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Abstract

Timely information about the current state of the economy is essential, as it influences the

population’s input and output choices, and allows the government to react as quickly as pos-

sible to economic events that need intervention. Given the importance of timely information,

EUROSTAT has regulated the Short-term business statistics (STS), setting deadlines, quality re-

quirements, and other guidelines for their publication.

One of the STS published by the National Statistical Institute (INE) is the Retail Trade

Turnover Index (RTTI), which is broken down into different economic activities classifications

(CAEs). The estimation of the RTTI relies on important data provided by the Tax Authority -

the e-Fatura data. However, sometimes the Tax Authority fails to deliver the data in time, which

poses a threat to the compliance of the quality requirements of this early index.

To mitigate this risk, INE decided to build a framework to estimate in a timely manner

(nowcast) this data for whenever it is not delivered in time again. To this end, in addition to

historical e-Fatura data, Multibanco data is used as an auxiliary variable to nowcast the e-Fatura

data. The models used were ARIMA, Linear regression, Dynamic regression, MIDAS regression

and the mean of these four models’ nowcasts.

After analysing the relationship between the response and the auxiliary variables, the now-

casting exericise was carried out. The results obtained showed that there is not a single model

that can nowcast the e-Fatura data for all CAEs with the best accuracy. Although the models

that used the Multibanco data as an auxiliary variable had the expectation to perform better than

the classical ARIMA approach, the model that performed better for almost half of the CAEs was

the ARIMAmodel, followed by the Linear regression, the mean, the Dynamic regression and the
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MIDAS regression.

Keywords: Time series; Nowcasting; ARIMA; Linear regression; Dynamic regression; MIDAS;

VAT data; Financial data; Short-term business statistics;
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Resumo

Informações e dados em tempo útil sobre o atual estado da economia são essenciais, já que

influenciam as escolhas de input e output da população, e permite que o governo reaja o mais

rápido possível aos eventos económicos que precisam de intervenção. Considerando isto, o

EUROSTAT regulamentou as Estatísticas de Conjuntura das Empresas (STS), definindo prazos,

padrões de qualidade, e outras instruções relativas à publicação.

Uma das STS que são publicadas pelo Instituto Nacional de Estatística (INE) é o Índice de

Volume de Negócios (RTTI), que dá informação sobre várias atividades económicas, seguindo

o esquema CAE. A estimação do RTTI depende dos dados sobre o e-Fatura, que são enviados

pela Autoridade Tributária (AT). No entanto, a AT, por vezes, não entrega estes dados nos pra-

zos estabelecidos, gerando riscos em relação ao prazo de publicação e também à qualidade das

estimativas.

Para amenizar estes riscos, o INE decidiu definir uma abordagem para estimar estes dados,

em tempo útil, sempre que a AT não os consiga entregar a tempo. Além dos dados históricos do

e-Fatura, também foram utilizados os dados do Multibanco como variável auxiliar na estimação.

Os modelos utilizados foram ARIMA, Regressão linear, Regressão dinâmica, Regressão MIDAS,

e a média da estimação destes quatro modelos.

Após a análise da relação entre os dados do e-Fatura e do Multibanco, foi feita a estimação

dos modelos. Os resultados obtidos mostraram que não há apenas um modelo que consiga fazer

a previsão com a melhor precisão possível para todas as CAEs. Embora a expectativa tenha

sido que os modelos que utilizam os dados do Multibanco como variável auxiliar teriam melhor

desempenho que omodelo ARIMA, omodelo que teve omelhor desempenho para quase metade
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das CAEs foi o ARIMA, seguido pela Regressão linear, pela média, pela Regressão dinâmica e

pela Regressão MIDAS.

Palavras-chave: Séries temporais; Nowcasting; Previsão; ARIMA; Regressão linear; Regressão

dinâmica; MIDAS; e-Fatura; Dados financeiros; Estatísticas conjunturais
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Chapter 1

Introduction

To achieve effectiveness and efficiency in decision making, it is crucial to have access to

reliable, accurate and timely information. The lack of it can lead people, organisations, businesses

and governments to make bad choices (Eslake, 2006). Nowadays, there are several indicators

that signalise the current state of a country’s economy, such as the quarterly Gross Domestic Product

(GDP), and the Short-term business statstics in European case.

In industry, the information about the current state of the economy that is available for

companies, as well as their expectations for the near future, influence their input and output

choices (such as investment and employment), which highly impact their profitability.

Regarding governments, monetary policy is one of their two main means of influencing the

direction and the pace of the economic activity, including employment, GDP and the general rate

of which the prices evolve (inflation) (Friedman, 2000). Having timely data is essential to make

efficient monetary policies, and the accuracy of these data is crucial for effectiveness (Bernanke,

Boivin, & Eliasz, 2005).

Such needs have given rise to the concept of Nowcasting in Economics, a contraction of

forecasting and now, which means the prediction of the very recent past, the present and the very

near future (Banbura, Giannone, & Reichlin, 2010).

Typically, policy makers use incomplete information to make decisions, since key statistics

and indicators are published with significant delay after the end of the reference period and are
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frequently reviewed. Other economic agents also need to make decisions that are dependent on

the unknown current situation of the economy, and publication lags create uncertainty about the

recent past and the present.

In order to reduce these uncertainties, Nowcasting models have been developed in the last

few decades and have been used extensively by Central Banks, National Statistical Institutes and

other institutions (Richardson, van Florenstein Mulder, & Vehbi, 2021).

Many of these models have been used by National Statistical Institutes (NSIs) to estimate

short-term statistics that keep track of the current state of the economy and its most relevant

variables. In the European Union, these statistics are the Short-term business statistics mentioned

above, and one of the most important indices of these statistics is the Business turnover, employment,

wage and hours worked index.

In the past, the statistical operation to estimate the Business turnover, employment, wage and hours

worked index relied solely on a questionnaire posed on companies to collect data about volume of

sales, turnover, employment (number of employees and salaries), as well as the employees’ hours

worked.

Progressively, Statistics Portugal (INE) is replacing the questions in the survey by admin-

istrative data in order to reduce statistical burden on companies. In 2017, INE began to use

administrative data about monthly salaries from the Social Security (DMR/SS) as source of data

for the Employment, wage and hours worked indices. In retail, the DMR/SS became the only

source of data to estimate these indices, whereas in Industry and Services it replaced only partially

the survey.

Currently, in the retail sector, INE is using electronic invoice (e-Fatura), as well as a ques-

tionnaire posed on companies, to estimate the Retail Trade Turnover Index. The e-Fatura data is

provided by the Tax Authority, and is sent to INE just a few days before the publication of these

indices, which gives the Intitute a small window of time to work.
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1.1 Motivation and problem description

Although the e-Fatura data is an important information used to estimate the Retail Trade

Turnover, the Tax Authority has failed to deliver the data in time in a few occasions, which

affects the Institute, as there is a deadline enforced by Eurostat for publishing the estimation of

the index. Because of that, Statistics Portugal is interested in finding alternative data sources that

could either replace or used to estimate the e-Fatura data whenever Tax Authority fails to deliver

them in time again.

Considering the situation described above, this project focused on using alternative data,

called Multibanco, in order to estimate the e-Fatura data and provide the Institute with a reliable

and fast framework to estimate the e-Fatura data for a given reference month, reducing the risk

of not complying with the deadlines and also reducing the inaccuracy and quality of these early

estimates. This work was part of an internship at INE in order to obtain the European Master

in Official Statistics (EMOS) certification.

1.2 Structure of the dissertation

This dissertation is organised in six Chapters. The first provides an introduction and the de-

scription of the problem; the second Chapter describes concepts that are relevant and used in this

project. Chapter 3 describes the statistical models used in this work, which are applied following

the methodological framework described in Chapter 4. Finally, the results of the application are

shown in Chapter 5, which are used to draw the conclusions written in the sixth chapter, followed

by an Appendix section that has relevant tables with the results of this project.
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Chapter 2

Background

This chapter aims to shortly introduce important information about the data that was used

in this project, as well as explain the relevant statistics for the European economy that depend

on them.

2.1 Classification of Economic Activities

The Portuguese Classification of Economic Activities, also known as CAE, is the acronym used in

Portugal to designate the numerous economic activities. In 1953, the first version of the CAEwas

published by Statistics Portugal as a translation of the International Standard Industrial Classification

of All Economic Activities (ISIC).

ISIC, as explained by United Nations (2008), is a system that provides a set of categories to

classify the various economic activities, intended to be a standard classification that can be used

for the data collection and publication of statistics of such activities. The system came out in

1949 with the purpose of providing an up-to-date framework for international comparison of

national statistics, meeting the pressing needs for international comparability of such statistics.

Since then, the ISIC has been widely used internationally to classify data according to the kind

of economic activity in the fields of population, employment, production, national income and

other economic statistics. As a result, substantial comparability has been attained by countries

that have adopted this system as a national standard or have rearranged their statistical data in
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accordance with it. (United Nations, 2008)

After the ISIC release, changes in the economy took place and new types of economic activity

emerged and became important, requiring the creation of new distinctions and the shifting of

some groups’ positions. In order to adapt the system to the then economic reality, the United

Nations undertook the first revision of the ISIC and issued it in 1958 (United Nations, 1958),

which was translated by Statistics Portugal and published in the country in 1961.

However, the carry-out of statistical work in the country revealed that the ISIC Rev.1 was not

sufficient to meet the national needs at the time, which led to the publication of the first CAE

adapted to the Portuguese economic reality in 1964. This CAE was developed using the ISIC

Rev.1 as its foundation.

Five years later, in 1969, the second revision of the ISIC was issued, and its translation was

published in 1970 after the approval of the United Nations Statistical Commission. As the ISIC

Rev.2 also didn’t meet the needs of the country, the National Council of Statistics of Portugal

(CNE) named a comittee responsible for developing a new CAE based on the second revision

of the ISIC, which was published under the name of CAE-Rev.1 in 1973.

