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Resumo

Esta tese aborda o problema de classificação de dados distribucionais, onde cada unidade

é descrita por variáveis histograma ou intervalares. O método proposto utiliza uma

função linear discriminante que, sob hipóteses especı́ficas, permite a representação de

distribuições e intervalos com recurso a funções quantil. A função discriminante garante

a definição de um score para cada unidade que, por sua vez, concede a possibilidade

de classificar as referidas unidades em grupos a priori, utilizando a distância de Mal-

lows. Esta dissertação tem como objetivo estender o método desenvolvido anteriormente,

que permite a classificação em duas classes, para proporcionar métodos que permitam a

classificação considerando mais do que duas classes a priori, fazendo uso de três mecanis-

mos diferentes. Estas técnicas abrem caminho para o desenvolvimento de análises de da-

dos simbólicos, uma vez que melhoram as ferramentas atuais utilizadas para a classificação

binária.

A ilustração dos métodos propostos para a classificação multi classe é feita com re-

curso a três casos. Os dados reais utilizados estão associados ao tráfego de Internet e a

modelos de carros. Os dados produzidos artificialmente estão associados a redes, no sen-

tido de grafos. Mais ainda, a implementação foi desenvolvida em linguagem R.

Palavras Chave: Classificação Multi-classe, Análise de Dados Simbólicos, Dados Dis-

tribucionais, Função Discriminante Linear, Distância de Mallows





Abstract

This thesis addresses a classification problem of distributional data, where data units

are described by histogram or interval-valued variables. The proposed method uses a

linear discriminant function where, under specific assumptions, distributions or intervals

are represented by quantile functions. The discriminant function grants the definition

of a score for each unit which enables the classification of the units in a priori groups,

using the Mallows distance. The aim of this dissertation is to extend the method previ-

ously developed for two-class classification, in order to provide the means to perform the

classification with more than two a priori classes, using three distinct approaches. These

approaches contribute to the development of Symbolic Data Analysis, by improving the

current method for binary classification.

The illustration of the methods proposed for the multi-class classification is performed

by using three cases. The real data sets are associated with Internet traffic and car models.

The synthetic data sets are associated with networks, in the sense of graphs. All methods

are implemented in R.

Keywords: Multi-class Classification, Symbolic Data Analysis, Distributional Data,

Linear Discriminant Function, Mallows Distance
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Chapter 1

Introduction

Similarly to classical data, symbolic data may display an underlying structure that aggre-

gates units together in classes. Hence, classifying distributional data in two or more a pri-

ori groups has become a prominent problem. This classification problem can be addressed

in various ways. Linear Discriminant Analysis works by designing a linear combination

of explanatory variables known as a discriminant function. This enables the definition of

a score for each unit.

In this thesis, we propose a generalisation of the linear discriminant method for the

binary classification of distributional data. Using a linear discriminant function, it is pos-

sible to develop a score function that is used to classify each unit in one of the a priori

groups. The method for two classes has already been developed in [1], therefore the ex-

tension of this method to more than two classes is the main goal of this dissertation.

1.1 Motivation

We have been observing an increase in global data consumption. In fact, in 2020, when

compared to the previous year, it has increased more than 30% [2]. This compels an im-

provement in storing data. The amount of data gathering pressures researchers and ana-

lysts to develop new strategies to efficiently examine data. One of these approaches lies

in generalising the classical concepts of data sets. Symbolic Data Analysis’s ambition is to

be a viable tool to improve upon classical data analysis.

The method explored in this thesis assumes that the study is not based on an indi-

vidual level, but at a group level. Hence, usually, the main idea is to aggregate classical

1
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data and apply a summary indicator such as median, mean or mode. Although this ap-

proach is simple and sounds reasonable, it incurs in a problem which is the loss of data

variability. Variability translates how far apart data is, allowing us to determine how

well we can generalise results. Therefore, losing this information may be critical. Apart

from data aggregation, symbolic data can naturally be obtained from recording processes,

representing underlying variability.

Overall, Symbolic Data Analysis (SDA) provides a framework to properly represent,

understand and analyse data with variability that is explicitly considered. It is an emerg-

ing area of statistics where data may take the form, for example, of intervals or histograms.

Examples of this data include the analysis of schools, when the data gathered concerns in-

dividual students, and analysis of cars’ models (not specific vehicles). Nevertheless, with

this approach, there are problems that arise: most existing concepts, methods and models

are not appropriate for this data, since they are designed for single-valued observations.

In order to fix this problem several methods have been adapted such as regression models

([3] and [4]) and likelihood-based inference [5].

1.2 Objective

The main goal of this thesis is to extend the currently existing linear discriminant models

for interval or histogram-valued variables that allow for the prediction of histograms and,

as a consequence, multi-class classification. We introduce and explore three techniques:

One-Versus-One, One-Versus-All and Consecutive Linear Discriminant Functions. The

first two methods assume that we are in possession of the baseline setting, i.e., the binary

classification. The last method requires the definition and study of a symbolic correlation

measure. The study of this measure also provides a new contribution to the develop-

ment of Symbolic Data Analysis. Moreover, regarding Consecutive Linear Discriminant

Functions, we studied two possible classification definitions.

1.3 Organisation of the thesis

The thesis is organised as follows.

• In Chapter 2 we introduce the main concepts useful to this work such as the type

of symbolic variables, focusing especially on those that are considered in this study,
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histogram-valued variables. The concepts of quantile function, Mallows distance,

barycentric histograms and inertia measure described in this chapter were devel-

oped for the original method. These are mainly discussed in [1], [6], [7] and [8]. It

is also addressed the graphical representation of two histogram-valued variables. It

is advanced definitions such as symbolic covariance, variance, standard deviation

and linear correlation. Regarding the symbolic linear correlation, it is proven that

some of the mathematical properties associated with the well known correlation

coefficients for the classic data hold. Moreover, we explained how a rewriting oper-

ation may be performed, if needed. Finally, we describe the assumptions required

to develop the method and the linear combination of symbolic variables.

• In Chapter 3 is introduced the linear discriminant function proposed in [1], allowing

for the definition of a score associated with each unit. Moreover, the optimisation

and classification processes for the case of two a priori classes is discussed. Finally,

we present the three approaches that provide multi-class classification, describing

both the optimisation and the classification procedures performed.

• In Chapter 4 the computational implementation details and the choices made, re-

garding both the processes for the case of two a priori classes and more than two a pri-

ori classes, are detailed. We show the R packages used, data structures distributionH

and MatH and the main functions developed. Moreover, both optimisation and

multi-class classification technical specifications are explained.

• Chapter 5 focuses on assessing the models’ performance in practice. We studied

the application of the models developed on several data sets, either synthetic or

real ones, both on histogram-valued and interval-valued data. Firstly, we give the

description of the data and the context in which they are involved. The obtained

results are presented and discussed.

• Finally, Chapter 6 summarises the problem at hand as well as the proposed exten-

sion for multi-class classification problems. The main conclusions of this work are

presented, opening to future perspectives and opportunities for improvement.





Chapter 2

Symbolic Data Analysis

In this chapter, we start by introducing symbolic data, using classic data as the starting

point, stating the main advantages of considering this data representation. Definitions

and notation of symbolic variables are given, putting a special emphasis on histogram-

valued variables, since those are the ones considered in this thesis. Furthermore, several

concepts and functions used are presented and explained such as: quantile functions,

specifying their purpose, arithmetic and assumptions required; the Mallows distance; the

empirical symbolic mean; the choice of graphical representation of histogram-valued vari-

ables and the conclusions that may be drawn regarding the behaviour displayed. This is

accompanied by examples using three data sets that aim at developing the intuitive point

of view of the conclusions.

Moreover, the following section introduces useful descriptive measures. Well-known

metrics such as the barycentric histogram, the inertia measure, empirical symbolic covari-

ance, variance and linear correlation are presented.

New contributions are advanced in this chapter concerning the rewriting of the co-

variance and linear correlation formulae and the proof of three mathematical properties

associated with the symbolic linear correlation measure.

The final section of this chapter clarifies the assumptions required for the method de-

veloped and reveals the definition of the linear combination of histogram-valued vari-

ables that leads the way to the linear discriminant function developed in the Chapter 3.

5



6 MULTI-CLASS CLASSIFICATION FOR DISTRIBUTIONAL DATA

2.1 From Classic Data Analysis to Symbolic Data Analysis

In classical multivariate data analysis, data is represented by a n × p table with n individ-

uals or observations, also called first-level units, and p variables or attributes. Each cell in

the table is a concretisation of a variable that can be of a variety of types of data such as

character, numeric or categorical. These data sets may be referenced as microdata.

In Symbolic Data Analysis (SDA), data are represented using symbolic variables. Each

higher-level observation is called a unit and represents the concretisation of a symbolic

variable. Data units no longer display only unique values, but have also internal variation

and structure. These data sets may be referenced as macro data. Symbolic Data Analysis

(SDA) aims to be a generalisation of classical/standard data analysis ([9], [10] and [11]).

Symbolic data are often obtained by aggregating microdata without applying a sum-

mary indicator. In such a manner, we hold on to the variability associated with the orig-

inal data. At the same time, since we are dealing with more complex data, the current

methods become no longer suitable. Therefore, it becomes emergent the development of

new methods and models appropriate for the analysis of symbolic data.

Example 2.1. Consider a data set where individuals are students (first-level units) with attributes

such as age, gender, school and subjects’ marks. If the statistical units of interest are the schools

(higher-level units), an aggregation of data concerning students that attend the same school must

be performed.

2.2 Symbolic Variables: Definitions and Notation

We introduce the definition of symbolic variables presented in [9], [10] and [11].

Definition 2.1 (Symbolic Variable). A symbolic variable X is a mapping

X :A → D

i → X(i) = hi

where A is a set of statistical entities. The set A may be of the form A = Ω = {1, 2, . . . , n},

in which case we have first-level units, or A = {C1, C2, . . . , Cn}, with Ci ⊆ Ω, in which

case we have higher-level units (classes/concepts or categories). To each unit i in A there

is a concretisation associated in D.
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X1 X2 ... Xj ... Xp
1 h11 h12 ... h1j ... h1p
2 h21 h22 ... h2j ... h2p
...

...
...

. . .
...

. . .
...

i hi1 hi2 ... hij ... hip
...

...
...

. . .
...

. . .
...

n hn1 hn2 ... hnj ... hnp

TABLE 2.1: Symbolic data table.

Table 2.1 displays a complex data table used to represent symbolic data, considering p

symbolic variables and n units. To clarify, the equivalent to the n individuals in classical

data analysis are now designated as units.

Xj is used to reference the jth variable, for j ∈ {1, ..., p}. To reference the cell in this

table that corresponds to the concretisation of the variable Xj on a unit i, with i ∈ {1, ..., n},

we used Xj(i) or hij. When we have only one variable,X, this notation can be simplified.

X(i) = hi is used to denote the value that the variable takes on the unit i, i.e., omit j.

Similarly to the classical data analysis, a symbolic description of unit i, with i ∈

{1, ..., n}, is given by the vector (hi1, hi2, ..., hij, ..., hip). Equivalently, it may be represented

as (X1(i), X2(i), ..., Xj(i), ..., Xp(i)).

These variables are obtained from aggregation that can be of different types [12]:

• Temporal Aggregation: data are recorded at different moments in time for the same

entities. However, suppose that we are not interested in the chronological order of

observations. Consequently, we can aggregate the data without taking into account

the temporal information. In this type of aggregation, the statistical units are the

same before and after the aggregation.

• Contemporary Aggregation: data are recorded at the same point in time or the tem-

poral instant is not documented. In this case, the aim of the study is to analyse

entities at a higher level. In contemporary aggregation, the statistical units after the

aggregation (higher-level units) differ from the initial ones (first-level units).

The aggregated individuals are, therefore, classes of units or observations that are

mentioned as higher-level units.

Similarly to classical variables, symbolic variables can be either qualitative or quanti-

tative. Let Y be the underlying set of X. According to the type of concretisation of the

symbolic variable, the set D may be:
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• D = Y : single-valued variables - if each unit takes a single value. These variables

correspond to the classical ones:

– if Y ⊆ R, then we have a quantitative single-valued variable;

– if Y is a set of categories, then we have a categorical single-valued variable;

• D = P(Y) = {E : E ⊆ Y , E ̸= ∅}, set of non-empty subsets of Y : multi-valued

variables - if each unit takes a finite set of values:

– if Y ⊆ R and the variable’s concretisations are finite sets of real numbers, we

call it a quantitative multi-valued variable;

– if the variable’s concretisations are finite sets of categories in Y , then we have

a categorical multi-valued variable;

• D is a set of intervals of values in Y ⊆ R: interval-valued variables - if each unit

takes an interval of real values.

• D is a set of distributions of values on Y : distributional-valued variables - if each

unit displays a non-negative measure distribution. The measure (weight, relative

frequency or probability) represents how frequent that category is for a given statis-

tical entity:

– if Y ⊆ R, then we have a quantitative distributional-valued variable;

– Y is a set of categories and the values of each concretisation are in Y , then we

have a categorical distributional-valued variable;

Definition 2.2 (Histogram-Valued Variables). The realisation of a histogram-valued vari-

able X is a finite number of contiguous, disjoint and non-overlapping intervals that should

be ordered. Each interval is associated with a non-negative weight that can be interpreted

as a probability or frequency [11]. Recall that histograms represent empirical distributions

where the values in each subinterval are assumed to be uniformly distributed.

Assuming that m is the number of subintervals, for each unit i, X(i) is of the form:

X(i) = {IX(i)1, pX(i)1; IX(i)2, pX(i)2; ...; IX(i)m, pX(i)m},

where IX(i)l represents the subinterval l, pX(i)l is the non-negative weight associated with

the subinterval IX(i)l and ∑m
l=1 pX(i)l = 1.
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Histogram-valued variables are a particular type of distributional-valued variables

since each unit is represented by a finite number of subintervals, within each subinter-

val it is assumed a Uniform distribution and to each subinterval there is a probabil-

ity associated, i.e., each unit displays an empirical distribution (histogram). Moreover,

interval-valued variables are a particular type of histogram-valued variables. Consider a

histogram-valued variable X with m = 1, i.e., only one subinterval. Since, ∑m
l=1 pX(i)l = 1

and m = 1, then pX(i) = 1. For each unit i, X(i) is of the form:

X(i) = {IX(i), 1}

where IX(i) represents the interval that is the ith concretisation.

In other words, we obtain an interval-valued variable. In fact, interval-valued vari-

ables are a special case of histogram-valued variables.

The subinterval IX(i)l may be represented by its bounds or by its centre and (half)-

range.

• Using interval bounds:

IX(i)l = [IX(i)l , IX(i)l [,

where IX(i)l is the lower bound and IX(i)l is the upper bound of the subinterval l.

For each subinterval l, IX(i)l ≤ IX(i)l for l ∈ {1, 2, ..., m} and IX(i)l ≤ IX(i)(l+1) for

l ∈ {1, 2, ..., m − 1}.

• Using centres and half ranges:

IX(i)l = [cX(i)l − rX(i)l , cX(i)l + rX(i)l [,

where cX(i)l =
IX(i)l+IX(i)l

2 is the centre and rX(i)l =
IX(i)l−IX(i)l

2 is the half range of the

subinterval l.

The realisation of a histogram-valued variable can be represented by a traditional his-

togram or by the cumulative distribution function which is equivalent to the associated

quantile function. From the uniformity hypothesis, it follows that these quantile functions

are piecewise linear functions.

Remark 2.3. Interval-valued data are the most widely considered case and for which more

models and methods have been explored.



10 MULTI-CLASS CLASSIFICATION FOR DISTRIBUTIONAL DATA

Example 2.2. Table 2.2 displays an example of symbolic data regarding schools. Although the

gathered information may be related to individual students, the units of interest are the schools. In

such a situation, the information associated with a specific school is obtained by aggregating data

of students that attend the same school.

