstract 
 

The term Machine Learning Operations (MLOps) has been proliferating since late 2018 due 

to the difficulty of  deploying Machine Learning (ML) models into production and ensuring 

sustainable management of  the ML lifecycle. This dissertation addresses these challenges by 

developing a complete CI/CD pipeline using open-source machine learning tools, guided by 

the CRISP-ML(Q) methodology and Google's maturity model framework. The implemented 

pipeline allows deployment of  an ML application and continuous monitoring of  model per-

formance, triggering retraining when needed. The study focuses on a supervised learning 

task using the Spotify Web API to sort tracks into mood playlists, specifically happy and sad. 

Following the CRISP-ML(Q) methodology, this research meets MLOps standards and en-

sures the successful integration of  ML systems into production. Additionally, the chosen 

MLOps stack, spanning tools such as Git, DVC, GitHub Actions and MLflow, facilitates 

code and data versioning and building reproducible ML models. The scalability requirement 

is demonstrated by utilizing the Spotify Web API and Streamlit. In addition, the MLOps 

monitoring aspect is addressed using Evidently reports to assess the data quality, data drift 

and classification performance of  the model. The results indicate that the developed pipeline 

meets the MLOps requirements and shows the explainability and responsible aspects of  the 

AI when employing the Shap library to identify the main features in the model predictions. 

Overall, this dissertation successfully achieves its intended goals, delivering a comprehensive 

MLOps project that combines ML industry best practices with an open-source MLOps stack. 

 

Keywords: MLOps, Machine Learning, Pipeline Automation, Open-source tools. 
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1   Introduction 
 

Machine Learning Operations (MLOps) adapt the Development and Operations 

(DevOps) methodology from software development, which consists of  a rapid deployment 

cycle for Machine Learning (ML) systems (Mäkinen, 2021). The relatively new term MLOps 

started to gain relevance in late 2018 and is also understood as the standardization and auto-

mation of  the complete ML lifecycle (Treveil et al., 2020). 

One of  the main issues emerging in the field of  ML recently is the difficulty of  deploying 

ML models in production. Only a tiny percentage of  ML models can reach production 

(Symeonidis et al., 2022). Furthermore, even models currently in production are managed by 

data scientists as manual ML workflows (Kreuzberger et al., 2022). 

Therefore, for ML professionals, the deployment phase to production, automating model 

retraining and monitoring are the biggest challenges because, unlike software development, 

ML models depend not only on the code but also on the extremely volatile data, and the 

maintenance is strenuous (Mäkinen, 2021; Ruf  et al., 2021). 

 

1.1 Problem Definition and Motivation 

 

Since the ML Models in an enterprise can take anywhere from six to 18 months to reach 

production, and most models have a small lifetime, this delay between the starting an ML 

project and deploying the model it usually means that the production model is no longer 

conforming to real-world data (Liu et al., 2020; Salvucci, 2021). 

For this reason, at the end of  this master’s in data analytics, it is essential to understand 

the end-to-end life cycle of  the ML system, including what is needed to build a model, using 

all the steps of  MLOps methodology from business and data understanding to ML model 

deployment, monitoring, and retraining.  

Furthermore, many software solutions must be used at different stages of  the ML lifecy-

cle. These solutions have recently evolved into open-source and commercial choices. How-

ever, commercial platforms have major disadvantages, obviously the high cost; they are also 

not 100% transparent and lack the flexibility generated by modularity (Ruf  et al., 2021).  

Thus, in this dissertation only open-source tools are used to develop the ML model. 

Furthermore, the next subsection presents the complete solution to the defined problem. 
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1.2 Objectives 

 

The four objectives of  the dissertation are listed below. They summarize the research 

effort and results of  the literature review and the development and operationalization of  the 

ML model. 

 

1. Recommend open-source MLOps tools based on ease of  use and simplification of  

the MLOps stack. 

2. Build an explainable ML classification model using the Spotify Web API and follow 

the CRISP-ML(Q) methodology. 

3. Enhance the ML model with the MLOps CI/CD pipeline to enable ML application 

deployment. 

4. Monitor ML model performance in production with trigger retraining when needed. 

 

1.3 Dissertation Structure 

 

The structure of  this dissertation is organized as follows. This first section is an intro-

duction that describes the problems, motivations, and objectives. 

The second section presents a literature review with the main topics related to ML and 

MLOps relevant to the dissertation. The third section explains the data used and the meth-

odology of  the project. Moreover, this section also shows the stack of  MLOps chosen to 

fulfil the first objective. 

Section four will present all stages of  development of  the ML model following the 

MLOps methodology and show the results achieved, with objectives two, three and four 

fulfilled. 

Finally, in the fifth and last section, conclusions are drawn, and suggestions for future 

work related to MLOps are presented.  
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2   Literature Review 

 

This chapter presents the literature review on the main topics related to MLOps. It starts 

with the origin of  MLOps methodology, explaining the relationships between DevOps and 

it. The following subsection is about the requirements for building an MLOps system and 

what is the maturity model that can be achieved. Next, the ML lifecycle based on the CRISP-

ML(Q) framework is explained. In the fourth subsection, the leading open-source MLOps 

tools are presented with the functionalities they perform. The final subsection describes the 

main challenges that MLOps systems need to solve to survive over time. 

 

2.1 Relationships between DevOps and MLOps 

 

DevOps is a set of  practices based on Agile software development principles that appear 

in 2008/2009. They were created to approximate the developers and operators, encouraging 

communication, knowledge sharing and team collaboration to deliver software faster and 

with better quality. The main pillars, process, principles, or even best practices of  DevOps 

are called Continuous Integration (CI) and Continuous Delivery (CD) (Gift & Deza, 2021; 

Kreuzberger et al., 2022; Mäkinen, 2021; Salvucci, 2021). 

CI is a practice that aims to reduce the software development process cycle to identify 

errors as quickly as possible and correct them, consequently improving quality. To achieve 

this goal, code needs to be integrated at rapid and frequent intervals, facilitating software 

development automation. CD is a process that aims to test and deploy code to quickly and 

reliably deliver software enhancements to end users (Gift & Deza, 2021; John et al., 2021; 

Praveen Gujjar & Kumar, 2022; Salvucci, 2021; Symeonidis et al., 2022). 

Since DevOps principles in software development have been used in the industry for 

more than 10 years, industry experts and academics are transferring this knowledge to auto-

mate and operationalize ML systems, which are also software with the peculiarity of  having 

a component of  ML model. This process to automate ML process using DevOps best prac-

tices is often called MLOps. Both, have the goal of  reducing development time until the 

software goes into production, and the team is responsible for the entire lifetime of  the 

solution with a collaborative team composed of  developers and operators (Gift & Deza, 

2021; Kreuzberger et al., 2022; Salvucci, 2021).  
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Nevertheless, there are important differences between them. While DevOps focuses on 

testing the code, MLOps also needs to test the data, validate the model, and ensure model 

quality. Another key difference is related to types of  monitoring, when an organization's 

strategy changes, this can lead to ML model degradation, hence covariate-shift and pre-shift 

monitoring may be required, instead than monitoring latency in software traditional devel-

opment. Finally, the CI and CD pipelines need to be built on MLOps, ensuring that CI in-

cludes data and the ML models, and the CD contains the training pipeline and the final model 

prediction. In addition, MLOps have one more key practice called Continuous Training (CT) 

with the aim of  ensuring that ML models have an automatic trigger to retrain them when 

needed to improve model performance (Garg et al., 2021; John et al., 2021; Salvucci, 2021; 

Symeonidis et al., 2022). 

 

Figure 1. Summary of DevOps and MLOps principles. 

 

2.2 MLOps Requirements 

 

In this subsection, a literature review of  the most important state-of-the-art requirements 

to build a sustainable MLOps system using DevOps best practices adapted to the MLOps 

context was performed. 

 

2.2.1 Versioning and Reproducibility  

 

Data and model versioning are key challenges to building reliable ML models. Because 

of  various reasons, training models have random weights, the data sources will eventually be 
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updated, and the models will degrade, due to changing business decisions or data, over time. 

