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Simple Summary: Hereditary diffuse gastric cancer (HDGC) is an inherited cancer syndrome
associated with CDH1 germline mutations. The increasing detection of CDH1 genetic variants
due to multigene panel testing poses a serious clinical challenge and urges the development of
effective classification strategies. In this study, we describe the identification of the novel CDH1
G212E variant in a large family strongly affected by diffuse gastric cancer. Through a comprehensive
characterization pipeline, we provide evidence of the damaging nature of this genetic alteration, thus
impacting patient management and family screening.

Abstract: E-cadherin, encoded by CDH1, is an essential molecule for epithelial homeostasis, whose
loss or aberrant expression results in disturbed cell–cell adhesion, increased cell invasion and metas-
tasis. Carriers of CDH1 germline mutations have a high risk of developing diffuse gastric cancer
and lobular breast cancer, associated with the cancer syndrome Hereditary Diffuse Gastric Cancer
(HDGC). The ubiquitous availability of cancer panels has led to the identification of an increasing
amount of “incidental” CDH1 genetic variants that pose a serious clinical challenge. This has sparked
intensive research aiming at an accurate classification of the variants and consequent validation of
their clinical relevance. The present study addressed the significance of a novel CDH1 variant, G212E,
identified in an unusually large pedigree displaying strong aggregation of diffuse gastric cancer.
We undertook a comprehensive pipeline encompassing family data, in silico predictions, in vitro
assays and in vivo strategies, which validated the deleterious phenotype induced by this genetic
alteration. In particular, we demonstrated that the G212E variant affects the stability and localization,
as well as the adhesive and anti-invasive functions of E-cadherin, triggering epithelial disruption
and disorganization. Our findings illustrate the clinical implication of a complementary approach for
effective variant categorization and patient management.
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1. Introduction

The unprecedented genomic revolution and emergent next-generation sequencing
(NGS) technologies have revealed an increased number of genetic variants and an ensuing
challenge in their pathogenicity classification [1,2]. Indeed, the detection of pathogenic
germline variants has tremendous implications for personalized diagnostics, surveillance,
and therapeutics. The term “precision oncology” was coined to illustrate individualized
cancer care as the next logical step following the completion of the Cancer Genome Project
in 2014 [3]. However, no consensus has been reached on the interpretation of germline
sequence variants, sparking extensive efforts to develop precise and consistent classification
tools and criteria [4–6].

The impact of pathogenicity prediction has been particularly critical for the clinical
management of Hereditary Diffuse Gastric Cancer (HDGC) [7]. HDGC is an autosomal
dominant cancer syndrome linked to CDH1 (E-cadherin) inactivating germline mutations
and characterized by high prevalence of diffuse gastric cancer (DGC) and lobular breast
cancer (LBC) [8,9]. The cumulative lifetime gastric cancer risk at 80 years of age in carriers
of pathogenic CDH1 germline variants was described as 70% for males and 56% for females,
whereas that of breast cancer was reported as 42% for females [10].

Following the first identification of pathogenic germline variants in the CDH1 gene
associated with early-onset diffuse gastric cancer, the International Gastric Cancer Linkage
Consortium (IGCLC) has been updating specific guidelines for CDH1 genetic screening
of patients and families at risk [8,11]. To date, more than 155 CDH1 variants have been
described, among which 20% are of the missense type [10]. Of note, despite some scarce
evidence, no definite genotype–phenotype correlations have been established based on
mutation type or affected protein domain [12].

Upon confirmation of a pathogenic variant, carriers are counselled to undergo pro-
phylactic total gastrectomy, which remains the cornerstone of gastric cancer risk man-
agement [11]. Strikingly, histologic examination of resected stomachs of asymptomatic
mutation carriers often reveals multiple foci of intramucosal (pT1a) signet ring cell carci-
noma (SRCC) [13–15]. It has been long debated to what extent do these SRCCs progress to
advanced stages or remain indolent in the gastric mucosa. Given this context, and the lack
of effective surveillance modalities for carriers, the assessment of the phenotypic impact
of CDH1 variants represents a massive clinical issue. The past decades have witnessed
significant improvements in variant interpretation and management of germline carri-
ers [16–22]. Accordingly, CDH1 specifications for variant curation guidelines proposed by
the American College of Medical Genetics and Genomics, and the Association for Molecu-
lar Pathology (ACMG/AMP) have been developed and validated through a systematic
evaluation of a large cohort of clinical laboratory data [4,23]. Nonetheless, the majority
of these specifications remain inapplicable in missense alterations. Thus, a major goal in
HDGC is to establish functional and analytical assays to predict the clinical relevance of
CDH1 missense variants while addressing the biological mechanisms that underlie the
aggressive behavior of E-cadherin dysfunctional cells [24].

