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Due to its vast therapeutic potential, the plant-derived polyphenol curcumin is utilized in an ever-growing number of health-
related applications. Here, we report the extraction methodologies, therapeutic properties, advantages and disadvantages linked
to curcumin employment, and the new strategies addressed to improve its effectiveness by employing advanced nanocarriers.
The emerging nanotechnology applications used to enhance CUR bioavailability and its targeted delivery in specific
pathological conditions are collected and discussed. In particular, new aspects concerning the main strategic nanocarriers
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employed for treating inflammation and oxidative stress-related diseases are reported and discussed, with specific emphasis on
those topically employed in conditions such as wounds, arthritis, or psoriasis and others used in pathologies such as bowel
(colitis), neurodegenerative (Alzheimer’s or dementia), cardiovascular (atherosclerosis), and lung (asthma and chronic
obstructive pulmonary disease) diseases. A brief overview of the relevant clinical trials is also included. We believe the review
can provide the readers with an overview of the nanostrategies currently employed to improve CUR therapeutic applications in
the highlighted pathological conditions.

1. Introduction

The incidence of chronic diseases, including cardiovascular
(CV), cerebrovascular (CeV), neurodegenerative, metabolic,
pulmonary, autoimmune, endocrine, and osteoarticular, is
alarming growing worldwide [1–6]. In this regard, the
widely recognized crosstalk between inflammation, oxidative
stress, and excessive proinflammatory cytokine production
results in one of the main triggering factors in promoting
the onset and progression of the aforementioned chronic
conditions [7–9].

Increasing evidence indicates a critical interplay between
oxidative stress and inflammation in disease pathogenesis.
Reactive oxygen species (ROS) released from inflammatory
cells lead to oxidative stress, which is widely recognized as
the direct link between the inflammatory process and disease
onset and progression [10–12]. Indeed, both ROS and reac-
tive nitrogen species (RNS) boost cell signaling pathways
linked to increased proinflammatory gene expression,
despite inflammation is regarded as a self-defense response
of the human body to hazards, including injuries or allergens
[4]. In this regard, synthetic medicines have been widely
used for controlling and suppressing inflammation, although
they are often associated with a plethora of undesirable side
effects. On the other hand, natural antioxidants and anti-
inflammatory (AIF) agents have shown instead the ability
to achieve the necessary pharmacological impact with the
lowest side effects compared to commonly used synthetic
drugs [4, 13–15].

Naturally occurred bioactive products have been a
source of new therapeutic medications for decades [15–19].
In this regard, curcumin (1,7-bis(4-hydroxy-3-methoxyphe-
nyl)-1,6-heptadiene-3,5-dione; CUR) is a bioactive molecule
isolated from Curcuma longa L. rhizomes with a plethora of
therapeutic applications [20]. Synonymously known as
diferuloylmethane, CUR is the major polyphenolic com-
pound of Curcuma spp. [10, 21] with the ability to target
various cell signaling pathways and modulate a wide range
of biological activities [22]. Being CUR a natural and virtual
nontoxic compound is the object of an intense number of
investigations. Among others, CUR’s AIF effects result from
its ability to interact with multiple molecules and modulate
the activity of several intracellular signaling pathways.
Indeed, CUR has been reported to interact with the cellular
redox status and modulates the activity of several protein
kinases. CUR can downregulate inflammatory reaction-
related transcription factors, cytokines, and enzymes that
promote inflammation, besides to be able to activate the cel-
lular apoptotic process via receptor- and mitochondrial-
mediated pathways in a caspase-dependent fashion [23,
24]. Nonetheless, despite its vast therapeutic potentialities,

as most of the natural bioactive compounds [25], CUR
suffer of low bioavailability, partially due to its poor stabil-
ity and solubility in the digestive tract, which ultimately
restricts its therapeutic uses. Some catalyst compound-
based approaches have been used to improve CUR bioavail-
ability, including novel liquid and solid oral delivery systems,
which have been tested to counteract both low CUR absorp-
tion and faster excretion from the human body [26]. In addi-
tion, nanotechnology-based CUR formulations have also
been designed and tested for treating various diseases
[27–29]. In this context, several types of nanoparticles,
including micelles, polymeric nanoparticles, liposomes, solid
lipids, nanogels, dendrimers, niosomes, silvers, and cyclodex-
trins, have been found suitable for CUR loading or encapsu-
lation to improve its effectiveness as therapeutic agent in
various diseases [30, 31].

First, extraction methodologies, therapeutic properties,
and advantages and disadvantages of CUR employment
are briefly addressed in this review. Then, new emerging
nanoformulations and nanodelivery systems aimed at improv-
ing CUR efficacy against selected oxidative stress- and
inflammatory-associated diseases such as wounds, arthritis,
psoriasis, colitis, Alzheimer atherosclerosis, asthma, and
chronic obstructive pulmonary diseases are collected, ana-
lyzed, and discussed.

