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Abstract

Marine animal research plays an important role in human life since the behavior of marine
animals is a good indicator of the state of the oceans. However, exploring the underwater
environment is a complex task, and the deployment of specialized vehicles guarantees a safe and
efficient expedition. These vehicles have several embedded sensors, including cameras that record
the environment. As expected, manually analyzing the videos for important events becomes
a time-consuming task for researchers, which can be optimized with the application of object
detection (OD) models.

A major obstacle arises since these models are highly dependent on high-quality data.
Obtaining such data becomes a problem due to the significant impact of the underwater medium
on the collected videos. Nevertheless, this study aids researchers in analyzing videos collected
from telemetry equipment. Additionally, it is intended to serve as a guide for future studies in
underwater marine animal detection using OD models. To achieve this, a dataset is developed
consisting of two classes, defined as the Jamanta dataset. Then, the object detection model
YOLOVT is trained with this dataset. In addition, two image processing (IP) methods are applied
to the Jamanta dataset, and the effects of training YOLOvV7 with the enhanced datasets are

discussed.

When training YOLOv7 with the Jamanta dataset, the model has great generalization power,
having the possibility to be applied in large-scale marine animal research projects. Comparing the
training sessions with and without using the enhanced datasets, the application of IP techniques
may even degrade YOLOvVT’s performance. Such observations invalidate the need for applying

these techniques to underwater object detection applications.

Keywords: Underwater Object Detection, Image Processing, YOLOv7



Resumo

O estudo de animais marinhos desempenha um papel importante na vida humana, uma vez que
o comportamento animal é um bom indicador do estado dos oceanos. No entanto, a exploragao
sub-aquética é uma tarefa ardua, e a utilizagdo de veiculos especializados garantem uma expedigao
segura e eficiente. Estes veiculos contém diversos sensores embutidos, incluindo camaras que
gravam o ambiente & volta dos animais. Como esperado, analisar manualmente os videos para
detetar eventos importantes é uma tarefa demorada para os investigadores, que pode ser otimizada

através dos modelos de detecao de objetos (DO).

Os modelos de DO dependem altamente de dados de alta qualidade, que sdo dificeis de obter
num contexto sub-aquatico devido ao impacto significativo da dgua nos videos adquiridos. No
entanto, este estudo auxilia os investigadores na analise dos videos recolhidos por equipamento
de telemetria. Além disso, tem o intuito de servir como guia para futuros estudos relacionados
com detecdo de animais marinhos através de modelos de DO. Para atingir este objetivo, um
conjunto de dados é desenvolvido, contendo duas classes e definido como os dados da Jamanta.
De seguida, o modelo de detecao de objetos YOLOv7 é treinado com estes dados. Para além
disso, dois métodos de processamento de imagem sao aplicados aos dados da Jamanta, e os

efeitos do treino do modelo YOLOvV7 com os dados melhorados sdo discutidos.

Ao treinar o modelo YOLOv7 com os dados da Jamanta, o modelo apresenta uma grande
capacidade de generalizagdo, tendo a possibilidade de ser aplicado em projetos em larga escala,
para estudar os animais marinhos. Ao comparar os resultados de treinar o YOLOvV7 com e sem
os dados melhorados, a aplicacdo de técnicas de processamento de imagem é capaz de degradar o
desempenho do modelo. Tais observacoes invalidam a necessidade em aplicar estas técnicas num

contexto de detecido de objetos sub-aquaticos.

Palavras-chave: Detecao de Objetos Sub-Aquaticos, Processamento de Imagem, YOLOv7
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Chapter 1

Introduction

Studying animals is crucial to obtain true data related to how they behave in their natural
environments, enabling studies that focus on the animals as individuals, as a population, or even
as a community [1]. In underwater exploration, understanding how marine animals interact with
each other and the surrounding ecosystems is of utmost importance to human life [2]. Studying
the movement, migratory habits, habitat utilization, and other factors of marine animals can
provide valuable insights applicable to the entire species. Therefore, there is the need to acquire

relevant data to facilitate these analyses.

Before the 1950s, the methodology used with this purpose in mind depended on direct
observation methods [3], which faced many challenges because some species are shy and avoid
humans, while other species live in habitats that make it nearly impossible for a study to be
conducted [4]. To address this problem, telemetry started being used in marine animal research

after the 1950s, and it has helped researchers optimize their studies ever since.

Telemetry devices obtain information on free-ranging animals, such as extensive long-term
data on marine animals’ movements, physiology, and/or environmental parameters, that can be
collected from devices called Electronic Tags [5]. Deploying Electronic Tags on ocean exploration
missions enables the protection of sub-aquatic ecological environments and the prediction and
prevention of underwater disasters, to name a few applications. These devices either transmit
the data to a receiver, as is the case with Acoustic and Radio transmitters [3], or log the data,
as is the case with Data Storage Tags (DSTs) [5]. Other devices such as Remotely Operated
Vehicles (ROVs) and Autonomous Underwater Vehicles (AUVs) are also currently used for ocean

exploration purposes [6], collecting important data from several embedded sensors.

Camera systems may be incorporated into the vehicles, which records the animals’ surround-
ings, allowing researchers to study marine animals in their natural environments and enabling
them to understand the social interactions within and between other species [7]. Additionally, by
studying directly on the species’ habitat, the animals behave as naturally as possible, with little

to no human interaction, which is known to bias the data collected from these studies.

However, underwater missions usually last for several hours, meaning that large amounts of



videos need to be analyzed to encounter important events for the research study. As expected,
this process is time and staff-consuming since it is conducted almost frame by frame, typically
by a researcher. Therefore, there is a need for alternative approaches that guarantee the videos
are efficiently and precisely analyzed, which may be achieved by applying computer vision (CV)
methods [8]. In this way, researchers may focus on other tasks, while the video is computationally

analyzed.

CV is a field of Artificial Intelligence that enables computers and machines to understand
the contents and patterns of digital data [9], i.e. images and videos, in an attempt to replicate
the analysis based on the human visual system. Traditional CV models relied on handcrafted
features, which generalized poorly on unfamiliar data [10]. On the other hand, Deep Learning
(DL) methods significantly improved the performance of CV models, using Artificial Neural
Networks (ANNs) to reproduce how the human brain works [11]. By applying DL to CV, the
model learns the necessary features during implementation, producing more accurate results on

unfamiliar data, with no human interaction during the learning phase [12].

Object detection (OD) is a commonly discussed CV field since it deals with several real-world
applications, such as autonomous driving [7], text detection [12], face recognition [13], and
pedestrian detection [14]. OD combines object localization and classification tasks, where the
former accurately locates the object, using a rectangular box, typically defined as a bounding
box [15]. The latter consists of assigning a class to an object from a set of pre-defined classes,
where a confidence score is associated with each class, and the class with the highest score is
the class that the model will predict [10]. Even though OD is known to be one of hardest CV
tasks, significant progress has been made and the field is developing at a fast pace, especially by

incorporating DL methods to OD.

Most of the recent OD applications depend on real-time detections, meaning that efficiency is
a key factor. However, because of a lack of computation power to process the models [16] and/or
due to the need for large amounts of high-quality data [10], such efficiency may not be achievable.
Furthermore, once the videos are collected underwater, their quality is highly affected by the
underwater medium due to absorption and scattering phenomena. Absorption occurs once light
enters the underwater medium, attenuating mostly colors with the largest wavelength (i.e. red
and yellow), while colors with the lowest wavelength (i.e. green and blue) are less attenuated [17],
explaining why underwater images are typically dominated by green and blue colors. Scattering
occurs since the light trajectory changes once it travels underwater, leading to noisy images with
a blurred effect and low contrast. By combining both phenomenons, low-quality underwater

images are obtained, negatively influencing the performance of an OD model [18].

Therefore, high-quality underwater datasets are necessary to improve the underwater explora-
tion field. One way to achieve this is to apply image processing (IP) techniques. These techniques
enhance the images, making them more visually appealing, with increased contrast, which is
ideal for an underwater image. However, previous studies [6, 19] have noted that applying IP
techniques does not guarantee a significant change in the performance of an OD model, having

the possibility to reduce its overall performance.
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1.1 Background and Motivation

Between October 2022 and July 2023, the Centre of Engineering and Product Development
(CEiiA), partnering with Faculty of Sciences of University of Porto, held an internship to apply
OD models to detect the animals from videos recorded from Electronic tags developed by CEiiA.
This is a project in collaboration with the University of Azores to aid them in their research on
the marine animals that inhabit the Azores’ islands, i.e. jamantas, tunas, whale sharks, remoras
and other animals. CEiiA has developed four types of tags: Torch, Wave, Limpet, and Oyster.
These tags have a set of sensors, capable of capturing both recording and environmental data,
such as the water’s temperature and depth. The tags are first attached to the animal, then the
data is collected by the tag until it releases from the animal, lasting up to 8 hours attached to

the animal. Then, the tag is retrieved by specialists and the data is analyzed.

The problem arises with the video analysis since the time of the videos corresponds to the
duration of the mission, i.e. the time the tag was attached to the animal. By combining multiple
missions, the number of videos to analyze increases significantly, which becomes time-consuming

for researchers in the long term.

The main contribution of this work lies on developing two datasets from videos collected by
the tags: the first dataset consists of images taken from two videos where jamantas and fish are
present, both with a duration of over 5 hours. This dataset is defined as the Jamanta dataset. A
second dataset is also created taken from several 30-minute videos where whale sharks, fish, and
remoras are present. This dataset is defined as the Whale Shark dataset. The frames for the
datasets were acquired by manually analyzing the entirety of the videos, where they were selected
once an animal was present. Then, the OD model YOLOv7 is trained using this dataset and the
results are analyzed. Due to lack of time, the results of training YOLOvV7 with the Whale Shark

dataset were not acquired, but the dataset is still available to be used in future training sessions.

As a secondary contribution, two IP methods are applied to the Jamanta dataset. Then,
YOLOvVT is trained with both enhanced datasets and the results are compared. This study is
conducted to verify if the creation of visually appealing images for humans has a significant
difference on the performance of an OD model. As a result, the need to apply IP techniques as a
pre-processing step is verified and the effects of training YOLOv7 with enhanced datasets are

evaluated.

1.2 Thesis’ Organization

This thesis is organized as follows: Chapter 2 covers the topic of Underwater Object Detection
(UOD), where OD is explained chronologically. In the same chapter, all the theoretical background
necessary for the understanding of the remaining chapters is presented. More specifically, the
theory behind Convolutional Neural Networks (CNNs), the You Only Look Once (YOLO) models

and the Challenges and Solutions of Underwater Image Processing are presented in Chapter 2.
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In Chapter 3, the methodology is explained, namely the development of the datasets, joined by
their analyzes. Additionally, two IP methods are presented and applied to the Jamanta dataset.
All the materials are also detailed, such as the tagging equipment and technology used. Chapter
4 starts by selecting the best hyperparameter combination. Then, the results of the training
sessions with these hyperparameters are discussed. In Chapter 5 the conclusions of this thesis
are presented. Finally, Appendix A shows the plots and images of training the model with the

best combination of hyperparameters, selected in Chapter 4.



Chapter 2

Underwater Object Detection

This chapter introduces the most important concepts related to the development of this thesis.
OD is first introduced, and is explained chronologically. Then, the theoretical background is
presented, where Convolutional Neural Networks (CNNs) and the most important metrics used
to evaluate the performance of an OD are explained. Furthermore, the You Only Look Once
(YOLO) models are explained in detail. Finally, the challenges of underwater OD are described

and a solution for these challenges is presented.

