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Abstract 

This work considers the single machine scheduling problem, with the objective of 

minimizing the total weighted tardiness. The main literature for this problem is reviewed 

with its focus on several constructive heuristics suited to this problem. These include more 

straightforward and general forward rules (EDD, WSPT, MDD, SLACK, and WSLKP) and 

some more complex and better-performing heuristics for the weighted tardiness problem 

(ATC, AR, WMDD, WSLK_SPT, H2, H3, PAR1, PAR2, G1_B, G2_F, and G2_B). Addi-

tionally, six backward dispatching rules are proposed for the weighted tardiness problem, 

adapted from previous works. Three versions are considered for each of these backward 

rules. Computational results show that B5 and B6 outperform the other procedures but may 

need excessive time for extremely large instances. The forward heuristics WMDD, 

WSLK_SPT, AR, and H3 achieve quality solutions within a reasonable amount of time, mak-

ing these heuristics both effective and efficient. The non-dominated procedures are identified 

when considering both solution quality and runtime. 

Keywords: Scheduling, Single Machine, Weighted Tardiness, Heuristics, Dispatching 

Rules 
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Resumo 

Este trabalho considera o problema de sequenciamento numa única máquina, no qual o 

objetivo é minimizar o atraso ponderado. A principal literatura para este problema é revista, 

com o foco em heurísticas construtivas adequadas. Estas incluem regras mais simples e gerais 

(EDD, WSPT, MDD, SLACK e WSLKP), bem como algumas heurísticas mais complexas 

e de melhor desempenho para o problema de atraso ponderado (ATC, AR, WMDD, 

WSLK_SPT, H2, H3, PAR1, PAR2, G1_B, G2_F, e G2_B). Adicionalmente, são propostas 

seis regras regressivas para o problema, adaptadas de trabalhos anteriores. Três versões são 

consideradas para cada uma destas regras. Os resultados computacionais mostram que B5 e 

B6 superam os outros procedimentos, mas podem necessitar de tempo excessivo para ins-

tâncias extremamente grandes. As heurísticas WMDD, WSLK_SPT, AR, e H3 alcançam so-

luções de qualidade dentro de um intervalo de tempo razoável, tornando-as eficazes e efici-

entes. As heurísticas não dominadas são identificadas, considerando tanto a qualidade da 

solução quanto o tempo de execução. 

Palavras-Chave: Sequenciamento, Máquina Única, Atraso Ponderado, Heurísticas, Re-

gras de Despacho 
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1. Introduction 

This dissertation covers the single machine scheduling problem, with the objective of 

minimizing the total weighted tardiness. Due to the single machine environment, jobs must 

be processed on a single machine. It is assumed that this machine can handle only one job 

at a time and is continuously available for processing. Each job has a specific processing time 

and weight that reflects the relative importance of the job or the respective customer. Addi-

tionally, the due date corresponds to when the job should be completed. A job is classified 

as tardy if it is finished after its scheduled due date, and its tardiness is just the amount of 

time by which the job is completed late. Thus, the goal is to find an optimal schedule that 

minimizes the total weighted tardiness costs.  

The single machine environment is shared in several real-world production systems that 

effectively schedule jobs on a single machine. This problem is also essential when dealing 

with multiple machines but with a single bottleneck machine. Moreover, single machine 

models may provide valuable insights into other production settings, such as parallel 

machines, job shops, or flow shops. 

Within the scope of this dissertation, it is considered a linear tardiness objective function. 

The tardiness objective is one of the most used criteria when due dates are involved. It 

reflects the necessity of meeting the delivery dates required by clients since late deliveries can 

result in contractual penalties, lost sales, and loss of customer goodwill. However, other 

measures can be used depending on the preferences or priorities of the decision-maker, in-

cluding tardiness and earliness objectives. Additionally, different settings of the weighted 

tardiness problem are frequently studied, involving release dates and setup times. 

This problem has been studied for many years, in light of being one of the main problems 

in operations research and computer science. It is NP-hard (Lawler, 1977; Lenstra et al., 

1977), meaning no polynomial time optimal algorithms are known. Nevertheless, several 

works have extensively explored methods to solve it efficiently. Among the methods studied 

in the past years, including exact methods, heuristics, and metaheuristics, those considering 

backward scheduling address a gap in the existing literature. In backward scheduling, the 

schedule is built from the end, and at each iteration, a job is added to the beginning of the 

current partial sequence. Indeed, many studies combine several approaches to dispatching 
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rules, from the simplest to the most complex versions. Still, nearly all consider forward rules, 

where the schedule is built from the beginning. A similar approach to the one held in this 

dissertation was conducted by Valente and Schaller (2012), where the authors compare 

forward and backward heuristics yet consider weighted quadratic tardiness costs. 

This work is focused on dispatching rules, which are relatively simple but quite efficient 

procedures. These rules are widely used in practice, and most real scheduling systems are 

either based on them or use them to some extent since they are often the only approach 

capable of delivering solutions for large instances within a reasonable time. Furthermore, 

they are frequently used with other procedures; for instance, metaheuristics and exact meth-

ods generally resort to dispatching rules to generate an initial solution. 

With this in mind, several dispatching rules are presented in this research, categorized 

into four types of procedures. First, general forward rules are considered, which have been 

used in multiple settings involving problems with due dates. Secondly, forward rules devel-

oped for the weighted tardiness objective are presented, which are the best-performing ones 

found in the current literature. Next are acknowledged greedy heuristics, which make locally 

optimal choices at each algorithm step and are also expected to perform well. Finally, back-

ward dispatching rules are described, inspired, and adapted from the work developed by 

Valente and Schaller (2012). For each backward rule, three versions are considered, and an 

additional variant that chooses the version according to the characteristics of  each specific 

instance. In addition, exhaustive experiments are conducted to determine the most adequate 

value for various parameters required by some heuristic procedures.  

All these dispatching rules are applied to a dataset with greater variety than existing ones: 

larger instances (up to 2000 jobs), a higher number of combinations of the tardiness factor 

and the due date range factor, and a more considerable number of instances. Furthermore, 

the various heuristic methods are assessed to determine the non-dominated ones regarding 

solution quality and computational time. As a result, the outcomes of this work provide 

decision-makers valuable insights into selecting an appropriate method based on the available 

time for generating a solution. 

This dissertation will include an in-depth analysis and exhaustive comparison of the best-

performing forward dispatching rules known and novel backward heuristics suited for this 

problem, in contrast to alternative approaches that concentrate on a limited subset of specific 
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heuristics. Additionally, the heuristics undergo rigorous parameter adjustment tests, have all 

been implemented using a uniform programming language by the same people, and are sub-

ject to testing on diverse and exhaustive datasets with a large number of instances, ensuring 

fairness and rigor through the analysis. 

The remainder of this work is organized as follows. Section 2 covers the problem de-

scription, and the primary literature is reviewed. All the heuristic procedures considered in 

this work are detailed in section 3. The experimental design is outlined in section 4, describing 

the problem set, performance measures, and preliminary parameter adjustment tests. Section 

5 contains the computational results, including comparing the heuristic procedures and 

statistical tests that complement the analysis. Finally, section 6 concludes the paper.  
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2. Problem Formulation and Literature Review  

This dissertation will consider the single machine scheduling problem with the objective 

of minimizing the total weighted tardiness costs. The problem can be formulated in the 

following way. A set of 𝑛 independent jobs {1,2, … , 𝑛} has to be processed on a single 

machine that can handle only one job at a time. The machine is considered continuously 

available for processing from time zero onwards, and no preemptions are allowed. Each job 

𝑗, 𝑗 ∈ 𝑁,	has a known processing time, 𝑝! , and a due date, 𝑑! , which is the date the job should 

be delivered. This date is measured from time zero, which is the time when all the jobs are 

available for processing. Additionally, each job has a weight, 𝑤! , that reflects the relative 

importance of the job.  

Additionally, the completion time of job 𝑗 is denoted by 𝐶! , and for a given schedule, the 

tardiness of the job is defined as 𝑇! = max60, 𝐶! − 𝑑!9, and reflects the amount of time by 

which a job is finished late, that is, after its due date. The goal is to find a schedule for 𝑛 jobs 

such that the sum of the weighted tardiness, ∑ 𝑤!"
!#$ 𝑇! , is minimized.  