The main advantages of  model versioning are enabling the rollback of  a model if  something 

unforeseen happens and allows different models to be used in different timeframes. On the 

other hand, data versioning is essential to follow the evolution of  data over time. The union 

of  both types of  versioning make it possible to have model reproducibility, thus ensuring 

that the model can be shared with other teams and produce the exact results in a production 

environment (Lakshmanan et al., 2020; Ruf  et al., 2021; Salvucci, 2021; Treveil et al., 2020). 

 

2.2.2 Containerization and Orchestration 

 

Containerization is a technology that uses a series of  instructions to build a container 

called an image. This image encapsulates the code and its dependencies, allowing it to run 

on different computing platforms. Additionally, an image can reference multiple images, 

which can scale its usage. Also, container solution is a growing trend to be used as an alter-

native to virtual machines as various containers can run on just one operating system, which 

is more efficient in terms of  computational power (Mäkinen, 2021; Salvucci, 2021; Treveil et 

al., 2020). 

The key advantages of  using containers are enabling the ML model to production with-

out dependency on a single hardware and facilitating logging, monitoring, scaling and crash 

recovery, important aspects of  MLOps architecture. Nevertheless, for large-scale applica-

tions, it is essential to have a container orchestration tool to make it simple to automate, 

deploy and communicate with other teams about containers (Garg et al., 2021; Silva, 2021). 

Another essential type of  orchestration in MLOps is the workflow, which uses directed 

acyclic graphs (DAGs) to represent the order of  execution of  steps considering relationships 

and dependencies. The main purpose of  orchestration is to build the pipeline logic to deter-

mine which steps need to be performed and the expected results of  them, for example it is 

possible to set a threshold to trigger the start of  a pipeline if  the accuracy of  the ML model 

falls below this level or otherwise do not activate the pipeline (Kreuzberger et al., 2022; Lak-

shmanan et al., 2020). 

 

 



7 
 

2.2.3 Scalability 

 

Scalability is a common challenge in ML workflows. This challenge can manifest itself  in 

the stages of  data collection and pre-processing, training, and service, and in the retraining 

model in the production phase. The dataset size is one of  the essential requirements for 

choosing the right tool depending on the solution. Furthermore, the infrastructure necessary 

to process large amounts of  data to train the ML models may be time-consuming and com-

putationally expensive, so this needs to be considered, as it can be necessary, for example, to 

have a specific GPU for processing the ML workload (Lakshmanan et al., 2020; Treveil et al., 

2020). 

 

2.2.4 Monitoring 

 

The monitoring step is crucial because ML models’ performance degrades over time, and 

new data can generate the need to retrain the model in production, so if  they do not have 

warnings or triggers, this can have a negative impact on business decisions. It is also a key 

factor to monitor the model metrics in production to detect the detachment between the 

model predictions and reality. In addition, there is a second level that the ML models need 

to be monitored, at a resource level, because in the production environment, it is essential to 

realize if  the system is online, the speed of  requests is being processed as expected, and the 

use of  the CPU, RAM and network are as designed. (Salvucci, 2021; Sculley et al., 2015; 

Treveil et al., 2020). This second concern is typical of  the DevOps topic, but the principle is 

the same for MLOps. 

 

2.2.5 Explainability and Responsible AI 

 

Assessing whether an ML model is ready for the production environment often uses 

metrics such as accuracy, precision, recall, and mean squared error. However, these metrics 

cannot provide the whole truth, as they do not tell why the ML model achieves the predic-

tions, only measure how close the prediction is to the test set. The solution for this issue is a 

growing field in ML called interpretability or explainability of  the models (Lakshmanan et 

al., 2020). 
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The field of  explainability is intrinsically linked to the area of  Responsible AI, which 

aims to find the best practices for building fairness in AI systems. This area has two main 

principles, and intentionality means that the AI projects must have unbiased data sources, 

which guarantees multiple checks and can be explained by humans. The second is accounta-

bility, which is a central control of  all AI initiatives to understand which teams use what data 

sources to build which ML models, making it easier to comply with regulations and organize 

the insights into the business processes (Lakshmanan et al., 2020; Treveil et al., 2020). 

Explainability can help with some of  the big problems data scientists have in building 

and deploying ML models. Model debugging is one of  them because it is essential to under-

stand why the model performs better or worse in determined features to identify how to 

engineer new features, drop redundant ones and improve the overall model performance. 

Another problem that occurs during the monitoring phase after deployment is data drift, as 

it is important to explain how concept drift in features may impact the model outcomes and 

feature contributions. The last issues are model transparency and audit, as organizations seek 

transparency in the model prediction to make decisions with a certainty of  effects to the end 

users and audit the data to comply with regulations and internal audit (Bhatt et al., 2020). 

Explanation methods depend on three main factors: data modality, model type and pre-

diction task (Klaise et al., 2020). The first refers to the complexity of  the dataset. If  it con-

tains different types of  data like images and text, they have more complexity because these 

types of  data have different statistical properties. Second, some models are easier to explain, 

such as linear regression or decision trees. However, models like neural networks, known as 

black box models, are hard to explain. Finally, whether the prediction task is, classification or 

regression must be considered, as it affects the calculation of  explanation methods. 

The most used techniques of  the explanation methods are partial dependence plots 

which identify the marginal impact of  the features on the predicted outcome; subpopulation 

analyses, which explain how the model handles specific subpopulations; individual model 

predictions, normally using Shapley values, which show how the value of  each feature con-

tributes to a specific prediction; what if  analysis, that is useful to explain the sensitivity of  

the prediction due to the inputs (Treveil et al., 2020). 
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2.2.6 MLOps Maturity Model 

 

To implement the fully automated MLOps pipeline using the CI, CD and CT principles 

cited in subsection 2.1, there are some steps that organizations or ML professionals need to 

climb, called the MLOps maturity model.  

Two of  the main technology companies in the ML field, Google, and Microsoft, devel-

oped their own MLOps maturity model framework. It is explained both because the concepts 

will be important further in the thesis. 

According to Google (2023), there are 3 levels of  MLOps maturity. Level 0: manual pro-

cess, level 1: ML pipeline automation and level 2: CI/CD pipeline automation. 

At level 0: manual process, every process is manual, from data analysis to model valida-

tion, normally handled by data scientists using notebooks to experiment until they develop a 

viable model. Furthermore, the good MLOps practices cited in subsection 2.2 do not exist 

at this level, as data and model versioning, pipeline orchestration, model monitoring, explain-

ability, CI and CD are completely ignored. This level is still very common in organizations 

but is only sufficient if  the model is rarely changed or trained. For real world applications 

the model often fails due to changes in data and business decisions. 

At level 1: ML pipeline automation, the main purpose is to develop a pipeline automation 

to achieve CT. At level 1 is possible to have faster experiments thanks to the pipeline orches-

tration that allows to prepare the whole pipeline towards production. Through the CT prin-

ciple, the ML model is trained with new data in a production environment, using pipeline 

triggers. The symmetry among experimental and operational environments is also achieved 

using the same pipeline in pre-production and production environments. Furthermore, the 

pipeline construction needs to have reusable, composable, and potentially shareable compo-

nents in the ML pipeline, and must be containerized to be reproducible. Howsoever is pos-

sible to continuous delivery the ML models to production. 

Some additional components can be used at level 1 to enable CT, such as data and model 

validation, feature store, which is a centralized repository where features can be accessed for 

training, metadata management that stores information from each execution of  the ML pipe-

line to debug errors and ML pipeline triggers which are automatic triggers to retrain ML 

models with new data according to defined criteria. 

In level 2: CI/CD pipeline automation, there are 6 stages to achieve a fully automated 

CI/CD pipeline. The first is development and experimentation, where the ML professional 
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tries orchestrating different algorithms and ML models. The output is the source code of  

the ML pipeline that goes to a source repository. The second stage is continuous pipeline 

integration, where the source code is built through various tests, and the outputs are pipeline 

components, such as packages and artifacts. 

After that, in stage 3: pipeline continuous delivery, pipeline components from the CI 

stage are deployed to the target environment. The fourth stage is automated triggering, where 

the pipeline runs automatically in production due to a trigger or schedule. The trained model 

output from this step goes to the model registry. 

The next stage is model continuous delivery, where the trained model is served as a pre-

diction service, finally, in the monitoring stage, collects live data of  the performance of  the 

model. The final output is a trigger to return to the first stage or to run the pipeline in stage 

four. 

