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Abstract

When humans and robots collaborate, manufacturing processes are faster, more efficient, and more
cost-effective. Nevertheless, substantial progress is yet to be made in advancing human-robot
interaction. One crucial aspect that requires further development is ensuring a safe environment
for coexistence between machines and humans. Avoiding collisions or at least mitigating the impact
of these possible collisions between robotic arms and humans is one of the steps in this direction
of mutual interaction.

To address this problem, this thesis brings a novel approach that consists of detecting the
human pose using an RGBD Camera, then predicting in real-time the human motion through an
unsupervised algorithm based on Variational Autoencoders, which in turn will trigger a reactive
behavior in the manipulator side. The collision avoidance implementation employs as a basis the
vector field inequality method, which considers the area surrounding the human as a restricted
zone.

To evaluate our developed approach, we performed experiments in a real robotic arm, which
should keep a pre-established safe distance from the person in front of it all the time. This safe
distance could have different values for the different regions of the human upper body: arms, torso,
and head.

The results obtained show that the manipulator successfully avoids collisions with humans
by not trespassing the safe distances imposed, even when the robot performs a pick-and-place
task. Moreover, the results highlight the necessity of human motion prediction, since without
the forecast, the safety constraints were not completely satisfied. Finally, we investigated how the
number of robot entities considered in the process changes the reactive behavior of the manipulator.

Keywords: human motion prediction, collision avoidance, reactive controller, reactive behav-
ior for robotic arms, reactive behavior for manipulators, human-robot interaction
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Resumo

Quando humanos e robôs colaboram, os processos de fabricação são mais rápidos, eficientes e
econômicos. No entanto, ainda é necessário um progresso significativo para avançar na interação
humano-robô. Um aspecto crucial que requer desenvolvimento adicional é garantir um ambiente
seguro para a convivência entre máquinas e humanos. Evitar colisões ou, pelo menos, mitigar o
impacto dessas possíveis colisões entre braços robóticos e humanos é um dos passos nessa direção
de interação mútua.

Para abordar esse problema, esta tese apresenta uma abordagem inovadora que consiste em
detectar a postura humana usando uma câmera RGBD e, em seguida, prever em tempo real
o movimento humano por meio de um algoritmo não supervisionado baseado em Variational
Autoencoders, que por sua vez promove um comportamento reativo do manipulador. Para evitar
colisões empregou-se como base o método de desigualdade do campo vetorial (do inglês Vector
Field Inequality), que considera a área ao redor do humano como uma zona a ser evitada.

Para avaliar essa abordagem proposta, nós realizamos experimentos em um braço robótico
real, cujo objetivo era manter uma distância de segurança pré-estabelecida da pessoa à sua frente o
tempo todo. Essas distâncias de segurança podem ter valores diferentes para as diferentes regiões
consideradas do corpo humano: braços, tronco e cabeça.

Os resultados obtidos mostram que o manipulador evita com sucesso colisões com humanos,
não ultrapassando as distâncias de segurança impostas, mesmo quando o robô realiza uma tarefa de
pick-and-place. Além disso, os resultados destacam a necessidade de prever o movimento humano,
dado que sem a previsão, os critérios de segurança não foram totalmente atendidos. Finalmente,
nós investigamos como o número de entidades do robô (do inglês robot entities) consideradas no
processo afeta o comportamento reativo do braço robótico.

Palavras-chave: predição do movimento humano, prevenção de colisão, controlo reativo, com-
portamento reativo para braços robóticos, comportamento reativo para manipuladores, interação
humano-robô
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Symbols and Notations

Basic Symbols and Notations

In this dissertation, the notation below is used for scalars, vectors, and matrices elements:

a, b, c, · · · scalars are depicted by lowercase plain letters.
a, b, c, · · · vectors are depicted by lowercase bold letters.
A,B,C, · · · matrices are depicted by lowercase bold letters.

The exception is the uppercase plain letter H , which represents the cost function.

Symbols and Notations for Vectors and Matrices

The notations and symbols related to vectors and matrices are the following:

⟨a, b⟩ inner product between vectors or pure quaternions a and b.
a× b cross-product between three-dimensional vectors or pure quaternions a and b.
I the identity matrix with proper size.
MT the transpose of matrix M .
M−1 the inverse of matrix M .
∥v∥l the norm l of the vector v. In the absence of l, it is assumed l = 2, which is

the Euclidean norm.

Symbols and Notations for Probability and Variational Autoencoder

The notation below will be employed when discussing Variational Autoencoders which use
numerous concepts related to the probability field:

µ the mean value of a distribution.
σ, σ2 the standard deviation and the variance of a distribution respectively.
z the latent space variable.
ϕ, θ the encoder and decoder parameters respectively.
p(x) the probability distribution of a variable x.
p(x|y) the probability distribution of a variable x, given that we know y.
N (µ, σ2) a normal distribution with mean µ and variance σ2

ϵ ∼ N (µ, σ2) random variable ϵ follows a normal distribution (N ).
E[p(x)] expected value of the distribution p(x).
KL(q||p) Kullback-Leibler Divergence between distributions q and p.
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xviii SYMBOLS AND NOTATIONS

Symbols and Notations for Quaternions and Dual Quaternions

In the field of quaternions and dual quaternions ı̂, ȷ̂, and k̂ denote imaginary units, and ε denotes
the dual (or Clifford) unit.
In this dissertation, like what we did for vectors, quaternions are represented by lowercase bold
letters and dual quaternions are depicted by underlined lowercase bold letters:

a, b, c, · · · quaternions (and also pure quaternions) are depicted by lowercase bold letters.
a, b, c, · · · dual quaternions (and also pure dual quaternions) are depicted by underlined

lowercase bold letters.
q∗, q∗ are the conjugate of the quaternion q and dual quaternion q respectively.

The collection of operators used for quaternions and dual quaternions throughout this dissertation
is also presented below:

Re(q), Im(q) the real and imaginary parts of the quaternion q, in a way that,
q = Re(q) + Im(q).

Re(q), Im(q) similarly, the real and imaginary parts of the dual quaternion q.
P(q),D(q) the primary and secondary components of the dual quaternion q, in

a way that, q = P(q) + εD(q).
vec4 q maps quaternion q into R4.
vec8 q maps dual quaternion q into R8.

Symbols and Notations for Sets

R the set of real numbers.
Rn the set built by n tuples of real numbers (a1, a2, . . . , an).
H,Hp the set of quaternions and pure quaternions respectively.
H,Hp the set of dual quaternions and pure dual quaternions respectively.
S3,S the set of unit quaternions and unit dual quaternions.



Chapter 1

Introduction

1.1 Context and Motivation

Today’s industrial robots operate heavy workpieces at fast speeds and cannot run safely close to
people. Because of this, the majority of manufacturing processes are either completely automated or
completely manual [11]. However, this black-or-white approach to automation can be addressed by
robots that integrate human action understanding and (re)action generation. In such environments
where a stronger human-robot interaction (HRI) is present, it is possible to merge the precision,
power, and velocity of industrial machines with the dexterity, judgment, and ingenuity of workers
[12]. So, while robots do activities that best utilize their strength and speed, human workers can
focus on duties that demand flexibility. Additionally, companies can rapidly respond to changing
demand with new products and processes thanks to the adaptability of human-robot collaboration,
whereas today’s excessive and rigid automation makes retooling a difficult and time-consuming
process.

Moreover, in recent years there has been a growing trend towards the development of robotics
technologies that bring robots into closer proximity with humans not only in the industry context
but also in medical or social contexts, such as in senior assistance, rehabilitation processes, or
for educational purposes [13]. However, this increased proximity requires a deeper understanding
and anticipation of each other’s actions in order to facilitate fluent and safe interactions between
humans and robots. A significant challenge in current methods is the integration of human motion
estimation and prediction with reactive motion behavior in the robotic system. This presents a
bottleneck that must be overcome in order to effectively facilitate the relationship between humans
and robots in these closer proximity scenarios.

In this context of human-robot interaction, it’s common for the robot to lack pre-existing
knowledge about the human in question and the range of possible actions it may take. Given this
lack of prior data, the most prudent approach for ensuring safety in these interactions often lies
in an unsupervised method for predicting human motion. This approach refrains from making
presumptions about the specific targets or actions of the human motion [4], being then more robust
and producing safer interactions for general cases.

1



2 Introduction

Furthermore, also in this context, collision avoidance emerges as a vital component. As robots
increasingly share spaces and tasks with humans, the ability to prevent physical clashes becomes
instrumental in ensuring safety and operational smoothness [14]. Robots are required to perceive
and adapt to human movements and behaviors in real-time to eliminate potential points of contact.
This dynamic interplay of predictive and reactive responses is critical for preventing any harm to
humans and maintaining the integrity of the interaction, as described in the first law of robotics.

Beyond the physical implications, effective collision avoidance also brings a sense of trust and
comfort to these technological systems, thus facilitating their wider acceptance and integration into
human lives. Hence, the emphasis on robust collision avoidance mechanisms in HRI scenarios is
not merely desirable but essential.

The concept of HRI is a broad and versatile one, applicable to nearly all types of robotic
systems [13]. It encompasses an array of contexts, from autonomous vehicles navigating our
streets to service robots assisting in our homes and workplaces. Yet, the scope of HRI is so diverse
that it necessitates focused exploration in order to develop an in-depth understanding. Therefore, for
the purposes of this thesis, we will be narrowing our lens to concentrate specifically on manipulator
robots. Endowed with the capacity to perform tasks in a manner similar to a human arm, they offer
an excellent platform for exploring the dynamic interplay between humans and robots.

1.2 Objective

Based on the information presented in the preceding section, the necessity for improved Human-
Robot Interaction (HRI) in a range of contexts becomes evident. To achieve this, the study of
collision avoidance and human motion prediction forms an essential foundation.

Nonetheless, the majority of the existing robotic arms do not take this human movement
prediction into consideration. These robots only react based on the human or obstacle’s current
position, which most of the time might be too late to avoid a collision. Still, the few robotic
systems capable of predicting human motion and reacting accordingly employ for the estimation
the supervised method [15] that, as discussed before, lacks some robustness.

Therefore, the goal of this thesis is to combine human motion prediction using an unsupervised
approach with a reactive controller to avoid or - in the last case scenario - to diminish the impact
of collisions between robotic arms and humans. Then, it can be defined as the main stages of the
dissertation the following:

1. Implement and test a program that captures the human pose in real-time utilizing a camera.

2. Implement and test an unsupervised algorithm for human motion forecast capable of working
concurrently with human pose detection.

3. Implement and test a reaction planning for the manipulator that also acts in an online fashion.

4. Implement and test a system that combines the preview points. In other words, merge the
developed human motion detection and prediction with the developed reaction planning.
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1.3 Structure of the Document

This document is composed of seven chapters. This initial chapter serves as an introduction
to the overall problem at hand and presents the main objective of this thesis. Then, chapter
2 shows a review of the relevant literature concerning the human motion prediction topic, and
the reaction planning for collision avoidance, stating the methods that shall be employed in this
thesis. Subsequently, the next three chapters cover the background and development of each main
topic of this dissertation: chapter 3 talks about the human pose detection; chapter 4 presents
the unsupervised approach employed; and chapter 5 discuss the chosen method for the collision
avoidance. Then, the experiments and results of this thesis are shown in chapter 6. Finally, the
report is concluded in chapter 7, which summarizes the understanding of the thesis and presents
its main contributions for the future.



4 Introduction



Chapter 2

Literature Review

This chapter discusses the existing literature concerning human motion prediction and reaction
planning for manipulators, which are the two main subjects of this thesis. First, a thorough
review of the forecast of human movements is performed, analyzing the different approaches to
solve this issue and discussing the main advantages and disadvantages of each one. Next, the
most common ideas for implementing a reactive behavior in robotic arms are presented and their
results, in the context of this thesis, are examined. Finally, it is presented an overview of all the
covered methods, stating which method we will employ for the human motion prediction and for
the collision avoidance.

2.1 Human Motion Prediction

The ability of humans to anticipate and make accurate short-term predictions about their surround-
ings based on past events is well known. In the field of robotics, understanding and replicating this
ability in machines has become a significant research focus in the area of human-robot interaction.
Accurate prediction of human motion is essential for tasks such as handover, obstacle avoidance,
and person tracking in these systems. However, predicting human motion is a complex challenge,
as the conscious movements of individuals do not obey simple physical laws like inanimate objects.
Instead, the state of various parts of the human body can be in many possible combinations, making
it difficult for machines to understand and accurately predict human movements [16].

There are many different approaches to human motion prediction, including using data-driven
methods such as machine learning algorithms and using physics-based methods that model the
underlying physical principles that govern human motion. Research in this field is ongoing, and
there is still much to be learned about how to accurately and reliably predict human movement. In
the next pages, it is presented the different main methods used nowadays for this task of human
motion prediction.

5
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2.1.1 Time Series Classification

In 2015, Julie A. Shah and Claudia Pérez-D’Arpino presented in [17] an approach for synthesizing
anticipatory knowledge of both human motion and the subsequent action steps in order to predict
the intended target of a human performing a reaching motion in real-time. The main contribution
of this work is the use of time series analysis for real-time online prediction of the target of a
human reaching motion, in which each time step of the movement is represented as a multivariate
Gaussian distribution across the degrees of freedom of the human arm. Moreover, the prediction
is made early on through Bayesian classification using an initial segment of the trajectory of the
human arm.

The method employed consists of a time series classification algorithm, which is a machine
learning method that is used to classify data points collected over time. These algorithms typically
involve analyzing the data over time to identify patterns or trends that can be used to differentiate
between different classes (see Figure 2.1). Some common techniques used in time series classifica-
tion include feature extraction, dimensionality reduction, and the use of machine learning models
such as neural networks and support vector machines. Time series classification algorithms are
normally trained using labeled data, in which the correct class label is known for each time series,
and can then be used to classify new, unseen time series data.

Figure 2.1: General workflow of the Time Series Classification Method [1].

For this specific case [17], the goal of the algorithm is to classify a time series of features
representing human motion. It aims to determine the motion class that the human is currently
executing. The algorithm operates in real-time, iteratively processing a new set of feature values
corresponding to the human motion being classified using a previously collected library of motions.
It receives these values in a time series format, one set at a time, and uses them to update its
understanding of the current motion class.

This approach demonstrates a good prediction performance compared to prior work (e.g. [6])
by achieving an average of 70% or higher correct classification in the first third of the trajectory
(<500 ms). In addition, this early prediction signal is used to adjust the robot’s subsequent actions
to prevent conflicts between human and robot motions.

The Time Series Classification Method has the advantage of estimating future human posi-
tions in real-time, which is fundamental for a good HRI. However, it has the drawback of being
supervised. This thesis is inserted in a context in which is assumed that the manipulator has no
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knowledge about specific classes of actions. Therefore, supervised methods are not advisable in
this situation.