In 1978, in order to meet the requirement of adjusting the national statistical system to the

needs emerged from the process of Portugal joining the European Economic Community (EEC),

the CNE created a comittee responsible for 2 projects: 1) reviewing the CAE-Rev.1 in accor-

dance with the General Industrial Classification of Economic Activities within the European

Communities (NACE) from 1970; and 2) creating the National Classification of Goods and Ser-

vices (CNBS). These two projects were completed in 1985, but faced a disapproval due to the

suspension of the CNE in 1986.

Later on, the CAE-Rev.2 was developed considering the NACE Rev.1 (1990) and was har-

monised as much as possible with the CAE-Rev.1 (1973), being approved in 1991 by the EEC

Commission and published in Diário da República (DR) in 1993. Its sucessor, the CAE-Rev.2.1,

was approved in 2002 and published in DR in 2003.

Finally, the current version of the Portuguese CAE, the CAE-Rev.3, was created. It was

developed in accordance with the ISIS Rev.4 (2008) and the NACE Rev.2 (2008), and then pub-

lished in Diário da República in 2007 after being approved by EUROSTAT (Statistics Portugal,
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2007)

2.2 Short-term business statistics

Also known as STS, the Short-term business statistics are the earliest statistics available that keep

track of emerging economic trends in the EuropeanUnion and third countries in a given reference

period. They are index data and report information on a broad range of economic activities,

covering the industry, construction, trade and services sectors, (EUROSTAT, 2022c).

STS are of great significance and provide essential information for businesses, academia and

policy makers. In conjunction with other data, such as national accounts, the STS are used by

the European Central Bank, the European Commission, companies, financial markets, national

governments and national central banks to perform economic analysis, making decision-making

and the monitoring of the economy easier.

Furthermore, as stated by (EUROSTAT, 2022b), almost half of the Principal European Eco-

nomic Indicators (PEEIs) come from the STS. The PEEIs are key macroeconomic indicators that

describe the labour market and the economic situation, as well price developments in the Euro

Area and in the EU, which are of great importance for economic and monetary policy.

The EU Regulations No. 2019/2151 and 2020/1197 determine the scope of these short-

term indicators, as well as their definition, reference period, form, degree of detail, deadlines, and

the starting date of their time-series. Generally, the STS are published in the form of unadjusted,

calendar adjusted, and calendar and seasonally adjusted data. The data used to compute them are

mainly sourced by business surveys, but administrative data and other sources are also used.

Moreover, according to (EUROSTAT, 2022a), the comparability of STS data between Mem-

ber States is ensured by methodological frameworks, such as NACE, discussed in the previous

subsection, and by data harmonisation methods specified in the regulations cited above and in

the methodological manuals for these indicators.
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2.2.1 The turnover and employment indices

The Turnover and employment indices is an statistical operation carried out and funded by Statistics

Portugal, under the scope of the STS, and is composed by four indicators that measure short-

term changes in business turnover of goods and services, employment, wages, work input and

production volumes over a given reference period (Statistics Portugal, 2019). These four short-

term indicators are:

1. Business turnover, employment, wage and hours worked index in industry;

2. Production, employment, wage and hours worked index in Construction and Public Work;

3. Business turnover, employment, wage and hours worked index in retail trade; and

4. Business turnover, employment, wage and hours worked index in services.

These indices are estimated using direct and indirect sources, also, Statistics Portugal has been

progressively replacing the surveys by administrative data in order to reduce the statistical burden

on companies and other data subjects.

For instance, in Retail Trade, the Monthly Salary Statement of the Social Security (DMR/SS) has

replaced a survey that was posed to firms to estimate the Employment and wages indices. In

Industry and in Services, the Employment and wages indices has also started to use administra-

tive data, replacing partly the data that was obtained only by survey. In Construction, it is still

used direct sources instead of indirect/administrative ones, and the Hours worked index is still

estimated using direct sources as well.

The target population of this statistical operation, based on the CAE Rev.3, is:

• Industry: Sections B, C, D, and E

• Construction and Public Work: Section F

• Retail trade: Division 47

• Services: Sections G (except for division 47), H, I, J, L (except for subclass 68322), M, and

N.

The data collection is carried out by autocompletion of the surveys, either online or in paper,

available from the first day of the month following the reference period onwards. In average,

the times to complete the surveys are: 20 minutes in Industry, 14 minutes in Construction and
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Public work, 6 minutes in Retail Trade, and 5 minutes in Services.

The deadline for publishing the index is different for each sector.

2.3 e-Fatura

With the goal of preventing tax avoidance, in July 2012, the Government created the e-Fatura,

which is a system for invoice issuance that was implemented on 1 January 2013. In addition, other

fiscal changes to prevent tax avoidance took effect in the country in the same year, along with

the creation of some tax benefits to industries that typically issue invoices less often, such as

hospitality, hair and beauty, catering, and repair of motor vehicles and motorcycles, (Autoridade

Tributária, n.d.).

Some of these changes are relevant to mention, such as the Decree Law 197/2012 of 24

August, which made mandatory for companies and other entities to issue invoices, whether the

ultimate consumer asks for them or not. Another relevant change was making mandatory for

companies and other entities to send to the Tax Authority on a monthly basis the invoice docu-

ments issued by them up until the 25th day of the following month.

The changes mentioned above are highly relevant for this work, as they influence when the

e-Fatura data (VAT data) for a given reference period is supposed to be available and complete,

and also improve the coverage of the data.

2.4 Multibanco

The Multibanco network is a single system shared across all banks based in Portugal. It inte-

grates ATMs and Point-of-Sales systems, and is designed to process electronic payments in the

whole country. Created by the SIBS (Sociedade Interbancária de Serviços) group on the 2nd of

September of 1985, the project’s system could carry out only 3 types of operations by the time of

its launch: cash withdrawal, account balance checking and Card PIN changing (Marques, 2014).

Nowadays, it is possible to carry out over 90 operations, such as topping up mobile phones,

transferring money, payment of private and public services, among others.
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The dataset that the Multibanco network provides has weekly and monthly frequency, and

consists of transactions carried out under the network, along with the CAE number associated

to the commercial establishment that is on the receiving end of the transactions.
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Chapter 3

Literature Review

This Chapter briefly describes the methods and models used in this project. It is important

to note that Section 3.1 is heavily based on the books about time series forecasting written by

R. J. Hyndman and Athanasopoulos (2018) and Montgomery, Jennings, and Kulahci (2015), and

Section 3.2 is based on articles published by Ghysels, Sinko, and Valkanov (2007).

3.1 Time Series

Generally speaking, a time series is a set of observations on a given quantifiable variable

indexed in time. Usually the observations are taken at regular intervals - although irregular time

series observations do exist.

Time series data are common in many fields, including:

• Medicine: heartbeat rate per minute, brain wave activity per second, etc.

• Economics: quarterly GDP, monthly inflation rate, etc.

• Finance: monthly revenue, daily cash flow, etc.

• Meteorology: daily precipitation rate, daily average temperature, etc.

The analysis of a time series can be undertaken for many reasons and with many goals, such

as predicting future values of the series (forecasting), identifying the underlying phenomenon rep-

resented by the series and understanding its nature, as well as finding the cause of unusual obser-

vations (anomalies) and recurring patterns.
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By definition, a time series is a realisation limited in time of a stochastic process, which can

be defined as the family of random variables X = {Xt : t ∈ T } defined on the probability

space (Ω,F ,P) such that for each t ∈ T , there is a random variable Xt : Ω → R, where T

is an index set. If T ∈ N, then X is a stochastic process with discrete parameter, whereas if

T ∈ [0,∞[, then the parameter is continuous.

3.1.1 Classical decomposition

One of the most simple ways to describe a time series is breaking down its components using

the Classical decomposition, which came up in the 1920s. This method is relatively simple and was

the starting point for the development of most alternative approaches.

In this method, a time series can be decomposed in the following components:

• Trend (Tt) - represents the underlying long-term direction of the time series, which can

be an upward or a downward trend.

• Cycle (Ct) - represents the recurring pattern that do not take place at regular intervals and

can be caused by many factors, such as natural cycles, economic cycles, etc.

• Seasonality (St) - represents the recurring pattern that takes place at regular intervals, such

as daily, weekly or monthly intervals.

• Residual (Et) - represents the variation in the time series that cannot be explained by the

other components.

Usually, the components Tt and Ct are considered a single component called Trend-cycle, as

separating them is a complex task. However, there are techniques which perform this separation,

such as filtering, wavelet analysis and spectral analysis.

Supposing a time series with T periods of data available, where T is the most recent observa-

tion, and representing the variable of interestX observed at time t byXt, where t = 1, 2, ..., T ,

the final decomposition can take either an additive (1) or a multiplicative form (2), as follows:

(1) Xt = Tt + Ct + St + Et

(2) Xt = Tt × Ct × St × Et
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3.1.2 Stationarity

One of the main concepts in time series analysis is stationarity. A stationary time series is easier

to work with, since its behaviour does not change over time. This means that the underlying

structure of the series is more predictable and consistent. It would be hard, or even impossible,

to study and predict a time series if the behaviour of the process is constantly changing over

time. This is the reason why the statistical analysis of time series data relies on the concept of

stationarity.

A stationary time series has no trend or seasonality, as they would affect the value of the

series at different times. Furthermore, the pattern of a stationary series is not predictable in the

long-run, as R. J. Hyndman and Athanasopoulos (2018) explain.

Formally, a stochastic process X = {Xt : t ∈ T } is called strictly stationary if its statistical

properties do not change over time, i.e., if

P (Xt1 ≤ xt1 , Xt2 ≤ xt2 , ..., Xtk ≤ xtk) =

= P (Xt1+s ≤ xt1+s, Xt2+s ≤ xt2+s, ..., Xtk+s ≤ xtk+s),∀t ∈ N, s ∈ Z.