According to Microsoft (2023), There are five levels of  MLOps maturity. Level 0: No 

MLOps, level 1: DevOps but no MLOps, level 2: Automated Training, level 3: Automated 

Model Deployment and level 4: Full MLOps Automated Operations. 

Levels 0, 2 and 4 are very similar to the Google maturity framework, however Microsoft 

added two intermediate levels. At level 1: DevOps but no MLOps, is also a manual process, 

but the main differences are that data is collected automatically and exist basic integration 

tests for the model. At level 3: Automated Model Deployment, the key differences from  

 
Figure 2. Comparison of MLOps Maturity Models. 
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level 2 is that an automatic deployment is managed by CI/CD pipeline and each model re-

lease has unit and integration tests. 

In this master's thesis, the concepts adopted follow the Google maturity model frame-

work due to the simplicity and better detail provided in figure 3. In summary, the two frame-

works are very similar, but Microsoft divides it into two more levels, which makes the appli-

cation more complex, in this case it is a simple project that will be executed by only one 

person.

 

Figure 3. MLOps level 2: CI/CD automated pipeline (Google, 2023). 

 

2.3 ML End-To-End Life Cycle 

 

There was no standard ML lifecycle process model. For this reason, the Cross-Industry 

Standard Process model for Data Mining (CRISP-DM) is often used as an alternative. How-

ever, this methodology is not complete because of  two reasons. The first is that ML models’ 

performance degrades over time, so after deployment is necessary to have a monitoring and 

maintenance phase. The second is that CRISP-DM does not have a quality assurance meth-

odology, which is essential to mitigate risks of  each phase of  the development and 
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deployment of  ML applications (Studer et al., 2020). 

In this subsection, the phases of  Cross-Industry Standard Process model for the devel-

opment of  Machine Learning applications with Quality assurance methodology (CRISP-

ML(Q)) proposed by Studer et al. (2020) are detailed. Since this methodology was made to 

solve the issues mentioned above, this thesis adapts its phases to fulfill the objectives con-

sistently. 

 

2.3.1 Business & Data Understanding 

 

The first step in developing ML applications is to ensure the project is viable. Neverthe-

less, before that, it is necessary to define the scope of  the ML application and define the 

success criteria of  the business and ML model. 

So, what is usually done is to build a Proof  of  Concept (PoC) to understand the use of  

the ML model in a reduced scope. In addition, it is also relevant to verify the legal constraints 

and the requirements of  the application. After feasibility confirmation, the data can be col-

lected, and the data quality is checked. Finally, it is crucial to document all the aspects of  the 

data, such as requirements, statistical properties etc. To serve as the basis for quality assurance 

in ML model development. 

 

2.3.2 Data Preparation 

 

The data preparation phase aims to set up a data set to the next phase, but this process 

is not linear. For example, if  is error data is found in modelling, it is necessary to come back 

to adjust the data. This phase starts with selecting data, which includes feature selection, 

Figure 4. CRISP-ML(Q) framework adapted from Studer et al. (2020). 
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where the best features are selected through a filter, wrapper or embedded methods and bad 

quality data are discarded. Furthermore, it might be essential to deal with unbalanced classes 

using over-sampling or under-sampling strategies for data selection. 

The next step is data cleaning to detect and correct errors in the data, which can include 

noise reduction, and elimination of  missing values through data imputation techniques, such 

as imputing mean or median values, interpolated, or replacing by other special value.  

After that, in the construction stage, it may be necessary, depending on the ML task, to 

perform feature engineering and data augmentation, using techniques like PCA, one-hot en-

coding and clustering. The final step is data standardization, where the input data formats, 

and the normalization process are unified to avoid the risk of  bias to features on larger scales.  

 

2.3.3 Modelling 

 

The main objective in the modelling phase is to build an ML model or even several mod-

els that fit the business criteria and can meet the requirements and constraints established in 

the first phase. To build a modelling strategy, it is quintessential to define the quality measures 

of  the model. Depending on the ML task, the six measures of  ML models can have different 

weights, they are: performance, robustness, scalability, explainability, model complexity and 

resource demand. 

Furthermore, in the modelling stage, there are model selection, model specialization, in-

corporating domain knowledge, and model training tasks. Some optional tasks that depend 

on the ML model are using unlabeled data and pre-trained models, model compression and 

ensemble methods to outperform individual models. 

In this phase, to obtain a robust ML solution, it is crucial to ensure the reproducibility 

of  the model. Two levels of  reproducibility need to be ensured, the method and the results. 

It is important to emphasize that it is part of  the method reproducibility to produce experi-

mental documentation containing the model changes and their causes to improve the model 

quality measures. 

 

2.3.4 Model Evaluation 

 

The model evaluation mainly consists of  validating the performance of  the trained ML 
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models on a test set, which is the pre-split portion of  the original dataset, to be able to 

measure performance metrics. Furthermore, the robustness of  the models must be ad-

dressed using noisy or erroneous input data. It is also a best practice to increase explainability 

to end users to provide trust and facilitate decision-making based on the models. 

Finally, there is the decision, which can be automatic or manual, if  the ML model satisfies 

the success criteria to be deployed. Otherwise, the process returns to the modelling phase or 

even ends in this phase. 

 

2.3.5 Model Deployment 

 

The model deployment phase starts by defining inference hardware. Here needs to be 

chosen the requirements of  the hardware, and solving decisions such as the availability of  

CPU and GPU or whether it is more efficient cloud services or an embedded system. With 

that solved, it is essential to evaluate the models under production condition to understand 

if  the production data is like the training data. 

The next steps are to ensure that the users are comfortable with the final solution. This 

can be tested via a prototype. It is also important to minimize the risks of  errors. One com-

mon alternative is to roll back the model to a previous version if  something unforeseen 

happens.  

Finally, in the deployment strategy task, it is essential to perform an incremental roll-out 

of  the model, as it is possible that errors still exist. Thus, the cost of  correcting them can be 

minimized. 

 

2.3.6 Monitoring and Maintenance 

 

After deploying the ML model, it is essential to monitor and maintain the models’ per-

formance. ML models’ performance decreases over time because their evaluation is done 

based on train data, but real world data can change the model accuracy very quickly (Treveil 

et al., 2020). Additionally, model performance can be degraded by hardware performance 

and updates to the software stack. 

Therefore, the best practice to avoid model degradation is continuous monitoring to 

decide whether the model needs to be retrained as quickly as possible. This leads to the next 
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task, updating the model with new data, returning to the modelling phase. Adjusting the 

current model with the new data is recommended to save time. Finally, the automation of  

the update task allows achieving the CI, CD and CT of  the model. 

2.4 MLOps Main Open-Source Tools 

 

Open-source MLOps tools are used by half  of  all IT companies worldwide, and that 

number is expected to grow to over 65% by 2023 as the open-source stack provides an easier, 

more reliable, and rapid delivery to manage end-to-end ML application lifecycle. However, 

no tool automates the entire ML lifecycle. They are specialists in different tasks and may have 

overlapping functionality. In addition, they often require an environment in Python and R 

languages (Hewage & Meedeniya, 2022; Ruf  et al., 2021; Symeonidis et al., 2022). 

Table 1, only open-source tools are filtered and compared in terms of  functionality, 

adapted from the works of  Hewage & Meedeniya (2022), Ruf  et al. (2021) and Symeonidis 

et al. (2022). For the comparison of  the MLOps tools, the features Data Versioning (DV), 

Experimentation (EX), Code Versioning (CV), Experiment Tracking (ET), Pipeline Orches-

tration (PO), Artifact Tracking (AT), Model Registry/Versioning (MRV), Model Deploy-

ment/Serving (MDS), and Model Monitoring (MM) were chosen. 
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 MLOps Open-Source Stack 

Tools DV EX CV ET PO AT MRV MDS MM 

Git     x             

Git LFS x                 

GitLab     x             

Dolt x                 

LakeFs x                 

DVC x     x x         

Jupyter Notebook   x               

Google Colab   x               

Tensor Board       x           

GitHub Actions         x         

Apache Airflow         x         

ZenML         x         

Kedro       x x         

Polyaxon       x x x       

Kubeflow   x     x x       

MLflow       x   x x x   

BentoML             x x   

Clear ML       x x x x x x 

MLrun         x x x x x 

ModelDB       x     x x x 

TensorFlow Serving               x   

Streamlit        x  

Heroku        x  

Evidently                 x 

Prometheus                 x 

Grafana                 x 

Table 1. Main MLOps Open-Source Tools. 