2.1.2 Recurrent Neural Networks

Recurrent neural networks (RNNs) are a type of artificial neural network characterized by con-
nections between nodes that create a cycle, allowing output from some nodes to affect subsequent
input to the same nodes (see Figure 2.2). This enables RNNs to exhibit temporal dynamic behavior.
Derived from feedforward neural networks, RNNs are equipped with an internal state or memory
that allows them to process variable-length sequences of inputs. RNNs are particularly useful for
tasks that involve predicting a future outcome based on previous input, as they are able to process
input data in a sequential manner and maintain a state or memory that captures information about
the input data seen so far. All these features make RNNs well-suited for tasks such as unsegmented
handwriting recognition and speech recognition. Furthermore, RNNs can be trained using super-
vised learning or unsupervised learning (the case of this thesis), in which the input data itself is
used to learn patterns and relationships within the data.

Figure 2.2: Schematic of Recurrent Neural Network (RNN) [2].

Due to RNNs’ ability to process temporal data, human motion prediction has often been
approached using them. However, some researchers ([3],[18]) have pointed out that RNNs for
motion prediction have several limitations.

For example, using the current RNN step’s estimation as input for the next prediction can lead
to the accumulation of errors over time, resulting in unrealistic predictions at inference time [18].
Additionally, RNN-based methods have been shown to produce strong discontinuities between
the last observed frame and the first predicted one, which may be due to their frame-by-frame
regression approach that does not encourage global smoothness in the predicted sequence [3], [18].
To address the limitations of RNNs for motion prediction, [18] made two contributions that can be
implemented using a simpler architecture than in previous work (e.g. [19]).

To reduce error accumulation, noise was gradually added to the input during training, which
forces the network to be more robust to prediction errors. This noise scheduling technique allows
the network to generate plausible motion for longer time horizons, particularly for cyclic walking
sequences. However, it can be challenging to tune the noise schedule in practice.

To minimize the issue of discontinuities, a residual architecture that models first-order motion
derivatives was proposed, resulting in smooth and more accurate short-term predictions. The
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added contributions by [18] were shown to outperform previous RNN-based approaches, and it was
found that providing high-level supervision in the form of action labels can improve performance,
although an unsupervised baseline also performs well.

Still, even with these improvements, there are other problems (e.g. tuning the noise schedule)
that hold the RNN model from getting better results.

2.1.3 Graph Convolutional Network

Many methods for predicting future body poses only consider temporal information and do not
take into account the spatial interdependence of joints (e.g. [17]). So, to more fully capture
the inherent characteristics of the movement, [3] proposed a simple feed-forward deep network
for motion prediction that takes into account both temporal smoothness and spatial dependencies
among human body joints.

The proposed method encodes temporal information by using a network that operates in
trajectory space rather than pose space. This allows the network to automatically capture a range
of temporal dependencies without the need for manual specification. The spatial dependencies of
the human pose are represented by treating the pose as a graph formed by links between each pair
of body joints. A graph convolutional network is then used to learn the connectivity of this graph,
enabling the network to capture long-range dependencies beyond those of a traditional human
kinematic tree (as illustrated in Figure 2.3)[3].

Figure 2.3: Schematic of network architecture used by [3] to predict human movement.

The graph convolutional network is a type of neural network that is designed to operate on
graph-structured data, such as data represented as a set of interconnected nodes and edges - in
this case, the human body joints. They can be used to process and analyze data in which the
relationships between data points are not fixed and can vary over time, such as social networks,
molecular structures, or in this instance human movement. Graph convolutional networks are
composed of multiple graph convolutional layers that operate by aggregating information from the
neighbors of each node in the graph and using this information to update the representation of the
node, similar to what happens in traditional convolutional neural networks (CNNs). GCNs can be
trained using supervised or unsupervised learning techniques and are often used in tasks such as
node classification, link prediction, and graph generation.

The results for short-term (<500ms) and long-term (> 500ms) predictions of this method
presented by [3] look promising. The predictions are more accurate than those of the baselines for
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all the actions studied, as they are closer to the ground truth. However, Mao W. et al. does not
comment about this approach being able to run in an online fashion, which is an essential feature
for this thesis.

2.1.4 Variational Autoencoders

In 2018, Judith Bütepage et al. introduced a data-driven approach for generating potential future
trajectories of human motion based on past observations [4]. They believed that a robotic system
that integrates action generation and understanding at the representational and modeling level
would enhance human-robot interaction.

The proposed model used variational autoencoders (VAE) in order to predict human skeletal
motion from RGBD footage. VAEs are well-suited for predicting human motion as they can model
non-linear dependencies and handle uncertainty. The Bayesian approach of VAEs also allows for
the approximation of posterior distributions of hidden variables and the ability to predict future
motion trajectories under noisy observations. In this way, the VAE provides both a measure of
uncertainty for predictions and the generation of samples of future motion based on the currently
observed motion [4].

This unsupervised approach is shown to be effective for predicting human motion for up to 1660
ms, with an average processing time of 5 ms/frame (an example of prediction is shown in figure
2.4). Furthermore, this approach can be incorporated into online systems without the need for
motion capture systems. Additionally, the predictions made by the model can be used to determine
the target position of reaching actions without the need for target-specific training data.

Given all the above-listed advantages provided by this method, this will be the one utilized in
the thesis to predict human motion. A more detailed description and explanation of this approach
will be presented in chapter 4.

Figure 2.4: Example of prediction results obtained by [4].
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2.2 Reaction Planning for Collision Avoidance

In the context of human-robot interaction (HRI), reactive planning is important for manipulators
because it allows the robot to respond quickly and appropriately to changes in its environment,
including changes related to the human operator standing near the robot. Manipulators often
operate in dynamic environments, where objects may move or the robot itself may be required to
move unexpectedly. In such situations, traditional planning algorithms, which require a complete
model of the environment and can take significant amounts of time to compute a plan, may be
insufficient to avoid collisions with these moving obstacles. That is why, in such cases, the reaction
behavior is a fundamental feature for the robot.

Reactive planning enables the manipulator to respond to changes in real-time, using certain
rules or heuristics to determine the appropriate action. This can be especially important when the
manipulator is interacting with humans, who may move or change their intentions suddenly. By
using reactive planning, the manipulator can more quickly adapt to these changes (e.g. avoiding a
collision) and continue to perform its tasks effectively. Below, it is presented the most important
approaches to address this topic.

2.2.1 Artificial Potential Field

The artificial potential field method is a technique used in robotics for path planning and obstacle
avoidance. It works by treating the robot as a point mass that is attracted to or repelled by virtual
"forces" in the environment. These forces can be thought of as creating an artificial potential field
around the robot, which guides its motion.

For example, to avoid an obstacle, the robot can be programmed to "sense" a repulsive force
that increases in strength as it gets closer to the obstacle. This force will cause the robot to steer
away from the obstacle, allowing it to avoid the collision and possibly navigate around the obstacle.
Similarly, to navigate to a specific goal location, the robot can be programmed to "sense" an
attractive force that increases in strength as it gets closer to the goal. Hence, this force will guide
the robot toward its goal (an example is presented in figure 2.5).

This approach was first proposed by [20], who was inspired by electrostatic phenomena.
Subsequent research by other scholars brought contributions to this main idea, introducing also
the concept of circular fields (CFs) [21]. Inspired by Lorentz forces and electromagnetic fields,
the circular field strategy enables the robot to rotate around obstacles while maintaining the total
energy of the system [22], [23].

The artificial potential field method is a simple and computationally efficient method for path
planning and real-time obstacle avoidance, consequently, it has been widely used in a variety
of robotic applications, including robotic arms. However, it has some limitations, such as the
possibility for the robot to get trapped in local minima or oscillate near obstacles. In addition, in
this approach there is no concept of safe distance, hence - regardless of the distance - obstacles will
always affect the manipulator’s trajectory somehow.
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Figure 2.5: Example of artificial potential field algorithm being used to perform collision avoidance
[5].

2.2.2 Human Workspace Avoidance

To enable safe and simultaneous manipulation tasks between a human and a robot in close proximity,
[6] developed a framework that involves predicting the human’s motion in advance and minimizing
interference with the human’s workspace by the robotic arm. While the prediction of human
motion has been addressed in the previous review (as discussed in section 2.1), this section will
primarily focus on the reaction planning aspect of the framework.

The approach proposed by [6] includes a forecast system that produces a prediction of human
workspace occupancy by calculating the swept volume of learned human motion trajectories.
The motion planner subsequently plans robot trajectories that minimize interference with the
human workspace occupancy while interleaving planning and execution, resulting in safer robot
trajectories. The schematic of this approach is shown in figure 2.6.

The motion planning component of the framework calculates plans for the K possible robot
tasks concurrently as the robot moves and reverts to the optimal solution at each re-planning step.
At this point, the cost determined by the motion planner is revised based on the prediction of
human workspace occupancy. A penetration cost in the occupancy grid is defined, with high cost
corresponding to high levels of anticipated interference with regions likely to be occupied by the
human’s subsequent motion. In other words, this cost can be considered an interference cost.

The integration of prediction, planning, and execution allows the robot to adjust its movements
based on the intended actions of the human, reducing conflicts and enabling the ability to quickly
change tasks in order to avoid the human. The results of this framework show that the robot is able
to successfully avoid the human and complete its assigned task, even when the initial forecast of
the human’s movement is not correct.

Additionally, these results highlight the importance of accurately anticipating human motion
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Figure 2.6: Schematic of the human workspace avoidance method [6].

in order to facilitate successful and unobtrusive collaboration between humans and robots, given
that the system indeed improved safety and efficiency in human-robot interactions.

The only problem regarding this approach is that there is no hard constraint associated with
avoiding the human workspace. In other words, there is no predefined minimum distance that the
robot should keep away from the person at any cost.

2.2.3 Vector Field Inequality

The Vector Field Inequality (VFI) concept was first presented in [10] and later extended by Marinho
et al. in [7] to also encompass the case of dynamic obstacles. The technique is utilized to prevent
the robot from infringing upon a forbidden zone or to ensure the robot remains within a secure
area, and it is based on a solution that considers both equality and inequality linear constraints.
The inequality conditions on the vector field limit the robot’s speed towards the boundary of the
restricted zone, while leaving the tangential velocities unaffected, which is the optimal scenario.

This approach was initially designed for manipulators to operate in surgical contexts (e.g. deep
brain neurosurgery), in which the workspace is constrained, and unexpected collisions between the
shafts of the instruments and their surroundings should be avoided at all costs (see Figure 2.7).
However, this idea can also be generalized for other collision avoidance scenarios, where hard
constraints are actually needed.

In prior approaches [24], [25], when the tool reached a restricted zone boundary the obstacle
constraint was suddenly activated, causing the robot to show acceleration peaks. Thus, the main
advantages of this method over these prior ones are that the system smoothly avoids collisions, but
at the same time does not limit motion tangential to the obstacle, doing all this in real-time.

In addition, the outcomes have demonstrated that the combined trajectory error of the robotic
systems is minimized when the vector field inequalities are applied to dynamic objects. Practical
experiments involving an actual robotic system have provided evidence that this technique can be
effectively used with physical systems to independently avoid collisions among the mobile robots
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Figure 2.7: Example of the Vector Field Inequality method being employed in a surgical context
[7].

and also between the robots and their surroundings. Given all these qualities and the others already
mentioned, this approach will be the one chosen by us to implement the reactive behavior. Chapter
5 will cover this topic in more detail.

2.3 Overview of Presented Methods

In this chapter, a variety of methods were discussed, mainly about the human movement forecast
and the reactive behavior of manipulators.

In the context of the former topic (human motion prediction), the first approach presented was
the Time Series Classification, which has the benefit of being an online algorithm, but it has the
disadvantage of being a supervised method. The same happens for the GCN Method that was only
tested in supervised datasets and that does not provide any information about its online qualities.
The RNN Method presented by [18] solved some of the issues concerning RNN methods, however,
it still has a complicated tunning of some parameters, discouraging its use. Finally, the VAE
Method was discussed, and its advantages are numerous: it is an unsupervised method; it works in
real-time; and it does not need an already trained target to work properly. Therefore, this method
was the chosen one to be employed in this dissertation.

For the reaction planning, we discussed a variety of methods. The first was the Artificial
Potential Field that is based on the concept of electromagnetic fields. Although this approach
can be implemented in real-time and is already well-known by the robotics community, it has the
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disadvantage of local minima and possible oscillations. Then, we presented the Human Workspace
Avoidance which tries to minimize the robot interference in the human workspace area in an online
fashion. This approach, nevertheless, does not have hard constraints to ensure a safe distance
between humans and machines. Lastly, we discussed the Vector Field Inequality, and the qualities
of this approach were made clear: it runs in real-time; it has a smooth behavior reaching the border
of the restricted area; the safe distance to the obstacle is a hard constraint, etc. Thus, we decided
to employ the VFI to avoid collisions with humans.

Figure 2.8 depicts the different methods presented in this chapter in the form of a diagram.

Figure 2.8: Overview of the presented methods and highlight of the chosen ones for this thesis.



Chapter 3

Human Pose Detection using RGBD
Camera

Before approaching the topics of human movement forecast and also the reactive behavior, we
need primarily to be able to capture the human pose using a camera. This is because we can only
estimate any prediction of the person if we know their current and past configurations. Therefore,
this chapter will focus on aspects regarding the 3D camera and how to extract the human joints’
positions from it. First, we will talk about how the RGBD Camera works. Next, the algorithm used
to get the human pose will be discussed. After that, we will comment on the human skeleton and
how many joints we use to fully describe the human upper body. Lastly, safety features regarding
this human motion capture that are necessary for the proper working of this thesis are presented.

3.1 Background on RGBD Camera

As said before, for the estimation of future human movements, the first step is to capture human
motion. However, to accomplish this task - most of the time - a 2D representation is not enough
to capture all the correct measurements of the person’s position. Thus, a regular camera is not
suitable for these types of applications. Instead, an RGBD camera (also called RGB Depth sensor)
is used so that the three spatial dimensions of the target can be obtained.

Before explaining the depth component, it is important to have a notion about RGB cameras,
the ones used by most people in daily life. RGB stands for red, green, and blue - and represents a
model to describe colors, in which every color is a composition of different shades of red, green,
and blue. Thereby, an RGB camera produces colored images by catching the light with wavelengths
in these colors [26].

As would be assumed, the output of an RGBD camera includes both depth (D) and color (RGB)
information, as can be observed in figure 3.1. Through a depth image produced by a 3D depth
sensor, like a time of flight (ToF) sensor or a stereo sensor, depth information can be retrieved.

ToF sensors are based on the simple principle that the greater the distance to the target, the
greater the time the light needs to reach it. So, by calculating the travel time of the light for all

15
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Figure 3.1: Example of an RGBD photo.

the image points, the depth map is obtained [26]. On the other side, stereo sensors use the same
principle of human eyes to get distance information. By merging the images of two close cameras
and analyzing the displacement of the same object on these two cameras, it is possible to estimate
through trigonometry the object’s distance [27]. The displacement analysis is done for all points
in order to get the depth image.