School MathGrade StudyHours Gender
perWeek

1 { [2,3[,0.3; [3,15[,0.7} [1,10] {F,0.15; M,0.85}
2 {[7,9[,0.4; [9,11],0.6 } [1,5] {F,0.5; M,0.5}
3 {[12,13[,0.2; [13,15[,0.8 } [8,15] {F,0.55; M,0.45}
4 {[17,18[,0.9; [18,20],0.1 } [16,19] {F,0.75; M,0.25}
5 {[5,6[,0.2; [6,7[,0.8} [1,4] {F,0.3; M,0.7}
6 {[10,12[,0.35; [12,12.5[,0.65} [5,14] {F,0.5; M,0.5}

TABLE 2.2: Example of symbolic data concerning schools.

The variable MathGrade is a histogram-valued variable that represents the distribution of

grades in mathematics in each school. The variable StudyHoursperWeek is an interval-valued

variable that represents the range of weekly hours spent studying mathematics. Finally, the vari-

able Gender is a categorical modal variable that represents the gender proportion in each school.

2.3 Quantile Functions

As mentioned previously, the realisation of a histogram-valued variable can be repre-

sented by a traditional histogram. Nevertheless, this representation forces us to deal with

histogram arithmetic which proved to be troublesome in [6]. Alternatively, the realisa-

tion of a histogram-valued variable can be represented by the quantile function, i.e., the

inverse of the cumulative distribution function ([3], [4] and [7]).

Definition 2.4 (Quantile Function). Let X be a random variable with cumulative distribu-

tion function F. The quantile function, Ψ, is defined in [13] by:

Ψ(q) = F−1(q) = in f {x : F(x) > q}, q ∈ [0, 1]

It is also called the inverse cumulative distribution function, F−1.

Consider a histogram-valued variable, X. For each unit i, let X(i) be the realisation

of the mentioned variable, with m subintervals. This realisation may be represented by

a cumulative distribution function, FX(i)(x). Assuming a Uniform distribution within

subintervals, this function is given by:
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FX(i)(x) =



0 if x < IX(i)1

x−IX(i)1

IX(i)1−IX(i)1
pX(i)1 if IX(i)1 ≤ x < IX(i)1

pX(i)1 +
x−IX(i)2

IX(i)2−IX(i)2
pX(i)2 if IX(i)2 ≤ x < IX(i)2

...

1 if x ≥ IX(i)m

(2.1)

where ∑m
l=1 pX(i)l = 1, IX(i)l is the lower bound and IX(i)l is the upper bound of the subin-

terval l. For each subinterval l, IX(i)l ≤ IX(i)l for l ∈ {1, 2, ..., m} and IX(i)l ≤ IX(i)(l+1) for

l ∈ {1, 2, ..., m − 1}.

Assuming a Uniform distribution within subintervals, the quantile function may also

be used to represent the realisation of this variable [7]. It is a piecewise linear function

that can be represented as:

ΨX(i)(q) =



IX(i)1 +
q

wX(i)1

(
IX(i)1 − IX(i)1

)
if 0 ≤ q < wX(i)1

IX(i)2 +
q−wX(i)1

wX(i)2−wX(i)1

(
IX(i)2 − IX(i)2

)
if wX(i)1 ≤ q < wX(i)2

...

IX(i)m +
q−wX(i)(m−1)
1−wX(i)(m−1)

(
IX(i)m − IX(i)m

)
if wX(i)(m−1) ≤ q ≤ 1

(2.2)

or

ΨX(i)(q) =



cX(i)1 + rX(i)1

(
2q

wX(i)1
− 1
)

if 0 ≤ q < wX(i)1

cX(i)2 + rX(i)2

(
2(q−wX(i)1)

wX(i)2−wX(i)1
− 1
)

if wX(i)1 ≤ q < wX(i)2

...

cX(i)m + rX(i)m

(
2(q−wX(i)(m−1))

1−wX(i)(m−1)
− 1
)

if wX(i)(m−1) ≤ q ≤ 1

(2.3)

where wX(i)l = ∑l
d=1 pX(i)d that are called cumulative weights.

Note that quantile functions are non-decreasing in their domain ([0, 1]). Moreover,

the arithmetic associated with quantile functions is far less complex than histogram arith-

metic.

Recall that interval-valued variables can be seen as a specific case of histogram-valued

variables. Therefore, for interval-valued variables, the previously displayed quantile
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function can be simplified. Let X(i) be the realisation of the interval-valued variable X.

For each unit i, the quantile function associated with X(i) is:

ΨX(i)(q) = IX(i) + q
(

IX(i) − IX(i)

)
, q ∈ [0, 1] (2.4)

or

ΨX(i)(q) = cX(i) + rX(i)(2q − 1), q ∈ [0, 1] (2.5)

We introduce the reasoning used to obtain the quantile function, assuming a Uniform

distribution within the subintervals. Consider a subinterval l of the ith concretisation

associated with the histogram-valued variable X, IX(i)l = [IX(i)l , IX(i)l [. Let pX(i)l be the

associated weight. Note that pX(i)l = wX(i)l −wX(i)(l−1). Assuming a Uniform distribution

within IX(i)l , then the cumulative distribution function is given by:

∀
x∈IX(i)l

FX(i)(x) =
l−1

∑
d=1

pX(i)d +
(x − IX(i)l)pX(i)l

IX(i)l − IX(i)l

= wX(i)(l−1) +
(x − IX(i)l)(wX(i)l − wX(i)(l−1))

IX(i)l − IX(i)l

Taking into consideration that cX(i)l =
IX(i)l+IX(i)l

2 , rX(i)l =
IX(i)l−IX(i)l

2 and IX(i)l =

[IX(i)l , IX(i)l ] = [cX(i)l − rX(i)l , cX(i)l + rX(i)l ], the cumulative distribution function can be

rewritten as:

∀
x∈IX(i)l

FX(i)(x) = wX(i)(l−1) +
(x − cX(i)l + rX(i)l)(wX(i)l − wX(i)(l−1))

cX(i)l + rX(i)l − cX(i)l + rX(i)l

= wX(i)(l−1) +
(x − cX(i)l + rX(i)l)(wX(i)l − wX(i)(l−1))

2rX(i)l

By developing the equation in order to x, within the mentioned interval, the quantile

function, ΨX(i)(q), is given by:

ΨX(i)(q) = F−1
X(i)(q) = 2rX(i)l

q − wX(i)(l−1)

wX(i)l − wX(i)(l−1)
+ cX(i)l − rX(i)l , q ∈ [wX(i)(l−1), wX(i)l [

Therefore, we finally obtain the following formula:
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ΨX(i)(q) = cX(i)l + rX(i)l

(
2(q − wX(i)(l−1))

wX(i)l − wX(i)(l−1)
− 1

)
, q ∈ [wX(i)(l−1), wX(i)l [

If any of the weights of X(i), pX(i)l , is null, then the quantile function ΨX(i)(q) does

not have inverse with domain between 0 and 1. In the scenario where we have one null

weight, ΨX(i)(q) is not continuous and has m − 1 pieces.

The introduction of the quantile function that represents the symmetric histogram is

crucial to grant an inverse linear relation in the linear combination of histogram-valued

variables as it will be seen in due course.

Firstly, it stands to reason that two histograms X(i) and −X(i) are symmetric if they

are geometrically symmetric with respect to the y-axis. Following this line of thought, the

quantile function that represents the symmetric histogram (quantile function of −X(i))

is related to the quantile function of X(i). Let ΨX(i)(q) be the quantile function of the

histogram-valued variable X, for i ∈ {1, ..., n}, then −ΨX(i)(1 − q) is the quantile function

that represents its symmetric, −X(i), as it is explored in [6]. Note that multiplying the

quantile function ΨX(i)(q) by -1 does not result in the quantile function that represents its

symmetric. The function −ΨX(i)(q) is not a non-decreasing function, therefore it is not a

quantile function.

It is defined according to the expression 2.3 of the Definition 2.4 and it is given by:

−ΨX(i)(1 − q) =



−cX(i)m + rX(i)m

(
2q

wX(i)1
− 1
)

if 0 ≤ q < w−X(i)1

−cX(i)(m−1) + rX(i)(m−1)

(
2(q−wX(i)1)

wX(i)2−wX(i)1
− 1
)

if w−X(i)1 ≤ q < w−X(i)2

...

−cX(i)1 + rX(i)1

(
2(q−wX(i)(m−1))

1−wX(i)(m−1)
− 1
)

if w−X(i)(m−1) ≤ q ≤ 1

(2.6)

Remark 2.5. When a given histogram is symmetric with respect to the y-axis, both the

quantile function and quantile function that represents the symmetric histogram coincide,

i.e., ΨX(i)(q) = −ΨX(i)(1 − q).

Example 2.3. Consider the histogram-valued variable X and the first concretisation:

X(1) = {[2, 3[, 0.3; [3, 5[, 0.2; [5, 7[, 0.3; [7, 9[, 0.2}
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The quantile function associated with the first concretisation is:

ΨX(1)(q) =



2.5 + 0.5
(

2q
0.3 − 1

)
if 0 ≤ q < 0.3

4 + 1
(

2(q−0.3)
0.5−0.3 − 1

)
if 0.3 ≤ q < 0.5

6 + 1
(

2(q−0.5)
0.8−0.5 − 1

)
if 0.5 ≤ q < 0.8

8 + 1
(

2(q−0.8)
1−0.8 − 1

)
if 0.8 ≤ q ≤ 1

Figure 2.1 displays the plot of the previous quantile function, the result of multiplying the

quantile function by -1, referenced as Negative Quantile Function, and the quantile function that

represents the histogram that is symmetric of the one represented by ΨX(1)(q), referenced as Sym-

metric Quantile Function.

FIGURE 2.1: Representation of the functions −ΨX(1)(q), ΨX(1)(q) and −ΨX(1)(1 − q).

As it is possible to realise, the negative quantile function is a decreasing function, therefore it

is not a quantile function. However, the symmetric quantile function is a non-decreasing function.

This is an example that supports the definition of the symmetric quantile function of ΨX(i)(q) as

−ΨX(i)(1 − q) and not −ΨX(i)(q).
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2.4 Rewriting Operation

When using quantile functions as the representation of histograms, it is convenient to

define all functions involved with an equal number of pieces and an equal domain for

each piece. Therefore, all histograms must have an equal number of subintervals and

equal weights associated with each corresponding subinterval. When this is not the case,

a rewriting operation, introduced in [7], must be performed.

Consider the histogram-valued variable X. Let X(i) = hi denote the concretisation

of the mentioned variable on unit i, for i ∈ {1, ..., n}. Moreover, let mi be the number of

subintervals of histogram hi, with cumulative weights {wi0, wi1, . . . , wimi}.

The first step in this rewriting operation is to identify the set of cumulative weights,

Z, for all the units:

Z = {w10, w11, . . . , w1m1 ; w20, w21, . . . , w2m2 ; . . . ; wn0, wn1, . . . , wnmn}

The second step is to sort Z without repetitions, leading to the set Z′:

Z′ = {w0, w1, ..., wl , ..., wm},

where l ∈ {0, ..., m}, w0 = 0, wm = 1 and max{m1, ..., mn} ≤ m ≤ ∑n
i=1 mi − n + 1.

The previous expression, regarding the worst possible case (when the weights are all

different), considers the following reasoning: the set Z will have exactly ∑n
i=1(mi + 1)

cumulative weights. However, the weights wi0 = 0 and wimi = 1 are repeated n − 1

times. Since m is the number of subintervals that corresponds to the number of cumulative

weights minus one, we obtain:

m ≤
n

∑
i=1

(mi + 1)− 2(n − 1)− 1

⇔ m ≤
n

∑
i=1

mi + n − 2n + 2 − 1

⇔ m ≤
n

∑
i=1

mi − n + 1

In such a manner, each histogram X(i) = hi can then be rewritten into one that, for

subinterval l, has ΨX(i)(wl−1) and ΨX(i)(wl) as lower and upper bounds, respectively.
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In [7], it is displayed that the initial quantile function, ΨX(i)(q), can also be written as a

quantile function with m pieces:

ΨX(i)(q) =



ΨX(i)(0) +
q

w1

(
ΨX(i)(w1)− ΨX(i)(0)

)
if 0 ≤ q < w1

ΨX(i)(w1) +
q−w1

w2−w1

(
ΨX(i)(w2)− ΨX(i)(w1)

)
if w1 ≤ q < w2

...

ΨX(i)(wm−1) +
q−wm−1
1−wm−1

(
ΨX(i)(1)− ΨX(i)(wm−1)

)
if wm−1 ≤ q ≤ 1

(2.7)

Remark 2.6. The rewriting operation must take into account, not only the concretisations

of the symbolic variables but also the associated symmetric histograms since they are

necessary for the linear discriminant method developed.

2.5 Operations with Quantile Functions

Apart from the fact that operations regarding quantile functions are simpler than those

involving histograms, it is also easier to operate with quantile functions that have an equal

number of pieces and an equal domain for each piece. We introduce several operations

regarding quantile functions, displayed in [6].

Consider two histogram-valued variables X and Y. For a given unit i, let X(i) be the

realisation of the variable X and, for a given unit j, let Y(j) be the realisation of the variable

Y, with associated quantile functions ΨX(i) and ΨY(j), respectively. Moreover, assume that

the quantile functions have an equal number of pieces, m, and an equal domain for each

piece. The ordered set of cumulative weights can be written as {0, w1, ..., wm−1, 1}.

2.5.1 Operation of Addition

The operation of addition between two quantile functions is defined as:

ΨX(i)(q)+ΨY(j)(q) =



cX(i)1 + cY(j)1 + (rX(i)1 + rY(j)1)
(

2q
w1

− 1
)

if 0 ≤ q < w1

cX(i)2 + cY(j)2 + (rX(i)2 + rY(j)2)
(

2(q−w1)
w2−w1

− 1
)

if w1 ≤ q < w2

...

cX(i)m + cY(j)m + (rX(i)m + rY(j)m)

(
2(q−w(m−1))

1−w(m−1)
− 1
)

if w(m−1) ≤ q ≤ 1

(2.8)
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In this case, we always obtain a non-decreasing function. Both the slopes and the y-

intercepts of the resulting quantile function are affected by both initial quantile functions

[6].

The operation of addition between a quantile function and a real value α is defined as:

ΨX(i)(q) + α =



cX(i)1 + α + rX(i)1

(
2q
w1

− 1
)

if 0 ≤ q < w1

cX(i)2 + α + rX(i)2

(
2(q−w1)
w2−w1

− 1
)

if w1 ≤ q < w2

...

cX(i)m + α + rX(i)m

(
2(q−w(m−1))

1−w(m−1)
− 1
)

if w(m−1) ≤ q ≤ 1

(2.9)

This operation corresponds to a translation of the histogram X(i) in a direction parallel

to the horizontal axis with a distance provided by the value α [6].

2.5.2 Operation of Multiplication

The operation of multiplication of a quantile function by a real value α is defined as:

αΨX(i)(q) =



αcX(i)1 + αrX(i)1

(
2q
w1

− 1
)

if 0 ≤ q < w1

αcX(i)2 + αrX(i)2

(
2(q−w1)
w2−w1

− 1
)

if w1 ≤ q < w2

...

αcX(i)m + αrX(i)m

(
2(q−w(m−1))

1−w(m−1)
− 1
)

if w(m−1) ≤ q ≤ 1

(2.10)

In this scenario, both the slopes and the y-intercepts are affected by α. Additionally,

if α > 0, then we obtain a non-decreasing function. In the case where α < 0, we obtain a

decreasing function. For this reason, the result of an operation of multiplication by a real

value may not generate a quantile function [6].

2.5.3 Space of Quantile Functions

The space of quantile functions is a semi-vector space [14].

Definition 2.7. A semi-vector space (over R+) is defined to be a set U equipped with the

operations + : U × U −→ U and · : R+ × U −→ U such that the following properties are

satisfied. For each r, s,∈ R+, u, v, w ∈ U ,
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u + (v + w) = (u + v) + w, u + v = v + u,

(rs)u = r(su) 1u = u

r(u + v) = ru + rv (r + s)u = ru + su

2.6 Mallows Distance

In order to define the linear discriminant functions an optimisation step is required. The

optimised parameters are determined considering a criterion based on the Mallows Dis-

tance, also known as Earth Mover’s distance, introduced in [15]. This distance is consid-

ered to be a good measure for evaluating the similarity between distributions. It is used

since the calculation is simple ([4], [7] and [12]).