2. Origin and General Bioactivity of Curcumin

CUR is the dominant polyphenol found in turmeric (C.
longa) rhizomes and less often in other Curcuma species
[1, 10, 32, 33]. Turmeric is a perennial herbaceous plant
widely grown and cultivated in tropical and subtropical
regions of South Western and Southern Asia [32–34]. Tur-
meric rhizomes contain essential oil (4.2–14%), fatty oil
(8.76–12.7%), CUR (up to 5%), and other phytoconstituents
[2]. The major turmeric essential oil components are ɑ-tur-
merone (42.6%), β-turmerone (16.0%), and ar-turmerone
(12.9%), which are responsible for its potent antioxidant,
antifungal, and antibacterial effects [35, 36].

CUR was formerly isolated from turmeric about two
centuries ago, whereas its structure was elucidated around
one century ago (in 1910) [3]. CUR is considered the most
important turmeric secondary metabolite [4, 37], although
two other dominant curcuminoids are also present, namely,
demethoxycurcumin and bis-demethoxycurcumin [37]. Col-
umn chromatography has been the majorly used technique
for CUR separation from the curcuminoid mixture [33].
CUR content in crude curcuminoids’ powder is around
76.8%, whereas in recrystallized powder, its purity can be
as higher as 99.45% [38].

2 Oxidative Medicine and Cellular Longevity



CUR has a bright yellow-orange color and exists in two
tautomeric forms associated with different properties and
activities. The keto-enol form is present in neutral or acid
solutions, and the enol-form in alkalis solutions (Figure 1).
CUR exists in its enolic form in ethanol or other organic sol-
vents, while its keto form predominately presents in water
[39]. Over time, and with the increasing number of studies
performed, researchers have recognized the methoxy groups
on CUR phenyl rings responsible for its therapeutic
effects [10].

Turmeric is a key ingredient in both traditional Chinese
medicine and Indian holistic systems. China and India pop-
ulation have been using CUR for centuries to treat infec-
tious, skin disorders, depression, and stress [34, 40].
Turmeric is also used as a spice ingredient in curry and a
coloring food additive compound, E100 [41]. It is also widely
used as an herbal supplement for food and beverage flavor-
ing and coloring [10]. Based on the recent findings suggest-
ing monotargeted therapies less effective than multitargeted
ones, turmeric can be considered the ideal “Spice for Life”
[3]. Indeed, numerous pharmacological effects have been
ascribed to CUR, the most abundant turmeric bioactive
compound, including antioxidant, AIF, antitumor, antimi-
crobial, hypolipidemic, antidiabetic, neuroprotective, and
hepatoprotective activities (Figure 2) [1, 37, 40]. But, worth
noting is that most CUR’s health benefits are mainly
ascribed to its AIF and antioxidant properties [3].

CUR oral administration has no toxic effect on animals,
and human studies have shown that its intake (up to 6 g/day)
caused no toxicity even though prolonged for several weeks
[24]. Moreover, based on the Food and Drug Administration
(FDA), CUR consumption at a dose as high as 8 g per day is
considered safe [10]. Thus, given all these properties, CUR
can be regarded as an excellent potential candidate for
nutraceuticals and pharmaceuticals formulation. Nonethe-
less, CUR presents some usage limitations, such as low bio-
availability and low water solubility, which markedly limits
its uses and therapeutic efficacy [10]. In this sense, as
referred above, various strategies have been developed to
overcome such obstacles in order to obtain effective CUR
formulations [40, 42], with a progressively higher bioavail-
ability and improved applicability [43]. For instance, other
natural compounds, such as piperine, well-known for its
CUR bioavailability enhancers action, have also been
included CUR formulation. In this regard, data obtained so
far reveal that piperine inclusion can raise CUR bioavailabil-
ity by 2000% [10]. Also, more recently, chemistry computa-
tions have highlighted that CUR solubility improves in
natural deep eutectic solvents [44].

3. General Overview of Curcumin
Inflammation Modulatory Properties

C. longa has a very long history of use in the Indian system
of medicine, known as Ayurveda, and in Chinese traditional
medicine [45, 46]. Epidemiological observations suggest that
turmeric consumption exerts protective effects in humans,
decreasing the risk of several diseases, especially those asso-
ciated with chronic inflammation and oxidative stress [34].

These properties are considered paramount in people’s
modern society modus vivendi characterized by lack of
sleep, exaggerate consumption of junk food, alcohol, ciga-
rette smoke, environmental pollutants, and stress (chemical,
physical, mechanical, or psychological) which are the most
common triggering factors of several inflammatory chronic
diseases. Indeed, these factors have been now recognized as
the main ones responsible for excessive free radical produc-
tion and activation of proinflammatory factors, such as TNF
and NF-κB [47], which boost neurodegenerative, cardiovas-
cular, pulmonary, metabolic, and autoimmune diseases [3].

Different synthetic drugs have been tested and success-
fully used to treat these diseases; however, many of them
are linked to numerous side effects, which often reduce their
effectiveness or are even responsible for therapy failure. [48,
49]. In this light, CUR has appeared as a promising bioactive
capable of preventing or controlling oxidative stress and
chronic inflammation, either used as a supplement or adju-
vant in different pathologies to promote the beneficial effects
or reduce the toxicity of synthetic drugs [50–54].

