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Resumo

A utilização de robôs móveis de vários fabricantes está muitas vezes limitada ao software fornecido
pelo próprio fabricante. Esta limitação implica uma enorme desvantagem quando se tenta integrar
estes robôs móveis em sistemas multi-robô específicos. Além disso, há uma necessidade cres-
cente na interoperabilidade entre os robôs de múltiplos fabricantes e os respetivos sistemas de
navegação. Esta necessidade levou ao desenvolvimento de uma nova abordagem com o objetivo
de permitir que um gestor de frota de robôs baseado em grafos e ROS (Robot Operating Sys-
tem) possa controlar robôs móveis de navegação em trajetórias livres. Esta é uma abordagem que
pode ser aplicada a qualquer robô móvel autónomo (AMR), sendo que são necessárias algumas
adaptações conforme o tipo de informação fornecida pelos diferentes fabricantes de robôs móveis.

A presente dissertação tem como objetivo desenvolver um módulo de software capaz de con-
trolar o robô móvel OMRON LD-90 e integrá-lo com um gestor de frota de robôs baseado em
grafos e ROS. Assim, neste trabalho explora-se o estado-da-arte em tipos de navegação de robôs
móveis, estudam-se tipos de planeamento de trajetórias e explica-se a forma como o gestor de
frota de robôs utilizado está organizado. De seguida, é analisado o Robot Operating System (ROS)
e é introduzida a interface Advanced Robotics Command Language (ARCL), desenvolvida pela
OMRON. É, ainda, realizada uma análise das arquiteturas escolhidas para a aplicação, incluindo a
framework de comunicação entre os componentes que constituem o sistema bem como a conexão
entre os módulos de software desenvolvidos. Explica-se ainda, com detalhe, todo o processo de
implementação do software bem como a forma como este realiza a troca de mensagens com o
gestor de frota de robôs. Os resultados apresentam o comportamento do robô móvel ao rece-
ber tarefas específicas do gestor de frota de robôs, permitindo a verificação da integração bem-
sucedida do robô com o gestor de frota.
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Abstract

The use of mobile robots from various manufacturers is often limited to the software provided by
the manufacturer itself. This is a major drawback when attempting to integrate these robots into
specific multi-robot systems. Additionally, there has been an increasing need for interoperability
between robots from multiple manufacturers and their respective navigation systems. This has
led to the development of a new approach aimed at empowering a graph and ROS-based robot
fleet manager for the management of free-path navigation mobile robots. This approach can be
applied to every Autonomous Mobile Robot (AMR), but some adaptations are necessary due to
the different types of information provided by different mobile robot manufacturers.

The present dissertation aims to develop a software module capable of controlling the OM-
RON LD-90 mobile robot and integrating it with the graph and ROS-based robot fleet manager.
Firstly, this work explores the state-of-the-art in mobile robot navigation types, studies various
types of path planning, and explains the organization of this specific robot fleet manager. Then,
the Robot Operating System (ROS) framework is analysed, and the Advanced Robotics Com-
mand Language (ARCL), developed by OMRON, is introduced. Additionally, an analysis of the
chosen architectures for the application is performed, including the communication framework of
the components that constitute the system, and the connections between the developed software
modules. Subsequently, a thorough explanation of the process of implementing the software and
how it exchanges messages with the robot fleet manager is provided. The results demonstrate the
behavior of the mobile robot when receiving specific tasks from the robot fleet manager, allowing
verification of the successful integration of the robot with the fleet manager.
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Chapter 1

Introduction

1.1 Motivation and Context

The field of robotics is continuously expanding in various industries, revolutionizing the way

industrial operations are conducted. Therefore, by integrating automated processes with robotic

systems, complex tasks traditionally performed by humans can now be executed efficiently and

with high precision.

One of the most remarkable advancements in the field of robotics is the evolution of au-

tonomous mobile robots. These robots can operate alongside humans, in dynamic working en-

vironments, through perception systems, navigation systems, and localization systems. This type

of robot can execute tasks while navigating and interacting with its surroundings without any hu-

man intervention [7]. However, for a mobile robot to navigate autonomously, it is required for

the robot to know its location, where it wants to navigate, and how to navigate to that position.

To do this, path planning algorithms are necessary for robots to determine optimal paths, avoid

obstacles, and adapt to dynamic environments.

Mobile robots are used in a wide range of contexts, such as industrial automation, surveillance,

construction, agriculture, and medical environments. Subsequently, the demand for these robots is

constantly growing, leading multiple renowned manufacturers in the field of robotics to produce

various types of mobile robots.

While the production of mobile robots by multiple manufacturers has brought many benefits,

it has also led to the issue of each robot being highly dependent on utilizing software specifically

produced by its manufacturer. Consequently, configuring, changing, or applying new functional-

ities to multiple robots from different manufacturers may be challenging and result in a constant

need to adapt systems completely.

Additionally, there is an increasing urge to have fleets of mobile robots working simultane-

ously in an environment to perform tasks that a single robot cannot execute effectively. This

results in the need for robot fleet managers, responsible for managing all the robots in the sys-

tem. However, when a fleet manager employs path planning for a specific type of mobile robot

navigation, the difficulty of integrating robots that use different types of navigation emerges.
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2 Introduction

Therefore, this dissertation aims to address the two mentioned needs in the field of mobile

robotics, enabling the control of a mobile robot without relying on the manufacturer’s own soft-

ware and integrating this robot with a specific navigation system into a robot fleet that utilizes path

planning designed for a different type of mobile robot navigation.

1.2 Goals

This dissertation has two main goals: to implement a software module capable of controlling
the OMRON LD-90 mobile robot, a non-ROS-based autonomous mobile robot that mainly relies

on the software provided by its manufacturer, and to integrate this robot, that uses free path plan-

ning algorithms, into a robot fleet manager that utilizes graph-based path planning algorithms.

The implementation of this system, capable of controlling and managing the LD-90 mobile

robot, will be done within the Robot Operating System (ROS) framework. The robot will be con-

trolled by sending and receiving commands through the Advanced Robotics Command Language

(ARCL) interface, developed by OMRON, using TCP/IP sockets.

Integrating this robot with the robot fleet manager enables the fleet manager to have a hetero-

geneous fleet of mobile robots that rely on different types of navigation and are built by different

manufacturers, resulting in more versatility and flexibility.

1.3 Structure of the Document

This document is structured, in a particular form, to present the chronological process of the

project’s development, consisting of the current chapter and five additional chapters. The follow-

ing is a brief introduction and explanation of each chapter:

• Background and Fundamental Aspects: Focuses on the study of relevant approaches in

the field of mobile robots and provides an understanding of the underlying theories behind

these approaches and how they can be applied to this dissertation.

• Overview of Implemented Technologies and Architectures: This chapter analyses the

technologies used in this application. Additionally, it discusses the architectures considered

for communication between the application components and how the developed software

modules are interconnected. It explains the thought process behind achieving the proposed

goals of this dissertation.

• Software Implementation: Presents a detailed explanation of each software module im-

plementation, covering the process of two-way communication between the application and

the mobile robot, data handling, information display, and the required message exchange to

integrate the robot with the fleet manager.
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• Results and Discussion: This chapter presents the tests conducted for each individual soft-

ware module and their impact on the correct functioning of the entire application. It validates

the developed algorithms and reviews the obtained results.

• Conclusions and Future Work: Provides an overview of the developed project and how

the proposed goals were achieved. Additionally, possible improvements for the project are

presented as future work.
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Chapter 2

Background and Fundamental Aspects

In order to establish a strong foundation for understanding the context and key concepts that form

the basis of this dissertation, this chapter provides a comprehensive overview of relevant theoret-

ical aspects and fundamental knowledge related to the research topic. This is achieved by per-

forming a profound analysis of the relevant state-of-the-art literature, theoretical frameworks, and

historical developments, enabling a deeper comprehension of the research problem and facilitating

exploration in the subsequent chapters.

2.1 Mobile Robots

Mobile robots have revolutionized various industries by introducing automation and autonomy

into the realm of transportation and logistics. They encompass a wide range of robotic systems

designed to navigate and operate in different environments and carry out tasks traditionally per-

formed by humans. As a result, this field is experiencing rapid expansion in scientific research.

For a robot to be autonomous, it must determine the sequence of actions required to complete a

task and have a perception system to aid its decision-making process [8].

A significant step forward in the mobile robot industry is the emergence of Autonomous Mo-

bile Robots (AMRs) as successors to Autonomous Guided Vehicles (AGVs). AMRs are capable

of operating in dynamic and partially unknown environments [7], requiring them to navigate and

avoid obstacles seamlessly, in contrast to AGVs. In terms of navigation methods, the AGVs rely

on fixed paths such as electromagnetic, optical, and tape navigation, while others, the AMRs,

employ free route types like inertial, laser, and visual navigation [9].

2.1.1 Fixed-Path Navigation

In fixed-path navigation, mobile robots are required to follow a predefined path. This approach en-

compasses various methods such as wire-guided navigation, which utilizes buried cable networks

to guide the robots along the desired path, or line-guided navigation, where the robots follow

5



6 Background and Fundamental Aspects

painted lines on the floor. These lines can be created using visible, invisible, or reflecting materi-

als to ensure the robot’s guidance. Fixed-path navigation is widely employed in warehouses and

automatic factories due to its high reliability [10].

One significant challenge related to the associated drawbacks of this path navigation method

is the difficulty of modifying the predefined paths once they are established, as it often requires

physical modifications to the infrastructure. Additionally, the initial implementation cost of setting

up the path infrastructure, such as laying down cables or painting lines, can be relatively high.

In the following, some fixed-path navigation methods will be presented, exploring their func-

tioning principles, benefits, and drawbacks.

2.1.1.1 Electromagnetic Navigation

This method of fixed-path navigation involves placing metal wires along the path of the AGV

and generating a magnetic field by applying low-frequency and low-voltage currents around these

wires [11]. An induction coil on the robot allows it to detect and track the strength of the magnetic

field, enabling navigation.

Electromagnetic navigation offers several advantages, including high reliability and precise

control accuracy, making it suitable for applications where precise positioning is crucial. However,

there are certain challenges associated with this method. It can be complex and time-consuming

to initially set up the metal wires and generate the required magnetic field. Reconstructing or

expanding the path may also pose challenges, as it requires additional wiring and modifications

[11]. Moreover, the initial installation and maintenance costs of the system can be relatively high.

2.1.1.2 Optical Navigation

Another commonly used method for fixed-path navigation is optical navigation, which utilizes a

continuous belt made of luminescent material laid on the ground or luminescent paint applied to

the intended route [11]. This method requires two infrared sensors positioned symmetrically at

the bottom of the AGV to detect reflected light. By measuring deviations from the expected light

patterns, it becomes possible to enable control.

Optical navigation offers advantages in terms of flexibility and cost-effectiveness. The con-

tinuous belt or luminescent paint used in this method can be easily modified or extended to adapt

to changing requirements or routes. Additionally, the use of infrared sensors allows for real-time

monitoring of the reflected light, enabling precise control and adjustments. However, it is im-

portant to note that the optical navigation system may require adequate lighting conditions and

periodic maintenance to ensure accurate detection and reliable operation.

2.1.1.3 Tape Navigation

As mentioned previously, another method of fixed-path navigation is tape navigation, which uti-

lizes a magnetic induction navigation sensor and a magnetic guide belt laid on the ground [11]. The
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controller utilizes the information obtained from the relative one-dimensional coordinate signal be-

tween the magnetic induction sensor and the magnetic guide belt to control the robot, enabling it

to follow the magnetic guide belt based on the signal state.

This method offers several advantages. It provides a simple and cost-effective solution for

achieving precise path following in indoor environments. The magnetic guide belt can be easily

installed, allowing for quick modifications or expansions of the intended path by adding or repo-

sitioning the tape. Moreover, tape navigation systems often have low power requirements and can

operate efficiently over extended periods.

However, it is important to consider some limitations of tape navigation. The system’s perfor-

mance can be affected by the presence of surrounding metals, which may introduce interference

and affect the accuracy of the navigation [11]. Additionally, the tape used for the magnetic guide

belt can be susceptible to contamination, potentially causing deviations or errors in the robot’s

trajectory. Regular inspection and tape cleaning are necessary to ensure reliable navigation.

2.1.2 Free-Path Navigation

In free-path navigation, the movement of the mobile robot is planned in real-time, allowing the

robot to autonomously navigate through an environment without predefined paths or constraints.

This approach provides flexibility and adaptability, as the robot can dynamically plan and adjust

its path based on real-time perception of its surroundings.

2.1.2.1 Inertial Navigation

One common method used in free-path navigation is inertial navigation, which employs a gyro-

scope installed on the AMR. The gyroscope measures the robot’s rotation and provides valuable

information about its orientation. Additionally, a positioning block is installed on the ground

within the robot’s working environment. By combining the gyroscope’s deviation signal with the

ground positioning block signal, the AMR can accurately determine its position [11].

While inertial navigation offers numerous advantages, it is not without its difficulties. Using

such advanced technology, including gyroscopes and sensor systems, contributes to its effective-

ness but results in higher costs. Furthermore, gyroscopes are sensitive to vibrations, which can

introduce errors in the navigation system [11]. Proper measures need to be taken to mitigate these

vibrations, such as vibration-dampening mechanisms or integrating complementary sensors for

robust navigation.

2.1.2.2 Laser Navigation

Laser navigation is another commonly used method for free path navigation. It involves the emis-

sion and reception of laser beams by a sensor, typically a LIDAR (Light Detection and Ranging)

device. LIDAR sensors emit laser beams that sweep the surrounding environment, measuring the

time the beam takes to travel and return. This enables the measurement of distances to objects by

illuminating them with pulsed laser light and detecting the reflected pulses using a sensor [12].



8 Background and Fundamental Aspects

By analysing these measurements, laser navigation allows for the determination of distances and

angles to surrounding objects with high precision.