In the work developed in this thesis, a camera with stereo technology was utilized, more
specifically the Intel Realsense D435. As it can be observed in figure 3.2, this camera has one
RGB camera, two depth imagers, and one IR projector [8]. A brief description of each of these
components is presented below. It is important to state that in this camera the RGB frame and the
depth frame are independent of each other. They have a different aperture angle for example (see
Figure 3.1). Moreover, they can even have a different frequency rate. However, in this work, both
frames had the same frequency rate of 30Hz.

• RGB Camera - responsible for getting the colors in the RGB scale of every point in the
image.

• Left and Right Imagers - simulate the human eyes. They are the two necessary views to
extract the depth value of every point.

• IR Projector - generates a specific pattern of points in infrared that helps to identify the
same point in the two different views of the imagers, facilitating to merge these frames and
consequently to get the depth information.

3.2 Algorithm for the Human Body Detection

After capturing the environment through the RGBD Camera, the next step is to analyze the real-
time footage, see if there is a person on it, and extract its configuration, if that is the case. However,
developing a code capable of doing all of that is not an easy task. Fortunately, nowadays, there are
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Figure 3.2: Intel Realsense D435 and its components [8].

several software capable of estimating the human pose from an image (e.g., wrnchAI, OpenPose,
and MediaPipe); in which some are even free - as are the cases of the last two examples.

For this work, we decided to use the MediaPipe Pose Landmark Detection. Its main advantages
are the following:

• This solution is capable of running in real-time applications (30Hz in the context of this
thesis).

• It is precise even for not standard cases, for example images without the entire body (only
the upper part).

• It can produce 3D predictions from 2D footage.

• As stated previously, it is a free software.

To represent the human body, this software tracks a maximum of 33 locations, which corre-
sponds to specific points of the analyzed person, as can be observed in figure 3.3. When the input is
a video or real-time footage, these estimators do not use the complete algorithm of pose detection
for every frame. Instead, they utilize only a tracking algorithm that takes into consideration the
already estimated human body configuration. Thus, the computer does not need to do as many
calculations as would be expected, turning this process into a more lightweight one and capable of
running in an online fashion.

In general, the software presented above (including the MediaPipe) are based on deep learning
methods - e.g., convolutional neural networks - to perform such tasks [28]. However, the detailed
way of working on such algorithms is beyond the scope of this document, and consequently, it will
not be presented.

3.3 Human Skeleton Used

In this work, since the robot is in the context of robotic arms, we do not need to consider the full
body representation. The manipulator can only reach the upper body of the human; hence it is
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Figure 3.3: Body parts estimated by MediaPipe Pose Landmark Detection software [9].

simpler to just use the upper points of the detection. Joints representing minor details of the human
body (e.g., fingers, eyes, or mouth) do not need to be considered as well, as they do not bring
valuable information in a collision avoidance scenario. For our model, we should represent the
human upper body in the most simplified way so the HMP has fewer points to consider, and thus
it can be faster in the prediction phase. Therefore, we decided to use a human upper body model
similar to the one used by Judith et al. in [4] (see the model in Figure 3.4).

Figure 3.4: The representation of human upper body with joints [4].
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Significant changes were made to simplify the human representation from 33 locations to just
9 locations. Many locations of the complete model were ignored, some were used partially, and a
few were kept equal. Table 3.1 shows how to get the second and simpler representation based on
the more complete one. In addition, in Figure 3.5 is possible to analyze the differences between
the two with a real example.

Table 3.1: Representation of our human model based on the MediaPipe representation.

Our points Value obtained using MediaPipe representation
xtorso = (xleft shoulder + xright shoulder + xleft hip + xright hip)/4
xneck = (xleft shoulder + xright shoulder)/2
xhead = xnose
xleft shoulder = xleft shoulder
xright shoulder = xright shoulder
xleft elbow = xleft elbow
xright elbow = xright elbow
xleft hand = (xleft index + xleft pinky)/2
xright hand = (xright index + xright pinky)/2

Figure 3.5: Comparison between the two human representation

In the model presented in 3.4, the torso acts like the reference point of the human body.
Thereby, we could express the human body in the global reference frame as the torso position in
the global reference frame plus the other 8 joint positions in the torso reference frame. Moreover,
this skeleton model can also be represented by a tree data structure (see Figure 3.6). This approach
for the human skeleton facilitates the process of scaling the human pose up and down, which is
necessary for the HMP model input and output (as it will be discussed better in the following
chapter).
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Figure 3.6: Non-binary tree that is equivalent to the human model.

3.4 Human Pose Improvement After Detection

Maybe at this point, you are a bit confused about the importance of the depth component in the
camera, since in the section 3.2 it was told that the MediaPipe (algorithm for human detection)
only gets as input 2D images or videos. It happens that we do not use only the MediaPipe 3D
human pose output as the final estimation, and that is because of two main factors.

First, the 3D human pose output given by the MediaPipe has as a reference frame the center of
the hips - which we convert later to a torso reference frame. Thus, we are not able to find out the
distance of the person to the camera only using MediaPipe. We have to use the depth component
of the camera.

Thereby, to get the position of the human body in the camera reference frame, we calculate
the (x, y, z) coordinates of the left shoulder using the data from the depth image produced by the
camera. If the left shoulder is occluded, then we use the right shoulder as the chosen point, and in
the last case scenario, if the right shoulder is also occluded, we use the nose point.

With the position of one of the joints in the camera reference frame plus the position of the
joints in the torso reference frame, we are able to get the position of all the points in the camera
reference frame. To facilitate the visualization of the human skeleton and also to match the inputs
of the VAE model that will be covered in detail in chapter 4, we decided to express the human pose
as the torso in the camera reference frame plus the other 8 joints in the torso reference frame.

Secondly, it is hard for the MediaPipe software to know if the person detected is 1.70m or
1.90m high, for example. The algorithm is precise when comparing the limb lengths, or in other
words, it is good at estimating the size of a limb relative to another limb in the image. However, in
terms of the absolute scale of the human size, the algorithm loses some accuracy.

To truly know the real size of the person in question, at least one limb length has to be measured
in the world reference frame, so the other limbs can be scaled by the same amount. In order to do
that, the depth component is utilized one more time. We calculate the (x, y, z) coordinates of both
shoulders using the depth image data, and from there, we get the true distance between the two
shoulders. The shoulders’ distance estimated by the MediaPipe software is straightforward, and
from there, we can obtain the scale factor (sf ) that we should apply to the remaining limbs, which
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is given by the equation 3.1. When scaling the human pose, we consider that the torso position in
the world reference frame does not change.

sf =
||xp1(Camera) − xp2(Camera)||

||xp1(MediaPipe) − xp2(MediaPipe)||
(3.1)

If one of the shoulders is occluded, then we calculate the true distance between the other
shoulder and its corresponding elbow. If one of these two is also occluded, then as a last possibility,
we try to get the true distance between the elbow and hand. Figure 3.7a shows an example where
we just need to get the coordinates of the two shoulders, and figure 3.7b shows an example where
we also need to get the coordinate of the elbow, since one of the shoulders are occluded.

(a) Person without any shoulders occluded (b) Person with one of the shoulders occluded

Figure 3.7: Comparison between a scenario without shoulders occluded and with a shoulder
occluded.

3.5 Safety Procedures

Unfortunately, sometimes the detection of the human body does not happen as expected, or it is
also possible that the camera view is being obstructed. In those situations, we should be able to
identify the problem and react accordingly.

When no humans are detected in the footage, we should be able to tell if that happens because in
fact there is no one in the surroundings or if that happens because the camera is being blocked (see
figure 3.8a). To address this problem, whenever nobody is detected by the MediaPipe software, we
use the depth image to check if the points captured are too close to the camera, hence obstructing
the view.

Another situation that - from time to time - can occur is the algorithm getting confused and
detecting somebody that does not exist (as is shown in Figure 3.8b). In such a scenario, there are
three checkers (presented below) capable of identifying this error and consequently avoiding the
transmission of wrong data.

• The scale factor should be inside a predefined range (normally: [0.5− 2]).
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• The true limb length used to calculate the scale factor should be bigger than a threshold.

• The Mean Square Error (MSE) of two consecutive poses should be smaller than a certain
threshold.

(a) Camera view blocked (b) Wrong detection of a person

Figure 3.8: Problems that may occur while trying to capture the human pose.



Chapter 4

Human Motion Prediction with
Variational Autoencoders

In the section 2.1.4 of this document, the concept of Variational Autoencoders (VAEs) to predict
the human movement was introduced, and its advantages over the other methods were presented.
In this chapter, nevertheless, we will discuss in more detail the VAE model presented by Judith et
al. in [4] and that was chosen by us to do the HMP.

Thus, the structure of this chapter will be the following: first, we will present a background on
VAE, showing the mathematics behind it and the differences between VAEs and normal Autoen-
coders (AEs). After that, we will present the VAE models used in the work of this thesis and their
peculiarities. Lastly, we will talk about some changes made to the model stated in [4] to improve
the results of the forecasts.

4.1 Background on VAE

Autoencoders function as unsupervised learning algorithms, whose primary objective is to learn
a condensed version of the input data. These models include an encoder network that projects
the input data into a smaller-dimensional latent space and a decoder network, which rebuilds the
original input from this latent projection. Variational Autoencoders (VAEs) augment the basic
autoencoder architecture by incorporating a probabilistic comprehension of the latent space [29].

4.1.1 Autoencoders vs. Variational Autoencoders

In a normal autoencoder, the encoder maps the input data x to a fixed latent representation z, which
is then decoded back to reconstruct the input. However, this deterministic mapping can be limiting,
as it does not capture the underlying probability distribution of the data (see figure 4.1a).

In contrast, VAEs model the latent space as a probability distribution, typically assuming it to
be Gaussian. The encoder network now outputs the parameters of this distribution, mean µ and
standard deviation σ, as shown in 4.1b. The latent variable z is then sampled from this distribution

23
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using the reparameterization trick as better explained in 4.1.2. This stochastic sampling allows
VAEs to generate new data points by sampling from the learned latent space [30].

(a) Structure of an Autoencoder [31]. (b) Structure of a Variational Autoencoder [31].

Figure 4.1: Comparison between the structure of an Autoencoder and a Variational Autoencoder.

4.1.2 Mathematics of the Variational Autoencoders

Let’s consider a Variational Autoencoder (VAE) with an encoder - whose parameters are ϕ - and a
decoder - whose parameters are θ. The goal is to learn a compressed latent representation z for the
input data x and then be able to map this latent representation again to reconstruct the input data.

For the first part, it would be necessary to calculate the posterior distribution p(z|x;ϕ), which
represents the true distribution over the latent variables given the observed datax. The true posterior
distribution p(z|x) could be obtained using Bayes’ theorem (see equation 4.1) and considering that
the prior distribution (assumed prior knowledge about the latent variables) p(z) was chosen as a
simple multivariate Gaussian with zero mean and unit covariance: p(z) = N (z; 0, I)

p(z|x) = p(x|z)p(z)
p(x)

(4.1)

However, it is typically intractable to compute it directly [29]. VAEs, then, to prevent this
intractability, approximate the true posterior with the help of a probabilistic recognition model, the
encoder’s approximate posterior q(z|x;ϕ) [4]. The approximate posterior is typically assumed to
be a multivariate Gaussian distribution. The encoder outputs the mean µ and the standard deviation
σ:

µ, σ = encoder(x;ϕ) (4.2)

q(z|x;ϕ) = N (z;µ, diag(σ2)) (4.3)
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Here, diag(σ2) denotes a diagonal covariance matrix with variances given by the elements of
σ2. The encoder learns to map each input x to the parameters of its corresponding approximate
posterior distribution.

The VAE, then, samples latent variables z from this approximate posterior q(z|x;ϕ) using the
reparameterization trick presented in 4.4. Thanks to the reparametrization trick, the parameters of
the VAE can be calculated through the backpropagation process in the training phase [32].

z = µ+ σ ⊙ ϵ, ϵ ∼ N (0, I) (4.4)

Here, µ and σ are the mean and standard deviation computed by the encoder in 4.2, and ϵ is
a random noise vector. This sampling step enables stochasticity in the latent space and facilitates
the generation of diverse samples during inference.

The second part, which is the decoder parameterized by θ, takes the sampled latent variable z

and reconstructs the input data x. The decoder defines the conditional distribution p(x|z; θ). It can
be any distribution suitable for the type of data being modeled, such as a multivariate Gaussian or
a Bernoulli distribution.

For the training phase (also called the learning phase) of the model, the objective is to maximize
the evidence lower bound (ELBO) on the log-likelihood of the data [33]:

L(θ, ϕ;x) = Eq(z|x;ϕ)

[
log

p(x|z; θ)p(z)
q(z|x;ϕ)

]
(4.5)

The ELBO can be expanded using the properties of logarithms:

L(θ, ϕ;x) = Eq(z|x;ϕ)

[
log p(x|z; θ) + log

p(z)

q(z|x;ϕ)

]
(4.6)

= Eq(z|x;ϕ)[log p(x|z; θ)]− KL(q(z|x;ϕ)||p(z)) (4.7)

The first term Eq(z|x;ϕ)[log p(x|z; θ)] is the reconstruction loss and measures how well the de-
coder reconstructs the input from the latent representation. The second term KL(q(z|x;ϕ)||p(z))
penalizes the divergence between the approximate posterior q(z|x;ϕ) and the prior p(z), usually
considered in VAE N (z; 0, I) [30]. Since we are working with two multivariate Gaussian distribu-
tions, the KL divergence between them can be computed analytically. Therefore, the loss function
tries to teach the model how to reconstruct well the input data x, but at the same time pushes the
latent distribution z to be a standard normal distribution.

4.1.3 Special VAE cases

Variational Autoencoders (VAEs) are a versatile framework that can be used for various tasks
beyond standard data compression and generation, in which the input is equal to the output.
Special cases of VAEs, such as denoising VAEs and image modification VAEs, are useful for
specific tasks like noise removal and image manipulation [34]. By adapting the training objective
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and incorporating additional information, they can be tailored to address various challenges and
generate desired modifications while preserving important features of the input data.

In the context of this thesis, another special case of VAE will be introduced and used. As
mentioned before, the model will be responsible for getting the subtle kinematic cues of the person
and, from there, generating the prediction of the human motion. To accomplish that, the model
will have as input in the learning phase the past poses of the person and as output its future poses.
In the next section (4.2), we will show and discuss this special VAE model used.

4.2 VAE Models Employed

One of the main reasons why we chose the Variational Autoencoder concept to predict the human
motion is because we are considering a situation where the manipulator has no previous information
about the person that is in front of him. The robot does not know anything about possible targets
that the given person may try to reach nor the physical traits of the human, leading to a completely
unsupervised scenario. Moreover, since we are working in the context of collision avoidance, it
would be important to know which of the points predicted are expected to be more accurate than
the others and vice-versa, and that is another feature that can be implemented with VAEs. However,
a VAE model capable of those features could not be a completely normal VAE but a special case
as commented in 4.1.3.