However, this condition is rarely verified in real time series, which leads to the concept of

weak stationarity. The conditions forX to be weakly stationary are the following:

1. E(Xt) = µ,∀t ∈ N

2. V (Xt) = E(Xt − µ)2 = σ2,∀t ∈ N

3. cov(Xt, Xs) = γX(t− s), ∀t ∈ N, s ∈ Z

4. ρX(s) = γX(s)
γX(0)

Where γX(s) is the autocovariance function and ρX(s) is the autocorrelation function (ACF ) of

Xt.

3.1.3 Autocorrelation

Considering that the correlation measures the linear relationship of two variables, the auto-

correlation function measures the linear relationship between lagged observations of the same

time series.
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For instance, the autocorrelation of the stochastic process X at lag 1 is the correlation be-

tween Xt and Xt−1, and the autocorrelation at lag s is the correlation between Xt and Xt−s for

all t.

The sample autocorrelation function at lag s is computed as

ρ̂X(s) =

∑T
t=s+1(Xt − µ)(Xt−s − µ)∑T

t=1(Xt − µ)2

where T is the last observation.

3.1.4 White noise

A sequence of zero mean, independent and identically distributed random variables is called

white noise. As such,X is a white noise if

1. E(Xt) = 0,∀t ∈ N

2. V (Xt) = E(X2
t ) = σ2,∀t ∈ N

3. ρX(0) = 1 and ρX(s) = 0, s 6= 0, s ∈ {±1,±2, . . .}

Usually, a white noise is represented as Xt ∼ WN(0, σ2)

3.1.5 ARIMA models

TheAutoregressive IntegratedMovingAverage (ARIMA)models, also known as Box-Jenkins

models, are statistical models introduced in the 1970s that are used to model and analyse time

series data. They are vastly used and are applied in many fields, such as finance and economics.

Autoregressive models

In an AutoRegressive (AR) model, the variable of interest X at time t is explained by using

a linear combination of the past values of X . The most simple case of an AR model is the AR

model of order 1, also referred as AR(1), which is represented as follows

Xt = φ1Xt−1 + εt, where εt ∼ WN(0, σ2)
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In order for the AR(1) model to be stationary, the parameter must meet the condition

|φ1| < 1. Furthermore, it is possible to show that, when this condition is met, the most re-

cent observation in theAR(1)model can be written as the weighted average of the past residuals

by applying recursive substitution

Xt = φ1Xt−1 + εt

Xt = φ1 (Xt−2 + εt−1) + εt

Xt = φ2
1Xt−2 + φ1εt−1 + εt

Xt = φ3
1Xt−3 + φ2

1εt−2 + φ1εt−1 + εt

· · ·

Xt =
∞∑
j=0

φj
1εt−j < ∞

since φj
1 decreases as j increases.

The general case of the model is the AR(p), the autoregressive model of order p, and it is is

defined as satisfying the following equation

Xt = φ1Xt−1 + φ2Xt−2 + · · ·+ φpXt−p + εt, where εt ∼ WN(0, 1)

(1− φ1B − φ2B
2 − · · · − φpB

p)Xt = εt

Φ(B)Xt = εt

where B is the Backshift operator, which simplifies operations such as

(1−Bm)Xt = Xt −BmXt = Xt −Xt−m

The stationarity condition of this model is met when all of the roots of the corresponding

AR(p) characteristic polynomial

Φ(z) = 1− φ1z − φ2z
2 − · · · − φpz

p

strictly lie outside the unit circle, i.e., if |zi| > 1,∀i = 1, 2, ..., p.
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Moving Average models

As opposed to autoregressive models, the variable of interest in moving average (MA) models

is described by the linear combination of the past residuals. TheMA(1) is written as follows

Xt = θ1εt−1 + εt, where εt ∼ WN(0, 1)

Similarly to the autoregressive of order 1 case, when |θ1| < 1, it is possible to write the

most recent residual as the weighted average of the past observations in theMA(1) process by

applying recursive substitution

εt = Xt − θ1εt−1

εt = Xt − θ1(Xt−1 − θ1εt−2)

εt = (−θ1)
2εt−2 − θ1Xt−1 +Xt

εt = (−θ1)
3εt−3 + (−θ1)

2Xt−2 − θ1Xt−1 +Xt

· · ·

εt =
∞∑
j=0

(−θ1)
jXt−j < ∞

since it is generated a converging geometric series.

It is possible to see that the MA(1) model can be rewritten as an AR(∞) model when

|θ1| < 1, as well as theAR(1)model in the subsection below was rewritten as anMA(∞) when

the condition |φ1| < 1 verifies.

In those cases, whereAR(p) andMA(q)models can be rewritten as the infinite form of their

counterparts, they are called stationary and invertible, respectively, and the conditions |φ1| < 1 and

|θ1| < 1 are the stationarity and the invertibility conditions for the AR(1) and the MA(1)

respectively.

The general case of the moving average model is theMA(q), and it is written as

Xt = θ1εt−1 + θ21εt−2 + · · ·+ θq1εt−q + εt, where εt ∼ WN(0, 1)

Xt = (1 + θ1B + θ2B
2 + · · ·+ θqB

q)εt

Xt = Θ(B)εt
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Similarly to the stationarity condition of the AR(p) model, the invertibility condition of this

model is met when all of the roots of the correspondingMA(q) characteristic polynomial

Θ(z) = 1 + θ1z + θ2z
2 + · · ·+ θqz

q

strictly lie outside the unit circle, i.e., if |zi| > 1,∀i = 1, 2, ..., q.

(S)ARIMA models

The Autoregressive Integrated Moving Average (ARIMA) models combine autoregressive

components with moving average ones, as well as adding a time lag differencing to the final

model.

Differencing is an important concept when modelling ARIMA models, as it makes non-

stationary time series become stationary. When differencing is applied, recurring patterns such

as seasonality, as well as trends in the series can be filtered out, which improves forecasting

accuracy.

When a given time series Xt is not stationary, but its first difference (1− B)Xt is, then the

series is said to be integrated of order one and can be represented byXt ∼ I(1). Similarly, when

Xt needs to be differenced twice in order to be stationary, then Xt ∼ I(2), and when Xt is s

stationary series, then Xt ∼ I(0), (Hanck, Arnold, Gerber, & Schmelzer, 2021).

The general case of the Box-Jenkins model is theARIMA(p, d, q), which can be represented

by the following equation using the backshift operator

(1−B)dXt = φ1(1−B)dXt−1 + · · ·+ φp(1−B)dXt−p + θ1εt−1 + · · ·+ θqεt−q + εt

or by

(1− φ1B − · · · − φpB
p)(1−B)dXt = (1 + θ1B + · · ·+ θqB

q)εt

where εt ∼ WN(0, 1), and p, d and q are the orders of the autoregressive, the differencing and

the moving average components, respectively.

The ARIMA models also support the modelling of seasonal patterns, adding seasonal com-

ponents to the autoregressive and/or to the moving average part of the model. These models

are, in the general case, the SARIMA(p, d, q)× (P,D,Q)s.
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Considering monthly data, one possible version of these models is the SARIMA(1, 1, 1)×

(1, 1, 1)12, represented by the following equation

(1− φ1B)(1− Φ1B
12)(1−B)(1−B12)Xt = (1 + θ1B)(1 + Θ1B

12)εt

where Φ1 and Θ1 are the coefficients related to the autoregressive and moving average parts of

the seasonal component, respectively.

It is important to note that, both for the seasonal and the non-seasonal components, the au-

toregressive and the moving average parts of the SARIMAmodels can be stationary or invertible,

respectively, as long as the stationarity and the invertibility conditions in accordance to the order

of each part (p and q) are verified.

Augmented Dickey-Fuller unit root test: URCA package

There are several methods to test a time series for stationarity (unit roots). One of the most

popular is the Augmented Dickey-Fuller test (ADF test), developed by Said and Dickey (1984).

The method used in function ur.df(type = "none", lags = p) of the R package urca (Pfaff,

2008) is based on the linear model without trend and intercept

∆Xt = γXt−1 + δ1∆Xt−1 + δ2∆Xt−2 + · · ·+ δp∆Xt−p + εt

where ∆Xt = Xt −Xt−1.

It is possible to run the test using any time seriesXt that can be described by anARMA(p, q)

structure, regardless of the orders. The hypotheses of the test are

H0 : γ = 0 ⇔ H0 : Xt ∼ I(1)

H1 : γ < 0 ⇔ H1 : Xt ∼ I(0)

and the test statistic is ADF = γ̂/SE(γ̂), which follows a non-standard t-student distribution

and has special critical values that can be found in the paper published by Said and Dickey (1984).

AUTO ARIMA

When working with many different series, most of the times, it is not possible to assess the

behaviour of each one of them and decide a specific model for them, considering time restrictions.
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In that case, it comes in handy the use of functions that find suitable models for each of them,

such as the auto.arima function from R the package called forecast (R. Hyndman et al., 2023),

developed by R. J. Hyndman and Khandakar (2008).

The algorithm determines the order of the best ARIMA model, using information criteria

(AIC or BIC) and appropriate unit roots tests. Considering seasonal data, the algorithm, before

searching for the order of the AR and MA parts of the model, looks for an appropriate order

of differencing by first finding out D using an extended Canova-Hansen test, which will return

either D = 0 or D = 1. Following that, the algorithm searches for d, starting at d = 0, by

running KPSS unit-root tests sequentially until it returns an insignificant test result and assigning

the respective d order to the model.

After differencing the series, the algorithm finds the most suitable parameters p, q, P and Q

for the SARIMA(p, d, q)× (P,D,Q)s model by minimising the information criterion

AIC = −2log(L) + 2(p+ q + P +Q+ k)

where L is the maximised likelihood of the model fitted to the differenced series represented

by (1 − Bm)D(1 − B)dXt. It is important to note that, in case the series is not seasonal, the

Canova-Hansen test is skipped, R. J. Hyndman and Khandakar (2008).