This method utilizes LIDAR-based Simultaneous Localization and Mapping (SLAM) algo-

rithms. These algorithms process the scattered laser reflections collected by the LIDAR, gener-

ating a point cloud that represents the spatial distribution of objects in the environment [13]. By

integrating the point cloud data with robot motion, SLAM algorithms simultaneously map the

environment and accurately localize the robot within it.

LIDAR sensors come in various types, including 2D and 3D variants [12]. When comparing

the modern 3D LIDARs to the traditional 2D LIDARs, the newer ones not only add an extra spatial

dimension but also offer an increased number of scanning layers, resulting in wider fields of view

and extended range capabilities.

It is important to note that laser navigation offers several advantages, including its ability

to provide highly accurate and reliable results. Laser beams are not significantly affected by

environmental lighting conditions, making this method suitable for various lighting environments.

However, it is worth considering that laser navigation can be associated with high costs due to the

expense of LIDAR devices and the computational requirements of SLAM algorithms [11].

2.1.2.3 Visual Navigation

The visual navigation method is a rapidly developing method in the field of mobile robots, exten-

sively used by AMRs. It involves the utilization of cameras or visual sensors to capture image

information of the surrounding environment [11]. These images are then processed using com-

puter vision techniques to extract relevant visual features, such as edges, corners, or textures.

With the aid of SLAM algorithms, visual navigation enables the robot to estimate its real-time

position and orientation in real-time while creating a map of the environment. By comparing the

extracted visual features with the map, the robot can accurately determine its location and plan

the optimal path to its destination. Additionally, visual navigation plays a crucial role in obstacle

avoidance by continuously analysing captured images to identify potential obstacles and hazards.

The robot’s path planning algorithm incorporates this visual information to generate collision-free

paths, ensuring safe and efficient navigation.

Utilizing sensors and SLAM technology, it becomes possible to track the trajectory of the

mobile robot and provide feedback position correction. In dynamic environments or encountering

traffic, the AMR can adapt by adjusting its speed or coming to a stop. Consequently, all decisions

pertaining to guide path selection, obstacle avoidance, and routing are autonomously made by the

mobile robot itself. This empowers the mobile robot to navigate effectively and autonomously in

complex environments, responding to real-time changes and ensuring the successful completion

of its tasks [9].
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2.2 Path Planning

One other crucial aspect of mobile robot navigation, closely related to the previous topic of nav-

igation methods, is path planning. Path planning involves the use of algorithms that consider the

spatial layout, obstacles, terrain, and other relevant information to create paths that robots can

autonomously and safely follow within their workspace environment, with the goal of reaching a

specific endpoint from a specific starting point [1].

In addition to path planning, it is important to distinguish two other concepts: trajectory plan-

ning and motion planning. Trajectory planning involves determining the robot’s trajectory as a

function of time, meaning that the position of the mobile robot is known at every time instant

[2]. It focuses on generating a smooth and feasible path that considers time-varying constraints

and objectives. Trajectory planning ensures precise control of the robot’s motion, enabling it to

navigate through complex environments while adhering to desired temporal constraints.

On the other hand, motion planning takes into account the kinematic and dynamic restrictions

of the robot [2], considering factors such as its physical capabilities, velocity limits, acceleration

limits, and turning radius. Motion planning algorithms ensure that the generated paths are exe-

cutable by the robot, taking into consideration its physical constraints and capabilities. It aims

to optimize the robot’s motion while considering its kinematic and dynamic limitations, ensuring

both safety and efficiency during navigation.

Furthermore, within the context of path planning, it is important to be familiarized with an-

other term known as optimal path planning. Optimal path planning involves the use of a cost

function that takes into account aspects such as distance traveled or time. The goal is to find a set

of paths that optimize this cost function, identifying the path that minimizes or maximizes the de-

sired criteria [1]. Optimal path planning algorithms employ various techniques, such as heuristic

search or mathematical optimization, to efficiently explore the search space and identify the most

favorable path based on the given criteria.

2.2.1 Configuration Space

Another important term to be familiar with when considering path planning is the configuration

space. The configuration space, denoted as Cspace, is a fundamental concept used to address the

challenge of navigating in a given working environment with a mobile robot. It represents the set

of all possible configurations and positions that the robot can assume [14].

To construct the configuration space, it is necessary to have knowledge of the map or layout of

the working environment where the robot operates. The configuration space is then defined based

on this information, representing the entire space in which the robot can move.

The Cspace can be divided into two main components: the free space, Cfree, and the obstacle

space, Cobstacle. The Cfree represents the regions within the configuration space where there are no

obstacles, allowing the robot to move and traverse freely [2]. This space corresponds to the areas

accessible by the mobile robot without encountering any obstacles or physical constraints.
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On the other hand, the Cobstacle represents the positions or regions within the configuration

space that are occupied by obstacles or are inaccessible to the mobile robot due to various con-

straints [1]. These obstacles could include walls, furniture, or any other objects present in the

environment that pose restrictions on the robot’s movement.

2.2.2 Decomposition Graph-Based Methods

There are various path planning methods, which can be divided into four categories: bioin-

spired methods; mathematical model-based methods; sampling-based methods; and decomposi-

tion graph-based methods [1]. In the context of this dissertation, the methods that will be explored

are the decomposition graph-based methods.

In decomposition graph-based methods, the fundamental idea is to represent the working en-

vironment as a grid, where the Cspace is divided into a set of cells. It is determined which cells are

free (Cfree), which cells are occupied (Cobstacle), and which cells correspond to start or end nodes.

By partitioning the configuration space into these categories, a graph structure can be constructed

to establish connections between the cells [1].

The graph structure represents a map of the working environment as a collection of vertices

and edges. Figure 2.1 illustrates an example of a graph structure.

Figure 2.1: Example of a graph. Reprinted from [1].

2.2.2.1 Cell Decomposition

This method refers to dividing the Cspace into cells and determining whether each cell is free or

occupied. The connections between neighboring cells are then established, creating a graph struc-

ture. To find a path, a starting point is assigned to one cell and a destination point to another cell.

Graph search algorithms are employed to determine the sequence of cells that must be traversed

to follow the desired path [2].

The cell decomposition method can be further categorized into two types:
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• Exact cell decomposition.

• Approximate cell decomposition.

2.2.2.2 Exact Cell Decomposition

In the exact cell decomposition approach, the configuration space, Cspace, is divided into cells

with precise boundaries. Each cell is rigorously determined as either free (Cfree) or occupied

(Cobstacle) based on the characteristics of the environment. The decomposition of the Cspace aims to

create cells with relatively simple geometries, such as convex polygons and trapezoids [2], which

facilitate the calculation of paths between cells and the identification of neighboring cells.

By using cells with well-defined boundaries and simple geometries, path planning algorithms

can efficiently determine paths within the environment. The simplicity of the cell shapes allows

for easier computation of paths, as well as straightforward identification of neighboring cells.

This approach simplifies the navigation process by providing a structured representation of the

environment that is conducive to path planning and graph-based algorithms.

For example, in the case of trapezoid decomposition or vertical decomposition, the free space

can be divided into trapezoidal regions using vertical lines originating from each of the obstacle

vertices. By employing vertical lines from the vertices of obstacles, the free space is divided into

trapezoidal regions [14]. The trapezoid decomposition approach provides a straightforward and

efficient way to partition the free space based on the geometry of the obstacles. It is possible to

observe an example of this decomposition in Figure 2.2.

Figure 2.2: Example of a trapezoid decomposition. Reprinted from [2].

2.2.2.3 Approximate Cell Decomposition

This method adopts a more flexible approach to the division of the Cspace, allowing for three

types of cell classification: free, occupied, or semi-occupied. The cells in this method typically

have basic geometric shapes, such as squares, which simplifies the construction of the Cspace in a

straightforward and efficient manner [2].

It is important to note that in approximate cell decomposition, the accuracy of the representa-

tion of the real working environment is influenced by the size of the cells.

There are various methods for approximate cell decomposition, but the main two are:
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• Fixed cell decomposition.

• Quadtree decomposition.

For the approach of fixed cell decomposition approach, the Cspace is divided into cells of a

fixed and predefined size [2], typically squares, as depicted in Figure 2.3.

Figure 2.3: Example of a fixed cell decomposition. Reprinted from [2].

In the case of Quadtree decomposition, it takes a recursive approach to divide the Cspace. It

begins by dividing the space into four equal cells, and when a cell does not belong to the free

space (Cfree), it is further subdivided into four smaller cells [2], as shown in Figure 2.4. This

method aims to reduce the number of points required to represent obstacles compared to a full grid

representation [14], resulting in faster execution times for search algorithms. However, Quadtree

decomposition comes with a higher implementation complexity.

Figure 2.4: Example of a Quadtree decomposition. Reprinted from [2].
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2.2.3 Graph Search Algorithms

After creating a graph representation of the configuration space (Cspace) using one of the meth-

ods discussed earlier, the next step is to find the optimal path between two specified points. To

accomplish this, a graph search algorithm must be employed. It is essential to select the appropri-

ate algorithm that not only accurately determines the optimal path but also operates efficiently in

terms of computational resources and runtime.

One major group of algorithms used in path planning is heuristic-based, which considers the

cost of traversing edges between vertices. These algorithms incorporate a heuristic function that

estimates the cost-to-go or the expected distance to the goal while considering the cost incurred

until that point. The heuristic guides the algorithm to prioritize paths that are expected to lead to

the goal more quickly, improving the efficiency of the search process.

Examples of heuristic-based algorithms for path planning include the A* algorithm and the

TEA* algorithm.

2.2.3.1 A* algorithm

The main idea of the A* (A star) algorithm is to explore the search space by considering both the

cost of the path already taken (the accumulated distance) and an estimate of the remaining cost to

reach the goal (the heuristic estimate). For path planning, this heuristic estimate is typically based

on some measure of distance between the current node and the goal. The Euclidean distance or

the Manhattan distance are usually used [1].

The Euclidean distance, as shown in Equation 2.1, calculates the straight-line distance between

two points, represented in their coordinates (xn,yn) and (xg,yg).

Euclidean Distance: H(xn,yn) =
√
((xn − xg)2 +(yn − yg)2) (2.1)

The Manhattan distance, as shown in Equation 2.2, calculates the distance between two points

by summing the absolute differences of their coordinates.

Manhattan Distance: H(xn,yn) = |(xn − xg)|+ |(yn − yg)| (2.2)

In the A* algorithm, each node in the search space contains information about the initial

distance from the starting node, and the sum of this distance and the estimated distance to the

target node. During each iteration, the algorithm selects the node with the highest probability of

being on the shortest path between the start and the target [1].

To calculate the cost for each node, the algorithm uses a heuristic function h(n) that estimates

the cost of the cheapest path from the starting node to the destination node. Additionally, a function

g(n), which may or not be heuristic, is used to represent the cost of the path already taken. The

sum of these two functions determines the cost of a node [2], as represented in Equation 2.3.

f (n) = h(n)+g(n) (2.3)
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This algorithm has the advantage of being able to find multiple optimal solutions in the search

space, but it can be computationally intensive. It is particularly suitable for static working en-

vironments where the layout remains unchanged. However, in the case of multi-robot systems,

additional complexities arise due to the presence of obstacles and the need to handle dynamic

changes in the environment, which pose challenges for path planning. To address this issue, mul-

tiple extensions of the A* algorithm have been developed, such as the TEA* algorithm.

2.2.3.2 TEA* Algorithm

The Time-Enhanced A* algorithm (TEA*) was developed as an extension of the A* algorithm to

address the challenges of path planning in multi-robot systems [3]. It aims to navigate around ob-

stacles, avoid deadlocks, and ensure the efficient execution of a set of tasks. The TEA* algorithm

builds upon the principles of the A* algorithm while incorporating additional features.

In the TEA* algorithm, the input map is represented in three dimensions, consisting of the

map’s coordinates (x and y) and a temporal dimension, as shown in Figure 2.5(a). The temporal

layer is represented by layers k = [0,Tmax], where Tmax is the maximum number of layers [3]. The

map can be obtained through cell decomposition of the Cspace, resulting in an occupancy grid with

free and occupied cells.

Figure 2.5: Input map considering the multiple temporal layers (a) and the analysed neighbor cells
focusing the cell with the robot position (b). Reprinted from [3].

In TEA*, with the addition of the time domain, several features are incorporated [3]. The

position of each robot is calculated in each temporal layer, and the analysed neighbor cells of the

current position of the robot belong to the next temporal layer, represented in Figure 2.5(b). This

ensures proper temporal coordination and movement planning. Additionally, the neighbor cells

include the cell containing the robot’s current position, which is depicted as the blue cell in Figure

2.5(b).

When applied to multi-robot systems, the TEA* algorithm initially converts the current po-

sitions of the robots into obstacles. This enables each robot to consider the positions of other

robots as occupied cells, thereby avoiding deadlocks. These cells are treated as obstacles only

in the temporal layers k = {0,1} [3]. By doing so, the robot acknowledges the occupation of a
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specific path in the initial moments but can generate alternative obstacle-free paths in subsequent

moments, effectively resolving the deadlock issue.

The algorithm then proceeds by analysing the list of missions, which consists of a robot num-

ber and a task assigned to it, and calculates the path for each robot. Before the next mission is

analysed, the calculated path is converted into a moving obstacle for the remaining robots, ensur-

ing collision avoidance and efficient coordination [3].

This iterative process continues in a loop, allowing for the updating of robot positions and

the recalculation of paths for each subsequent mission on the list. By dynamically adapting to

changing environments and mission requirements, the TEA* algorithm facilitates effective multi-

robot path planning.

2.2.4 Free Path Planning Algorithms

In the case of certain mobile robots, the employed algorithms fall under the category of free path

planning algorithms. These algorithms utilize various techniques, like potential fields, rapidly ex-

ploring random trees (RRT) [15], or sampling-based methods like Probabilistic Roadmaps (PRM)

[16], to generate feasible paths. The primary goal of these algorithms is to plan collision-free paths

while optimizing metrics such as distance and/or time.