As already commented, this model used by us for prediction was actually first thought and
developed by Judith et al., and from the qualities stated on the paper [4], we decided to reproduce
it. For the HMP, two VAEs are employed: the first, which considers the torso static and predicts
the movement of the remaining joints in relation to the torso; and the second, which considers only
the prediction of the torso in the global reference frame.

Initially, this section will cover the first VAE and the peculiarities of this special case, talking
about the structure, the two possible implementations (discrete vs. continuous), and the relevant
details necessary to train and run the model. Then, we will show the second model used for the
torso prediction, with concepts similar to the first one.

4.2.1 First VAE - Torso Static

To fully understand a Machine Learning (ML) model, you basically need to know which are its
inputs and outputs and also its structure - how the given data will transform itself inside the network.
In this specific case, in addition to these two topics, we also have two different ways to calculate
the loss function depending on the chosen output, which should also be commented on. Thereby,
below we will talk about each one of these topics.

4.2.1.1 Input and Output

This model is used in the context of HMP. Thus, the input contains information about the person’s
past poses and the output information about the person’s predicted poses. The input data consists
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of the last 50 human poses, which are obtained with a frequency of 30Hz. Thus, the input with
these 50 frames covers about 1.66s of the human past movements. Each pose is made by 8 joints
(see Figure 3.4 to know the joints). The torso is the only joint not included, since it is the reference
frame and its coordinates would always be (0, 0, 0). Every joint is represented by 3 numbers,
the coordinates x, y, and z. Therefore, the total input data consists of 1200 points, which are the
3× 8× 50.

The mathematical representation of the human upper body could be thought of as the matrix
F t = [ft,i,x, ft,i,y, ft,i,z]i=1:Nj of dimension (Nj , 3), in whichNj is the number of joints and t is the
time step. In such way, the input data would be the vectorization of the matrix P (t−(nf−1)T ): t =

[F t−(nf−1)T ,F t−(nf−2)T , . . . ,F t] of dimension (nf , Nj , 3), where the nf is the number of
frames to be considered (in our case 50 frames). In Figure 4.2 is depicted this scheme.

Figure 4.2: Input data representation.

For the output, we have the same structure presented for the input, but with the difference that
instead of the past 50 poses, we now have the predicted 50 poses. Therefore, the output would be
the vectorization of the following matrix: P t+T :(t+(nf T )) = [F t+T ,F t+2T , . . . ,F t+(nf T )] also
of dimensions (nf , Nj , 3).

Depending on the type of VAE chosen (discrete or continuous), the output could change slightly
and get another vector of 1200 points. This new vector would carry the standard deviation for each
of the 1200 points of the pose. Thereby, we have two options for the output: only the prediction
of the next 50 frames; or the prediction of the next 50 frames plus the σ for every point in every
predicted frame (see Figure 4.3). In section 4.2.1.3, we will discuss more about why to consider
these two types.
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Figure 4.3: Output data representation.

4.2.1.2 Structure of the VAE Model

The model used by us to predict the movement of the limbs, but considering the torso point to be
static - always with coordinates (0, 0, 0) - is depicted in Figure 4.4. It consists of an encoder, a
latent distribution, a transitioner (a special feature of this model), another latent distribution, and
a decoder - which can produce two kinds of output: discrete or continuous.

Figure 4.4: VAE general structure.

The encoder receives the input data, which has 1200 neurons, and compresses that information
using two layers (of sizes 1500 and 500 respectively) to a latent distribution with 50 neurons. This
latent distribution generated by the encoder is actually a Gaussian distribution, and it is composed
of a mean zµ with size 50 and by a standard deviation zσ with the same size. Observing Figure
4.5, it is easier to understand all the flow. The concept behind the encoder is that it can grasp the
important attributes of the last poses (the input data) with much less data, only 50 neurons in our
case.

The transitioner gets the sampled z from the latent distribution produced by the encoder, passes
it through a layer with 100 neurons, and then creates another latent distribution also composed of
zµ and zσ with size 50 (see Figure 4.6 for better visualization).

The transitioner is a component that the majority of VAEs do not have. However, to address the
problem of HMP, this layer plays an important role. Theoretically, this layer is the one responsible
for predicting the human motion in the latent space. In other words, the transitioner is technically
the predictor of the VAE, but it does that in a much smaller space (with only 50 neurons). The
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Figure 4.5: Encoder structure.

encoder and decoder functions are - in theory - just there to compress and decompress the data
from the "normal" space to the latent space, not being the main responsible for the prediction.

Figure 4.6: Transitioner structure.

The decoder receives the sampled z got by the transitioner and decompresses its data using two
layers: the first of size 500; and the second of size 1500. Basically, the reverse of what happens in
the encoder. Then, depending on the type of VAE chosen, the decoder produces an output in the
shape of a vector with 1200 neurons or an output that is two vectors with 1200 neurons each - one
for the pose and the other for the standard deviation. In figure 4.7 is exampled how the discrete
case looks like.
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Figure 4.7: Decoder structure for the discrete case.

4.2.1.3 Discrete vs Continuous

In the general VAE models, the output layer is just a single vector containing the estimated
reconstructed data. However, in the context of collision avoidance is important to know not only
the predicted motion of the person but also how good this prediction actually is. It turns out that the
VAE model itself - with a couple of changes - can give us a hint of how trustworthy each predicted
point is.

In order to do that, we can use the well-known standard deviation (σ). Thereby, instead of
having only the mean µ points for the prediction, which is the discrete case, now with the σ we
would have a Gaussian distribution of possible values, which becomes a continuous scenario. The
output data for each of these cases were already presented in Figure 4.3.

To get the continuous model from the default discrete one, we just need to make two slight
changes. First, we should add the other output layer for the σ, as expected and already com-
mented. Secondly, we should change the way that the model calculates the loss, in particular the
reconstruction loss (the first term of equation 4.7).

In the discrete case, the reconstruction loss is normally given by a binary cross entropy
calculation or mean squared error - the one used by us. In the continuous case, however, we should
use the Maximum Likelihood Estimator (MLE) for the reconstruction loss, which gives us the
Gaussian distribution that best fits the points presented during the training phase of the model. The
equation used by the MLE to calculate the reconstruction loss is shown below in equation 4.8.

L(rec. loss) =
log 2π

2
+

log σ2

2
+

(y − µy)
2

2σ2
(4.8)

Table 4.1 presents the mean log σ values for the first and last predicted pose of a test dataset.
Each joint has three components (x, y, z) and each component has its σ estimation. As one would
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expect, joints that are more unpredictable, such as hands and elbows have bigger values of σ.
Moreover, farther predictions in time have also bigger σ when compared to closer predictions since
the uncertainty is also bigger.

Table 4.1: log σ values obtained from the VAE for the first and last predicted pose.

Pose 1 Pose 50
Joint log σx1 log σy1 log σz1 log σx50 log σy50 log σz50
Neck −6.26 −7.35 −5.89 −4.43 −7.08 −4.80
Head −5.28 −6.52 −4.59 −3.24 −5.96 −3.48

Left Shoulder −5.15 −6.07 −4.25 −2.85 −4.63 −2.04
Right Shoulder −5.33 −6.06 −3.99 −3.07 −4.65 −2.03

Left Elbow −2.99 −3.51 −2.58 −1.54 −2.19 −0.94
Right Elbow −2.95 −3.51 −2.49 −1.85 −2.16 −0.74
Left Hand −1.77 −1.99 −2.09 −0.62 −0.79 −0.82
Right Hand −1.62 −1.81 −1.73 −0.71 −0.59 −0.43

4.2.1.4 Training and Running the Model

Since the robot does not know any previous information about the person, it is important to train
the prediction model with data that are independent of the human physical features (e.g., height or
wingspan). In such a way, the model does not get biased on the person employed to get the training
data. This process of removing personal traits from the dataset is called normalization. In our
case, a good way of normalizing the data was to get all the limbs to have a size of approximately 1.

Thereby, to train the model, we used the dataset provided by Judith et al., which was already
normalized. The problem of this dataset, nevertheless, was that it did not consider the case of a
stopped person. Hence, generating poor predictions when the person had no movement. To address
this issue, we just added more normalized data to this dataset, in which the person was static.

Given that the model was trained using normalized data, the input of the model during the
prediction phase should also be normalized, as expected. Thereby, the human pose obtained by
the RGBD Camera should be normalized (or scaled-down) before entering the predictor. Then,
the obtained output should be denormalized (or scaled up) according to the physical features of the
person in question so that the values would make sense in real life.

4.2.2 Second VAE - Torso Prediction

In addition to the first VAE, which considers the torso to be static, we need another VAE that takes
into account the motion of the torso in the global reference frame. In such a way, with these two
models, we are capable of forecasting the complete human motion in the global coordinate system.

You may question yourself on why to use two separate VAEs instead of just one including
also the torso coordinates on it. This way of thinking is actually pretty valid, and in fact, just one
VAE could be employed to the HMP. However, using only one model, it would not be possible to
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normalize the input data of the first VAE (discussed a bit more in section 4.2.1.4) since we would
have measurements in the global reference frame and in the torso reference frame. Moreover, it is
easier for the neural network to learn with less input data. Therefore, we chose to work with two
different VAEs.

The input and output data of this torso VAE has a structure very similar to the other one, shown
in Figure 4.2. The difference is that instead of 8 joints, for this one, we just have 1 joint (with the
same x, y, and z coordinates). Thereby, we have a total of 150 nodes for the input and output data,
since we are also using the last 50 frames for the torso prediction.

The general structure of this VAE is identical to the previous one (depicted in Figure 4.4).
What differs between them is again only concerning the size of the layers:

• The encoder has layers of size [200, 100], and produces a latent distribution of size 20.

• The transitioner gets 20 neurons sampled z, passes through a 40 neurons layer and generates
another latent distribution of size 20.

• The decoder passes another 20-sized latent sample through two layers with 100 and 200
neurons and then produces the output of size 150, as already mentioned.

For this predictor, we decided to use only the discrete type of output. The torso point is the
easiest to predict, hence would have a very low standard deviation when compared to the others.
Furthermore, the error estimated for the torso would need to be propagated to all the other joints,
since they are measured in the torso reference frame, and so the error difference between the joints
would stay the same. Thus, we stuck with the discrete VAE for the torso forecast, which is simpler
and gives - for this case - basically the same results.

When training this VAE model, we do not need to worry about normalizing the dataset since
the torso coordinates do not depend on the physical traits of the person. For this predictor, we
again used the dataset provided by Judith et al. plus some data containing static cases, as already
commented in 4.2.1.4.

4.3 Improving the Predicted Output

Unfortunately, when testing the VAE models, they showed some discontinuity problems. From the
last observed pose to the first predicted one, there was an undesired gap most of the time. Therefore,
to address this issue, we implemented a faded offset to subtract from the predicted output.

The faded offset is calculated based on the vector pdiff (pose difference), which is the sub-
traction of the first predicted pose by the last observed pose: pdiff = f t − f t+T . Then, from this
vector, we build a matrix Mdiff with 50 rows which are the exact 50 frames predicted. For each
row, the values of the vector get smaller (by a fade rate fr) and its importance less considerable.
Equation 4.9 shows this decaying process.

Mdiff = [αpdiff , α fr pdiff , . . . , α f
nf−1
r pdiff ] (4.9)
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Then, the final prediction output (P final) is given by the output predicted by the VAE (matrix
P ) subtracted from the built matrix Mdiff , see equation 4.10.

P final (t+T ):(t+(nfT )) = P t+T :(t+(nf T )) −Mdiff (4.10)

In such a way, the gap problem that occurred between the last observation and the first prediction
is completely solved. Figure 4.8 illustrates the process and equations better.

Figure 4.8: Representation of the faded offset method.

Table 4.2 and 4.3 show the mean square error (MSE) for a test dataset with the 50 poses
predicted. This MSE is based on the differences between the joints’ positions of the predicted
poses and the real observed poses after the prediction.

Table 4.2: MSE of the 50 predicted poses for a test dataset without using the faded offset.

1 2 3 4 5 6 7 8 9 10
0 1.64 1.66 1.73 1.84 1.98 2.13 2.31 2.5 2.72 2.96
10 3.19 3.43 3.66 3.89 4.07 4.22 4.36 4.47 4.51 4.56
20 4.56 4.58 4.61 4.6 4.62 4.65 4.67 4.69 4.73 4.81
30 4.9 4.98 5.12 5.24 5.34 5.46 5.56 5.64 5.73 5.79
40 5.87 5.92 5.94 5.96 6.0 6.07 6.16 6.24 6.31 6.35

Table 4.3: MSE of the 50 predicted poses for the same test dataset using the faded offset (α = 0.95
and fr = 0.95).

1 2 3 4 5 6 7 8 9 10
0 0.06 0.2 0.43 0.69 1.0 1.34 1.68 2.02 2.37 2.73
10 3.08 3.41 3.72 4.02 4.25 4.44 4.6 4.72 4.75 4.78
20 4.77 4.78 4.78 4.74 4.73 4.75 4.75 4.75 4.79 4.86
30 4.95 5.03 5.16 5.28 5.37 5.48 5.58 5.66 5.74 5.8
40 5.88 5.93 5.95 5.98 6.01 6.09 6.17 6.25 6.32 6.36
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Table 4.2 is the MSE without using this faded offset method. As we can observe, the first
prediction already starts with an MSE value of 1.64, which points to a discontinuity. Table 4.3 -
on the other hand - presents the MSE after using our method to solve this gap between poses. This
time the first prediction has an MSE value close to zero, which indicates that the first prediction is
close to the last observed pose.

In addition, we can see that this method solves the gap issue without a great negative interference
in the rest of the poses. The biggest negative difference between both MSE for a given pose is only
from 0.25 (in the pose number 18).

By analyzing both tables, we also conclude that - as expected - farther predicted poses have
less accuracy, which is indicated by a greater MSE.



Chapter 5

Collision Avoidance with Vector Field
Inequalities

The prime concepts regarding the Vector Field Inequality (VFI) and its advantages as a reactive
controller were already briefly commented on section 2.2.3. However, this chapter presents a much
deeper explanation of all the topics and contents surrounding the VFI. Moreover, we will talk about
the implications of this controller in our work, stating where it was used and for which purposes.

Therefore, this chapter is organized into 3 main sections. First of all, we will cover the
background of VFI, showing all its math and underlying ideas. Then, we will talk about the use
of the VFI in the context of this thesis, which is mainly collision avoidance between humans and
manipulators. Lastly, we will discuss other topics necessary for the good working of the controller
- e.g., stopping the robot if the camera is blocked.

5.1 Background on VFI

The primary purpose of this section is to elucidate the principles of VFI as put forward by Marinho
et al. in [10] and subsequently elaborated upon in [7], forming the foundation for the controller
designed in this study. Nevertheless, prior to delving into its theoretical framework and associated
formulas, it is essential to first explore the main concepts and mathematical background utilized
by the VFI, which is crucial for its comprehension.