CUR antioxidant and AIF activities are regarded as the
key components underpinning this naturally occurring com-
pound’s plethora of health benefits [1, 10, 55]. Indeed,
CUR’s antioxidant activity has been tightly connected to its
ability to trigger several intracellular signaling pathways
and modulates multiple cell functions. Various preclinical
(in vitro and in vivo) and clinical studies have shown that
CUR is a beneficial compound for inflammatory disease
treatment and prevention [23, 56]. CUR can indeed promote
its antioxidant activity by scavenging ROS and RNS, as well
as by regulating the activity of key antioxidant enzyme sys-
tems such as superoxide dismutase, catalase, and glutathione
reductase [5, 43]. Furthermore, CUR lipophilic properties
also make it an excellent peroxyl radicals’ absorber with
chain-breaking antioxidant properties [10, 11]. On the other
hand, this polyphenol is a well-documented AIF agent [23,
57], being able to counteract not only oxidative stress but
also inflammation [1]. In this regard, molecular docking
studies have underlined that CUR and its analogs act as
effective cyclooxygenase- (COX-) 2 inhibitors [58]. More-
over, they also inhibit the secretion of several inflammatory
cytokines, such as chemokines, interleukins (ILs), and other
inflammatory enzymes, including nitric oxide synthase,
thereby attenuating the overall cytokine-associated proin-
flammatory environment and inhibiting the chronic ROS
production [2, 6, 56, 57]. In addition, it has been stated that
CUR exerts AIF actions through the suppression of nuclear
factor-kappa B (NF-κB) activity and stimulation of peroxi-
some proliferator-activated receptor-gamma pathway [59]
and at the same time inhibiting a number of kinases, includ-
ing protein kinase C [58]. In this regard, CUR can counter-
act inflammatory and oxidative processes by inhibiting NF-
κB activation (inhibiting IkBα kinase and AKT), which in
turn suppresses the actions of all mediators connected with
cell apoptosis, proliferation, invasion, and angiogenesis [60,
61]. CUR anti-inflammatory properties result from its mod-
ulatory action on several intracellular pathways, as
highlighted by its ability to bind both COX-2 and 5-LOX
and inhibiting their activity. [62]. Another important target
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of CUR’s effectiveness is the Toll-like receptor- (TLR-) 4,
which engagement activates important signals involved in
the immune response modulation, as well as in cytokines
and inflammatory chemokine production. INdde, scientific
outcomes have shown that CUR mitigates inflammatory

response through the direct action on TLR-4 or on its down-
stream route [42].

To cite some examples, in an in vivo study using the
carrageenan-induced inflammatory test, cotreatment of C.
longa and Allium hookeri Thwaites extracts resulted in
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Figure 1: Turmeric (a) as a source of CUR; tautomeric forms of CUR (b): keto-form (B1) and enol-form (B2).
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effective suppression of inflammatory cytokine production
and fast recovery of skin morphological changes in rats [5].
It has also been demonstrated that CUR has a crucial role
in decreasing endometriosis progression by blocking oxi-
dative stress, inflammation, and angiogenesis [63]. Simi-
larly, turmeric extract supplementation inhibits
inflammation and muscle damage in athletes [64], while
nano-CUR supplementation exerts inflammation decreas-
ing effects in females with metabolic syndrome [65].
CUR is also a potent inhibitor of the TLR-4-mediated
action, which plays a significant role in the immune
response regulation by improving inflammatory cytokine
production [42]. CUR intraperitoneal injection
(100mg/kg) alleviates acute neuroinflammatory injury in
mice via TLR4-mediated mechanism [66]. This polyphenol
also modulates essential T-lymphocytes functions [11],
indicating to be helpful in the treatment of T-helper-
mediated inflammatory and autoimmune diseases [67].
CUR application (25μM) in glioma cells also triggered
the reduction of critical inflammatory mediators such as
the activator protein 1 (AP-1) and NF-κB [68]. CUR can
also downregulate the secretion of several proinflammatory
cytokines such as TNF-α, IL-1, IL-6, and IL-12, thus mod-
ulating their target cell functions [68]. Via NF-κB inhibi-
tion, CUR can also block the TNF-α-stimulated T-cell
attachment to endothelial cells by reducing the expression
of vascular cell adhesion molecules (VCAM)-1, intracellu-
lar adhesion molecules (ICAM)-1, and endothelial leuko-
cyte adhesion molecules (ELAM)-1 [68].