In this study, we describe an extended family pedigree harboring a CDH1 missense
variant that strongly segregates with diffuse gastric cancer. Through a multidisciplinary
pipeline, we provide evidence of the deleterious effects caused by the G212E variant. A
notable point of the present work was the comprehensive analysis of the family clinical
presentation and meticulous in vitro and in vivo functional characterization of the variant,
which combined had a major impact in the clinical management of the proband and
extended family members.
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2. Materials and Methods
2.1. Subjects

A Spanish family fulfilling HDGC clinical criteria underwent CDH1 genetic testing in
the Familial Cancer Clinical Unit of the Spanish National Cancer Research Center (CNIO,
Madrid, Spain). Individuals enrolled in this study received genetic counselling, in which
they were informed about risks of gastric and breast cancer, surveillance options and
risk-reducing surgery. Informed consent was obtained from all family members and the
study was approved by The Committee for Ethical Research of the Hospital Universitario
de Fuenlabrada (Madrid, Spain).

2.2. DNA Extraction and Variant Detection

Genomic DNA was extracted from peripheral blood leukocytes using the Maxwell®

RSC automatic extractor (Promega, Madison, Wisconsin, WI, USA), following manufac-
turer’s instructions. Analysis of asymptomatic family relatives was performed based upon
recognition of variant segregation with disease and functional evaluation of the variant. In
the case of deceased individuals, genomic DNA was obtained from paraffin-embedded
normal tissue using the Qiagen DNeasy Blood & Tissue kit (Qiagen, Hilden, Germany).
Mutation analysis was achieved through PCR amplification and direct Sanger sequencing
of all exons as well as intron–exon boundaries of the CDH1 gene. PCR conditions and
primers can be provided upon request. Bi-directional sequencing was carried out using
BigDye Terminator v3.1 Cycle Sequencing Kit (Thermo Fisher Scientific, Waltham, MA,
USA) and analyzed on an ABI 3730XL DNA analyzer (Applied Biosystems, Waltham, MA,
USA). Resulting sequences were compared with that of reference DNA NG_008021.1. As a
control, CDH1 variant screening was performed by high-performance denaturing liquid
chromatography (DHPLC) in a group of seven hundred and thirty-three healthy unrelated
individuals of Spanish origin. Variant nomenclature follows the Human Genome Variation
Society (HGVS) guidelines.

2.3. In Silico Predictions

SIFT (Sorting Intolerant from Tolerant, http://sift.jcvi.org/ accessed on 11 July 2021),
PolyPhen-2 (http://genetics.bwh.harvard.edu/pph2/ accessed on 11 July 2021) and FoldX
(http://foldxsuite.crg.eu/ accessed on 11 July 2021) algorithms were applied to predict the
impact of the variant on protein function [19,25,26]. The SIFT and Polyphen-2 (version 2.2.8)
software were run with the Ensembl transcript 261769, substitution G212E. To calculate
structural impact, FoldX (version 5) implemented in a Linux environment (Ubuntu 20.04.2
LTS) was used [19,27]. The mutant was induced in the humanized extracellular model
of Xenopus laevis (PDB 1L3W), using the command Mutate residue. The native-state
stability change between mutant and wild-type structures (∆∆G = ∆GMut − ∆GWT) was
automatically generated in 5 runs. Mutations with ∆∆G > 0.8 kcal/mol are considered
destabilizing [19].

2.4. Plasmids

The E-cadherin variant G212E (c.635G > A) was constructed by site-directed mutagen-
esis in the hCDH1 pIRES2-EGFP vector (Clontech, Takara Bio, Shiga, Japan), following the
protocol described by Wang and Wilkinson [28]. The corresponding empty vector (Mock)
was used as control. All cloning vectors were verified by direct sequencing.

2.5. Cell Culture and Transfection

CHO cells (Chinese Hamster Ovary, ATCC number: CCL-61) were grown at 37 ◦C un-
der 5% CO2 humidified air, and cultured in α-MEM medium (Gibco, Invitrogen, Waltham,
MA, USA) supplemented with 10% fetal bovine serum (HyClone, Perbio) and 1% peni-
cillin/streptomycin (Gibco, Invitrogen, Waltham, MA, USA). For transfection, 1.6 × 105 cells
were seeded in 6-well plates and, 24 h later, cells were transiently transfected with vec-
tors encoding either the wild-type protein, the variant G212E or the empty vector (Mock

http://sift.jcvi.org/
http://genetics.bwh.harvard.edu/pph2/
http://foldxsuite.crg.eu/
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condition). Transfection was performed using Lipofectamine 2000 (Invitrogen, Waltham,
MA, USA) according to manufacturer’s recommendations. Transfection efficiency was
controlled in each experiment by flow cytometry, measuring GFP fluorescence.