3.1.6 The Fractional Airline Model

When working with data sampled at frequencies that do not have an integer periodicity, such

as weekly data, which has 365.25/7 ≈ 52.18 weeks in a year, it is necessary to use alternative

time series decomposition methods in order do seasonally adjust the series, since the classical and

other commonly used methods can not handle such data.

The Fractional Airline Model (FAM) is a decomposition method that can handle data with

non-integer periodicity. Themodel is a fractional variant of the airlinemodelSARIMA(0, 1, 1)×

(0, 1, 1)s that was adapted to fractional periodicities using the following first-order Taylor series

expansion (Ollech & Bundesbank, 2023)

∇̃sXt ≈ Xt − (1− α)BbscXt − αBbsc+1Xt
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where ∇̃s is the fractional differencing operator, and s = bsc + α is the fractional seasonal

period, where α ∈ [0, 1[.

As in Burman (1980), a canonical decomposition is performed, and the components are

estimated by means of the Kalman smoothers, as explained by Evans, Monsell, and Sverchkov

(n.d.).

Considering a weekly time series, the final model can be rewritten as

(1−B)(1− 0.82B52 − 0.18B53)Xt = (1− θ1B)(1− 0.82Θ1B
52)(1− 0.18Θ1B

53)εt

3.1.7 Hierarchical Time Series

One of the possible ways to organise time series data, is aggregating the data at levels that

are based on features, such as geographic location, organisational structure, etc. These are called

hierarchical time series, and as an example, the figure below illustrates how the hierarchy of the CAE

47 (retail trade) is organised.

Figure 3.1: CAE 47 hierarchy

There are multiple applications in business and economics that require the forecasting of

different time series that are related through a hierarchical structure. Usually, the forecasting
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methods for these series use either top-down or bottom-up approaches, (R. J. Hyndman, Ahmed,

Athanasopoulos, & Shang, 2011).

Top-down approach

The top-down approach to forecasting a hierarchical time series consists in forecasting the

aggregated data at the highest level, then decomposing the forecast into the lower levels of the

hierarchy.

There are several methods to decompose the forecast to lower hierarchies. The usual way is to

compute the contribution of each lower level hierarchy to the aggregated data and disaggregate the

forecast accordingly. These contributions can be estimated by using historical data or forecasted.

When using historical data to estimate the proportions, two possible methods excelled in a

study conducted by Gross and Sohl (1990):

• Average historical proportions: pj = T−1
∑T

t=1 Xtj/Xt

• Proportions of the historical average: pj =
∑T

t=1XtjT
−1/

∑T
t=1XtT

−1

where pj is the proportion of the j-th bottom-level hierarchy and Xtj is the observation of the

j-th bottom-level hierarchy at time t, with t = 1, 2, ..., T .

Although these two methods are widely used nowadays, the historical data approach do not

take into account the changes over time of these proportions, which can lead to less accurate

predictions at the bottom level hierarchies. An alternative approach was proposed by Athana-

sopoulos, Ahmed, and Hyndman (2009), which estimates proportions based on forecasts rather

than with historical data.

Bottom-up approach

Alternatively, hierarchical time series can also be forecasted using the bottom-up approach.

This method consists in building models for bottom-level hierarchies and summing the forecasts

up to produce an overall forecast for the aggregated, top-level data.

Using the CAE hierarchy as an example to illustrate this approach, which can be seen in the

Figure 3.1, it is possible to forecast the class 4711 by forecasting its subclasses (47111 and 47112)
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and summing them

X̂4711,t (m) = X̂47111,t (m) + X̂47112,t (m)

where X̂j,t(m) is them-step ahead forecast of the hierarchy j at time t.

Although the main advantages of this approach is yielding more accurate predictions at lower-

level hierarchies and the fact that there is no loss of information due to data aggregation, as stated

by R. J. Hyndman and Athanasopoulos (2018), it may be more challenging to model those lower-

level hierarchies as the data at their level tend to be noisy.

3.2 Regression models

Regression models are statistical techniques used to assess and describe the relationship be-

tween a response variable Y and one or more explanatory variables X1, X2, ..., Xp. The main

goals of these models are to explain the relationship between these variables and predict values

of the response variable using the explanatory variables values based on their relationship.

In this project, three types of regression will be used: Simple Linear Regression, Dynamic

Regression and MIDAS Regression. In the next sections, these models will be explained further.

3.2.1 Linear regression

The general model of a multiple linear regression model can be written as

Yt = β0 + β1X1 + β2X2 + · · ·+ βpXp + εt

where β0, β1, ..., βp are the coefficients that measure the marginal effect of each explanatory

variable considering that all the other variables have already been taken into account, and εt is a

residual variable which captures deviations from the straight line model or unexplained variations

in the response variable.

The reliability of the model depends upon the following assumptions:

1. E(εt) = 0,∀t

2. V (εt) = σ2, ∀t : 0 < σ2 < ∞
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3. cov(εt, εt+s) = 0,∀t, s : s ∈ {±1,±2, . . .}

4. cov(εt, Xjt) = 0,∀j = 1, 2, ..., p

When these assumptions are violated, the accuracy of the estimates are affected and the

statistical inferences are not valid.

One of the possible ways to estimate the coefficients β0, β1, ..., βp is using the Ordinary Least

Squares (OLS) estimation, which minimises the sum of the squared errors. In order words, the

coefficient values are chosen by minimising the sum

T∑
t=1

ε2t =
T∑
t=1

(Yt − β0 − β1X1 − β2X2 − · · · − βpXp)
2

and then, obtaining the estimated values β̂0, β̂1, ..., β̂p.

3.2.2 Dynamic regression

When working with time series, there are underlying time dynamics that the classic linear

regression cannot capture. Besides, when modelling time series data with linear regression, it is

possible that the residual term is serially correlated, which violates one of the hypothesis of the

model.

In order to allow the residual term to be autocorrelated and make it possible to fit a linear

regression using time series data, the following model was designed

Yt = β0 + β1X1t + β2X2t + · · ·+ βpXpt + ηt

ηt ∼ ARMA(p, d, q)

where the model ηt replaces the error term εt in the classical linear regression model Yt, which

results in 2 errors inside the model: the error ηt of the regression Yt, and the error εt of the

ARMA model ηt.

When the model is estimated, the minimisation should be on the error term εt, and not on

the ηt, otherwise the associated statistical inference is not valid, the estimated coefficients β̂p are

not the best ones, and the AICc values are not good benchmarks for the models.
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Furthermore, in order to use the ARMA errors, all of the variables in the model must be

stationary, otherwise the estimators will not be consistent. The only exception for that is when

the variables in the model are cointegrated, i.e., when there exists a linear combination of these

variables that is stationary.

Cointegration

Although the relationship between two or more non-stationary time series may not be di-

rectly causal or clear and may deviate from one another in the short-term, they can have a stable

equilibrium that can be observed in the long-run - such series are said to be cointegrated.

Formally, two non-stationary time series represented by the variables Yt and Xt are cointe-

grated if there is a θ such that the linear combination Yt− θXt is stationary, which means that Yt

andXt have a common stochastic trend that can be cancelled out by the said linear combination,

Hanck et al. (2021).

It is possible to test, for instance, the variables Yt and Xt for cointegration by following the

framework developed by Engle and Granger (1987), which consists of:

1. Estimating the regression Yt = β0 + β1Xt + εt using OLS

2. Pulling the residual series from the estimated model

3. Testing the residual series for stationarity using the ADF test

If the non-stationarity of the residual series is ruled out by the test for a given significance level,

then the statistical evidence is that the two series are cointegrated.

It is important to highlight that, in this approach, the critical values for the ADF test are

different than the ones presented by Said and Dickey (1984), as the distribution now depends on

the number of series that are being tested. These special critical values were published by Engle

and Granger (1987), and since the case studied in this work only uses two series, the relevant

critical value, considering a significance level of α = 5%, is −3.41.
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3.2.3 MIDAS regression

The Mixed data sampling (MIDAS), proposed by Ghysels, Santa-Clara, and Valkanov (2004),

is a regression model that was developed to tackle a problem often encountered in the economics

field, where the variable of interest has lower frequency than the relevant information at hand.

Thus, the main feature of this model is the linkage of a lower-frequency dependent variable to

higher-frequency independent variables, eventually sampled at different time intervals.

Supposing the dependent variable of interest Y sampled at a given fixed frequency, and the

independent variable Xm sampled at a frequency m times faster, the simple MIDAS regression

equation is represented by

Yt = β0 + β1b(B
1/m; θ)Xm

t + εmt

where b(B1/m; θ) is a lagged polynomial of length K, b(B1/m; θ) =
∑K

k=0 b(k; θ)B
k/m and

Bk/mXt = Xt−k/m, with B the Backshift operator.

In a later study, Ghysels et al. (2007) addressed the issue of dealing with a very high number

of parameters to estimate in the polynomial b(B1/m; θ), caused by high-frequency explanatory

variables when using a significant number of lags of Xm
t , which is not a challenge uncommonly

faced. In order to tackle this problem, it was proposed to use the exponential almon lag polyno-

mial, represented by

b(k; θ) =
eθ1k+···+θQkQ∑K
k=1 e

θ1k+···+θQkQ
,

which has been shown to be useful by Armesto, Engemann, Owyang, et al. (2010) and Clements

and Galvão (2008).
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Chapter 4

Methodology

This chapter aims to describe the methodological framework used to address the research

problem explained in the Chapter 1, which is finding the most accurate models to nowcast the

e-Fatura data for a given reference month in order to comply with the deadline to the publication

of the Retail Traide Turnover Index, imposed by Eurostat, in case the Tax Authority fails to

deliver the e-Fatura data in time.

4.1 Data description

The Multibanco data and the e-Fatura data are provided by different entities and have dif-

ferent frequencies. The former is provided by SIBS at both weekly and monthly frequencies,

whereas the e-Fatura data is monthly and provided by the Tax Authority. Also, the structure of

both data follows the CAE framework.