Prior research has implemented diverse approaches to efficiently solve the single machine 

weighted tardiness problem. In recent years, the main focus has been on metaheuristics and 

exact methods applied in various problem settings. 

Different types of metaheuristics are included in the following approaches to solve the 

weighted tardiness problem. Valente et al. (2011) proposed a genetic approach based on a 

random key alphabet and presented several algorithms based on this approach, considering 

both quadratic earliness and tardiness costs. Kirlik and Oguz (2012) proposed a general var-

iable neighborhood heuristic, which proved to be effective and efficient for minimizing tar-

diness in the presence of setup times. More recently, Mexicano et al. (2023) made a compar-

ative study of two metaheuristics, namely simulated annealing and tabu search, the former 

being the most efficient method.  

Iterated local search procedures have proven to obtain outstanding results for the 

weighted tardiness single machine problem (Congram et al., 2002; Grosso et al., 2004; 

Subramanian et al., 2014). A neighborhood search technique called dynasearch, which uses 

dynamic programming to search an exponential-size neighborhood in polynomial time, was 
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introduced by Congram et al. (2002), and these results were significantly improved by Grosso 

et al. (2004). Subramanian et al. (2014) proposed an iterated local search heuristic, which 

obtained high-quality solutions within reasonable computation times. Moreover, Avci et al. 

(2003) proposed a problem space genetic algorithm that can improve both solution quality 

and robustness over other local search algorithms. Anghinolfi and Paolucci (2009) presented 

a Discrete Particle Swarm Optimization (DPSO) approach, which outperformed the best-

known results for a specific benchmark. 

Additionally, an evaluation and comparison of different metaheuristics, specifically iter-

ated local search, variable greedy, and steady-state genetic algorithm, was made by Gonçalves 

et al. (2016), where the proposed metaheuristics provide an optimal solution for all the 

smaller problem sizes, considering weighted quadratic tardiness costs. 

Equivalently, great importance has been given to exact methods. Abdul-Razaq et al. 

(1990) surveyed and compared exact methods. Schaller and Valente (2012) developed a 

branch-and-bound algorithm for optimally solving the weighted quadratic tardiness problem, 

and Tanaka and Araki (2013) proposed an exact algorithm for the problem with sequence-

dependent setup times. 

Hence, the literature on backward heuristic procedures is scarce, which clarifies the 

choice for this research problem. The development of  new backward heuristic procedures 

requires forward heuristic methods to further compare and evaluate the backward methods. 

Several heuristic procedures were analyzed by Potts and Van Wassenhove (1991). More re-

cently, Sen et al. (2003) provided an updated literature review of exact and heuristic methods 

for this linear problem.  

This work addresses several general dispatching rules that work as benchmarks for sev-

eral other constructive heuristics. These include the rules EDD (Jackson, 1955), WSPT 

(Smith, 1956), MDD (Baker & Bertrand, 1982; Vepsalainen & Morton, 1987), SLACK, and 

WSLKP (Panwalkar & Iskander, 1977; Vepsalainen & Morton, 1987). 

Rules for the weighted tardiness objective arise as more effective when compared to the 

general rules; however, they require additional computational effort. Such rules are WMDD 

(Kanet & Li, 2004), ATC (Vepsalainen & Morton, 1987), AR (Alidaee & Ramakrishnan, 

1996), and WSLK_SPT (Osman et al., 2009). More recently, new approaches have emerged, 
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mainly the H2 and H3 rules (Yoon & Lee, 2011) and PAR1 and PAR2 (Yin et al., 2016; Yin 

& Wang, 2013), that have outperformed the previously mentioned rules, when considering 

small problem sizes. Additionally, this research will consider two greedy procedures: G1_B 

(Volgenant & Teerhuis, 1999) and both forward and backward versions of the heuristic de-

veloped by Chou et al. (2005), G2_F and G2_B. 

The backward dispatching rules targeted in this research are adapted from previous work 

developed by Valente and Schaller (2012). While Valente and Schaller focus on minimizing 

the squared tardiness costs, the backward heuristics in this dissertation are adapted to the 

linear version of the problem.  

All the previously described rules will be explained in the following section, along with 

the priority index for each one.  
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3. Heuristic Procedures 

3.1. General Forward Heuristics 

Several heuristics, including dispatching rules, have been proposed to solve the single 

machine scheduling problem. This section will detail the most general and straightforward 

procedures, considering their use in multiple problem settings. These rules are expected to 

perform poorly. However, they still need to be addressed since they are often used in differ-

ent environments and work as benchmarks for the specific rules presented later. 

Some additional essential notations to be considered are as follows. When using forward 

scheduling, the current time in the scheduling procedure is denoted as 𝑡% , and for a given 

job 𝑗, the slack is defined as 𝑠!% = 𝑑! − 𝑡% − 𝑝! . Additionally, the average processing time 

of the current unscheduled jobs is denoted by 𝑝, and 𝑘 is a parameter that will be addressed 

further in this research. 

The earliest due date (EDD) rule (Jackson, 1955) is one of the first sequencing rules de-

veloped and is widely applied in scheduling problems with due dates. It schedules jobs in 

non-decreasing order of their due dates 𝑑! , corresponding to using a priority index of −	𝑑! . 

The weighted shortest processing time (WSPT) rule selects the job with the largest value of 

the priority index 𝑤!/𝑝! at each iteration. This rule has proven to be optimal for the weighted 

completion time problem but also for the weighted tardiness objective when all the jobs are 

necessarily tardy (𝑝! >	𝑑! for all 𝑗) (Smith, 1956). The modified due date (MDD) (Baker & 

Bertrand, 1982; Vepsalainen & Morton, 1987) considers the priority index presented below, 

selecting, at each iteration, the job with the highest value. 

𝑀𝐷𝐷! = B
1/𝑝! , 𝑖𝑓	𝑠!% ≤ 0

1/(𝑑! − 𝑡%), 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 

The minimum slack (SLACK) and weighted minimum slack per required time (WSLKP) 

rules (Panwalkar & Iskander, 1977; Vepsalainen & Morton, 1987) also introduce priority 

indexes considered benchmarks to the more specific heuristics. The SLACK rule selects, at 

each iteration, the job with the minimum slack, which corresponds to choosing the job with 
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the largest value of the priority index of −𝑠!% . The WSLKP selects, at each iteration, the job 

with the highest value of the following index. 

𝑊𝑆𝐿𝐾𝑃! = B
−(𝑤!/𝑝!) ∗ 𝑠!% , 𝑖𝑓	𝑠!% ≤ 0
−(𝑝!/𝑤!) ∗ 𝑠!% , 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

 

3.2. Forward Heuristics for the Weighted Tardiness Objective 

The following dispatching rules include the best-performing procedures for the weighted 

tardiness problem. These rules perform better than the general rules presented in the previ-

ous section.  

The weighted modified due date (WMDD) was introduced by Kanet and Li (2004), and 

the apparent tardiness costs rule (ATC) by Vepsalainen and Morton (1987). The AR rule 

denotes the heuristic that provided the best performance among the dispatching rules ana-

lyzed by Alidaee and Ramakrishnan (1996). Prior research has thoroughly investigated effi-

cient dispatching rules for the weighted tardiness problem, and these three heuristics have 

proven to give a good performance. 

The distinction of these heuristics relies on the choice of the priority index when a job is 

early. The conclusion mentioned above by Smith (1956) that the WSPT rule provides optimal 

schedules when all the jobs are necessarily tardy is reflected in these three procedures. Thus, 

they select the job with the highest value of the priority index 𝑤!/𝑝! when a job is completed 

after its due date. Alternatively, the WMDD, ATC, and AR rules differ only in the priority 

index for when a job is still early, reducing the job's priority in those cases. Indeed, the earlier 

the job is, the higher the reduction in the priority. Additionally, the ATC and the AR rule are 

provided with a lookahead capability, represented by the parameter 𝑘. It is related to the 

number of competing critical jobs close to becoming tardy (Vepsalainen & Morton, 1987). 