Definition 2.8. Consider X and Y, histogram-valued variables. For a given unit i, let X(i)

be the realisation of the variable X and, for a given unit j, let Y(j) be the realisation of the

variable Y, represented by the quantile functions ΨX(i) and ΨY(j), both with m pieces and

the same set of weights, {p1, . . . , pm}. The Mallows distance presented in [7] and [12] is

defined as follows:

DM(ΨX(i), ΨY(j)) =

√∫ 1

0
(ΨX(i)(q)− ΨY(j)(q))2 dq (2.11)

The Mallows Distance is an adequate measure since it has an intuitive interpretation,

adjusting to the concept of distance assessed by the human eye [16].

Assuming a Uniform distribution within subintervals, it can be proven that the ex-

pression 2.11 can be rewritten as:

DM(ΨX(i), ΨY(j)) =

√
m

∑
l=1

pl

[
(cX(i)l − cY(j)l)2 +

1
3
(rX(i)l − rY(j)l)2

]
(2.12)

The detailed proof of the simplification of the formula for the Mallows distance, ex-

pression 2.12, can be found in [6].

In the case of interval-valued variables, the number of subintervals, m, is 1 with asso-

ciated weight pl = 1, hence the expression 2.12 can be simplified:
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DM(ΨX(i), ΨY(j)) =

√
(cX(i) − cY(j))2 +

1
3
(rX(i) − rY(j))2 (2.13)

2.7 Graphical Display of Symbolic Variables

Thus far, only analytical aspects of Symbolic Data Analysis have been addressed. Never-

theless, two histogram-valued variables may be displayed in a scatter plot as it is explored

in [6]. A graphical display of histogram-valued variables is important to visually reveal

the relation between them.

The representation of two histogram-valued variables, X and Y, may be done using

a scatter plot. Each unit is described by a concretisation of both variables X and Y. This

pair of concretisations can be plotted in a 2D figure. Assuming that the histograms that

represent X(i) and Y(i), for each unit i ∈ {1, . . . , n}, have the same number of subinter-

vals, each subinterval is represented by a rectangle. Particularly, the scatter plot of two

histogram-valued variables that only have one concretisation corresponds graphically to

a set of non-overlapping and contiguous rectangles.

From the scatter plot, it is possible to draw conclusions on the behaviour displayed.

The concretisations for a pair of variables may exhibit a linear behaviour if the histograms

(or their empirical symbolic mean values) are aligned in the scatter plot.

Definition 2.9 (Empirical Symbolic Mean). Consider the histogram-valued variable X

with n units and m subintervals. The empirical symbolic mean for X, introduced in [17],

is given by:

X =
1
n

n

∑
i=1

m

∑
l=1

IX(i)l + IX(i)l

2
pX(i)l (2.14)

For a specific unit i, for i ∈ {1, . . . , n}, the empirical symbolic mean for X(i) is given

by:

X(i) =
m

∑
l=1

IX(i)l + IX(i)l

2
pX(i)l (2.15)

The direction of the alignment determines if the relation between the two variables is

direct or inverse. Assuming that X and Y exhibit a linear behaviour, the histogram-valued

variable X is said to have a direct relation on the histogram-valued variable Y if the slope

of the curves of empirical symbolic mean values of the concretisations of the mentioned

variables is always positive. Otherwise, X is said to have an inverse relation on Y [6].
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Example 2.4. The purpose of this example is to show variables that exhibit a positive linear relation

(direct), variables that exhibit a negative linear relation (inverse) and variables that do not exhibit

either positive or negative linear relation.

Consider three different symbolic data sets. Each symbolic data set developed has five units

described by two histogram-valued variables. Consider the symbolic data Tables 2.3, 2.4 and 2.5

and the produced scatter plots 2.2, 2.3 and 2.4. Figures 2.2, 2.3 and 2.4 display the plots of

the data associated with the Tables 2.3, 2.4 and 2.5, respectively, distinguishing each unit with a

distinctive colour. In addition, we indicated, in black, the curve linking the sample mean values of

the concretisations (histograms).

X Y
1 { [2,3[,0.2; [3,5[,0.47; [5,7[ { [-2,-1[,0.2; [-1,0[,0.47; [0,1[

,0.03; [7,9[,0.1; [9,11],0.2 } ,0.03;[1,2[,0.1; [2,4],0.2 }
2 { [12,13[,0.2; [13,15[,0.47; [15,17[ { [19,22[,0.2; [22,24[,0.47; [24,26[

,0.03; [17,18[,0.1; [18,21],0.2 } ,0.03;[26,28[,0.1; [28,33],0.2 }
3 { [5,6[,0.2; [6,7[,0.47; [7,8[ { [-5,-1[,0.2; [-1,0[,0.47; [0,4[

,0.03;[8,9[,0.1; [9,11],0.2 } ,0.03;[4,7[,0.1; [7,10],0.2 }
4 { [7,9[,0.2; [9,11[,0.47; [11,13[ { [10,11[,0.2; [11,15[,0.47; [15,16[

,0.03; [13,14[,0.1; [14,15],0.2 } ,0.03;[16,18[,0.1; [18,20],0.2 }
5 { [10,12[,0.2; [12,12.5[,0.47; [12.5,15[ { [14,15[,0.2; [15,17[,0.47; [17,20[

,0.03;[15,16.5[,0.1; [16.5,17],0.2 } ,0.03;[20,23[,0.1; [23,25],0.2 }

TABLE 2.3: Symbolic data table with direct relation.

FIGURE 2.2: Scatter plot of the variables associated with the symbolic data table with
direct relation.
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X Y
1 { [2,3[,0.2; [3,5[,0.47; [5,7[ { [2,3[,0.2; [3,5[,0.47; [5,7[

,0.03; [7,9[,0.1; [9,11],0.2 } ,0.03; [7,9[,0.1; [9,11],0.2 }
2 { [12,13[,0.2; [13,15[,0.47; [15,17[ { [-33,-28[,0.2; [-28,-26[,0.47; [-26,-24[

,0.03; [17,18[,0.1; [18,21],0.2 } ,0.03; [-24,-22[,0.1; [-22,-19],0.2 }
3 { [5,6[,0.2; [6,7[,0.47; [7,8[ { [-10,-7[,0.2; [-7,-4[,0.47; [-4,0[

,0.03;[8,9[,0.1; [9,11],0.2 } ,0.03;[0,1[,0.1; [1,5],0.2 }
4 { [7,9[,0.2; [9,11[,0.47; [11,13[ { [-20,-18[,0.2; [-18,-16[,0.47; [-16,-15[

,0.03; [13,14[,0.1; [14,15],0.2 } ,0.03; [-15,-11[,0.1; [-11,-10],0.2 }
5 { [10,12[,0.2; [12,12.5[,0.47; [12.5,15[ { [-25,-23[,0.2; [-23,-20[,0.47; [-20,-17[

,0.03; [15,16.5[,0.1; [16.5,17],0.2 } ,0.03; [-17,-15[,0.1; [-15,-14],0.2 }

TABLE 2.4: Symbolic data table with inverse relation.

FIGURE 2.3: Scatter plot of the variables associated with the symbolic data table with
inverse relation.

X Y
1 { [-12,-10[,0.2; [-10,-7[,0.47; [-7,7[ { [12,13[,0.2; [13,15[,0.47; [15,17[

,0.03; [7,9[,0.1; [9,11],0.2 } ,0.03; [17,19[,0.1; [19,21],0.2 }
2 { [-33,-28[,0.2; [-28,-26[,0.47; [-26,-24[ { [-33,-28[,0.2; [-28,-26[,0.47; [-26,-24[

,0.03; [-24,-22[,0.1; [-22,-19],0.2 } ,0.03; [-24,-22[,0.1; [-22,-19],0.2 }
3 { [-10,-7[,0.2; [-7,-4[,0.47; [-4,0[ { [-10,-7[,0.2; [-7,-4[,0.47; [-4,0[

,0.03;[0,1[,0.1; [1,5],0.2 } ,0.03;[0,1[,0.1; [1,5],0.2 }
4 { [-20,-18[,0.2; [-18,-16[,0.47; [-16,-15[ { [-20,-18[,0.2; [-18,-16[,0.47; [-16,-15[

,0.03; [-15,-11[,0.1; [-11,-10],0.2 } ,0.03; [-15,-11[,0.1; [-11,-10],0.2 }
5 { [-25,-23[,0.2; [-23,-20[,0.47; [-20,-17[ { [-25,-23[,0.2; [-23,-20[,0.47; [-20,-17[

,0.03; [-17,-15[,0.1; [-15,-14],0.2 } ,0.03; [-17,-15[,0.1; [-15,-14],0.2 }

TABLE 2.5: Symbolic data table without clear direct or inverse relation.
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FIGURE 2.4: Scatter plot of the variables associated with the symbolic data table without
clear direct or inverse relation.

In Figure 2.2, although the slope of the curve is not constant, it is consistently positive. There-

fore, X and Y show a direct linear relation. Similarly, in Figure 2.3, the slope of the curve is

consistently negative. Consequently, the variables involved show an inverse linear relation. On

the other hand, in Figure 2.4, the slope of the curve alternates in sign. This irregularity reveals a

lack of linear relation.

The linear relation described in this section is properly measured by the empirical

symbolic linear correlation coefficient that will be explored in a following section.

2.8 Descriptive Measures

Descriptive measures are crucial to provide general characteristics that symbolic data may

exhibit. In order to provide an efficient and meaningful way to describe and summarise

the symbolic data, measures such as inertia measure and symbolic covariance were de-

veloped.

2.8.1 Barycentric Histogram

In descriptive statistics, the mean can take several forms. Since we are mainly dealing

with histogram-valued variables, it stands to reason that the notion of mean should as-

sume the form of a histogram. Considering the proximity among data, we can operate
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with the barycentric histogram. This is important in Linear Discriminant Analysis, be-

cause, in the method developed in [1], the classification of each unit is based on the dis-

tance between the unit’s score to the barycentric histogram of each a priori class’s score.

Definition 2.10 (Barycentric Histogram). Consider n histograms of the histogram-valued

variable X, {h1, h2, ..., hn}, that follow a Uniform distribution within subintervals, the

quantile functions have m pieces and the same set of cumulative weights, {0, w1, w2, . . . ,

w(m−1), 1}. The quantile function of the barycentric histogram (also called Global Barycen-

tre or simply Barycentre), ΨX, is defined as:

ΨX(q) = arg min
ΨX(q)

n

∑
k=1

D2
M(Ψhk(q), ΨX(q)) (2.16)

In other words, the Barycentric Histogram, proposed by [7], is the one that is at a

minimum distance from all the others. This leads to the notion of ”centre of gravity” of

the set of histograms considered (centroid).

The optimal solution is obtained by solving a Least Squares Problem, resulting in the

following formula:

ΨX(q) =



cX1 + rX1

(
2q
w1

− 1
)

if 0 ≤ q < w1

cX2 + rX2

(
2(q−w1)
w2−w1

− 1
)

if w1 ≤ q < w2

...

cXm + rXm

(
2(q−w(m−1))

1−w(m−1)
− 1
)

if w(m−1) ≤ q ≤ 1

(2.17)

where cXl = 1
n ∑n

k=1 chk l and rXl = 1
n ∑n

k=1 rhk l . In other words, these make use of the

classical mean formulae.

Example 2.5. Consider the symbolic data Table 2.4, with five units described by two histogram-

valued variables.

Figures 2.5, 2.6 and 2.7 display the barycentric histograms in pink. The plots offer visual

evidence by way of explanation for the notion of centroid, regarding this descriptive measure.

2.8.2 Inertia Measure

While the Barycentric Histogram conveys the notion of central tendency, the Total Inertia

is a measure of dispersion, introduced in [7].



24 MULTI-CLASS CLASSIFICATION FOR DISTRIBUTIONAL DATA

FIGURE 2.5: Quantile functions of the variable X and respective barycentric histogram
for the data in Table 2.4.

FIGURE 2.6: Quantile functions of the variable Y and respective barycentric histogram
for the data in Table 2.4.
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FIGURE 2.7: Scatter plot of the variables in Table 2.4 and respective barycentric his-
tograms.

Definition 2.11 (Total Inertia). The Total Inertia, TI, with respect to the Barycentric His-

togram, ΨX, associated with the histogram-valued variable X of a set of n histogram ob-

servations {h1, h2, ..., hn} is given by:

TI =
n

∑
k=1

D2
M(Ψhk , ΨX) (2.18)

The choice of the Mallows distance empowers this dispersion measure through the

Huygens theorem of decomposition of clustered histogram-valued data [7]. This theo-

rem provides a basis to decompose the Total Inertia into Between Inertia, BI and Within

Inertia, WI. Consider histogram-valued data with s clusters:

TI = BI + WI

=
s

∑
u=1

nuD2
M(ΨXu , ΨX) +

s

∑
u=1

∑
hk∈Gu

D2
M(Ψhk , ΨXu),

(2.19)

where u ∈ {1, ..., s}, nu is the cardinality of the group u, ΨX is the quantile function asso-

ciated with the global barycentric histogram and ΨXu is the quantile function associated

with the barycentric histogram of the group of units that have a priori class u [7].
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2.8.3 Symbolic Covariance

In addition to the previous dispersion measure, we introduce the symbolic covariance, de-

fined in [8]. This is just a step towards the goal of defining the symbolic linear correlation

coefficient that is used in the optimisation step.

Definition 2.12 (Symbolic Covariance). Consider two random histogram-valued vari-

ables X and Y with n units and quantile functions ΨX(i) and ΨY(i), for i ∈ {1, . . . , n}.

Moreover, let ΨX and ΨY be the quantile function associated with the global barycentric

histogram of the histogram-valued variables X and Y, respectively. The empirical covari-

ance between these variables may be defined as follows:

cov(X, Y) =
1
n

n

∑
i=1

∫ 1

0
(ΨX(i)(q)− ΨX(q))(ΨY(i)(q)− ΨY(q)) dq (2.20)

Proposition 2.13. Consider two random histogram-valued variables X and Y with n units and

quantile functions ΨX(i) and ΨY(i), for i ∈ {1, . . . , n}. Assume that both are written with m

pieces, the same set of weights,{p1, p2, ..., pm}, and a Uniform distribution within each subin-

terval. Given the paired concretisations (X(1), Y(1)), . . . , (X(n), Y(n)), that is, n units, the

symbolic covariance formula can be rewritten as:

cov(X, Y) =
1
n

n

∑
i=1

m

∑
l=1

pl

[
(cX(i)l − cXl)(cY(i)l − cYl) +

1
3
(rX(i)l − rXl)(rY(i)l − rYl)

]
(2.21)

where cX(i)l and cY(i)l , rX(i)l and rY(i)l are the centres and half ranges of the subinterval l associated

with the ith concretisation of the histogram-valued variable X and Y, respectively. cXl and cYl ,

rXl and rYl are the centres and half ranges of the subinterval l associated with the Barycentric

Histogram of X and Y, respectively.

Proof. Consider a fixed i ∈ {1, . . . , n}. According to the Definition 2.12, we have:

∫ 1

0
(ΨX(i)(q)− ΨX(q))(ΨY(i)(q)− ΨY(q)) dq (2.22)

Consider the variable X. For each subinterval l and q ∈ [w(l−1), wl [, ΨX(i)(q)− ΨX(q)

can be developed into:
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cX(i)l +

(
2(q − wl−1)

wl − wl−1
− 1

)
rX(i)l

−

cXl +

(
2(q − wl−1)

wl − wl−1
− 1

)
rXl


=

(cX(i)l − cXl) +

(
2(q − wl−1)

wl − wl−1
− 1

)
(rX(i)l − rXl)

 (2.23)

Similarly, this can be performed for the variable Y. Therefore, expression 2.22 is equal

to:

m

∑
l=1

∫ wl

w(l−1)

cX(i)l − cXl +

(
2(q − wl−1)

wl − wl−1
− 1

)
(rX(i)l − rXl)

×

×

cY(i)l − cYl +

(
2(q − wl−1)

wl − wl−1
− 1

)
(rY(i)l − rYl)

 dq (2.24)

Moreover, consider the change of variable:

v =
q − wl−1

wl − wl−1

dv =
1

wl − w(l−1)
dq

⇔ (wl − w(l−1)) dv = dq

⇔ pl dv = dq

Note that if q = w(l−1), then v = 0 and if q = wl , then v = 1. The expression 2.24 can

be rewritten as:

m

∑
l=1

pl

∫ 1

0

(
(cX(i)l − cXl) + (2v − 1) (rX(i)l − rXl)

)
((cY(i)l − cYl) + (2v − 1) (rY(i)l − rYl)) dv

=
m

∑
l=1

pl

∫ 1

0

(
(cX(i)l − cXl)(cY(i)l − cYl)

)
+
(
(cX(i)l − cXl) (2v − 1) (rY(i)l − rYl)

)
+

+
(
(cY(i)l − cYl) (2v − 1) (rX(i)l − rXl)

)
+
(
(2v − 1)2 (rX(i)l − rXl)(rY(i)l − rYl)

)
dv

=
m

∑
l=1

pl

[
(cX(i)l − cXl)(cY(i)l − cYl) +

1
3
(rX(i)l − rXl)(rY(i)l − rYl)

]
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Since we have n units, from the above equation, we can rewrite the definition of co-

variance as:

1
n

n

∑
i=1

m

∑
l=1

pl

[
(cX(i)l − cXl)(cY(i)l − cYl) +

1
3
(rX(i)l − rXl)(rY(i)l − rYl)

]

Considering this definition of symbolic covariance, it is also possible to define the

symbolic variance (and standard deviation) of a histogram-valued variable.