2.6. Western Blotting

Cell lysates were prepared by cell scraping in cold Catenin Buffer, whose compo-
sition is 1% Triton X-100 (Sigma-Aldrich, St. Louis, MI, USA) and 1% Nonidet P-40
(Sigma-Aldrich, St. Louis, MI, USA) in PBS, supplemented with a cocktail of phosphatase
(Sigma-Aldrich, St. Louis, MI, USA) and protease inhibitors (Roche, Basel, Switzerland).
Protein concentration of cellular extracts was determined using a modified Bradford assay
(Bio-Rad, Hercules, CA, USA). For analysis, 15 µg of total protein were diluted in 4×
Laemmli buffer (Bio-Rad) with β-mercaptoethanol (Sigma-Aldrich, St. Louis, MI, USA),
separated in 7.5% SDS–PAGE gels and electroblotted onto Hybond ECL membranes (Amer-
sham Biosciences, Amersham, UK). Membranes were blocked in 5% non-fat milk and 0.5%
Tween-20 in PBS for 1 h, and immunoblotted with antibodies against E-cadherin (1:2500,
Clone HECD1, Invitrogen, Waltham, MA, USA) and α-Tubulin (1:10000, Sigma-Aldrich,
St. Louis, MI, USA). The secondary antibody sheep anti-mouse HRP-conjugated (Amer-
sham Biosciences, Amersham, UK) was used, followed by detection with ECL reagents
(Amersham Biosciences, Amersham, UK). Immunoblots were quantified using Quantity
One Software (Bio-Rad, Hercules, California, CA, USA). The whole western blot figures
can be found in the supplementary files.

2.7. Immunofluorescence Staining and Expression Profiling

Cells seeded on top of glass coverslips were washed in PBS, fixed on ice-cold methanol
for 20 min and blocked with 3% BSA in PBS for 30 min, at room temperature. E-cadherin
was stained with a specific mouse monoclonal antibody (BD Biosciences, Franklin Lakes,
NJ, USA), diluted at 1:300 in blocking solution. The Alexa Fluor 488 goat anti-mouse (1:500,
Invitrogen, Waltham, MA, USA) was applied as secondary antibody for 1 h in the dark.
Coverslips were mounted on slides using Vectashield with DAPI (Vector Laboratories,
Burlingame, CA, USA). Images were acquired on a Carl Zeiss Apotome Axiovert 200 M
Fluorescence Microscope with an Axiocam HRm camera, and processed with Zeiss Axion
Vision 4.8 software. For quantitative purposes, the intensity of fluorescent signals that occur
between two contiguous cells (nuclei) was extracted as described by Sanches et al. [21,29].
Position 1 corresponds to the geometric center of nucleus 1, position 100 is the center of
nucleus 2, whereas position 50 represents the plasma membrane. Signal intensity of each
position from 1 to 100 was obtained and statistically examined.

2.8. Matrigel Invasion Assay

Cell invasion was assessed with Matrigel coated chambers suitable for 24-well-plates
(Corning Biocoat). Matrigel inserts were hydrated by filling the inner and outer compart-
ments with α-MEM medium for 1 h at 37 ◦C. Thereafter, 500 µL of a cellular suspension
at 5 × 104 cells/mL (corresponding to 2.5 × 104 cells) were plated in each insert, and the
plate was incubated at 37 ◦C in a humidified atmosphere with 5% CO2. Following the 24 h
seeding, a pre-wet ‘cotton swab’ was used to remove non-invasive cells and Matrigel from
the upper side of the filters. The filters were then washed in PBS, fixed on ice-cold methanol
for 15 min, and mounted on Vectashield with DAPI (Vector Laboratories, Burlingame, CA,
USA). The total number of invasive nuclei present in the bottom of each filter was counted
under a Leica DM2000 microscope.

2.9. Slow Aggregation Assay

Cell–cell aggregation was analyzed in 96-well-plates coated with 50 µL of an agar
solution, prepared by solving 100 mg of Bacto-Agar in 15 mL of sterile PBS [16,20]. A
cellular suspension of 1 × 105 cells/mL was prepared for each condition, and 200 µL
(corresponding to 2 × 104 cells) were added to the agar-coated wells. Triplicates were used
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to validate experimental results. The plate was then incubated at 37 ◦C under 5% CO2
humidified air. Aggregation phenotypes were observed and photographed 24 h and 48 h
after seeding, under a Leica DMi1 inverted microscope with camera. Cellular aggregates
were quantified by assessing their area in Fiji [30].

2.10. Cell Network Analysis

Cellular networks were generated based upon nuclei geometric centers computed
from images of DAPI-stained cells. Denoising and nuclei segmentation were performed
in each image by applying the Otsu method and the Moore–Neighbor tracing algorithm,
modified by Jacob’s stopping criteria, as previously described [22]. Nuclei geometric
centers were then calculated and connected using the Delaunay triangulation algorithm [31].
Geometric features of triangles composing the generated networks were explored with the
MatLab tool.

2.11. Generation of Drosophila Stocks

UAS-driven constructs to express human CDH1 were created using the Gateway
Cloning System (Life Technologies, Carlsbad, CA, USA). Site-directed mutagenesis
(c.635G > A) was performed to generate pENTR-CDH1(G212E) using the pENTR-CDH1
vector template. A new gateway destination vector, pPW-attB, was produced to enable
PhiC31 site-specific insertion of UAS-driven transgenes encoding untagged proteins. With
this purpose, the pPMW-attB (gift from Frederique Peronnet, Addgene plasmid # 61814)
was digested with NsiI (New England BioLabs Inc., Ipswich, Massachusetts, USA) to sub-
sequently subclone a fragment containing the attB site into pPW (Gateway library). Final
constructs were obtained using LR clonase II-mediated recombination of pENTR-CDH1
and pENTR-CDH1(G212E) with pPW-attB. UAS-CDH1 and UAS-CDH1(G212E) transgenes
were then inserted into the attP40 landing site via PhiC31 site-specific transgenesis (Best-
Gene Inc, Chino Hills, CA, USA), placing wild-type and mutated cadherin under the same
genetic environment.