Briefly, these heuristics select, at each iteration, the job with the highest value of the fol-

lowing priority indexes:  

𝑊𝑀𝐷𝐷! = B
𝑤!/𝑝! , 𝑖𝑓	𝑠!% ≤ 0

𝑤!/(𝑑! − 𝑡%), 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
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𝐴𝑇𝐶! = B
𝑤!/𝑝! , 𝑖𝑓	𝑠!% ≤ 0

(𝑤!/𝑝!)	exp	(−𝑠!%/𝑘𝑝), 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 

𝐴𝑅! = B
𝑤!/𝑝! , 𝑖𝑓	𝑠!% ≤ 0

(𝑤!/𝑝!)U𝑘𝑝/(𝑘𝑝 + 𝑠!%)W, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 

The weighted minimum slack/shortest processing time (WSLK_SPT) heuristic (Osman 

et al., 2009) selects, at each iteration, the job with the minimum value of the weighted slack 

or weighted processing time, which corresponds to a priority index of: 

𝑊𝑆𝐿𝐾_𝑆𝑃𝑇! = B
𝑤!/𝑝! , 𝑖𝑓	𝑠!% ≤ 𝑝!
𝑤!/𝑠! , 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 

Yoon and Lee (2011) proposed three new heuristics, denoted by H1, H2, and H3. The 

results concluded that H2 and H3 outperformed H1, so this report will solely focus on H2 

and H3. These two heuristics acknowledge the case where a job has a large due date and a 

substantial weight, which can result in scheduling first jobs that are not urgent. 

H2 can be described in the following way. At each time 𝑡 in the scheduling procedure, 

this rule computes a time limit denoted by 𝑇. If there is at least one unscheduled job with 

𝑑! ≤ 𝑇, the job with the largest value of 𝑚𝑎𝑥	{𝑝! , 𝑑! − 𝑡}/𝑤! is selected. When there is no 

scheduled job with 𝑑! ≤ 𝑇, we select the job with the lowest value of (𝑑! − 𝑡)/𝑤! . The time 

limit 𝑇 is determined with the following expression. 𝑇 = ('())
+

, where 𝛼 = 𝑚𝑎𝑥{𝑡 + 𝑝! ,

𝑑!} and 𝛽 = 𝑚𝑖𝑛{𝑡 + 𝑝! , 𝑑!}, of the unscheduled job set. 

H3 works similarly, but from the unscheduled jobs with 𝑑! ≤ 𝑇, it selects the one with 

the lowest value of 𝑝!/𝑤! . Additionally, this heuristic uses the expression 𝑇 = 𝑚𝑎𝑥{𝑡 + 𝑝!∗ ,

𝑑!∗} to calculate the time limit, where 𝑗∗ represents the job selected by WMDD rule. 

More recently, a new pair of constructive heuristics was introduced to handle the 

weighted tardiness problem for a single machine (Yin et al., 2016; Yin & Wang, 2013). These 

two heuristics, denoted by PAR1 and PAR2, are described as follows. At each point of the 

scheduling procedure, the unscheduled jobs are analyzed. If there are no tardy jobs in this 

set, i.e., all jobs are early or on time, the job with the earliest due date (EDD) is selected to 
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be processed. If all the unscheduled jobs are tardy, the job with the smallest 𝑝!/𝑤! is selected. 

Finally, if there are both tardy and non-tardy jobs, job 𝑖 is selected from the non-tardy jobs, 

and job 𝑗 is selected from the tardy jobs, using the previous two rules, respectively. The one 

with the smaller incremental objective value will be processed first. This works by calculating 

𝑤! ∗ 	(𝑡	 +	𝑝- +	𝑝! 	− 	𝑑!) and 𝑤! ×	_𝑡	 +	𝑝! 	− 	𝑑!` + 𝑤- ∗ 𝑚𝑎𝑥{𝑡	 +	𝑝! +	𝑝- 	−

	𝑑𝑗, 0}. Then, if 𝑤- ∗ 	(𝑡	 +	𝑝- +	𝑝! 	− 	𝑑𝑗) > 𝑤! ×	_𝑡	 +	𝑝! 	− 	𝑑𝑗` + 𝑤- ∗ 𝑚𝑎𝑥{𝑡	 +

	𝑝! +	𝑝- 	− 	𝑑𝑗, 0} we select job 𝑗. Otherwise, job 𝑖 is chosen. The PAR2 heuristic goes 

accordingly yet uses a different rule when the unscheduled jobs are early. Here, the job with 

the lowest value of (𝑑! − 	𝑡)/𝑤! is selected. 

 

3.3. Greedy Heuristics 

The greedy heuristics that will be considered are presented here. A greedy algorithm 

makes choices based on what looks best at the moment: at each stage, it selects the local 

optimum to try to find a global optimum.  

The first heuristic to be considered is the Greedy_V1 (Volgenant & Teerhuis, 1999). This 

greedy procedure is designed to work backward and goes as follows. All pairs (𝑖, 𝑗) of yet 

unscheduled jobs are considered at each iteration. Initially, the priority of each unscheduled 

job is set to 0. Then, for each pair of jobs (𝑖, 𝑗), the jobs are scheduled in the two possible 

orders (𝑖, then 𝑗, and 𝑗, then 𝑖), and the cost of these two jobs in each order is calculated. 

The priority of the job that comes last in the ordering that provides a lower cost is increased 

by 1. Finally, the job with the highest priority is chosen. Further in this report, this heuristic 

will be addressed as G1_B. 

The second heuristic is identified as Greedy_V2 (Chou et al., 2005). There are two phases 

in this algorithm. The second phase applies a local search procedure that is not of interest to 

this research. Thus, the first phase is considered here and can be described as such. At each 

iteration, one unscheduled job is chosen as the currently chosen job. Then, the other 

unscheduled jobs are checked, one at a time. The currently chosen job and the other 

unscheduled job being considered are scheduled in the two possible orders. If the order in 

which the currently chosen job is scheduled first has a lower (or equal) cost, then the currently 
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chosen job remains unchanged. If the order in which the other unscheduled job comes first 

has a lower cost, then that job becomes the new currently chosen job. After going through 

all the unscheduled jobs, the currently chosen job is selected. This heuristic was designed to 

work forward and will be addressed in this report as G2_F. Nevertheless, a backward version 

of this was created that works equivalently. At each iteration, one unscheduled job is chosen 

as the currently chosen job, and the other unscheduled jobs are checked one at a time. The 

currently chosen job and the other unscheduled job being considered are scheduled in the 

two possible orders. If the order in which the currently chosen job is scheduled last has a 

lower (or equal) cost, then the currently chosen job remains unchanged. If the order in which 

the other unscheduled job comes last has a lower cost, then that job becomes the new 

currently chosen job. After going through all the unscheduled jobs, the currently chosen job 

is selected and placed at the beginning of the partial sequence. This backward version will be 

referred to as G2_B.  

 

3.4. Backward Heuristics 

Apart from the greedy heuristics described before, another six backward rules will be 

considered in this work. The notation described in the forward heuristics is applied here 

similarly. As for the notation not described yet, in the backward rules, we use 𝑠!. , which 

represents the slack of job 𝑗 when using backward scheduling and is defined as 𝑠!. = 𝑡. −

𝑑! . 𝑡. is the current time in the backward scheduling, i.e., the time at which the job to be 

scheduled will be completed. Finally, 𝑝/01 is the maximum processing time of the current 

unscheduled jobs. 

For each backward heuristic, three versions will be presented, the difference being in the 

𝑝!/23 . This represents the processing time of job 𝑗, which may differ in the three versions. 

In the first and basic version, 𝑝!/23 is simply 𝑝! , the processing time of the job. The other 

two versions	modify 𝑝!/23 to consider the job's tardiness. Let us consider 𝑇/-", the mini-

mum positive tardiness of all the jobs to be scheduled, and 𝑇!/-", the minimum positive 

tardiness of all jobs other than 𝑗. Accordingly, in the second and third versions (Mod1 and 

Mod2), 𝑝!/23 equals 𝑚𝑖𝑛6𝑝! , 	𝑇/-"9, and 𝑚𝑖𝑛6𝑝! , 𝑇!/-"9, respectively. Finally, the value 𝑣 
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represents a parameter that measures the slack type weight, which will be explained in detail 

further in this section. The rules for the six backward heuristics considered in this work are 

presented below. 