All these algorithms take into consideration the robot’s kinematics, such as its physical limi-

tations and constraints on velocity and acceleration, to ensure that the generated paths are within

the robot’s capabilities. Additionally, they also consider the geometry of the environment and

obstacles, enabling the robot to plan paths that navigate efficiently and safely through complex

environments.

While free path planning algorithms use continuous techniques to explore the configuration

space and find paths, graph search algorithms, as mentioned in 2.2.3, discretize the configuration

space into a graph, where vertices represent valid robot configurations, and edges represent fea-

sible transitions between configurations. One advantage of free path planning algorithms is their

ability to handle dynamic and complex environments effectively, as they can adapt to real-time

changes. They offer flexibility in handling different robot types and environmental conditions. On

the other hand, graph search algorithms can be more computationally efficient, especially in sce-

narios with low-dimensional configurations spaces, where the graph can be constructed relatively

quickly.

2.3 Exploration of the Mobile Robot Market

Today, numerous companies are at the forefront of developing advanced mobile robots, each offer-

ing unique features and capabilities. These robots employ different navigation methods, catering

to diverse application requirements. Furthermore, the price ranges of these mobile robots vary

based on their sophistication, functionalities, and intended use.

Several prominent companies have emerged as key players in the mobile robot market, deliv-

ering cutting-edge solutions for a wide range of industries, including [17]:
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• OMRON: OMRON is a renowned manufacturer in the industrial automation industry with

extensive expertise in sensing and control technology. The LD Mobile Robot is a self-

navigating AMR designed for operation in dynamic and demanding environments. Unlike

traditional navigation methods that require facility modifications like beacons or floor mag-

nets, the LD Mobile Robot relies on advanced sensors for seamless navigation, which trans-

lates into cost savings and operational flexibility. The robot is equipped with laser scanners

that allow it to detect and recognize natural features in its environment, using free path

planning algorithms to generate paths. These sensors enable the robot to create a map of

its surroundings and navigate through complex spaces with precision. Additionally, the LD

Mobile Robot is equipped with a safety-rated laser that serves both for SLAM and safety

functionality. When encountering an obstacle, the robot responds by appropriately reducing

its speed or coming to a complete stop, ensuring safe operation. The LD mobile robot offers

a reliable and efficient solution for autonomous navigation, enabling it to adapt to changing

environments and operate smoothly in various industrial settings. With its robust sensor

suite and intelligent navigation capabilities, it exemplifies the cutting-edge advancements in

autonomous mobile robotics.

• Locus Robotics: Locus Robotics is a prominent company in the field of mobile robotics,

specializing in AMRs for warehouse automation and fulfillment operations. Their robots are

specifically designed to collaborate with human workers, enhancing efficiency and produc-

tivity in industries such as e-commerce, retail, and logistics. Locus Vector is an innovative

and adaptable AMR solution tailored for high-productivity material handling and logistics

applications. It has dual safety-rated LIDAR sensors and a three-stage safety system, ensur-

ing safe operation in shared work environments. The robot boasts a high payload capacity

of up to 600 lbs, further enhancing its capabilities.

• Robotnik: Robotnik is a company specialized in the design and manufacturing of mobile

robots for industrial and research applications. One of their notable products is the RB-1, an

AMR specifically designed for indoor environments. The RB-1 features a robust and versa-

tile platform that can be customized with different payloads and sensors according to spe-

cific application requirements. The robot’s software includes a control system, a laser-based

localization system, and a navigation system. However, it does not have fleet management,

job prioritization, communication to Manufacturing Execution Systems (MES), or a mobile

planner. The RB-1’s navigation is fully supported by ROS.

2.4 Multi-Robot Systems

When considering mobile robots, one crucial aspect to consider is how to effectively manage a fleet

of mobile robots. A fleet of mobile robots refers to a group of robots designed to perform certain

collective behaviors that a single robot is incapable of achieving. There are several advantages to

utilizing a multi-robot system compared to a single-robot system, including [18]:
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• Resolving complex tasks: Multi-robot systems can handle tasks that are inherently dis-

tributed in nature or require diverse capabilities. By distributing the workload among mul-

tiple robots, complex tasks can be efficiently accomplished.

• Enhanced performance: The collaboration and parallelism inherent in multi-robot systems

can significantly improve performance. Multiple robots working in conjunction can reduce

task completion time, increasing overall efficiency.

• Increased reliability: Multi-robot systems offer inherent redundancy. If a single robot

experiences a failure or malfunction, the presence of other robots can ensure that the task is

still carried out successfully. This redundancy enhances the reliability and robustness of the

system.

• Simplified design and cost-effectiveness: Utilizing smaller, simpler robots in a multi-robot

system can lead to cost savings and easier implementation. The modular nature of the

system allows for individual robot units to be less expensive, while the overall system can

achieve high performance through coordination.

• Scalability, flexibility, and adaptability: Multi-robot systems are highly scalable since

additional robots can be added or removed from the fleet as per the requirements of the task

or the environment. This flexibility allows for adaptability to dynamic environments and

changing task requirements more effectively than single robots. The collective decision-

making and coordination capabilities enable them to adjust their behavior and optimize their

performance in response to real-time changes.

One fundamental decision that needs to be made in multi-robot systems is whether to use

centralized, decentralized control or some combination of both. In fully centralized control ap-

proaches, high performance and efficiency are expected. However, these approaches come with

the risk of single-point failures and poor scalability due to limitations such as communication

bottlenecks [19].

On the other hand, fully decentralized control approaches address the limitations of central-

ized control by leveraging redundancy and parallelization. They eliminate the risk of single-point

failures and offer better scalability. However, they may have disadvantages such as lower speed

and efficiency compared to centralized control [19].

Finding the right balance between centralized and decentralized control is crucial in achiev-

ing the desired performance, fault tolerance, and scalability in multi-robot systems. Hybrid ap-

proaches combining centralized and decentralized control can provide a solution that leverages the

benefits of each approach while mitigating their drawbacks.

2.4.1 Centralized Control Architecture

In centralized control architectures, there is a central control agent that possesses the global infor-

mation of the environment and the robots and can communicate with all the robots to share tasks
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and coordinate their actions. This central control agent, which can be a computer or a dedicated

robot, serves as the decision-making entity for the entire fleet [20]. Each robot communicates con-

tinuously with the central control agent, receiving task allocations and providing status updates

[18].

The central control agent processes the information received from individual robots and gen-

erates appropriate commands to be sent back to each robot, ensuring coordinated execution of the

assigned tasks. One of the main advantages of this architecture is the ability to have a global view

of the world, enabling the central control agent to generate globally optimal plans and allocate

resources efficiently [20]. Furthermore, the centralized approach reduces duplication of effort,

optimizes resource utilization, and can lead to cost and time savings [18].

However, it is important to note that centralized control architectures have certain limitations.

Firstly, they are typically more suitable for systems with a small number of robots [20], as manag-

ing a large fleet can lead to communication bottlenecks and increased computational complexity.

Additionally, centralized control architectures are vulnerable to failures in communication, dy-

namic environments, or uncertainties, as the entire system relies on the central control agent [20].

A single point of failure can have a significant impact on the entire fleet’s performance. Scalabil-

ity is also a concern, as the system’s performance may degrade as the number of robots increases,

further exacerbating the bottleneck issue [18].

2.4.2 Decentralized Control Architecture

When considering the decentralized control architecture in multi-robot systems, two main cate-

gories can be identified [20]: distributed architectures and hierarchical architectures. In distributed

architectures, there is no central control agent, and each robot in the fleet possesses the same level

of control and autonomy in the decision-making process. On the other hand, hierarchical archi-

tectures represent a hybrid approach that combines elements of both centralized and distributed

control. In this case, the robots are organized into clusters, and there are one or more local central

control agents responsible for coordinating the activities within their respective clusters.

Decentralized control architectures offer unique advantages. In distributed architectures, one

key advantage is the robustness of the system [18]. If one robot fails, the rest of the fleet can

continue to operate effectively. Scalability is also a notable advantage, as there is no centralized

control agent acting as a bottleneck, allowing for easy integration of new robots into the fleet.

Additionally, decentralized control architectures provide flexibility and have lower communication

demands compared to centralized approaches.

However, it is important to consider the potential drawbacks of decentralized control. One

challenge is the possibility of sub-optimal solutions [18], as individual robots may make deci-

sions based on local information that may not lead to the best global solution. Coordination and

cooperation among the robots becomes critical to ensure overall efficiency and performance.
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2.5 Fleet Managers

The main challenge to consider regarding mobile robot fleet managers on the market is that each

manufacturer’s fleet manager is typically designed to control their own robots. This approach

ensures seamless integration and optimized performance for the specific robot fleet.

Some of the most well-known robot fleet managers are:

• Mobile Industrial Robots (MiR) has developed the MiRFleet fleet manager [21], designed

to control MiR robots. It is a centralized control robot fleet manager that allows users to

manage and coordinate their fleet of MiR robots. MiRFleet offers functionalities such as

order handling by prioritizing and managing orders among multiple robots; traffic control,

enabling the coordination of critical zones that consist of multiple robot intersections; and

battery level control, which allows the user to monitor the robot’s battery levels and automat-

ically handle the recharging process. This fleet manager facilitates seamless communication

and coordination between MiR robots, resulting in improved overall productivity.

• Otto Motors has developed the Otto Fleet Manager [22], designed to control and coordinate

multiple AMRs within an industrial facility. This centralized control fleet manager offers

various features, including: task assignment, enabling the assignment of specific tasks to

individual robots or groups of robots, ensuring efficient use of resources; traffic control,

ensuring smooth and safe interaction between the AMRs, avoiding collisions and congestion

in busy areas; and job supervision, with the fleet manager continuously processing data

about the fleet, providing information regarding each robot’s status, such as charge level,

location, and job status.

• Fetch Robotics has developed a unified control center for coordinating and monitoring their

robot fleet, called FetchCore [23]. This fleet manager has several features, such as mapping,

that allow the creation of detailed maps of facilities, enabling navigation and task planning

for the robots. A real-time fleet status is also provided to continuously access robot informa-

tion, including each robot’s status and settings, ensuring up-to-date monitoring and control.

Furthermore, it includes performance analytics that enhances productivity and efficiency,

providing valuable insights into fleet performance and optimization opportunities.

• OMRON has developed the OMRON Fleet Operations Workspace (FLOW) [24]. This

powerful tool is designed for managing and optimizing a fleet of OMRON mobile robots.

FLOW features centralized control, facilitating intelligent job assignments and reducing

wasted time and movement. It also includes managed motion, ensuring smooth operations in

a dynamic working environment. Additionally, FLOW provides traffic control by notifying

converging robots of their predicted paths, allowing them to calculate new paths efficiently

and avoid collisions.
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2.6 Communication Between a Fleet of Mobile Robots and the Fleet
Manager

For the many mobile robot providers that exist, there is no single provider that can fulfill every task

required in a specific context by a fleet of mobile robots. Therefore, there is a need to integrate

different AGVs and/or AMRs from various vendors into a fleet. This type of heterogeneous fleet

presents certain challenges, including [25]:

• Individual integration effort: Integrating each new robot from a different vendor requires

individual effort and compatibility considerations. This can lead to increased complexity

and time-consuming integration processes.

• Traffic management: In a heterogeneous fleet, where robots are sourced from different

vendors, each robot may perceive the others as obstacles unless they have a common under-

standing of their respective trajectories. This lack of awareness can result in low operational

efficiency and potential collisions.

• Sharing the same environment: Robots from different vendors sharing the same environ-

ment can be challenging due to differences in communication protocols, data formats, and

control systems. Seamless coordination and collaboration between heterogeneous robots

become more difficult to achieve.

• Collaborative task execution: Performing collaborative tasks with robots from differ-

ent vendors may require additional coordination mechanisms and standardized interfaces.

Achieving efficient collaboration and seamless task allocation across a heterogeneous fleet

can be more complex and demanding.

With the increasing need for better communication and lower integration costs among robots

provided by different vendors, interoperability standards have emerged. These standards aim to

facilitate seamless integration, communication, and coordination among robots from diverse ven-

dors, enabling efficient and effective operation of heterogeneous fleets [25].

2.6.1 Robotics Middleware Framework

To enable the coordination of fleets of robots and their integration with facility infrastructure, the

Robotics Middleware Framework (RMF) was developed. RMF is a comprehensive framework

comprising reusable open-source libraries and tools built on top of ROS 2 (Robot Operating Sys-

tem 2), which enables seamless interoperability among heterogeneous robotic systems [25]. With

RMF, it is also possible to interface with various facility resources, such as doors, elevators, and

passageways, enhancing the overall capabilities of the robot fleet.

RMF is designed to be flexible and robust, capable of operating on different communication

layers. Its architecture facilitates scalability as the level of automation in a specific environment

increases. Additionally, RMF offers cost savings by allowing resource sharing and minimizing

integration efforts.
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2.6.2 VDA 5050 Standard for AGVs

The VDA5050 is a standardized interface for AGV communication developed through collabora-

tion between the German Association of the Automotive Industry (VDA) and the German Associ-

ation for Materials Handling and Intralogistics (VDMA). This standard enables seamless commu-

nication between a fleet of AGVs and a master control system, facilitating the exchange of status

updates and other relevant information.

One of the key features of the VDA5050 standard is the utilization of the Message Queuing

Telemetry Transport (MQTT) protocol. MQTT employs a publish/subscribe architecture, allow-

ing AGVs to interface with the master control system through MQTT brokers implemented by

users. This protocol ensures efficient and reliable message transport, enabling timely and accurate

communication between the AGVs and the master control system [25].

2.7 INESC TEC Navigation Stack and Fleet Manager

The INESC TEC Navigation Stack (INS) is a stable stack that was developed and tested through-

out the years. This stack was developed on top of a ROS framework, supporting multiple traction

modes, such as differential, tricycle, and omni-directional. The INS has several localization al-

gorithms [26], such as Adaptive Monte Carlo Localization (AMCL), Perfect Match (PM) Local-

ization, and Extended Kalman Filter (EKF) Beacons Localization, drivers that interface with the

robot hardware, a path planner, a controller for parametric trajectories, and a map server. The INS

supports multiple versions of Ubuntu, but in the context of this dissertation, it was installed the

Ubuntu 18.04 LTS version, which is compatible with the version ROS melodic.