Definition 2.14 (Symbolic Variance). Consider a random histogram-valued variable X,

with n units, quantile functions ΨX(i), for i ∈ {1, . . . , n}, and the quantile function associ-

ated with the global barycentric histogram, ΨX. Assuming a Uniform distribution within

subintervals, the symbolic variance of X may be defined as follows:

var(X) = cov(X, X)

=
1
n

n

∑
i=1

∫ 1

0
(ΨX(i)(q)− ΨX(q))(ΨX(i)(q)− ΨX(q)) dq

=
1
n

n

∑
i=1

∫ 1

0
(ΨX(i)(q)− ΨX(q))2 dq

=
1
n

n

∑
i=1

m

∑
l=1

pl

[
(cX(i)l − cXl)

2 +
1
3
(rX(i)l − rXl)

2
]

=
1
n

n

∑
i=1

D2
M(ΨX(i), ΨX)

(2.25)

Definition 2.15 (Symbolic Standard Deviation). Consider a random histogram-valued

variable X. Considering the Definition 2.14 and assuming a Uniform distribution within

subintervals, the symbolic standard deviation of X may be defined as:

sX =
√

var(X) =
√

cov(X, X) (2.26)

2.8.4 Symbolic Linear Correlation

One of the approaches to extend the classification to more than two classes relies on the

identification of several discriminant functions - Consecutive Linear Discriminant Func-

tions. These functions are required to be uncorrelated.
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2.8.4.1 Definition

The development of a linear correlation coefficient was crucial to measure how much

two histogram-valued variables are linearly correlated. The symbolic linear correlation

coefficient developed is similar to the correlation index developed in [8].

Definition 2.16 (Symbolic Correlation Coefficient). Consider two random histogram val-

ued variables X and Y. The symbolic correlation between these variables may be defined

as follows:

r′(X, Y) =
cov(X, Y)

sXsY
, (2.27)

where:

• cov(X, Y) stands for the symbolic covariance between the histogram-valued vari-

ables X and Y.

• sX stands for the symbolic standard deviation of the histogram-valued variable X.

• sY stands for the symbolic standard deviation of the histogram-valued variable Y.

Proposition 2.17. Let X and Y be two random histogram-valued variables with n units and quan-

tile functions ΨX(i) and ΨY(i), for i ∈ {1, . . . , n}. Assume that both are written with m pieces, the

same set of weights, {p1, p2, ..., pm}, and a Uniform distribution within each subinterval. Con-

sidering the expressions 2.21 and 2.26, the symbolic correlation coefficient formula can be written

as:

1
n

n
∑

i=1

m
∑

l=1
pl

[
(cX(i)l − cXl)(cY(i)l − cYl) +

1
3 (rX(i)l − rXl)(rY(i)l − rYl)

]
√

1
n

n
∑

i=1

m
∑

l=1
pl

[
(cX(i)l − cXl)2 + 1

3 (rX(i)l − rXl)2
]√

1
n

n
∑

i=1

m
∑

l=1
pl

[
(cY(i)l − cYl)2 + 1

3 (rY(i)l − rYl)2
]

(2.28)

where cX(i)l and cY(i)l , rX(i)l and rY(i)l are the centres and half ranges of the subinterval l associated

with the ith concretisation of the histogram-valued variable X and Y, respectively. cXl and cYl ,

rXl and rYl are the centres and half ranges of the subinterval l associated with the Barycentric

Histogram of X and Y, respectively.

Remark 2.18. The notation associated with the symbolic linear correlation chosen (r′ and

not r) aims at avoiding a possible confusion with the r used to refer to the half-range of a

subinterval.
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2.8.4.2 Mathematical Properties

This symbolic correlation coefficient is equipped with some of the usual mathematical

properties associated with correlation coefficients for classical data. These properties are

stated and proven below:

1. this measure is symmetric: r′(X, Y) = r′(Y, X)

Proof. We start by noticing that:

sXsY =

=

√
1
n

n

∑
i=1

m

∑
l=1

pXl

[
(cX(i)l − cXl)2 +

1
3
(rX(i)l − rXl)2

]
×

×
√

1
n

n

∑
i=1

m

∑
l=1

pYl

[
(cY(i)l − cYl)2 +

1
3
(rY(i)l − rYl)2

]
=

=

√
1
n

n

∑
i=1

m

∑
l=1

pYl

[
(cY(i)l − cYl)2 +

1
3
(rY(i)l − rYl)2

]
×

×
√

1
n

n

∑
i=1

m

∑
l=1

pXl

[
(cX(i)l − cXl)2 +

1
3
(rX(i)l − rXl)2

]

= sYsX

Moreover, since:

(cX(i)l − cXl)(cY(i)l − cYl) = (cY(i)l − cYl)(cX(i)l − cXl)

(rX(i)l − rXl)(rY(i)l − rYl) = (rY(i)l − rYl)(rX(i)l − rXl)

We have the following result:

cov(X, Y) =
1
n

n

∑
i=1

m

∑
l=1

pl

[
(cX(i)l − cXl)(cY(i)l − cYl) +

1
3
(rX(i)l − rXl)(rY(i)l − rYl)

]
=

1
n

n

∑
i=1

m

∑
l=1

pl

[
(cY(i)l − cYl)(cX(i)l − cXl) +

1
3
(rY(i)l − rYl)(rX(i)l − rXl)

]
= cov(Y, X)

(2.29)
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Finally, we have that:

r′(X, Y) =
cov(X, Y)

sXsY
=

cov(Y, X)

sYsX
= r′(Y, X)

2. this measure is invariant under changes in location in the two histogram-valued

variables: r′(X + α, Y + β) = r′(X, Y)

Proof. Recall that the operation of addition between a histogram-valued variable

and a real value will only lead to a translation of the empirical distribution, that

is, the half ranges remain unchanged whereas the centres are given by cX(i)l + α

and cY(i)l + β. Therefore, the centres of the barycentric histograms are given by
1
n ∑n

i=1(cX(i)l + α) = cXl + α and 1
n ∑n

i=1(cY(i)l + β) = cYl + β. We have that for each

subinterval l:

(cX(i)l + α − (cXl + α))(cY(i)l + β − (cYl + β)) = (cX(i)l − cXl)(cY(i)l − cYl)

(cX(i)l + α − (cXl + α))2 = (cX(i)l − cXl)
2

(cY(i)l + β − (cYl + β))2 = (cY(i)l − cYl)
2

Therefore, considering the expression 2.28:

r′(X + α, Y + β) =
cov(X + α, Y + β)

sX+αsY+β
=

cov(X, Y)
sXsY

= r′(X, Y)

3. this measure is invariant under changes in scale in the two histogram-valued vari-

ables: assuming α, β ≥ 0, r′(αX, βY) = r′(X, Y)

Remark 2.19. Note that, for α < 0 or β < 0, we would obtain negative half-ranges.

Therefore, it would not be a quantile function.

Proof. Once again, we start by analysing the changes produced with regard to the

centres and half-ranges. The centres are given by αcX(i)l and βcY(i)l . Therefore,

the centres of the barycentric histograms are given by 1
n ∑n

i=1(αcX(i)l) = αcXl and
1
n ∑n

i=1(βcY(i)l) = βcYl . We have that:
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(αcX(i)l − αcXl)(βcY(i)l − βcYl) = α(cX(i)l − cXl)β(cY(i)l − cYl)

(αcX(i)l − αcXl)
2 = α2(cX(i)l − cXl)

2

(β cY(i)l − βcYl)
2 = β2(cY(i)l − cYl)

2

Similarly, this reasoning can be applied to the half ranges, since they are affected in

the same way as the centres. Therefore, we have that the expression of cov(αX, βY)

can be simplified:

1
n

n

∑
i=1

m

∑
l=1

pl

[
α(cX(i)l − cXl)β(cY(i)l − cYl) +

1
3

α(rX(i)l − rXl)β(rY(i)l − rYl)

]
= αβ

1
n

n

∑
i=1

m

∑
l=1

pl

[
(cX(i)l − cXl)(cY(i)l − cYl) +

1
3
(rX(i)l − rXl)(rY(i)l − rYl)

]
= αβcov(X, Y)

(2.30)

Moreover,

sαX =
√

var(αX)

=

√
1
n

n

∑
i=1

m

∑
l=1

pl

[
α2(cX(i)l − cXl)2 +

1
3

α2(rX(i)l − rXl)2

]

=

√
1
n

n

∑
i=1

m

∑
l=1

plα2

[
(cX(i)l − cXl)2 +

1
3
(rX(i)l − rXl)2

]

= α

√
1
n

n

∑
i=1

m

∑
l=1

pl

[
(cX(i)l − cXl)2 +

1
3
(rX(i)l − rXl)2

]
= αsX

(2.31)

Using a similar reasoning we can prove that:

sβY = βsY (2.32)

Finally, we obtain:

r′(αX, βY) =
cov(αX, βY)

sαXsβY
=

αβcov(X, Y)
αsX βsY

=
cov(X, Y)

sXsY
= r′(X, Y)
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Proposition 2.20. The symbolic linear correlation coefficient between a histogram-valued variable

X and a variable that is obtained by storing the symmetric histograms for each unit, −X, with

regard to the y-axis, is -1 if the following conditions are verified:

⇔


(cX(m−l+1) − cXl) = (cX(i)(m−l+1) − cX(i)l)

(rX(m−l+1) + rXl) = (rX(i)l + rX(i)(m−l+1))

(2.33)

Proof. According to the expression 2.6, we have that:

c−X(i)l = −cX(i)(m−l+1)

c−Xl =
1
n

n

∑
i=1

c−X(i)l =
1
n

n

∑
i=1

−cX(i)(m−l+1) = −cX(m−l+1)

r−X(i)l = rX(i)(m−l+1)

r−Xl =
1
n

n

∑
i=1

r−X(i)l =
1
n

n

∑
i=1

rX(i)(m−l+1) = rX(m−l+1)

Therefore:

s−X =
√

var(−X)

=

√
1
n

n

∑
i=1

m

∑
l=1

p−X(i)l

[
(c−X(i)l − c−Xl)2 +

1
3
(r−X(i)l − r−Xl)2

]

=

√
1
n

n

∑
i=1

m

∑
l=1

p−X(i)l

[
(−cX(i)(m−l+1) + cX(m−l+1))2 +

1
3
(rX(i)(m−l+1) − rX(m−l+1))2

]

=

√
1
n

n

∑
i=1

m

∑
l=1

p−X(i)l

[
(cX(i)(m−l+1) − cX(m−l+1))2 +

1
3
(rX(i)(m−l+1) − rX(m−l+1))2

]

=

√
1
n

n

∑
i=1

m

∑
l=1

pX(i)(m−l+1)

[
(cX(i)(m−l+1) − cX(m−l+1))2 +

1
3
(rX(i)(m−l+1) − rX(m−l+1))2

]
(2.34)

Let l′ = m − l + 1, then:

=

√
1
n

n

∑
i=1

m

∑
l′=1

pX(i)l′

[
(cX(i)l′ − cXl′)2 +

1
3
(rX(i)l′ − rXl′)2

]
= sX

This means that the denominator of the symbolic correlation coefficient is given by:

s−XsX = sXsX = s2
X = var(X) = cov(X, X)

Recall the formula of the symbolic covariance between X and −X.
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cov(X,−X) =
1
n

n

∑
i=1

m

∑
l=1

pX(i)l

[
(cX(i)l − cXl)(c−X(i)l − c−Xl) +

1
3
(rX(i)l − rXl)(r−X(i)l − r−Xl)

]
(2.35)

By exploring the symbolic correlation formula, it is possible to understand that ex-

pression 2.35 has to be equal to −cov(X, X). As we will see, additional conditions must

be imposed so that r′(X,−X) = −1. Consider the expression 2.35. The centres part of the

equation may be rewritten as:

(cX(i)l − cXl)(c−X(i)l − c−Xl) =

(cX(i)l − cXl)(−cX(i)(m−l+1) + cX(m−l+1))
(2.36)

The half ranges part of the equation may be rewritten as:

(rX(i)l − rXl)(r−X(i)l − r−Xl) =

(rX(i)l − rXl)(rX(i)(m−l+1) − rX(m−l+1))
(2.37)

In order to obtain cov(X,−X) = −cov(X, X), we must impose the following condi-

tions. For i ∈ {1, ..., n} and l ∈ {1, ..., m},


(cX(i)l − cXl) = −(−cX(i)(m−l+1) + cX(m−l+1))

(rX(i)l − rXl) = −(rX(i)(m−l+1) − rX(m−l+1))

(2.38)

⇔


(cX(m−l+1) − cXl) = (cX(i)(m−l+1) − cX(i)l)

(rX(m−l+1) + rXl) = (rX(i)l + rX(i)(m−l+1))

(2.39)

Note that this is always true if we only have one unit. In other words, when only

dealing with a histogram and the respective symmetric one.

The equations 2.36 and 2.37 can then be rewritten as:

(−1)(cX(i)l − cXl)(cX(i)l − cXl) = (−1)(cX(i)l − cXl)
2 (2.40)

(rX(i)l − rXl)(−rX(i)l + rXl) = (−1)(rX(i)l − rXl)
2 (2.41)

Moreover, expression 2.35 may be rewritten as:
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cov(X,−X) =
1
n

n

∑
i=1

m

∑
l=1

pX(i)l

[
(−1)(cX(i)l − cXl)

2 +
1
3
(−1)(rX(i)l − rXl)

2
]

= (−1)
1
n

n

∑
i=1

m

∑
l=1

pX(i)l

[
(cX(i)l − cXl)

2 +
1
3
(rX(i)l − rXl)

2
]

= (−1)s2
X

(2.42)

Finally, we can say that given a histogram-valued variable X and a variable that is

obtained by storing the symmetric histograms for each unit, −X, such that (cX(m−l+1) −

cXl) = (cX(i)(m−l+1) − cX(i)l) and (rX(m−l+1) + rXl) = (rX(i)l + rX(i)(m−l+1)):

r′(X,−X) =
cov(X,−X)

sXs−X
=

(−1)s2
X

s2
X

= −1 (2.43)

Example 2.6. To illustrate the previous proposition, Figures 2.8 and 2.9 display the scatter plot of

two symbolic data sets. Although it seems that both show perfect inverse relation, the correlation

values are not both equal to -1.

FIGURE 2.8: Scatter plot of a pair of histogram-valued variables with correlation value
r′ = −1.

Consider Tables 2.6 and 2.7 that represent the data used to obtain Figures 2.8 and 2.9, respec-

tively.



36 MULTI-CLASS CLASSIFICATION FOR DISTRIBUTIONAL DATA

FIGURE 2.9: Scatter plot of a pair of histogram-valued variables with correlation value
r′ = −0.9950.