𝐵𝑎𝑐𝑘_𝑉1 = B
𝑝! , 𝑖𝑓	𝑠!. ≤ 0

−(𝑤!/𝑝!/23), 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 

𝐵𝑎𝑐𝑘_𝑉2 = B
𝑝! , 𝑖𝑓	𝑠!. ≤ 0

−(𝑤!/𝑝!/23)𝑠!. , 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 

𝐵𝑎𝑐𝑘_𝑉3 = B
𝑝! , 𝑖𝑓	𝑠!. ≤ 0

−(𝑤!/𝑝!/23)[𝑠!. −max	(𝑡. − 𝑝 − 𝑑!; 0)], 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 

𝐵𝑎𝑐𝑘_𝑉4 = B
𝑝! , 𝑖𝑓	𝑠!. ≤ 0

−(𝑤!/𝑝!/23)[𝑠!. −max	(𝑡. − 𝑝/01 − 𝑑!; 0)], 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 

𝐵𝑎𝑐𝑘_𝑉5 = B
𝑝! , 𝑖𝑓	𝑠!. ≤ 0

−(𝑤!/𝑝!/23)[𝑠!. − 𝑣(max	(𝑡. − 𝑝 − 𝑑!; 0)], 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 

𝐵𝑎𝑐𝑘_𝑉6 = B
𝑝! , 𝑖𝑓	𝑠!. ≤ 0

−(𝑤!/𝑝!/23)[𝑠!. − 𝑣(max	(𝑡. − 𝑝/01 − 𝑑!; 0)], 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 

 

The back versions presented in this report are adjusted from the work done by Valente 

and Schaller (2012), where the authors explore and compare forward and backward heuristics 

to minimize the weighted quadratic tardiness. Thus, in this paper, the backward heuristics 

they presented will be equivalent but applied to the linear problem. 

All these dispatching rules are designed to schedule an early job whenever one is available, 

using a positive priority index, the processing time of that job. Thus, this job will have an 

objective function value of zero and decrease the tardiness of all the currently tardy jobs. On 

the other hand, a negative priority index is set to tardy jobs. The backward heuristics differ 

only in this case, i.e., in the choice of the priority index when a job is tardy.  

As Valente and Schaller explained, the two alternative versions arose from the following 

reasons. Suppose we consider tardy jobs: the higher the processing time, the higher the job's 
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priority. When a job has a more significant processing time, it will decrease the tardiness of 

the other jobs because it makes the current time go further back than if the 𝑝! 	was small. 

This might even cause one of those other jobs to become early. 

Nonetheless, the large processing time of a job may increase the priority index more than 

an adequate value. Let us consider two tardy jobs with two processing times, 𝑝! and 𝑝4 , 

where 𝑝! < 𝑝4 , where the scheduling of either leads to another job becoming early in the 

next iteration. This means that selecting either job	𝑗 or 𝑘 to be scheduled at the current 

iteration will allow another job to become early in the next iteration. Hence, the two jobs 

have different processing times, which does not translate into any advantage for scheduling 

𝑗 first and then 𝑘. To overcome this effect, the second and third versions, Mod1 and Mod2, 

are built to reduce the 𝑝! of a job when the processing time is larger than the time required 

for some other job to become early. 

The Back_V1 is the simpler heuristic of the backward rules considered. All the others are 

derived from Back_V1 and take into account different aspects that hopefully increase the 

performance of this heuristic. It only considers the weight and the processing time of the job 

to be scheduled, which corresponds to using the WSPT rule when all unscheduled jobs are 

tardy. Back_V2 is very similar to Back_V1 but acknowledges the slack of the job, increasing 

the priority index if the slack is smaller. This results in scheduling first jobs less tardy than 

others, all else unchanged. 

The priority expression for the dispatching rules Back_V3 and Back_V4 combines the 

Back_V2 with an additional term. This term follows the same line of thought of the modified 

versions as it captures the reduction of a job 𝑗	tardiness if another job is scheduled in the 

current iteration. Indeed, when there is a larger reduction in the objective function value of 

𝑗 for some other job being selected for processing, this favors not scheduling job j at the 

current iteration. Furthermore, this term captures the average processing time of the current 

unscheduled jobs, 𝑝, in Back_V3, and the maximum of those processing times, 𝑝/01, in 

Back_V4. 

Finally, the Back_V5 and Back_V6 merge the priority indices of Back_V2 with Back_V3 

(and Back_V2 with Back_V4, respectively). These rules were included because, as explained 

by Valente and Schaller (2012), preliminary tests proved that the corresponding heuristic to 
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the one denoted here as Back_V3 outperformed the other backward rules. The exception 

was Back_V2 that for specific settings provided better results, specifically when several jobs 

were about to become early. Thus, Back_V5 introduces the parameter 𝑣, which allows the 

priority index to change between those of Back_V2 and Back_V3, depending on the charac-

teristics of the currently unscheduled jobs. Accordingly, Back_V6 follows the same logic, 

changing between Back_V2 and Back_V4 priority indexes. 

The parameter 𝑣, denominated in this work as the slack type weight, is calculated at each 

iteration as follows. Let us consider 𝑠. the average of  𝑠!. 	values, this is, the average of  the 

slack of  the currently unscheduled jobs. When 𝑝 ≥ 𝑠. , 𝑣 is set at 0. In fact, in this situation, 

the slacks are small, and with this setting, it is ensured that the Back_V5 (and Back_V6) 

priority index turns into the index of  the Back_V2 rule since the parameter is zero. On the 

other hand, when 𝑝 < 𝑠. , there are two possible outcomes. If  𝑠./𝑡. > 𝑤, where 𝑤 is a 

user-defined value that works as the critical slack ratio, 𝑣 is set at 1. Indeed, in this context, 

the slacks are large, so setting the parameter at 1 will convert in using the index of  Back_V3 

(and Back_V4, equivalently). Finally, if  𝑠./𝑡. ≤ 𝑤, 𝑣 is equal to (𝑠. − 𝑝)/𝑠. . This repre-

sents a situation where the slacks are neither large nor small, so a fair parameter 𝑣 is achieved 

by calculating an intermediate value. Thus, the priority index of  Back_V5 (and Back_V6) is 

set somewhere between the indexes of  Back_V2 and Back_V3 (and Back_V4) heuristics, 

according to the relative size of  the slack.  
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4. Experimental Design 

This section presents the experimental design, including a description of the problem set 

used to obtain the computational results, which will be presented in the next section. Further, 

the performance measures and the preliminary tests performed to find the optimal values for 

the parameters required by some heuristics will be explained. 

 

4.1. Problem Set 

The computational experiments were performed on a randomly generated set of problems 

with different settings regarding the number of jobs and processing times, with multiple 

combinations of due date tightness and range. To test the different heuristics procedures, a 

new dataset was created for the need for larger problem sizes and a higher number of in-

stances. Two different datasets were created: a test set to test the heuristic procedures and a 

separate train set to perform the parameter adjustment tests to avoid possible overfitting. 

Both sets were randomly generated in the following way. The sets have 50, 100, 250, 500, 

1000, 2000 jobs. For each job, the processing time, 𝑝! , was randomly generated from a uni-

form distribution [1, 100], and the weight, 𝑤! , was obtained from a uniform distribution [1, 

10]. 

For each job 𝑗, the due dates were generated from a uniform distribution 𝑃[1 − 𝑇 −

𝑅/2; 1 − 𝑇 + 𝑅/2], where 𝑃 is the sum of processing times of all jobs, 𝑇 is the tardiness 

factor, and 𝑅 is the range factor. The latter two parameters considered values of 0.2, 0.4, 0.6, 

0.8, and 1.0. 

For each combination of 𝑛, 𝑇, and R,	were generated 10 instances for the train set, result-

ing in a total of 250 instances for each 𝑛. As for the test set, 100 instances were generated 

for each combination of 𝑛, 𝑇, and R, totaling 2500 instances for each problem size. 

The procedures were coded in Python and executed on a personal computer with a Win-

dows 10 64–bit operating system, an Intel Core i7 4770 3.4G processor, and 16 GB RAM. 