Taken together, the reported data indicated CUR as a
naturally occurring molecule that can effectively alleviate
inflammation-associated diseases and their clinical manifes-
tations compared to commonly used drugs [4, 69]. In a clin-
ical study with anterior uveitis-baring patients, 2 weeks of
CUR administration triggered a significant disease remission
[4]. Also, it was proven that tolfenamic acid and CUR coad-
ministration enhances tolfenamic acid AIF effects while
reducing its toxic effects on the stomach and liver [70].
Moreover, CUR has been proposed to alleviate chronic
inflammation after chemotherapy or radiotherapy [57]. A
recent study revealed that CUR, vitamin C, and glycyrrhizic
acid coadministration helps regulate immune response and
fight the severe acute respiratory syndrome-coronavirus 2
(SARS-CoV-2) outcome by preventing the cytokine storm
and inhibiting the plethoric inflammatory level [71]. In cases
of ulcerative colitis-associated chronic colon inflammation,
CUR has also been revealed to promote disease remission
by acting in an NF-κB-dependent fashion. Besides amelio-
rating inflammatory bowel disease, clinical trials have also
proven CUR effectiveness in patients with gastric ulcers after
12 weeks of oral administration [4]. Dietary CUR consump-
tion has been reported to attenuate myeloperoxidase (MPO)
activity and leucocyte infiltration, simultaneously downregu-
lating the levels of proinflammatory cytokines in intestinal
diseases connected with oxidative stress and chronic inflam-
matory processes [72, 73]. In addition, CUR treatment has
been also linked to reduced NO and O2

− levels along with
the inhibition of NF-κB activation in the colonic mucosa,
confirming thus its beneficial effects in experimental colitis

and valuable application in inflammatory bowel disease
treatment.

Following CUR treatment, interesting achievements
have been reported in rheumatoid arthritis (RA) [74]. RA
is a chronic proinflammatory disease featured by uncon-
trolled synovial fibroblast growth where smoking and stress
have been identified as leading causes [75, 76]. Most RA
treatments so far in use are focused on pain and disability
reduction, delay in disease progression, and improvement
in patients’ quality of life. Although AIF and antirheumatic
drugs are the best choices for RA treatment [77], they are
linked to undesired side effects, significantly reducing
patients’ compliance. In this sense, CUR has proven to be
a valid adjuvant in treating arthritis [78]. Important immu-
nomodulatory properties have been attributed to CUR
[79]; among them is the ability to suppress the TNF-α
expression in primary chondrocytes reducing cartilage
breakdown [80] and inhibit inflammatory processes associ-
ated with arthritis [81].

By counteracting the release of essential inflammation
mediators [82], CUR may also exert beneficial effects in sev-
eral skin diseases including psoriasis [83]. In addition, CUR
is able to inhibit keratinocyte proliferation, corroborating its
effectiveness in psoriasis treatment [84, 85]. Psoriasis is a
highly diffuse and painful disorder involving NF-κB, signal
transducer, and activator of transcription (STAT)-3 and
TNF, which is usually treated with corticosteroids [86].
Nonetheless, as in other diseases, many of the most promis-
ing therapies are also linked to undesired side effects and
often therapy failure; therefore, CUR can be a valuable and
safe alternative. Moreover, CUR has shown significant
wound healing properties [87], facilitating tissue remodel-
ing, granulation tissue formation, and collagen deposi-
tion [88].

By interacting with redox-regulated copper/iron-bound
proteins, CUR can inhibit oxidative stress preventing and
counteracting the development of neurological disorders,
such as AD and PD, and thus preventing cognitive impair-
ment [89–91]. Furthermore, CUR also counteracts Alzhei-
mer’s disease- (AD-) associated damaging plaques and
restore injured neurites in a mice model AD [92]. In addi-
tion, by suppressing the expression of TLR-4, high-
mobility group box 1 protein, and receptor for advanced gly-
cation, CUR can effectively inhibit microglial neuroinflam-
mation in AD patients [93]. Through its antioxidant and
AIF properties, CUR has also been shown to counteract ath-
erosclerosis development, reduce myocardial ischemia
and/or infarction damages, and prevent chemotherapy-
induced cardiotoxicity in cancer patients [94–96].

Despite its numerous therapeutic benefits, physicochem-
ical property-derived CUR poor bioavailability results in its
poor absorption and rapid metabolism [97]. Moreover, its
high liver metabolism and fast elimination also reduce
CUR therapeutic effectiveness, especially in oral-
administered formulations [98]. In this context, nanocarriers
have appeared as a promising strategy to improve the CUR
bioavailability and, consequently, its therapeutic effects.
Indeed, thanks to their nanometric size and physicochemical
property easy tuning; nanoparticles [99], liposomes
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[100–102], micelles, and phospholipid vesicles [103] are
capable of potentiating CUR effectiveness at the desired
level. In addition, as observed for several naturally occurring
compounds, it is worthy of note that CUR antioxidant and
AIF effects can be related to its metabolites, tetrahydro-
CUR and octahydro-CUR [15, 104, 105]. In this regard, fol-
lowing tetrahydro-CUR and octahydro-CUR administra-
tion, a dose-dependent inflammation inhibition was
observed in experimental mice models of acute inflamma-
tion. Noteworthy, tetrahydro-CUR and octahydro-CUR
effect resulted more satisfying than CUR, especially in terms
of COX-2 and NF-κB pathway suppression [104].