The INESC TEC robot fleet manager has centralized control, is graph-based, and is constituted

by multiple ROS nodes, as depicted in Figure 2.6.

Figure 2.6: Architecture of the robot fleet manager.
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The following briefly explains the responsibilities of each ROS node:

• path_supervisor: this node serves as the task manager. When a specific task requires a

particular type of robot, the task manager searches through the available robots in the fleet

with the desired type and calculates their distance to the designated point where the robot

must navigate to execute the task. It then chooses the best-positioned robot to complete the

intended task.

• path_planner: this node is responsible for planning the paths that robots must follow to

execute a specific task. It uses the TEA* algorithm for path planning.

• graph_server: this node is responsible for sending the graphs and docking points to the

nodes path_planner and path_supervisor.

Furthermore, the point of communication between each robot in the fleet and the fleet manager

occurs through the navigation_handler node, as depicted in Figure 2.6. This specific robot fleet

manager is used in the context of this dissertation.



Chapter 3

Overview of Implemented Technologies
and Architectures

The main objectives of this dissertation were the development of a software module capable of

controlling the OMRON LD-90 mobile robot and its integration with a ROS-based robot fleet

manager. This chapter delves into the technologies and architectures adopted to achieve these

goals, specifically, exploring the utilization of the Robot Operating System (ROS) and the Ad-

vanced Robotics Command Language (ARCL), a specific interface developed by OMRON.

In the forthcoming sections, an in-depth analysis of the communication mechanisms between

system components and the overall software organization is provided.

3.1 ROS

This section discusses the Robot Operating System (ROS), including its definition, usage, and

importance in project development.

ROS is an open-source framework that facilitates the development of robot systems. Despite

its name, ROS is not a traditional operating system; rather, it consists of software libraries and tools

that assist in building robot applications. It operates in conjunction with a conventional operating

system. The primary objective was to establish a flexible and modular framework that promotes

code, algorithm, and data sharing, fostering collaboration and expediting progress in robotics.

In addition to the core idea, the philosophy of ROS revolves around several key objectives:

• Peer-to-peer communication: ROS advocates a distributed architecture in which pro-

cesses, known as nodes, engage in continuous communication through a publisher-subscriber

messaging system. Without a central routing service, message exchange occurs directly

between processes [27]. This approach enhances modularity and reusability, enabling in-

dependent development and testing of nodes that can be seamlessly integrated into larger

systems.

23
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• Tool-based approach: ROS offers a range of small, versatile tools for tasks such as de-

bugging, visualization, and simulation. Instead of a monolithic runtime, ROS adopts a

microkernel design, utilizing numerous small tools to construct and execute various ROS

components [28].

• Multilingual support: Each process within ROS can be programmed in any language sup-

ported by ROS client libraries. High-performance tasks can be implemented in C++ or C,

while other tasks can be implemented using Python or Java [29]. Furthermore, multiple

languages can be combined through language-independent message processing, providing

flexibility that is not readily available in other frameworks.

• Thin: ROS encourages the creation of separate libraries for each ROS component, driver,

or algorithm with no ROS dependencies. These libraries are wrapped by a thin message-

passing layer that allows them to make use of and be used by other ROS modules [27],

resulting in seamless message exchange and facilitating greater reusability and simplifica-

tion.

• Free and open source: ROS is an open-source framework released under a permissive

license, allowing free access, modification, and distribution of its code and resources [27].

This fosters innovation, accelerates development, and promotes the widespread adoption of

ROS.

3.1.1 ROS Filesystem Level

ROS can be referred to as a meta-operating system due to its OS-like features, in addition to its

tools and libraries, such as hardware abstraction, package management, and a developer toolchain.

Like a conventional operating system, ROS organizes its files in a specific way on the hard disk, as

can be seen in Figure 3.1. So, the ROS filesystem refers to the organization and structure of files

and directories within the ROS environment. It establishes a standardized way to store and access

resources, including packages, source code, configuration files, data files, and more [29].

Figure 3.1: The ROS filesystem level. Reprinted from [4].
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3.1.2 ROS Computation Graph Level

The computation graph level refers to how ROS organizes and manages the communication and

interaction between different software components. At this level, ROS uses a distributed architec-

ture that connects multiple software nodes to form a graph-like structure. The following diagram

represented in Figure 3.2 shows how the ROS graph layer is structured.

Figure 3.2: The ROS computation graph level. Reprinted from [4].

Nodes are independently compiled processes, also known as individual software modules, that

perform computation. These nodes are written using ROS client libraries, which provide APIs for

implementing various ROS functionalities, such as methods for communication between nodes.

Rather than having a monolithic program, a typical ROS system consists of multiple ROS nodes,

each designed to handle specific tasks or functionalities [29].

Communication between nodes is accomplished using messages. Messages are defined as sim-

ple data structures that contain field types supporting standard primitive data types and arrays of

primitive data types [29]. Nodes exchange messages through topics, which implement a publish-

subscribe communication mechanism. When a node wants to send a message, it publishes it to

a specific topic. On the receiving end, a node interested in retrieving information of a particular

data type subscribes to the relevant topic [28]. Multiple nodes can subscribe to the same topic or

publish on the same topic concurrently [27], as it is possible to see in Figure 3.3.

Figure 3.3: Illustration of the ROS topic publish/subscribe concept.



26 Overview of Implemented Technologies and Architectures

In the context of this dissertation, the representation of ROS nodes and ROS topics will be

as depicted in Figure 3.3, with blues circles representing nodes and red rectangles representing

topics.

In addition to the topic-based communication model, ROS supports synchronous interaction

between nodes. This is achieved using ROS services, which enable nodes to call functions that

are executed by other nodes [27]. Services are defined by a pair of messages that operate on a

request/response mechanism, as shown in Figure 3.4. The request and response data types must

be defined in a specific file. Unlike topics, only one node can advertise a service with a given

name.

Figure 3.4: Illustration of the ROS service request/response mechanism.

3.1.2.1 ROS Master

The ROS master acts as a centralized coordination node for the communication between various

nodes in a ROS system. It provides essential services to facilitate this coordination, including

registration and naming services.

When a node initializes, it can register itself with the ROS master, providing information such

as its name and the services and topics it offers or requires [29]. This registration allows the ROS

master to maintain a record of active nodes in the system.

Regarding topics, nodes that wish to publish data on a specific topic must register this infor-

mation with the ROS master. The ROS master then keeps track of publishers and subscribers for

each topic by maintaining a list of active nodes interested in that topic.

When a node wants to subscribe to a topic, it sends a request to the ROS master, specifying the

topic name of interest. The ROS master responds by providing a list of publishers for that topic.

The subscriber node can then establish direct connections with the publishers using the provided

information.

The command used to run the ROS master is as follows: $ roscore.

3.1.3 RViz

RViz (ROS Visualization) is a powerful visualization tool in ROS, capable of rendering three-

dimensional (3-D) data including robot models, sensed images and point clouds. It is commonly

used for visualizing robot states, sensor data, and planning information in a simulated or real

robotic environment.

In addition to visualization, using Marker messages, it is also possible to interact with the user

interface provided by RViz [30].
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3.1.4 TF Coordinate Conversion System

The TF coordinate conversion system in ROS provides a framework for managing and transform-

ing coordinate frames in a robotic system. It allows users to keep track of multiple reference

coordinates under ROS over time.

A transformation in TF defines the relationship between two coordinate frames, representing

how one frame is positioned and oriented relative to another frame. It consists of a translation

vector and a rotation expressed as a quaternion or Euler angle. The implementation of TF is made

on the topics /tf and tf_static, through the publisher/subscriber mechanism. On top of that, it is

possible to observe all coordinate frames and their relationships in a hierarchical structure called

the TF tree, which represents the parent-child relationships between frames [31].

3.2 OMRON

3.2.1 ARCL

OMRON has developed the Advanced Robotics Command Language (ARCL), which serves as

a communication interface for interacting with their mobile robots. ARCL is a straightforward,

text-based operating language that enables users to send commands to the robot and receive re-

sponses from the robot [32]. To utilize ARCL, certain parameters in the OMRON MobilePlanner,

a graphical user interface (GUI) for communication and configuration of the mobile robots, need

to be accessed and modified.

To establish a connection with the ARCL server, a TELNET client is used. TELNET is a net-

work protocol that provides bi-directional communication, handling eight-bit byte-oriented data

transmission [33]. It relies on the Transmission Control Protocol (TCP), which enables the trans-

mission of data along with interspersed TELNET control information [33]. TELNET operates

within the TCP/IP (Transmission Control Protocol/Internet Protocol) protocol suite, which en-

compasses the set of protocols used for communication over the Internet.

Once connected to the ARCL server and upon successful login, the ARCL server provides a

comprehensive list of supported commands, accompanied by corresponding descriptions. Each

command can be executed, considering that certain commands require mandatory arguments to be

sent to the server [32].

3.2.1.1 TCP/IP Sockets

There is the possibility of establishing a client/server connection to the ARCL server through a

TCP/IP socket, and multiple connections are allowed [32]. A socket serves as a communication

endpoint between two processes running in a network [34]. Applications can use sockets to send

and receive data.

TCP/IP sockets can be categorized into two main types: stream sockets and datagram sockets.

Stream sockets utilize TCP as the end-to-end protocol, layered on top of the Internet Protocol (IP),
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providing a reliable byte-stream service [34]. Datagram sockets, on the other hand, use the User

Datagram Protocol (UDP) for sending individual messages [34].

3.2.2 MobilePlanner

MobilePlanner is the software developed by OMRON to serve as a “control center” for their mobile

robots [5]. The user interface of this software, represented in Figure 3.5, offers several function-

alities. It allows users to create and edit map files, set goals and tasks for the robots, modify the

configurations of the AMRs, and command individual AMRs for navigation and movement [5].

Figure 3.5: Mobile Planner Interface. Reprinted from [5].

One main feature of MobilePlanner is its map functionality, which represents a scanned rep-

resentation of the floor plan in the mobile robot’s operating space. The map file contains crucial

information used by the robot for navigation. It includes all points and lines scanned by the laser,

as well as objects that influence the robot’s behavior, such as goal points, forbidden areas and lines,

and docking stations. Additionally, the map file stores macros and tasks associated with goals [5].

The maps are stored in files with a .map extension.

3.3 Communication Framework

One crucial aspect to consider while developing a software module is how all the components that

constitute the system communicate among themselves. The implemented system consisted of the
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LD-90 mobile robot, a local machine running the created software modules, and a server where

the INESC TEC robot fleet manager is installed. The interaction between the components can be

seen in Figure 3.6.

Figure 3.6: Proposed Communication Framework.

As mentioned in subsection 3.2.1, the communication with the LD-90 is established through

the ARCL interface. Each LD-90 hosts an ARCL server, which remote clients can access through a

TCP/IP connection. The local machine acts as the direct communication point between the system

and the mobile robot, enabling users to send and retrieve information to and from the robot.

Furthermore, it was intended to integrate the LD-90 with the fleet manager. To achieve this,

the local machine was used as a bridge for communication between the server and the mobile

robot through ROS. Consequently, multiple ROS master nodes must be managed within the same

network.

3.3.1 multimaster_fkie ROS Package

The multimaster_fkie package is a ROS package that provides a discovery mechanism for ROS

master nodes to find and communicate with each other.

This package consists of two main nodes: the master_discovery node and the master_sync

node. The master_discovery node periodically sends multicast messages to the common network,

notifying other existing ROS masters of its presence and facilitating the detection of other available

ROS masters. It also detects changes in the local network and notifies all other ROS masters in the

common network of these changes [35].

On the other hand, the master_sync node utilizes the information from the master_discovery

node to register remote topics and services to the local roscore, as well as update information on

topics and services [35].



30 Overview of Implemented Technologies and Architectures

In this way, the multimaster_fkie package provides a solution for enabling ROS communica-

tion between the local machine and the server in the application design. It allows nodes from

different master nodes to interact with each other as if they were part of a single ROS network. In

Figure 3.7, it is possible to observe an illustration of the process for discovering and syncing used

in the multimaster_fkie package.

Figure 3.7: Illustration of the process of discovering and syncing. Reprinted from [6].

3.4 Software Architecture

The implementation of the application to control and manage the LD-90 mobile robot, while

integrating it with the robot fleet manager, required the development of distinct ROS nodes and

packages. Each node and package was designed to fulfill a unique role, contributing to the overall

objectives of effectively controlling and managing the LD-90 robot.

In Figure 3.8, it is possible to observe the different ROS nodes and packages running in the

local machine and their relation. Additionally, observing the communication point between the

server and the local machine is possible.

The following provides a brief description of each node and package:

• omron_controller node: This node is responsible for establishing a connection to the ARCL

server within the LD-90 mobile robot, enabling the sending of commands to the robot.

• omron_connection_receiver node: This node receives an incoming connection from the

LD-90 mobile robot and handles all the information sent by the robot.

• omron_visualisation package: This package consists of three different nodes, each with

different responsibilities for enabling real-time visualisation of the LD-90 mobile robot
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Figure 3.8: Proposed Software Architecture.

within a map, using RViz. Additionally, this node allows the sending of the robot to specific

points through the RViz interface.

• omron_ros_map node: The fleet manager uses graph-based trajectories for robot naviga-

tion. This node handles the information of these trajectories to generate .map files, used by

the LD-90 mobile robot.

• omron_edges_to_vertices node: This node is responsible for communicating with the robot

fleet manager. It handles the information received from the fleet manager and sends infor-

mation from the robot back to the fleet manager.
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Furthermore, in Figure 3.8, it is also possible to observe the path_supervisor node that belongs

to the robot fleet manager. This node is responsible for sending all the information related to path

planning to the local machine. The information is then processed by the omron_edges_to_vertices

node and sent to the LD-90 mobile robot.