2.12. Drosophila Genetics

Clonal analysis using the FLPout system [32] was used to evaluate the impact of CDH1
variant expression in the Drosophila follicular epithelium. This enabled direct comparison
between expressing and non-expressing clones within mosaic egg chambers. Briefly,
UAS-CDH1 transgenic lines were crossed with y w hsFlp; tub-FRT-stop-FRT-Gal4, UAS-
GFP/CyO. The progeny (y w hsFlp/+; UAS-CDH1/ tub-FRT-stop-FRT-Gal4, UAS:GFP)
was heat-shocked at 37 ◦C to randomly induce Flippase-mediated removal of the FRT
cassette, and subsequent expression of GAL4/UAS-driven human cadherin.

2.13. Ovary Immunofluorescence and Imaging

Drosophila ovaries were dissected in Schneider’s Insect Medium (Sigma-Aldrich, St.
Louis, MI, USA) supplemented with 10% FBS. Fixation was performed in 4% paraformalde-
hyde for 20 min, followed by washing steps with 0.05% Tween-20 in PBS, and blocking with
10% BSA in PBS-T. Primary antibodies were applied overnight (mouse anti-E-cadherin,
1:500, Invitrogen, Waltham, Massachusetts, USA; rabbit anti-aPKC, 1:250, Santa Cruz
Biotech, Dallas, TX, USA). After washing steps in PBS-T supplemented with 1% BSA,
ovaries were incubated for 2 h in the dark with secondary antibodies (Alexa Fluor 561
goat anti-mouse, 1:300, or the Alexa Fluor 647 goat anti-rabbit, 1:100, Invitrogen, Waltham,
MA, USA). Actin structures were stained using phalloidin Cruzfluor 647 conjugate (Santa
Cruz Biotech, Dallas, TX, USA). Ovaries were mounted on Vectashield with DAPI (Vector
Laboratories, Burlingame, CA, USA) and imaged using an inverted laser scanning confocal
microscope (Leica TCS SP5 II, Leica Microsystems, Wetzlar, Germany). Image processing
was achieved using Leica Application Suite software (LAS version 2.6).
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2.14. Statistical Analysis

Data were statistically analyzed using the two-tailed unpaired or paired Student’s
t-test as indicated. The Wilcoxon signed-rank test was applied to internuclear profile
data. All analyses were performed using the GraphPad Prism software (version 7.04) and
p ≤ 0.05 was required for statistical significance.

3. Results
3.1. The G212E E-Cadherin Variant Segregates with Diffuse Gastric Cancer within a Large Family
Pedigree

In this work, we describe an unusually large family with strong aggregation of diffuse
gastric cancer (Figure 1). The proband was identified in 2005 as a 41-year-old woman
diagnosed with DGC with signet ring cells one year prior to consultation (Subject IV-4).
She described the family with numerous consanguineous marriages (only partially shown
in the pedigree) and reported four first cousins affected by DGC: Subject IV-24, 30 years
old, diagnosed two years earlier; and three sisters (Subjects IV-13, IV-16 and IV-17) who
died at the age of 43, 43 and 29, respectively. In addition, four other cases of DGC had
occurred in relatives of third or fourth degree, including the maternal great grandmother
(Subject I-3); Subject III-11, who died at the age of 40; and her siblings (Subjects III-14 and
III-18), who died at the age of 23 and 35, respectively. An additional case appeared in a
fifth-degree relative (Subject IV-36) who died at the age of 22. A panel of other cancer types
were also described, namely two cases of breast cancer of unspecified type in a mother
and daughter (Subject II-7 and Subject III-21); and a gastric neuroendocrine tumor (Subject
IV-5), among others. Neither patients with cleft lip/cleft palate, or with other birth defects,
nor couples with a history of recurrent miscarriages were identified.

Following HDGC genetic testing criteria, CDH1 screening was offered to the proband,
which identified the missense variant c.635G > A (p.G212E) in exon 5 of the gene. The
CDH1 gene was also screened in Subject IV-24, another living relative affected by DGC
at the time. In parallel, we have analyzed microsatellite instability and the expression of
mismatch repair proteins in a paraffin tumor sample from Subject IV-24, which was shown
to be a stable tumor with intact MLH1, MSH2, MSH6, and PMS2 proteins. The study was
extended to deceased relatives (Subjects IV-16 and IV-17) diagnosed with DGC. All turned
out to be carriers of the G212E variant. Upon genetic counselling, evaluation of CDH1
status was offered to other family members.

In total, we have analyzed 83 family members, 32 of which were carriers of the muta-
tion. All living carriers have been advised to consider prophylactic total gastrectomy (PTG),
but only two individuals have opted to do so. Regarding histopathological analysis, we
were able to collect information from the gastrectomy specimen of Subject IV-23, yielding
a macroscopically and microscopically normal stomach. The remaining family members
declined or chose to postpone PTG. Importantly, all of them undergo an annual endoscopy
with multiple biopsies throughout different anatomical zones of the stomach, carried out
by endoscopists with solid experience in HDGC management. Breast surveillance in female
carriers is pursued by alternating mammography and MRI with 6-month intervals.