2.1 Object Detection

Object Detection has gone through two different stages since the beginning of the millennium: the
traditional object detection period and the deep learning object detection period [12]. Traditional
methods depended on handcrafted features, where researchers would design sophisticated feature
representations, limited by computing resources at the time [12] and the architecture of these
object detectors consisted of four layers: the Input layer, the Region Selector layer, the Feature

Extraction layer, and the Classification layer [20].

In the early 2000s, several traditional methods were introduced, but the Viola-Jones object
detector, the Histogram of Oriented Gradients (HOG) detector, and the Deformable Parts Model
(DPM) are the most honorable mentions because of their high performance. The Viola-Jones
[21] was introduced in 2001 as a face detector model, and achieved real-time detection by using
sliding windows to look for a face in all image locations [12]. In 2005, the HOG detector [22] was
motivated by the problem of detecting pedestrians, and was able to detect objects of different
sizes and shapes [12], which is still a problem for modern object detectors. In 2008, the DPM
[23] was proposed and achieved higher performance compared with other traditional methods at
the time, even winning the PASCAL VOC challenge in 2009 [10]. It followed the philosophy of
"divide and conquer", where it would detect an object by dividing it into its parts. For example,
to detect a human body, DPM would consider a human to be made of a collection of parts, such

as the head, arms, legs, and torso [10].
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After 2010, OD hit a plateau because the performance of the traditional object detectors
was slow and inaccurate, especially on unfamiliar data sets [10]. However, in 2012, the article
[24] introduced a deep learning approach to CV, using Convolutional Neural Networks (CNNs,
which will be covered with more detail in section 2.2.1). They defined the state-of-the-art at the
time and started a new era for object detection, since deep neural networks can learn robust
and high-level feature representations of an image, in a much faster and more accurate way than
traditional methods [12]. However, the ideas implemented with these methods were the building
blocks for DL methods.

Object detector models are divided into one-stage detectors and two-stage detectors. Two-
stage detectors first use Region Proposal Networks (RPNs) to generate Regions of Interest (Rol),
followed by classification tasks, at a second stage. R-CNN [25], Fast R-CNN [26] and Faster
R-CNN [27] are commonly used two-stage detectors [28]. These models lead to high accuracy
rates, with the trade-off of being slow [29]. On the other hand, one-stage detectors try to complete
the detection process by treating it as a regression problem, predicting the class and bounding
box coordinates in one step [12], leading to faster results with a slight loss in accuracy, compared
to two-stage detectors [30]. The You Only Look Once (YOLO) series are great examples of
one-stage detectors [31-36].

YOLOV1 [31] was proposed in 2016 and its results were significantly more robust than other
state-of-the-art OD models, such as Fast R-CNN. YOLO can be implemented to videos at a frame
rate of 45 frames per second (FPS), while Fast R-CNN had more accurate results at only 0.5
FPS. This fact enables YOLO to be implemented on real-time applications, such as autonomous
driving. However, this model struggled with smaller objects and YOLOv2 [32] was proposed
with the objective of fixing the issues from YOLOv1. This version introduced anchor boxes,
which are a set of several standard bounding boxes, selected after analyzing the dataset and
underlying objects [32]. YOLOv3 [33] and YOLOv4 [34] applied data augmentation techniques,
where new images are added to the dataset by applying image transformation techniques to the
already existing images. YOLOvV) introduced the anchor box selection process, where the most
appropriate anchor boxes are automatically learned by the model [10]. YOLOv6 [35] followed
an anchor-free philosophy, but it was considered unstable compared to YOLOv5. YOLOvT [36]
used the ideas of YOLOv4 and YOLOV5, achieving a good balance between detection efficiency

and accuracy [37].

These models may also be applied on underwater scenarios. The survey [38] summarized DL
approaches for marine object detection. More specifically, it reviewed articles that focused on
detecting fish, plankton and corals using one of the models from the R-CNN or YOLO family, with
different training strategies. For example, in [39] the authors proposed the zooplanktoNet, a DL
model to detect zooplankton based on CNNs, where the authors verified that most underwater
data sets suffer from class imbalance problems. To fix this issue, the authors applied data
augmentation techniques to the data sets. Additionally, the authors from [40] proposed a CNN
approach to plankton classification that dealt with class imbalance data sets using transfer

learning, a technique used to adapt the parameters learned from previous training sessions to
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other similar domains [41].

It is worth mentioning that DL applied to OD depends entirely on massive amounts of training
data to guarantee that OD model performs well on unknown data. Considering this requirement,
object detectors tend to perform poorly on smaller-sized data sets [14], where there are fewer
annotated instances. Almost all data sets used for CV tasks, for example PASCAL VOC [42],
ImageNet [43] and msCOCO [44], contain thousands of images with even more annotated objects
(since one image can contain more than one object present). The development of these data sets
is usually time and staff-consuming, which is a major problem once underwater images or videos

are used to train the models.

2.2 Theoretical Background

2.2.1 Convolutional Neural Networks

Convolutional Neural Networks (CNNs) are a type of Feed-Forward Neural Networks (FFNNs),
composed of neurons that are connected through weights (or learnable parameters), which
communicate with each other by receiving weighted information (either from other neurons or
external inputs), producing an output that may or may not be used throughout the rest of the
network. These networks have the capability of exploring pixel values with high detail, finding
abstract features from images, learning from them and obtaining a model that can be used on
data unknown by the model. Each feature of an image is associated with a weight. The higher

the importance of a feature for the detection, the higher the weight value on the NN.

NNs are commonly organized into stacked layers where the first layer is the input, the last
layer is the output, and the layers in between are the hidden layers, where the network acquires
all the necessary features for the task at hand [28]. The combination of the input layer, hidden
layers, and output layer defines the architecture of a Neural Network. A generic architecture of a
CNN is shown in Figure 2.1.

The connections between neurons are unidirectional from inputs to outputs, where the weights
are randomly initialized on the first layer, serving as inputs to subsequent neurons, until reaching
the last layer, where the outputs of the NN are calculated. Then, the weights are used to
compute a loss function’s value, which the FFNN has the purpose to minimize. After this step, a
backpropagation algorithm is applied, where the weights are updated throughout the network. By
repeating these steps for a pre-specified number of iterations (or epochs), the FFNN is training

and, hopefully, the performance of the model improves at each step of the process [45].

The first layer of Figure 2.1 is the input layer, where the model initially processes the image.
Then, the following layers (the hidden layers) alternate between convolutional layers, pooling
layers and other normalization layers, used for feature extraction. The final layers are usually

fully connected, that are used for classification purposes [13, 47]. In each convolutional layer,
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__Output Layer
Input Layer _ utpu

Convolution Pooling Convolution Pooling e
Layer Layer Layer Layer Fully
Connected
Layer

Figure 2.1: Generic CNN architecture [46]

CNN s apply the convolution operation with an activation function, between a set of filters (or

convolutional kernels) and a given input, generating an output feature map [48].

The convolution operation is given by

Xh=f > xITawh + 0 (2.1)
1€M;

where W' is the weight matrix of the feature map corresponding to the lth layer, * is the
convolution symbol, a bias bé- is added to the results of the convolution operation and f(x) is a

nonlinear activation function.

The activation functions are commonly used in CNNs since they first produce a linear output
and these functions convert them into non-linear outputs, enabling the network to capture
non-linear relationships between the input features, learn better patterns from the data, and

decide whether a neuron should be used or not [49].

The Rectified Linear Unit activation function was proposed in 2010 [50] and is the most
commonly used activation function, since it offers better performance and generalization compared
to other activation functions, such as the Sigmoid and Hyperbolic Tangent functions. The ReLLU

activation function is given by

f(z) = max(0,x) (2.2)

However, when the ReLU is used as the activation function, some neurons fail to activate
since their gradient values are set to zero at earlier stages of training. To fix this issue, the
Leaky ReLU activation function was proposed in 2013 [49], which introduced the parameter a to

guarantee that the gradient values are never set to zero. This function is given by Equation (2.3)
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xz, ifx>0
flz)=azx+z= (2.3)
azr, ifx<0

After the convolutional layer is applied and the feature map is activated, a pooling layer
is used to down-sample the feature maps, reducing their sizes, where a fixed rule is applied.
This rule depends on the application at hand, but CNNs usually use the max-pooling operation,
where the maximum value of a k x k neighborhood is applied through all the image, gathering
the most relevant features and excluding the rest [28]. The average pooling is another pooling
operation, which averages all the values of a k x k neighborhood, as shown by Figure 2.2 [51].
Convolutional and pooling layers may be combined in several ways. However, once the network
reaches the classifier head, the last of the max pooled feature maps in the backbone is flattened.
The flattening operation is done by transferring each pixel value of this final feature map to an

input neuron with one dimension, serving as input to the fully connected layers [28].

Max Pooling Average Pooling
29 | 15 | 28 | 184 31 15 | 28 | 184
0 |100| 70 | 38 0 100 | 70 | 38
282 it 2 (2 A 7 2
12 | 12 |45 6 12 | 12 [B4S 6
2x2 2x2
pool size pool size
Y v
100 | 184 36 | 80
12 | 45 12 | 15

Figure 2.2: Max-pooling and Average-pooling operations [51]

Finally, in the last layer of the fully connected layers, the softmax function is used to compute
the probability distribution from z, a vector of real numbers, producing an output ranging
between 0 and 1, indicating the probabilities of each class, that must be predefined. The softmax

function is given by

(2.4)

where z; is the ith element of x.

At this stage, the object detection task is concluded and each class has its probability

associated. The class with the highest score indicates the one chosen by the model to classify the
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object. Additionally, several metrics may be used to verify if the results are appropriate to be

used on unseen data and to assess if any problems occurred during the network training stage.

Object Detection metrics

The Mean Average Precision (mAP) is the most common metric used to verify the performance
of object detectors, and it is based on the Precision and Recall values, defined by Equations (2.5)

and (2.6), respectively.

TP
Precision = m =p (25)
TP
ll=———= 2.
Reca TP N " (2.6)

where TP are True Positives, which are the correct detections made by the model, FP are
False Positives, which are objects that were incorrectly identified by the model. The FN are the
False Negatives, which are objects that the model did not consider for the detection task [52].
Precision is the percentage of correct positive predictions, measuring the ability of a model to
identify only relevant objects. Recall is the percentage of correct predictions among all given
ground truths [53]. Both precision and recall are dependent on the confidence associated with
each bounding box, generated by the model. These confidence scores are defined as the model’s
confidence that an object is inside the bounding box [10]. Consequently, a higher confidence

score indicates a better localization performance by the model.

Therefore, an OD model is considered a good model if it can find all the ground-truth objects
and identify all the relevant objects of the image [54]. This implies that both precision and
recall remain high, even if the confidence threshold decreases. By combining both metrics, the
Precision x Recall curve (PRC) is obtained, where a large area under the curve (AUC) indicates
both high precision and high recall. From the AUC, it is possible to obtain the average precision
(AP). Since the AUC of the PRC is not monotonic, it is interpolated to guarantee the curve’s
monotony and an accurate AUC. To do this, the maximum precision values are averaged in a set
of equally spaced recall levels. Then, the AP is calculated for each class of the dataset. Finally,
the mean average precision (mAP) is the average of the AP for all the classes and is given by
Equation (2.7), where AP; is the AP for each of the dataset’s class [53].