For the statistical tests, it was used SPSS and the autorank Python package (Herbold, 2020). 
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4.2. Performance Measures 

The comparison of the heuristic procedures will mostly rely on two different performance 

measures that will be used together to provide a more accurate analysis of all the rules. 

The first measure of performance, previously used by Valente and Schaller (2012), is de-

noted by relative improvement versus the worst result (ivw). The ivw for heuristic 𝐻- , when 

examined with heuristics 𝐻$, 𝐻+, … , 𝐻5, is computed in the following way. Let 𝑜𝑓𝑣62789 be 

the objective function value of the worst heuristic, and similarly, 𝑜𝑓𝑣:;89 be the best value 

of all the 𝑧 heuristics considered. When 𝑜𝑓𝑣62789 = 𝑜𝑓𝑣:;89, the relative improvement ver-

sus the worst result is set at 0. Otherwise, the ivw is calculated as (𝑜𝑓𝑣62789 − 𝑜𝑓𝑣<")/

𝑜𝑓𝑣62789 ∗ 100, with 𝑜𝑓𝑣<" being the objective function value of the heuristic 𝐻- . Thus, 

higher ivw values indicate superior performances, as they quantify the improvement offered 

by a specific heuristic over the worst result provided among all the heuristic methods.  

The second measure to analyze the different rules is the relative deviation index (rdi). The 

notation described for ivw works accordingly in this performance measure. Thus, and as 

happens with ivw, when 𝑜𝑓𝑣62789 = 𝑜𝑓𝑣:;89, the relative deviation index is set at 0. Other-

wise, the relative deviation index is computed using the expression (𝑜𝑓𝑣<" −

𝑜𝑓𝑣:;89)/(𝑜𝑓𝑣62789 − 𝑜𝑓𝑣:;89). This performance measure yields values ranging from 0 

to 1, with those approaching 0 indicating superior performance compared to values close to 

1. 

The reason for the choice of the ivw measure was described in Valente and Schaller 

(2012). When due dates are relatively loose, or there is a wide range of due dates, identifying 

a schedule with no tardy jobs becomes straightforward, yielding an objective function value 

of 0. However, when one or more heuristics achieve an optimal solution with an objective 

function value of 0, using metrics such as the deviation from the best heuristic result becomes 

problematic due to the potential for division by 0, resulting in errors in the performance 

measure. To mitigate this concern, the approach of the relative improvement versus the 

worst result is set at 0 for specific scenarios so that division by 0 does not occur. The only 

situation where the denominator would be 0 is if all dispatching rules find an optimal solution 

with an objective function value equal to 0. In this case, all procedures would be optimal, 

and we would have 𝑜𝑓𝑣62789 = 0. In such a manner, and as mentioned previously, the 
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possible scenario where division by 0 would occur, i.e., when 𝑜𝑓𝑣62789 = 𝑜𝑓𝑣:;89, is over-

come by setting ivw to zero in those cases. 

Equivalently, the relative deviation index procedure encounters problems for scenarios 

that cause a division by zero, precisely when the objective function attains a value of 0 for 

both the best and worst heuristic methods or when these two have the same result. To this 

extent, when 𝑜𝑓𝑣62789 = 𝑜𝑓𝑣:;89, a value of 0 is attributed to the relative deviation index.  

The logic behind using both performance methods instead of just one was the following. 

Let us consider a problem where 𝑜𝑓𝑣62789 = 300, 𝑜𝑓𝑣:;89 = 0, and 𝑜𝑓𝑣<" = 150. With 

this setting, the rdi measure will have a value of 0.5. Conversely, a different problem with 

𝑜𝑓𝑣62789 = 300, 𝑜𝑓𝑣:;89 = 280, and 𝑜𝑓𝑣<# = 290 will also measure a rdi of 0.5. Indeed, 

the heuristics 𝐻- and 𝐻! , although they have strongly different objective function values, 

achieve the same rdi. Naturally, in these scenarios, the rdi would not be the most accurate 

measure to compare the performance of these two heuristics. At the same time, ivw would 

be more suitable for these cases, computing two distinct values in the different scenarios.  

Likewise, let us consider again two different problem scenarios. The first has 𝑜𝑓𝑣62789 =

300, and 𝑜𝑓𝑣<" = 200. As anticipated, the ivw for this scenario would be 50%. Alterna-

tively, another problem with 𝑜𝑓𝑣62789 = 8 and 𝑜𝑓𝑣<# = 4 would have an equal ivw of 50%, 

although in the first case, the improvement is much larger in absolute value. Thus, when the 

objective function values are small, ivw can still give large values that correspond to small 

absolute values. Neither one of these measurements (ivw and rdi) is perfect, so using both 

measures together always provides a more in-depth analysis than using just one. 

Finally, the computational time (in seconds) required by the different heuristic procedures 

is also analyzed to compare the efficiency of all the methods. 

 

4.3. Parameter Adjustment Tests 

As mentioned in section 3.2., the ATC and AR heuristic procedures require a parameter 

𝑘, denoted as the lookahead capability, and is related to the number of jobs close to becoming 

tardy. Several approaches have been previously tested to determine a value for parameter 𝑘. 
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A possible approach is to set 𝑘 at a fixed value, but the one used in this work consists of a 

variable 𝑘 parameter. This approach allows the lookahead parameter to change at each iter-

ation, increasing 𝑘 with the rising count of critical competing jobs. The implementation of 

this approach is outlined below. 

A critical slack value, 𝑠=7-9% , is initially computed at each iteration. This value is established 

as 𝑠=7-9% = 𝑠>72>% 𝑃?"8=@% , with 𝑠>72>%  being the critical slack proportion, that ranges between 0 

and 1 (0 < 𝑠>72>% < 1), and 𝑃?"8=@%  corresponding to the sum of the processing times of the 

unscheduled jobs. A particular job 𝑗	is categorized as a critical job if its slack factor, 𝑠!% , 

satisfies the condition 0 < 𝑠!% ≤ 𝑠=7-9% , which is indicative of the job being not yet tardy 

_0 < 𝑠!%` but on the verge of becoming so (𝑠!% ≤ 𝑠=7-9% ). Consequently, 𝑘 equals the number 

of critical jobs or 0.5 if no job is critical. This value represents the smallest fixed value for 𝑘 

considered in prior studies. 

Parameter adjustment tests were conducted in the above-mentioned train set to find the 

best values for the critical slack proportion used in ATC and AR rules. The values {0.05, 0.1, 

0.15, …, 0.9, 0.95} were considered for 𝑠>72>% . In the AR heuristic procedure, the 𝑠>72>% 	that 

provided the best results was consistent across all problem sizes and T and R parameter 

combinations. Thus, 𝑠>72>%  was set at 0.05.  

For ATC, the results from the train set were not cohesive across different parameter com-

binations, and it was possible to conclude that choosing a single value for 𝑠>72>%  would not 

lead to results up to the standards of the ATC procedure. Examining the ivw and rdi results, 

it was explicit that a critical slack proportion of 0.5 worked best when 𝑅<0.2, and a 𝑠>72>% 	of 

0.05 was better for the remaining cases. With this in mind, a new rule denoted as ATC_For-

mula was developed. This new heuristic combined both cases: for 𝑅<0.2, 𝑠>72>%  was set at 

0.5, and for 𝑅>0.4, it was set at 0.05. For measurements falling within the range of 0.2 to 

0.4, a value was determined through interpolation. Two approaches were considered to im-

plement the ATC_Formula: the first by calculating the value of 𝑅 and choosing 𝑠>72>%  only 

at the beginning of the instance, and the second by applying this procedure at each iteration. 

The results of this preliminary test will be addressed later in this section. 
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Back_V5 and Back_V6 rules, as noted earlier in section 3.4., require using a parameter 𝑤, 

the critical slack ratio. The values {0.05, 0.1, 0.15, …, 0.9, 0.95} were considered for this 

parameter. For Back_V5 and its alternative versions, 𝑤 was set at 0.5, while for Back_V6 

and its variants, 𝑤 was placed at 0.55.  