Endoscopic surveillance allowed the identification of grossly visible tumors in indi-
viduals IV-49 and V-18, and tiny foci of SRCC in subjects IV-14, 37, 51, and 52, who then
underwent total gastrectomy.
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Figure 1. Clinical presentation associated with the G212E E-cadherin variant. Pedigree illustrating variant segregation and
disease phenotypes within a family structure along five generations (I-V). For simplicity, individuals were numbered in
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3.2. Histopathogical Findings Are Compatible with HDGC Clinical Presentation

Histopathological evaluation of the cases first identified in the family (Subjects IV-4,
13,16, 17, 24) showed extensive, diffuse, poorly differentiated adenocarcinomas with SRC
component eroding the mucosa and invading throughout the lamina propria, muscularis
mucosae, submucosa and muscularis propria, further penetrating the subserosal connective
tissue with invasion of the peritoneum and metastases in the regional lymph nodes.

In contrast, cases diagnosed by follow-up endoscopic examination presented less
advanced lesions. Among the patients who had a positive biopsy for carcinoma during
endoscopic surveillance and underwent total gastrectomy, only one had a grossly visible
ulcerated tumor in the cardia (1.8 cm, Subject IV-49). In the remaining cases, no tumors
were detected by endoscopy and three cases were found positive for carcinoma in the 2nd,
3rd (6 months to 1 year) and 23rd (13 years) screening biopsies (Table 1).
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Table 1. Characteristics of patients diagnosed during follow-up endoscopic examination. For each subject, available information is provided on age at diagnosis, surveillance period,
screening biopsies up to gastrectomy, number of paraffin-embedded tissue samples, number and anatomical distribution of detected cancer foci, as well as tumor features.

Subject Age at
Diagnosis

Surveillance
Period

Screening
Biopsies up to

Gastrectomy (nr)

Paraffin-
Embedded Tissue

Blocks (nr)

Intramucosal
Foci(nr and Size)

Foci Anatomical
Location

Visible Tumour
(nr) TNM

Localization Size
Histological Features

IV-14 59 13 y 23 315 16
<2 mm

All of the stomach,
more frequent in
body and fundus

No
T1aN0 Superficial half mucosa

IV-37 43 6 m 2 208 9
<5 mm All of the stomach No

T1aN0 Superficial half mucosa

IV-49 46 no 1 209 32
<2 mm

All of the stomach,
more frequent in
lesser curvature

Yes (1)
T2N0

Cardia ulcerated
1.8 cm

Superficial half mucosa

IV-51 28 1 y 3 214 169
<2 mm All of the stomach No

T1aN0 Superficial half mucosa

IV-52 27 7 m 2 202 54
< 8 mm

All of the stomach,
more frequent in

lesser curvature and
posterior wall

No
T1aN0 Superficial half mucosa
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Macroscopically, most gastrectomy specimens appeared normal to the naked eye
and complete stomachs were thus included for histopathological examination with to-
pographical location recorded for each sample (Figure 2A). At the microscopic level, all
cases displayed multiple intramucosal foci (less than 8 mm in diameter) of diffuse, poorly
cohesive signet ring cell carcinoma of classic morphology. The foci were randomly dis-
tributed across the different regions of the stomach in all cases (Figure 2B), although in two
cases they were more predominant in the lesser curvature and body area. Furthermore,
there was a large variation in the number of foci detected, ranging from 9 to 169, and
no relationship was found between their number and patient’s age (Table 1). With the
exception of Subject IV-49, who exhibited tumor cells extending into the muscularis propria
(T2), the other cases displayed signet ring cells restricted to the upper half of the lamina
propria (T1a, Figure 2C). No lymphovascular or perineural invasion was observed in any
case and no regional lymph node metastases were detected in the lymphadenectomies.
Remarkably, immunohistochemical studies demonstrated typical loss of membranous
E-cadherin staining in all cases analyzed (Figure 2D).
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Figure 2. Macroscopic and microscopic features of gastrectomy specimens. (A) Procedure used to
include entire stomachs for systematic histological analysis. (B) Gastrectomy specimen from Subject
IV-51. Dots indicate the sites where microscopic lesions were identified. (C) Representative image
of a focus of signed ring cell carcinoma restricted to the upper half of the mucosa (Subject IV-52,
hematoxilin-eosin staining, ×200 magnification, arrows). (D) Immunohistochemistry showing intact
membrane expression of E-cadherin in the non-tumoral foveolar epithelium and focal loss of staining
in tumor cells from Subject IV-52 (×200 magnification, arrows).