1 N
mAP = ; AP, (2.7)

The Intersection over Union (IoU) is another commonly used metric in OD that measures
the accuracy of the identification of the object, by comparing the predicted bounding box with
the ground-truth bounding box [7]. With a given threshold ¢, it may also be used to define
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which detections are classified as correct, if IoU > ¢, and incorrect, if IoU < ¢. Figure 2.3 defines

10U — area of n\':*ll'lzll} _
area of union .

Figure 2.3: Intersection over Union (IoU) [53], where green represents the prediction made by
the model and the red box is the ground truth

graphically the IoU.

Furthermore, the Precision and Recall values are also used to define another metric called

the Fl-score, given by

2 Precision x Recall
Fl-score = T — =2 Precz.sz.on cea (2.8)
Precision + Recall recision + Recall

The F1 metric is the harmonic mean between Precision and Recall, meaning that it considers
both false positive and false negative values [55]. It is especially used to assess the detection
performance over imbalanced data sets, since each class may be individually studied with this

metric.

2.2.2 You Only Look Once (YOLO)

CNNs can be further defined as having specific components that deal with specific tasks. Such
components are mainly the Backbone, the Neck and the Head [6]. The backbone is one of the
most important components of a CNN, which extracts the features from the input image [28],
and is commonly represented by Deep Convolutional Neural Networks (DCNNs), such as AlexNet
[24], GoogLeNet [56], VGG-16, and VGG-19 [10, 57]. The neck is placed between the backbone
and the head and is used to aggregate features collected from feature maps in different stages
of the network [14], allowing low-level features to interact directly with high-level features, by
mixing their information [58]. Finally, the head, also known as the classifier head, is usually a
sequence of fully connected layers, that uses the features extracted from the backbone. Combined
with the neck, the head classifies those features into output classes [28]. There are two types
of classifier heads: one-stage heads and two-stage heads [12], which were briefly explained in
Section 2.1.

One-stage detectors have simpler architectures, enabling them to output bounding boxes
and class probabilities, by considering the whole image while visualizing it once [14]. This
leads to higher detection speeds, although the detection performance may suffer, compared to

two-stage detectors. The YOLO series are great examples of one-stage detectors that started in
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2016, outperforming other state-of-the-art object detectors [14], in terms of speed and detection

accuracy.

T
| e T

Final detections

S x S grid on input

Class probability map

Figure 2.4: The YOLO model [31]

YOLO starts by dividing the input image into an .S x S grid, and each cell is responsible
for the detection of an object only if the object’s center is located inside the cell. Each grid
cell predicts B bounding boxes and confidence scores for each box [31]. The latter is formally
defined as Pr(Object) x IOUT " Pr(Object) is the probability that the grid contains an object

pred
and TOU/T"! is the ToU (Figure 2.3) between the ground truth and the predicted box [31]. The
grid cells also compute the conditional class probabilities for each class, p(c¢;), where i = 1,...,n,

which is used to verify both the class appearing in the box and how well the predicted box fits
the object [31]. Finally, each bounding box predicts a set of parameters: (x,y), the coordinates
of the center of the predicted bounding box; height (h) and width (w), the predicted dimensions
of the bounding box; c¢s, the confidence, which represents the probability that the grid contains

an object. Figure 2.4 shows how YOLO processes an image.

Therefore, YOLO computes S x S x (B x 5+ n) values in total during training. There are
S xS x B bounding boxes, each bounding box computes five parameters, for the number n of
classes to be predicted. This leads to a large number of boxes that need to be filtered so that only
the most appropriate bounding boxes are shown in the image. To filter the bounding boxes, the
first way is to discard the boxes that have a value of p(¢;) smaller than a predefined threshold,
usually 0.5. Then, the non-max suppression algorithm (NMS) is applied to filter the rest of the
boxes [14]. More specifically, the bounding boxes generated by the model are independent for each
detection, which means that an overlap of detections is bound to occur at least once, as shown

in the top part of Figure 2.4. Therefore, once detections are highly overlapped, NMS collapses



2.2. Theoretical Background 13

them into one detection, significantly reducing the number of detections initially proposed by
the model [59].

Several YOLO versions have been developed since 2016. However, this work focuses on
implementing YOLOv7 which, during the early stages of the internship, was the latest YOLO
version. Ever since, other versions were proposed, such as YOLO-NAS! and YOLOvS?2.

YOLOVT [36] is a real-time object detector that was trained only on the msCOCO dataset
[44]. without using any other data sets or pre-trained weights. The original architecture is

presented in Figure 2.5.

i * REP i Feature map

MPConv

Feature map

B
J;_
:
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- — )|

BackBone | Neck ' Predicition

Figure 2.5: YOLOVT architecture [37]

YOLOvT follows the basic CNN architecture (Figure 2.1). However, certain changes were
implemented to improve the performance of the model, in addition to the changes from previous
YOLO models. The backbone is composed of Extended Efficient Layer Aggregation Networks
(E-ELAN) modules to complete the main feature extraction task [60], which was proposed to
design an efficient network [36]. BConv modules, composed of Convolutional layers, Batch
Normalization layers, and LeakyReLU activation function (Equation (2.3)), are included to
extract image features of different scales. Batch Normalization is a regularization technique [61]
introduced in YOLOvV2, which addresses the issue caused by the random initialization of the first
layer [14].

Thttps://github.com/Deci- Al /super-gradients
Zhttps://github.com /ultralytics/ultralytics
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The Neck is composed of a path aggregation feature pyramid network structure, realizing the
efficient integration of features at different levels of the network [37]. Through three different
detection heads, the network outputs the feature maps with three different sizes, and these

become in the form of a one-dimensional vector from which the classes may be predicted [60].

YOLOVT7’s loss functions consists of Objectness Loss (L), Classification Loss (L), and
Box/Localization Loss (Lpez). Objectness loss measures the probability that an object exists in
a proposed region of interest. The box loss measures how well the model locates the center of an
object and how well the bounding box covers the object. Finally, the classification loss refers to
how well the algorithm can predict the correct class of an object [62]. The total loss is given by

the sum of these three components [60] as shown in Equation 2.9,

Loss = a X Lopj + b X Les + ¢ X Loy (2.9)

where a, b, ¢ are the weights corresponding to the three partial losses [60].

OD models contain a set of hyperparameters that should be combined to achieve the best
possible result. This approach is based on hyperparameter optimization. YOLOv7’s optimization
algorithm is based on the integrated genetic algorithm [63]. Genetic algorithms are inspired by
biological theories that integrate the idea of maintaining the hyperparameters that are more
likely to improve the model in future generations [64]. Even though the most appropriate set of
hyperparameters is obtained, other alternatives can be explored, since YOLOv7’s optimization
algorithm takes a large amount of time to complete. Grid search is an example of a more
traditional alternative to obtaining the best hyperparameter combination. This technique
conducts an exhaustive search, evaluating all the hyperparameter combinations from a grid of

configurations [64].

YOLOVT’s hyperparameters mainly consist of the Batch Size (BS), Learning Rate (LR),
Weight Decay (WD), Momentum (Mom.) and Image Resolution (IR). BS represents the number
of images that are processed together during model training [65]. The higher the BS, the more
images will be processed at a time, significantly decreasing training time. However, as BS
increases, the need for computational memory also increases. The LR determines how much
the weights of the neural network change during training [66]. High LR values imply sudden
changes once the weights are updated, therefore training becomes unstable. Low LR values
greatly influence training time with no certainty that the model converges. WD is a regularization
technique that is introduced in the loss function to prevent overfitting and underfitting issues
due to lack of data [67]. Furthermore, since the objective of training a neural network is to
minimize the loss function, there are several algorithms that deal directly with this optimization
problem, such as the Stochastic Gradient Descent (SGD). Having said that, this algorithm has
the recurrent problem of assuming that a local minimum is the global minimum, which is not
the optimum solution. However, when Mom. is introduced to the SGD algorithm, this problem
is mitigated, significantly increasing the model’s rate of convergence and accuracy [68]. Finally,

IR is associated to the spatial resolution of the images and should also be assessed.
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2.2.3 Challenges and Solutions of Underwater Object Detection

When the underwater medium is explored using specialized divers, it usually becomes expensive,
considering the equipment and personnel needed to complete those missions. Additionally, the
missions become inefficient, given that only a limited amount of time can be spent underwater,

leading to an increase in the duration of the research study [69].

Specially designed vehicles are also an alternative such as remotely operated vehicles (ROV)
and autonomous underwater vehicle (AUVs) [6]. The deployment of these vehicles on underwater
missions enables a further understanding of the underwater medium, since they carry cameras
that capture the surrounding environment. However, they also deal with their specific issues,
such as hardware limitations, namely depth restrictions and a limited field of view, that influence

the quality of the acquired videos and images [69].

Adding to the vehicles’ limitations, the quality of the videos collected by the cameras are
highly affected by how light travels underwater. As soon as light enters underwater, it is
absorbed and scattered, attenuating different colors at different rates [70]. Light absorption is
best understood from Figure 2.6 [71], where the colors with the highest wavelengths (red and
yellow) are absorbed in lower depths. The colors with the shortest wavelengths (blue and green)
are only absorbed in higher depths. This implies that videos and images taken underwater will
be biased since blue and/or green colors will be abundant (depending on the types of water the

recording is conducted).

As light travels underwater, a scattering effect also occurs, represented by Figure 2.6, where it
can be divided into three parts, as described by the Jaffe-McGlamery underwater imaging model
[72]: direct scattering of light from the target to the imagery system; forward scattering, which
is a small angular deviation of the light affected by the particles in the water, deviating from the
path of the direct scattering; backscattering, which occurs due to the existence of underwater

particles that light encounters and then scatters.

Therefore, by combining the absorption and scattering phenomenons, the quality of the
acquired images suffers significantly. For example, the images suffer from color cast, where a
color dominates the entire image. Additionally, usually the images appear to be blurred and
with low contrast, significantly reducing the amount of information present. These issues lead to
low-quality underwater images, which have a negative impact on the performance of an object

detection model [18], since they depend on large amounts of high-quality data.

Underwater Image Processing

To make the images more visually appealing, image processing (IP) techniques are usually an
inexpensive alternative used to fix the issues of underwater imaging. IP techniques are divided
into image enhancement (IE) and image restoration methods. The latter uses physical models

which depend on additional information such as the water’s turbidity, attenuation coeflicients,
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Figure 2.6: Representation of absorption and scattering phenomenons once light travels

underwater [70]

time of day, and location [73]. The former uses qualitative and subjective criteria to enhance the
pixels to produce a pleasant image [70]. These are known to be less computationally expensive

than image restoration techniques [73].

By pre-processing the data using IP techniques, it is then possible to train OD models with
the enhanced data. Since the images become more visually appealing, with increased contrast
and color, it is expected that the results of this experiment improve the performance of the
model. However, the studies [6, 19] noted that applying these techniques does not imply such
improvement. Having said that, both studies empirically analyzed the effects of IP techniques on
model performance, where the authors used two underwater datasets and several IP techniques.
Both studies concluded that there is no linear relationship between enhancing the images and
the performance of an OD model. Nevertheless, these analyses are empirical, meaning that it is
not certain that, in other domains, the application of IP techniques has a positive effect on the
performance of an OD model. Therefore, understanding the effect of these techniques on OD
models is crucial to achieving the most appropriate results, even though their application comes

with great computational costs as the dataset increases.