Each backward dispatching rule (from Back_V1 to Back_V6) was considered in three 

versions: the basic version, Mod1, and Mod2. An extensive analysis of the ivw and rdi values 

for all these heuristic procedures concluded that the best version for each rule depended on 

𝑇, making the selection of a single version infeasible. Thus, a novel heuristic was formulated 

for each backward rule, comprising a fusion of distinct versions. The appropriate version to 

be employed depended upon the value of 𝑇. The subsequent table presents the optimal ver-

sion for each rule, corresponding to different values of 𝑇. For 𝑇 between 0.6 and 0.8 (and 

alternatively between 0.4 and 0.6), a value was determined via interpolation. 

Heuristic 𝑇 Best Version 

Back_V1 0.2, 0.4 and 0.6 Back_V1_Mod2 
0.8 and 1 Back_V1 

   
Back_V2 0.2 and 0.4 Back_V2_Mod1 

0.6, 0.8 and 1 Back_V2 
   

Back_V3 0.2, 0.4 and 0.6 Back_V3_Mod2 
0.8 and 1 Back_V3 

   
Back_V4 0.2, 0.4 and 0.6 Back_V4_Mod2 

0.8 and 1 Back_V4 
   

Back_V5 0.2 and 0.4 Back_V5_Mod2 
0.6, 0.8 and 1 Back_V5 

   
Back_V6 0.2 and 0.4 Back_V6_Mod2 

0.6, 0.8 and 1 Back_V6 

Table 1 - Best version for each backward rule, depending on 𝑇. 

As it happened in the ATC_Formula, two approaches were considered: one by calculating 

the 𝑇 value at the beginning of the instance and the other at each iteration. The new com-

bined rules are labeled as Back_V1_Combo and Back_V1_Combo_Iter, depending on the 

approach being applied at the beginning or applied at each iteration, respectively. The same 
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applies to Back_V2_Combo and Back_V2_Combo_Iter (and to the rest of the backward 

rules) and ATC_Formula and ATC_Formula_Iter. 

The outcomes of the different methodologies applied to the aforementioned rules are 

presented in Table 2. Runtimes for both approaches exhibited high similarities, thus prompt-

ing the focus on the ivw and rdi measures. The best value for each problem size and heuristic 

procedure is in bold. 

 
ivw  rdi 

 
50 100 250 500 1000 2000  50 100 250 500 1000 2000 

ATC_Formula 0.64 0.66 0.25 0.23 0.33 0.34  0.18 0.20 0.21 0.23 0.22 0.22 
ATC_Formula_Iter 1.40 1.20 1.40 1.32 1.05 0.90  0.07 0.06 0.04 0.03 0.03 0.04 
              

Back_V1_Combo 0.12 0.08 0.06 0.05 0.04 0.04  0.11 0.12 0.10 0.09 0.09 0.09 
Back_V1_Combo_Iter 0.12 0.07 0.04 0.04 0.04 0.04  0.11 0.13 0.15 0.15 0.16 0.16 
              

Back_V2_Combo 0.11 0.05 0.02 0.00 0.00 0.00  0.06 0.06 0.07 0.05 0.07 0.06 
Back_V2_Combo_Iter 0.03 0.02 0.01 0.00 0.00 0.00  0.12 0.15 0.17 0.18 0.17 0.17 
              

Back_V3_Combo 0.07 0.05 0.03 0.02 0.01 0.01  0.10 0.12 0.10 0.09 0.09 0.08 
Back_V3_Combo_Iter 0.09 0.06 0.03 0.02 0.02 0.02  0.11 0.11 0.14 0.15 0.15 0.16 
              

Back_V4_Combo 0.05 0.04 0.02 0.01 0.01 0.00  0.09 0.11 0.11 0.11 0.09 0.08 
Back_V4_Combo_Iter 0.04 0.03 0.02 0.01 0.01 0.01  0.10 0.11 0.12 0.13 0.14 0.15 
              

Back_V5_Combo 0.17 0.16 0.12 0.07 0.06 0.05  0.13 0.13 0.11 0.09 0.06 0.05 
Back_V5_Combo_Iter 0.17 0.11 0.04 0.02 0.01 0.00  0.12 0.16 0.19 0.20 0.24 0.25 
              

Back_V6_Combo 0.13 0.09 0.07 0.06 0.04 0.03  0.10 0.11 0.11 0.10 0.09 0.09 
Back_V6_Combo_Iter 0.09 0.09 0.04 0.04 0.01 0.00  0.11 0.13 0.15 0.17 0.19 0.19 

Table 2 - Comparison of  the two approaches for ATC and the backward rules, by 𝑛. 

 
Regarding the ATC_Formula, it is evident that the strategy applied at each iteration con-

sistently provides better results. Concerning the backward rules, although there is not a uni-

form pattern across all values of 𝑛, it is notable that the version implemented at the beginning 

yields superior average results compared to the approach executed at each iteration. In fact, 

the ivw values are substantially small, considering they are presented in percentage. Thus, in 
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those cases where ivw and rdi are not consistent, the choice was made focusing primarily on 

the rdi metric. 

Statistical tests were conducted to determine the statistical significance of differences be-

tween each rule and its corresponding iteration approach. Given the uniform application of 

two methods to the same instances, a paired-sample test can be conducted. The non-para-

metric Wilcoxon Signed-Rank test was selected since the paired-samples t-test normality as-

sumption was not entirely fulfilled. 

The test was applied to each pair of heuristics, and the significance level was set at 0.05. 

The outcomes of these tests revealed that the differences between each pair are statistically 

significant. In fact, the hypothesis that the beginning and iteration approaches have similar 

performance was consistently rejected across all pairs of procedures. Thus, and under the 

analysis of the ivw and rdi measures, the heuristics applied at each iteration performed sig-

nificantly better than the beginning version for the ATC. In contrast, the opposite was veri-

fied for the backward rules. 

Given careful consideration of all these factors, from this point onward, this study will 

employ the ATC_Formula_Iter version along with the six backward procedures using the 

beginning approach. The versions with the opposite approaches, as well as the individual 

backward versions and their modified counterparts, will no longer be considered in the re-

mainder of this work. In order to streamline the denomination of the heuristic procedures, 

the term ATC_Formula_Iter will henceforth be simplified to ATC. Similarly, the designation 

Back_V1_Combo will be modified to B1. This naming convention will also extend to the 

remaining backward heuristics, which will be named B2, B3, B4, B5, and B6. 
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5. Computational Results 

The results outlined in Table 3 describe the runtime allocated to each heuristic procedure, 

expressed in seconds. Although problem sizes of 50 and 100 jobs were also considered, Table 

3 solely focuses on instances with 𝑛 greater than 250, resulting from the considerably negli-

gible runtimes associated with the smaller problem sizes, which often approach zero and 

make the comparison with the larger problem sizes impractical. The heuristic procedures are 

organized in ascending order of the runtime for 𝑛=2000. 

As expected by its intrinsic simplicity, EDD emerges as the fastest heuristic method ac-

counted for in this paper, regardless of the problem size considered. Conversely, the G1_B 

stands out as the most time-intensive heuristic. As a matter of fact, the intention was initially 

to apply this heuristic across all problem sizes; however, its complexity made it unfeasible to 

apply to problems with 500 or more jobs. Indeed, the runtime for 𝑛=250 is already notably 

excessive. Consequently, only this latter value is presented within the results. 

Besides the aforementioned heuristic, G2_B and G2_F exhibit the highest computational 

time within comparable values of the remaining heuristics’ runtimes. 

Upon comprehensive analysis of Table 3, it becomes evident that the simplest heuristic 

methods, such as EDD, SLACK, WSLKP, MDD, and WMDD, demonstrate the shortest 

execution times, aligning with their inherently straightforward nature. The PAR1 and PAR2 

rules, while retaining an element of simplicity compared to the backward dispatching rules, 

occupy the uppermost positions within the table. 