More recently, an additional case was diagnosed in a first endoscopic surveillance
examination of a 19-year-old subject (Subject V-18). Following the detection of a thickening
in the central region of the body of the stomach, a biopsy identified a poorly cohesive
adenocarcinoma. The patient received neoadjuvant chemotherapy, followed by total
gastrectomy that revealed a yT2N0 DGC invading the muscularis propria without regional
lymph node metastases.
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3.3. In Silico Analysis Predicts Destabilization of E-Cadherin Structure by the G212E Variant

Following the identification of the variant in the proband and in several close relatives
affected by DGC, we pursued a framework aiming to determine the significance of the
G212E variant. Although this variant has been reported in LOVD database (https://
databases.lovd.nl/ accessed on 2 July 2021), it was not submitted to HDMD (http://www.
hgmd.cf.ac.uk/ac/index.php/ accessed on 2 July 2021) or ClinVar (https://www.ncbi.
nlm.nih.gov/clinvar/ accessed on 2 July 2021) registries. Likewise, there were no data on
variant frequency in large genomic databases, such as The Genome Aggregation Database
(gnomAD; https://gnomad.broadinstitute.org/ accessed on 2 July 2021), arguing in favor
of a rare and potentially deleterious alteration. In addition, we evaluated its presence in a
series of 733 healthy controls of the Spanish population through DHPLC and verified that
this alteration was absent from this cohort.

To access the pathogenicity of the G212E variant, we next performed in silico analysis
through SIFT, PolyPhen-2 and FoldX software, thus considering not only sequence ho-
mology, but also structural information and physical properties of amino acids [19,25,26].
Of note, all bioinformatic tools were consistent and predicted that this variant affects the
function of E-cadherin. G212E substitution was considered “Damaging” by SIFT with a
score of 0.008 (scores bellow 0.05 are considered to be Damaging); PolyPhen-2 classified
the variant as “Probably Damaging” with the highest possible score (score 1.0); and FoldX
modelling pinpointed a highly destabilized protein structure, with a striking energetic dif-
ference between the mutant and the WT reference of 14.98 kcal/mol (mutations associated
to structural impact present differences >0.8 kcal/mol) [19].

3.4. The CDH1 G212E Variant Yields Abnormal E-Cadherin Levels and Distribution Profiles

To test the impact of the mutant protein in vitro, we transiently transfected CHO cells
with vectors encoding wild-type E-cadherin, the G212E variant and the empty vector, as
a control. CHO cells were chosen given that they are completely negative for E-cadherin
expression and constitute the most well-established model for studying the pathogenic
relevance of missense mutations [33–35]. By analyzing total protein levels, we verified
that mutant cells present significantly decreased E-cadherin expression when compared
with those expressing wild-type protein (from 1.0 to 0.32-fold, p = 0.0083), despite similar
transfection efficiencies (Figure 3A,B). This is consistent with protein destabilization and
premature degradation, which supports the in silico results and may reflect the post-
translational regulation mechanisms previously described for missense mutants [19,20,36].

Immunofluorescence showed that G212E cells display a diffuse pattern of E-cadherin
throughout the cytoplasm and no protein enrichment at the plasma membrane, in contrast
to wild-type expressing cells, which present a strong staining at the membrane (Figure 3C).
For quantitative assessment of protein localization, we have applied a bioimaging approach
that captures and compiles fluorescence signals between contiguous cells [29]. As observed
in Figure 3D, the wild-type map exhibits significantly more intense E-cadherin when
compared with the G212E map (p = 0.0005). More so, the profile of wild-type cells is
characterized by a maximum intensity peak in the region that represents the plasma
membrane (position 50). Contrarily, cells expressing the G212E variant show much weaker
pixel intensity at the same position, with maximum intensity levels observed at a specific
position in proximity to each nucleus (positions 25 and 76, Figure 3E,F), compatible with a
possible accumulation in the perinuclear endoplasmic reticulum.

3.5. The G212E Variant Compromises Protein Function and Cell-Cell Adhesion

To investigate the functional significance of the G212E variant, we next explored
Matrigel invasion assays and slow aggregation experiments. We verified that the variant
induces an increase in the number of cells that are able to invade a matrix (54.3 wild-
type cells versus 112.3 mutant cells, p = 0.048, Figure 4A), and has a strong effect in the
capacity to mediate homotypical cell–cell adhesions (Figure 4B). While cells expressing
wild-type E-cadherin spontaneously aggregate upon seeding on a semisolid substrate,