After applying IP techniques, the enhanced images are usually compared and analyzed with
the original, to understand the effects of these techniques. More specifically, qualitative and
quantitative analyzes are often carried out. The qualitative analysis consists of visually analyzing
the effects of these techniques on the original images, which leads to the choice of the most
appropriate technique. However, these analyzes may lead to a bias in the decision of the best
method, since opinions vary from person to person. Consequently, quantitative analyzes are also
conducted, where image quality metrics (IQM) are used to evaluate the effects of the enhancement.
The authors in the article [69] reviewed several IQMs used to evaluate the effects of underwater

image enhancement methods. They divide these metrics into two groups: Full Reference (FR)



2.2. Theoretical Background 17

and No Reference (NR). FR metrics compare the enhanced image with the original image. NR

metrics do not need the original image to assess how the IP method performed on the image.

Concerning the work developed within this thesis, Table 2.1 shows only the MSE, the PSNR,
and the Entropy metrics. The article [69] presents other important metrics, which are not

considered since it is not the focus of this thesis.

Table 2.1: Equations of MSE, PSNR and Entropy

IQM Definition
MSE TN it 0 [F (i, §) — E(i, §))
MAX
Entropy (H) — 2255 pilogy p;

MSE is a metric between the reference and enhanced image, which compares the cumulative
squared error between both images. In Table 2.1, F' is the original image, E is the enhanced
image and M x N is the size of the image. Low MSE means that the enhancement’s quality
is better [69]. Furthermore, PSNR is the ratio between the pixels’ highest value and the noise
of the image, where M AXp represents the maximum pixel value in the equation of Table 2.1.
Finally, the entropy (H) measures the amount of information present in the image the higher its
value. In the equation of Table 2.1, p; is the probability of a pixel having intensity i in the image
F [69].



Chapter 3

Materials and Methods

In this chapter, the materials and methods used throughout this thesis are presented. Firstly,
CEiiA’s tagging equipment is presented, where the components of the telemetry equipment are
explained. Then, the datasets used to train YOLOvT are explained in detail, joined by the
dataset analysis. This analysis helped solidify the quality of the developed datasets. Then, two
IP methods are presented, as an attempt to verify the effects of enhancing the images from the
Jamanta dataset on the performance of the model. Finally, the technology used is introduced,

joined by a detailed explanation of how YOLOv7 is trained from scratch.

3.1 CEiiA’s Tagging Equipment

CEiiA partnered with the University of Azores to aid them in their research on the marine
animals that inhabit the Azores islands, specifically jamantas, whale sharks, remoras and other
marine animals. To study these animals, four types of electronic tags were developed. These tags
are externally attached by specialized divers, in a way that the animals are minimally harassed.
This represents a significant progress since it is well known in the marine animal’s research
community that telemetry techniques can be extremely invasive to marine animals, especially
externally attached tags [5]. Consequently, telemetry studies must be clearly defined from the
beginning of the research study [74].

Torch and Wave are towed tags, attached around the animal that release after a period of 8
hours, reaching the surface of the ocean and emitting a radio signal so that it can be recaptured.
Limpet and Oyster are mounted tags, with suction caps to be mounted on the animal without
the need to be around it. However, since these tags release from the animal after a period of 8
hours, they are not suitable for studies where the data is needed to be collected throughout a
longer period of time. Additionally, suction tags have been noted to be constrained to 5 hours of
use, limiting the amount of data that is collected by these devices [75]. Therefore, other types of

tags should be used if the research study needs access to long-term data.

Nevertheless, the focus of this section is on towed tags, since the data collected for the

18
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development of this study came from a towed tag, specifically Torch, presented in Figure 3.1.

Figure 3.1: Torch tag

Torch weighs 1600g, with 375 x 120 x 155 mm in length x width x height, reaching up
to 2000 m in depth. This tag embeds environmental sensors, motion sensors and a camera to
record the marine animal’s environment. The environmental sensors include pressure, which is
used to measure depth values, temperature and luminosity (ambient light). The motion sensors
include a velocity sensor and Inertial Measurement Unit (IMU), composed of Accelerometer,
Magnetometer and Gyroscope, to gather information about the orientation of the tag, which can

be inferred to acquire the animal’s orientation and its positions [76].

The camera is a Sony IMX219, with an image resolution of 1920 x 1080, and video recording
at 30 FPS at a distortion level below 1%. This level of distortion is appropriate for recording
underwater videos because there are several particles that a camera with higher distortion would

focus, instead of mainly focusing on the animal that appears in range of the camera lens.

3.2 Datasets

OD depends on large amounts of data for the model to perform well. Considering the purpose of
this work is to detect marine animals on a specific context, a dataset was developed from the

videos collected by the telemetry equipment.

3.2.1 Jamanta Dataset

For the Jamanta dataset, the tag is towed to a jamanta. The images were taken from two videos
having a duration of over 6 hours, with an image spatial resolution of 1640 x 922 and a file
size of 24.3 GB and 10.1 GB, respectively. This dataset consists of two classes: Fish (0) and
Jamanta (1). From the videos, tunas and remoras are present, and these fish were assigned to

one class only due to their similarities, while the jamantas were assigned to its respective class.
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The FFmpeg' platform was used to acquire the frames, which were collected at a frame rate
of 3 FPS, 5 FPS and 10 FPS, since consecutive frames do not offer a significant difference in
the image. Figure 3.2 shows frames taken from the videos. Figure 3.2 (a) presents a gathering
of jamantas, which is rarely captured by the camera, even though jamantas usually travel in
groups. Figure 3.2 shows that the quality of the image is affected by the water medium, since
blue is the predominant color. This issue leads to a lack of variety in the collected images that
are sometimes difficult, even for a human, to correctly identify any animal. Figure 3.2 (b) shows

an example of an image where a Jamanta is hardly seen.

2022-07-18 14:02:11.975
| Depth: O 00

Jepth: 0.4 | Velocity: |

(a) (b)

Figure 3.2: Frames from Torch Tag: (a) Frame from Torch tag towed to Jamanta (b) Frame

from Torch Tag where a Jamanta is hardly seen.

Therefore, the frame acquisition step was difficult to complete, even when the fish or jamanta
were in front of the camera. The videos include a legend on top, as shown in the Figure 3.2 (b),
indicating the depth values and tag velocity, which were removed, since they do not add value to

the image.

The annotation process was conducted using Label Studio?. The annotations were exported
with the YOLO annotation format given that YOLOvT is the model chosen for this work. The
YOLO annotation format consists of a .txt file associated with its corresponding image, where
each line represents the annotation of an object in the image, meaning that an image may contain
several annotated objects. The annotated object consists of 5 parameters: the object class, the
coordinates (x,y) of the center of the bounding box, and the width and height values of the
bounding box, all normalized according to the size of the image. Figure 3.3 shows two images

with the bounding boxes around the animals identified.

The Jamanta dataset has 975 images with 634 annotated fish and 712 annotated jamanta.
As a pre-processing step, the dataset was analyzed, which included separating the red, green
and blue color channels for each image, and computing the mean of each channel for all images.

Figure 3.4 shows how the mean values of each color channel is distributed throughout the dataset.

As expected for the Jamanta dataset, the blue channel is the most predominant one for all

Thttps://www.ffmpeg.org/
Zhttps://labelstud.io/


https://www.ffmpeg.org/
https://labelstud.io/

3.2. Datasets 21

(a) (b)

Figure 3.3: Example of annotated images
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Figure 3.4: Boxplots with the intensities of each color channel (Red, Green, Blue) for the Jamanta

dataset

the images of the dataset, and the red channel has very low values, even though some outliers
are present. These outliers occur in images where the towed jamanta is near the surface, since
light has not been significantly absorbed yet. The boxplots of the green channel show that the
green color is always present in the images, especially when the animals are hardly identified.
This prevalence of the green channel indicates that the jamantas and fish are mainly represented
by the green channel, while the blue channel is associated with the background, and the red

channel represents near-the-surface images.

The bounding box sizes were also considered, since the annotation indicates the position of
the box on the image. Figure 3.5 shows boxplots of the bounding boxes width (a) and height (b)

for the Fish and Jamanta classes.

Through this analysis, it was possible to assess the dimensions of each class, especially the

fish since some instances were incorrectly annotated as jamantas and vice-versa.

Instead of selecting specific images for the validation dataset, a cross validation pipeline was
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Figure 3.5: Boxplots with the width (a) and height (b) of the bounding boxes for the Fish and

Jamanta class

developed to split the data into training and validation sets, where 85% of the total images were
randomly assigned to the training set, and the remaining 15% were assigned to the validation
set. In addition, a test set consisting of 84 images was created to provide additional insights and

further evaluate the results.

3.2.2 Aquarium dataset

A dataset with 638 images was acquired from the Roboflow website?, with 4821 annotations
across seven classes: Fish (0), Jellyfish (1), Penguin (2), Shark (3), Puffin (4), Stingray (5),
Starfish (6). Figure 3.6 shows an example of an image from this dataset, where sharks and
several fish are identified. The dataset splitting consisted of 448 images for the training set, 127
for the validation set and 63 for the test set.

The Aquarium dataset was considered mainly because of the need for high-quality and diverse
underwater images. Since the images were taken from an aquarium, the recording environment
is more predictable and controlled, and they are not as attenuated as the images taken from the
ocean. Having said that, it has more diversity compared to the Jamanta dataset because of the
total number of annotations, shown in Table 3.1. However, the Aquarium dataset shows serious

class imbalance problems, since the Fish class is over-represented (having over 2600 annotations).

Through experimental training sessions with the Aquarium dataset, it was verified that
the model behaved poorly, especially for the puffin class. For this reason, data augmentation
techniques, such as horizontal flips and vertical flips, were applied only to this class. This way,

the number of annotations of the Puffin class increased to 350 and the dataset’s size increased to

3https:/ /public.roboflow.com /object-detection /aquarium
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Figure 3.6: Example of images from the Aquarium dataset

Table 3.1: Distribution of the classes of the Aquarium dataset for the training, validation and

test sets
Classes Training Validation Test Total
Fish 1961 459 249 2669
Stingray 136 33 15 184
Penguin 330 104 82 516
Shark 259 57 38 354
Puffin 175 74 35 284
Jellyfish 385 155 154 694
Starfish 78 27 11 116
Total 3324 909 o84 -
683.

Furthermore, the Aquarium dataset was also considered since previous training experiments
showed non-satisfactory results using other datasets, such as the msCOCO [44] dataset. The
msCOCO was used during the experimental training sessions following the principles of transfer
learning. This approach involves transferring the learnable parameters from previous training
sessions to new domains, leading to faster and improved results [51]. However, the msCOCO
does not include any class with marine animals, which will not generalize appropriately on an
underwater setting. Therefore, the Aquarium dataset was considered, instead of the msCOCO,
following the experiments with the msCOCO dataset. This approach guaranteed that the model

learns the most suitable patterns for the application of this work.