Contrarily, the backward dispatching rules assume the lowermost ranks, barring the 

greedy heuristics. This observation prompts the conclusion that these backward dispatching 

rules are slower than the forward heuristics. Finally, rules such as ATC, AR, WSLK_SPT, 

and H2 and H3 exhibit greater complexity than the general forward methods, positioning 

them within the midrange of the table.  
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 Runtime 

Heuristic 250 500 1000 2000 

EDD 0.00 0.00 0.00 0.00 
PAR1 0.02 0.09 0.38 1.53 
PAR2 0.03 0.11 0.47 1.83 

SLACK 0.03 0.13 0.54 2.13 
WSLKP 0.05 0.20 0.81 3.23 
MDD 0.05 0.20 0.82 3.25 

WMDD 0.05 0.21 0.85 3.40 
WSLK_SPT 0.05 0.21 0.85 3.42 

H2 0.06 0.24 0.96 3.92 
AR 0.07 0.28 1.10 4.50 
H3 0.07 0.28 1.17 4.75 

ATC 0.08 0.32 1.29 5.16 
B1 0.09 0.35 1.40 5.70 
B2 0.10 0.39 1.57 6.28 
B3 0.11 0.43 1.68 6.83 
B4 0.11 0.44 1.82 7.29 
B5 0.12 0.46 1.87 7.59 
B6 0.12 0.50 2.01 8.05 

G2_F 0.15 0.65 2.54 10.14 
G2_B 0.17 0.67 2.67 10.72 
G1_B 13.96    

Table 3 - Runtime of  the heuristic procedures, in ascending order of  𝑛=2000. 

 
Regarding the evaluation of solution quality, Table 4 furnishes a detailed overview of the 

top-performing rules, considering both ivw and rdi. The arrangement of the heuristic proce-

dures in this table follows a descending order based on the mean of the ivw values for all 

problem sizes. While the order of the heuristic methods differs slightly for rdi, it maintains a 

substantial similarity, reinforcing both performance measures' consistency.  

Starting the analysis from the lowermost part of the table reveals that the worst heuristic 

methods are positioned toward the bottom of the table. These include EDD, SLACK, MDD, 

and WSLKP. Similarly, both PAR heuristics, along with the simplest backward rules, namely 

B1 and B2, are situated within the lower half of the table. Among the remaining backward 

dispatching rules, B5, B6, and B4 are positioned in the table's upper half, notably excelling 

in terms of ivw and rdi performance. 
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Directing attention to WMDD and WSLK_SPT, which have achieved favorable positions 

in terms of runtime, their notable performance is further reflected in their favorable ivw and 

rdi metrics. These confirm their effectiveness as heuristics that excel in both solution quality 

and runtime. 

 ivw  rdi 

Heuristic 50 100 250 500 1000 2000  50 100 250 500 1000 2000 

B5 67.61 68.75 69.41 69.57 69.76 69.82  0.010 0.008 0.004 0.003 0.002 0.002 
B6 67.65 68.63 69.12 69.22 69.41 69.44  0.009 0.009 0.008 0.008 0.007 0.007 
B4 66.25 67.18 67.59 67.67 67.99 68.02  0.029 0.028 0.028 0.028 0.026 0.026 
WMDD 64.52 67.62 68.12 68.07 68.11 68.05  0.043 0.021 0.022 0.024 0.026 0.027 
H3 64.27 67.61 68.10 68.01 68.00 67.91  0.046 0.021 0.022 0.025 0.027 0.029 
WSLK_SPT 63.57 67.30 68.12 68.09 68.14 68.06  0.056 0.025 0.022 0.024 0.025 0.027 
B3 65.63 66.76 67.33 67.53 67.85 67.94  0.037 0.034 0.031 0.030 0.028 0.027 
G2_B 65.35 66.56 67.25 67.44 67.82 67.92  0.040 0.036 0.032 0.031 0.028 0.027 
H2 65.52 67.38 67.61 67.37 67.23 67.14  0.035 0.025 0.029 0.034 0.038 0.039 
AR 64.11 66.47 67.62 67.88 68.07 68.06  0.054 0.039 0.031 0.029 0.029 0.029 
ATC 65.50 66.73 67.38 67.51 67.60 67.48  0.040 0.037 0.034 0.034 0.035 0.037 
PAR2 64.39 66.64 67.51 67.70 67.91 67.95  0.049 0.036 0.031 0.029 0.029 0.029 
B1 64.49 66.00 66.89 67.26 67.67 67.80  0.051 0.043 0.036 0.033 0.030 0.029 
G1_B 65.38 66.54 67.25     0.040 0.036 0.032    

PAR1 63.37 64.85 65.63 65.99 66.18 66.32  0.068 0.061 0.057 0.053 0.053 0.051 
B2 64.52 64.79 64.48 64.23 64.10 63.99  0.069 0.079 0.089 0.094 0.097 0.099 
WSLKP 56.04 58.45 59.92 60.41 60.77 60.91  0.188 0.168 0.153 0.147 0.144 0.142 
MDD 51.85 52.67 52.72 52.61 52.63 52.69  0.267 0.268 0.272 0.275 0.277 0.276 
G2_F 38.09 37.40 38.04 38.44 39.05 39.39  0.342 0.354 0.348 0.343 0.336 0.332 
EDD 27.81 26.33 25.14 24.60 24.30 24.17  0.682 0.717 0.740 0.749 0.755 0.757 
SLACK 20.40 22.52 23.50 23.75 23.87 23.96  0.788 0.771 0.764 0.762 0.761 0.760 

Table 4 - Comparison of  all heuristic procedures. 

 
In order to provide additional support for the preceding analysis, statistical tests were 

carried out to determine if the differences between each pair of rules were statistically signif-

icant. These statistical tests were conducted for both ivw and rdi values associated with all 

heuristic procedures. Initially, an analysis involving normality tests and Q-Q Plots for each 

heuristic method was undertaken, which rejected the null hypothesis that the population was 

normal for all heuristic procedures. Therefore, we assume that not all populations were nor-

mal, revealing that the assumptions of the repeated measures ANOVA test were not all met.  
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In light of the preceding, the non-parametric Friedman test was applied to determine if 

there were any significant differences between the median values of the populations. The 

significance level was set at 0.05. Additionally, it was applied the post-hoc Nemenyi test to 

infer which differences were significant. The following was observed for both ivw and rdi 

values. 

The Friedman test's null hypothesis (p=0.000), suggesting the absence of differences in 

the central tendency among all populations, was rejected. Consequently, it was assumed that 

there was a statistically significant difference between the median values of the populations. 

Based on the post-hoc Nemenyi test, it was assumed that there are no significant differences 

within the following groups: ATC, AR, B1, and B2; PAR2 and B4; B4 and H2; H2 and 

WMDD. All other differences are significant. 

The critical distance (CD) of the post-hoc Nemenyi test for ivw is revealed in Figure 1, 

whereas for rdi is presented in Figure 2. The groups of heuristics with non-significant differ-

ences are represented with a black horizontal line. The arrangement of heuristics is displayed 

in ascending order, positioning the worst-performing one at the far-left end and the best one 

at the far-right. These findings align with Table 4, particularly placing B5 and B6 as the top-

performing heuristics. Notice that the ranking achieved by ivw and rdi is identical. 

 
Figure 1 – Critical distance for ivw values 
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Figure 2 – Critical distance for rdi values 

 
Furthermore, the results regarding solution quality and computational times can be com-

bined to achieve the non-dominated heuristics, i.e., heuristics that are not overcome by any 

other in terms of ivw and runtime, simultaneously. These performance measures were com-

pared for 𝑛=2000, and the results are displayed in Figures 3 through 5. 

Figure 3 displays all the heuristic procedures mentioned in this work, except for EDD. 

This heuristic has shallow runtime values compared to the rest of the methods, making its 

inclusion in the graphs unfeasible. Figure 4 excludes the heuristics with the most extreme 

values to simplify the analysis, making the differences in the heuristics with higher perfor-

mances more explicit. Additionally, Figure 5 considers exclusively the non-dominated heu-

ristics. 

PAR1 emerges as the fastest of the non-dominated procedures, apart from EDD. It takes 

shallow computational time, although it does not obtain solutions with equivalent quality. 