Therefore, in this section, we will first discuss the topics of Dual Quaternions, quadratic
programming, and others that are the ground for VFI. Only after that, the VFI will be explained,
also presenting its main equations. Lastly, each of the distance functions and corresponding
jacobians employed in this work will be exposed and their formulas demonstrated.

5.1.1 Underlying Concepts for VFI

The VFI technique, as presented in [7], heavily relies on dual-quaternion algebra due to its numerous
benefits over alternative representations. For example, unit dual quaternions evade the issues of
representational singularities (gimbal lock) and prove to be more succinct and computationally

35
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beneficial compared to homogeneous transformation matrices [35]. Moreover, the robust algebraic
attributes they possess facilitate the systematic modeling of diverse robots [36].

Another topic used as a basis by the VFI is the quadratic programming, which consists of
optimizing a given quadratic function that is constrained by linear restrictions as inequalities. In
our case, this quadratic function is employed for differential inverse kinematics calculations, which
give us the joint velocities to apply on the manipulator.

Each of the above-introduced concepts will now be discussed in more detail.

5.1.1.1 Quaternions and Dual Quaternions

Quaternions can be regarded as an extension of complex numbers and can be used to represent
points, pure rotations, or translations. The quaternion set is:

H ≜
{
h1 + ı̂h2 + ȷ̂h3 + k̂h4 : h1, h2, h3, h4 ∈ R

}
,

in which the imaginary units ı̂, ȷ̂, and k̂ have the following properties: ı̂2 = ȷ̂2 = k̂2 = ı̂ȷ̂k̂ = −1.
On the other hand, the dual quaternions can be considered an extension of the quaternions

and they are utilized to straightforwardly represent rigid motions, twists, wrenches, and various
geometrical primitives, such as Plücker lines, planes, and cylinders. The dual quaternion set is

H ≜
{
h+ εh′ : h,h′ ∈ H, ε2 = 0, ε ̸= 0

}
,

where ε is the dual (or Clifford) unit [37]. Addition and multiplication are defined for dual
quaternions in an analogous manner as those for complex numbers; hence, we just need to respect
the properties of the imaginary and dual units.

Now, it will be presented a dense set of notations and operations for quaternions and dual
quaternions that are crucial to understanding the rest of the equations presented in this chapter.

Given h ∈ H such that h = h1 + ı̂h2 + ȷ̂h3 + k̂h4+ ε
(
h′1 + ı̂h′2 + ȷ̂h′3 + k̂h′4

)
, we define

the operators

P(h) ≜ h1 + ı̂h2 + ȷ̂h3 + k̂h4, D(h) ≜ h′1 + ı̂h′2 + ȷ̂h′3 + k̂h′4,

and

Re(h) ≜ h1 + εh′1, Im(h) ≜ ı̂h2 + ȷ̂h3 + k̂h4 + ε
(
ı̂h′2 + ȷ̂h′3 + k̂h′4

)
.

The conjugate of h is h∗ ≜ Re(h)− Im(h), and its norm is given by ∥h∥ =
√
hh∗ =

√
h∗h.

The set Hp ≜ {h ∈ H : Re(h) = 0} has a bĳective relation with R3. This way, the quaternion
(xı̂+ yȷ̂+ zk̂) ∈ Hp represents the point (x, y, z) ∈ R3.

The quaternion set with a unit norm is defined as S3 ≜ {h ∈ H : ∥h∥ = 1}, and any r ∈ S3

can invariably be expressed as r = cos(ϕ/2) + v sin(ϕ/2), where ϕ ∈ R denotes the rotation
angle around the rotation axis v ∈ S3 ∩Hp [38].
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Elements belonging to the set S ≜ {h ∈ H : ∥h∥ = 1}, referred to as unit dual quaternions,
signify the three-dimensional poses (in other words, the amalgamation of position and orientation)
of rigid bodies. For any given x ∈ S, it can consistently be expressed as x = r+ ε(1/2)tr, where
r ∈ S3 and t ∈ Hp symbolize the orientation and position, correspondingly [37].

Elements forming part of the set Hp ≜ {h ∈ H : Re(h) = 0} are referred to as pure dual
quaternions. For any given a, b ∈ Hp, the inner product and cross product are, respectively [39]:

⟨a, b⟩ ≜ −ab+ ba

2
, a× b ≜

ab− ba

2
(5.1)

The operator vec4 is responsible for transforming quaternions into R4, while vec8 con-
verts dual quaternions into R8. For example, vec4 h ≜

[
h1 h2 h3 h4

]T
, and vec8 h ≜[

h1 h2 h3 h4 h′1 h′2 h′3 h′4

]T
.

From 5.1, it is possible to determine via direct calculation that the inner product of any pair of
pure quaternions a = ı̂a2+ ȷ̂a3+ k̂a4 and b = ı̂b2+ ȷ̂b3+ k̂b4 results in a real number represented
by

⟨a, b⟩ = −ab+ ba

2
= vec4 a

T vec4 b = vec4 b
T vec4 a (5.2)

Furthermore, the cross product between a and b is mapped into R4 as

vec4(a× b) =


0 0 0 0

0 0 −a4 a3

0 a4 0 −a2

0 −a3 a2 0


︸ ︷︷ ︸

S(a)

vec4 b

= S(a) vec4 b = S(b)T vec4 a (5.3)

In cases where it’s applicable, the time derivative of the squared norm for a time-varying
quaternion h(t) ∈ Hp is expressed as

d

dt

(
∥h∥2

)
= ḣh∗ + hḣ

∗
= 2⟨ḣ,h⟩. (5.4)

The use of unit dual quaternions (S) provides us with the ability to represent fundamental
geometrical entities like lines and planes [38],[39].

The Plücker line is presented in Figure 5.1a and is characterized by the equation in 5.5. The
pure quaternion l, which is a unit norm residing in Hp∩S3, signifies the direction of the line, while
the line moment is expressed as m = pl × l. Here, pl ∈ Hp is a random point on the line.

l = l+ εm (5.5)

Conversely, the equation below outlines how to represent a plane in dual quaternion space:
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π ≜ nπ + εdπ, (5.6)

where the plane’s normal vector is signified by nπ ∈ Hp ∩ S3 and the signed orthogonal
distance from the plane to the reference frame’s origin is denoted by dπ ∈ R. Moreover, given
an arbitrary point pπ situated on the plane, the signed perpendicular distance can be written as
dπ = ⟨pπ,nπ⟩, as illustrated in 5.1b.

(a) Plücker line representation with dual
quaternions [7].

(b) Plane representation with dual quaternions [7].

Figure 5.1: Representation of a line and a plane with dual quaternions.

5.1.1.2 Differential Kinematics

Differential kinematics lays out the correlation between joint-space motion (velocity) and task-
space motion, often referred to as Cartesian-space. The instantaneous velocity mappings can be
extracted through the time derivative of direct kinematics and take the general form:

ẋ = Jq̇

Here, q ≜ q(t) ∈ Rn is the vector representing the configuration of the manipulator’s joints,
x ≜ x(q) ∈ Rm is the vector of m task-space variables, and J ≜ J(q) ∈ Rm×n is a Jacobian
matrix.

For a particular configuration (with q variables precisely defined), the Jacobian J simply
becomes a matrix of numerals, as all the values of J can be evaluated. As a result, all the
non-linearities inherent in the Jacobian disappear, creating a linear relationship between ẋ and q̇.
Consequently, for a given moment in time, the superposition of contributions from each joint to
the end-effector’s velocity is valid.
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The task-space variables refer to those variables that are essential for performing a particular
task in any frame linked to the robot. In many important robotic tasks, this refers to the control
of position, orientation, or even pose of the robot’s end effector. For example, if the pose of an
arbitrary frame related to the robot is described as x ≜ x(q), then its differential kinematics is
calculated by:

vec8 ẋ = Jxq̇ (5.7)

Here, Jx ∈ R8×n is the dual quaternion analytical Jacobian that may be obtained utilizing
the dual quaternion algebra [35]. Similarly, for a certain position of a frame in the manipulator
t ≜ t(q) ∈ Hp and the frame’s orientation r ≜ r(q) ∈ S3 such that x = r + ε(1/2)tr, we have:

vec4 ṫ = J tq̇ (5.8)

vec4 ṙ = Jrq̇ (5.9)

In this case, J t,Jr ∈ R4×n can also be derived from Jx utilizing the dual quaternion algebra
[40].

This thesis extends the concept of manipulating the orientation, position, and pose of the frames
in the manipulator to include control over its distances to planes, lines, and points.

5.1.1.3 Differential Inverse Kinematics and Quadratic Programming

The differential Inverse Kinematics aims to find the joint velocity vector (q̇) that performs a desired
end-effector generalized velocity (ẋ). It was shown in section 5.1.1.2 that for a given configuration
of the manipulator, the relation between ẋ and q̇ is linear, and expressed by equation ẋ = Jq̇.
Hence, q̇ could be easily obtained by the inversion of the Jacobian, see equation 5.10.

ẋ = J q̇ ⇒ q̇ = J−1 ẋ (5.10)

Unfortunately, this solution is only valid when the Jacobian is a square matrix, since the inverse
of a matrix only exists for square matrices. In such a way, this approach cannot be used for
redundant robots. Moreover, when the system is close to a singularity, the q̇ becomes incredibly
large, generating joint velocities that the actuators cannot deliver.

To overcome this issue, the Damped Least Square Method is introduced. This method finds the
q̇ which minimizes the function H , which is the weighted sum of two objectives: minimum task
error norm on the end-effector (x̃ = x − xd, in which xd is the task-space target) and minimum
norm of joint velocity (q̇), as can be observed in 5.11. J is the Jacobian matrix, and λ is a damping
factor greater than zero.

min
q̇

H = ∥Jq̇ + ηx̃∥22 + λ∥q̇∥22 (5.11)
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However, in our case, we will also have linear constraints that will be responsible for limiting
the joint velocities in certain directions. Therefore, the optimized velocity will be given by 5.12,
in which W ≜ W (q) ∈ Rr×n and w ≜ w(q) ∈ Rr.

min
q̇

H = ∥Jq̇ + ηx̃∥22 + λ∥q̇∥22 subject to Wq̇ ⪯ w (5.12)

It is important to point out that with this method, we can control not only the desired pose of
the robotic arm but also the orientation or translation as a stand-alone. For example, this work will
use both the pose controller and the translation controller, which has the optimization defined as
shown in 5.13. Similar to the pose case, the t̃ = t− td is the translation error of the end-effector,
in which td is the desired position.

min
q̇

H = ∥J tq̇ + ηt̃∥22 + λ∥q̇∥22 subject to Wq̇ ⪯ w (5.13)

5.1.2 Vector Field Inequality

Marinho et al. put forth the Vector Field Inequality (VFI) strategy in [7], which ensures that a
robot can gracefully move close to confined areas without crossing their boundaries, and it leaves
the velocities perpendicular to the borders of the restriction unaffected. To bring this into effect,
this vector field is characterized by an inequality constraint. It designates a maximum allowable
approach velocity (the lower vector in each vector pair in Figure 5.2) and a maximum permitted
separation velocity (the upper vector in each vector pair in Figure 5.2) to each point in the space.
The approach speed drops exponentially as the distance increases, and the maximum separation
speed is unlimited. This concept is demonstrated in Figure 5.2.

Figure 5.2: VFI method put forward in [10].

Two elements are essential to utilize the VFI:



5.1 Background on VFI 41

1. A function d ≜ d(q, t) ∈ R that codifies the (signed) distance between two entities prone to
collision. The robot entity is kinematically linked to the robot, and the other entity - termed
the restricted zone - forms a part of the workspace.

2. A Jacobian that relates the time derivative of the distance function to the velocities of the
joints, as represented in equation 5.14. Here, the leftover ζ(t) = ḋ − Jdq̇ includes the
distance dynamics that aren’t tied to the velocities of the joints. It’s assumed that this
residual is identifiable but uncontrollable. For instance, the residual might illustrate the
motion of a geometric entity that is traceable or estimable and might be associated with the
workspace.

ḋ =
∂(d(q, t))

∂q︸ ︷︷ ︸
Jd

q̇ + ζ(t) (5.14)

By employing varied distance functions and distance Jacobians, complex dynamic restricted
zones can be constructed (such as the human upper body, in our case). This can be done either by
keeping the distance above a specified level or by confining the distance below a particular level.
Figure 5.3 illustrates these dual potential scenarios. Subsequently, we will delve deeper into each
of these and their corresponding equations.

Figure 5.3: The dual possibilities for the VFI: retaining the robot (depicted as the black point)
within the safe zone in blue; or outside the prohibited area in red [7].

5.1.2.1 Maintaining the Robot Entity Outside a Prohibited Area

In order to sustain the robot entity out from a prohibited area, we establish a minimum secure
distance dsafe ≜ dsafe (t) ∈ [0,∞), outlining the time-varying boundary of the restricted area, and
a signed distance:

d̃ ≜ d̃(q, t) = d− dsafe (5.15)
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The prohibited zone, denoted by ΩR, and the safe zone, denoted by ΩS , are defined as follows:

ΩR ≜
{
q ∈ Rn, t ∈ [0,∞) : d̃(q, t) < 0

}
,

ΩS ≜
{
q ∈ Rn, t ∈ [0,∞) : d̃(q, t) ≥ 0

}
.

The dynamics of the signed distance are represented by:

˙̃
d = ḋ− ḋsafe (5.16)

If ˙̃
d > 0, it means that the robot movement is diverging from this restricted area. However,

a ˙̃
d < 0 implies that they are converging with each other, and it is in this case that the VFI is so

important.
For a given ηd ∈ [0,∞), the dynamics of the signed distance is bounded by the following

equation [41]:

˙̃
d ≥ −ηdd̃ (5.17)

Constraint 5.17 assigns a velocity constraint to each point in the robot entity’s space, as
demonstrated in Figure 5.2, following at least an exponential trajectory as per Gronwall’s lemma
[42].

To comprehend the physical implications of this constraint, let’s assume that d̃(q, 0) ≥ 0,
meaning the robot point considered is initially within the safe area. In this scenario, any expansion
in the distance is consistently permissible, implying that ˙̃

d ≥ 0 ≥ −ηdd̃.
Nevertheless, when the distance contracts (0 ≥ ˙̃

d ≥ −ηdd̃), the ˙̃
d value is bounded by the

−ηdd̃. Consequently, as the robot gets closer to the prohibited zone, the acceptable approach speed
between this zone and our defined entity diminishes. As we can see by ˙̃

d ≥ −ηdd̃, in the worst case
scenario, the velocity decays exponentially. Then, when d̃ = 0, the constraint turns into ˙̃

d ≥ 0;
hence, the robot is prevented from entering the restricted area.