Figure 3.7 shows the mean color channel values for the Aquarium dataset. Considering the
aquariums that store the fish have different kinds of lighting, the color diversity of the images is
expected. Additionally, the quality of the images is significantly better than the images from the
Jamanta dataset, since the images from the Aquarium dataset are taken in a more controlled

environment. Furthermore, Figures 3.8 shows the bounding box width and height values.
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Color channel values for the Aquarium dataset

<]
200 A _8_
150 A
[
=
O
> 100
50 A
0- l
Red Green Blue

Figure 3.7: Boxplots with the intensities of each color channel (Red, Green, Blue) for the

Aquarium dataset
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Figure 3.8: Boxplots with the width (a) and height (b) of the bounding boxes for all the classes

of the Aquarium dataset

The boxplots from Figure 3.8 show that the sizes of the annotations of the Aquarium dataset
are more unpredictable than the sizes of the annotations from the Jamanta. Considering the
images were taken from an aquarium, the animals may be closer of farther from the camera, even
if the animal itself is comparatively small. For example, sharks are usually larger than starfish
but, in this case, their sizes are similar. This analysis confirms that the dataset is significantly

diverse and a good starting point during the initial phases of model training.
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3.3 Underwater Image Processing

As was discussed in Section 2.2.3, IP techniques may be used in underwater OD, to verify if
enhancing the underwater images has a positive influence on the performance of an OD model.
Even though previous studies [6, 19] noted that there is no strict correlation between enhancing
the images and the performance of an OD model, it was decided that it should be verified for
the development of this thesis. Therefore, two underwater IP methods were used to enhance
the images from the Jamanta dataset. More specifically, the articles Xiang et al., 2018 [77] and

Ghani & Isa, 2015 [78] were chosen to enhance the images from the Jamanta dataset.

Xiang et al., 2018 [77] proposed a method where the red channel is compensated using a
linear combination of the green and blue channels, considering the attenuation coefficient of each
color from the RGB color model. Then, guided filters were used to enhance the objects’ contours,
and a gamma correction model was proposed that stretched the histograms of the images to an

appropriate configuration.

Ghani & Isa, 2015 [78] is an extension of two other image processing methods: ICM [79]
and UCM [80], both based on histogram stretching of the RGB color model. UCM forces the
distribution of the RGB histograms of the images to follow the Rayleigh distribution, which has
been proven to be the most appropriate distribution for the histograms of underwater images

[81] and is given by

x\ ==
FRayleigh(x) = (OP) e 2a2 (31)

where o > 0 is the parameter from the Rayleigh distribution and x > 0 is the intensity value.

However, Ghani & Isa, 2015 [78] extended the UCM method by converting the RGB image
to the HSV color space, followed by stretching the histograms of the S and V components. Then
the image is converted to the RGB color space to acquire the enhanced image. Both methods
were applied to the Jamanta dataset since the attenuation issues were more evident than the
issues from the Aquarium dataset. Figure 3.9 shows both methods applied to the original image,

shown in Figure 3.2 (a).

Firstly, both methods reduce the dominance of the blue color. Additionally, the contrast is
enhanced and the colors of the animals are restored. However, the Xiang et al. [77] method
seems to add extra noise and accentuate colors that do not belong to the animals. Therefore, it
appears that the processing conducted with the Ghani & Isa [78] method is more subtle, and
more appropriate to the Jamanta dataset than processing with the Xiang et al. [77] method. To
verify this, Figure 3.10 shows the boxplots of each color channel of the Jamanta dataset processed
with the Xiang et al. [77] (a) and the Ghani & Isa [78] (b) methods, respectively. Figure 3.10 (a)
shows that the Xiang et al. [77] method compensates the red channel for almost all the images.
Comparing with Figure 3.4, the increase in the red color channel explains why some images

processed with this method are over-enhanced. On the other hand, when comparing with Figure
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(a) Xiang et al. [77] (b) Ghani & Isa [78§]

Figure 3.9: Enhanced images applying the Xiang et al. [77] (a) and Ghani & Isa [78] (b) methods,
applied to image from Figure 3.2 (a)

3.10 (b), the differences are minimal in the red color channel, while the values for the blue color

channel are slightly reduced.
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Figure 3.10: Boxplots with the intensities of each color channel (Red, Green, Blue) for the
Jamanta dataset processed with the Xiang et al. [77] method (a) and the Ghani & Isa [78]
method (b)

To confirm that the Ghani & Isa’s [78] enhancement is better than the Xiang et al. [77]
method, Table 3.2 shows the results of applying the IQM presented in Table 3.2 to the reference
and enhanced images. Since the results of the qualitative analysis vary from person to person,
applying these metrics is crucial to decide which is the most appropriate enhancement, in an
unbiased way. The results from Table 3.2 are obtained from computing the average of each

metric for 13 images selected for the processing task.

Analyzing the entropy for each color channel, the red channel contains the least amount of
information, especially for Reference, while the green channel contains almost all of the relevant

information. By applying the Xiang et al. [77] method, the entropy increases significantly for
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Table 3.2: Entropy of the (Red, Green, Blue) channels of the reference and enhanced images,
with their respective MSE and PSNR values.

Methods Entropy (R) Entropy (G) Entropy (B) MSE PSNR
Reference 1.987 5.744 4.916 - -
Ghani & Isa
2.535 5.618 5.699 977.87 18.32
[78]
Xiang et al.
7] 3.464 6.675 6.351 2776 14.15

each color channel, where the red channel increased the most. On the other hand, when applying
the Ghani & Isa [78] method, the green channel’s entropy decreases, while the entropy for the
red and blue channels slightly increases. These results confirm that the Xiang et al. [77] method
over-enhances the colors of the images. It also shows that processing with the Ghani & Isa [78]
method is more subtle since it highlights the important information without compensating the

image with non-existent colors.

The conclusions from analyzing the MSE and PSNR columns are also according to the
conclusions from the entropy metric. The MSE values are considerably higher for the Xiang et
al. [77] than the Ghani & Isa [78], while the PSNR is lower for the former. A decrease in PSNR
is expected considering the relationship between PSNR and MSE.

Therefore, both quantitative and qualitative analyses confirm that the Ghani & Isa [78]
method is the best IP method to use for the Jamanta dataset.

3.4 Technology used

MATLAB was used to process the images using the Image Processing Toolbox. Several Python

libraries were used to obtain the results shown:

« Matplotlib: plot all the figures;
e Numpy: efficiently deal with arrays and matrices;
« Albumentations®: apply data augmentation techniques on image data

e YOLOVT7 libraries: Tensorflow, Pytorch, OpenCV, Pillow, Scipy, pandas, scikit-learn

*https://github.com/albumentations-team /albumentations
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3.4.1 Training the YOLOvV7 model

To train the YOLOv7 model, the GitHub repository® needs to be cloned to train the model on
image data. This repository consists of several changeable properties, such as hyperparameters
and architectures. The first training sessions and detections were done with the default settings,

to understand how training is usually implemented. To guarantee the results are achieved in a
timely manner, the GPU RTX A6000 was used.

During training, a set of arguments can be used with different values and combinations,
such as hyperparameters, pre-trained weights, the number of training epochs, and many others.
The number of epochs specifies the number of iterations that training lasts. In each epoch, the
model verifies its results on the validation set, outputting the Precision and Recall, mAP@0.5,
mAP@0.5:0.95. It also outputs each loss function value for the training dataset (Objectness,
Classification, and Box), and the total loss value for the training dataset (Equation 2.9). The
mAP@O0.5 measures the mAP at an IoU threshold of 0.5. The mAP@0.5:0.95 measures the mean
value of the mean Average Precision over the following IoU interval [0.5,0.95] with a step of
0.05. Since mAP@0.5:0.95 uses several IoU thresholds, its value is expected to be smaller than
mAP@Q.5. Even so, mAP@0.5:0.95 is more robust than mAP@OQ.5 at assessing the object’s

localization accuracy.

Before training the model, pre-trained weights are an alternative, where the model has
already learned features from previous training sessions, to improve the performance of the
following training sessions. This approach follows the principles of transfer learning [51] and is
systematically used in this work to guarantee the best training results. More specifically, YOLOv7
is first trained with the Aquarium dataset. Then, the weights (or learnable parameters) are
used to train the Jamanta dataset. This way, the model learns the patterns with the Aquarium
dataset, a high-quality underwater dataset, which generalizes appropriately to the Jamanta

dataset.

To understand the best combination of hyperparameters, an alternative to the grid search
methodology was carried out. Instead of training with all the configurations of the pre-specified
grid, the best hyperparameters were chosen throughout training sessions, reducing the number of
combinations needed to conduct this experiment. Therefore, BS, LR, WD, IR and Mom. were

the chosen hyperparameters for the grid search experiment.

Finally, after a training session is complete, a folder is created with its outputs. More
specifically, a .png file with the plots of the performance metrics. These plots contain the
individual loss functions, i.e. Box, Classification, Objectness, for both training and validation
datasets, the Precision and Recall metrics, the mAP@0.5 and the mAP@0.5:0.95. There is also
a weights folder, containing a specific best.pt file, which is associated with the epoch where
the mAP@0.5:0.95 achieves its maximum value. A confusion matrix is also one of the training

outputs, which verifies the classification accuracy, by checking the TP, FN, FP and TN.

®https://github.com/WongKinYiu/yolov7
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Chapter 4

Results and Discussion

In this chapter, the results of training YOLOv7 are presented, joined by a discussion of those
results. The first section consists of selecting the best combination of the hyperparameters of
YOLOvT7. The purpose of this selection is to guarantee that the results are the most suitable for
the data sets presented in Chapter 3. Then, the results of training YOLOv7 are shown.

4.1 Model Hyperparameter Selection

BS, LR, WD, Mom. and IR were the hyperparameters chosen to conduct this experiment, and

their values are shown in Table 4.1.

Table 4.1: BS, LR, WD, Mom. and IR range values used for the subsequent analysis, where the
bold values are the default values from YOLOv7.

Hyperparameters ‘ Values
Batch Size (BS) 16,32,64
Learning Rate (LR) 1072,1073, 1074, 107°
Weight Decay (WD) 0,1073,5 x 1074, 1074, 107°
Momentum (Mom.) 0.85,0.9, 0.937, 0.95, 0.99
Image Resolution (IR) 256, 512, 640, 800

BS and LR are two of the most important hyperparameters of a neural network [82]. Previous

experiments confirmed that varying these values significantly improves training performance.

Initially, BS = {2,4, 8,128,256} were chosen but training with BS = {2,4} showed unstable
results, and training with BS = {128,256} was not possible due to a lack of computational
memory to carry out these experiments. BS = 8 showed similar results to those values from

Table 4.1, differing mainly on training time, which is why it was excluded from this table. This

29
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way, the number of training sessions slightly reduced.

To investigate the impact of LR variations on training, the LR values considered in Table 4.1
were derived from the default LR of 0.01 used in YOLOv7 for custom data sets. The LR values
were multiplied by a factor of 0.1 at the start of each training session. Previous experiments
with LR = 0.1 showed unstable results, while LR = 107° required a longer training time to
converge to an acceptable result, without a guarantee that it would happen. Therefore, LR
= {1071,107%} were not used.

Furthermore, the WD values were considered by following the instructions in [82], which
stated that smaller data sets require large WD values. Mom. values were also considered from
the same paper, since it stated that it is valuable to set Mom. as large as possible. Finally, the
effects of varying IR on model performance are also studied, since previous experiments showed

significant changes on model performance.

Table 4.2 shows the mAP@0.5:0.95 values when training YOLOv7 with the Aquarium and
Jamanta data sets with varying BS and IR and fixing LR, Mom. and WD with the default values
from Table 4.1. The highest values are shown in bold, and the E column represents the epoch at

which the mAP value was obtained.