 
In Section 3, it is described which of  the above MLOps open-source tools was chosen 

to build the ideal stack used in the rest of  the development of  the thesis. 

 

2.5 MLOps Key Challenges 

 

ML Systems have many technical challenges because the maintenance phase after deploy-

ment is often difficult and expensive over time. Furthermore, these systems have all the 
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traditional software development issues plus the special concerns of  the ML field. These 

problems can be difficult to notice as they do not occur at code level but at the system level 

(Sculley et al., 2015). 

The technical problems can be classified as eroded boundaries due to the complex mod-

els, data dependencies costs, feedback loops, Anti-patterns in ML systems, configuration debt 

and changes in the external world. The first challenge’s main example is called entanglement, 

which is related to the impossibility of  independence of  the features, entangling them. This 

is valid for hyperparameters, data selection, sampling methods etc. However, there are two 

strategies to mitigate it: isolate the models and serve ensembles or detect the changes in 

prediction behavior when they happen (Sculley et al., 2015). 

The data dependencies problem emerges from the matter that ML code is only a tiny 

part of  the ML system, and complex data dependencies can be built without a tool for track-

ing the unstable and underutilized dependencies. This issue is also related to data quality, as 

it is essential to understand the quality of  the sources of  data to train the ML models with 

consistency (Lakshmanan et al., 2020; Sculley et al., 2015). 

Feedback loops are necessary to have a real-time updating of  the ML systems, however, 

they can influence their behavior, which can be even more difficult to notice if  it occurs 

gradually. This effect can happen directly, where the model influences the selection of  its 

own future training data or indirectly (hidden), where two systems influence each other. To 

mitigate this, the best practices are to use randomization or isolate the parts of  the data 

influenced by the ML model (Sculley et al., 2015). 

Most ML systems are used just as an infrastructure and a tiny part to learn or prediction, 

and this can lead to import problems in design patterns. Two common reasons are known as 

glue code and pipeline jungles. The first means the use of  generic packages code that, over 

time, freezes the ML system to the logic of  specific packages, which can be mitigated using 

APIs that allows infrastructure reusability (Sculley et al., 2015).  

The second is a kind of  glue code for pipelines that, over time, becomes so complex that 

it needs expensive integration tests. To have efficient pipelines is essential to build compatible 

these three main pipelines: data manipulation, model creation and deployment. Also, it is 

crucial to use the same data to preprocess all of  them (Sculley et al., 2015; Symeonidis et al., 

2022). 

Configuration debt in ML systems is a very common challenge because there are many 

configurable options, such as the features to select, specific algorithms settings and data 
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selection. All these possibilities make the configurations hard to change, when necessary, 

which can be expensive and time-consuming (Sculley et al., 2015). 

The ML system must deal with the inevitable changes in the real world, thus incurring 

maintenance costs. For this reason, it is essential to continuously monitor the accuracy of  

the models and the entire system. Data monitoring helps to find outliers and drift to train 

the model with correct data. On the other hand, model monitoring for high maturity systems 

monitors in addition to model accuracy, sustainability, robustness, fairness and explainability. 

Also, as the external world changes in real-time, it's important to build automated response 

systems to avoid manual work (Sculley et al., 2015; Symeonidis et al., 2022). 

In addition to the technical challenges, there are also organizational ones. This type of  

challenge involves MLOps need cross-functional heterogenous teams to accomplish their 

goals, but it can lead to lower productivity in the long run. One of  the causes is the lack of  

great experts in ML field, and another is that the organization's culture does not promote 

good communication practices between teams and can have multiple definitions of  what a 

successful ML model is for each of  them. For these reasons, it is quintessential to transform 

the culture into a product-oriented mindset to improve business outcomes (Kreuzberger et 

al., 2022; Lakshmanan et al., 2020; Sculley et al., 2015). 

2.6 Literature GAP 

 

The core MLOps topics were covered in this chapter, namely the prerequisites for per-

forming MLOps, CRISP-ML(Q) the ML end-to-end life cycle approach, some of  the key 

MLOps open-source tools, and the main technical issues that arise when the ML model is 

deployed. 

The main GAP found in the literature review is a lack of  straightforward real world end-

to-end MLOps projects that can be done using the best practices found in the MLOps re-

quirements subsection and following the steps suggested by CRISP-ML(Q) methodology. 

This is necessary to have a professional automated CI/CD pipeline to deploy ML models 

with consistency rather than just running the ML model in a notebook environment. 
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3   Data and Methodology 
 

This section presents the data used in this work, including how the data was collected 

and the description of  the variables. Also, the work methodology to achieve the objectives 

defined in section one is described. In addition, the MLOps stack chosen to develop, deploy 

and monitor the ML pipeline is presented. 

 

3.1 Data  
 

There are two common model deployment methods: model-as-a-service through Repre-

sentational state transfer (REST) API endpoints, and embedded model (Ruf  et al., 2021; 

Treveil et al., 2020).  

These kinds of  deployments allow easy interaction with input data, so it is possible to 

use this technology to extract the data of  this project. The data was extracted from Spotify 

Web API, using REST principles. According to Spotify (2023), it provides metadata about 

tracks, artists, albums, and playlists from the Spotify Data Catalogue. 

 

3.1.1 Collection 
 

To perform data collection from Spotify API, the first step is to get the authorization 

credentials from the user’s account of  Spotify or create one if  necessary. The next, is in-

stalling and using “Spotipy” Python library which provides an easier interface with the API 

interface.  

One good way to extract the data is through playlists; choosing songs by track or artist is 

more efficient. The playlists extracted were the “Top Hits” by year made by Spotify, because 

it contains very popular songs from different years without duplicates tracks. Thus, the Top 

Hits from 2005 to 2022, and each with 100 songs, making a total dataset of  1800 different 

tracks and additional 100 from the most updated top 100 playlist to be used as new data. 

 

3.1.2 Description 
 

The variables extracted from Spotify Web API are described in table 2. The mood col-

umn was created to be the target variable which indicates 1 for the happy songs and 0 for 
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the sad songs, based on the valence feature that will be excluded in further analysis.  

# Variables Description 

1 artist Singer or band name 

2 album Album name 

3 track_name Song name 

4 release_date Release date of the song 

5 popularity Popularity of the song from 0 to 100 

6 genres Name of the first genre associated with the artist 

7 sub-genres Name of the second genre associated with the artist 

8 explicit Boolean value if the track has explicit lyrics 

9 followers Number of the followers of the artist  

10 track_id The unique ID of the track 

11 danceability Describes how suitable a track is for dancing from 0 to 1 

12 energy Represents a perceptual measure of intensity and activity from 0 to 1 

13 key Integers map to pitches using standard Pitch Class notation, if no key = -1 

14 loudness The overall loudness of a track in decibels (dB) 

15 mode Indicates the modality, major (1) or minor (0) of a track 

16 speechiness Detects the presence of spoken words in a track from 0 to 1 

17 instrumentalness Predicts whether a track contains no vocals from 0 to 1 

18 liveness Detects the probability of presence of an audience in the recording from 0 to 1 

19 valence Describes the musical positiveness conveyed by a track from 0 to 1 

20 tempo The overall estimated tempo of a track in beats per minute (BPM) 

21 duration_ms Duration of the song in milliseconds 

22 time_signature Notational convention to specify how many beats are in each bar from 3 to 7 

23 mood 
Indicates mood of the track 1 (happy), if the valence is greater or equal to 0.5 
and 0 otherwise 

Table 2. Dataset description adapted from Spotify (2023). 

 

3.2 Methodology  
 

The methodology will adapt the steps explained in subsection 2.3, based on CRISP-

ML(Q) from Studer et al. (2020), the ML lifecycle framework.  

 

1. Business & Data Understanding: in this phase, it is important to emphasize that 
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the goal of  this ML task is to perform the techniques of  supervised learning to clas-

sify the tracks in mood playlists, namely happy and sad playlists, using the target var-

iable “mood”. Also, an Exploratory Data Analysis (EDA) is performed to understand 

the behavior of  the variables and analyze the data quality. 