As mentioned earlier, the CAE classes and subclasses are organised in hierarchies. For the

retail trade activity, the CAE code starts with the 2-digit number 47, and it can be disaggregated

up to 5 digits, yielding hierarchies of the form 47x, 47xx and 47xxx, as the Figure 3.1 already

shows.

It is important to note that some of the data may overlap, as there may be transactions carried

out using the Multibanco system that correspond to specific VAT entries, as well as the other way

around. For instance, a single transaction carried out in the Multibanco system may correspond
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to a couple of invoices or more in the VAT data, and a single invoice may correspond to one

transaction or more in the Multibanco system.

Considering the nature of these data, it is easy to recognise the potential they have for being

used for statistical purposes, as well as other types of administrative data, which is a topic that has

been getting a lot of attention under the scope of the work of the National Statistical Institutes

in the last few years.

4.1.1 e-Fatura data

As mentioned before, the frequency of the e-fatura data, also referenced as VAT data in this

dissertation, is monthly and is sent out by the Tax Authority (AT) to Statistics Portugal (INE)

between the third and the fourth week following the end of the reference month.

However, the raw dataset delivered every month needs to be processed, as there are problems

that affect the quality of the data and may impair the statistical operation, such as missing values,

outliers and negative values.

When it comes to the missing values, they can be either fully missing or partially missing. Fully

missing values are the ones for which there are no invoice entries for an issuing entity in that

month, whereas partially missing values are the ones for which the sum of the entries for an

issuing entity in a given month is far below the expected.

With regards to negative values, they appear in the dataset every month. Usually, these neg-

ative entries are credit notes, booking and order cancellations, and some of them also aim to

correct positive VAT entries that were registered incorrectly. At times, these negative values are

of such great magnitude that they not only distort the total VAT of a given entity, but also distort

the total VAT of the whole CAE subclass that the entity belongs to.

The dataset is processed by Statistics Portugal and then uploaded to the Institution’s database.

The final dataset that can be found in the database has six columns corresponding to the following

six variables

1. YEAR: Year of the entry

2. MONTH: Month of the entry
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3. ISSUING_CAE: CAE subclass of the entry

4. N_ISSUERS: Number of entities that issued invoices corresponding the VT_TOTAL of the

entry

5. N_ENTRIES: Number of invoices issued by the entities of the entry

6. VT_TOTAL: Total value of the invoices issued of the entry, in euros

4.1.2 Multibanco data

The multibanco data is delivered monthly by SIBS in both weekly and monthly frequencies.

The dataset has seven columns, corresponding to thge following seven variables

1. YEAR: Year of the entry

2. MONTH: Month of the entry

3. WEEK: Week of the year of the entry - weekly dataset only

4. CAE_CODE: CAE subclass of the entry

5. CAE_DESCRIP: Description of the activity of the CAE subclass

6. TYPE_OPERATION: Type of operation, which can be: Purchases, Other operations, Payment

of purchases/services and Special services.

7. TOTAL: Total transactioned

The Multibanco data does not require pre-processing as it is delivered with high quality by

SIBS and ready to use.

4.2 Methodology

As stated in the previous Chapters, this work will be undertaken in order to understand the

behaviour of the e-Fatura data and find the most appropriated method for nowcasting its value

for each CAE subclass for the most recent reference period.

Statistics Portugal currently uses the e-Fatura data as a complementary variable to estimate

the Business Turnover Index in Retail Trade. However, at times, the Tax Authority does not deliver

the data to the institution in time, which poses a threat to the compliance of the deadlines for

releasing the Short-term business statistics reports imposed by EUROSTAT.
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Thus, the current goal is to build a framework for nowcasting the e-Fatura data in case the

Tax Authority fails to deliver the data in time again. The proposed approach is:

• Nowcast the e-Fatura data for the most recent reference period at the 4-digit level of the

retail trade classification

- Using the e-Fatura historical data

- Using the Multibanco data as the predictor variable, sampled either monthly or

weekly

• As an alternative, nowcast the e-Fatura at the 5-digit level (for CAEs that have 5-digit

disagreggation) using the two options given above, and then aggregate the results back to

the 4-digit level using the hierarchical bottom-up approach

In this project, the target hierarchy is the 4-digit one, and the nowcasting exercise will be

focused on this hierarchy level. Although the 5-digit level will also be nowcasted, it will only

be done with the purpose of aggregating the information back to the 4-digit level, in order to

compare the performance of targeting the 4-digit directly versus using a bottom-up hierarchical

approach.

It is important to note that, except for the MIDAS regression, which uses the weekly Multi-

banco data as explanatory variable to nowcast the e-Fatura data at monthly frequency, as it aims

to link lower-frequency variables to higher-frequency ones, all of the other models used theMulti-

banco data sampled monthly, since they only support same-frequency variables.

4.2.1 Tools

The software used were Oracle SQL Developer to retrieve the datasets that will be used from

the Institute’s database, and the statistical programming language R with the following pack-

ages: midasr (Ghysels, Kvedaras, & Zemlys, 2016), tsibble (Wang, Cook, & Hyndman, 2020), fable

(O’Hara-Wild, Hyndman, &Wang, 2023), dplyr (Wickham, François, Henry, Müller, & Vaughan,

2023), urca (Pfaff, 2008), xts (Ryan&Ulrich, 2023), forecast (R. Hyndman et al., 2023), fpp3 (R. Hyn-

dman, 2023) and ggplot2 (Wickham, 2016).

The package midasr has the functions to apply the MIDAS regression, the packages tsibble,

28



dplyr and fable were used to manipulate and create time series objects. Regarding the package

urca, it was used to carry-out the stationarity tests, and forecast was used to access the function

auto.arima(). Finally, the plots were made using the package ggplot2.
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Chapter 5

Results

In this Chapter, the results obtained from applying the methodology described above are

shown and discussed. At first, the exploratory analysis of the e-Fatura and theMultibanco data are

presented, although in a limited manner - the values will not be disclosed - due to confidentiality

issues. Then, the results of nowcasting the e-Fatura data will be discussed.

The algorithms used to nowcast the e-Fatura data were ARIMA, Linear regression, Dynamic

regression and MIDAS - an additional forecast will also be provided, as the combination of the

forecasts made by all models using arithmetic mean. Furthermore, it is important to highlight

that the ARIMAmodels were fitted using the function auto.arima() from the R package forecast,

which was briefly presented in Chapter 3.

Moreover, in Section 5.1 up to Section 5.5, the analysis and the results discussed regard only

the aggregated 2-digit and the 4-digit level CAEs, as it would be redundant to also analyse the

5-digit disaggregation. However, the results obtained using the bottom-up approach from the 5-

digit to the 4-digit level will be discussed in the Section 5.6 and compared to the results obtained

directly from the 4-digit level.
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5.1 Exploratory analysis

5.1.1 e-Fatura

The e-Fatura data, dating back to January 2016, and aggregated to the highest hierarchy,

representing the whole Retail trade sector, is represented in Figure 5.1. The series clearly shows

an upward trend and an underlying yearly seasonal pattern.

Figure 5.1: e-Fatura time series: CAE 47

In the Figure 5.1, it is possible to see that, until 2019, the observations had a more stable

pattern across the years, and from 2020 onwards, they have become more noisy. Regardless of

that, the seasonal behaviour remained very similar, as the seasonal plot in Figure 5.2 shows.

In general, as the Figure 5.2 shows, the month with the highest observed value across the

years is December, followed by August and the month with the lowest is February - this is true

for every observed year, except for 2021, when July had a higher observation than August, and

2023, when March had a lower observation than February.

When the series is broken down to the 4-digit hierarchy, it yields 37 different series that

correspond to each of the 4-digit CAE categories. However, the average weight of the categories

on the aggregated series is not balanced as Table 5.1 illustrates. For instance, considering monthly

observations, the CAEs 4711 and 4730, on average, account for 38.41% and 11.16% and are the
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Figure 5.2: e-Fatura seasonal plot: CAE 47

categories with highest weights, whereas the CAEs 4763 and 4782 account for, on average, only

0.007% and 0.05% and are the ones with lowest weights. Out of the 37 CAEs, on average, 23

account for less than 1% each, 6 account between 1% and 3% each, and 6 account between 7%

and 3% each. For the complete set of average weights see Table A.1.

CAE 4711 4730 4773 4771 4778 4752 ... 4789 4782 4763

Avg. Prop. (%) 38.41 11.16 6.97 6.07 4.95 4.93 ... 0.1 0.05 0.01

Table 5.1: 4-digit CAEs weight on aggregate: e-Fatura (preview table)

Among those 37 subseries, many of them have similar behaviour with one another and also

with the aggregated series, however, a few of them seem to have a more unique behaviour as

illustrated in Figure 5.3

This shows that some retail economic activities, such as supermarkets, when compared to

the generality of the retail sector (aggregated series), have very similar fluctuations throughout

the year, whereas other, like flower shops, do not.
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Figure 5.3: e-Fatura time series: CAEs 47, 4711 and 4729

5.1.2 Multibanco

The Multibanco series dates back to January 2020 and is organised in CAE hierarchies just

like the e-Fatura series. The aggregated series is represented in Figure 5.4. This time series also

shows an upward trend and yearly seasonality.

Figure 5.4: Multibanco time series: CAE 47

Moreover, the series seems to have a more stable and predictable behaviour across the years,
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unlike the e-Fatura series, which is more noisy from 2020 onwards.

Figure 5.5: Multibanco seasonal plot: CAE 47

The seasonality of the series, shown in the Figure 5.5, is very similar to the one present in the

e-Fatura data, with the highest and lowest values observed, in most of the years, in December

and in February, respectively.