Table 4.2: Percentage of the maximum mAP@0.5:0.95 values along with their respective standard

deviations
Aquarium data set Jamanta data set
BS | IR mAP@0.5:0.95 (%) E mAP@0.5:0.95 (%) E
256 45.46 £+ 0.09 244 72.8 + 0.09 119
16 | 512 50.12 + 0.09 150 72.4 + 0.1 199
640 49.86 £+ 0.09 100 71.79 £ 0.1 194
800 49.37 + 0.08 100 65.88 4+ 0.2 278
256 45.38 £ 0.1 162 72.62 £ 0.1 129
32 | 512 49.25 £+ 0.09 222 73 £ 0.1 163
640 49.42 + 0.09 111 70.1 £ 0.2 235
800 48.63 £+ 0.09 100 67.53 £ 0.2 260
256 44.14 £ 0.1 232 72.4 + 0.1 139
64 | 512 49.48 £ 0.1 186 71.53 £ 0.1 113
640 50.61 + 0.1 230 72.75 + 0.2 155

Changing the IR with the BS does not alter significantly the mAP values, except for the
Aquarium data set which is slightly lower when IR = 256. Because of this, a fixed IR of 512 was
considered for the following training sessions, reducing the amount of combinations needed to

obtain the best combination of hyperparameters.

Even though the mAP values are similar, the main difference from each training session is the
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time and computational memory it takes to train the model. Higher IR values (greater than or
equal to 640 x 640) lasts almost one hour longer than smaller IR values (lower than 640 x 640)
and the memory also drastically increases. Given that large BS values decrease the computation
time, an appropriate experiment would be to increase BS as IR increases. However, as was the
case for BS = 64 and IR = 800, training with higher values of BS and IR is not possible, due to

lack of computational memory.

For the Aquarium data set, Table 4.2 shows that the mAP@0.5:0.95 is lower with lower IR
values and higher for higher IR values. On the other hand, an opposite behavior is shown once
the model is trained with the Jamanta data set. These differences may be explained because of
the differences between the sizes of the annotations for each data set. More specifically, Figure
3.8 shows the boxplots of the bounding boxes’ width and height values for the classes of the
Aquarium data set. It is observed that the median width and height values are generally lower
than 200 pixels. Once the images are compressed to a lower spatial resolution at the beginning

of the training sessions, the detection task becomes harder for the model.

When analyzing the boxplots from Figure 3.5 for the Jamanta data set, it is observed that the
median width and height of the bounding boxes for the Jamanta class are noticeably distinct from
the bounding box sizes of the Aquarium data set. This indicates that, even after compression,
the sizes of the jamantas remain sufficiently large for the model to detect effectively. Additionally,
the Fish class within the Jamanta data set exhibits a similar bounding box size to the Aquarium
classes (Figure 3.8). As a result, when compression occurs, the Fish class is smaller and the
model may encounter difficulties in accurately locating this class. Nonetheless, when training
the model with the Jamanta data set and smaller IR values, the results obtained become more
acceptable. However, these results may be influenced by the positive detections involving the

Jamanta class, introducing a bias in the evaluation process.

Therefore, varying IR at the beginning of the training sessions influences the performance of
the model, especially if the classes of the data sets have small width and height values. Because

of this, from this point on, the most appropriate IR is 512 x 512.

Table 4.3 shows the mAP@0.5:0.95 values when training YOLOvV7 with the Aquarium and
Jamanta data sets with varying BS and LR, fixing Mom. and WD with the default values from
Table 4.1 and IR = 512 x 512. The highest values are shown in bold, and the E column represents
the epoch at which the mAP value was obtained.

Across all BS and LR values, the mAP values did not alter significantly, except for LR = 107°.
This was expected since low LR values mean that the network slowly updates its weights while
the model is training. As shown by column E, the maximum mAP value is achieved at a higher

epoch as the LR gradually decreases. Therefore, more training epochs are necessary to achieve

higher mAP.

However, Figure 4.1 shows how the mAP values (a) and classification loss for the validation set
(b) varies throughout all training sessions for BS = 16. By decreasing the LR, the classification

loss gradually increases. For LR = 107° (red), the loss stabilizes below 0.030 with no signs of
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Table 4.3: Percentage of the maximum mAP@0.5:0.95 values along with their respective standard

deviations
Aquarium data set Jamanta data set
BS| LR | mAP@O0.5:0.95 (%) E mAP@0.5:0.95 (%) E
1072 49.96 + 0.07 127 73.6 £ 0.1 122
16 | 1073 49.46 + 0.1 156 72.93 £ 0.1 75
1074 47.93 £ 0.1 376 72.62 + 0.2 398
1075 17.72 4 0.07 388 30.2 & 0.09 397
1072 50.02 + 0.09 152 71.66 £ 0.1 114
32 [ 1073 49.98 + 0.1 150 73.89 + 0.1 134
1074 47.63 & 0.2 394 72.16 £ 0.2 313
1075 17.36 £ 0.07 395 35.61 + 0.1 399
1072 49.1 £ 0.1 327 69.06 £ 0.1 50
64 | 1073 49.64 + 0.1 236 73.45 £ 0.2 122
1074 46.48 4+ 0.2 397 75.9 + 0.2 287
1075 16.52 4 0.06 396 56.18 + 0.2 397

decreasing. This is also shown in Figure 4.1 (a) where the red curve is slowly converging to a
value near 0.2, with no signs of stabilizing in a more satisfactory value. Therefore, LR =107

should not be considered for the Aquarium data set.
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Figure 4.1: Plots of mAP@0.5:0.95 values (a) and classification loss for the Aquarium’s validation
set (b) for BS = 16 and proposed LR values.

Once the LR is sufficiently high, training becomes unstable and may never converge to an
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optimum result, which is why LR = 10~! was not considered for these experiments. However,
the validation loss functions for LR = {1072,1073} for the Aquarium data set, start to increase
at one point during training, indicating that the model may be overfitting the data, as shown in
Figure 4.2. Once LR = 1074, the loss function continually decreases, suggesting that it is the

most appropriate LR value for the Aquarium data set.

Figure 4.2 only shows the results for BS = 64 and LR = {1072,1073,10~*}. When LR
= 1075, the model behaves poorly, which is why it was excluded from this plot. When BS = 32,
the plot of the objectness loss for the Aquarium data set behaves in a similar way, meaning
that BS = {32,64} may be used across subsequent training sessions. Since increasing BS also
increases the computational memory necessary to process the data, the choice between both
BS values depends on the amount of training data. Nevertheless, BS = 64 was chosen for the

following training sessions.
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Figure 4.2: Plot of the objectness loss for the Aquarium’s validation set with LR =
{1072,1073,10~*} and BS = 64.

The model was also trained with the Jamanta data set and the results were significantly
better, reaching almost always mAP values larger than 70%. This is a satifying result having in
mind that this set is small and the quality of the images suffer from serious attenuation problems.
Furthermore, the model’s performance with the Jamanta data set is similar to the performance
with the Aquarium data set for all BS values, except for BS = 64. Fixing LR = 10~ and BS
= {16, 32}, the mAP values for the Jamanta data set are below 40%. When BS = 64 for the
same LR, the mAP value increases significantly. This behavior is better perceived from Figure
4.3 (a), where the mAP is still increasing during the 400th epoch, while other LR values slowly
decay or maintain after reaching their maximum value in earlier epochs. However, Figure 4.3 (b)
shows how the classification loss for the Jamanta’s validation data set varies for BS = 64, across
all LR values. When LR = 107°, the classification loss stabilizes near 0.01, while the other LR
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values converge between 0.002 and 0.004.
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Figure 4.3: Plots of mAP@0.5:0.95 values (a) and classification loss (b) for the Jamanta’s
validation set for BS = 64 and LR = {1072,1073,107%,1075}

Additionally, the objectness loss for the Jamanta’s validation data set behaves similarly to
the objectness loss for the Aquarium’s validation data set. This can be seen in Figure 4.4, where
both LR = {1072,1073} increase at one point, while for LR = 1074, the loss decreases, and

stabilizes near a loss value of 0.012.
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Figure 4.4: Plot of the objectness loss for the Jamanta’s validation set with LR =
{1072,103,1074,1075} and BS = 64.
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Since the results were similar for both Aquarium and Jamanta data sets, LR = {1072, 1073}
should not be considered because of an increase in the objectness loss functions. On the other
hand, LR = 1075 achieves high loss values with no guarantees of converging to a more optimal
value if more epochs are considered. When LR = 104, the loss functions behave appropriately,
meaning that the best results for the Jamanta data set occurs when LR = 104 and BS = 64.

Therefore, for the following training sessions, LR = 10~* and BS = 64 are fixed. This way,

there is a significant reduction in the amount of combinations necessary to understand how LR

and BS behave with varying WD and Mom..

Table 4.4: Percentage of the maximum mAP@0.5:0.95 values along with their respective standard

deviations
Aquarium data set Jamanta data set
WD Mom. mAP@0.5:0.95 (%) E mAP@0.5:0.95 (%) E
0.85 42.43 + 0.143 494 72.95 + 0.167 449
0.90 45.91 £+ 0.157 471 74.38 + 0.169 489
0 0.937 48.64 + 0.167 489 75.12 + 0.170 392
0.95 48.98 + 0.169 481 74.68 £+ 0.169 365
0.99 50.36 + 0.175 238 74.75 + 0.157 132
0.85 42.27 + 0.143 477 72.89 + 0.170 464
0.90 45.94 £ 0.157 487 73.56 £+ 0.169 391
1073 0.937 48.4 + 0.167 493 73.71 + 0.167 320
0.95 48.88 + 0.169 373 73.17 + 0.164 201
0.99 50.74 £+ 0.176 323 73.91 + 0.156 127
0.85 42.4 £+ 0.142 477 72.03 £+ 0.168 453
0.90 45.63 £ 0.157 487 72.67 £+ 0.169 366
10~4 0.937 48.45 £ 0.167 493 73.21 £ 0.168 230
0.95 48.65 + 0.169 373 72.92 + 0.168 280
0.99 50.66 + 0.176 323 73.45 + 0.158 128
0.85 42.35 + 0.140 494 72.65 + 0.169 401
0.90 45.71 £+ 0.156 490 73.34 £+ 0.169 334
5x107% | 0.937 48.17 £+ 0.166 490 73.15 + 0.167 220
0.95 48.83 £+ 0.169 471 73.48 4+ 0.166 234
0.99 50.44 + 0.174 312 73.9 + 0.157 183
0.85 42.46 + 0.143 476 72.55 + 0.169 487
0.90 45.77 £ 0.156 490 73.35 £ 0.168 363
107° 0.937 48.63 £ 0.167 487 73.67 £ 0.168 262
0.95 48.71 £+ 0.169 489 73.52 4+ 0.166 247
0.99 50.25 + 0.173 329 74.45 + 0.156 127

Analyzing Table 4.4, showing the mAP@0.5:0.95 values when training YOLOv7 with the
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Aquarium and Jamanta data sets with varying WD and Mom. and fixing LR = 10~4, BS = 64 and
IR = 512 x 512, the Mom. hyperparameter has a major influence on the performance of the model.
When training the model with the Aquarium data set, the mAP increases as Mom. increases.
Training time is also reduced with an increase in Mom., confirming that this hyperparameter
increases convergence speed and accuracy. However, the model behaves differently for the
Jamanta data set, since higher Mom. does not guarantee higher mAP. Additionally, the Mom.
hyperparameter appears to have more influence when training with the Aquarium data set, than

training with the Jamanta data set.