Additionally, the path_supervisor node requires specific information from the robot, includ-

ing its location in the graph, which explains the two-way arrow between this node and the om-

ron_edges_to_vertices node.

3.5 Conclusion

The main objective of this chapter was to provide an in-depth analysis of the technologies used to

develop the control and management of the OMRON LD-90 mobile robot, integrating it with the

INESC TEC robot fleet manager. Additionally, the chosen architectures for the communication

framework of the system and the organization of the implemented software were presented.

This chapter analysed the ROS framework, which facilitates the development of robot sys-

tems, and the ARCL interface, developed by OMRON to enable communication with their mobile

robots. These technologies are fundamental for the proper functioning of the system, and mul-

tiple concepts from these technologies will be continuously referred to throughout the following

chapters.

The system comprises the OMRON LD-90 mobile robot, a local machine, and a server with

the robot fleet manager. The use of TCP/IP sockets enables seamless communication between the

local machine and the LD-90. Additionally, communication between the local machine and the

server is performed through ROS, using a specific ROS package that allows the management of

multiple ROS master nodes within the same network.

The developed software modules that constitute the system were introduced, and their con-

nections were presented. An in-depth analysis of these modules and their obtained results will be

conducted in the subsequent chapters.
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Software Implementation

Related to the C++-based software implementation, corresponding to the management and control

of the LD-90 mobile robot, the focus lies in developing and integrating various nodes and packages

in ROS. The implementation phase is crucial, as it translates the previous theoretical concepts and

algorithms into practical applications, effectively achieving the objectives.

The primary goal of this chapter is to provide a comprehensive overview of the ROS system

created to facilitate the execution of complex robotic tasks. Each node and package will be dis-

cussed in detail, outlining their functionalities, design principles, and interconnections. By delving

into the technical aspects of the implemented software, the aim is to demonstrate a single effective

solution with practical viability.

4.1 Controller Node

The first ROS node implemented was the omron_controller node, responsible for direct communi-

cation with the LD-90 mobile robot. This was achieved by establishing a connection to the ARCL

server on the robot and enabling the sending of commands to control the robot. In order to success-

fully connect with the ARCL server, specific configurations had to be made in the MobilePlanner

software.

4.1.1 ARCL Configurations

The MobilePlanner, with its GUI, facilitates the modifications of the various configurations possi-

ble to do in the ARCL server. In the ARCL server setup section, multiple parameters can be seen

under the Robot Interface tab, as shown in Figure 4.1.

The following parameters must be configured [32]:

• OpenTextServer: This parameter must be set to True in order to open the ARCL server.

• PortNumber: This parameter refers to the TCP port on which the ARCL server is opened.

By default, the value is 7171.

33
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Figure 4.1: ARCL server setup parameter configuration.

• Password: This parameter refers to the password used to connect to the ARCL server. It is

required to set a password; otherwise the ARCL server will not start.

By completing these configurations, it is possible enabling seamless communication between

the omron_controller node and the LD-90 mobile robot, which will facilitate the execution of

various ARCL commands.

4.1.2 Connection to the LD-90

As mentioned in subsection 3.2.1, it is possible to establish a connection to the ARCL server, on

the LD-90 mobile robot, through the use of TCP/IP sockets. There are two steps to consider:

socket creation and connection, since it is a remote client reaching a server.

A socket is created using the socket() function defined in the <sys/socket.h> header as:

int sockfd = socket(int domain, int type, int protocol);

It takes three arguments:

• domain: This parameter specifies the address domain requested in which a socket is created.

It is set to AF_INET to indicate the use of IPv4 addresses.

• type: This parameter indicates the type of socket to be created. It is set to SOCK_STREAM
since a TCP connection is intended.

• protocol: This parameter specifies a particular protocol to use within the socket. It is set

to 0, indicating that the default protocol for the specified address domain and socket type

should be used, in this case, the IP protocol.
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This function will return a non-negative integer that represents the socket file descriptor, if

successful; otherwise, it will return a -1 value to indicate an error.

The connection procedure is performed using the connect() method, which is also defined in

the <sys/socket.h> header:

connect(int socket, const struct sockaddr *address,

socklen_t addresslen);

This method attempts to establish a connection on the socket and takes three arguments:

• socket: This parameter represents the socket file descriptor created using the socket() func-

tion.

• address: This parameter represents a pointer to a sockaddr structure, which contains the

ARCL server’s address, that refers to the IP address of the robot on the network, and the

port number used to access the ARCL server, defined in subsection 4.1.1.

• addresslen: This parameter indicates the size of the sockaddr structure.

The connect() method returns 0 upon successful connection or -1 to indicate an error.

By establishing this connection to the ARCL server, it becomes possible to send commands to

the server and receive response messages in return. The diagram illustrating how the connection

is established can be seen in Figure 4.2, which also demonstrates the server side in a TCP/IP

connection and the methods that must be executed to create the connection.

Figure 4.2: Client/Server socket connection diagram.
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4.1.2.1 Logging into the ARCL server

As mentioned in subsection 4.1.1, a password is a required parameter to open an ARCL server.

Therefore, when a remote client connects to an ARCL server, the server immediately requests the

password. Subsequently, it is required that, before any commands are sent to the robot, a message

containing the defined password has to be sent through the socket to the ARCL server.

4.1.3 Command Receiving in ROS

The omron_controller node subscribes to a single topic, /omron_ld90/send_command, which re-

ceives messages of type std_msgs::String. The callback function implemented for each message

received on this topic handles the message based on the command that it contains.

The ARCL reference guide introduces and explains the supported commands, their required

arguments, and the ARCL server’s response for each command. The following ARCL commands

[32] were considered for sending instructions from the local machine to the ARCL server:

• goto command: This command sends the LD-90 mobile robot to a specific goal defined in

the map loaded on the mobile robot. During the command’s execution, the ARCL server

continuously sends feedback messages until the LD-90 reaches the destination. The final

message indicating the completion of the command is "Arrived at [goal name]".

• getGoals command: This command retrieves a list of goal names defined the loaded map

loaded on the LD-90. The final message indicating the completion of the command is "End

of goals".

• dock command: This command instructs the LD-90 to navigate to the docking station.

The final message received from the ARCL server is "DockingState: Docked ForcedState:

Unforced ChargeState: Overcharge".

• undock command: This command directs the LD-90 to move off of the dock station, po-

sitioning the robot in front of and facing the dock station. The final message received from

the ARCL server is "Stopped".

Based on the command received through the /omron_ld90/send_command topic, the node

writes this command to the socket using the send() method defined in the <sys/socket.h> header.

Subsequently, after sending a command to the ARCL server, the feedback responses from

the server can be verified. The completion of execution of each command can be ensured by

checking for the presence of the final message associated with each command in the server’s

response messages.

As an example, Figure 4.3 illustrates the process of publishing a certain message on the /om-

ron_ld90/send_command topic:

In this example, a ROS node publishes a variable named msg of type std_msgs::String on the

/omron_ld90/send_command topic. The msg variable contains a member variable named data of

type string. In the illustrated example, the value of msg.data is "goto 12".
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Figure 4.3: Example of the process of sending a command to the LD-90 through the om-
ron_controller node.

The callback function for the /omron_ld90/send_command topic, implemented in the om-

ron_controller node, examines the content of the msg.data variable by comparing it with the list of

considered ARCL commands. In this specific case, the command being sent to the ARCL server

is "goto 12" and, as a result, the ARCL server produces response messages associated with this

command. If the robot arrives at the destination goal, the line "Arrived at 12" is expected.

4.2 Connection Receiver Node

The omron_connection_receiver node plays a crucial role in the project’s development as it pro-

vides the ability to receive information from the robot, through TCP/IP sockets, using a special

connection available in MobilePlanner named "Outgoing ARCL connection".

Similar to the omron_controller node, specific configurations in the MobilePlanner software

are required for the proper functioning of the omron_connection_receiver node.
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4.2.1 ARCL Configurations

4.2.1.1 Outgoing ARCL Connection Setup

MobilePlanner allows for the configuration of an Outgoing ARCL connection, where the LD-

90 mobile robot acts as the client and establishes a connection with a remote machine to send

information. From the perspective of a TCP/IP socket connection, the robot assumes the role of

the client and connects to a remote machine acting as a server.

Within the Outgoing ARCL connection setup section, under the Robot’s Interface tab, as de-

picted in Figure 4.4, multiple parameters can be configured.

Figure 4.4: Outgoing ARCL connection setup configuration.

To establish an outgoing ARCL connection, the following parameters must be set [32]:

• OutgoingHostname: This parameter specifies the hostname or IP address with which the

robot will attempt to establish the outgoing ARCL connection. The IP address is set to the
local machine’s IP address within the network.

• Outgoing Port: This parameter determines the port number for the outgoing ARCL con-

nection, which is set to the default value of 7179.

• OutgoingSocketTimeoutInMins: This parameter sets the duration in minutes that the LD-

90 can remain without receiving data. If the robot does not receive any data beyond this

specified time, the outgoing connection is closed. Since the robot may not receive data

constantly and can experience prolonged periods of time without data, this parameter is set

to -1, maintaining the outgoing connection open indefinitely until the socket is closed.
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4.2.1.2 Outgoing ARCL Commands Configuration

MobilePlanner also provides the ability to configure the commands that are intended to be sent

from the robot to the local machine, as well as the rate at which they should be sent [32]. In

the Outgoing ARCL commands section, under the Robot’s Interface tab, it is possible to add

commands to be sent.

Figure 4.5 illustrates the defined commands to be sent and their corresponding sending inter-

vals.

Figure 4.5: Outgoing ARCL commands configuration.

Two commands, namely Status and RangeDeviceGetCurrent, were used to send information

from the robot to the local machine. These commands were added to the OutgoingCommands1
parameter, separated by the vertical bar (|) character as: "rangedevicegetcurrent Laser1 | status".

Additionally, these commands are being sent every half second, as specified in the OutgoingCom-
mands1Seconds parameter.

Each command returns valuable information that is utilized in the development of the project.

The Status command provides five different pieces of information [36]: the operational state of the

LD-90, the battery charge level, the LD-90’s location in the map as a pair of coordinates (X ,Y )

and an angle θ , the accuracy of the LD-90’s location in the loaded map (reflecting how much the

working environment has changed), and the operating temperature of the LD-90.

On the other hand, the RangeDeviceGetCurrent command retrieves a set of absolute (X ,Y )

map coordinates related to the active detection readings from the named ranging sensor [36]. In

this case, the primary laser used by the LD-90 for mapping, referred to as Laser_1, was employed

as the ranging device.
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4.2.2 Receiving Data From the Robot

In order to receive data from the robot, the omron_connection_receiver node creates a TCP/IP

socket and acts as a server. The robot, on the other hand, acts as the client, as mentioned in

4.2.1.1, and establishes a TCP/IP connection with the omron_connection_receiver node.

The creation of the server socket involves several steps, as depicted in Figure 4.2, including

socket creation, binding the socket to a specific address and port, enabling the socket to listen

for incoming connections, and accepting connections from clients. These steps allow the om-

ron_connection_receiver node to receive data from the robot over the established TCP/IP connec-

tion.

The process of creating the socket follows the same steps as previously explained in subsection

4.1.2. The binding process involves associating a specific socket with a particular address and port.

This is accomplished using the bind() method, which is defined in the <sys/socket.h> header as:

int bind(int socket, const struct sockaddr *address,

socklen_t address_len);

The bind() method takes three arguments, which are similar to the ones used in the connect()

method explained in subsection 4.1.2. The address variable contains the address and port, as

defined in MobilePlanner, to which the socket should be bound.

For the listening phase, the server needs to listen for incoming connections on a socket. This

can be achieved using the listen() method, which is also defined in the <sys/socket.h> header. The

listen() method allows the socket to listen for incoming connections and specifies the maximum

length of the connection queue. It is defined as follows:

int listen(int socket, int backlog);

The listen() method takes two arguments: the file descriptor of the created socket and the

maximum length of the connection queue.

Finally, the accepting phase involves accepting incoming connections on the socket. This can

be achieved using the accept() method, also in the <sys/socket.h> header, defined as:

int accept(int socket, struct sockaddr *address,

socklen_t *address_len);

The accept() method extracts the first connection request from the queue of pending connec-

tions for the listening socket specified by the socket argument. It then creates a new socket and

returns the file descriptor associated with that socket. From this point onward, the connection

between the client and the server is established, allowing for the exchange of messages between

them.
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4.2.3 Data Processing and Handling

From the moment the omron_connection_receiver node is initialized and the robot establishes a

connection to the server side of the TCP/IP socket, the robot begins transmitting data, which is

then received on the socket. This is accomplished using the recv() method, which is also defined

in the <sys/socket.h> header. The received information is a single string, as both the return of the

Status command and the RangeDeviceGetCurrent are sent together at the rate defined in 4.2.1.2.

Subsequently, all the received and stored data was published on multiple topics, allowing

other nodes to retrieve the desired information. However, a challenge arose as the received data

arrived as a single string. Therefore, it was necessary to split this string into smaller strings, each

corresponding to a specific type of information. Consequently, every time a message was received

on the socket, the string containing the data was divided into six distinct strings, representing the

following information: status, state of charge, location, localization score, temperature, and laser

scan points.

With the data divided into multiple strings, it becomes possible to publish each type of in-

formation on different topics. The process of the omron_connection_receiver node is depicted in

Figure 4.6.

Figure 4.6: Diagram of the omron_connection_receiver node.

The omron_connection_receiver node receives data from the robot, which is processed by

the method developed in the node responsible for creating individual strings for each type of

information. These strings are then published on the respective topics, represented by the red

rectangles in Figure 4.6.