When the Multibanco series is broken down to its 37 4-digit CAEs, there is a great imbalance

on the average weight that each of them accounts for the aggregated data as shown in the Table 5.2

(full set of weights in Table A.2), similarly to the imbalance in the e-Fatura data (Table A.1). The

CAEs with the highest weights are the 4711 and the 4730, which account for 48.78% and 10.01%,

and the ones with the lowest weights are the 4763 and the 4782, accounting for 0.01% and 0.03%,

respectively. Regarding the overall distribution of the weights, 25 CAEs account for less than

1% each, 4 CAEs account between 1% and 3% each and 6 CAEs account between 7% and 3%

each.

CAE 4711 4730 4771 4773 4752 4778 ... 4789 4782 4763

Avg. Prop. (%) 48.78 10.01 6.15 4.85 4.83 4.12 ... 0.04 0.03 0.01

Table 5.2: 4-digit CAEs weight on aggregate: Multibanco (preview table)
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When we look at the 37 subseries time plots, similarly to what happens with the e-Fatura

data, it is possible to see that many subseries behave similarly to the aggregated series, but some

do not. However, the CAEs that behave differently and similarly to the aggregated CAE 47 in

the Multibanco series are not all the same ones in the e-Fatura dataset, although many of them

are. For instance, it is possible to see in the Figure 5.6 that the behaviour of the CAE 4789 is

very similar to the overall retail sector, whereas the CAE 4753 behaves differently.

Figure 5.6: Multibanco time series: CAEs 47, 4753 and 4789

5.1.3 Relationship between the Multibanco and the e-Fatura series

Considering that the e-Fatura data are the transactions’ invoices issued by the seller busi-

nesses, and that the Multibanco data are the bank card transactions with those establishments,

one can intuitively guess that there is a relationship between these two series.

As the Figure 5.7 shows, regarding the 2-digit level, both series have an upward trend, and

it seems that they have similar underlying seasonal structure, with the highest and lowest ob-

servations in almost every year being in December and February, respectively. Moreover, their

monthly fluctuations across the years are very much alike.

The scatterplot in Figure 5.8, reveals a contemporaneous linear relationship between the two

series at the 2-digit level, with a correlation coefficient r = 0.911. It is also relevant to check if
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Figure 5.7: e-Fatura and Multibanco time series: CAE 47

Figure 5.8: e-Fatura vs Multibanco at time t for CAE 47

these two series are cointegrated, by fitting the regression

eFaturat = β0 + β1Multibancot + εt

and checking the stationarity of the residuals.
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After fitting the model, the results were

β̂0 = 1357653246, SE(β̂0) = 262159200, p− value(β̂0) < 0.001

β̂1 = 1.316, SE(β̂1) = 0.09782086, p− value(β̂1) < 0.001

R̂2 = 0.8303, R̂2
adj = 0.8257, SE = 292621002

Figure 5.9: Regression residuals time series: CAE 47

After visually analysing the Figure 5.9 and running an ADF test using the ur.df() function in

the R package urca, with lag selection using AIC optimisation, the test statistic was -4.28, rejecting

the null hypothesis of no cointegration considering a 5% significance level, which critical value

is CV = −3.41. Given that, the statistical evidence is that, at the 2-digit level, these two series

are cointegrated.

Even though the aggregated 2-digit series of both e-Fatura and Multibanco are cointegrated,

this does not hold true for every CAE at the 4-digit level. The statistical evidence is that, out of

37 4-digit CAEs, only 9 of them are cointegrated, considering a significance level of 5%. The test

statistic for each CAE can be found in the Table A.3.

The e-Fatura and the Multibanco time series of some 4-digit CAEs can be almost identical,

however, there are a few ones that behave very differently, and the Figure 5.10 shows examples

of these two possible situations, which poses a challenge to using the Multibanco as an auxiliary
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Figure 5.10: Regression residuals time series: CAE 47

variable to estimate the e-Fatura data in those CAEs.

Considering that not every 4-digit CAE has their e-Fatura and Multibanco series cointegrated

and also that some of them behave differently in the short-term, it was decided to use ARIMA

models to forecast the e-Fatura using historical data, and also to use two different linear regression

models, which will be explained more in depth in the Sections 5.2 and 5.5.

5.2 Linear regression

The application of the Linear regression algorithm in this work was split in two models:

1. Simple linear regression

eFaturat = β0 + β1Multibancot + εt (5.1)

2. Linear regression with seasonal dummies

eFaturat = β0+β1Multibancot+β2FEBt+β3MARt+ · · ·+β12DECt+εt (5.2)

The reason for this approach is that, as shown in the exploratory analysis in the Subsection

5.1.3, some CAEs have their Multibanco subseries behaving almost identically to their counter-

part e-Fatura subseries, including their seasonal fluctuation, whereas a few other CAEs seem to
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have seasonal fluctuations that are out of sync. Thus, it was decided to use to these two regres-

sion models in order to assess their performance in each of these cases mentioned. The results

of the models (5.1) and (5.1) can be found in the Tables A.4 and A.5 respectivelly.

Considering the results obtained from data at the 4-digit level only, as the Table A.6 shows,

out of 37 CAEs, 14 were predicted with more accuracy when using the model (5.1), and 16 were

better predicted using the model (5.2). For the remaining 7 CAEs, the performance of both

models was very similar - the RMSE of the model (5.1) was neither 5% higher nor 5% lower

than the RMSE of the model (5.2). For clarification purposes, the Table A.6 shows the ratio

between the RMSE of both models, which can be useful for this direct comparison between the

performance of these models.

Lastly, regarding themodel (5.1), when we analyse the R̂2
adj of all fittedmodels for every CAE,

only 18 out of 37 scored high, having R̂2
adj > 0.7, which is shown in the Table A.7. This is a

result of the fact that the behaviours of the e-Fatura and the Multibanco data are not consistently

similar for every CAE.

5.3 Dynamic regression

Although the Dynamic regression models have a linear regression in their structure (see Sub-

section 3.2.2), it was decided not to train two different models for every CAE as it was done in

the Section 5.2. This decision was made because this model has an ARIMA component, which

captures the time-dependant dynamics in the data.

The models were trained automatically using the function MODEL(ARIMA(Y ∼ X))

from the package fpp3 (R. Hyndman, 2023), where Y andX are the dependent and the indepen-

dent variables, respectively. The performance of this model across the CAEs, measured by the

RMSE, are in the Table A.8.

39



5.4 MIDAS

The application of the MIDAS regression uses the weekly Multibanco data as the explanatory

variable of the monthly e-Fatura, which has a major drawback - months do not have an integer

number of weeks, and since the algorithm does not support non-integer frequencies, some in-

formation may be lost because some days of the month may not be accounted for, and it is also

possible to allocate days from either preceding or following months, or both, depending on how

the indexing of the higher-frequency data is organised.

Also, theMIDAS algorithm allocates the higher-frequency observations to each lower-frequency

ones from backwards. For instance, in the case of this project, the algorithm first splits monthly

subsets of the weeks, and then starts allocating them to their respective month in the regression

from the most recent week of that month to the oldest one, according to the set number of lags

k - so a regression with k = 2 lags will always allocate the last 2 weeks of each month to the

regression.

Considering the process described above, and in order to mitigate the drawbacks explained

in the first paragraph, the day set to index each observed week in the weekly Multibanco dataset

was the last day of each week. For instance, if a week covers the days from 30 January 2019 to 5

January 2020, then it was indexed as 5 January 2020. This decision may result in allocating days

from the preceding month, but it prevents from allocating days from the following month.

Moreover, since the weekly Multibanco and the e-Fatura data have different seasonality struc-

tures, before estimating the regression, both were seasonally adjusted using the Fractional airline

model described in the Subsection 3.1.6 before training the models. Then, the seasonal effect is

added back to the prediction by adding the estimated seasonal effect for the same period in the

previous year. For instance, if the seasonally adjusted e-Fatura is estimated for April 2023, the

seasonal effect of April 2022 is added back in order to reach the final prediction.

After following the steps described above, MIDAS models were trained for each CAE and

their performance, measured using RMSE, can be found in the Table A.9. Although it was

expected that this algorithm would have a better performance because of the granularity of the

weekly data compared to the less granular monthly Multibanco data used in the other methods,
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it actually performed much worse than the others except for the CAE 4742, which was the only

CAE that this method performed better than the others (see Tables 5.3 and 5.4).

5.5 ARIMA

As shown in the Subsection 5.1.3, the behaviour of the e-Fatura and the Multibanco series

is not similar for every 4-digit CAE, which makes the use of the Multibanco series as a predictor

variable inappropriate for some CAEs. Given that, the e-Fatura series for each CAE was also

predicted using ARIMA models and their performance are presented in the Table A.10.

Since there are many CAEs, and the models were analysed using 1-step ahead forecasts for

6 consecutive months for each CAE, the algorithm auto.arima() from the R package forecast

was used to fit the models, otherwise it would have taken a large amount of time to build those

models individually for each month. The performance of the models estimated by the algorithm,

measured using RMSE, can be found in the Table A.10

5.6 Comparison of results

After comparing the performance of all of themodels across the CAEs, two tables weremade:

the Tables 5.3 and 5.4. The Table 5.3 shows the models that performed better for each CAE that

do not have a 5-digit disagreggation (28 CAEs), whereas the Table 5.4 shows the models that

performed better for the CAEs that have a 5-digit disaggregation (9 CAEs).

Considering that the Table 5.4 only has CAEs that have 5-digit disagreggation, the results

were split into two rows, specifying which aggregation level the winner model was trained - being

the ”4-D LEVEL” the models trained using information at the 4-digit level only, whereas in the

”BOTTOM-UP” row the results were obtained by nowcasting every 5-digit CAE and aggregating

it back to the 4-digit level using the bottom-up approach.

Apart from the models that were used, it was decided to also combine the forecasts of all

models by computing the arithmetic mean, in order to try to achieve a better nowcasting, since

the evidence shown by Clemen (1989) is that combining forecasts from different models can lead
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to more accurate forecasts. This combination is called Mean in this project and its results can be

found in the Table A.11.