By analyzing Table 4.4, it seems that choosing Mom. = 0.99 is the most appropriate choice.
However, Figure 4.5 shows how the objectness loss for the Aquarium (a) and Jamanta (b)
validation sets changes with Mom. = {0.85,0.90,0.937,0.95,0.99} and WD = 0. When Mom.
= 0.99, the objectness loss increases after the 100th epoch for both data sets. This shows that
the model may be overfitting the data for this Mom. value. For this reason, the results when
Mom. = 0.99 should not be taken into consideration for the rest of the analysis. Considering the
results were especially poor for the Aquarium data set when Mom. = {0.85,0.90}, these values
are also dismissed from this analysis. Therefore, both Mom. = 0.937 and Mom. = 0.95 are the
most appropriate Mom. values to train the YOLOv7 model.
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Figure 4.5: Plots of the objectness loss for the Aquarium’s (a) and the Jamanta’s (b) validation
sets for WD = 0 and Mom. = {0.85,0.90,0.937,0.95,0.99}

Regarding the WD hyperparameter, Table 4.4 does not show significant differences when
WD decreases, except for WD = 0 and Mom. = 0.937. This is a particular case since WD = 0
means there is no regularization technique applied to the loss function. Because of this, the
model is more susceptible to overfitting problems. However, these issues did not occur, and
the results without WD slightly improved the performance of the model. OD models include
other regularization techniques, such as data augmentation techniques, batch normalization and

dropout [67, 83]. These techniques are also applied to avoid overfitting and underfitting issues.
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The fact that WD = 0 does not offer significant changes to the performance of the model shows
that the other regularization techniques are effective enough to avoid those issues. Additionally,
when analyzing the loss and mAP plots for the other WD values, this fact also verifies, since
the model behaves similarly throughout all WD values. Therefore, WD =5 x 10~% is chosen as
the best WD value. This way, it is guaranteed that the model does not suffer from overfitting

problems.

For these reasons, Table 4.5 shows the best combination of hyperparameters for the Aquarium

and Jamanta data sets.

Table 4.5: Values for BS, LR, WD, Mom. and IR selected

Hyperparameters Values
BS 64
LR 1074
WD 5x 1074
Mom. 0.937
IR 512 x 512

4.2 Training Results and Discussion

After choosing the best set of hyperparameters, it is possible to interpret the results from training
YOLOvVT. The system outputs several plots, to understand how the model behaved. The results
are shown in Appendix A. This section explains and discusses the results of training YOLOv7
with the Aquarium and Jamanta validation and test sets. Both validation and test sets are
evaluated since the validation set is used during training to understand how the model behaves
and to tune the model’s parameters. With the test set, it is possible to verify how the trained
and validated model would behave in a situation close to a real-world application. Therefore, the

results from the test set give an important insight into the applicability of the model.

Starting with the results for the Aquarium’s validation data set, Figure 4.6 shows the
confusion matrix for all the classes of the Aquarium data set. The model appears to be accurate
in classifying all the classes, since it detects the correct class over 80% of the time, except for the
Puffin class. The amount of FN for the Puffin class shows that the model does not detect 30%
of the time. Additionally, even though YOLOvV7 correctly identifies most of the objects as fish,
the amount of FP for this class is still undesirable. The fact that the FP for the Fish class is
almost 50% means that the model is constantly detecting this class. Therefore, either the model
is correctly detecting fish that were not previously annotated, or it is labeling objects as fish that
are background objects. Either way, constantly looking for a class is not ideal since most of the

detections can be inaccurate, i.e. the amount of FP is high.
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Figure 4.6: Confusion matrix for all the classes of the Aquarium’s validation data set

The precision and recall (Equations (2.5) and (2.6), respectively) can be calculated from
the confusion matrix, and the amount of FP and FN influences these metrics. Figure 4.7 and
Figure 4.8 shows the precision and recall plots for the classes of the Aquarium data set over
increasing confidence thresholds, respectively. These thresholds are related to the confidence of
the bounding boxes generated by YOLOvT [53].
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Figure 4.7: Plot for the Precision curve measured over increasing confidence thresholds for the

Aquarium’s validation data set

The precision plot (Figure 4.7) shows that as confidence increases, the precision also increases
for all the classes of the Aquarium data set. An increase in precision means that the number of
FP decreases and/or the number of TP increases. Either way, the model has more confidence
in accurately locating the objects, given that the amount of positive predictions increases.
Furthermore, all classes of the Aquarium data set reach their maximum precision at confidence
thresholds larger than 0.8, except for the Starfish class. This shows that YOLOv7 most likely
detects a starfish without being certain that it is a starfish. A solution for this issue could be to

acquire more data labeled as starfish and verify how this changes the model’s performance.
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Figure 4.8: Plot for the Recall curve measured over increasing confidence thresholds for the

Aquarium’s validation data set

The recall plot (Figure 4.8) shows that as confidence increases the recall decreases for all the
classes of the Aquarium data set. An increase in recall means that the number of FN decreases
and/or the number of TP increases. Either way, the model appears to have more confidence over
its predictions, even though most may be incorrect. Therefore, the model’s confidence decreases
since more objects are classified, with no guarantees that the prediction is correct. Analyzing
Figure 4.8, only the Puffin class behaves differently from the other classes of the Aquarium data
set, since it is the class with the lowest recall, at all confidence thresholds. This difference is
explained by the amount of FN that the Puffin class has. Since FN is high, the recall for this
class decreases.
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Figure 4.9: Plot for the PRC curve measured over increasing confidence thresholds for the

Aquarium’s validation data set

Additionally, Figure 4.9 shows the PRC. An OD model is ideal if the blue line intersects the
upper right corner. However, this is impossible since, generally, an increase in precision implies a
decrease in recall and vice-versa. Nevertheless, a good OD model is obtained once the precision
stays high as its recall increases [53]. Figure 4.9 shows the relationship between the precision and
recall metrics, showing exactly that as one increases, the other decreases. Calculating the AUC
of the PRC computes the mAP@Q.5 for all the classes of the data set, which is an important
indicator over the model’s performance. The results for each class were acceptable, despite the
60% mAP for the Puffin class. Both the precision (Figure 4.7) and the recall (Figure 4.8) already
show this for the Puffin class, where the model is usually precise when identifying this class,
having low FP values (i.e. high precision). However, due to high FN values, the recall is smaller,
meaning that the model does not locate this class most of the time. To fix this issue, data

augmentation techniques are an alternative.
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Figure 4.10: Fl-curve measured over increasing confidence thresholds for the Aquarium’s

validation data set

The mAP values are high enough to conclude that the model performed well with the
Aquarium data set. However, the F1 score is another important metric that is especially used to
evaluate the performance of an OD model on imbalanced data sets. Therefore, Figure 4.10 shows
the Fl-score curve for the Aquarium’s validation data set over increasing confidence thresholds.
Since the precision and recall are both functions of the confidence thresholds, the F1-score also
varies accordingly (Equation (2.2.1)). The Fl-score of all the classes, represented by the blue
line in Figure 4.10, shows acceptable results. Only the Puffin and the Starfish classes behave
differently. The Puffin class has lower F1l-score values than the other classes. Considering both
precision and recall are lower for the Puffin class, it is clear that the Fl-score is also low. On
the other hand, the Starfish class shows exceptionally good results. The confusion matrix for
the Aquarium’s validation set (Figure 4.6) shows that 8% of the predictions are FN, 0% are
FP, and 92% are TP for the Starfish class, explaining why the F1-score is as high for this class.
Nevertheless, the model behaving well for the Starfish class is not expected, considering the

number of starfish annotations (116 in total).
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Figure 4.11: Confusion matrix for all the classes of the Aquarium’s test data set

Furthermore, the test set is used to evaluate the results from training YOLOv7 with the
Aquarium’s validation data set. Figure 4.11 shows the confusion matrix for the Aquarium’s test
set. Because of the test set, it is possible to verify if the results for all the classes are accurate,

or if YOLOv7 overestimated them during training.

Generally, the results from training with the Aquarium’s validation set are better than
training with the test set, especially for the Stingray class. However, the Starfish class shows a
significant decline. More specifically, the model does not detect almost 30% of the time when
a starfish is present, leading to a decrease in the recall (Figure A.2). For the Stingray class,
there was an increase in the number of TP with the test set, since this class is occasionally
detected as fish for the validation data set. Since both precision and recall increase, the F1-score
also increases for the Stingray class of the Aquarium’s test set. The fact that the results for
the validation set are better than the results for the test set indicates that the model may be
overfitting the validation set. Therefore, the model’s generalization power may not be enough
to apply on unknown videos. To deal with these issues, more data is required, which can be

obtained from new images or by applying data augmentation techniques.
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Figure 4.12: Confusion matrix for all the classes of the Jamanta’s validation data set

Regarding Jamanta’s validation data set, Figure 4.12 shows the confusion matrix when
YOLOVT was trained with Jamanta’s validation data set. As was the case with the Fish class for
the Aquarium sets, the Fish and Jamanta classes deal with the problem of having FP values
close to 50%. As a consequence, the model is either correctly classifying the animals or it is
identifying objects that are background objects. To confirm this, YOLOvVT also outputs a mosaic
of images where the ground truth and the predictions are compared. These images are presented
in Figure 4.13, showing that the model detects several instances where a jamanta is present,
while not being annotated in the validation data set. This means that the detections performed
by the model are true detections for both Fish and Jamanta classes, explaining why the FP is so
high. Having said that, the annotation process of the Jamanta data set should be revised, to

guarantee that most objects are identified. This way, it is possible to check how the FP varies.
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Figure 4.14: Confusion matrix for all the classes of the Jamanta’s test data set

Similar to the approach for the Aquarium data set, the test for the Jamanta’s data set should

also be analyzed.

Analyzing the confusion matrix for the Jamanta’s test set (Figure 4.14), the Fish class showed
relevant changes, compared to the results from the validation set (Figure 4.12). For example, the
precision for the Fish class of Jamanta’s test set is larger than the precision for the same class in
the validation set. This is a consequence of higher TP and lower FP values. As noted earlier in
this section, as TP increases, the model has more confidence in the results and the precision also
increases. On the other hand, there is a slight decrease in FN for the Fish class. Therefore, the

model’s confidence increases, and recall also increases.
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Figure 4.15: Fl-curve for all the classes of the Jamanta’s test data set

The effects of increasing precision and recall are shown in Figure 4.15, where the Fish class
achieved an Fl-score of over 80% at a confidence threshold of approximately 70%. For the
Jamanta class, the model behaves better for the Jamanta’s validation set, explained by the
decrease in TP and the increase in FN, shown in Figure 4.14 from the test set. Following the
analysis carried over the Fish class, the precision and recall decrease, meaning that the F1-score

also decreases.

Nevertheless, both Jamanta’s validation and test sets give similar results. Since the test set is
used to confirm the results from the validation set, the fact that these results are similar shows
that the model has the potential to generalize to other domains and be applied to data unknown

by the model, making them more accurate as possible.

4.3 Underwater Image Processing

An experiment was carried out to evaluate the impact of applying two IP methods to the images
of the Jamanta data set. Table 4.6 shows the results of this experiment when YOLOvV7 is trained
with the Reference data set, the Jamanta data set is processed with the Xiang et al. [77] method
and the Jamanta data set processed with the Ghani & Isa [78] method. The following training

sessions were conducted varying only the BS and LR hyperparameters since these are known to
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have the most influence on the model’s performance. The standard deviations are obtained by
computing the standard deviation of the entire list of mAP@0.5:0.95 values and the E column

represents the epoch at which the mAP value was obtained.