https://databases.lovd.nl/
https://databases.lovd.nl/
http://www.hgmd.cf.ac.uk/ac/index.php/
http://www.hgmd.cf.ac.uk/ac/index.php/
https://www.ncbi.nlm.nih.gov/clinvar/
https://www.ncbi.nlm.nih.gov/clinvar/
https://gnomad.broadinstitute.org/
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cells expressing the G212E mutant present a scattered phenotype, appearing isolated and
homogenously distributed in the agar (Figure 4B). In fact, wild-type cells form large and
compact aggregates with an average area of 13,366 pixel2, whereas the cellular structures
yielded by mutant cells reach on average 1845 pixel2 (p < 0.0001), similar to those of the
Mock control (1506 pixel2, Figure 4C).
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Figure 3. Expression profile of the E-cadherin missense variant G212E. (A) E-cadherin protein expression was analyzed
by Western Blot in CHO cells transfected with wild-type E-cadherin, the variant G212E, and the empty vector (Mock).
α-Tubulin was used as loading control. The intensity of the bands was quantified and normalized against wild-type
E-cadherin cells. In the graph, bars represent average + SE of E-cadherin protein levels in four independent experiments.
(B) Transfection efficiency was evaluated by flow cytometry using GFP levels. (C) Immunofluorescence showing E-cadherin
localization (green staining) of wild-type, G212E, and Mock cells. Nuclei were counterstained with DAPI (blue). Scale
bars represent 20 µm. Enlarged image showing the diffuse pattern of G212E E-cadherin, when compared with that of the
wild-type protein at the plasma membrane. (D) Internuclear profiles encompassing signal intensities along contiguous cells
were extracted (upper map) and geometrically compensated (bottom map). (E) Quantification of mutant and wild-type
E-cadherin expression profiles. (F) Graph displays mean + SE of fluorescence intensity at the internuclear position 50, which
corresponds to the plasma membrane. ** represents p ≤ 0.01.
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We then applied an algorithm to address whether the G212E variant generates an 
abnormal epithelial organization [22]. Networks connecting neighboring nuclei of G212E 
cells were clearly distinct from those of the wild-type counterparts (Figure 4D). In par-
ticular, networks from mutant cells present significantly higher triplet areas (p = 0.029) 
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Figure 4. In vitro functional effects elicited by the E-cadherin missense variant G212E. (A) Invasive ability mean + SE of
cells transfected with the empty vector, as well as with wild-type and G212E E-cadherin forms. (B) Aggregation phenotypes
of the different cell lines. Scale bars represent 400 µm. Image insights show cellular structures in detail. Scheme illustrating
the outlines of 10 aggregates formed by wild-type or mutant cells. (C) Quantification of aggregate area. (D) Computational
analysis of cellular distribution patterns based upon networks of neighboring nuclei. Quantitative features of networks,
area (E) and edges length (F). * represents p ≤0.05 and **** p ≤0.0001.

We then applied an algorithm to address whether the G212E variant generates an
abnormal epithelial organization [22]. Networks connecting neighboring nuclei of G212E
cells were clearly distinct from those of the wild-type counterparts (Figure 4D). In particu-
lar, networks from mutant cells present significantly higher triplet areas (p = 0.029) and
internuclear distances (edges, p = 0.0385) when compared with E-cadherin competent cells
(Figure 4E,F), suggesting that mutant cells are loosely attached. We thus conclude that the
G212E variant affects the ability of E-cadherin to establish normal cell adhesion and may
therefore impact epithelial architecture.

3.6. Expression of Human G212E Variant Causes Epithelial Disruption in Drosophila

To further explore the effects of G212E in epithelia, we have established an in vivo
model in Drosophila melanogaster. For that purpose, human CDH1 and CDH1 G212E were
expressed in the Drosophila follicular epithelium using the FLPout/tub-GAL4 system [32],
which enables ectopic expression of human E-cadherin and direct comparison of epithelial
shape within a mosaic tissue. We first studied the expression and localization of human
E-cadherin in the surface of egg chambers, and verified that the G212E is weakly expressed
at the plasma membrane when compared with the well-defined pattern of the wild-type
protein (Figure 5A). Interestingly, we observed that clones expressing the G212E mutant,
including those with only two or three expressing cells, induce epithelial invaginations,
compromising tissue architecture and integrity (Figure 5B). Accordingly, a large proportion
of G212E expressing cells disrupt normal epithelial architecture, an effect rarely observed
upon overexpression of CDH1 wild-type (Figure 5B,C). Lastly, we have assessed whether
expression of G212E could affect apical–basal organization using the apical marker aPKC.
The apical enrichment of aPKC was found to be decreased in G212E expressing cells when
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compared with non-expressing tissue (Figure 5D). Thus, expression of G212E may also
inhibit apical identity, further corroborating the damaging nature of the variant.
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Figure 5. Structural features of human G212E variant in Drosophila epithelia. (A) Surface views of the Drosophila follicular
epithelium with mosaic clones expressing human wild-type CDH1 and the G212E variant using the FLPout/tub-GAL4
system. Cells expressing G212E E-cadherin display weaker accumulation at the plasma membrane (arrows). E-cadherin
is shown in green, and DAPI (red) labels the nucleus. Scale bars represent 5 µm. (B) Longitudinal view of egg chambers
stained for E-cadherin (red), actin (green) and DAPI (blue). Clones expressing G212E lead to epithelial invaginations
with consequent tissue disruption (arrows). Upper images are close-ups of the lower ones. Scale bars represent 20 µm.
(C) Quantification of disrupted epithelial architecture caused by the overexpression of wild-type and mutant E-cadherin
in the Drosophila follicular epithelium. Data derives from four independent experiments. For each experiment, around
30 clones were quantified per genotype (total number in the graph). Graph displays mean + SE; ** represents p ≤ 0.01 for a
two-tailed paired t-test. (D) Longitudinal section of an egg chamber with a large clone of cells expressing the G212E mutant
(red) and stained for the apical marker aPKC (green). Loss of apico-basal polarized localization is evident even in a single
cell overexpressing G212E (arrow). Scale bar represents 20 µm.