 

2. Data Preparation: In order to have data prepared to be modelled, it is crucial to 

perform data cleaning, feature engineering to select the variables, data augmentation 

and finally, the standardization of  the variables, presented in subsection 3.1.2, for the 

model. 

 

3. Modelling: As explained in subsection 2.3.3, the first step is to define the quality 

metrics of  the model. After that the model is trained, in this case using the classifi-

cation algorithms from supervised learning, and the last step is to improve the per-

formance of  the mode, if  necessary, with AutoML or ensemble methods. 

 

4. Model Evaluation:  In this phase, the trained model has the performance evaluated, 

after the robustness is determined, and the model explainability can be improved by 

the techniques of  subsection 2.2.5. Finally, the model needs to be ready to be de-

ployed to advance to the next level. 

 

5. Model Deployment: First the model is deployed; next the models are evaluated 

under production conditions, and to minimize error rollback points are built in the 

ML pipeline. 

 

6. Monitoring and Maintenance: In the final phase, is monitored the performance 

of  the model is monitored over time and create triggers to automatically retrain the 

models when needed to obtain the CI/CD pipeline automation, explained in subsec-

tion 2.2.6. 

 

To finalize the methodology, the specific Spotify API was chosen because it is one of  the 

most well-known open APIs used for training different machine learning models. Addition-

ally, because it is an API rather than a simple csv file, it has more flexibility to scale the same 

pipeline, which is more efficient for MLOps project. Also, this simple ML classification 
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assignment was chosen because it speeds up pipeline tests since it doesn't necessitate a lot of  

complex calculations like a deep learning challenge for example. 

 

3.3 MLOps Open-Source Stack 

 
The right choice of  tools is essential to have an efficient MLOps system in each func-

tionality and the connectivity between them. There is no silver bullet to accomplish this task. 

However, it is possible to follow some guidelines. It is often recommended to use fewer tools 

with high compatibility to be easier to manage, so the main challenge is to find the balance 

between flexibility and stack compatibility (Symeonidis et al., 2022). 

 

 MLOps Open-Source Stack 

Tools DV EX CV ET PO AT MRV MDS MM 

Git     x             

DVC x     x x         

GitHub Actions     x     

Jupyter Notebook   x               

MLflow       x   x x x   

Streamlit        x  

Evidently                 x 

Table 3. Chosen MLOps Open-Source Stack. 
 

Table 3 shows the filtered table presented in Section 2, with only the chosen MLOps 

tools. It followed the guidelines of  choosing fewer tools as possible with easy connectivity 

between them, preserving all functionalities to have a complete ML pipeline that allows the 

management of  the ML lifecycle.  

In Figure 5, it is possible to visualize better the connections between the tools and the 

saving of  tools made, mainly when choosing DVC and MLflow, which are flexible tools with 

multiple functionalities. Also, Git as code versioning tool and Jupyter notebook as experi-

mentation environment were chosen because they are standards in ML filled. In addition, the 

language of  this project is Python because it is the most common language for machine 

learning projects, providing numerous libraries and methods to perform ML tasks. 

Furthermore, GitHub Actions was chosen because it is a tool inside GitHub repository 

that provides an easy way to create CI/CD pipelines. Streamlit also is convenient to integrate 
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with a GitHub account and has a simple interface to deploy ML applications in cloud.  Lastly, 

Evidently has predefined monitoring reports that can be used with few lines of  code. 

 

 

Figure 5. Framework of the chosen MLOps stack. 
 

In the next chapter, an in-depth examination of  the main issues explored in the literature 

review will be given. By answering the questions below, it is hoped to gain a better under-

standing of  the subject and provide useful information. Each issue is thoroughly explored, 

evaluated, and debated, resulting in a complete and informative chapter. 

 

1. How can the CRISP-ML(Q) technique be used to create a consistent ML project? 

2. How and why to use every open-source technology listed in table 3? 

3. How are the open-source tools linked to one another? 

4. What are the best models for categorizing Spotify tracks as happy or sad? 

5. How to create a CI/CD pipeline and deploy a machine learning application? 

6. How should the ML model be efficiently monitored and retrained? 

7. How should the best ML model results be explained using the MLOps requirement 

of  explanability and responsible AI? 
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4   Results and discussion 
 

The purpose of  this chapter is the description the results of  this dissertation, organized 

by the topics explained in the methodology based on CRISP-ML(Q).  

Furthermore, the choices of  the MLOps stack are detailed with the aim of  better under-

stand the functionalities of  each tool and how they integrate, using Google’s maturity model 

showed in subsection 2.2.6, to achieve the goals established in the first chapter. 

4.1 Business & Data Understanding 
 

In this phase was planned the complete development of  the ML application based on 

the MLOps stack chosen and the framework of  the Google maturity model. It also created 

the Python script to extract the data from Spotify API and finally performed the EDA from 

the features and target variables to get insights from the raw data. 

  

4.1.1 Planning of the project 
 

The planning of  this project needed to consider the ML tools described in the previous 

chapter and the integration between them. Figure 6 shows a modified version of  Google’s 

maturity model with the chosen MLOps stack and the necessary remote repositories that will 

be used. 

The orchestrated experiments will be done using MLflow Tracking component, which 

allows easy comparison of  the model parameters and metrics experiments in a centralized 

UI. To help with the experimentation, the data and model analysis will be performed in Ju-

pyter notebooks.  

In MLOps projects, it is a very important aspect to have all the code versioned, for this 

will be used the Git version control tool together with GitHub as a remote repository to not 

lose any historical information during the code update steps of  the project. 

As mentioned in Chapter 2, the CI/CD pipeline automation is a fundamental principle 

that came from DevOps to MLOps and needs to be done to reach the most advanced level 

of  MLOps. In this project, this step will be done using GitHub Actions inside the GitHub 

repository and, as a dependency, will demand the Python packages to be installed that will 

be available in a text file named “requirements.txt”. 

The CI/CD pipeline also will need to call the pipeline to work properly. The pipeline is 
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going to be built some Python scripts files and, together with DVC, besides versioning the 

data of  the project, have the functionality that enables to create DAGs, which makes the 

pipeline automated, simpler to maintain and easy to use in GitHub Actions. 

All the data and metadata outputs generated by the pipeline will be stored in DagsHub 

remote repository connected with GitHub repository and in the MLflow server offered by 

DagsHub, which uses the Model Registry component. It is important to point out, as shown 

in figure 6, that changes in the feature store make the automated pipeline run again. 

In the final steps will be necessary to serve the ML model using one more time MLflow 

components to deploy the model in Steamlit, which allows to easily build ML applications, 

to be used as a prediction service in Python language and make deployment in Streamlit 

public cloud connected directly to the GitHub repository. The last tool is Evidently which 

will comply with the performance monitoring functionality, which generates html reports for 

better understanding when the performance of  the ML model degrades to manually trigger 

the pipeline to start the necessary steps in the pipeline. 

 

 

Figure 6. MLOps stack in adapted Google’s maturity model framework (Google, 2023). 
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4.1.2 Data Extraction  
 

The data extraction script was developed in six main steps.  

1. Spotify account authentication through “Spotipy” library. To accomplish this task was 

necessary to create a “.env” local file to secure the login and password of  my personal Spotify 

account because all the final code is pushed to GitHub public remote repository, which is 

visible to everyone. 

2. Get the playlists links from Spotify application. This was a manual step necessary to 

get the top 100 tracks playlists between the years 2005 and 2022 and 100 additional tracks 

from top 100 songs playlist, which updated the songs every week, to serve as the new updates 

data to test the ML models over the time. 

3. Development of  two functions to build the raw data frame, in the first function is 

selected all the features and the target variables better described in subsection 3.1.2 from the 

API, next a loop is created to extract every variable from each track of  one playlist and in 

the end is created a data frame. The second function was made for the necessity of  a loop 

creation for multiple playlists and concatenating them in a unique data frame. 

4. Execution of  both functions, for the 2005 to 2022 top 100 tracks playlists, the second 

function is used to result in 1800 rows data frame. For the new songs, as it is only one playlist, 

the first function was enough to generate the 100 rows data frame. 