On the other side, let’s assume that d̃(q, 0) < 0, implying that the robot already begins within
the restricted area. Then, Constraint 5.17 ( ˙̃d ≥ ηd|d̃|) guarantees that the robot will at least be
conducted to the safe region. This process would also have - in the limiting case - an exponential
decay in velocity, denoted by the equation ˙̃

d = −ηdd̃ = ηd|d̃|.
Employing 5.14 and 5.16, Constraint 5.17 is explicitly expressed in terms of the joint velocities

as

Jdq̇ ≥ −ηdd̃− ζsafe(t) (5.18)

in which the residual term ζsafe (t) ≜ ζ(t) − ḋsafe encapsulates the impacts, on the distance,
of a mobile obstacle with residual ζ(t) and a time-dependent boundary of the safe area ḋsafe .
If ζsafe > 0, the restricted zone promotes an expansion in the distance from the robot entity.
Alternatively, if ζsafe < 0, the restricted region encourages a contraction in the distance from the
robot in question. If ζsafe + ηdd̃ < 0, the robot must proactively retreat from the restricted zone.
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To accommodate the problems highlighted in 5.12 and 5.13, we reformulate Constraint 5.18 as

−Jdq̇ ≤ ηdd̃+ ζsafe (t) (5.19)

It is noteworthy that a multitude of constraints written as Constraint 5.19 may be identified for
varying interactions between robot and restricted areas in the considered workspace. Further, by
characterizing this interaction through a distance function, complex interactions will result in just
one DoF constraint.

It’s crucial to point out that when the distance is computed using the Euclidean norm, its
derivative cannot be calculated when the norm is equal to zero. The squared distance proves to be
advantageous in avoiding such singularities. Employing the squared distance D ≜ d2, the signed
distance in 5.15 is redefined as D̃ ≜ D̃(q, t) = D −Dsafe , where Dsafe ≜ d2safe [40]. Constraint
5.17 then transforms into ˙̃D ≥ −ηDD̃, and all other reasoning remains unaffected.

5.1.2.2 Preserving the Robot Entity Inside a Secure Area

Utilizing the same approach and adhering to the same steps as section 5.1.2.1, we reconfigure dsafe

to ensure the robot remains within a secure area, which means: d̃ ≜ dsafe − d. Thus, developing
from Constraint 5.17 and remembering to respect the structure highlighted in 5.12 and 5.13, the
final representation becomes:

Jdq̇ ≤ ηdd̃− ζsafe (5.20)

5.1.3 Distance Function Definitions and Associated Jacobians

To employ the VFI in 5.19 and 5.20, we outline the distance functions for pertinent geometrical
primitives (point, line, and plane); subsequently, we determine the matching Jacobians and resid-
uals. These geometrical primitives can be effortlessly merged to produce other primitives. For
instance, pairing a point with a positive scalar results in a sphere, while associating a line with a
positive scalar forms an endless cylinder. More intricate structures can also be constructed. In this
work’s context, for instance, these geometrical primitives are utilized to depict the human upper
body (refer to section 5.2 for additional information).

The subsequent Table 5.1 consolidates all the distance functions and corresponding Jacobians
derived by Marinho et al. in [7]. However, this thesis does not intend to utilize all of them. Hence,
below we will merely discuss the ones pertinent to this dissertation.
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Table 5.1: Summary of primitives [7].

Primitive Distance function Jacobian Residual
Point-to-Point Dt,p (Eq. 5.22) J t,p (Eq. 5.23) ζt,p (Eq. 5.23)
Point-to-Line Dt,l (Eq. 5.24) J t,l (Eq. 5.27) ζt,l (Eq. 5.27)
Line-to-Point Dlz ,p (Not shown) J lz ,p (Not shown) ζlz ,p (Not shown)
Line-to-Line Dlz ,l (Not shown) J lz ,l (Not shown) ζlz ,l (Not shown)
Plane-to-Point dππz ,p (Not shown) Jπz ,p (Not shown) ζπz ,p (Not shown)
Point-to-Plane dπt,π (Eq. 5.28) J t,π (Eq. 5.30) ζπ (Eq. 5.29)

5.1.3.1 Squared Distance between Points Dt,p and Jacobian J t,p

The Euclidean distance separating two points p1,p2 ∈ Hp is expressed by

dp1,p2
= ∥p1 − p2∥ (5.21)

As the time derivative of 5.21 becomes singular at d = 0 [40], it is opted for the squared
distance, that as already mentioned has a time derivative defined universally:

Dp1,p2
≜ d2p1,p2

= ∥p1 − p2∥
2 (5.22)

Given a point t ≜ t(q(t)) ∈ Hp within the robot, where q(t) ∈ Rn is the time-dependent
joints’ configuration, and a random point p ≜ p(t) ∈ Hp in space, we employ 5.4 and 5.8 to
deduce that

d

dt
(Dt,p) = 2vec4(t− p)TJ t︸ ︷︷ ︸

Jt,p

q̇ + 2⟨t− p,−ṗ⟩︸ ︷︷ ︸
ζt,p

(5.23)

5.1.3.2 Squared Distance from Point to Line Dt,l and Jacobian J t,l

Given the configuration vector for robot joints q(t) ∈ Rn and a point t ≜ t(q(t)) ∈ Hp within the
robot, the squared distance from t to a random line l ≜ l(t) ∈ Hp ∩S in space is provided by [43]

Dt,l ≜ ∥t× l−m∥2 (5.24)

For notation simplicity, it is denoted hA1 ≜ t× l−m, and its derivative is:

ḣA1 = ṫ× l+ t× l̇− ṁ︸ ︷︷ ︸
hA2

. (5.25)
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By employing 5.2, 5.3, 5.4, and 5.25, it can be derived:

Ḋt,l = 2
〈
ḣA1,hA1

〉
= 2

〈
(ṫ× l),hA1

〉
+ 2 ⟨hA2,hA1⟩

= 2vec4 (hA1)
T S(l)T vec4(ṫ) + 2 ⟨hA2,hA1⟩ . (5.26)

Calling ζt,l ≜ 2 ⟨hA2,hA1⟩, Marinho et al. applied 5.8 to get the time derivative expression
of the squared distance in relation to the joints’ velocities (q̇):

Ḋt,l = 2vec4(t× l−m)TS(l)TJ t︸ ︷︷ ︸
Jt,l

q̇ + ζt,l (5.27)

5.1.3.3 Distance from Point to Plane dπt,π and Jacobian J t,π

If Fπ represents a frame associated with a general plane in space, then the signed distance between
a point t ≜ t(q(t)) ∈ Hp within the robot and this plane π is expressed by

dπt,π = ⟨t,nπ⟩ − dπ (5.28)

Utilizing 5.2 and 5.8, the time derivative of 5.28 is

ḋπt,π =
〈
ṫ,nπ

〉
+

ζπ︷ ︸︸ ︷
⟨t, ṅπ⟩ − ḋπ (5.29)

= vec4 (nπ)
T J t︸ ︷︷ ︸

Jt,π

q̇ + ζπ (5.30)

5.2 VFI for the Human

Now that the Vector Field Inequality concept has been presented and its math also exposed, we
should be capable of using it to avoid collisions with the person in front of the manipulator. To
do that, the restricted area of the VFI model that the robot entity cannot enter will be given by the
human upper body plus a safe distance to ensure greater security.

Thus, next we will talk about how to represent the human upper body using points, lines, and
planes. Then, we will show how we can calculate the safe distance, presenting also the different
values the safe distance may have. After that, we will explain how to choose the distance Jacobian
and D of the human. Lastly, we will demonstrate how to use the VFI combined with the prediction
of the VAE.

5.2.1 Structure of the Human

From the previous section (5.1.3), we saw that it is possible to calculate distance Jacobians (Jd)
from point to point, point to line, and point to plane. Thereby, we should build a human model
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using these entities (points, lines, and planes) in a way that we can estimate the distance to the
person in the most precise form.

Therefore, considering how the human body really is and the joints available for us to use
(shown in figure 3.4), we built the human upper body structure exposed in Figure 5.4. Every joint
turned into a point, the arms and the neck were represented as lines bounded by their respective
joints’ endings, and the torso (thorax) part was depicted by a plane, whose delimiters are the
shoulders and the torso point.

Figure 5.4: Human structure representation with the 3 different safety regions.

5.2.2 Safe Distance for the Human

In addition to the human representation, we also need to associate a safe distance (dsafe ) to it, so
the manipulator can avoid the human before colliding. However, instead of just using the same
dsafe for all the entities of the person, we could develop a better approach that considers different
zones of the human body to have different degrees of importance, hence different safe distances.

We decided, then, to split the human upper body into three distinguished zones: arms, torso
(thorax), and head (see Figure 5.4). In a collision scenario, the head is the most important part of
our body, and consequently, it should have the biggest dsafe . A collision with the torso should also
be considered critical, but not as much as with the head, so its dsafe could be a bit smaller. Lastly,
for the arms, we could use a dsafe not so considerable since a collision with them should not bring
serious damage.

Moreover, another factor that could be considered for the safe distance is the uncertainty of the
human pose when considering the prediction scenario (section 5.2.4 will talk a bit more about this
scenario). Thereby, since the VAE model already gives us a hint about this uncertainty through
the standard deviation σ (presented in section 4.2.1.3), we could use it to make the system more
secure with the following equation, where d∗safe is the safe distance term determined by the region
of the point:

dsafe = d∗safe +Kσ σ (5.31)

In this equation, we have a linear relationship between the dsafe and the standard deviation.
This means that the larger the uncertainty of the joint position, the bigger the safe distance should
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be to avoid possible collisions. Here, Kσ is a factor to define the importance of the unpredictability
(σ) in the safe distance.

5.2.3 Calculating the Jacobian Jd and the distance d

In section 5.2.1, we saw that the upper body comprises 9 points, 7 lines, and 1 plane. However, it
does not make sense to use all these entities in the VFI model, since we would need to calculate a
Jacobian and D for each one, and we would also have one more inequality for the solver to satisfy.

Therefore, we decided to implement two approaches: only consider the closest point from
the human structure to the robot entity; consider the closest point from each region of the human
structure (arms, torso, and head) to the robot entity. The latter approach would have, then, three
points to be analyzed instead of one, which is a bit more expensive computationally. Nevertheless,
this last approach is better when the robot entity is in a situation where it has approximately the
same distance for two distinguished regions. In this case, the robot will try to avoid both regions
simultaneously, producing a smoother final velocity than avoiding one region over time.

To get the Jacobian and (square) distance of the closest point of the human structure presented
in 5.2.1, three different possibilities has to be taken into account:

1. This closest point is inside a plane (the torso plane). In such case, the distance Jacobian
would beJ t,π presented in 5.30, and the distance between the points would be dπt,π calculated
by 5.28. Figure 5.5a shows an example of this case.

2. This closest point is inside a line (see Figure 5.5b). Then, the distance Jacobian (J t,l) would
be given by 5.27, and the square distance (Dt,l) between the point and the line would be
obtained by 5.24.

3. Finally, if the closest point is neither inside a plane nor inside a line, then it is one of the
joints of the human model. In this case, the distance Jacobian (J t,p) would be calculated by
equation 5.23, and the squared distance would be the Dt,p (squared distance between points)
presented in 5.22. Figure 5.5c depicts this third case.

(a) Closest point belongs to a
plane.

(b) Closest point belongs to
a line.

(c) Closest point is one of the
joints.

Figure 5.5: Closest point belonging to different geometrical primitives.
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5.2.4 The VFI for a Human Prediction Set

As already explained in the section 4.2.1.1 of the previous chapter, the predictor give us as output
50 human poses - one pose for each frame. So, if we would consider the two strategies commented
on above for every single frame, we would have respectively 50 or 150 inequalities (each with a
Jd and a D) regarding only the human body.

Unfortunately, this is computationally too expensive and slow for us, since the manipulator’s
controller runs at a frequency of 1KHz. Thus, we need to stick with both strategies also when
considering 50 poses. In other words, the first approach would still give us only one inequality
regarding the closest point among all points in all 50 predictions; and the second approach would
still give us three inequalities, one for each region considering again all the 50 poses.

It is important to remember that when considering the human motion prediction in the VFI,
the dsafe is dependent on the σ (see equation 5.31). Thereby, each point of the prediction has a
different safety distance to be taken into account.

Moreover, given that even with 50 frames to consider we just have 1 or 3 inequalities (depending
on the strategy chosen), we could increase the number of robot entities if needed. The main
robot entity to be considered and the one always used is - of course - the manipulator’s end-
effector. Nonetheless, other robot joints could also be taken into account, so they would also
keep a guaranteed safe distance from the person. In such case, for each new joint (robot entity)
considered, we would add 1 inequality for the first approach and 3 for the second one.

5.3 Other Aspects when Controlling the Robot

As already discussed in section 5.1.1.3, the controller gets the joint velocity vector (q̇) to feed the
manipulator based on the optimization (with constraints) shown in 5.12. However, the constraints
that should be taken into account are not only regarding the human.

Furthermore, there are some situations in which the robot - for safety reasons - should actually
stop its movement instead of going away from the person. Both of these topics will be covered
better next.

5.3.1 Other Constraints to be Considered

In addition to the constraints related to the proximity of the robot entities to the human, other
important constraints should also be considered. These are the joint velocities limits, the joint
ranges limits, and finally, the floor boundary.

5.3.1.1 Joint Velocity Limit

Although in the optimization problem (presented in 5.12) we already try to minimize the joint
velocities (q̇), this does not guarantee that the joint velocity limits of the manipulator will not be
surpassed. Thus, we still need to consider them as hard constraints.
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To do that, we write these limitations as inequalities. Since our optimization variable is already
the joint velocity vector itself, these inequalities turn out to be the most trivial ones. In Constraint
5.32 is presented these inequalities. Note that for each joint, we have two inequalities: one limiting
the positive velocity (q̇+); and the other limiting the negative velocity (q̇−).

W JVLq̇ ⪯ wJVL, where W JVL =

[
−I

I

]
and wJVL =

[
−q̇−

q̇+

]
(5.32)

5.3.1.2 Joint Range Limit

Similar to what was discussed for the joint velocity limit, the joint range limit is also a physical
constraint of the robot that must be respected. Trespassing the joint range limit could bring serious
damage to the robot; hence it belongs to the category of hard constraint as well.

This constraint can be written again as linear inequalities, but this time is not so straightforward.
The most common way of implementing joint range limits is as follows:

W JRL q̇ ⪯ wJRL, where W JRL =

[
−I

I

]
and wJRL =

[
−ηJRL (q

− − q)

ηJRL (q
+ − q)

]
(5.33)

Here, ηJRL is a configurable gain, q+ is the positive joint range limits, and q− is the negative
joint range limits.

Finally, it is important to point out that although we are using inequalities to represent the joint
velocity and joint range limits, these inequalities are not Vector Field inequalities. There is no
relation between both.

5.3.1.3 Floor Boundary

Unlike the previous two, this constraint is not physical and is actually another VFI. This constraint
is employed to prevent the robot from going below the ground, which is unfeasible in practice.