By developing the omron_connection_receiver and the omron_controller node, as introduced

in section 4.1, two points of direct communication between the application and the robot were es-

tablished. These nodes enable the application to control the LD-90 robot and retrieve information

from it.
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4.3 Visualisation Package

This section focuses on the implementation of a ROS package that encompasses three distinct

nodes, each serving a different purpose. The package is designed to recreate the basic functionali-

ties of the MobilePlanner interface, such as the visualisation of a loaded map, a visual representa-

tion of the robot’s position on the map, and the functionality of sending the robot to specific goals

within the map by clicking on points within the RViz interface. By integrating these nodes, the

package offers a comprehensive solution for map visualisation, robot tracking, and direct interac-

tion with the LD-90 mobile robot in a ROS environment.

The following presents the nodes comprising this package and provides a brief description for

each:

• map_visualisation: This node recreates the map loaded on the robot in RViz. It utilizes the

information available in the .map file, generated by MobilePlanner, to display the map.

• robot_state_publisher: This node is responsible for tracking the robot’s position and dis-

playing it in RViz.

• goal_sender: This node allows the user to send the LD-90 robot to a specific goal within

the map using specific the /clicked_point topic provided by RViz.

4.3.1 Map Visualisation Node

The MobilePlanner software, as mentioned in subsection 3.2.2, offers a user interface primarily

designed for representing scanned representations of the robot’s working space as maps. These

maps can be edited, and various components can be added to them.

The following introduces some of the components that can be added to maps using Mobile-

Planner [5]:

• Goals: These points on the map specify destinations to where the LD-90 robot can be sent.

Additionally, the desired orientation for the robot at the goal location can also be defined.

• Forbidden Areas: Since the LD-90 robot’s scanning laser is situated about 200 millimeters

above the ground, there may be obstacles that the robot cannot detect. To prevent collision

situations, it is possible to define areas on the map known as "forbidden areas" that block

the robot’s navigation within those regions.

• Dock: This component designates the point on the map to where the robot travels in order

to connect itself to its charging station. The dock point should be positioned close to the

charging station, between 1 and 1.5 meters, and its orientation must face the charging station.

In Figure 4.7, a map of a working environment in MobilePlanner is depicted. The map was

scanned with LD-90 mobile robot. All the points and lines scanned by the robot’s laser and the
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previously mentioned components are illustrated in the map, which the red boxes and correspond-

ing red numbers can identify. In this case, a goal is indicated by the number "1", a forbidden area

by the number "2", and a dock by the number "3". If a goal has a small line, it indicates that it has

associated to it a desired orientation for when the robot reaches the goal.

Figure 4.7: Representation of a map in MobilePlanner.

MobilePlanner generates .map files that contain comprehensive information about the map.

This includes details about the scanned points and lines, as well as information about the compo-

nents utilized in the map.

The objective of the map_visualisation node is to represent the map and its content within

a ROS environment, specifically using RViz. To achieve this, the node utilizes the information

present in the .map file and recreates the visual elements displayed by MobilePlanner in RViz.

4.3.1.1 Information Stored in a .map file

To accurately recreate the map in RViz, it is crucial to understand the information contained within

the .map file and its corresponding representations. The .map file stores four different types of data

related to the working environment in which the robot operates [5]:

• The points and lines scanned by the robot’s laser of the working environment.

• Components inserted in the map using the MobilePlanner software, such as goal points,

forbidden areas, and dock points.
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• Functionalities associated with individual goals.

• Data specifying special goal types properties.

For the map_visualisation node, the relevant information is associated with the scanned points

and the components inserted in the map. It is important to familiarize oneself with the parameters

required by each component, as defined in MobilePlanner. For example, a goal component has

five parameters [5]:

• Name: Indicates the name of the goal.

• Description: An optional parameter that provides a description of the goal.

• Type: Specifies that the component type is a goal.

• Position: Refers to the coordinates of the goal, with separate X and Y coordinate parame-

ters.

• Heading: An optional parameter that specifies the desired orientation, in degrees, when the

robot reaches the goal. If this parameter is used, the goal type changes to GoalWithHeading.

Each goal defined in a map using MobilePlanner corresponds to an individual line in the gener-

ated .map file, containing all five parameters. Similarly, the dock component also has the same five

parameters as the goal component, with the type field set to DockLynx. Additionally, the Heading

parameter is required for the dock component, as a dock must face the charging station.

On the other hand, the forbidden area component does not have the Position and Heading

fields like the goal component. Instead, it has the following parameters in addition to the ones

shared with the goal component [5]:

• Angle: Represents the rotation angle, in degrees, of the forbidden area within the map.

• Corner: Refers to the X and Y coordinates of the starting corner of the forbidden area.

• Opposite: Indicates the X and Y coordinates of the ending corner of the forbidden area.

These parameters define the geometry and position of the forbidden area component within

the map. For every forbidden area defined in a map using MobilePlanner, there is a corresponding

individual line in the generated .map file containing the respective parameters.

Additionally, all the points and lines scanned by the robot’s laser of the working environment

are stored in the .map file, with the map points being represented as pairs of (X ,Y ) coordinates

and the map lines by two pairs of (X ,Y ) coordinates: (X1,Y 1);(X2,Y 2).
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4.3.1.2 Map Representation in RViz

As mentioned earlier, the map_visualisation node is responsible for recreating a map generated

using the MobilePlanner software within a ROS environment using RViz. To achieve this, the

node utilizes the relevant information from the corresponding .map file by extracting the required

data. The extraction process involves utilizing file handling methods and consists of the following

steps: opening the .map file for reading and iterating through the file line by line. During the

iteration, each line is checked to see if it contains specifications that match the parameters of the

components or the points and lines. If a particular line of the file does contain those parameters,

the information within it is stored for further processing.

Furthermore, it is important to understand how to store the extracted data so it can be used

by RViz. ROS provides a message type called visualization_msgs/Marker, which is specifically

designed for visualizing various primitive shapes in RViz. The Marker type allows for the def-

inition and specification of characteristics, such as shape, color, position, orientation, and scale.

Commonly used Marker types include points, lines, spheres, cubes, cylinders, and text.

The Marker message comprises several key fields:

Field Type Description
header std_msgs/Header Contains information about the ROS message, includ-

ing the timestamp and coordinate frame.
ns string Provides a way to group related markers together using

a namespace.
id int32 Assigns a unique identifier to each marker within its

namespace.
type int32 Specifies the shape or type of the marker. Common val-

ues include:
- ARROW (0)
- CUBE (1)
- LINE_LIST (5)
- POINTS (8)
- ...

action int32 Describes the action to be performed on the marker.
Common values include:
- ADD (0)
- MODIFY (0)
- DELETE (2)

pose geometry_msgs/Pose Represents the position and orientation of the marker in
3D space.

points geometry_msgs/Point[] Represents the points of the marker.
scale geometry_msgs/Vector3 Specifies the size or scale of the marker.
color std_msgs/ColorRGBA Defines the color of the marker using RGBA values.

Table 4.1: Key Parameters of the visualization_msgs/Marker Message

The map_visualisation node utilizes the Marker message type to visualize the different com-

ponents defined in the map within RViz. Multiple instances of this message type are created to
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represent the various map components.

For example, one instance is specifically designed to display all the goals of the map. This

is achieved by using the points field within the Marker message type, which represents a vector

of the geometry_msgs/Point message type. The coordinates of each goal in the map are stored as

geometry_msgs/Point objects in this vector associated with the respective Marker instance.

Each Point message contains three fields: (x,y,z). Therefore, to associate a goal with a Point

message, the (X ,Y ) coordinates of the goal are assigned to the x and y fields, respectively. Since

the z coordinate is not relevant in this context, it is set to 0. For every goal in a map, a Point

message with the goal’s coordinate is added to the points vector of the Marker. The type field for

this Marker is set to "Points".

Similar approaches were followed for the remaining map components, with each component

represented as a separate Marker, using different types of the one used for the goals. In addition,

Markers were created for the text associated with the name of each goal and for an arrow rep-

resenting the heading (in cases where a goal has a specified heading). These additional Markers

were also visualized in RViz.

It is important to consider the header field in the Marker message since it contains information

about the coordinate frame associated with the data. It is essential that all the Marker messages

are defined within the same frame to ensure proper visualization.

After creating the Marker messages to represent the various map components, each marker is

published to a separate topic. Through RViz, it is possible to subscribe to these individual topics

to render the Markers.

4.3.1.3 Laser Scan Points in RViz

The map_visualisation node is also responsible for displaying the points scanned by the robot’s

laser on the map. Therefore, the node subscribes to the /omron_ld90/laser_points topic. As men-

tioned in subsection 4.2.3, the omron_connection_receiver node is responsible for publishing data

on this topic.

When new laser scan points are received on this topic, the callback method associated with

it in the map_visualisation node is triggered. The process for displaying the laser scan points is

similar to that used for the other components. A new Marker instance is created to represent these

points, and it is published on a specific topic for visualisation in RViz.

4.3.1.4 Creation of an Occupancy Grid

One of the objectives of this dissertation was to integrate the LD-90 mobile robot with the INESC

TEC robot fleet manager. To enable interoperability with other robots in the fleet, it is necessary

for the map generated by MobilePlanner to be compatible with their mapping systems. How-

ever, MobilePlanner produces a specific file format that is not compatible with robots from other

manufacturers, which typically use the standard .png file format for map representation.
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To address this compatibility issue, the map_server ROS package is employed [37]. This

package provides utilities for converting maps to image and metadata files. The map_saver node

within the package facilitates the conversion of a message of type nav_msgs/OccupancyGrid to a

.png file. The OccupancyGrid message represents the map in the form of a 2D grid with occupancy

probabilities.

The creation of the OccupancyGrid message was based on the map points extracted from the

.map file. This process involved the following steps:

• Determining the size and resolution of the occupancy grid. This information was obtained

from the .map file, which includes the map’s resolution as well as the maximum and mini-

mum points. These values were used to calculate the size of the occupancy grid.

• Creating an empty occupancy grid data structure.

• Converting each map point (X ,Y ) to grid cells indices while ensuring that the indices are

valid.

• Updating the corresponding cell in the occupancy grid to represent the occupied state.

These steps enabled the creation of the OccupancyGrid message, which is published by the

map_visualisation node on a specific topic. By subscribing to this topic, other robots can utilize

the map_saver node to convert the map from its original .map file format to a .png file format, as

represented in Figure 4.8.

Figure 4.8: Occupancy Grid of the Workspace.
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4.3.1.5 Structure of the map_visualisation node

For a better understanding of the processes that occur in the map_visualisation node, refer to the

diagram in Figure 4.9.

Figure 4.9: Diagram of the data_marker node.

The map_visualisation node utilizes the information from the .map file, and publishes it on

specific topics that RViz subscribes to, enabling the representation of the map in RViz. Addi-

tionally, it is important to note the relationship between the map_visualisation node and the om-

ron_connection_receiver node, through the /omron_ld90/laser_points topic, where the data con-

taining the laser scan points is published.

4.3.2 Robot State Display Node

The robot_state_publisher node is responsible for the visualisation of the robot’s position within

the map displayed in RViz. It accomplishes this by subscribing to the /omron_ld90/location topic,

which contains information about the robot’s (X ,Y ) coordinates and its orientation angle θ . As

mentioned in 4.2.3, the omron_connection_receiver node is responsible for publishing this infor-

mation on the topic.

Whenever a new message is published on the /omron_ld90/location topic, a callback method

implemented in the robot_state_publisher node is triggered. This method converts the robot’s

coordinates and angle into a geometry_msgs/PoseStamped message type. This message type is

suitable because it consists of two main fields: a geometry_msgs/Pose object, which allows the
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specification of coordinates and orientation, and a Header, which ensures that the robot’s position

is represented in the same frame as the map created by the /map_visualisation node.

The orientation in the Pose object is represented by a geometry_msgs/Quaternion message

type. This means that the orientation angle θ , obtained from the /omron_ld90/location topic,

needs to be converted. To achieve this, a method can be used to directly convert the yaw angle

around the Z-axis to a Quaternion message. This conversion method is available in the tf library

of ROS.

After creating the PoseStamped message, the robot_state_publisher node publishes it to a spe-

cific topic that RViz subscribes to. This allows for the continuous visualisation of the robot’s posi-

tion in RViz. Figure 4.10 illustrates the described process of the robot_state_publisher node, where

it is possible to observe the interaction between this node and the omron_connection_receiver

node, through the /omron_ld90/status/location topic.

Figure 4.10: Diagram of the robot_state_publisher node.

4.3.3 Goal Sender Node

The main purpose of the goal_sender node is to enable control of the LD-90 robot through the RViz

interface, similar to the functionality provided by the MobilePlanner interface. In MobilePlanner,

users can send the robot to specific goals or the dock by double-clicking on their corresponding

location. The goal_sender node aims to provide similar functionality within the ROS environment

using RViz.

To achieve this, the goal_sender node subscribes to the specific RViz topic /clicked_point.

When a user clicks on a point in the RViz interface, RViz captures the 3D coordinates of that point

and publishes them as a message on the /clicked_point topic.

Furthermore, the goal_sender node utilizes the information from the .map file to extract the

goal coordinates, following the procedure described in 4.3.1.2. The callback method implemented

in the goal_sender node is triggered upon message publishing in the /clicked_point topic. This

callback method creates a filter by comparing the coordinates of the clicked point with the co-

ordinates of every goal plus a small tolerance. If the clicked point falls within the range of any

goal coordinates plus the small tolerance, the corresponding goal is identified. A message is pub-

lished on the /omron_ld90/send_command topic with the command to send the robot that specific

goal, which is handled by the omron_controller node. The sequence of these steps is illustrated in

Figure 4.11.
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Figure 4.11: Diagram of the goal_sender node.

4.4 Trajectory Converter Node

In addition to controlling the LD-90 mobile robot, another primary objective of this dissertation

was to integrate the LD-90 into the robot fleet manager. The fleet manager utilizes graph structures

to create trajectories for robot navigation. Therefore, it is necessary to reproduce these types of

trajectories in a .map file that the LD-90 mobile robot can use.