5. Function to clean the genres and sub-genres features. This step was essential because 

the genres were extracted as an array with all the genres from each track. So, this function 

created the genres and sub-genres columns with the top two genres from the songs. 

6. Export the data frames to csv files. This final step exports both data frames individually 

in two csv files to be used in the next phases of  the project.  

 

4.1.3 Exploratory Data Analysis  
 

The Exploratory Data Analysis (EDA) consisted of  analyzing the raw data generated in 

the data extraction phase. For this analysis, both csv files were imported and concatenated, 

which generated a data frame with 1900 tracks. The objective is to better understand the 

data to make the necessary treatments in the data preparation phase. 

The first analysis was an overview of  the content of  the study dataset. It was discov-

ered the top 20 artists and albums using the number of  tracks and top 20 most followed 



29 
 

artists, which can be seen in figures 28, 29 and 30 in appendix. 

 To provide a comprehensive analysis of  the numerical features was made a simple sta-

tistical description. In the figure 7, it is easy to realize that “followers” and “duration_ms” 

have the greatness of  values much higher than the other variables and “loudness”  

have only negative values. These insights will need to be addressed in the future of  this 

project.  

 

 

Figure 7. Descriptive statistics of the numerical variables. 
 

The next step concerning numerical features is outlier detection. This analysis consists 

of  detecting the upper and lower outliers for each variable using the Interquartile Range 

(IQR) method, whose upper outliers are those higher than the third quartile plus 1.5 times 

the IQR and the lower outliers below the first quartile minus 1.5 times the IQR. In figure 8, 

the only feature that deserves some attention is the “followers” with more than 10% of  

outliers, but it is not possible to exclude outliers because they have a small number of  artists 

with a greater number of  followers and at the same time tracks, as can be seen in figures 28 

and 30 in the appendix, so it is preferable to keep them. The other variables only have a small 

number of  outliers, for this are not very important for deepening. 

  

 

 

 

 
 

 
Another common analysis is the identification of  missing values, but in this dataset, only 

Figure 8. Outliers’ detection tables. 
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the genres and sub-genres have approximately 1 % and 16 % of  missing values respectively, 

which will be addressed in the data preparation part. 

In order to improve the understanding of  the relationship between the numerical varia-

bles and their relationship with the target, it was plotted Pearson’s correlation matrix in figure 

9. 

 

Figure 9. Pearson’s correlation matrix of numerical features. 
 

Most of  the numerical variables do not have any relevant relationship with each other, 

except for the energy with loudness with a 0,72 positive index, what makes sense because 

usually loud music tends to be energetic. In addition, the features with the strongest relation-

ship with the target are danceability, energy and loudness. However, even they are not very 

high. 

Finally, the distribution of  the numerical features and their behavior in relation to the 

target was examined. For this reason, was made the pair plot in figure 10 which orange rep-

resents music that tends to be happy and blue otherwise. It is possible to realize that the 

behavior of  the three variables with the strongest positive relationships with the target, which 

were found in Pearson’s correlation matrix, are also visible in the right tail of  the distribution 

plots. The higher the values, the greater the tendency to be a happy song. 
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Figure 10. Pair plots of numerical features 

 

One key aspect of  EDA is to understand the target distribution to identify if  there is a 

relevant imbalance between the classes. As it is shown in figure 11, the classes are close to 

being perfectly balanced, the mood equals “1” corresponds to 51,74 % and equals “0” to 

48,26 % of  the data. Therefore, the imbalance issue is not relevant to this project. 
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Figure 11. Target variable distribution. 

 
Another fundamental aspect that requires examination is the relationship between the 

categorical features and the target. Three distributions are plotted in figure 12 to show that 

the features “speechiness”, “liveness”, and “instrumentalness” are constants or practically 

constants in the target value “0”, which will not provide much information for building the 

classification ML models. 

The three categorical that are not constants. It is important to understand if  exists some 

relevant association between these variables and the target classes. With this aim, it was built 

three normalized crosstabs of  the categorical features “mode”, “explicit”, and “time_signa-

ture” and the target.  

After this, it was performed the chi-square test of  independence, which can be seen in 

figure 13, “mode” feature has a p-value of  more than 19 % which does not reject the null 

hypothesis indicating independence between them. On other hand, “explicit” and “time_sig-

nature” have a p-value of  0,23 % and 0,05 %, respectively much lower than the standard 5 

% of  the test, so it indicates that the null hypothesis is rejected, and there is a significant 

association between the variables, what can indicate that both variables provide useful infor-

mation for predicting the target.  
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Figure 12. Distributions of categorical features. 
 

 

Figure 13. Normalized contingency tables of the categorical features. 
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4.2 Data Preparation 
 

Building upon the previous findings, this section explores the development of  the data 

preparation Python script intending to generate preprocess data output. 

The first step was to import both csv files generated from the data extraction script 

described in subsection 4.1.2. After that, the data types were improved to consume the min-

imum memory as possible. This is an important step to guarantee scalability of  the model if  

the dataset increases over time. 

In addition, with the discoveries from EDA phase, it was possible to understand that the 

genres and sub-genres columns need a treatment. The first transformation was replacing the 

missing values for zeros and using a label encoder to convert the names of  the genres to 

numbers to make further calculations easier and avoid problems when building the ML mod-

els. 

Another EDA finding was that the variables “speechiness”, “liveness”, “instrumental-

ness” can be considered as constants, so it is better to drop them from the dataset together 

with “valence” (it was converted to the target), “artist”, “album”, “track name”, “re-

lease_date”, “track_id” that are not relevant to the ML model, they are only for illustrative 

purposes. 

After the end of  data cleaning, the last part consisted of  exporting three csv files. One 

is composed of  the 1800 tracks from the 2005 to 2022 playlist, and the second is the new 

music dataset from the top 100 tracks that is updated every week. They were separated to be 

used in the monitoring phase that will be better explained in the specific topic. The final file 

is concatenated from the two previous datasets that will serve as input for the next modelling 

phase. 

 

4.3 Modelling 
 

The objective of  the modelling phase is to build a pipeline to train classification super-

vised models to predict the target variable “mood”. To accomplish this goal was necessary 

to first import the complete preprocess data from the data preparation phase, split the data 

in training and test, next build a training pipeline, select the models which are going to ex-

periment with, and save and register the model in a server repository to be used in the next 

phases. 
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The building of  the training pipeline was considered one insight from the EDA, which 

discovered that the features have different scales and compared to other popular technique 

like Min Max scaler it is more suitable when features have non-uniform scales, so a standard 

scaler was used to avoid this issue. The first step performed was feature selection to under-

stand the ideal number of  features that can maximize the mean scores of  the cross-validation 

five times, which tested the model in different samples. 

After finding the ideal number of  features, the train pipeline was composed of  1. stand-

ard scaler, 2. the ideal number of  features and 3. the classification model. To improve even 

more, the model was necessary to do hyperparameter optimization, which was performed 

using random search cross-validation, which avoids excessive calculations and used the cross-

validation mechanism to avoid overfitting. 

 

Figure 14. Example of the train pipeline code from the Extra Trees model. 
 

The final steps to train the model are fit and evaluate, which will be better explained in 

the next section. In addition, because this is an MLOps project, the MLflow tool was used 

to save the input features, evaluation metrics and hyperparameters in the MLflow linked to 

the DagsHub repository, which offers a free MLflow server. Finally, the model is saved and 

registered in the same server with all the dependencies to be reproducible in the deployment 

phase. 

Figure 31 in appendix shows how MLflow store encapsulates a model with all packages 

required to train the model, the environment dependencies, and the model as a “Pickle” file. 

One important aspect that needs to be discussed is the choice of  models. It was per-

formed in Jupiter notebook, several experiments using Python AutoML tools such as Pycaret 

and Tpot, indicating that the better-performing models are LightGBM, XGBoost, Random 

Forest, Extra Tree Classifier and Gradient Boosting. So, these five models were submitted to 

every step previously mentioned in this section. 
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Figure 15. Example of the MLflow UI server. 
 

Figure 15 shows the MLflow UI server in the DagsHub, where it is possible to analyze 

the models trained in various experiment versions with their metrics and hyperparameter. 

After the evaluation phase, the registered model can be prioritized to advance to the staging 

and production stages to be deployed. 