To get the vector field inequality associated with this constraint, we consider the plane given
by the unit quaternion π = 1k̂ (see equation 5.6). Then, we calculate the Jacobian J t,π and the
signed distance dπt,π using equations 5.30 and 5.28 respectively. Figure 5.6 depicts this plane and
its vector nπ.

5.3.2 Stopping the Robot

In some situations, it is more convenient to stop the robot and guarantee that nothing too dangerous
will happen. These situations are mainly two, presented below:

• When the solver cannot find a solution for the optimization in 5.13. This means that the
person is probably already too close to the robot. Then, the best choice is to stop the robot
and avoid a collision with the robot in movement.
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Figure 5.6: Floor with a given nπ with the manipulator on top.

• When the camera view is blocked (section 3.5 also talks about it). In this case, the manipulator
cannot know anymore what happens in front of it - the robot has lost its "eyes". Therefore,
stopping the robot is again the safest decision to take.

It is important to mention, nevertheless, that when stopping the manipulator, we still need to
respect the constraints presented in the previous section 5.3.1. We cannot simply set the q̇ to 0

because that could violate the joint velocity limit. Thus, we solve another optimization with the
goal of stopping the robot, which means that the xd is set to the current x.



Chapter 6

Experimental Section

All the theories, concepts, and assumptions presented until now need to be implemented, tested,
and analyzed in order to be validated or not. In special, we need to check what are the real effects
of human motion prediction when combined with a reactive controller, which is the main subject of
this dissertation. This chapter - therefore - has the objective of showing the experiments performed
in this field and discussing their implications. However, before coming to that end, we will present
some aspects of the implemented code utilized to run these experiments and also the physical setup
employed in such experiments.

6.1 Implementation

As already stated before, the general concept of this thesis is to detect the human upper body, predict
its motion, and make the manipulator react accordingly to avoid possible collisions. Chapters 3, 4,
and 5 covered the theory, aspects, and ideas of each one of these topics, respectively. However, it
was not presented until now how these topics - in fact - connect with each other. In addition, small
practical details about the implementation were missing (e.g., the programming languages used).

Three programs (or executables) were written to develop this work, one for each chapter
mentioned above. In this section, we will - therefore - show the general structure of this project,
discuss the characteristics of these executables, and explain how the communication between them
was done.

6.1.1 General Structure

This section aims to show how the main topics of this work interact with each other in a general
aspect. To that end, Figure 6.1 presents the flow of the processes, from capturing the environment
using a camera to the manipulator reacting accordingly.

Firstly, we need to get the current human pose, and to do that, we capture the surroundings of
the robot with an RGBD Camera. This human pose is represented by an array of size 27, which
is the (x, y, z) for the 9 points of the human model considered. These mentioned processes are
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Figure 6.1: General structure and flow of this project.

done by an executable named "Get Human Pose", which sends this array in real-time for another
executable (called "Human Motion Prediction") to handle the motion prediction.

Executable "Human Motion Prediction" will store the past 50 poses received from the previous
executable and pass the vectorized matrix of past poses through the Variational Autoencoder
predictor. The VAE will, in turn, output the expected following 50 poses of the person together
with the standard deviation (σ) of every point. This output will - then - be sent to another executable
(named "Robot Controller") responsible for the collision avoidance task.

With the predicted human movement in hand, the manipulator’s controller ("Robot Controller"
executable) will employ the Vector Field Inequality approach to determine the best velocities in
order to safely avoid the person in front of it. Finally, the controller sends these joint velocities to
the real manipulator, and the robotic arm’s reactive behavior is performed.

In the next section, we will present in more detail how the communication between the
executables is done and all the messages that are sent by them.

The code of the first and second executables and related documents can be found in the following
link: https://github.com/VictorCambraia/ROS_HMP_Collision_Avoidance. For
the manipulator’s controller (third executable), the code is accessible in the subsequent link:
https://github.com/VictorCambraia/franka_ros.

6.1.2 Communication

As we could expect, for a successful implementation of this work, we should be able to communicate
between all the programs running simultaneously. For example: the VAE needs to know the current
human pose to predict the human motion; or the robot needs to know if the camera view is blocked

https://github.com/VictorCambraia/ROS_HMP_Collision_Avoidance
https://github.com/VictorCambraia/franka_ros
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or not to stop its motion, etc. Thus, it is made clear that communication between programs is
necessary.

To do that, we decided to use the Robot Operating System (ROS), a well-known robotics
framework that facilitates this communication between executables (also called nodes) using a
lightweight messaging system. ROS operates based on a publish-subscribe model (known as the
ROS Master), where nodes can publish messages to named topics or subscribe to specific topics
to receive messages. This decoupled communication mechanism allows for easy integration of
different programs, which is our case.

For the communication between the 3 nodes used in this work, 3 topics were employed. Figure
6.2 shows these nodes and topics and depicts their relationship.

Figure 6.2: ROS Communication implemented and used by us.

In the following sections, we will talk a bit more about each of these nodes and their peculiarities.
Below, we describe each one of the topics employed.

• Topic /camera_covered: published (sent) by node "Get Human Pose" and subscribed (re-
ceived) by node "Robot Controller". It informs the manipulator if the camera view is being
blocked or not.

• Topic /human_pose: published by node "Get Human Pose" and subscribed by node "Human
Motion Prediction". It passes the current human pose to the predictor node.

• Topic /predicted_poses: published by node "Human Motion Prediction" and subscribed by
node "Robot Controller". This topic passes to the robot the predicted human motion for the
next 1.5s (approximately), together with the standard deviation (σ) of this prediction.

It is important to point out that this scheme (shown in Figure 6.2) does not include all the
communication processes. When simulating the manipulator, we still need to pass the obtained
joint velocities (q̇) to the simulator, and we do that through the V-REP Interface, which is not
related to ROS.

On the other side, passing the q̇ to the real robot is actually also done via ROS, but in a much
more complex way with many topics and other processes that we will not cover here, given their
complexity. All this communication part with the real manipulator, nevertheless, is done internally.
Therefore, we do not need to worry about it.
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6.1.3 Get Human Pose Node

This node is responsible for acquiring the upper body pose of the person in front of the RGBD
camera with all the features and processes already described in chapter 3. This node publishes 2
topics: /camera_covered and /human_pose, whose descriptions were already mentioned in the
previous section.

Since the cycle frequency of this node should be around 30Hz, which is the frame rate of the
RGBD camera, we could use Python as the programming language. Python language is easier to
code and debug, and - in this scenario - is fast enough.

Moreover, with Python, we have two libraries that help us tremendously: pyrealsense2 and
mediapipe [44]. The former is capable of initializing, setting up, and getting the frames of the
Intel Realsense Camera used in this work. The latter is responsible for getting us the human pose
estimated by the MediaPipe Detector after passing the footage from the RGBD camera through it.

The code of this executable can be found in the following git repository: https://github.
com/VictorCambraia/ROS_HMP_Collision_Avoidance.

6.1.4 Human Motion Prediction Node

This node gets the current human pose through the subscription of the topic /human_pose,
combines it with the previously stored poses (last 50 frames), and inputs these data in two VAE
predictors, which return us the predicted human motion. This prediction is then published using
the topic /predicted_poses. A better understanding of these VAE predictors is presented in chapter
4.

The two VAE models were developed and trained using the Keras framework [45], which is an
interface written in Python that runs on top of the tensorflow library [46] and that facilitates the
implementation of neural networks. Thereby, to import and run these built models in real-time it
would also be recommended to use the Keras framework, which would imply writing this node in
Python as well.

Similar to the previous node, the frequency constraint (again 30Hz) is not difficult to be
satisfied. Thus, we could use Python to write this node without problems.

This executable’s code can be located within the following link: https://github.com/

VictorCambraia/ROS_HMP_Collision_Avoidance. In addition, the VAE’s neural net-
work created and trained using the Keras framework can be found in the link: https://github.
com/VictorCambraia/Colab_HMP

6.1.5 Robot Controller Node

As the name suggests, the controller node is responsible for controlling the robot, which also
includes the reactive behavior. It subscribes to the topic /predicted_poses, and from that, it gets
the information needed to avoid the collision with the person using the VFI approach. This node
also subscribes to the topic /camera_covered, so it can stop the manipulator when necessary. The

https://github.com/VictorCambraia/ROS_HMP_Collision_Avoidance
https://github.com/VictorCambraia/ROS_HMP_Collision_Avoidance
https://github.com/VictorCambraia/ROS_HMP_Collision_Avoidance
https://github.com/VictorCambraia/ROS_HMP_Collision_Avoidance
https://github.com/VictorCambraia/Colab_HMP
https://github.com/VictorCambraia/Colab_HMP
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description of the capabilities of the robotic arm is covered with more details in chapter 5; here
lies just a recapitulation including the topics used for communication.

Since this node commands the real robot joint velocities, it should run extremely fast - with
a frequency of approximately 1 KHz. Therefore, to meet this frequency criteria, this node was
written in C++. Python would not be fast enough.

To use the quaternion and dual quaternion math, to calculate all the Jacobians utilized for the
VFI, and to get the q̇ from the optimization shown in equation 5.12, we made use of the DQ
Robotics library for C++ [47].

Instead of running the code in the real robot, we could also simulate it. To do that, we used the
CoppeliaSim Simulator (formerly V-REP) [48]. In such a simulator, we could represent our exact
manipulator and at the same time depict the current pose of the person next to it (see Figure 6.3).

The code of this controller can be found in the subsequent git repository: https://github.
com/VictorCambraia/ROS_HMP_Collision_Avoidance.

Figure 6.3: The human upper body and the robotic arm in the CoppeliaSim Simulator.

6.2 Setup

To run the experiments introduced in the next section, we used the code presented in the previous
section, the physical setup presented in Figure 6.4, and the following components:

• Manipulator - Franka Emika Panda.

• RGBD camera - Intel Realsense D435.

https://github.com/VictorCambraia/ROS_HMP_Collision_Avoidance
https://github.com/VictorCambraia/ROS_HMP_Collision_Avoidance
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• Processor - Intel® Core™ i7-7700 CPU @ 3.60GHz × 8.

• Operating System - Ubuntu 20.04.6 LTS.

• ROS Distro and Version - Noetic 1.16.0

Figure 6.4: Physical setup used in the experiments.

The RGBD camera was placed in a fixed and well-known position so that the manipulator
could know the coordinates of the human points in the global reference frame.

6.3 Tests and Results

In order to evaluate the ideas presented in this thesis - especially the collision avoidance combined
with human motion prediction suggested - we decided to run 4 different experiments:

• To test the collision avoidance capabilities with and without the predictor, analyzing the
results for all three regions of the upper body: arms, torso, and head (see section 5.2.1 to
understand more about these regions).

• To compare the differences between the two approaches presented to avoid collisions using
VFI, namely: the one which considers just 1 Jacobian, and the other one which considers 3
Jacobians (section 5.2.3 talks about these two ways).

• To observe the influence of increasing the number of robot entities (manipulator’s joints) in
the reactive behavior.
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• To see if the robot was able to complete a simple task (pick-and-place) with the human
standing in the middle of the way while satisfying the safety constraints.

In the next pages, we will cover each one of these experiments in more detail.
We should point out that the general concept when running the first 3 experiments is basically

the same. The manipulator has a desired position (xd, yd, zd) for the end-effector, and a human
will disturb the robot by getting closer to it. Thus, the robot end-effector will always try to be as
close as possible to this specified point while respecting the safe distance from the human. This
means that if the point is inside the prohibited zone of the robot, the manipulator will try to stay in
the boundary of this zone.

For the fourth experiment, nevertheless, we considered a pick-and-place task. Thus, the
manipulator’s end-effector is moving from point (x1, y1, z1) to point (x2, y2, z2) constantly. In
such case, the human does not need to move to disturb the environment, just staying in the middle
of the conventional path of the robot is enough to trigger its reactive behavior.

However, how the human approaches the manipulator or stands close to it depends on the test.
Thereby, for every experiment, we will state the human actions in front of the robot.

6.3.1 Collision Avoidance with and without Human Motion Prediction

This is the major experiment, since it tells us the importance of the human motion predictor for
the collision avoidance scenario. To measure this importance, therefore, we first ran the robot
controller without any prediction, considering only the current pose of the person. Then, we ran
the same controller taking into account the prediction of approximately 1.5s already described in
chapter 4. For both cases, we did an analysis for each of the different regions (arms, torso, and
head) and also a general analysis, considering all regions simultaneously. The table 6.1 shows
all the safe distances and parameter values used in the following tests. Moreover, for such tests,
we employed the method with 3 Jacobians (commented in section 5.2.3), and we used only the
end-effector as robot entity.

Table 6.1: Safe distances and parameter values used for this experiment.

Test number dsafes (arms, torso, head) Kσ ηd

1 (Figure 6.5) (1.0 m, 0.0 m, 0.0 m) − 1.0
2 (Figure 6.6) (0.0 m, 1.0 m, 0.0 m) − 1.0
3 (Figure 6.7) (0.0 m, 0.0 m, 1.0 m) − 1.0
4 (Figure 6.8) (1.0 m, 0.0 m, 0.0 m) 0.2 1.0
5 (Figure 6.9) (0.0 m, 1.0 m, 0.0 m) 0.2 1.0
6 (Figure 6.10) (0.0 m, 0.0 m, 1.0 m) 0.2 1.0
7 (Figure 6.11) (0.4 m, 0.5 m, 0.6 m) − 1.0
8 (Figure 6.12) (0.4 m, 0.5 m, 0.6 m) 0.2 1.0

For the first case - without the predictor - we considered a person approaching the robot, staying
a certain amount of time close to it, and then getting away from the robot. We ran this scenario for
each of the regions of the human upper body separately. This means that first we considered only
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the arms in the calculation of the safe distances, then we considered only the torso, and finally only
the head. To achieve this behavior, we choose the dsafes shown in Table 6.1.

Figures 6.5, 6.6, and 6.7 show the evolution of the distance from the manipulator end-effector to
the given person’s region. As can be observed, all these graphics have roughly the same behavior.
We can clearly see the moment that the person gets closer to the robot and gets farther from it.

Figure 6.5: Distance to the arms without prediction.

Figure 6.6: Distance to the torso without prediction.

However, you can notice that for all three graphics, the safe distance is actually surpassed (the
distance to the robot get smaller than 1m). At first sight, this behavior may look unexpected, but
this actually makes sense and has an explanation.

The robot thinks that these restricted zones are actually static. We did not consider the velocity
of these restricted zones in the vector field inequalities, or in other words, we considered the ζsafe(t)
from equation 5.19 to be zero. Therefore, given that the robot’s end-effector is already static in
its desired position (xd, yd, zd), it will not move until the restricted zone encompasses this desired
point. When this happens, and the distance between the robot and the human becomes less than
the safe distance, the robot reacts and goes to the boundary of the safe zone (as already explained
in section 5.1.2.1). Thus, there is always a small delay (recovery time for the robot) involved in
these kinds of situations, which makes the distance smaller than dsafe . In these graphics, we see
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Figure 6.7: Distance to the head without prediction.

clearly that when the manipulator recovers from this delay, it goes straight to the boundary of 1m
and stays there.