X −X
1 { [1,3[,0.2; [3,5[,0.2; [5,8[ { [-13,-10[,0.2; [-10,-8[,0.2; [-8,-5[

,0.2; [8,10[,0.2; [10,13],0.2 } ,0.2; [-5,-3[,0.2; [-3,-1],0.2 }
2 { [-33,-32[,0.2; [-32,-30[,0.2; [-30,-27[ { [21,25[,0.2; [25,27[,0.2; [27,30[

,0.2; [-27,-25[,0.2; [-25,-21],0.2 } ,0.2; [30,32[,0.2; [32,33],0.2 }
3 { [-12,-8[,0.2; [-8,-7[,0.2; [-7,-4[ { [0,1[,0.2; [1,4[,0.2; [4,7[

,0.2;[-4,-1[,0.2; [-1,0],0.2 } ,0.2;[7,8[,0.2; [8,12],0.2 }
4 { [-20,-19[,0.2; [-19,-16[,0.2; [-16,-13[ { [8,12[,0.2; [12,13[,0.2; [13,16[

,0.2; [-13,-12[,0.2; [-12,-8],0.2 } ,0.2; [16,19[,0.2; [19,20],0.2 }
5 { [-27,-23[,0.2; [-23,-22[,0.2; [-22,-19[ { [15,16[,0.2; [16,19[,0.2; [19,22[

,0.2; [-19,-16[,0.2; [-16,-15],0.2 } ,0.2; [22,23[,0.2; [23,27],0.2 }

TABLE 2.6: Symbolic data table of a pair of histogram-valued variables with correlation
value r′ = −1.

Y −Y
1 { [2,3[,0.2; [3,5[,0.2; [5,7[ { [-11,-9[,0.2; [-9,-7[,0.2; [-7,-5[

,0.2; [7,9[,0.2; [9,11],0.2 } ,0.2; [-5,-3[,0.2; [-3,-2],0.2 }
2 { [-33,-28[,0.2; [-28,-26[,0.2; [-26,-24[ { [19,22[,0.2; [22,24[,0.2; [24,26[

,0.2; [-24,-22[,0.2; [-22,-19],0.2 } ,0.2; [26,28[,0.2; [28,33],0.2 }
3 { [-10,-7[,0.2; [-7,-4[,0.2; [-4,0[ { [-5,-1[,0.2; [-1,0[,0.2; [0,4[

,0.2;[0,1[,0.2; [1,5],0.2 } ,0.2;[4,7[,0.2; [7,10],0.2 }
4 { [-20,-18[,0.2; [-18,-16[,0.2; [-16,-15[ { [10,11[,0.2; [11,15[,0.2; [15,16[

,0.2; [-15,-11[,0.2; [-11,-10],0.2 } ,0.2; [16,18[,0.2; [18,20],0.2 }
5 { [-25,-23[,0.2; [-23,-20[,0.2; [-20,-17[ { [14,15[,0.2; [15,17[,0.2; [17,-20[

,0.2; [-17,-15[,0.2; [-15,-14],0.2 } ,0.2; [20,23[,0.2; [23,25],0.2 }

TABLE 2.7: Symbolic data table of a pair of histogram-valued variables with correlation
value r′ = −0.9950.
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Unit Subinterval cX(i)l cXl rX(i)l rXl
1 1 2 -17 1 1.2

2 4 -14.9 1 0.9
3 6.5 -12.5 1.5 1.5
4 9 -9.9 1 1.1
5 11.5 -7.5 1.5 1.3

2 1 -32.5 -17 0.5 1.2
2 -31 -14.9 1 0.9
3 -28.5 -12.5 1.5 1.5
4 -26 -9.9 1 1.1
5 -23 -7.5 2 1.3

3 1 -10 -17 2 1.2
2 -7.5 -14.9 0.5 0.9
3 -5.5 -12.5 1.5 1.5
4 -2.5 -9.9 1.5 1.1
5 -0.5 -7.5 0.5 1.3

4 1 -19.5 -17 0.5 1.2
2 -17.5 -14.9 1.5 0.9
3 -14.5 -12.5 1.5 1.5
4 -12.5 -9.9 0.5 1.1
5 -10 -7.5 2 1.3

5 1 -25 -17 2 1.2
2 -22.5 -14.9 0.5 0.9
3 -20.5 -12.5 1.5 1.5
4 -17.5 -9.9 1.5 1.1
5 -15.5 -7.5 0.5 1.3

TABLE 2.8: Calculation of centres and half ranges of the histogram-valued variable X and
of the Barycentric Histogram of X, regarding data with correlation value r′ = −1.

According to the data, it is possible to calculate the values displayed in Tables 2.8 and 2.9. By

observing these tables, it is evident that the data in Table 2.6, i.e., the data of a pair of histogram-

valued variables with correlation value r′ = −1 verify conditions 2.33.

It is also possible to calculate the values displayed in Tables 2.10 and 2.11. By observing these

tables, it is evident that the data in Table 2.7, i.e., the data of a pair of histogram-valued variables

with correlation value r′ = −0.9950 do not verify conditions 2.33.

Example 2.7. Consider once again the data associated with the Tables 2.3, 2.4 and 2.5. Figures

2.10, 2.11 and 2.12 not only show the scatter plots of the variables associated with the data, but

also the correlation values.

As expected, the correlation values are in agreement with the relations deduced previously. The

data with strong direct relation, in Figure 2.10, shows a high positive correlation value. The data

with strong inverse relation, in Figure 2.11, shows a high negative value of correlation. Finally,
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FIGURE 2.10: Scatter plot of a pair of histogram-valued variables with correlation value
r′ = 0.9789.

FIGURE 2.11: Scatter plot of a pair of histogram-valued variables with correlation value
r′ = −0.9947.
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Unit Subinterval cX(i)(m−l+1)− cX(m−l+1)− rX(i)l+ rX(m−l+1)+
−cX(i)l −cXl +rX(i)(m−l+1) +rXl

1 1 -9.5 -9.5 2.5 2.5
2 -5 -5 2 2
3 0 0 3 3
4 5 5 2 2
5 9.5 9.5 2.5 2.5

2 1 -9.5 -9.5 2.5 2.5
2 -5 -5 2 2
3 0 0 3 3
4 5 5 2 2
5 9.5 9.55 2.5 2.5

3 1 -9.5 -9.5 2.5 2.5
2 -5 -5 2 2
3 0 0 3 3
4 5 5 2 2
5 9.5 9.55 2.5 2.5

4 1 -9.5 -9.5 2.5 2.5
2 -5 -5 2 2
3 0 0 3 3
4 5 5 2 2
5 9.5 9.55 2.5 2.5

5 1 -9.5 -9.5 2.5 2.5
2 -5 -5 2 2
3 0 0 3 3
4 5 5 2 2
5 9.5 9.55 2.5 2.5

TABLE 2.9: Verification of conditions 2.33 on a pair of histogram-valued variables with
correlation value r′ = −1.

the data that does not display clear direct or inverse relation, in Figure 2.12, discloses the least

absolute value of correlation. In fact, this value is very close to 0.
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Unit Subinterval cY(i)l cYl rY(i)l rYl
1 1 2.5 -15.9 0.5 1.3

2 4 -13.4 1 1.2
3 6 -11 1 1.2
4 8 -8.7 1 1.1
5 10 -6.5 1 1.1

2 1 -30.5 -15.9 2.5 1.3
2 -27 -13.4 1 1.2
3 -25 -11 1 1.2
4 -23 -8.7 1 1.1
5 -20.5 -6.5 1.5 1.1

3 1 -8.5 -15.9 1.5 1.3
2 -5.5 -13.4 1.5 1.2
3 -2 -11 2 1.2
4 0.5 -8.7 0.5 1.1
5 3 -6.5 2 1.1

4 1 -19 -15.9 1 1.3
2 -17 -13.4 1 1.2
3 -15.5 -11 0.5 1.2
4 -13 -8.7 2 1.1
5 -10.5 -6.5 0.5 1.1

5 1 -24 -15.9 1 1.3
2 -21.5 -13.4 1.5 1.2
3 -18.5 -11 1.5 1.2
4 -16 -8.7 1 1.1
5 -14.5 -6.5 0.5 1.1

TABLE 2.10: Calculation of centres and half ranges of the histogram-valued variable
Y and of the Barycentric Histogram of Y, regarding data with correlation value r′ =

−0.9947.
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Unit Subinterval cY(i)(m−l+1)− cY(m−l+1)− rY(i)l+ rY(m−l+1)+
−cY(i)l −cYl +rY(i)(m−l+1) +rYl

1 1 -7.5 -9.4 1.5 2.4
2 -4 -4.7 2 2.3
3 0 0 2 2.4
4 4 4.7 2 2.3
5 7.5 9.4 1.5 2.4

2 1 -10.5 -9.4 4 2.4
2 -4 -4.7 2 2.3
3 0 0 2 2.4
4 4 4.7 2 2.3
5 10.5 9.4 4 2.4

3 1 -11.5 -9.4 3.5 2.4
2 -6 -4.7 2 2.3
3 0 0 4 2.4
4 6 4.7 2 2.3
5 11.5 9.4 3.5 2.4

4 1 -8.5 -9.4 1.5 2.4
2 -4 -4.7 3 2.3
3 0 0 1 2.4
4 4 4.7 3 2.3
5 8.5 9.4 1.5 2.4

5 1 -9.5 -9.4 1.5 2.4
2 -5.5 -4.7 2.5 2.3
3 0 0 3 2.4
4 5.5 4.7 2.5 2.3
5 9.5 9.4 1.5 2.4

TABLE 2.11: Verification of conditions 2.33 on a pair of histogram-valued variables with
correlation value r′ = −0.9950.
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FIGURE 2.12: Scatter plot of a pair of histogram-valued variables with correlation value
r′ = −0.0567.
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2.9 Linear Combination of Histogram-Valued Variables

We aim at performing linear discriminant analysis. In other words, we aim at finding a

linear combination of variables that distinguishes two or more classes. For that reason,

it is important to adapt the classical definition of linear combination so that it becomes

appropriate for symbolic variables.

2.9.1 Assumptions

The definition of a linear discriminant function revolves around the maximisation of the

Between Inertia/Within Inertia ratio. This maximisation allows obtaining the optimal

parameters for the linear discriminant function. The use of the Mallows distance grants

this optimisation step.

However, the definitions given in this chapter take into account some requirements.

Therefore, to develop this method we must impose these requirements as a way of using

the concepts and formulae disclosed. Consider the following assumptions:

1. All quantile functions involved need to have an equal number of pieces. In other

words, all histograms involved need to have an equal number of subintervals;

2. The domain of each piece has to be the same for all involved functions (quantile

functions and those that represent the symmetric histograms);

3. For all histograms involved, h = {Ih1, ph1; Ih2, ph2; ...; Ihm, phm}, the weights phl have

to verify the condition:

∀
l∈{1,...,m}

phl = ph(m−l+1)

Note that, when the rewriting process, displayed in Section 2.4, is performed, the ob-

tained data already verifies these conditions.

2.9.2 Linear Combination

The adjustment to the classical definition of linear combination is mainly due to the fact

that when multiplying a quantile function by a negative number, a quantile function is not

obtained, since it is not obtained a non-decreasing function. As a first attempt to fix this

problem, in [4], it was considered a linear combination of quantile functions with positive

parameters:
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Ψi(p+1)(q) = a1Ψi1(q) + ... + apΨip(q),

where a1, ..., ap ∈ R+. However, in this scenario, we are forcing a direct linear relation

between Ψi(p+1)(q) and Ψij(q), with j ∈ {1, ..., p}.

Since the space of quantile functions is a semi-vector space, the following definition

solves a critical problem. For this, it uses both the quantile function of the observed his-

tograms, together with those of the corresponding symmetric histograms.

Definition 2.21. Consider the histogram valued variables X1, X2, . . . , Xp with quantile

functions for each unit i Ψi1(q), Ψi2(q), ..., Ψip(q), with q ∈ [0, 1], and the quantile functions

that represent the respective symmetric histograms −Ψi1(1− q),−Ψi2(1− q), ...,−Ψip(1−

q). The linear combination of X1, X2, ..., Xp, presented in [4], is a new histogram-valued

variable, designated by X(p+1), where each quantile function of unit i can be written as:

Ψi(p+1)(q) =
p

∑
j=1

ajΨij(q)−
p

∑
j=1

bjΨij(1 − q), (2.44)

where q ∈ [0, 1], aj, bj ≥ 0 and j ∈ {1, ..., p}.

This definition of a linear combination of histogram-valued variables does not force a

direct linear relationship in view of the fact that it uses both the quantile functions of the

histogram-valued variables and the quantile functions of the corresponding symmetric

histograms, as it was stated in [4]. Therefore, this definition is an improvement from the

previous one.

Recall, once again, that interval-valued variables may be considered a particular case

of the histogram-valued variables. When analysing the interval-valued variables, the pre-

vious expressions become easier to look over. Following the reasoning developed in [6],

the quantile function associated with the ith concretisation of the interval-valued variable

Xj is:

Ψij(q) = cij + rij(2q − 1), q ∈ [0, 1] (2.45)

The quantile function that represents the symmetric interval is then:
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−Ψij(1 − q) = −cij − rij(2(1 − q)− 1)

= −cij − rij(−2q + 1)

= −cij + rij(2q − 1)

(2.46)

The linear combination of X1, X2, ..., Xp is a new interval-valued variable X(p+1) where

the quantile function of unit i can be written as:

Ψi(p+1)(q) =
p

∑
j=1

aj(cij + rij(2q − 1)) +
p

∑
j=1

bj(−cij + rij(2q − 1))

=
p

∑
j=1

(aj − bj)cij +
p

∑
j=1

(aj + bj)rij(2q − 1)

(2.47)

Furthermore, if we consider the case where the range of the interval is null, that is,

Xj(i) = hij = Iij = [xij]. Then rij = 0 and cij = xij and the equation becomes:

Ψi(p+1)(q) =
p

∑
j=1

(aj − bj)cij

=
p

∑
j=1

(aj − bj)xij

=
p

∑
j=1

djxij

(2.48)

which is consistent with the classical definition of linear combination.





Chapter 3

Linear Discriminant Analysis for

Histogram-Valued Variables

At this moment we are equipped with the necessary tools to develop the linear discrimi-

nant model for histogram-valued variables.

In this section, it is introduced crucial concepts such as the score quantile function

and the barycentric scores. Moreover, we present an explanation of the optimisation and

classification steps performed for the two a priori classes case scenario. Finally, we reveal

the three approaches explored to address the multi-class classification problem as well as

the optimisation and classification steps required.

3.1 Linear Discriminant Function

The linear discriminant function proposed in [1] defines a score, S(i), for each unit i, and

it is given by the linear combination of p explanatory histogram-valued variables. The

score is then used to classify that unit. This classification is based on the distance between

the unit’s score and the barycentric score of each a priori class.

We make use of the definition of linear combination of histogram-valued variables

proposed in [4] and the assumptions disclosed in Section 2.9.1.

Definition 3.1 (Score Quantile Function). Consider the histogram-valued variables X1, X2

..., Xp with quantile functions for each unit i Ψi1(q), Ψi2(q), ..., Ψip(q), with q ∈ [0, 1],

and the quantile functions that represent the respective symmetric histograms −Ψi1(1 −

q),−Ψi2(1 − q), ...,−Ψip(1 − q). The score of unit i introduced in [1] is the quantile func-

tion:

47
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ΨS(i)(q) =
p

∑
j=1

ajΨij(q)−
p

∑
j=1

bjΨij(1 − q), (3.1)

where q ∈ [0, 1], aj, bj ≥ 0 and j ∈ {1, ..., p}.

Let S denote the score’s histogram-valued variable.

For each subinterval l and q ∈ [w(l−1), wl [, the score quantile function of unit i is given

by:

p

∑
j=1

(
ajcijl − bjcij(m−l+1)

)
+

(
2(q − w(l−1))

wl − w(l−1)
− 1

)
p

∑
j=1

(
ajrijl + bjrij(m−l+1)

)
(3.2)

Definition 3.2 ((Global) Barycentric Score). The global barycentric score (also simply men-

tioned as Barycentric Score), ΨS(q), is the mean of the quantile functions that represent

individual scores. For subinterval l, given q ∈ [w(l−1), wl [,

ΨS(q) =
p

∑
j=1

(
ajcjl − bjcj(m−l+1)

)
+

(
2(q − w(l−1))

wl − w(l−1)
− 1

)
p

∑
j=1

(
ajrjl + bjrj(m−l+1)

)
, (3.3)

where cjl and rjl are the means of the centres and the means of the half ranges, considering

all units, of the subinterval l for variable j, respectively [1].