 

4.4 Model Evaluation 
 

A function to return the main classification evaluation metrics was created in the model 

evaluation phase. It was calculated four metrics that used as input for the target test data and 

the target prediction: accuracy, precision, recall, f1 score. Additionally, the other two metrics 

were calculated that used target test data and the target prediction probabilities ROC AUC 

and average precision. The last metric was the mean of  cross-validation score five times. 

These metrics were incorporated into the model training script described in the last sec-

tion, and the results were stored in the MLflow storage. To compare the five trained, it was 

possible to use the MLflow UI visuals available in figures 16 and 17.  

These figures show a scatter plot, comparing the five models according to precision and 

recall and the mean cross-validation score and f1 score. In both, it is possible to realize that 

the Random Forest model has the best results. 
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Figure 16. Precision and recall scatter plot from MLflow. 

 

Figure 17. Mean CV and f1 scores scatter plot from MLflow. 

 

The complete results of  the evaluation metrics are available in table 4, in six out of  seven 

metrics Random Forest achieves superior results, only losing the average precision for the 

Extra Tree Classifier. However, it is important to note that these results are only valid for 

these specific tracks dataset, and overtime, when the part of  the dataset with new tracks will 

be updated, these metrics can change. 
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Table 4. Evaluation metrics extracted from MLflow. 
 

In conclusion, the Random Forest with the hypermeters below is the best model for this 

experiment according to the metrics and will be deployed in the next section. 

1. Max depth = 9, 

2. Minimum samples leaf  = 2, 

3. Minimum samples split = 7, 

4. Number of  estimators = 84. 

 

For the best Random Forest model, it was performed the model’s explanation using Shap 

Python library, which contains the method Shapley Additive Explanations, as better dis-

cussed in subsection 2.2.5, explainability and responsible AI are fundamental aspects in any 

ML model to make it understandable and useful for a broader audience and not only be a 

black box that gives an output prediction that no one can trust. 

In figure 18, the feature importance has been plotted using Shap, where it shows each 

track as a point distributed on each feature, the red indicates high values and blue low values 

of  the features, and the positive x-axis indicates the contribution towards a happy song and 

the negative x axis in the direction of  a sad song. 

Metrics Gradient Boosting Random Forest XGBoost Extra Tree Classifier LightGBM

accuracy 0.721 0.753 0.716 0.703 0.708

average precision 0.806 0.802 0.79 0.808 0.794

f1 score 0.725 0.756 0.719 0.72 0.707

mean cv score 0.687 0.692 0.691 0.692 0.688

precision 0.737 0.768 0.734 0.7 0.732

recall 0.714 0.745 0.704 0.74 0.684

ROC AUC 0.789 0.808 0.792 0.798 0.788
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Figure 18. Shap feature importance summary plot. 
 

Then, the features “danceability” and “energy” have the most significant impacts on pre-

dicting the target, and the higher values from both features are associated with happy songs 

and the lower values with sad songs. However, in the dependence plot in figure 19, between 

these two variables, even though they have similar impacts, many tracks with lower values of  

danceability have higher values of  energy, indicating that they are not the same tracks with 

high energy and high danceability. In conclusion, both features are important to predict the 

target. 
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Figure 19. Shap dependency plot between energy and danceability. 
 

The shap summary plot has two other features with interesting behaviors. The “dura-

tion_ms” has opposite impact in relation to the previous features. It shows that higher values 

of  this feature have higher contributions to sad songs, and lower values tend to have lower 

contributions to happy songs.  
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Figure 20. Shap scatter plot duration_ms. 
 

The second feature is “popularity”, which is the opposite of  “duration_ms”. It shows 

that higher values of  this feature have lower contributions to sad songs, and lower values 

tend to have higher contributions to happy songs. The behaviors of  these two features are 

clearer in the scatter plots where in the case of  “duration_ms” in figure 20, the tracks with 

higher durations have greater negative impacts, and in “popularity” plot the tracks with lower 

popularity have greater positive impacts, it shown in figure 21. 
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Figure 21. Shap scatter plot popularity. 

 

4.5 Model Deployment 
 

After evaluating the models and selecting the best one, it is time to deploy the model 

with its prediction power to an ML application using the Streamlit tool and public cloud to 

be used as a prediction service as mentioned in subsection 4.1.1.  

To pursue this goal, the first step was building a prediction function to be called in the 

application script code. This function’s input is the best model that is stored in MLflow server 

and the data in data frame or a csv file format. On the other hand, the outputs are going to 

be a list of  predictions and one of  the predictions probabilities to serve as the confidence 

of  the predictions. 

To continue this phase, building a Python script to run the Streamlit application was 

quintessential. It was called “Music Mood Prediction App” and got two main functionalities 

to make the predictions with the best model: 1. Manual input of  the values of  the features 

by the user; 2. Csv file uploader as an input of  the features. The last step is to deploy the 

application to the Streamlit public cloud that was connected to the GitHub repository where 
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the script is located. 

 

 

Figure 22. Streamlit application: User input features example. 
 

Figure 22 shows an example of  the execution of  manual user input functionality. In this 

case, with the features input of  a song, that can be altered in the sidebar to test how the 

changes affect the prediction and probabilities in a straightforward manner. The best model 

predicts that a track with these feature values will be a sad song with a probability of  92,26 

%. 

Figure 32 in appendix illustrates the case of  a Csv uploader that contains the features of  

ten tracks, which can be seen as a data frame. It works the same way as the first case but 

allows the upload of  real songs from Spotify to test if  they are happy or sad with the corre-

spondent prediction probabilities.  
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4.6 Monitoring and Maintenance 
 

4.6.1 Monitoring phase 
 

To monitor the data and the best classification model performance, five html reports 

were created using Evidently tool: 1. Data quality; 2. Data drift; 3. Target drift; 4. Test classi-

fication; 5. Classification performance.  

The first step, as in the previous phases, was the creation of  a Python script where it was 

received as inputs the preprocess data split into two files, one with the playlists from 2005 to 

2022 and the other with the top 100 new tracks, both generated in the data preparation phase. 

In the code was necessary to map the features in numerical and categorical, specify the target 

variable and create a column with the predictions, using the predictions function from the 

deployment phase. Finally, it was possible to call Evidently library to create the reports having 

as standard the reference data as the dataset with old tracks and the current data as new tracks 

dataset. 

The data quality report aims to provide a detailed statistical comparison between the two 

datasets and can also be used to improve the EDA analysis.  

In figures 33 and 34 in appendix, both datasets are very similar, looking for the example 

of  the danceability variable and the correlation between the numerical features. 

The data drift and target reports are used to detect if  the two datasets have significant 

changes concerning the input features, target, and prediction distributions. This can help to 

decide if  the model needs to be retrained due to a degradation in the model performance 

over time. Evidently uses a standard algorithm of  data drift for larger data, which are con-

sidered more than 1000 observations, for the calculation of  the numerical features the Was-

serstein distance and for the categorical Jensen-Shannon distance are used, both with confi-

dence level of  0.95.

 

Figure 23. Data Drift report summary. 
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Figure 23 shows that of  the nine columns analyzed, seven had drifts. Only the target and 

the predictions do not have drift, so all the numerical variables presented in the datasets had 

some degree of  drift. What may be distorted as the reference dataset has 1800 tracks and the 

current only 100. However, this behavior needs to be monitored over time to confirm that 

this is or is not a trend of  the new data to retrain the model. 

In figure 24, it can be observed the distribution of  the variable “popularity”, the one with 

the greatest drift. The clear trend is that new tracks have higher popularity than old ones. 

 

Figure 24. Data Drift report popularity distribution. 
 

The other two reports test, measure and analyze the classification performance and 

should be used together to obtain the complete picture of  the classification model. 

Figure 35 in appendix shows the five tests presented in the test classification report that 

can serve as a summary of  the classification report. The first test demonstrates no drift in 

the target variable using the threshold of  0,1. The following four tests measure the main 

quality metrics: precision, recall, f1 and accuracy score in both datasets to understand if  they 

have significant differences, always using a threshold with confidence intervals. For this case, 

it was not received any warnings. However, it is important to analyze overtime with new 

tracks added to look up changes in behavior. 
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Figure 25. Classification report: quality metrics. 
 