RL (5.1) RL (5.2) MIDAS ARIMA DREG MEAN

4-D LEVEL 3 6 1 13 1 4

Table 5.3: Best performing model across CAEs that do not have 5-digit disaggregation

RL (5.1) RL (5.2) MIDAS ARIMA DREG MEAN

4-D LEVEL 3 0 0 0 1 1

BOTTOM-UP 0 0 0 3 1 0

Table 5.4: Best performing model across CAEs that do have 5-digit disaggregation

As the Tables 5.3 and 5.4 show, the ARIMA models performed better in 16 CAEs, followed

by the Linear regression models (5.1) and (5.2) models (in 6 CAEs each), the Mean, Dynamic

regressions and MIDAS.

The fact that the ARIMA models performed better in almost half of the 4-digit CAEs is a

reflection of the fact that the relationship between the e-Fatura and the Multibanco series is not

the same across the CAEs, as the Section 5.1.3 points out. In some CAEs, the behaviour of

both series is very similar, whereas in others, their fluctuations and seasonalities are out of sync

and it can affect the performance of models that use the Multibanco series as predictor series, as

explained in the Section 5.5.

When it comes to the Linear regression models, the models (5.1) and (5.2) have performed

better for 6 CAEs each, which confirmed that it was indeed useful to build two different models,

since the e-Fatura and the Multibanco series have their seasonality out of sync in some CAEs, as

mentioned in the Subsection 5.1.3 and in the Section 5.2.

The Dynamic regression, Mean and the MIDAS regression did not perform as well as ex-

pected, performing better than the other models only for 9 CAEs when accounted together. The

MIDAS case was the most disappointing one, because as stated in the Section 5.4, it was expected
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that this model would have a better performance since it was using more granular data (weekly)

in comparison to all the other models, which were using monthly data.

It is also important to note that, in 15 out of the 37 4-digit CAEs, the best performing

model had their RMSE less than 5% smaller than the second best performing one, having the

ratio Best/2Best > 0.95, which means that there are models performing relatively as good

as other models for the same CAE. Moreover, in some CAEs, the best performing model had

their RMSE more than 70% smaller (Best/Worst < 0.30) than the worst performing model,

whereas in other CAEs the best performing model was less than 30% smaller than the worst

ones (Best/Worst > 0.70). This disparity between the performance of the models across the

37 4-digit CAEs are shown in the Table A.12.
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Chapter 6

Conclusion

6.1 Final remarks

This project, as explained in the previous chapters, aims to create a backup plan for Statistics

Portugal for when the Tax Authority fails to deliver the e-Fatura data in time to nowcast the

Business Turnover in Retail Trade index, reducing the risk of the institution not complying with

the deadlines imposed by EUROSTAT and the risk of compromising the overall quality of these

early estimates.

At first, an exploratory analysis was done for both time series (e-Fatura and Multibanco), and

then, the relationship between them was analysed as well. Then, the nowcasting exercise was

done using 4 different algorithms - Linear regression, Dynamic regression, MIDAS regression

and ARIMA - for two different CAE aggregation levels (4-digit and 5-digit levels) in order to

assess the aggregation level and the model that are the most efficient for estimating each 4-digit

CAE category.

From the exploratory analysis, it was possible to see that the behaviour (level, fluctuations,

etc.) of the CAEs can be similar or very different from one another, which holds true for both

the e-Fatura and the Multibanco data. Furthermore, the relationship between the e-Fatura and

the Multibanco series of each CAE depends on the specific CAE that is being analysed - in some

CAEs, they are quite linear and behave quite similarly, whereas in other CAEs the relationship is
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not clear, as both series behave differently.

Overall, as the results show, there is not a single model that can yield the most accurate

nowcasts for all of the 37 4-digit CAEs, and there is not a specific CAE aggregation that yields

the most accurate forecasts either. This is expected, since the relationship between both data

for each CAE is different, and the behaviour of each CAE in each series is different too. The

ARIMA models is the most accurate one for 16 CAEs, followed by the linear regression (with

and without seasonal dummies) for 12 CAEs, the Mean for 5 CAEs, the Dynamic regression for

3 and the MIDAS regression only for 1 CAE.

6.2 Limitations and future work

The main limitation of this project is that, from 2020 onwards, the e-Fatura data are estimates

made by Statistics Portugal. This happens because the data until 2019 was delivered by the Tax

Authority at once, and then from 2020 onwards, they were delivered monthly, and these monthly

delivers have gone through many pre-processing operations in order to handle the problems with

the data that, which were explained in the Subsection 4.1.1.

The situation mentioned above significantly affects the potential of these models and frame-

work, since what is being actually forecasted is the estimation of the Statistics Portugal, and not

the true values like the ones available until 2019.

Furthermore, given the potential that this framework has shown, other models, apart from

the ones that have been used in this project, should be tested in order to try and find models that

could better describe and predict some (or all) CAEs’ behaviour.
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Appendix A

Appendix

CAE 4711 4719 4721 4722 4723 4724 4725 4726

Avg. Prop. (%) 38.41 4.76 0.71 2.41 0.53 0.2 0.26 0.45

CAE 4729 4730 4741 4742 4743 4751 4752 4753

Avg. Prop. (%) 0.76 11.16 1.55 0.57 0.17 0.32 4.93 0.16

CAE 4754 4759 4761 4762 4763 4764 4765 4771

Avg. Prop. (%) 1.36 3.12 0.3 1.57 0.01 1.44 0.16 6.07

CAE 4772 4773 4774 4775 4776 4777 4778 4779

Avg. Prop. (%) 0.96 6.97 0.62 0.9 0.78 1.26 4.95 0.2

CAE 4781 4782 4789 4791 4799

Avg. Prop. (%) 0.23 0.05 0.1 0.79 0.83

Table A.1: 4-digit CAEs weight on aggregate: e-Fatura

i



CAE 4711 4719 4721 4722 4723 4724 4725 4726

Avg. Prop. (%) 48.78 3.01 0.41 1.74 0.27 0.1 0.13 0.14

CAE 4729 4730 4741 4742 4743 4751 4752 4753

Avg. Prop. (%) 0.63 10.01 0.56 0.27 0.07 0.34 4.83 0.1

CAE 4754 4759 4761 4762 4763 4764 4765 4771

Avg. Prop. (%) 3.81 2.26 0.35 0.8 0.01 1.81 0.18 6.15

CAE 4772 4773 4774 4775 4776 4777 4778 4779

Avg. Prop. (%) 0.79 4.85 0.22 0.78 0.58 1.09 4.12 0.09

CAE 4781 4782 4789 4791 4799

Avg. Prop. (%) 0.06 0.03 0.04 0.51 0.05

Table A.2: 4-digit CAEs weight on aggregate: Multibanco

CAE 47 4711 4719 4721 4722 4723 4724 4725

TEST STAT -4.18 -2.73 -1.10 -2.98 -2.47 -2.74 -2.87 -2.89

CAE 4726 4729 4730 4741 4742 4743 4751 4752

TEST STAT -0.99 -3.86 -1.70 -2.63 -0.66 -2.56 -2.82 -3.75

CAE 4753 4754 4759 4761 4762 4763 4764 4765

TEST STAT -3.67 -0.52 -3.02 -1.82 -1.96 -2.85 -2.11 -1.39

CAE 4771 4772 4773 4774 4775 4776 4777 4778

TEST STAT -3.71 -1.84 -2.39 -0.37 -3.13 -3.74 -2.38 -2.98

CAE 4779 4781 4782 4789 4791 4799

TEST STAT -4.03 -3.91 -2.42 -3.66 -1.32 -4.47

Table A.3: Cointegration tests: unit root test statistic on linear regression residuals
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CAE 4711 4719 4721 4722 4723 4724

LR (5.1) 4D 253743307 69252254 3414689 11047629 1944071 845811

LR (5.1) BU 256234126 73538211 - - - -

CAE 4725 4726 4729 4730 4741 4742

LR (5.1) 4D 1418709 3605527 24095060 190278337 12901375 8538421

LR (5.1) BU - - 24618605 - - -

CAE 4743 4751 4752 4753 4754 4759

LR (5.1) 4D 1480865 1651579 10694675 1050907 13390214 12179971

LR (5.1) BU - - 11891620 - - 24479377

CAE 4761 4762 4763 4764 4765 4771

LR (5.1) 4D 5680791 6644838 42718 2523530 2944572 23436183

LR (5.1) BU - - - - - 23195714

CAE 4772 4773 4774 4775 4776 4777

LR (5.1) 4D 4694536 26742658 6018515 9678690 1994214 7653884

LR (5.1) BU 4873893 - - - 2185921 -

CAE 4778 4779 4781 4782 4789 4791

LR (5.1) 4D 21595225 1480895 627630 555371 1459447 23075001

LR (5.1) BU 20994868 - - - - -

CAE 4799

LR (5.1) 4D 10408119

LR (5.1) BU -

Table A.4: Linear regression model 5.1 RMSE across the CAEs: 4-digit level (4D) and bottom-

up (BU) approaches
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CAE 4711 4719 4721 4722 4723 4724

LR (5.2) 4D 313667186 50088287 5139126 10387622 2695771 928758

LR (5.2) BU 314620239 52229439 - - - -

CAE 4725 4726 4729 4730 4741 4742

LR (5.2) 4D 1259694 3140698 23445021 188627948 11307560 5890936

LR (5.2) BU - - 24129605 - - -

CAE 4743 4751 4752 4753 4754 4759

LR (5.2) 4D 756096 1826587 14978452 669602 11745515 13122740

LR (5.2) BU - - 15421652 - - 26314617

CAE 4761 4762 4763 4764 4765 4771

LR (5.2) 4D 4115292 2117563 70410 8277326 2311236 27386731

LR (5.2) BU - - - - - 27370256

CAE 4772 4773 4774 4775 4776 4777

LR (5.2) 4D 5205354 27221953 2233817 10922786 3019361 6272145

LR (5.2) BU 5710013 - - - 2972726 -

CAE 4778 4779 4781 4782 4789 4791

LR (5.2) 4D 21613412 3129398 894366 567070 1441214 25563761

LR (5.2) BU 23306405 - - - - -

CAE 4799

LR (5.2) 4D 10272470

LR (5.2) BU -

Table A.5: Linear regression model 5.2 RMSE across the CAEs: 4-digit level (4D) and bottom-

up approaches (BU)
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CAE 4711 4719 4721 4722 4723 4724 4725 4726