We then ran these same three tests but this time with the VAE predictor. The results are
presented in Figures 6.8, 6.9, and 6.10. Again the behavior of all three graphics is very similar.
Nevertheless, this time the safe distance criteria were met all the time for all the regions. This
highlights the importance of human motion prediction in the context of collision avoidance. Using
a predictor, the robot knows in advance that the restricted zone will encompass its current location;
hence, it can prevent this from happening by moving ahead in time.

Figure 6.8: Distance to the arms with VAE predictor.

In addition, we can also observe that the manipulator keeps in general a greater distance to the
arms than to the torso or head. This behavior is justified by the greater uncertainty of the arms
movements. Thereby, the output of the VAE gives us a larger σ for the arms joints.

We also decided to run a more realistic scenario in which the safe distances from the arms,
torso, and head were closer to each other, respectively: 0.4m, 0.5m, and 0.6m. In this scenario,
the person first gets closer to the robot by stretching the arm (area I of the graphic), then the person
gets closer with the entire body (area II), and finally, the person approaches the robot with the head
in front (area III).
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Figure 6.9: Distance to the torso with VAE predictor.

Figure 6.10: Distance to the head with VAE predictor.

The case without prediction is presented in Figure 6.11 and the case with prediction in Figure
6.12. Again when running the test with the predictor the safe criteria is met, and when running
without it, the robot takes some time inside the restricted region. Analyzing these two graphics, we
can also see that the manipulator succeeds in tracking and avoiding the three upper body regions
at the same time (even with different dsafes , which is the case).

6.3.2 Collision Avoidance with 1 Jacobian vs. 3 Jacobians Method

In section 5.2.3, we talked about the two methods suggested to calculate the Jacobians (Jd) and
distances (d or D) utilized in the VFIs. The first method - which uses only one Jacobian - is faster
computationally. On the other hand, the second one - which employs 3 Jacobians - should bring a
more smooth behavior to the robot movements. In order to check if this argument is in fact correct,
we decided to compare both approaches experimentally.

The approach using the 3 Jacobians method was already tested and presented in Figure 6.12.
Thus, for a meaningful comparison, we should run the same scenario of Figure 6.12, changing
only the Jacobian method used. This means that the Kσ, ηd, dsafes, and number of robot entities
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Figure 6.11: Distance to the arms, torso, and head of the person without prediction.

Figure 6.12: Distance to the arms, torso, and head of the person with VAE predictor.

should be kept equal to the test number 8 (shown in Table 6.1). The result for this one Jacobian
method is depicted in Figure 6.13.

In area II of this graphic, where the person gets closer to the robot with the entire body, there
is a considerable oscillation in the distance between the manipulator’s end-effector and the person,
which is a result of oscillations on the manipulator side. The explanation for this undesired behavior
is also depicted in the same graphic: there are numerous changes concerning the body region to be
employed in collision avoidance. Thus, when the robot attempts to avoid the arms, it encounters
the head constraint, causing it to return toward the arms. These alternating movements constitute
oscillations, also referred to as jitter.

Comparing Figures 6.12 and 6.13, we can state that indeed the method with 3 Jacobians gives
the manipulator a smoother trajectory.
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Figure 6.13: Distance to the person (could be arms, torso, or head) using the one Jacobian method
and with VAE predictor.

6.3.3 Collision Avoidance with more than one Robot Entity

Until now, all the tests presented considered only the manipulator’s end-effector as a robot entity.
This means that the manipulator was actually only trying to avoid collisions between the person
and the end-effector (not the entire robot). Thereby, we could increase the number of robot entities
to be considered and see the effect of such changes in the reactive behavior. Normally, the robot
entities used for manipulators (beyond the end-effector) are the joints of the robotic arm. So, we
will perform tests with them as entities.

Since we will consider more than one robot entity in this experiment, for the simplicity of the
data presented, it would be better to use only one body region in this analysis. If we considered
all the body regions, we would have three lines for every new joint, and the graphics would not
be understandable. In this case, we will choose the head region. The conditions and parameters
used for this scenario are the same for test number 6 shown in Table 6.1. The only difference is of
course in the number of entities.

In Figure 6.10, we already presented the robot behavior for one entity: the end-effector (or EE).
Figure 6.14 below shows the behavior for two entities: the end-effector (joint number 7) and the
joint number 6. As we can observe, the results obtained - in terms of keeping a safe distance - are
similar to the case with only one entity. Figure 6.14 shows that the manipulator can successfully
avoid contact even when considering two joints.

When considering three joints (adding the joint number 5), the behavior is the one presented
in Figure 6.15. The robot can again avoid the human, keeping the desired safe distance for the
last three joints. However, this behavior is only true if the person does not get too close to the
manipulator. In a scenario where the person gets a bit closer to it (see Figure 6.16), the manipulator
stops since it cannot solve the optimization 5.13, or in other words, the manipulator cannot find a
q̇ capable of satisfying the imposed distance constraints. The robot, then, just returns to its regular
movements when the person goes away, as shown in Figure 6.16.
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Figure 6.14: Distance to the head using two entities.

Figure 6.15: Distance to the head using three entities but without getting too close to the robot.

Figure 6.16: Distance to the head using three entities but getting closer to the robot.

The reason for this to happen is actually not difficult to understand. Joints closer to the
manipulator base have fewer degrees of freedom (DoF) and fewer movement ranges. If we think -
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for example - for joint number 1, this joint has no range at all in the Cartesian space. Its position
will always be the same (x1, y1, z1). Thus, considering such joint in the distance constraints is not
meaningful and only problematic.

Figure 6.16 shows us that considering more entities does not always consist of a better strategy
to solve a collision avoidance issue. Indeed, when configuring only the end-effector to avoid the
human, we inherently configure the entire robotic arm to do the same, as adjusting the end-effector
position necessitates the movement of the whole structure. Moreover, being close to a joint that
cannot move does not represent a real risk. The main damage is caused by the joints near the
end-effector that move at higher speeds.

To summarize, using just the last joint (number 7) or the last two joints (number 6 and 7) as
robot entities are good approaches to collision avoidance scenarios with humans. On the other
hand, using many joints as robot entities can bring undesired consequences, such as not being able
to find a q̇ for the manipulator sooner than expected.

6.3.4 Collision Avoidance for a Pick-and-Place Task

For the previous experiments, the manipulator’s end-effector had a desired position (xd, yd, zd),
and the goal of the robot was to stay as close as possible to this point while meeting all the
constraints. Thus, the robot was initially static in its desired position, and the human forced it
to move away by coming closer. In this experiment, nevertheless, the robotic arm is constantly
moving (executing a pick-and-place task), and the person will disturb it by staying near the path
between the starting and ending point of this task.

In this experiment, we will consider three scenarios:

1. The person stands far from the robot and does not interfere in its movement. This case
is performed to get the default trajectory done by the robot’s end-effector, so we can later
compare this path to the other ones.

2. The human is close enough to the manipulator’s trajectory to disturb it but not close enough
to prohibit the robot from reaching the initial and final point of the pick-and-place task.

3. The person is very close to the ending point of the task, in such a way that this point is inside
the restricted zone. Thus, the manipulator should wait for the person to move away so that
it can reach the destination point.

For all these three scenarios the conditions and parameter values are the same, and they are
presented below. For the simplicity of the graphics, we will consider only the head region with a
safe distance greater than zero.

• Safe distances (arms, torso, head): (0.0 m, 0.0 m, 0.6 m)

• Starting point (p1): (0.6 ı̂, 0.5 ȷ̂, 0.4 k̂) [m]

• Ending point (p2): (0.4 ı̂, −0.5 ȷ̂, 0.4 k̂) [m]
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• Jacobian method: 3 Jacobians

• Number of robot entities: 1 (End-Effector)

• Parameter values: Kσ = 0.2 and ηd = 1.0

The trajectory of the manipulator’s end-effector in the first scenario is depicted in Figure 6.17.
As we can observe, the head of the person is far, so the robot does not need to worry about avoiding
the person’s head while going from p1 to p2.

Figure 6.17: 3D trajectory performed by the end-effector when nobody is close.

For the second scenario, the trajectory performed by the end-effector is shown in Figure 6.18.
This time, the head of the human is closer, so the robot have to follow a different path in order to
get to the ending point while satisfying the safety constraints.

Figure 6.18: 3D trajectory performed by the end-effector while avoiding contact with the human.
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We can clearly see that this new path is more retracted than the default one, and this retraction
is enough to keep the pre-defined safe distance and reach the desired point. Figure 6.19 presents
the evolution of the distance between the head of the person and the manipulator and confirms that
- in fact - the robot does not get inside the restricted zone.

Figure 6.19: Distance to the head when a person is close to a pick-and-place task.

The third scenario (presented in Figure 6.20) is a more complex one. Thereby, we should
analyze it with more attention. Initially, the human is in area I, which is very close to the ending
point. In fact, in this case, the ending point (p2) is inside the restricted zone, so the manipulator
cannot reach it at all. The robot, therefore, should wait in the boundary of the restricted zone until
the person moves away. When the human goes to area II, which is far from the task, the robot -
then - is allowed to approach the ending point, which is indeed what happens (shown in III).

Figure 6.20: 3D trajectory performed by the end-effector when a person is very close to the ending
point.



6.3 Tests and Results 67

Figure 6.21 and 6.22 depict better the chronological events discussed previously since they
have a time axis. During [i], the manipulator moves in the direction of p2 until the moment that it
reaches the boundary of the restricted zone (dsafe equal to 0.6m - see Figure 6.22) and stops. Then,
the robot waits for the person to move away (time window [ii]). When this happens (see [iii] in
Figure 6.21), shortly after the robot goes to its desired position. Figure 6.22 makes clear that in all
these moments, safety is ensured.

Figure 6.21: X coordinate of the person and the end-effector in time.

Figure 6.22: Distance to the head when a person is very close to the ending point.
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Chapter 7

Conclusions and Future Work

7.1 Conclusions

Automation on its own can be costly and rigid because robots are often created to perform exactly
one specific duty. The greatest option is to combine industrial robot strength and speed with human
intellect and creativity by pairing robots with human labor. However, technological advancements
still need to be made to guarantee a safe environment for both. In this context, if the robotic arm
is capable of predicting the movements of humans and adapting its motion accordingly, collisions
can be avoided, and safety can be enhanced.

Thereby, this work seeks to unite the best methods in each specific area to address the issue
of collisions between robots and humans. In fact, to the best of the author’s knowledge, this is
the prime work to connect an unsupervised approach for human motion prediction to a reactive
controller for manipulators with hard constraints, both performed in real-time.

Before going to the human prediction, nevertheless, we started by capturing the human pose
with the help of an algorithm for human body detection called mediapipe. Moreover, by using
an RGBD camera (three dimension camera) to record the environment, we were able to scale the
person’s pose and represent it in the global reference frame. Additionally, the suggested security
features played an important role in spotting and avoiding wrong poses.

To forecast human movements, we chose an unsupervised approach based on Variational
Autoencoders, which was first presented by Judith et al. in [4]. These predictions are not restricted
to actions with previously collected data. Moreover, the robot does not need to have any knowledge
about the possible goals of the human operator interacting with it. Therefore, the approach proposed
in this dissertation is more general than previous ones, given that it can be employed in a wider
variety of cases. One of the main problems of this method, however, was the discontinuity that
appeared between the last observed human pose and the first predicted one. Nonetheless, we could
solve this issue by adding a faded offset in the output of the predictor. The dataset for training the
model was also expanded to consider the cases in which the human is stopped.

To implement the reactive behavior in the robotic arm, we employed the Vector Field Inequality
method developed by Marinho et al. and presented in [7]. Using this method, the manipulator is able
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to avoid restricted zones without peaks in velocity and without changing the motion perpendicular to
this undesired area. Moreover, avoidance is obtained by hard constraints, which brings more safety
to the process of human-robot interaction. Through different primitives presented by this method,
we could depict the human upper body as a prohibited area that the manipulator should avoid at all
costs. Moreover, we also divided this human upper body into three distinguished regions: arms,
torso, and head. This division enabled us to set different safe distances for different regions, which
is normally the case - some regions should be more important than others. In addition, considering
not only the human safety constraints but also the robot limitations constraints was essential. It is
always a must to respect the robot’s capabilities, such as maximum speed and joint ranges, and our
controller also accomplished that.

Our experiments have shown that indeed human motion prediction plays a vital role in avoiding
collisions on time. When running the tests without the predictor, the safety conditions were not
met in many instants. However, when running with the developed predictor, the manipulator had
an earlier response to the approach of the person enough to respect the safe conditions almost every
time. Furthermore, by also considering the uncertainty of the joints (σ), we were able to keep
greater distances from more unpredictable body points, like the hands and elbows.

We could also show that the manipulator had a smoother trajectory by trying to avoid the arms,
torso, and head simultaneously. Avoiding only the closest region could lead to a jitter effect in
some cases. Moreover, we observed that increasing the number of robot entities when considering
the safety constraints is not always the best approach. In fact, it could actually lead us to undesired
behaviors of the robot, such as stopping right after the person comes closer.

In addition, we demonstrated that our method also works in scenarios where the manipulator is
constantly moving (e.g., in a pick-and-place task). The robot was capable of finishing the desired
task while meeting the safety criteria by adapting its trajectory in real-time. It is important to point
out, however, that those paths to accomplish the tasks were not optimal paths but just feasible ones.

In summary, we have developed a controller that combines real-time human motion prediction
with reactive behavior, allowing it to avoid collisions with humans while maintaining pre-defined
safe distances effectively.

7.2 Future Work

Unfortunately, we did not have enough time to perform more elaborate experiments, considering
the time to finish different tasks as a variable or estimating the percentage of collisions avoided
because of this newly proposed approach. Therefore, the next step regarding this thesis would be
running more tests and consequently collecting more results. In such a way, we could find more
benefits and drawbacks regarding this method for collision avoidance.

In addition, as discussed in section 6.3.1, the manipulator considered the restricted zone (in
our case the zone surrounding the person) to be static, which is not true. Ideally, we should take
into account the velocity of the human’s arms, torso, and head while avoiding contact. In the
vector field inequality approach, we could do that by calculating and considering the ζsafe(t) for
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all the inequalities. Thus, as future work, we could implement a way to estimate the velocity of the
primitives employed in the representation of the human upper body (points, lines, and planes).

Finally, another topic that could be explored is the usage of torque control for the manipulator
instead of velocity control, which was the one utilized in this thesis. A torque control enables
the manipulator to be more compliant with the environment. In our context, this type of con-
troller would be especially interesting when collisions could not be avoided at all. A compliant
behavior from the manipulator side would enhance safety by diminishing the contact forces - and
consequently the damage - during an impact with a human.
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