4. Nanotechnology for Curcumin-
Enhanced Efficacy

The achievement of controlled and targeted drug delivery
has been studied for many years and appeared as a new chal-
lenge for pharmaceutical research, with nanomedicine
emerging as a promising tool [106]. Nanotechnology has sig-
nificantly changed the therapeutic perspective of several
drugs, giving new and effective alternatives, especially for
treating chronic diseases and many types of cancer [106].
Regardless of their structure and composition, and due to
their small size and high surface area, nanosystems can
modify the pharmacokinetic features of bioactive molecules,
especially those characterized by low bioavailability rates.
Nanosystems include nanoscale formulations or nanocar-
riers, which may ensure passive or active drug targeting,
and improve drug circulation time and biodistribution,
simultaneously protecting the incorporated drug from exog-
enous (i.e., light and heat) and endogenous (i.e., acid media,
enzymes, and first-pass effect) degradation insults [107].
Moreover, nanotechnological carriers’ research attention
increased significantly in recent years as emerging nanosys-
tems can coload therapeutic mediators and coordinate the
delivery to specific target cells [108].

The promising findings obtained with nanocarrier-based
drug delivery systems have raised researchers’ interest in
improving the efficacy of natural molecules, which are
broadly conceived as safer and less expensive than synthetic
drugs and effective for treating various diseases [109]. Com-
bining folk medicine-derived biological molecules with new
pharmaceutical nanotechnologies has emerged as a signifi-
cant advance in developing new and safe therapeutic sys-
tems [110].

Given its excellent bioactive and therapeutic effects, CUR
has aroused the scientific community’s attention [22]. How-
ever, CUR yield extraction depending on the plant content
in bioactive, besides being strongly affected by the extraction
methodologies and solvents used [111]. In this regard,
although several extraction methods have been reported,
many of them are not suitable for industrial applications
since they are energy-dissipative or involve toxic extraction
solvents.

4.1. Curcumin Extraction Methods. CUR can be separated
from C. longa rhizomes using different methods. Turmeric
grinding and powder extraction has been performed since

ancient times. Recently, additional and improved extraction
methods have been explored and tested [33, 112, 113].
Among all, solvent extractions followed by column chroma-
tography and Soxhlet, and ultrasonic and microwave extrac-
tions have become the most used because of the high
reproducibility and extraction [114–116]. Also, a particular
focus has been devoted to developing suitable and scalable
extraction methods given the CUR rising demands from
pharma, food, and cosmetic industries [33]. In this light, less
expensive green extraction techniques capable of providing
good yield have been chosen and accurately modified by
researchers in order to be easily transferred at the industrial
level [117]. As a result, pulse ultrasonic and microwave-
assisted extraction methods, especially when high tempera-
tures are employed, have been recently tested and chosen
as innovative methods to improve CUR yield extraction
[114, 118].

4.2. Curcumin-Loaded Nanocarriers. Pharmaceutical nano-
technology embraces intelligent and innovative systems or
carriers characterized by nanometric size, which can be
obtained using different materials, including polymers
(either natural or synthetic), lipids, oils, surfactants, and
other additives [119]. Main challenges that must be consid-
ered during nanocarrier formulation are payload physico-
chemical properties and biological barriers and defense
mechanisms activated by the human body [120]. Among
the different carriers tested for CUR delivery, phospholipid
vesicles have largely been used and demonstrated to be the
most effective in improving its stability and bioavailability
irrespective of the chosen administration route [121–123].
The most used phospholipid vesicles are liposomes, mainly
composed of phospholipids and water [124]. Due to their
composition, they are highly biocompatible and can be
appropriately modified with other additives such as water
cosolvents, surfactants, lipids, polymers, and fibers to
improve their delivery performance.

5. Curcumin Nanoformulations in
Inflammatory Diseases

5.1. Curcumin-Loaded Nanocarriers in Pulmonary Ailments.
It has been reported that CUR-loaded phospholipid vesicles
can significantly improve CUR’s anti-inflammatory proper-
ties, enhancing its overall therapeutic efficacy [99, 125]. In
this light, new CUR-loaded phospholipid vesicle formula-
tions and studies testing their potential in treating pulmo-
nary disorders, such as asthma or chronic obstructive
pulmonary diseases, have progressively increased. For
instance, Manca et al. [126] formulated and used glycero-
somes, which are vesicles containing high amounts of glyc-
erol employed for CUR lung delivery through aerosol
therapy. In this study, glycerosome formulation was
improved by adding sodium hyaluronate or trimethyl chito-
san chloride to ameliorate vesicle stability and performances
during aerosolization process. The improved polymer-
glycerosomes could deliver CUR in the last stages of the
next-generation impinger to a better extent than regular gly-
cerosomes. Moreover, glycerosomes in general and polymer-
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glycerosomes in particular, significantly improved CUR
effectiveness by (i) inhibiting proinflammatory cytokine pro-
duction (IL-6 and IL-8) and protects oxidatively stressed
A549 cells in vitro and (ii) increasing CUR deposition in
the deeper respiratory tract vivo. Similarly, Manconi et al.
[127] formulated chitosan- and hyaluronan-coated lipo-
somes for CUR pulmonary delivery and addressed carriers’
influence on its effectiveness against oxidative stress. CUR
incorporation in liposomes or polymer-coated liposomes
significantly promoted CUR lung deposition and improved
its antioxidant power, a phenomenon likely due to vesicles’
ability to interact with cells and release CUR in the cyto-
plasm. CUR-loaded liposomes were also tested as an anti-
asthmatic system [128], leading to a significant reduction
of inflammatory markers, such as IL-6, IL-8, IL-1β, and
TNF-α compared to positive control. In this regard, the
lower CUR-tested dosage (1μg/mL) reduced the inflamma-
tory markers release to a better extent than higher doses,
which is not surprising considering that natural
compound-beneficial effects are now recognized to be influ-
enced by several factors, including dose and redox environ-
ment [129–135]. Other studies also demonstrated that
CUR liposomal formulations effectively reduced the expres-
sion of proinflammatory markers (IL-6, IL-8, and TNF-α) in
human synovial fibroblasts and mouse macrophages
(RAW264.7) stressed with LPS [136, 137]. Cytokine storm,
which refers to the increased secretion of cytokines such as
IL-1β, IL-6, TNF-α, and IL-18 is a characteristic of
COVID-19 patients with lung damage [138, 139]. In this
regard, a clinical trial performed on COVID-19 patients
indicated the ability of a nanomicellar form of CUR to sig-
nificantly decrease the mRNA expression and cytokine
secretion levels of IL-6 and IL-1β [140], which may amelio-
rate disease’s clinical manifestation and promote overall
recovery.