RATIO 0.809 1.383 0.664 1.064 0.721 0.911 1.126 1.148

CAE 4729 4730 4741 4742 4743 4751 4752 4753

RATIO 1.028 1.009 1.141 1.449 1.959 0.904 0.714 1.569

CAE 4754 4759 4761 4762 4763 4764 4765 4771

RATIO 1.140 0.928 1.380 3.138 0.607 0.305 1.274 0.856

CAE 4772 4773 4774 4775 4776 4777 4778 4779

RATIO 0.902 0.982 2.694 0.886 0.660 1.220 0.999 0.473

CAE 4781 4782 4789 4791 4799

RATIO 0.702 0.979 1.013 0.903 1.013

Table A.6: Ratio between the RMSE of the linear regression models (5.1) and (5.2)

CAE 4711 4719 4721 4722 4723 4724 4725 4726

R̂2
adj 0.426 0.171 0.555 0.372 0.473 0.845 0.963 0.718

CAE 4729 4730 4741 4742 4743 4751 4752 4753

R̂2
adj 0.380 0.630 0.112 0.471 0.731 0.901 0.795 0.860

CAE 4754 4759 4761 4762 4763 4764 4765 4771

R̂2
adj 0.617 0.863 0.037 0.594 0.695 0.941 0.814 0.975

CAE 4772 4773 4774 4775 4776 4777 4778 4779

R̂2
adj 0.944 0.541 0.364 0.875 0.695 0.964 0.836 0.050

CAE 4781 4782 4789 4791 4799

R̂2
adj 0.825 0.810 0.636 0.170 0.145

Table A.7: R̂2
adj of the linear regression model (5.1) across 4-digit CAEs
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CAE 4711 4719 4721 4722 4723 4724

DREG 4D 329590098 29207107 3345817 10833177 2029123 854878

DREG BU 327000423 29629457 - - - -

CAE 4725 4726 4729 4730 4741 4742

DREG 4D 1350914 3022599 20628924 192871530 9380724 5315334

DREG BU - - 22068820 - - -

CAE 4743 4751 4752 4753 4754 4759

DREG 4D 719954 1283742 14952442 805851 6586415 11628386

DREG BU - - 13579163 - - 14824225

CAE 4761 4762 4763 4764 4765 4771

DREG 4D 4405436 9606491 40835 8997750 4075250 27719359

DREG BU - - - - - 34312972

CAE 4772 4773 4774 4775 4776 4777

DREG 4D 6057216 19749366 2804601 9822362 2721681 7168448

DREG BU 5538469 - - - 2326540 -

CAE 4778 4779 4781 4782 4789 4791

DREG 4D 12989258 1542161 716658 442512 1459447 12854912

DREG BU 12821624 - - - - -

CAE 4799

DREG 4D 10727157

DREG BU -

Table A.8: Dynamic regression model (DREG) RMSE across the CAEs: 4-digit level (4D) and

bottom-up (BU) approaches
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CAE 4711 4719 4721 4722 4723 4724

MIDAS 4D 305933361 83810093 7171463 23142786 4748253 2146984

MIDAS BU 320029473 85533632 - - - -

CAE 4725 4726 4729 4730 4741 4742

MIDAS 4D 6113181 3457693 27541244 222234659 15248486 4560820

MIDAS BU - - 27493655 - - -

CAE 4743 4751 4752 4753 4754 4759

MIDAS 4D 2487183 5298994 25005788 2100173 21046969 33257779

MIDAS BU - - 23512684 - - 42746288

CAE 4761 4762 4763 4764 4765 4771

MIDAS 4D 7125837 11355580 115305 23235039 7504526 109594253

MIDAS BU - - - - - 102927151

CAE 4772 4773 4774 4775 4776 4777

MIDAS 4D 19116916 36920549 8467750 21861633 5479455 37041986

MIDAS BU 17768315 - - - 5205315 -

CAE 4778 4779 4781 4782 4789 4791

MIDAS 4D 46089088 3273025 3460428 920943 1498662 22681228

MIDAS BU 44474684 - - - - -

CAE 4799

MIDAS 4D 13048708

MIDAS BU -

Table A.9: MIDAS regression RMSE across the CAEs: 4-digit level (4D) and bottom-up (BU)

approaches
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CAE 4711 4719 4721 4722 4723 4724

ARIMA 4D 314537002 31821219 3240614 8580240 1464344 708286

ARIMA BU 313159982 28491369 - - - -

CAE 4725 4726 4729 4730 4741 4742

ARIMA 4D 1095344 2409328 24637376 255754743 7653306 6233497

ARIMA BU - - 24816519 - - -

CAE 4743 4751 4752 4753 4754 4759

ARIMA 4D 644662 757117 11403686 758769 4722365 13596455

ARIMA BU - - 10452744 - - 10470902

CAE 4761 4762 4763 4764 4765 4771

ARIMA 4D 3058228 2727825 36413 8617398 2296786 18250797

ARIMA BU - - - - - 18146113

CAE 4772 4773 4774 4775 4776 4777

ARIMA 4D 7389664 16609268 2171178 9056894 3483519 7954036

ARIMA BU 6413752 16609268 - - 4156207 -

CAE 4778 4779 4781 4782 4789 4791

ARIMA 4D 13514558 2560695 830518 310811 1982091 14959994

ARIMA BU 15130063 - - - - -

CAE 4799

ARIMA 4D 11197702

ARIMA BU -

Table A.10: ARIMA model RMSE across the CAEs: 4-digit level (4D) and bottom-up (BU)

approaches
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CAE 4711 4719 4721 4722 4723 4724

MEAN 4D 255281145 43726066 4245735 8851733 1684329 699091

MEAN BU 261760842 45143786 - - - -

CAE 4725 4726 4729 4730 4741 4742

MEAN 4D 1188569 2749766 23950588 198377133 8461726 5419634

MEAN BU - - 24557956 - - -

CAE 4743 4751 4752 4753 4754 4759

MEAN 4D 947733 1819756 8918184 814158 10439761 10769994

MEAN BU - - 10242326 - - 21860325

CAE 4761 4762 4763 4764 4765 4771

MEAN 4D 4397630 5562780 53026 5298847 1956551 25484028

MEAN BU - - - - - 25099954

CAE 4772 4773 4774 4775 4776 4777

MEAN 4D 7735291 15896079 3513866 7387304 2674887 9355646

MEAN BU 6766139 - - - 2898908 -

CAE 4778 4779 4781 4782 4789 4791

MEAN 4D 19444883 1659705 1118005 458765 1443046 16498017

MEAN BU 19751656 - - - - -

CAE 4799

MEAN 4D 10280242

MEAN BU -

Table A.11: Mean method nowcast RMSE across the CAEs: 4-digit level (4D) and bottom-up

(BU) approaches
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CAE 4711 4719 4721 4722 4723 4724

Best LR (5.1) 4D ARIMA BU ARIMA 4D ARIMA 4D ARIMA 4D MEAN 4D

Best/2Best 0.9940 0.9755 0.9686 0.9693 0.8694 0.9870

Best/Worst 0.7699 0.3331 0.4519 0.3708 0.3084 0.3256

CAE 4725 4726 4729 4730 4741 4742

Best ARIMA 4D ARIMA 4D DREG 4D LR (5.2) 4D ARIMA 4D MIDAS 4D

Best/2Best 0.9216 0.8762 0.9348 0.9913 0.9045 0.8580

Best/Worst 0.1792 0.6682 0.7490 0.7375 0.5019 0.5342

CAE 4743 4751 4752 4753 4754 4759

Best ARIMA 4D ARIMA 4D MEAN 4D LR (5.2) 4D ARIMA 4D ARIMA BU

Best/2Best 0.8954 0.5898 0.8707 0.8825 0.7170 0.9722

Best/Worst 0.2592 0.1429 0.3566 0.3188 0.2244 0.2450

CAE 4761 4762 4763 4764 4765 4771

Best ARIMA 4D LR (5.2) 4D ARIMA 4D LR (5.1) 4D MEAN 4D ARIMA BU

Best/2Best 0.7431 0.7763 0.8917 0.4762 0.8519 0.9943

Best/Worst 0.4292 0.1865 0.3158 0.1086 0.2607 0.1656

CAE 4772 4773 4774 4775 4776 4777

Best LM 4D MEAN 4D ARIMA 4D MEAN 4D LR (5.1) 4D LR (5.2) 4D

Best/2Best 0.9632 0.9571 0.9720 0.8157 0.9123 0.8750

Best/Worst 0.2456 0.4305 0.2564 0.3379 0.3639 0.1693

CAE 4778 4779 4781 4782 4789 4791

Best DREG BU LR (5.1) 4D LR (5.1) 4D ARIMA 4D LR (5.2) 4D DREG 4D

Best/2Best 0.9871 0.9603 0.8758 0.7024 0.9987 0.8593

Best/Worst 0.2782 0.4525 0.1814 0.3375 0.7271 0.5029
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CAE 4799

Best LR (5.2) 4D

Best/2Best 0.9992

Best/Worst 0.7872

Table A.12: Best performing model (Best), ratio between the best performing and second best

performing models’ RMSE (Best/2Best), and ratio between the best and worst performing mod-

els’ RMSE across all CAEs (Best/Worst)
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