On the contrary, PAR2, with a runtime reasonably close to PAR1, achieves much better 

performances, reaching an average improvement of 68% versus the worst heuristic for prob-

lem sizes of 2000 jobs. On the same note, WMDD and WSLK_SPT have even more re-

markable performances but are slightly slower. The heuristic with the best solution quality 

is, undoubtedly, B5, although it is also the slower method, taking more than double the time 

required by WMDD or WSLK_SPT. These results guide decision-makers in the choice of 

the heuristic procedure. Indeed, as the time available to generate a solution increases, the 

decision maker can switch from PAR2 to WMDD and WSKK_SPT and finally to B5.  
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Figure 3 - ivw vs runtime for all heuristic procedures, with 𝑛=2000 

 

 
Figure 4 - ivw vs runtime for heuristics procedures, excluding the most extreme ones, with 𝑛=2000 
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Figure 5 - ivw vs runtime for non-dominated heuristics, with 𝑛=2000 

 
Finally, Table 6 provides the improvement versus the worst result (ivw) and the relative 

deviation index (rdi) for each combination of  the tardiness factor and the range of  due dates 

parameters. This table focuses solely on the non-dominated heuristic procedures. 

The improvement versus worst result tends to exhibit a decrease as the tardiness factor 𝑇 

increases. It is worth noting that the ivw can achieve remarkable values, occasionally almost 

reaching the uppermost limit of  100% when the tardiness factor is set to a lower value. These 

large ivw values frequently correspond to relatively minor absolute improvements. Indeed, 

when 𝑇 assumes a low value, only some jobs will be tardy, subsequently leading to relatively 

small objective function values. However, the effect of the range of due dates 𝑅 on the ivw 

metric lacks a straightforward interpretation. Precisely, the ivw frequently displays an 

ascending trend with increasing 𝑅 when the tardiness factor equals 0.2, 0.4, or 0.6. However, 

this trend reverses, leading to a descending pattern when 𝑇 assumes values of 0.8 or 1.0. 

These conclusions are consistent with the rdi measure, which has the inverse behavior; for 

instance, the relative deviation index tends to decrease as the tardiness factor increases. 
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  ivw  rdi 

𝑇 𝑅 B5 WMDD WSLK_SPT PAR2 PAR1 EDD  B5 WMDD WSLK_SPT PAR2 PAR1 EDD 
0.2 0.2 76.87 73.94 73.99 72.53 56.36 14.09 

 
0.018 0.056 0.055 0.074 0.281 0.823 

0.4 97.99 92.97 92.20 94.54 97.65 96.72 
 

0.006 0.059 0.067 0.042 0.010 0.020 
0.6 99.67 98.24 98.23 98.67 99.67 99.67 

 
0.000 0.014 0.014 0.010 0.000 0.000 

0.8 99.50 98.78 99.20 98.82 99.50 99.50 
 

0.000 0.007 0.003 0.007 0.000 0.000 
1.0 99.67 99.30 99.42 99.32 99.67 99.67 

 
0.000 0.004 0.003 0.003 0.000 0.000 

               
0.4 0.2 72.91 68.33 68.42 67.22 53.94 5.60 

 
0.002 0.065 0.064 0.080 0.262 0.925 

0.4 72.25 66.19 66.41 63.36 59.39 4.32 
 

0.005 0.090 0.087 0.129 0.182 0.941 
0.6 72.17 70.77 70.63 66.94 65.39 6.98 

 
0.024 0.043 0.044 0.094 0.115 0.908 

0.8 94.96 91.98 90.38 93.74 94.42 88.79 
 

0.014 0.047 0.064 0.028 0.021 0.087 
1.0 98.35 93.55 91.59 96.61 97.79 95.74 

 
0.002 0.053 0.074 0.021 0.009 0.035 

               
0.6 0.2 66.10 61.64 61.70 60.94 53.49 3.63 

 
0.001 0.069 0.068 0.079 0.191 0.945 

0.4 68.20 62.75 62.96 60.90 59.06 2.38 
 

0.001 0.081 0.078 0.109 0.135 0.965 
0.6 72.13 69.04 69.15 66.88 66.19 2.25 

 
0.002 0.044 0.043 0.075 0.085 0.968 

0.8 75.58 75.88 75.52 74.07 73.87 2.23 
 

0.010 0.005 0.010 0.030 0.032 0.970 
1.0 68.77 69.15 68.40 68.44 68.36 1.98 

 
0.011 0.005 0.017 0.015 0.016 0.970 

               
0.8 0.2 57.94 55.98 56.01 55.60 53.28 2.73 

 
0.001 0.035 0.034 0.041 0.081 0.953 

0.4 59.05 59.29 59.28 59.18 59.11 1.59 
 

0.006 0.002 0.002 0.004 0.005 0.973 
0.6 57.80 58.13 57.98 58.12 58.10 1.10 

 
0.006 0.000 0.003 0.001 0.001 0.981 

0.8 54.73 54.95 54.77 54.95 54.93 0.81 
 

0.005 0.001 0.004 0.000 0.001 0.985 
1.0 51.21 51.39 51.17 51.39 51.38 0.63 

 
0.004 0.001 0.005 0.001 0.001 0.987 

               
1.0 0.2 45.45 45.46 45.44 45.46 45.46 1.85 

 
0.000 0.000 0.000 0.000 0.000 0.959 

0.4 44.27 44.28 44.26 44.29 44.29 0.99 
 

0.000 0.000 0.001 0.000 0.000 0.978 
0.6 42.59 42.62 42.58 42.62 42.62 0.64 

 
0.001 0.000 0.001 0.000 0.000 0.985 

0.8 41.28 41.33 41.27 41.33 41.33 0.52 
 

0.001 0.000 0.002 0.000 0.000 0.987 
1.0 39.45 39.49 39.42 39.49 39.49 0.40 

 
0.001 0.000 0.002 0.000 0.000 0.990 

Table 5 - ivw and rdi for the non-dominated heuristics, by 𝑇 and 𝑅
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6. Conclusion 

This work considers the single machine scheduling problem with a weighted tardiness 

objective function. The main goal of  this research was to identify the best heuristic methods 

to solve this problem efficiently. Thus, a broad group of  procedures was acknowledged in 

this dissertation. The focus shifted between the simpler forward dispatching rules, forward 

rules suited to the weighted tardiness objective, greedy heuristics, and backward dispatching 

rules. These latter were previously used in a different setting but were suitably adapted to 

take the linear objective into account. 

Meticulous preliminary tests were conducted to determine the adequate values of  the 

parameters required by each heuristic procedure. In fact, for the ATC heuristic, the appro-

priate value for the parameter was dependent upon the value of  𝑅, which encouraged the 

use of  an adapted rule that would take this relation into account. Additionally, each of  the 

backward rules and its two alternative counterparts were also a target of  this approach. Thus, 

based on the best-performing version of  the backward rules for each 𝑇	value, the various 

alternatives were combined in novel methods. This approach was implemented at the begin-

ning of  the instance and alternatively at each iteration. 

Results showed that greedy heuristics are not very efficient, and most are neither effective. 

Rules B5 and B6 significantly outperform the other backward procedures, as well as the for-

ward methods, despite taking more time to generate solutions. As expected, the forward 

heuristics suited for the weighted tardiness objective are substantially more effective than the 

general rules considered. In particular, WMDD, WSLK_SPT, AR, and H3 achieve quality 

solutions within a reasonable amount of  time, especially for larger problem sizes, making 

these heuristics both effective and efficient. 

The computational results also showed that EDD, PAR1, PAR2, WMDD, WSKP_SPT, 

and B5 procedures emerge as non-dominated when considering both solution quality and 

runtime. An extensive look at the performance measures for different 𝑇 values concluded 

that ivw has an inverse relation with the tardiness factor, with the opposite happening to rdi. 

However, the performance measures do not display an explicit trend with the range of  due 

dates 𝑅. 
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The highlight of  his work resides in the fact that all heuristics methods, from forward to 

backward ones, were applied and tested on the same problem set, including medium and 

large problem sizes and with a large number of  instances. This approach ensures transpar-

ency in the comparison of  all procedures, allied with a uniform programming language used 

by the same team of  developers to exhaustively adjust parameters and test all heuristic pro-

cedures. 

A possibility for future work would be considering these heuristics procedures, particu-

larly the new approaches of  the backward rules, under other machine settings, such as parallel 

machines or flow shops. Another possibility would be to include additional problem settings, 

such as release dates and setup times. 
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