5.2. Curcumin-Loaded Nanocarriers in Skin Ailments. Cur-
cumin has also been incorporated in phospholipid vesicles
tailored for skin applications. Hyalurosomes, a new class of
phospholipid vesicles immobilized with sodium hyaluronate,
have been specifically formulated to treat skin wound-
associated inflammatory and oxidative processes [102].
Thanks to their peculiar structure and viscosity, hyaluro-
somes vesicles could incorporate a high CUR amount and
retain it over 3 months of storage [102]. CUR-loaded hya-
lurosomes significantly improved CUR antioxidant activity
being able to effectively protect keratinocytes from oxidative
stress and even promoting cell proliferation [102]. Hyaluro-
somes also promoted CUR accumulation in different skin
strata and wound healing in vivo in a mouse model of 12-
O-tetradecanoylphorbol-13-acetate- (TPA-) induced lesions
by inhibiting edema and MPO activity [102]. CUR-loaded
phospholipid vesicles have also been used to reduce
psoriasis-associated inflammatory and oxidative processes.
In this regard, vesicles facilitated lipophilic payload penetra-
tion in different skin layers, ensuring its delivery in the dam-
aged site [141, 142]. Recently, Zhang et al. [143] formulated
hyaluronic acid-enriched ethosomes as topical systems for
the treatment of psoriasis. In this work, hyaluronic acid

was added to vesicle surface as it can interact with CD44
protein, which is overexpressed in inflammation- and oxida-
tive stress-associated diseases and can be considered a
potential targeting system capable of increasing both CUR
skin retention and efficacy [144]. As expected, the CUR
cumulative amount detected in the skin following hyaluro-
nic acid-modified ethosome application was very high. This
result may be due to the ethosomal bilayer’s high flexibility
that may overcome the stratum corneum barrier and reach
the deepest skin strata, especially in the dermis, where psori-
atic skin lesion-associated inflammatory cytokines, such as
IL-17 and -22, are mainly located. In vitro results were con-
firmed by confocal observation of CUR accumulation in the
skin, which was more evident in the deeper skin strata when
hyaluronic acid-associated liposomes were used [144]. In
particular, the CUR-associated fluorescence was preferen-
tially located in the epidermis, where CD44 is highly
expressed in psoriasis-like skin, thus promoting improved
CUR accumulation at the inflammation site. Improved skin
CUR accumulation is also linked to a keratinocyte’s CUR
significant uptake mainly because its incorporation into
these flexible polymer-associated liposomes promotes
“vesicle-cell” interaction and CUR internalization [144].
CUR-loaded chitosan nanoparticles linked with epidermal
growth factor (EGF) were synthesized to develop an EGF-
modified spray solution (EGF@CCN) for treating skin
wounds [145] Such nanoformulation tested in a Wistar rats’
model of full-thickness dermal defect shows the ability to
promote an almost complete wound healing after 12 days
postoperation [145].

CUR-alginate-based nanomicelle (C-A-NM) also show
colonic wound healing properties in rats as evidenced by
both histopathology/colonoscopy evaluation and increased
protein and collagen synthesis in damaged sites [146]. C-
A-NM also increased TGFβ1 expression while decreasing
that of NFκB, a phenome that may explain the observed
healing effect [146]. A randomized clinical trial performed
with different CUR nanoformulation showed that CUR-
loaded nanostructured lipid carriers (NLC) are able to pro-
vide a better drug delivery and physiological skin parameters
ameliorations as compared to nanosized emulsions based on
monoacyl-phosphatidylcholine (MAPL) [147]. Further clin-
ical studies are needed to better understand the optimal
nanoformulation able to provide the best therapeutic results
in the different pathological conditions.