As mentioned in subsection 2.2.2, graph structures are represented as a collection of vertices

and edges. However, since the LD-90 is a free-path navigation robot that employs free path plan-

ning algorithms, this graph-based approach is not directly applicable to the robot. Instead, an

approximation was made.

The omron_ros_map node manages the trajectory data, which includes information about the

edges and vertices, to generate goals in a .map file that can be loaded into the LD-90. When a

trajectory is created, a .yaml file is generated with the following information:

Edges:

- {CurveType: spline, Destination_ID: 2, Id: 3,

Origin_ID: 1, ParamB: 0.25, ParamF: 0.25,

VelocityBackwards: 0.3, VelocityForward: 0.3}

- {CurveType: spline, Destination_ID: 4, Id: 5,

Origin_ID: 2, ParamB: 0.89, ParamF: 1.04,

VelocityBackwards: 0.3, VelocityForward: 0.3}

Vertices:

- {FrameId: map/nn0, Id: 8, Label: pass, Theta: 1.64,

ThetaHolomonic: 2.74, X: 4.17, Y: -3.86}

- {FrameId: map/nn0, Id: 10, Label: pass, Theta: 2.79,

ThetaHolomonic: 2.74, X: 5.93, Y: -2.99}

The .yaml file includes information such as the origin/destination vertices that form an edge,

the Id of each vertex, the (X ,Y ) coordinates of each vertex, and the angle T heta corresponding

to the orientation of the vertex in the reference frame. The omron_ros_map node utilizes this

information to generate goals in a .map file, using the same coordinates as the vertices in the

trajectory.
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Using file handling methods, this node opens a .map file and defines all the vertices in a

trajectory as goal components. As mentioned in 4.3.1.1, each goal component has five param-

eters: name, description, type, position, and heading. However, the description parameter is

optional, and the type parameter simply specifies that the component is a goal. Therefore, the

omron_ros_map node only needs to consider the other three parameters.

The goal’s name and position are associated with a vertex’s Id and (X ,Y ) coordinates, respec-

tively. As for the goal’s heading, there are additional considerations to take into account. The

heading parameter is used only for particular vertices. These vertices can be divided into dock

points, charge points, and logistics points. The specificity of these types of vertices is that they are

only associated with one edge, implying that when a robot reaches that vertex, the only possible

path is to return along the edge that led to that vertex but in the opposite direction. Given that

the LD-90 robot is unidirectional, it must perform a turn-around maneuver at a certain point to

execute this action.

The approach adopted considers assigning a heading to every goal associated with these par-

ticular vertices so that when a robot reaches the goal, it will perform the required rotation to orient

itself towards the edge it must go through. Thus, when the robot receives another task, it does not

waste time with this initial rotation, avoiding delays in the fleet manager.

Figure 4.12 illustrates a simple trajectory that contains some vertices that can be one of the

particular vertices mentioned above.

Figure 4.12: Illustration of a trajectory with end-point vertices.

In this trajectory, the particular vertices are V1, V3, and V4. Each of these vertices is asso-

ciated with only one edge, unlike vertex V2, which is associated with three edges. Since these

particular vertices are associated with only one edge, it means that in the edge list defined in the

.yaml file, each particular vertex will only appear associated with one edge, meaning that the ver-

tex is either the origin or the destination of that edge. In the specific case of the trajectory in Figure

4.12, vertices V1 and V4 are the origin vertices of their corresponding edges, and vertex V3 is the

destination of its corresponding edge.
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Vertices have an orientation in relation to the reference frame, corresponding to the angle

Theta seen in the .yaml file for every vertex. This orientation points to the orientation of the edge,

as represented in Figure 4.12 by the red arrows. As mentioned previously, the approach taken

considers that the final orientation of the robot must point to the edge that it must go through. To

achieve this, the value assigned to the heading of a goal depends on whether the particular vertex

is the origin or the destination of its corresponding edge. For the cases where the vertex is an

origin, the heading corresponds to the angle Theta of the vertex, and for the cases where the vertex

is a destination, the heading corresponds to the angle Theta of the vertex plus 180 degrees.

Furthermore, the omron_ros_map node verifies each Id of every vertex in the list of vertices

in the .yaml file. It looks for a predefined vertex Id corresponding to the dock component to be

defined in the .map file. The definition of this component in a .map file, as mentioned in 4.3.1.1,

contains the same five parameters as the goal component, with the change that the type parameter

now refers to DockLynx. The assignment of values to each parameter follows the same logic used

for the goal components, considering that the heading parameter of the dock component must

make the mobile robot face the charging station.

By accurately defining the list of vertices present in the .yaml files as goal or dock components

in a .map file, it is possible to replicate the vertices of a graph-based trajectory on the LD-90

mobile robot.

4.5 Fleet Manager Communication Node

As explained in Section 3.4, the communication between the server containing the robot fleet

manager and the local machine containing the developed ROS environment occurs through the

path_supervisor node and the omron_edges_to_path node. These nodes exchange information to

enable the LD-90 mobile robot to execute a specific path in a trajectory.

4.5.1 Path Messages from Fleet Manager

Firstly, it is important to understand where the fleet manager publishes the messages containing

the path it wants the robot to travel and what information these messages contain.

The robot fleet manager uses the topic /omron_ld90/target_route to publish the message con-

taining information about the path it wants the robot to navigate. To generate this path, the fleet

manager uses the TEA* algorithm to find the optimal path for the robot to reach its destination.

The message sent to the topic contains the sequence of edges that the mobile robot has to traverse

to get to a specific vertex.

The omron_edges_to_vertices node subscribes to the /omron_ld90/target_route topic. There-

fore, when the robot fleet manager publishes a message on this topic, a callback function im-

plemented in the node is triggered to handle the sequence of edges contained in the message.

However, it is worth noting that the concept of edges is not directly applicable to the LD-90 mo-

bile robot. As a result, the callback function iterates through the received sequence of edges and
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checks the origin and destination vertices of each edge in the sequence. This process allows the

creation of a sequence of vertices associated with goal components that the LD-90 can be sent to.

Figure 4.13 illustrates an example of a trajectory and the publishing of a message containing a

sequence of edges by the path_supervisor node.

Figure 4.13: Example of a trajectory and the publishing of a sequence of edges by the
path_supervisor node.

In this example, it is assumed that the current location of the robot is vertex V1, and the fleet

manager publishes the sequence of edges [E1, E4, E5], indicating that the LD-90’s destination

vertex is V6. As mentioned earlier, the origin and destination vertex of each edge in the sequence

are checked, resulting in the extended sequence of vertices [V1, V2, V2, V7, V7, V6]. How-

ever, considering the robot’s initial position, the first vertex of the extended sequence is not used.

Moreover, since there are repetitions of vertices in adjacent edges, it is necessary to exclude these

duplicates. After taking all these considerations, the omron_edges_to_vertices node converts the

initial sequence of edges [E1, E4, E5] into the vertex sequence [V2, V7, V6]. With this sequence

of vertices, it is possible to guide the robot to the destination vertex of the generated path.

Additionally, the robot fleet manager can send a sequence of edges containing negative edges,

indicating that the robot is intended to navigate in the opposite direction of the edge. The om-

ron_ros_map takes this possibility into account while generating the sequence of vertices by swap-

ping the origin and destination vertices of the negative edges.

However, there is no defined ARCL command that allows the sending of multiple goals to

which the LD-90 has to go. This limitation leads to two approaches that have been considered to

address this problem using the goto command:

• Sending the robot to every goal of the created sequence of vertices individually, which

means that the robot will stop every time it reaches a goal.

• Alternatively, sending the robot directly to the final goal of the created sequence of vertices.

As mentioned in Section 4.4, the LD-90 mobile robot is not suitable for graph-based trajecto-

ries since it relies on free path planning algorithms. The definition of goal components in a .map
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file allows sending the LD-90 to specific points within the map. Nevertheless, it is not possible to

predict the robot’s behavior until it reaches its destination. Consequently, having goal components

alone is insufficient for the LD-90 to accurately follow the defined edges between vertices.

To address this challenge, a solution was found by utilizing the forbidden area component to

create restricted zones on the map, preventing the robot from entering these regions. By doing so,

the robot can be indirectly guided to navigate approximately along the defined edges. The creation

of these forbidden areas was done using the MobilePlanner software.

By creating forbidden areas in the map that force the robot to navigate only along the edges

of a trajectory, it becomes possible to employ the two approaches considered for the sending of

multiple goals to the LD-90.

4.5.2 Messages Sent to the Fleet Manager

The robot fleet manager requires certain information from the robot to work properly. It is es-

sential that the fleet manager knows the robot’s location in the graph at all times. Additionally,

when a sequence of edges is published for the robot to follow a specific path, the fleet manager

must be informed about which edges the robot has already traversed. This information ensures ef-

ficient coordination and enables the fleet manager to manage and monitor the robot’s movements

effectively.

The fleet manager retrieves this information by subscribing to the /execution_route_states

topic. In this topic, the published messages have the type itrci_nav/execution_route_states. This

message type has the structure represented in Figure 4.14.

Figure 4.14: Structure of a execution_route_states message.

The omron_edges_to_vertices node is responsible for publishing this information to the /ex-

ecution_route_states topic. When the node receives a sequence of edges, it must continuously

specify the state of each edge in the sequence. There are two possible states: "processing" and

"complete". When a new sequence of edges is received on the topic, every edge is initialized with

the "processing" state. To determine if the robot has finished traversing through an edge, the om-

ron_edges_to_vertices node subscribes to the /omron_ld90/status/location topic, which provides

the (X ,Y ) coordinates of the robot on the map. Using this information, the node continuously

compares these coordinates with the coordinates of the next vertex in the produced sequence of
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vertices corresponding to the received sequence of edges. If the coordinates match within a de-

fined tolerance, it indicates that the state of the edge is "complete"; otherwise, the state of the edge

remains as "processing".

Additionally, the current location of the robot is specified using the edges in the received

sequence, and with the same procedure used for determining the state of the edges, it is possible

to specify which percentage of the edge has been covered. However, the taken approach considers

that when the state of the edge changes to "complete", it means that the edge has been 100%

covered; otherwise, it means that the edge has been 0% covered. Since the concepts of a graph-

based trajectory are not directly applicable to the LD-90 mobile robot, it is not possible to precisely

determine the percentage of edge that has been covered. Thus, the edge is either fully complete or

not complete at all.

4.5.3 Messages Sent to the Robot

With the creation of the sequence of vertices corresponding to the sequence of edges received

in the /omron_ld90/target_route topic, the LD-90 mobile robot can complete the intended path

generated by the fleet manager. To achieve this, the two previously considered approaches for

sending the LD-90 to multiple goals were implemented.

The first approach involves publishing a goto command for every goal corresponding to a

vertex in the sequence of vertices to the /omron_ld90/send_command topic. In this first approach,

the LD-90 receives a new command with a new goal destination every time it reaches a goal in the

sequence of vertices.

For the second approach, the LD-90 is directly sent to the last goal in the sequence of vertices.

Because there are restricted zones that the robot cannot navigate to due to the created forbidden

areas on the map, it is guaranteed that the robot will pass by the other goals in the sequence of

vertices.

4.5.4 Structure of the Node

Figure 4.15 illustrates the structure of the omron_edges_to_vertices node. This node serves as the

direct point of communication between the developed application and the INESC TEC robot fleet

manager, utilizing the /omron_ld90/target_route topic and /omron_ld90/execution_route_states

topic. Additionally, it is possible to verify that omron_edges_to_vertices node also communi-

cates with the omron_controller node and the omron_connection_receiver node through the /om-

ron_ld90/send_command topic and the /omron_ld90/status/location topic, respectively.

4.6 Conclusion

This chapter explained the implementation of each individual ROS node that was developed for

the application and presented the structure of each node in order to provide a deep understanding

of how the system operates.
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Figure 4.15: Diagram of the omron_edges_to_vertices node.

The system comprises four individual ROS nodes and a ROS package that encompasses three

different ROS nodes. These nodes are divided into three groups: the nodes that enable di-

rect interaction with the LD-90 mobile robot, which are the omron_controller node and the om-

ron_connection_receiver node; the nodes responsible for the visualisation of the map and the

robot within RViz, which are the nodes that compose the Visualisation package; and the nodes

responsible for the integration of the mobile robot with the robot fleet manager, in this case, the

omron_ros_map node and the omron_edges_to_vertices node.

Additionally, the processes of converting graph-based trajectories into a .map file that the LD-

90 mobile robot can use and exchanging messages between the system and the robot fleet manager

were also presented in this chapter.



Chapter 5

Results and Discussion

This chapter delves into a comprehensive project analysis, presenting and scrutinizing the results

obtained through every developed ROS node and their interactions.

Additionally, an in-depth discussion of the influence of each node’s performance on the overall

behavior of the LD-90 mobile robot and its integration with the fleet manager will be present. This

helps the identification of potential areas for optimization and refinement.

5.1 Controller Node Results

The omron_controller node enables establishing a connection to the ARCL server in the LD-90

mobile robot. Figure 5.1 shows the terminal output of this node when it is first launched.

Figure 5.1: Terminal output of the omron_controller node when initialized.

By analyzing the output in Figure 5.1, it is possible to extract multiple pieces of information

that are relevant to understand.

57
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• The line "Connected..." indicates that the TCP/IP client socket created in this node has

successfully established a connection with the ARCL server.

• The first message received from the ARCL server is "Enter password:", requesting the pass-

word defined in Section 4.1.1. As mentioned in 4.1.2.1, it is required that the password must

be the first message sent through the socket to the ARCL server, so, in the implementation of

this node, this message is automatically sent to the socket every time this node is launched.

• The line "Welcome to the server" indicates that the received password matches the one that

was defined in the ARCL server configurations. Below this welcome line, it is possible to

observe a list of available commands, each command being followed by a brief description.