The two figures 36 and 37 in appendix and the summary above were extracted from the 

classification performance report. After the evaluations provided from the test classification 

report, it is good to visualize in more detail what are the differences between the reference 

and current datasets. As expected, there are no great changes in the metrics between the 

datasets. 

4.6.2 Maintenance phase 

 

The purpose of  the maintenance phase is to guarantee that the whole process is sustain-

able over time. To accomplish this goal, the pipeline must be automated with respect to the 

CI/CD principle that came from DevOps and the CT added from MLOps methodology. 

To make the pipeline easier to manage, DVC functionality was used to create DAGs as 

mentioned in subsection 2.2.2. The construction of  DAGs is done through a “Yaml” file 

where the name of  the stages is specified, the command to execute the correspondent Py-

thon script built in the previous sections and dependencies and outputs. 

Figure 26 is the illustration available in DagsHub, via integration when the DVC “Yaml” 

file is in the repository. It is shown that all code all managed by Git and all data are managed 

by DVC to maximize efficiency and ensure versioning. An important factor to note is the 

stages are extraction, preparation, training, and monitoring because the evaluation and de-

ployment phases are imported in the same way as Python libraries when necessary, and the 

code of  the Streamlit application only uses the deployed model. 
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Figure 26. DVC pipeline illustration. 
 

After building the DVC pipeline, it becomes possible to start it using only one command: 

DVC repro. Furthermore, this command only activates the stages that have changed. For 

example, if  it is necessary to delete a feature in data preparation, the pipeline will not extract 

the data again, only from preparation forward, which ensures the minimum execution time 

in each cycle. 

 

Figure 27. GitHub Actions CI/CD pipeline. 

 

The last step to achieve the CI/CD pipeline is to automate using GitHub Actions to 

make it possible to execute the local pipeline in a remote environment. As shown in figure 

27, it takes several steps configured in a “Yaml” file in GitHub. The first step is prior to the 
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“Yaml” file development, which is the registration of  all local environment variables in 

GitHub secrets to be accessed by GitHub Actions.  

Then, to start the “Yaml” file is necessary to establish a trigger to the pipeline. In this 

case was the execution of  a push to GitHub but it could be a pull request or something 

else. Next, Ubuntu was selected as the operating system, and the variables stored in secrets 

were loaded. After this was performed, a checkout was to update the working directory, 

create a cache to store the memory of  the pipeline steps and install Python, DVC and all 

the dependencies available in the “requirements.txt”. 

With these steps, the virtual environment is configured, and the pipeline data can be 

pulled from the DagsHub repository and the entire can be run with only the DVC repro 

command which makes this process as simple as possible. The last steps are to clean the 

environment variables and push the final data to DagsHub. 

Finally, it is important to explain that to complete the continuous deployment part, the 

same push to GitHub activates the Streamlit public cloud connected to the repository, 

which automatically deploys the most updated code to the application. 

4.7 Answering key research questions 
 

In Chapter 4, all seven questions that were established at the end of  Chapter 3 were an-

swered. The first question was addressed throughout Chapter 4, which was guided by the 

CRISP-ML(Q) methodology, which allowed organizing the project and ensuring that each 

step was fulfilled. 

The second issue was also addressed, as each open source tool was explained how and 

at what stage, as well as the reasons why they are used. The third was addressed mainly in 

subsection 4.1.1 and illustrated by figure 6. Next, sections 4.3 and 4.4 answered question 4, 

which showed how the best ML classification models for the problem were modeled and 

evaluated, as well as the comparison among them in table 4. 

In section 4.5 and subsection 4.6.2, question 5 was explained, about what was the de-

ployment of  the ML application on Streamlit and how to maintain it using a CI/CD pipe-

line that was built on GitHub Actions. On the other hand, subsection 4.6.1 addressed ques-

tion 6, answering how to properly monitor an ML model. Finally, the last question was an-

swered in section 4.4, with the use of  Shap it was possible to make the ML model algo-

rithm more explainable to the audience.
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5   Conclusions and future works 
 

The present study successfully addressed the research objectives by developing an entire 

CI/CD pipeline using only open-source machine learning tools, which allowed the deploy-

ment of  an ML application and monitoring of  the production model to be retrained when 

necessary. To accomplish this, it was essential to follow the CRISP-ML(Q) steps and Google’s 

maturity model framework to ensure that the MLOps project would be consistent with the 

best practices of  the ML industry. 

The CRISP-ML(Q) methodology was an important design guide, as in addition to 

providing the additional step of  monitoring and maintenance over CRISP-DM, which is the 

quintessence for achieving MLOps standards, it maintains the traditional steps for achieving 

deployment of  an ML Application. Moreover, Google’s maturity model framework provided 

the architecture that helped choose the MLOps stack and the integration between the tools 

to achieve level 2: CI/CD automated pipeline. 

The choice of  the MLOps stack also fulfilled the requirements expressed in chapter 2. 

The tools Git and DVC ensured code and data versioning, respectively, of  the entire pipeline 

and the repositories GitHub and DagsHub, together with the user interface of  MLflow turn 

possible to have reproducible ML models packed with all necessary dependencies. 

Another key requirement was the orchestration to achieve an automated pipeline. This 

was accomplished using DVC to build DAGs of  each pipeline stage and then automated 

with GitHub Actions each time a push command is made from the local machine to the 

GitHub repository. In this specific project, it was unnecessary to use containers to store the 

dependencies. Just a text file was enough, but it could also have been used without problems. 

The scalability requirement could be achieved by HTTP requests using Spotify web API. 

However, as one limitation of  this dissertation due to only one CPU being available, it was 

downloading the data of  1900 tracks so as not to be a very time-consuming computation 

task on the data extraction and modelling phases. Also, Streamlit has a 1 GB limit to deploy 

as a public application, which means that scaling would not be an issue at this stage of  de-

velopment because the Python code file of  the application is light. The heavy part was the 

stored data on DagsHub which has 10 GB of  space and for the 1900 tracks it only used less 

than 1 MB of  storage so there is plenty of  headroom to scale. 

The MLOps monitoring requirement was accomplished using Evidently reports, which 

allowed for identifying data quality, data and target drift and the model classification 
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performance by comparing the reference data and the new data. This is to understand if  the 

model metrics degraded over time and need to be retrained. As one of  the limitations, the 

built trigger was manual, parsing the monitoring reports and then retraining the model and 

replacing the best model to deploy. However, it could have been done automatically, for ex-

ample, setting a threshold of  model accuracy and hooking it to the pipeline, but this devel-

opment would not be trivial. 

The last requirement concerned explainability and responsible AI. This step was per-

formed in the evaluation stage using the best model: Random Forest. To complete this task 

the Shap library was used and discovered that the “danceability” and “energy” were the fea-

tures with higher contributions to the target predictions. 

Therefore, this thesis fulfilled the objectives proposed in the first chapter, executing the 

main steps of  the CRISP-ML(Q) methodology and the MLOps requirements to obtain a 

consistent real world end-to-end MLOps project, in addition to providing a complete review 

of  the MLOps tools with their functionalities and connections between them, an optimized 

MLOps stack was selected, and an automated CI/CD pipeline was delivered for continuous 

improvement of  an ML application. 

In future works, the possibility of  increasing the number of  tracks through the Spotify 

API and creating an automatic trigger has already been mentioned. Also, it would be inter-

esting to test different MLOps stacks and compare efficiency, extract data through other 

APIs, and perform other ML tasks like regression, unsupervised learning, recommender sys-

tems or deep learning applications. Finally, to optimize the quality of  the automated pipeline, 

tests can be created between major phases to ensure the quality of  inputs and outputs. 
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Appendixes 

 
Figure 28. EDA: Top 20 artists. 
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Figure 29. EDA: Top 20 albums. 
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Figure 30. EDA: Top 20 followers. 

 

 

 

Figure 31. Example of a model stored in the MLflow server. 
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Figure 32. Streamlit application: Csv uploader example. 

 

 

Figure 33. Danceability variable statistical description example. 
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Figure 34. Pearson correlation matrix example. 

 

 

 

Figure 35. Test classification report. 

 

 

 

Figure 36. Classification report: confusion matrix. 
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Figure 37. Classification report: quality metrics by class. 

 