Definition 3.3 (Barycentric Score of a Group). The Barycentric Score of a Group u of units,

ΨSu(q), is the mean of the quantile functions that represent individual scores within group

u. For each sub-interval l, given q ∈ [w(l−1), wl [,

ΨSu(q) =
p

∑
j=1

(
ajcjlu − bjcj(m−l+1)u

)
+

(
2(q − w(l−1))

wl − w(l−1)
− 1

)
p

∑
j=1

(
ajrjlu + bjrj(m−l+1)u

)
,

(3.4)

where cjlu and rjlu are the means of the centres and the means of the half ranges of the

units in group u and sub-interval l for variable j, respectively [1].

Theorem 3.4. Let ΨS(i) be the score quantile function of unit i, considering the histogram-valued

variables X1, X2, . . . , Xp with quantile functions for each unit i Ψi1, Ψi2, . . . , Ψip. Moreover, let

ΨS be the barycentric score. In [1], it is shown that the sum of the squared Mallows distance

between ΨS(i) and ΨS can be rewritten as:
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n

∑
i=1

D2
M(ΨS(i), ΨS) = γTTγ

=
s

∑
u=1

nuD2
M(ΨSu , ΨS) +

s

∑
u=1

∑
S(i)∈Gu

D2
M(ΨS(i), ΨSu)

= γTBγ + γTWγ

(3.5)

where γ = (a1, b1, ..., ap, bp), i.e., it is a 2p × 1 (column) vector, nu is the cardinality of the group

u, T = [Tde] is the (symmetric) matrix of the total Sums of Squares and Cross-Products (SSCP)

for the p histogram-valued variables, B = [Bde] and W = [Wde] are the matrices of the SSCP

between-groups and within-groups, respectively. The three mentioned matrices are symmetric of

order 2p. The elements are given by the following expressions:

Tde =



n
∑

i=1

m
∑

l=1
pl

(
c̃i d+1

2 l c̃i e+1
2 l +

1
3 r̃i d+1

2 l r̃i e+1
2 l

)
if d,e are odd

n
∑

i=1

m
∑

l=1
pl

(
c̃i d

2 (m−l+1) c̃i e
2 (m−l+1) +

1
3 r̃i d

2 (m−l+1)r̃i e
2 (m−l+1)

)
if d,e are even

n
∑

i=1

m
∑

l=1
pl

(
−c̃i d

2 l c̃i e+1
2 (m−l+1) +

1
3 r̃i d

2 l r̃i e+1
2 (m−l+1)

)
if d is even, e is odd

(3.6)

where c̃ijl = cijl − c̄jl and r̃ijl = rijl − r̄jl , j ∈ { d+1
2 , e+1

2 , d
2 , e

2}.

Bde =



s
∑

u=1
nu

m
∑

l=1
pl

(
c̆ d+1

2 lu c̆ e+1
2 lu +

1
3 r̆ d+1

2 lur̆ e+1
2 lu

)
if d,e are odd

s
∑

u=1
nu

m
∑

l=1
pl

(
c̆ d

2 (m−l+1)u c̆ e
2 (m−l+1)u +

1
3 r̆ d

2 (m−l+1)ur̆ e
2 (m−l+1)u

)
if d,e are even

s
∑

u=1
nu

m
∑

l=1
pl

(
−c̆ d

2 lu c̆ e+1
2 (m−l+1)u +

1
3 r̆ d

2 lur̆ e+1
2 (m−l+1)u

)
if d is even, e

is odd

(3.7)

where c̆jlu = c̄jl − c̄jlu and r̆jlu = r̄jl − r̄jlu, j ∈ { d+1
2 , e+1

2 , d
2 , e

2}.

Wde =



s
∑

u=1
∑

i∈G′
u

m
∑

l=1
pl

(
c̃i d+1

2 lu c̃i e+1
2 lu +

1
3 r̃i d+1

2 lur̃i e+1
2 lu

)
if d,e are odd

s
∑

u=1
∑

i∈G′
u

m
∑

l=1
pl

(
c̃i d

2 (m−l+1)u c̃i e
2 (m−l+1)u +

1
3 r̃i d

2 (m−l+1)ur̃i e
2 (m−l+1)u

)
if d,e are even

s
∑

u=1
∑

i∈G′
u

m
∑

l=1
pl

(
−c̃i d

2 lu c̃i e+1
2 (m−l+1)u +

1
3 r̃i d

2 lur̃i e+1
2 (m−l+1)u

)
if d is even, e

is odd
(3.8)

where c̃ijlu = cijl − c̄jlu and r̃ijl = rijl − r̄jlu and G′
u = {i : ∀j Xj(i) ∈ Gu}, j ∈ { d+1

2 , e+1
2 , d

2 , e
2}.
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The detailed construction and proof of the formulae of the matrices mentioned above

can be found in [1].

3.2 Classification in Two A Priori Groups

3.2.1 Optimisation

Consider p histogram-valued variables, X1, X2, . . . , Xp. Let γ = (a1, b1, ..., ap, bp), i.e, γ is

the parameter vector that defines the linear discriminant function. The optimal parameter

vector is estimated such that the ratio, λ, regarding the variability between groups and

the variability within groups is maximum [1]. The measure λ represents how well the

parameter vector is useful to separate the data in classes. In mathematical formulation, it

can be written as the following optimisation problem:

γ∗ = arg max
γ

λ = arg max
γ

γTBγ

γTWγ
(3.9)

subject to:

γ ≥ 0

This is a constrained quadratic optimisation problem. It is subjected to non-negativity

constraints on the parameters. As a consequence, it becomes a hard problem to solve.

Note that this restriction does not force a direct linear relationship between the variables

and scores, because the score quantile function definition uses both the quantile functions

of the histograms and the quantile functions of the corresponding symmetric histograms.

In [18], it is investigated formulations for the given problem. The major disadvantage

is connected to the algorithmic aspect. Based on the work developed, it is possible to de-

rive semi-definite programming relaxations in the interest of finding good upper bounds

to this problem. Semi-definite programming is a field concerned with the optimisation

of a linear objective function over the intersection of the cone of positive semi-definite

matrices with an affine space [19].

Remark 3.5. M is a positive semi-definite matrix ⇐⇒ xTMx ≥ 0 for all x ∈ Rn

The relaxations are then used in the global optimisation approach in order to prove

optimality.
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As it is possible to understand, for λ < 1, we have that γTBγ < γTWγ. In this case,

data does not display well-defined groups, because the distance within groups is higher

than the one between them. Since data does not seem to have a clusterable structure, it

stands to reason that the model developed will not perform well.

3.2.2 Classification

Once the optimal parameter vector is obtained, the linear discriminant function is defined.

The general idea behind the classification is to assign a given unit i to the group that is

at the minimum distance. For that purpose, it is calculated the score quantile function

associated with each unit i and the barycentric scores of all the groups of units, provided

that a group is defined by the a priori classes. Using the Mallows distance, it is then

possible to assign the unit to the group such that its barycentric score is closest to the

unit’s score [1].

Definition 3.6. Consider the data divided in two a priori groups G1 and G2, with barycen-

tric scores for each group ΨS1 and ΨS2 , respectively. Let ΨS(i)
be the score quantile function

of unit i. The classification performed by the developed model for unit i is given by:


G1 if D2

M(ΨS1 , ΨS(i)) < D2
M(ΨS2 , ΨS(i))

G2 if D2
M(ΨS1 , ΨS(i)) > D2

M(ΨS2 , ΨS(i))

sample(G1, G2) otherwise

(3.10)

It could be the case that a given unit is equally spaced with respect to the barycentric

scores of both groups G1 and G2. In such a case, sample(G1, G2) is performed. It stands

for a random sample of size one between both groups without replacement. This compu-

tation introduces randomness associated with the classification process.

This definition differs from the one presented in [1] regarding the sample operation.

In [1], unit i is assigned to group G1 if D2
M(ΨS1 , ΨS(i)) < D2

M(ΨS2 , ΨS(i)), otherwise it is

assigned to group G2.

Since this is a classification problem, it could be the case that unbalanced groups

would have a great impact on the models’ performance. However, in simulations con-

ducted in [1], it was concluded that the disturbance caused by unbalanced groups is ne-

glectable.
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3.3 Multi-class Classification

Heretofore the classification problem with two a priori groups has been dealt with. Al-

though the multi-class classification problem is not immediately solved, the binary clas-

sification is a step towards the solution. When considering more than two a priori classes,

there are two ideas that arise:

1. Divide the multi-class classification dataset into several binary classification sub-

problems. In this case, identifying the best multi-class classifier involves finding the

best binary classifiers. In other words, we are using the already existing binary class

classifiers. Concerning this approach, there are two well-known types of multi-class

classification techniques:

(a) One-Versus-One (OVO);

(b) One-Versus-All (OVA);

2. Define several linear discriminant functions with the condition that they must be

uncorrelated with each other. In this scenario, a good multi-class classifier is built

on the search for as many useful discriminant functions as possible. This idea is

referenced as Consecutive Linear Discriminant Functions (CLDF).

3.3.1 Multiple Binary Classification Subproblems

3.3.1.1 One-Versus-One (OVO)

Consider a classification problem with s groups, {G1, G2, ..., Gs}. One-Versus-One (OVO)

is a technique that decomposes a problem with s groups into s(s−1)
2 binary subproblems,

where each problem is addressed by a binary classifier [20]. Note that the number of bi-

nary subproblems corresponds to (s
2), i.e., the possible combinations of 2 groups between

the s groups. Each binary classification is performed only over the data related with the

two groups involved. In other words, we are performing the binary classification over a

subset of the original data set. The final assignment of which group a unit i belongs to is

performed by using the majority vote.

3.3.1.2 One-Versus-All (OVA)

Suppose a classification problem with s groups, {G1, G2, ..., Gs}. One-Versus-All (OVA) is

a technique that decomposes a problem with s groups into s binary subproblems where
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each problem is addressed by a binary classifier [21]. Each binary classifier, concerning

the group u, is of the form:

Gu vs. GC
u , where GC

u = {G1, G2, ..., Gs} \ Gu

In this approach, all data are always considered in each binary classifier. The differ-

entiation stands in the group assignment. The final assignment of which group a unit i

belongs to is performed by using the majority vote.

3.3.1.3 Comparison

Among the advantages known, One-Versus-One (OVO) has a shorter training time than

One-Versus-All (OVA), because the new binary problems are easier and smaller. In ad-

dition, One-Versus-One (OVO) usually obtains a higher performance [22]. Nevertheless,

most of the binary subproblems created force data to be classified according to one of the

two groups in the partition, even if it does not belong to either of the groups involved

which may constitute a disadvantage.

Since in each binary subproblem all groups are tested, unlike One-Versus-One (OVO),

One-Versus-All (OVA) does not force data to be classified between two groups. However,

One-Versus-All (OVA) has a longer run time than One-Versus-One (OVO) and tends to

create unbalanced data sets which may end up worsening the performance of the method.

Each binary subproblem created supplies a classification that is stored in order to be

used for the final multi-class assignment. It is then reasonable to expect ties between

groups. In the case of ties between groups with the highest number of votes, we con-

ducted a random sample of size one between these tied groups.

Remark 3.7. Note that in each binary classification subproblem an optimisation step is

required, since the matrices B and W change due to either group change or data change.

3.3.2 Consecutive Linear Discriminant Functions (CLDF)

3.3.2.1 Consecutive Linear Discriminant Functions (CLDF) for Classical Variables

For data with p explanatory variables and in order to discriminate s groups, at most δ

linear discriminant functions may be defined, with δ = min{s − 1, p}.



54 MULTI-CLASS CLASSIFICATION FOR DISTRIBUTIONAL DATA

We start by recalling the classical case of multiple-group discriminant analysis ex-

plored in [23] and [24]. Consider p explanatory variables, X1, X2 . . . , Xp. The first step is

to estimate the first discriminant function. Suppose this function is

Z1 = w11X1 + w12X2 + . . . + w1pXp

where wij is the weight of the jth variable for the ith discriminant function. The weights

of the first discriminant function are estimated by maximising:

λ1 =
Between-groups Sums of Squares of Z1

Within-groups Sums of Squares of Z1

Suppose that the second discriminant function is given by:

Z2 = w21X1 + w22X2 + . . . + w2pXp

The weights of the second discriminant function are estimated such that

λ2 =
Between-groups Sums of Squares of Z2

Within-groups Sums of Squares of Z2

is maximised subject to the constraint that the discriminant functions Z1 and Z2 are uncor-

related. This procedure is repeated until all possible discriminant functions are identified.

This is an optimisation problem and the solution is given by the eigenvalues and eigen-

vectors of the non-symmetric matrix W−1B, where W and B are the within-group and

between-group Sums of Squares and Cross-Products (SSCP) matrices of the p variables,

respectively. Since W−1B is non-symmetric, the eigenvectors may not be orthogonal, i.e.,

the discriminant functions may not be orthogonal, but they are uncorrelated.

3.3.2.2 Consecutive Linear Discriminant Functions (CLDF) for Histogram-valued Vari-

ables

Regarding Symbolic Data Analysis (SDA), this approach aims at defining several linear

discriminant functions. Furthermore, these functions must be uncorrelated with each

other. In other words, consider two optimal parameter vectors that define two distinct

score histogram-valued variables. The symbolic linear correlation coefficient between the

corresponding variables must be zero.

Consider a classification problem with s a priori classes, {G1, G2, ..., Gs}.
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3.3.2.3 Optimisation

We start by addressing the optimisation step. Firstly, recall that, for data with s classes and

p explanatory variables, at most δ = min{s − 1, p} functions are useful to discriminate

between these classes. The optimisation step is performed iteratively. In each iteration,

we are searching for the optimal parameter vector that defines a discriminant function.

Moreover, apart from the first iteration, we must verify that the optimal parameter vector

defines a new discriminant function that is not correlated with the discriminant functions

previously found. Mathematically, at each time step u, for u ∈ {1, . . . , δ}, the optimal

parameter vector γu is estimated according to the following optimisation formula:

γ∗
u = arg max

γu

λu = arg max
γu

γT
u Bγu

γT
u Wγu

, (3.11)

subject to:

γu ≥ 0

∀
v∈{1,...,u−1}

r′(Sv, Su) = 0

where Sv is the score’s histogram-valued variable (also known as the linear discriminant

function) that uses the optimal parameter vector γv, for v ∈ {1, . . . , u − 1}, obtained in

previous iterations. Su is the score’s histogram-valued variable that uses the parameter

vector γu, that we aim to optimise, for u ∈ {1, . . . , δ}.

3.3.2.4 Classification

Regarding the classification step, we introduce two possible definitions. Similarly to the

previous classification definitions used, the goal is to identify the group that is at a mini-

mum distance to a unit’s score.

Definition 3.8. Consider the data divided in s a priori classes {G1, . . . , Gs} and p explana-

tory variables, with δ = min{s − 1, p} linear discriminant functions that are useful to

differentiate between these classes. Let Ψv
S(i) be the score quantile function of unit i that

uses the optimal parameter vector γv, for v ∈ {1, . . . , δ}. Moreover, let Ψv
Su

be the barycen-

tric score associated with group u, for u ∈ {1, ..., s}, that uses the optimal parameter vector

γv, for v ∈ {1, . . . , δ}.
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For a given unit i, for i ∈ {1, ..., n}, the classification assignment can be given by the

group Gu such that:

min
δ

∑
v=1

D2
M(Ψv

Su
, Ψv

S(i)) (3.12)

Definition 3.9. Consider the data divided in s a priori classes {G1, . . . , Gs} and p explana-

tory variables, with δ = min{s − 1, p} linear discriminant functions that are useful to

differentiate between these classes. Let Ψv
S(i) be the score quantile function of unit i that

uses the optimal parameter vector γv, for v ∈ {1, . . . , δ}. Using γv, let λv be the obtained

ratio regarding the variability between groups and the variability within groups. More-

over, let Ψv
Su

be the barycentric score associated with group u, for u ∈ {1, ..., s}, that uses

the parameter vector γv, for v ∈ {1, . . . , δ}.