Table 4.6: Percentage of the maximum mAP@0.5:0.95 values along with their respective standard

deviations
Reference Xiang et al. [77] Ghani & Isa [78]
Bs| IR mAP@0.5:0.95 B mAP@0.5:0.95 B mAP@0.5:0.95 B
(%) (%) (%)
1072 72.26 £ 0.1 187 71.37 £ 0.1 142 70.44 £ 0.1 123
16 | 1073 72.93 £ 0.1 75 72.99 £ 0.1 60 73.38 £ 0.1 100
1074 72.62 £ 0.2 398 71.02 £ 0.2 253 70.24 + 0.2 328
107° 30.2 &= 0.09 397 34.3 £ 0.09 399 34.59 £ 0.1 387
10—2 71.66 £ 0.1 114 68.89 £ 0.08 122 71.45 £ 0.09 98
32 [ 1073 73.89 £ 0.1 134 69.57 + 0.1 86 72.34 £ 0.1 93
1074 72.16 £ 0.2 313 69.14 £ 0.2 387 70.92 £ 0.1 371
1075 35.61 £0.1 399 39.84 £ 0.1 398 38.76 £ 0.1 390
1072 69.06 = 0.1 50 68.86 £ 0.09 134 70.21 = 0.09 113
64 | 1073 73.45 £ 0.2 122 69.63 = 0.1 92 71.67 £ 0.1 93
1074 75.9 £ 0.2 287 70.49 £+ 0.17 205 71.83 £ 0.2 205
10° 96.18 £ 0.2 397 61.44 £ 0.18 399 63.4 £ 0.2 398

When introducing the methods in Section 3.3, it was verified that the Ghani & Isa [78] is the
most appropriate enhancement method to be applied on the Jamanta data set. Analyzing Table
4.6 shows that training with the Reference data set generally yields better results than training
with enhanced data sets. Additionally, comparing both methods, the results for the Ghani & Isa
[78] method are better than the results for the Xiang et al. [77] method. The difference in the
results show that applying IP techniques can even worsen the model’s performance. Therefore,
there is no guarantee that enhancing the images has a positive effect on the performance of the
model. Although the images become more visually appealing, it does not imply that an OD

model benefits from applying these techniques.

By analyzing the Reference and the Ghani & Isa columns in Table 4.6, the results are
occasionally better for the Reference than for the Ghani & Isa. However, when the Ghani &
Isa [78] method is applied to the Jamanta data set, it comes with a computational cost, which
increases as the data set tends to increase. Since there are no significant differences between
training YOLOv7 with the Reference and training with the data set processed with Ghani & Isa
[78] method, there is no need to apply these techniques.

Finally, considering OD model apply filters while training, to extract the most important

features, applying these filters on already processed images may lead to a loss of important
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information. More specifically, both the Xiang et al. [77] and Ghani & Isa [78] methods, transform
the histograms of the color channels to follow the Rayleigh distribution and apply filters to
enhance the contours of the objects. This process is known to introduce extra noise [77], which
is not ideal when the images are used to train an OD model. Consequently, the results for the
Xiang et al. [77] method are worse, showing that IP techniques may have a negative influence on

the performance of an OD model.



Chapter 5

Conclusions

In this study, a solution to efficiently analyze underwater videos is developed using YOLOv7
[36], known for its fast and accurate results. To achieve this, a dataset was created consisting
of two classes, defined as the Jamanta dataset. The creation of this dataset involved analyzing
videos with over 5 hours of duration, and manually annotating the marine animals present on the
collected frames. Then, YOLOv7 was trained using the Jamanta dataset, and the mAP@0.5:0.95
ranged between 70% and 75%.

This study was proposed in collaboration with CEiiA, which held an internship between
October 2022 and July 2023. The purpose of the internship was to apply OD models on
underwater videos collected by telemetry equipment, defined as electronic tags. These tags
are deployed in the Azores’ region, enabling studies on the marine animals that inhabit the
islands. The tags are placed around the marine animals for a maximum period of 8 hours.
During this period, the tags record and collect important data, such as temperature and depth.
Then, they are retrieved and the data is analyzed. The problem arises with the video analysis,
which is time and staff-consuming, but may be solved by applying OD models. By developing
a solution to efficiently detect the animals in underwater videos, researchers can save valuable
time and resources. In addition, it enables them to connect recording data with quantitative and

qualitative data and gather important information about the animals of the Azores’ region.

When training YOLOvV7, the concept of transfer learning was always considered, since this
technique improves the training results. In practical terms, YOLOvVT7 is trained with a dataset,
and the weights of this training session are used to train another dataset, preferably in a similar
domain. The first experiments consisted of training YOLOvV7 with the Jamanta dataset using
pre-trained weights acquired from training YOLOv7 with the msCOCO [44] dataset. This
dataset consists of 80 classes of common objects, which do not contain any class related to
the underwater scene. Therefore, the first training sessions with the Jamanta dataset showed
non-satisfactory results, even though pre-trained weights were used. To improve these results,
another dataset was considered, consisting of seven classes of marine animals. This dataset was
labeled as the Aquarium dataset and was used to train the YOLOv7 model. Then, the weights

were used to train YOLOv7 with the Jamanta dataset and the results were significantly better.

20
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In addition, combining the YOLOv7’s hyperparameters, such as BS, LR, WD, Mom. and IR was
a crucial step to guarantee the best results and to decide the most appropriate hyperparameter
combination. As mentioned in the literature [82], the BS and LR have the most impact on the

model, especially with lower LR values.

When analyzing the results for the Jamanta dataset, it is clear that using the pre-trained
weights from training YOLOv7 with the Aquarium dataset is an important step. Throughout
all training sessions with the Jamanta dataset, the model reaches mAP@0.5:0.95 values near
70% for the validation set, with no signs of overfitting. For the test set, the model’s behavior
was similar to that of the validation set. Consequently, the model shows good generalization
capacity, which is crucial for future applications. However, the results of training the model with
the Aquarium dataset were not as good, with mAP@0.5:0.95 varying between 45% and 50% for
the validation set. For the test set, some of the classes showed difficulties in generalizing while
other classes showed satisfactory results. Nevertheless, the focus of this study does not range
from optimizing the results for training with the Aquarium dataset, since it was only considered

to improve the model’s performance with the Jamanta dataset.

Throughout this study, several challenges and limitations were present. First and foremost,
acquiring the data for the Jamanta dataset was a difficult task, since the images are affected by
how light travels underwater, due to absorption and scattering phenomenons. The combination
of these phenomena, joined by other external factors degrades the quality of underwater images.
For example, the images are dominated by the blue color since it is the last color to be absorbed
by the water. The abundance of low-quality data influences the performance of OD models
since they highly depend on large amounts of high-quality data. Since the images from the
jamanta videos suffer from these issues, the dataset’s size is not large enough to guarantee that,
in other domains, the model yields good results. To fix this issue, two IP methods were applied
to the Jamanta dataset and the effects of these techniques on the performance of YOLOv7 were
evaluated. By only varying the BS and LR, it was verified that enhancing the images did not
have a positive influence on training results. In fact, applying these methods may even worsen
the results, which was also mentioned in the literature [6, 19]. However, the chosen methods do
not imply that all IP techniques perform poorly, since these experiments are empirical, and may

vary from method to method.

Additionally, other underwater datasets could be used to pre-train YOLOv7, such as the
Fish4Knowledge [84]. However, the Aquarium dataset had already been used by CEiiA, with
good results. In addition, YOLOv7 was the chosen model since it is well known that the
YOLO series achieves fast and accurate results, which is CEiiA’s purpose for this project.
Furthermore, the chosen hyperparameter optimization method served as a way to select the
most appropriate hyperparameters, while reducing the number of combinations needed. Despite
obtaining good results, other optimization approaches are available. For example, YOLOv7
allows the hyperparameters to be optimized for a pre-defined epoch number. Then, the model
outputs the hyperparameter file with the optimized hyperparameter combination. In addition,

grid search and random search are also alternatives to optimize the hyperparameters.
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Moreover, after the development of the Jamanta dataset, a second dataset was developed
and defined as the Whale Shark dataset. The images collected had higher quality than the
images from the Jamanta dataset since a different camera was used for the whale sharks’ videos.
Three classes were identified: Whale Shark, Fish, and Remora. Due to a lack of time, it was not
possible to train YOLOv7 with this dataset. It was also preferred that the focus should be on

improving the results from the Jamanta dataset.

The work developed within this thesis is suitable to be used in a real-world application but the
work does not remain stationary. More specifically, the analyses conducted for both the Aquarium
and Jamanta datasets should be applied to the Whale Shark dataset. Then, the Jamanta and
Whale Shark datasets should be combined to guarantee that the model’s generalization capacity
improves even further. Furthermore, the effects of other IP techniques on the performance of OD
models can be assessed. However, there is the need to theoretically prove that IP techniques have
a strictly negative influence on the performance of the model, disregarding the empirical proofs
shown in this study and other studies. This way, it is guaranteed that applying IP techniques as
a pre-processing step should be avoided. Additionally, when selecting the best combination of
hyperparameters, it was verified that WD has the least influence during training. Even though
several factors may influence this occurrence, the effects of WD should still be studied. Finally,
other OD models may be used. For example, two-stage object detectors, such as the R-CNN
series [25-27], are known to achieve better results than the YOLO series, even if training lasts
longer. This way, it is possible to understand the differences between the models and decide

which is the most appropriate model for the datasets developed during this study.

In conclusion, the work developed in this study provides two custom underwater datasets
ready to be used for numerous CV applications, not being restricted to the OD field. More
importantly, this study enables the efficient and accurate analysis of underwater videos, which
aids researchers in optimizing their research studies. In addition, the application of IP techniques
and the study of their effects on the performance of an OD model is also useful for several reasons.
First, this analysis guarantees that there is no need to pre-process the data with IP techniques.
Second, the application of IP techniques implies an increase in computational cost as the dataset
increases. Considering the model’s results are similar with and without these techniques, their
application is not feasible. Third, even though IP techniques make the images more visually

appealing for humans, it does not mean that the same occurs for OD models.

Overall, the objectives of this thesis were achieved and it is intended that the methodology
followed during this study serves as a guide for future work developed in the CV field, more

specifically related to the underwater medium.
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Results of Training YOLOvV7

A.1 Aquarium dataset
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Figure A.1: Plot for the Precision curve measured over increasing confidence thresholds for the

Aquarium’s test data set
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Figure A.2: Plot for the Recall curve measured over increasing confidence thresholds for the
Aquarium’s test data set
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Figure A.3: Plots for the Precision-Recall (a) and Fl-score (b) curves for the Aquarium’s test

dataset
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A.2 Jamanta dataset
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Figure A.4: Plots for the Precision (a) and Recall (b) Recall curve measured over increasing

confidence thresholds for the Jamanta’s validation dataset
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Figure A.5: Plots for the Precision-Recall (a) and F1-score (b) curves for the Jamanta’s validation

dataset
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A.2.2 Test set
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Figure A.6: Plots for the Precision (a) and Recall (b) Recall curve measured over increasing
confidence thresholds for the Jamanta’s test dataset
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