After this first output from the node, it is possible to send multiple ARCL commands to the

socket. As explained in subsection 4.1.3, this node subscribes to the /omron_ld90/send_command

topic, and the messages published in this topic correspond to the ARCL commands considered

for execution. To verify the proper functioning of this node with each command, the ARCL

commands were directly published in the topic using a terminal.

For every considered ARCL command listed in subsection 4.1.3, the behaviour of the om-

ron_controller node was tested by publishing every command to the omron_ld90/send_command

topic. This can be accomplished using the rostopic command-line tool and the pub command,

which allows users to publish data to a topic.

5.1.1 goto Command

Figure 5.2 demonstrates the use of the rostopic command-line tool and the pub command by

publishing the command goto 12 to the /omron_ld90/send_command topic, in order to send the

LD-90 to the goal 12 defined in the map loaded on the mobile robot.

Figure 5.2: Publishing of a goto command to the /omron_ld90/send_command topic using the
terminal.

The omron_controller subscribes to the /omron_ld90/send_command topic. When the mes-

sage shown in Figure 5.2 is published to this topic, the omron_controller node retrieves the com-

mand from the message and sends it to the socket. Subsequently, it receives response messages

from the ARCL server through the socket, as depicted in Figure 5.3.

As mentioned in subsection 4.1.3, sending any command to the ARCL server results in specific

feedback messages from the ARCL server. In the specific case of Figure 5.3, when the ARCL

server received the goto 12 command, and since the LD-90 was initially located at the docking
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Figure 5.3: Response messages from the ARCL server for the goto command.

station, the first seven responses given by the ARCL server referred to the undocking process of

the mobile robot from its docking station. With this process completed, the ARCL server then

sends the feedback message that the mobile robot is navigating toward the destination goal. Upon

arrival at the destination goal, the ARCL server sends the feedback message "Arrived at 12",

meaning that the command was successfully executed.

5.1.2 getGoals Command

This command was also published on the /omron_ld90/send_command topic using the same pro-

cess as used for the goto command. By using the getGoals command, it is possible to retrieve

from the ARCL server the list of all goal components defined in the map loaded on the LD-90.

The list of goals received in the omron_controller node is illustrated in Figure 5.4, containing the

"End of goals" response line, indicating the execution of the command successfully.

Figure 5.4: List of goals returned by the ARCL server.

5.1.3 dock/undock Command

The previously used procedure used for publishing messages to the /omron_ld90/send_command

topic was also used for the dock and the undock commands. Figures 5.5 and 5.6 illustrate the
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feedback messages received on the omron_controller node for the dock and undock commands,

respectively.

Figure 5.5: Response messages from the ARCL server for the dock command.

Figure 5.6: Response messages from the ARCL server for the undock command.

The feedback messages obtained on the omron_controller node for both commands contain

the line associated (mentioned in subsection 4.1.3) with the completion of the execution of the

command by the LD-90 mobile robot.

5.2 Connection Receiver Node Results

The omron_connection_receiver node is responsible for receiving information sent by the robot.

As explained in Section 4.2, this node creates a TCP/IP server socket, to which the LD-90 will

establish a connection. By successfully establishing a connection, the robot starts sending to the

socket two defined ARCL commands: status and RangeDeviceGetCurrent. Subsequently, the

omron_connection_receiver node splits the received information on the socket and publishes it

into multiple topics, as depicted in Figure 4.6.

The obtained results are verified using the rostopic command-line tool and the echo com-

mand, which allows displaying all the messages being published on a certain topic in the terminal.

There are two topics where the omron_connection_receiver node publishes information that are

used by other nodes in the application. These topics are the /omron_ld90/status/location and /om-

ron_ld90/laser_points.

As mentioned in Section 4.2, the information received in the socket is sent by the robot

as a single string that contains all the information from the two used ARCL commands. Fig-

ure 5.7 depicts the information published on the /omron_ld90/status/location topic by the om-

ron_connection_receiver node, consisting only of the Location field of the status command, as

intended. From this topic, other nodes can retrieve the robot’s (X ,Y ) coordinates and its orienta-

tion angle θ .
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Figure 5.7: Messages published on the /omron_ld90/status/location topic.

Furthermore, the messages published by the omron_connection_receiver node on the /om-

ron_ld90/laser_points topic are displayed in Figure 5.8. Each message contains multiple (X ,Y )

coordinates corresponding to the points scanned by the robot’s laser at a specific moment.

Figure 5.8: Messages published on the /omron_ld90/laser_points topic.

5.3 Visualisation Package Results

The developed visualisation package, constituted of the three nodes mentioned in Section 4.3,

enables the visualisation of the map created with the MobilePlanner software, along with all its

components. Additionally, it provides the visualisation of the LD-90’s position on the map and

facilitates sending the robot to a specific goal or dock in the map.

5.3.1 Map Visualisation Node Results

The map_visualisation node enables the recreation of a map displayed in the MobilePlanner in-

terface, within a ROS environment using RViz. Therefore, this node was used to create a RViz

representation of the map illustrated in Figure 5.9.

As explained in Section 4.3, the map_visualisation node publishes Marker messages in spe-

cific topics to represent the components of a .map file. By subscribing to these topics in RViz, it

is possible to obtain the map representation in Figure 5.10. The goal and dock components are
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Figure 5.9: Map displayed in the MobilePlanner interface.

represented by green squares, with their names written in white on their left side. Additionally,

some goals have an associated heading, represented by black arrows pointing to the final orienta-

tion that the robot must have when it reaches those specific goals. Forbidden areas are represented

by orange squares, scanned points by small black dots, and scanned lines by red lines.

Figure 5.10: Representation of the map in RViz.

Furthermore, as mentioned in 4.3.1.4, this node creates an OccupancyGrid message to enable

other robots to use the same map as the LD-90 mobile robot. This message is published on a

specific topic and, by subscribing to this topic in RViz, it is possible to visualize the OccupacyGrid

as depicted in Figure 5.11.
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Figure 5.11: Representation of the occupancy grid in RViz.

5.3.2 Robot State Display Node Results

The robot_state_publisher node continuously represents the robot’s location in the map by sub-

scribing to the /omron_ld90/status/location topic. Therefore, when the robot_state_publisher node

is launched, it is necessary to also launch the omron_connection_receiver node to ensure that in-

formation is being published to the /omron_ld90/status/location topic. The robot_state_publisher

node uses this information to display the robot’s location on the map.

In Figure 5.12, it is possible to observe a red arrow pointing to the goal 16 that represents the

robot’s position on the map. Additionally, the points scanned by the robot’s laser are represented

by light-blue points.

Figure 5.12: Representation of the robot’s position in the map.



64 Results and Discussion

5.4 Trajectory Converter Node Results

The omron_ros_map node converts graph-based trajectories into .map files. To achieve this, as

mentioned in Section 4.4, the node reads a .yaml file that is generated upon the creation of a

trajectory. Thus, the trajectory depicted in Figure 5.13 was created.

Figure 5.13: Representation of a graph-based trajectory in RViz.

When the omron_ros_map node is launched, a new .map file is created and the goals defined in

it match exactly with the vertices in the trajectory. Figure 5.14 illustrates the created .map file dis-

played in the RViz interface, using the map_visualisation node. Additionally, the omron_ros_map

node handles the particular vertices in a trajectory by assigning headings, represented by the black
arrows, to the goals that are associated with those vertices.

Figure 5.14: Representation of new .map file with a graph-based trajectory in RViz.
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5.5 Fleet Manager Communication Node Results

The omron_edges_to_vertices node serves as the direct point of communication between the LD-

90 mobile robot and the robot fleet manager. Therefore, the correct functioning of this node

indicates the possibility of successfully integrating the LD-90 mobile robot with the fleet manager.

As mentioned in Section 4.5, a sequence of edges is published by the fleet manager on the

/omron_ld90/target_route topic, as illustrated in Figure 5.15. Then, the omron_edges_to_vertices

node converts this sequence of edges into a sequence of vertices that the LD-90 must be sent to.

Figure 5.15: Message Received in the /omron_ld90/target_route topic.

Considering the .map file represented in Figure 5.9 loaded into the robot and the sequence of

edges in Figure 5.15, the node generates the sequence of vertices [12, 14, 16]. Furthermore, as

explained in Section 4.5, the node must send information to the fleet manager while executing the

received path. Figure 5.16 displays the messages being published by the omron_edges_to_vertices

node on the /omron_ld90/execution_route_states topic, which contains information regarding the

current position of the LD-90 in the graph and the state of each edge in the received sequence of

edges.

Figure 5.16: Message Received in the /omron_ld90/execution_route_states topic.
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The complete execution of the received sequence of edges by the LD-90 mobile robot implies

that the state of every edge must be equal to 2, i.e., the state is "complete". Additionally, the

position of the robot in the graph, represented by the edge_id parameter in the symbolic_pose field

of the message published on the /omron_ld90/execution_route_states topic, must be equal to the

last edge in the received edge sequence and indicate that the edge is 100% complete.

The changes that occur in the message published on the omron_ld90/execution_route_states

topic until the robot finalizes the received path are represented in Figure 5.17.

Figure 5.17: Completion of the edge sequence sent by the robot fleet manager.

5.6 Validation and Conclusion of the Results

The individual behavior of each node was tested in the previous sections. However, in order to

validate and demonstrate all the algorithms developed in this dissertation, which enable the control

and management of the LD-90 mobile robot by integrating it with the robot fleet manager, a test

was conducted by sending a mission directly to the fleet manager.

The sending of missions to the fleet manager consists of a message with three parameters:

request_id, which indicates the number that this mission request is associated with; destina-

tion_vertices_id, which represents the vertices in the graph to which the robot has to navigate;

and robot_type, indicating the type of robot required to fulfill the request. The tested mission sent

to the fleet manager is represented in Figure 5.18.

Figure 5.18: Mission sent to the Fleet Manager.

This mission indicates to the robot fleet manager that the LD-90 mobile robot must navigate

to the vertices [18, 39, 52, 6, 16]. The fleet manager then plans the path the robot must follow to
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reach each one of the vertices defined in that sequence. The .map file loaded into the robot is the

one illustrated in Figure 5.9, associated with the trajectory depicted in Figure 5.13. Therefore, the

robot will travel through multiple vertices in the trajectory, ending in vertex 16, corresponding to

the dock.

As mentioned in Section 4.5, two approaches were considered for sending multiple goals into

the robot: sending the robot vertex by vertex in an edge sequence or sending the robot directly to

the final vertex in the edge sequence. Although both approaches work correctly, the first introduces

delays on the robot fleet manager, as the robot stops when it reaches every vertex in a sequence of

edges. Therefore, the adopted approach was to send the LD-90 mobile robot directly to the final

vertex in the edge sequence. A complete diagram of the nodes executed during this mission and

their interaction can be seen in Appendix A. Additionally, in Appendix B, a video demonstration

can be seen, representing the complete execution of this mission.

The development of every ROS node enables the control of the LD-90 mobile robot and the

integration of this robot with a robot fleet manager that utilizes a type of trajectory that is not

directly applicable in robots that use free path planning algorithms, like the LD-90 mobile robot.

This leads to the successful integration of the LD-90 with the INESC TEC robot fleet manager, as

depicted in Figure 5.19.

Figure 5.19: Fleet Manager Diagram with the OMRON LD-90.
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Chapter 6

Conclusions and Future Work

6.1 Accomplishment of the Proposed Goals

The main objectives of this dissertation were to develop a software module to control the OMRON

LD-90 mobile robot, which is a non-ROS-based robot primarily relying on the software produced

by its manufacturer, and to integrate this robot that employs free path planning algorithms with a

robot fleet manager that utilizes graph-based path planning algorithms, all within the ROS frame-

work.

The created system consists of several ROS nodes, each with different responsibilities for

ensuring the proper functioning of the entire system. The results obtained confirm the successful

implementation of a communication interface between this non-ROS-based AMR and a ROS-

based architecture. The development of these software modules was based on the ARCL interface,

developed by OMRON, and involved the use of TCP/IP sockets.

Furthermore, integrating this robot into a fleet manager that uses graph-based path planning

algorithms, indicates the possibility of having a heterogeneous fleet of robots managed by this

robot fleet manager.

6.2 Future Work

Although the determined goals for this dissertation were achieved, there are some considerations

that can improve the developed application. Firstly, it is important to note that the LD-90 mobile

robot does not precisely follow the edges in the graph-based trajectory; instead, an approximation

was made. To achieve this approximation, forbidden areas were created using the MobilePlanner

software. These forbidden areas forced the robot to navigate only in specific zones corresponding

to the edges of the trajectory.

Therefore, in the Trajectory Converter Node, it would be important to develop an algorithm

that automatically creates these forbidden areas in the newly generated .map file. By doing so,

the created software would not require any use of the robot’s manufacturer’s own software, and it

would improve the accuracy of the robot’s movement along the graph-based trajectory.
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Additionally, another aspect that would improve the efficiency of integrating the LD-90 with

the robot fleet manager is having access to the free paths generated by the LD-90 path planner.

This access could enable another approach to verify which edges the robot had already passed

through while executing a mission. Consequently, the use of forbidden areas could be eliminated.

By leveraging the free-path information from the LD-90 mobile robot path planner, the developed

application could send the fleet manager more accurate and real-time feedback on the robot’s

trajectory and progress. This would lead to a reduced dependency on the MobilePlanner software.

Furthermore, OMRON has developed a new version of the ARCL interface, which includes

a command that allows sending a robot to a goal while enforcing it to pass through intermediate

goals. However, this version has not been utilized with the LD-90 mobile robot yet. By incor-

porating this command in future work, it would enable the robot to navigate along the edges of

graph-based trajectories, eliminating the need for using forbidden areas entirely.
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Appendix A

OMRON Mission Structure

Figure A.1: Diagram of the nodes executed during the demonstration.

75



76 OMRON Mission Structure



Appendix B

Videos Taken

Video demonstration of the complete execution of a mission, sent by the robot fleet manager,

performed by the OMRON LD-90 mobile robot:

• Link: https://youtu.be/igFFSyZQV80
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