For a given unit i, for i ∈ {1, ..., n}, the classification assignment can be given by the

group Gu such that:

min
δ

∑
v=1

 λv
δ

∑
j=1

λj

D2
M(Ψv

Su
, Ψv

S(i))

 (3.13)

Once more it is reasonable to account for the cases where there are units equally dis-

tanced from the barycentric scores of several groups, with the minimum distance. In case

there is more than one group that satisfies the condition 3.12 or condition 3.13, according

to the definition used, the group assigned is the result of a random sample of size one

over the set containing those groups, without replacement. Note that this procedure may

introduce randomness to the classification process.

The Definition 3.8 aims at identifying the group that minimises the overall distance

to the unit’s score. For every discriminant function, the distance between the barycentric

score and the unit’s score is considered. On the other hand, the Definition 3.9 aims at

identifying the group that is closest to a given unit i, taking into account how well each

discriminant function separates the classes. In order to do that, we perform a weighted

average of the Mallows distance between the unit’s score and the barycentric score of each

group that is defined by the a priori classes. The weights convey the importance a specific

discriminant function has in separating the data into classes. The overall separation of the

data in groups is given by the summation of all λj, for j ∈ {1, . . . , δ}, since all discriminant

functions obtained are useful and uncorrelated. Moreover, a specific λv measures how
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well the discriminant function that uses the optimal parameter vector γv separates data

into groups. Therefore, the weights are given by the ratio between the measure associated

with how well a specific discriminant function separates the data into groups and the

measure associated with how well all discriminant functions separate the data into groups

together.

3.3.2.5 Comparison

Like One-Versus-All (OVA), Consecutive Linear Discriminant Functions (CLDF) always

considers the entire data set. Contrary to what happens with both One-Versus-One (OVO)

and One-Versus-All (OVA), this method does not create binary subproblems. This trans-

lates into a computational advantage, i.e., the run time is fairly lower.





Chapter 4

Implementation

In this chapter, we present the general concepts of the implementation in R of the linear

discriminant analysis method developed in [1] and the proposed extension in this thesis.

We start by addressing the data structures of symbolic data used and the main functions

developed. Lastly, it is presented the optimisation implementation idea as well as deci-

sions regarding the classification process.

4.1 R packages

The code developed requires the loading of the following R packages: caret, ggplot2,

HistDAWass [25], Rcpp, Rcsdp [26], ROI and ROI.plugin.alabama [27].

4.2 Data Structure

The data structure used in this thesis takes into consideration the framework of Sym-

bolic Data Analysis (SDA) used in the package developed by Professor Antonio Irpino,

HistDAWass [25]. This package introduces distributionH object and MatH (matrix of dis-

tributions) object. Regarding the functions that belong to this package, these objects were

by far the most used in this implementation.

4.2.1 Class distributionH

The function distributionH creates a histogram object. This object contains the description

of a histogram that corresponds to an entry or a cell in a symbolic data set. The arguments

used are x which is a numeric vector that is the domain of the distribution (extremes of
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bins) and p a non-decreasing and non-negative numeric vector with the same length as x

which is the cumulative distribution function.

Example 4.1. Consider the following code:

distributionH(x = c(1, 2, 3, 10), p = c(0, 0.1, 0.5, 1))

LISTING 4.1: Creation of a distributionH object

The R console output is the following:

FIGURE 4.1: Example of distributionH object output in R console.

4.2.2 Class MatH

The class MatH defines a matrix of distributionH objects. This function creates a symbolic

data set. It generates a matrix of histogram data, in other words, a MatH object.

Example 4.2. Consider the following code:

a1 <- distributionH(x = c(1, 2, 3, 10), p = c(0, 0.1, 0.5, 1))

a2 <- distributionH(x=c(12,13,15,17), p = c(0, 0.1, 0.5, 1))

a3 <- distributionH(x=c(5,6,7,8), p = c(0, 0.1, 0.5, 1))

a4 <- distributionH(x=c(7,9,11,13), p = c(0, 0.1, 0.5, 1))

a5 <- distributionH(x=c(10 ,12 ,12.5, 15), p = c(0, 0.1, 0.5, 1))

b1 <- a1

b2 <- distributionH(x=c(-33,-28,-26,-24), p = c(0, 0.1, 0.5, 1))

b3 <- distributionH(x=c(-10,-7,-4,0), p = c(0, 0.1, 0.5, 1))

b4 <- distributionH(x=c(-20,-18,-16,-15), p = c(0, 0.1, 0.5, 1))

b5 <- distributionH(x=c(-25,-23,-20,-17), p = c(0, 0.1, 0.5, 1))

a <- MatH(x=c(a1 , a2 , a3 , a4 , a5 , b1 , b2 , b3 , b4 , b5),

nrows =5, ncols = 2, varnames = c("X", "Y"))

LISTING 4.2: Creation of a MatH object
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It created a symbolic data table with 5 units described by 2 histogram-valued variables, X and

Y. The R output is the following:

FIGURE 4.2: Example of MatH object output in R console.

FIGURE 4.3: Example of formal class MatH data environment.

4.3 Functions developed

In this section, we introduce the main functions developed to allow the application of

Linear Discriminant Analysis. Note that these functions may rely on several others of

minor importance in order to achieve the desired purpose.

• getSquaredMallowsDistance: given two distributionH objects, this function calcu-

lates the squared Mallows distance according to the rewritten formula 2.12.

• RewrittingOperation: given a MatH object, this function performs the rewriting op-

eration described in Chapter 2.
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• B matrix and W matrix: given the data set, as a MatH object, and a numeric vector

containing the ground truth regarding the a priori classes, these functions compute

the matrices of the SSCP between-groups and within-groups, respectively.

• Lambdaoptimisation: given the data set as a MatH object and a numeric vector con-

taining the ground truth regarding the a priori classes, this function performs the

optimisation processes needed in order to find the optimal parameter vector. The

output of this function is either:

– only the parameter vector, if it is a binary classification problem

– or a list of objects containing the parameter vectors, the λ values associated

and the summation of all the λ values, in case it is a multi-class classification

problem.

• LDA2Class: this function performs the classification into two a priori groups. The

inputs are both the training and testing data sets and also the numeric vector con-

taining the ground truth regarding the a priori classes. The optimisation process is

performed inside this function.

• LDAClassi f ication: this function performs the multi-class classification, consider-

ing as an input, among others, the classification technique desired: One-Versus-

All (OVA), One-Versus-One (OVO) or Consecutive Linear Discriminant Functions

(CLDF).

• TrainTestSplit: since the data structure is not a typical one, the splitting between

training and testing data sets may be difficult. Therefore, this function aims to help

when in this situation. The output is a list with 4 objects: the training data set, the

ground truth regarding classes associated with the training data set, the testing data

set and the ground truth regarding classes associated with the testing data set.

4.4 Optimisation

The constrained quadratic problem compelled us to operate with two optimisation algo-

rithms, in order to prove optimality, already implemented in RStudio:

1. One that provides an admissible solution, since the algorithm does not converge.
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2. Another one that is obtained according to the semi-definite programming relax-

ations formulation that aims at finding a good upper bound to this problem.

When used together, it is proven computationally that the solution obtained is optimal

[18].

The optimisation algorithm used to find an admissible solution, in RStudio, uses the

function ROI solve that requires the library ROI. The solver used was alabama [27], when

the correlation restriction is used, and nlminb in the other cases. The optimisation algo-

rithm used to run the semi-definite programming relaxations uses the function csdp that

requires the library Rcsdp [26].

The algorithms used return a message parameter that gives out information regarding

the feasibility of both the primal and dual problems. These parameters were taken into

account when developing the code regarding the optimisation required for this problem.

This process introduces problems that are typical in the optimisation field and may be

encountered. For example, when the program is stuck at an edge of feasibility or even

infeasibility. In these cases, we are unable to obtain an optimal parameter vector.

4.5 Classification

As previously mentioned, the class assignment is based on distances to the barycentric

score of the classes and/or based on the majority vote. Theoretically, the sample operation

is only performed when a given unit is equally distanced from the barycentric scores of

different classes. In practice, due to rounding errors and the machine’s precision, we

defined a threshold, called epsilon, of 10−5 that determines whether the distances are

close enough to be considered equal.

The code developed keeps track of the sample operations performed both in binary

and multi-class classifications. Not only it counts the number of sample operations, but

also displays in which units it was performed.

4.5.1 Two A Priori Groups

Using the Mallows distance, for each unit, we calculate the distance between the score

quantile function associated with the given unit and the barycentric scores of all the

groups, assigning the unit to the group whose barycentric score is closest to the unit’s

score.
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The implementation of this technique only relies on the construction of the vector with

the groups assigned.

4.5.2 One-Versus-All (OVA)

The implementation of this technique uses a matrix with as many lines as the number of

classes and as many columns as the units in the testing data set. Each binary subproblem

provides a line in that matrix. The classification that comes from the binary subprob-

lem Gu vs. GC
u = {G1, G2, ..., Gs} \ Gu is a vector in which an entry is 1 when the binary

classifier classifies a given unit with Gu and 0, otherwise.

The classification vectors obtained from every binary classifier associated with the

subproblems are then used for the multi-class classification using the majority vote per

unit. To clarify, the binary subproblems fill the matrix. Then, for each unit, we look to

the column associated and search for the group that has the highest number of votes. If

there is more than one group with the maximum number of votes, we perform a sample

operation of size one over the set containing these groups.

4.5.3 One-Versus-One (OVO)

The implementation of this technique also uses a matrix with as many lines as the number

of classes and as many columns as the units in the testing data set. Each binary subprob-

lem provides a vote per unit, considering the classes tested in the subproblem. This matrix

is then used for the multi-class classification using the majority vote per unit.

4.5.4 Consecutive Linear Discriminant Functions (CLDF)

The implementation of the classification of this method is somewhat similar to the binary

classification. For each unit, the classification assignment is given by the group identified,

following the Definitions 3.8 or 3.9.

The implementation of this technique only relies on the construction of the vector with

the groups assigned.

Remark 4.1. Symbolic data with a considerable amount of variables, units and/or weights

severely impact the run time of the Linear Discriminant Analysis. Moreover, having a

large number of subintervals, therefore a large number of weights, causes the distribution

of the data to be meaningless. In order to avoid this situation, we may consider histograms

with equal probability subintervals (equiprobable histograms), for every unit [28].



4. IMPLEMENTATION 65

Example 4.3. This example aims at clarifying how the multi-class classification step is performed,

especially for the strategies One-Versus-All (OVA) and One-Versus-One (OVO), since the clas-

sification of Consecutive Linear Discriminant Functions (CLDF) relies only on the calculation of

the Mallows distances.

Consider a multi-class classification problem with 3 classes where the classification assignment

is given in Table 4.1.

Unit 1 2 3 4 5 6 7 8
Class 1 2 3 3 1 1 2 1

TABLE 4.1: Classification assignment.

One-Versus-All (OVA): We start with the matrix in Table 4.2 with as many columns as the

number of units and as many lines as the number of classes.

Unit
1 2 3 4 5 6 7 8

Pr
ed

. 1 0 0 0 0 0 0 0 0
2 0 0 0 0 0 0 0 0
3 0 0 0 0 0 0 0 0

TABLE 4.2: Initial predicted classification matrix for One-Versus-All (OVA).

Recall that each binary subproblem provides a line in this matrix, therefore, consider the results

displayed in Tables 4.3, 4.4 and 4.5.

Unit 1 2 3 4 5 6 7 8
Pred 0 0 1 0 1 1 0 1

(A) Predicted classification for the binary
subproblem G1 vs. GC

1 .

Unit
1 2 3 4 5 6 7 8

Pr
ed

1 0 0 1 0 1 1 0 1
2 0 0 0 0 0 0 0 0
3 0 0 0 0 0 0 0 0

(B) Predicted classification matrix updated.

TABLE 4.3: Results after the binary subproblem G1 vs. GC
1 in One-Versus-All (OVA).

Unit 1 2 3 4 5 6 7 8
Pred 0 1 0 0 1 0 1 1

(A) Predicted classification for the binary
subproblem G2 vs. GC

2 .

Unit
1 2 3 4 5 6 7 8

Pr
ed

1 0 0 1 0 1 1 0 1
2 0 1 0 0 1 0 1 1
3 0 0 0 0 0 0 0 0

(B) Predicted classification matrix updated.

TABLE 4.4: Results after the binary subproblem G2 vs. GC
2 in One-Versus-All (OVA).



66 MULTI-CLASS CLASSIFICATION FOR DISTRIBUTIONAL DATA

Unit 1 2 3 4 5 6 7 8
Pred 0 0 0 1 0 1 1 1

(A) Predicted classification for the binary
subproblem G3 vs. GC

3 .

Unit
1 2 3 4 5 6 7 8

Pr
ed

1 0 0 1 0 1 1 0 1
2 0 1 0 0 1 0 1 1
3 0 0 0 1 0 1 1 1

(B) Predicted classification matrix updated.

TABLE 4.5: Results after the binary subproblem G3 vs. GC
3 in One-Versus-All (OVA).

The next step is to analyse Table 4.5b in order to determine which groups have the maximum

number of votes per unit. Note that units 1, 5, 6, 7 and 8 have several groups in this situation,

therefore we must perform sample operations. Suppose the results of the sample operations are the

ones given below:

• Unit 1: sample(1,2,3) = 2;

• Unit 5: sample(1,2) = 2;

• Unit 6: sample(1,3) = 1;

• Unit 7: sample(2,3) = 3;

• Unit 8: sample(1,2,3) = 2;

The classification given by One-Versus-All (OVA) is:

Unit 1 2 3 4 5 6 7 8
Pred 2 2 1 3 2 1 3 2

TABLE 4.6: Predicted classification by One-Versus-All (OVA).

One-Versus-One (OVO): We start with the matrix in Table 4.7 with as many columns as the

number of units and as many lines as the number of classes.

Unit
1 2 3 4 5 6 7 8

Pr
ed

1 0 0 0 0 0 0 0 0
2 0 0 0 0 0 0 0 0
3 0 0 0 0 0 0 0 0

TABLE 4.7: Initial predicted classification matrix for One-Versus-One (OVO).

Recall that each binary subproblem provides a vote per unit, considering the classes tested in

the subproblem. Consider the results displayed in Tables 4.8, 4.9 and 4.10.
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Unit 1 2 3 4 5 6 7 8
Pred 1 2 1 2 1 2 2 1

(A) Predicted classification for the binary
subproblem G1 vs. G2.

Unit
1 2 3 4 5 6 7 8

Pr
ed

1 1 0 1 0 1 0 0 1
2 0 1 0 1 0 1 1 0
3 0 0 0 0 0 0 0 0

(B) Predicted classification matrix updated.

TABLE 4.8: Results after the binary subproblem G1 vs. G2 in One-Versus-One (OVO).

Unit 1 2 3 4 5 6 7 8
Pred 2 2 3 3 2 3 2 3

(A) Predicted classification for the binary
subproblem G2 vs. G3.

Unit
1 2 3 4 5 6 7 8

Pr
ed

1 1 0 1 0 1 0 0 1
2 1 2 0 1 1 1 2 0
3 0 0 1 1 0 1 0 1

(B) Predicted classification matrix updated.

TABLE 4.9: Results after the binary subproblem G2 vs. G3 in One-Versus-One (OVO).

Unit 1 2 3 4 5 6 7 8
Pred 1 1 3 3 3 1 3 1

(A) Predicted classification for the binary
subproblem G1 vs. G3.

Unit
1 2 3 4 5 6 7 8

Pr
ed

1 2 1 1 0 1 1 0 2
2 1 2 0 1 1 1 2 0
3 0 0 2 2 1 1 1 1

(B) Predicted classification matrix updated.

TABLE 4.10: Results after the binary subproblem G1 vs. G3 in One-Versus-One (OVO).

The next step is to analyse Table 4.10b in order to determine which groups have the maximum

number of votes per unit. Note that units 5 and 6 have several groups in this situation, therefore

we must perform sample operations. Suppose the results of the sample operations are the ones

given below:

• Unit 5: sample(1,2,3) = 1;

• Unit 6: sample(1,2,3) = 2;

The classification given by One-Versus-One (OVO) is:

Unit 1 2 3 4 5 6 7 8
Pred 1 2 3 3 1 2 2 1

TABLE 4.11: Predicted classification by One-Versus-One (OVO).