5.3. Curcumin-Loaded Nanocarriers in Rheumatoid and
Osteoarthritis. CUR-loaded hyalurosomes were also tested
as topical carriers for the treatment of RA [148]. Briefly,
RA is a chronic inflammation due to an uncontrolled prolif-
eration of fibroblast-like synovial cells responsible for the
release of proinflammatory cytokines [149]. Treatment of
fibroblast-like synovial cells with CUR-loaded hyalurosomes
significantly inhibited IL-15 and IL-6 production, key mole-
cules in RA pathogenesis. Moreover, CUR-loaded hyaluro-
somes stimulated the production of IL-10, which is
considered the most important AIF cytokine. CUR-loaded
hyalurosomes also suppressed NF-κB release and ROS pro-
duction, confirming the double effect of this CUR
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formulation in reduction of joint damage by inhibition of
TNF-α and ROS generation [148].

CUR-loaded liposomes enriched with cholesterol have
been formulated for the treatment of osteoarthritis. Data
indicated that this new CUR nanosystem formulation pro-
vided improved 7F2 osteoblastic cell survival and bioactive
accumulations into cells [150]. They were also capable of
inhibiting NO production in stimulated RAW264.7 macro-
phages and preventing osteoclast differentiation by down-
regulating cathepsin K and tartrate-resistant acid
phosphatase (TRAP) expression. Moreover, reduced levels
of IL-1β-induced COX-2 and MMP-3 were also detected
in 7F2 osteoblasts exposed to these CUR-loaded
cholesterol-enriched liposomes. Therefore, CUR-loaded
liposomes may have a promising effect against subchondral
bone turnover slowing the osteoarthritis progression [150].
In this regard, a recent clinical trial reports that a nanomicel-
lar formulation of CUR significantly improves the symptoms
of osteoarthritis patients [151]. Indeed, an overall improve-
ment of pain, stiffness, and physical activity subscales of
the Western Ontario and McMaster Universities Osteoar-
thritis Index (WOMAC) questionnaire were found in
treated patients compared with the placebo group [151].

5.4. Curcumin-Loaded Nanocarriers in Neurodegenerative
Disorders. The antioxidant and AIF potential of CUR-
loaded nanosystems has also been proven in the treatment
of neurodegenerative disorders [152]. Wheat germ
agglutinin-conjugated liposomes incorporated with cardioli-
pin reduced SK-N-MC cell neurodegeneration and amyloid-
β plaque deposition providing neuronal protection in a
rodent model of AD [153]. In another study, Sokolik [154]
demonstrated that CUR-loaded liposomes reduced
angiotensin-converting enzyme activity in brain-targeted
regions potentiating memory recovery in rats with AD. A
set of clinical trial provided evidence regarding the ability
of ω-3 fatty acids and nanocurcumin combination to signif-
icantly reduce migraine attack frequency [155–158]. The
drug combination was able to reduce the serum levels of
VCAM and C-reactive protein (CRP) along with proinflam-
matory cytokines IL-1β and IL-6, which may be the mecha-
nism at the basis of the reported therapeutic effect
[155–158].

5.5. Curcumin-Loaded Nanocarriers in Cardiovascular
Diseases. CUR-loaded phospholipid vesicles have also been
proven to be effective in the treatment of CV diseases. It is
now widely accepted that CV diseases such as hypertension
and atherosclerosis result from endothelial cell dysfunction
induced by inflammatory factors and plasma lipid deposi-
tion at the damaged sites [159, 160]. Liposomes specifically
designed to codeliver atorvastatin calcium and CUR for ath-
erosclerosis treatment have been recently proposed [161].
Atorvastatin calcium is currently used as an antiathero-
sclerotic drug, and CUR is a safe adjuvant capable of pro-
moting antiatherosclerotic effects and reduces atorvastatin
calcium cytotoxicity. Liposomes were surface modified with
specific ligands capable of targeting vesicles at the desired
level to improve payload antiatherosclerotic and AIF effects.

Indeed, the combination of the two active substances effec-
tively reduced atherosclerotic areas and proinflammatory
factor levels [161]. Moreover, the vesicle surface functionali-
zation further improved both drugs’ effectiveness suggesting
their possible use for preventing or treating endothelial cell
disfunction-associated CV diseases. Consonant with the
above-reported findings, the AIF, antioxidant, and CV pro-
tective effects of CUR-loaded liposomes have been previ-
ously reported [29, 125]. A recent clinical trial reports that
CUR nanomicelle (80mg/day) ameliorates lipid profile and
oxidative and inflammatory markers in patients undergoing
coronary angioplasty [162]. The same trial indicates that the
CUR nanoformulation provides significantly better result in
lowering triacylglycerol (TG), total cholesterol (TC), malon-
dialdehyde (MDA), superoxide dismutase (SOD), and tumor
necrosis factor-alpha (TNF-α) levels as compared to CUR
alone (500mg/day) [162]. Another trial performed in hemo-
dialysis patients shows that nanocurcumin (120mg/day)
decreases the serum levels of CRP, along with VCAM-1
and ICAM-1, two proinflammatory adhesion molecules
involved in endothelial dysfunction [163]. CUR nanomicelle
also significantly improve the levels of TG in patients with
metabolic syndrome, while failed to ameliorate other bio-
chemical parameters such as TC, LDL-C, HDL-C, fasting
blood sugar (FBS), hemoglobin A1c (HbA1c), homeostatic
model assessment (HOMA) for insulin resistance (HOMA-
IR), and pancreatic β cell function (HOMA-β) [164]. The
various protective effects of CUR-loaded nanocarriers on
different human body ailments are illustrated in Figure 3.