4. Discussion

Herein, we describe a large Spanish family fulfilling HDGC criteria and carrying the
novel G212E CDH1 germline missense variant. In this family, 16 of its members, 14 females
and 2 males, have developed diffuse gastric carcinoma. Among the affected members,
10 died prior to or during the genetic study process while the other 6 were diagnosed with
the disease upon implementation of surveillance measures. Importantly, these latter remain
alive and disease free, thus constituting an irrefutable proof of the value of accurate genetic
counselling coupled with a comprehensive evaluation of genetic variants.

In the present family, the onset of disease was below 45 years of age, with the exception
of Subjects IV-49 and IV-14, who were diagnosed at the age of 46 and 54, respectively.
Indeed, 42.3% of affected individuals were diagnosed before the third decade of their life
(Subjects III-14, IV-17, 36, 51, and 52) with the youngest patient at 19 years of age (Subject
V-18). This age range justifies genetic testing and initiation of a surveillance program
in asymptomatic minors. Concerning prophylactic procedures, there was only one case
with available information, and upon an exhaustive microscopic screening no pre-invasive
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lesions were identified. It would have been extremely important to evaluate the additional
gastrectomy specimens and compare them to previous reports demonstrating that, in fact,
95.3% of gastrectomies display pre-invasive or early invasive lesions [13].

In accordance with prior studies regarding missense variants, we verified that disease
penetrance in this family is lower than that described by Hansford et al. [10,37]. Strikingly,
a number of long-lived carriers in the III generation remained disease free. This lower
penetrance may be related to residual protein production and function in the mutant
context, or with different severity grades possibly dependent on the compromised CDH1
domains [20,38,39]. Unexpectedly, we found a difference in the sex ratio of patients affected
by DGC, with females showing a high proportion of cases (14/69 female versus 2/53 male).
We speculate that individual genetic backgrounds and/or lifestyle factors may contribute
to this biased proportion.

In the last decade, we and others have provided evidence that the disease spectrum
of CDH1 mutation carriers includes DGC, lobular breast cancer, cleft lip/palate, and the
blepharocheilodontic syndrome [40–43]. Some studies have also reported cases of colorectal
carcinoma associated with loss of E-cadherin function, although its inclusion in CDH1
clinical presentation remains controversial [44,45]. Based on our findings, we cannot infer
as to whether G212E variant increases the risk of developing other tumors apart from DGC.
The two cases affected by breast cancer were not tested for CDH1 alterations and their
histological subtype is currently not known. Moreover, mutation carriers have developed
a neuroendocrine tumor (Subject IV-5) and a prostate cancer (Subject III-30) at advanced
ages, suggesting a sporadic occurrence rather than a specific inherited susceptibility.

Given the debate surrounding the relevance of missense variants, we developed a
pipeline to evaluate the effects of the G212E variant at cellular and tissue levels, following
its identification by screening. Using in silico approaches, we collected data pointing to
a deleterious impact of the alteration since it substitutes a highly conserved glycine by a
glutamine acid, which is predicted to induce a drastic modification in protein structure.
In vitro, we were able to demonstrate that the variant generates abnormal levels and
distribution of E-cadherin. Specifically, we detected a significant decrease in protein
expression and, consequently, its absence from the plasma membrane where it is normally
strongly expressed. A small fraction of the protein is present instead in perinuclear patches
or diffusely distributed across the cytoplasm, corroborating the activation of mechanisms of
protein quality control, as previously described for this type of mutation [19,36]. Consistent
with the lack of membrane enrichment, we showed that the G212E mutant hinders the
cell-cell adhesive function of E-cadherin and increases cell motility within a Matrigel matrix
mimicking the human basement membrane [46,47]. A looser interaction between G212E
expressing cells was also uncovered in comparison with the organized monolayer formed
by wild-type counterparts.

The consequences of the G212E variant were further investigated at the tissue level
using a Drosophila model engineered to express human E-cadherin in the follicular ep-
ithelium, which has been extensively used to study epithelial organization and to address
mechanisms relevant for human cancer [48,49]. We found that the G212E variant yielded
lower levels of E-cadherin at cell–cell junctions and led to pronounced changes in tis-
sue architecture. By monitoring the apical marker aPKC, we further confirmed loss of
apical–basal polarity that has been strongly associated with cancer progression [50]. HDGC
in particular has been previously proposed to be a clinical manifestation of loss of cell
polarity that possibly arises due to abrogation of the role of E-cadherin in mitotic spindle
orientation [51,52]. Cell division asymmetry results in deposition of daughter cells in the
lamina propria, which subsequently expand and differentiate into SRCC [51].

5. Conclusions

This work validates the damaging signature of a novel E-cadherin missense variant
in a large pedigree and highlights the potential of an effective variant classification by
combining in vitro and in vivo models. In particular, we demonstrate that the G212E
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alteration compromises protein stability, cell adhesive and invasive properties, as well
as tissue integrity, culminating in a severe cancer phenotype such as that seen in HDGC.
Our findings proved to impact management of individuals harboring CDH1 germline
alterations and to be crucial for cancer risk estimation.
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