6. Role of Nanocarriers in Curcumin
Bioavailability and Stability

Due to its low absorption and degradation at gastric and
liver levels, the lowest bioavailability of CUR is generally
obtained following oral administration [165]. However,
since oral administration is the patients’ preferred route of
administration, many efforts have been carried out to find
effective oral formulations of CUR, especially using nanocar-
riers. For this purpose, CUR has been loaded in phospho-
lipid vesicles enriched with fibers and polymers called
nutriosomes [166]. Nutriosomes resulted stable in acidic
and neutral environments mimicking the gastrointestinal
tract and improved the protective activity of CUR against
hydrogen peroxide-stressed CaCo2 cells. These findings
appear mainly connected with an enhanced “nutriosome-
cell” interaction confirmed by the improved vesicle internal-
ization detected by confocal microscopy. Nutriosomes
increased the in vivo CUR biodistribution and reduced the
2,4,6-trinitrobenzene sulfonic acid- (TNBS-) induced intesti-
nal inflammation in rats [167].

In a similar study, CUR was incorporated into eudragit-
hyaluronan multicompartment liposomes aiming at improv-
ing its intestinal bioavailability [100]. The long-term vesicle
stability was ensured by their lyophilization. However, they
can be easily rehydrated in liquid or semisolid foods to
obtain an extemporaneous CUR-enriched food with benefi-
cial properties for human health [100]. Due to their multi-
compartmented structure, these vesicles have shown
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remarkable stability under the gastrointestinal tract harsh
conditions, such as high ionic strength and pH variations,
and ensured a more significant CUR deposition in the intes-
tines in comparison with CUR dispersion. Indeed, CUR-
containing vesicles could reach intact intestines to exert the
potential therapeutic effect by releasing their payload [100].
The use of polymers as a phospholipid vesicle stabilizer
seems promising for formulating delivery systems specifi-
cally designed for oral administration. In this regard, De
Leo et al. [168] prepared Eudragit S100-coated liposomes
with the intent to improve vesicle stability. The coating pro-
cess allowed a polymer layer formation, which efficiently
protected both the liposomes and the incorporated CUR.
Indeed, CUR released experiments have proved the poly-
meric layer high stability and ability to protect CUR against
degradation after treatment of coated liposomes with bile
salts capable of destroying liposomes [168]. Moreover,
eudragit-coated liposomes also preserved CUR antioxidant
property under the gastrointestinal tract’s harsh conditions
as its antioxidant activity was detected only when the layer
was dissolved in basic pH condition mimicking the intestinal
environment.

7. Conclusions and Future Perspective

This review’s finding highlights the CUR potential as a nat-
ural and safe bioactive for treating different inflammation-

and oxidative stress-related diseases. Nonetheless, numerous
studies highlighted the CUR limitations when employed as a
free drug because of its low bioavailability and regardless of
the administration route chosen. In this light, studies devel-
oping and investigating CUR nanoformulations as a way to
improve its bioavailability and effectiveness are exponen-
tially increasing. In this regard, liposomes and derived phos-
pholipid vesicles disclosed promising performance in CUR
delivery to the lungs, gut, and skin. Overall, data obtained
in the last years confirmed the potential of phospholipid ves-
icles as ideal carriers for CUR, especially when they are ad
hoc formulated for a specific route of administration and a
particular disorder by using appropriate additives or ligands.
Noteworthy, most of the available literature reports in vitro
or animal models data while in vivo clinical studies are so
far scarce. Nonetheless, some of the available clinical trials
provide the first evidences that CUR nanoformulations
may wield better result in terms of therapeutic effect as com-
pared to CUR alone. Moreover, nanocombinations of CUR
with other natural compounds or currently used drugs
appear another promising way to improve the overall thera-
peutic effect of the employed compounds. In this regard,
more research effort should be directed at understanding
whether CUR nanoformulations may be routinely included
into the standardized therapeutic treatments to reduce the
amount of the main drugs with the intent to obtain
improved therapeutic effect with less toxicity. Moreover,

Plumuno-protective effect
of curcumin

Curcumin formulations in
inflammatory diseases

Nano-carrier for
delivering curcumin to

target organ

Neuro-protective effect
of curcumin

Osteo-protective and anti-
rheumatoid arthritis effect

Skin-protective effect of
curcumin

Cardio-protective effect of
curcumin

Figure 3: Protective effect of curcumin-loaded nanocarriers on various ailments in human body.
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simple, cost-effective and scalable technologies to produce
effective CUR nanocarrier should also be developed in order
to make the “nanodrug sector” competitive in the pharma-
ceutical industry towards the classic drugs. As evidenced
by this review, to better maximize CUR efficacy, different
and specific nanoformulations are required, and larger and
deeper clinical studies should be carried out to understand
its pharmacokinetic behavior and in vivo therapeutic effects.
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