Chapter 5

Application

In this section, we present several applications of the model developed, considering the

three techniques explored. Several network data sets that were artificially created are

analysed. In this thesis, networks are referenced in the sense of graphs. It is given a

brief introduction to the relevant concepts in respect of network science. Moreover, we

studied the model’s performance on four data sets regarding Internet traffic attacks. These

attacks are the result of the corruption of the Border Gateway Protocol (BGP), resulting

in redirecting [29]. Finally, we studied the techniques’ performance on interval-valued

variables. This is explored by using a small data set associated with car models.

5.1 Performance Measures

In classification problems, in order to assess a model’s performance, it is important to

choose measures that reflect the ability that the model has to predict the correct classes.

In this sense, the measures used were accuracy and balanced accuracy.

The accuracy formula is the following:

Accuracy =
Correct Predictions

Number of Predictions

Balanced accuracy is employed when evaluating the strategy’s predictive ability for

each class separately. The main advantage is that this measure accounts for imbalanced

classes. The formula for a binary classification is the following:

Balanced Accuracy =
1
2

(
Correct Positive Predictions

Number of Positives
+

Correct Negative Predictions
Number of Negative

)

69
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5.2 Modelling Network Data

5.2.1 Description of the Data

The network data sets are synthetic. We developed networks considering the Erdős-

Renyi, Watts–Strogatz and Barabási–Albert models, with the parameters carefully chosen.

The classification problem relies on identifying the model used to develop each network

(3 classes):

• 1 - Barabási–Albert;

• 2 - Erdős-Renyi;

• 3 - Watts–Strogatz;

5.2.2 Network Models

In order to better understand the following information, it is suggested that the reader

gets acquainted with concepts associated with network science such as degree, between-

ness centrality, closeness centrality, eigenvector centrality, giant component and regular

graph that can be found in [30].

5.2.2.1 Erdős-Renyi

This is the simplest model in network science. The generation of a random network fol-

lowing this model consists of N nodes where each pair of nodes is connected with a prob-

ability p. The degree (number of neighbours) distribution of a random network follows a

Binomial distribution, Binomial(N, p), therefore the average degree, < k >, is given by:

< k >= p(N − 1) (5.1)

For different values of p, we have different regimes. For p = 0, all nodes are isolated

and, for p = 1, we have a graph that is fully connected. Figure 5.1, which can be found in

[31] and [30], displays the different regimes that an Erdős-Renyi network can be in.

The values used to produce the Erdős-Renyi networks in the data sets were:

• N ∈ {100, 200, 300, 400, 500, 550, 600, 700};

• p ∈ {0.01, 0.03, 0.05, 0.1, 0.15, 0.2, 0.25}.
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FIGURE 5.1: (a) Number of nodes in the giant component (normalized) in the Erdős-
Renyi network plotted as a function of the average degree. (b) Subcritical regime: few
small clusters are present. (c) Phase transition at the critical point of < k >= 1. (d) Super-
critical regime: a larger fraction of nodes belong to the giant component. (e) Connected
regime: the giant component contains almost every node in the network. Image source:

[30].

5.2.2.2 Watts–Strogatz

This model was developed in order to merge the network’s structure and randomness.

This model only has one parameter that controls the probability of rewiring an edge,

p. Starting from a regular graph (a graph where each vertex has the same number of

neighbours), each edge is randomly redirected with a chosen probability. Figure 5.2 that

can be found in [32] aims at displaying the network effect when changing the rewiring

probability.

FIGURE 5.2: Algorithm that produces Watts-Strogatz networks, according to the rewiring
probability p.
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The networks produced when 0 < p < 1 display a mixture of regular and random

connections.

The values used to produce the Watts–Strogatz networks in the data sets were:

• N ∈ {100, 200, 300, 400, 500, 550, 600, 700};

• p ∈ {0.01, 0.05, 0.2, 0.4, 0.5, 0.6, 0.8}.

5.2.2.3 Barabási–Albert

This model generates networks known as scale-free networks, where the degree distri-

butions decay with a power law. This model is based on both growth and preferential

attachment. The first concept is obtained by adding nodes sequentially. The second one

is obtained by taking into account the already existing nodes’ degree when establishing a

new connection with a new node added to the network. It favours new connections with

already highly connected nodes. An analogy commonly referred to is ”the more popular

you are, the more popular you become”.

Consider a network with N final nodes and m0 initial nodes. Sequentially, we add one

node and create m new edges with the new node and already existing ones. After a fair

amount of time steps, t, the graph has m0 + t nodes and mt edges, therefore < k >∼ 2m.

The values used to produce the Barabási–Albert networks in the data sets were:

• N ∈ {100, 200, 300, 400, 500, 550, 600, 700};

• (m0, m) ∈ {(3, 1), (5, 2), (7, 3), (9, 4), (11, 5), (13, 6), (15, 7)}.

5.2.3 Data sets

Each network (unit in the symbolic data sets) is described by the distribution over the

network’s nodes of standard graph centrality measures:

• Degree: number of neighbours;

• Betweenness centrality;

• Closeness centrality;

• Eigenvector centrality;



5. APPLICATION 73

Therefore, the dataset has four histogram-valued variables.

In view of testing the performance of the approaches developed on both balanced and

unbalanced data sets, we developed eight different network data sets. Each dataset has

a fixed number of units per network model. The description of each dataset is given in

Table 5.1.

Erdős-Renyi Watts–Strogatz Barabási–Albert Total
Balanced 56 56 56 168
UnbalER 12 56 56 124
UnbalWS 56 12 56 124
UnbalBA 56 56 12 124

UnbalERWS 12 12 56 80
UnbalWSBA 56 12 12 80
UnbalERBA 12 56 12 80

UnbalAll 54 28 18 100

TABLE 5.1: Number of units per network model in each synthetic dataset.

Note that each standard graph measure is associated with a node, i.e., the degree,

betweenness centrality, closeness centrality and eigenvector centrality are measured with

respect to a node in a network. Therefore, the first-level units are the nodes. To obtain

symbolic data sets, we performed contemporary aggregations, considering all the nodes

that belong to a specific network. Therefore, the higher-level units are the networks. For

example, in the symbolic data sets, the concretisations of the histogram-valued variable

Degree can be seen as the degree distribution of each network produced.

5.2.4 Discussion of Results

We divided each data set into training and testing data sets considering 80% and 20%,

respectively. The following tables display the confusion matrices obtained from apply-

ing the One-Versus-All (OVA), One-Versus-One (OVO) and Consecutive Linear Discrim-

inant Functions (CLDF) strategies to the several networks data sets created. ”CLDF w/

weights” references the Consecutive Linear Discriminant Functions (CLDF) strategy ac-

cording to the Definition 3.9 and ”CLDF w/o weights” references the Consecutive Linear

Discriminant Functions (CLDF) strategy according to the Definition 3.8. Moreover, in

the tables that display the number of sample operations performed ”MV” references the

samples performed in the majority vote for the multi-class classification strategies.
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Reference
1 2 3

Pr
ed

ic
te

d 1 35 2 0
2 10 17 24
3 1 24 20

(A) OVA.

Reference
1 2 3

Pr
ed

ic
te

d 1 46 0 0
2 0 43 5
3 0 0 39

(B) OVO.

Reference
1 2 3

Pr
ed

ic
te

d 1 45 1 0
2 1 42 15
3 0 0 29

(C) CLDF w/ weights.

Reference
1 2 3

Pr
ed

ic
te

d 1 46 1 0
2 0 42 11
3 0 0 33

(D) CLDF w/o weights.

TABLE 5.2: Confusion matrices obtained from applying the strategies to the training data
set of Balanced.

Reference
1 2 3

Pr
ed

ic
te

d 1 2 3 4
2 7 4 4
3 1 6 4

(A) OVA.

Reference
1 2 3

Pr
ed

ic
te

d 1 9 0 0
2 1 13 1
3 0 0 11

(B) OVO.

Reference
1 2 3

Pr
ed

ic
te

d 1 9 0 0
2 1 9 0
3 0 4 12

(C) CLDF w/ weights.

Reference
1 2 3

Pr
ed

ic
te

d 1 9 0 0
2 1 11 2
3 0 2 10

(D) CLDF w/o weights.

TABLE 5.3: Confusion matrices obtained from applying the strategies to the testing data
set of Balanced.

Reference
1 2 3

Pr
ed

ic
te

d 1 46 2 0
2 0 4 4
3 0 5 39

(A) OVA.

Reference
1 2 3

Pr
ed

ic
te

d 1 46 0 0
2 0 11 2
3 0 0 41

(B) OVO.

Reference
1 2 3

Pr
ed

ic
te

d 1 45 1 0
2 1 10 19
3 0 0 24

(C) CLDF w/ weights.

Reference
1 2 3

Pr
ed

ic
te

d 1 46 2 0
2 0 9 15
3 0 0 28

(D) CLDF w/o weights.

TABLE 5.4: Confusion matrices obtained from applying the strategies to the training data
set of UnbalER.
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Reference
1 2 3

Pr
ed

ic
te

d 1 3 0 5
2 4 1 2
3 3 0 6

(A) OVA.

Reference
1 2 3

Pr
ed

ic
te

d 1 10 1 0
2 0 0 1
3 0 0 12

(B) OVO.

Reference
1 2 3

Pr
ed

ic
te

d 1 4 0 0
2 6 1 0
3 0 0 13

(C) CLDF w/ weights.

Reference
1 2 3

Pr
ed

ic
te

d 1 3 0 0
2 7 1 1
3 0 0 12

(D) CLDF w/o weights.

TABLE 5.5: Confusion matrices obtained from applying the strategies to the testing data
set of UnbalER.

Reference
1 2 3

Pr
ed

ic
te

d 1 44 1 0
2 0 15 4
3 1 28 6

(A) OVA.

Reference
1 2 3

Pr
ed

ic
te

d 1 43 0 0
2 2 31 0
3 0 13 10

(B) OVO.

Reference
1 2 3

Pr
ed

ic
te

d 1 40 0 0
2 5 40 1
3 0 4 9

(C) CLDF w/ weights.

Reference
1 2 3

Pr
ed

ic
te

d 1 45 1 0
2 0 43 6
3 0 0 4

(D) CLDF w/o weights.

TABLE 5.6: Confusion matrices obtained from applying the strategies to the training data
set of UnbalWS.

Reference
1 2 3

Pr
ed

ic
te

d 1 4 1 1
2 6 8 1
3 1 3 0

(A) OVA.

Reference
1 2 3

Pr
ed

ic
te

d 1 10 0 0
2 1 8 0
3 0 4 2

(B) OVO.

Reference
1 2 3

Pr
ed

ic
te

d 1 11 0 0
2 0 11 0
3 0 1 2

(C) CLDF w/ weights.

Reference
1 2 3

Pr
ed

ic
te

d 1 10 0 0
2 1 12 0
3 0 0 2

(D) CLDF w/o weights.

TABLE 5.7: Confusion matrices obtained from applying the strategies to the testing data
set of UnbalWS.
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Reference
1 2 3

Pr
ed

ic
te

d 1 10 0 0
2 0 32 27
3 0 16 14

(A) OVA.

Reference
1 2 3

Pr
ed

ic
te

d 1 10 0 0
2 0 48 6
3 0 0 35

(B) OVO.

Reference
1 2 3

Pr
ed

ic
te

d 1 10 0 0
2 0 48 11
3 0 0 30

(C) CLDF w/ weights.

Reference
1 2 3

Pr
ed

ic
te

d 1 10 0 0
2 0 48 13
3 0 0 28

(D) CLDF w/o weights.

TABLE 5.8: Confusion matrices obtained from applying the strategies to the training data
set of UnbalBA.

Reference
1 2 3

Pr
ed

ic
te

d 1 1 3 4
2 1 2 6
3 0 3 5

(A) OVA.

Reference
1 2 3

Pr
ed

ic
te

d 1 2 0 0
2 0 8 1
3 0 0 14

(B) OVO.

Reference
1 2 3

Pr
ed

ic
te

d 1 1 0 0
2 1 8 1
3 0 0 14

(C) CLDF w/ weights.

Reference
1 2 3

Pr
ed

ic
te

d 1 2 0 0
2 0 8 0
3 0 0 15

(D) CLDF w/o weights.

TABLE 5.9: Confusion matrices obtained from applying the strategies to the testing data
set of UnbalBA.

Reference
1 2 3

Pr
ed

ic
te

d 1 43 2 0
2 0 3 0
3 0 6 10

(A) OVA.

Reference
1 2 3

Pr
ed

ic
te

d 1 43 0 0
2 0 11 1
3 0 0 9

(B) OVO.

Reference
1 2 3

Pr
ed

ic
te

d 1 42 1 0
2 1 10 5
3 0 0 5

(C) CLDF w/ weights.

Reference
1 2 3

Pr
ed

ic
te

d 1 42 2 0
2 1 9 4
3 0 0 6

(D) CLDF w/o weights.

TABLE 5.10: Confusion matrices obtained from applying the strategies to the training
data set of UnbalERWS.
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Reference
1 2 3

Pr
ed

ic
te

d 1 6 0 0
2 2 1 1
3 5 0 1

(A) OVA.

Reference
1 2 3

Pr
ed

ic
te

d 1 11 0 0
2 2 1 0
3 0 0 2

(B) OVO.

Reference
1 2 3

Pr
ed

ic
te

d 1 8 0 0
2 5 1 0
3 0 0 2

(C) CLDF w/ weights.

Reference
1 2 3

Pr
ed

ic
te

d 1 12 0 0
2 1 1 0
3 0 0 2

(D) CLDF w/o weights.

TABLE 5.11: Confusion matrices obtained from applying the strategies to the testing data
set of UnbalERWS.

Reference
1 2 3

Pr
ed

ic
te

d 1 6 0 0
2 2 14 3
3 1 29 5

(A) OVA.

Reference
1 2 3

Pr
ed

ic
te

d 1 9 0 0
2 0 42 1
3 0 1 7

(B) OVO.

Reference
1 2 3

Pr
ed

ic
te

d 1 9 0 0
2 0 43 3
3 0 0 5

(C) CLDF w/ weights.

Reference
1 2 3

Pr
ed

ic
te

d 1 7 0 0
2 2 31 0
3 0 12 8

(D) CLDF w/o weights.

TABLE 5.12: Confusion matrices obtained from applying the strategies to the training
data set of UnbalWSBA.

Reference
1 2 3

Pr
ed

ic
te

d 1 0 5 1
2 1 6 1
3 2 2 2

(A) OVA.

Reference
1 2 3

Pr
ed

ic
te

d 1 3 0 0
2 0 13 1
3 0 0 3

(B) OVO.

Reference
1 2 3

Pr
ed

ic
te

d 1 3 1 0
2 0 12 0
3 0 0 4

(C) CLDF w/ weights.

Reference
1 2 3

Pr
ed

ic
te

d 1 3 0 0
2 0 11 1
3 0 2 3

(D) CLDF w/o weights.

TABLE 5.13: Confusion matrices obtained from applying the strategies to the testing data
set of UnbalWSBA.
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Reference
1 2 3

Pr
ed

ic
te

d 1 9 1 0
2 0 2 4
3 0 8 40

(A) OVA.

Reference
1 2 3

Pr
ed

ic
te

d 1 9 0 0
2 0 11 1
3 0 0 43

(B) OVO.

Reference
1 2 3

Pr
ed

ic
te

d 1 8 0 0
2 1 11 5
3 0 0 39

(C) CLDF w/ weights.

Reference
1 2 3

Pr
ed

ic
te

d 1 8 0 0
2 1 11 7
3 0 0 37

(D) CLDF w/o weights.

TABLE 5.14: Confusion matrices obtained from applying the strategies to the training
data set of UnbalERBA.

Reference
1 2 3

Pr
ed

ic
te

d 1 1 0 5
2 2 0 3
3 0 1 4

(A) OVA.

Reference
1 2 3

Pr
ed

ic
te

d 1 3 0 0
2 0 1 2
3 0 0 10

(B) OVO.

Reference
1 2 3

Pr
ed

ic
te

d 1 3 0 0
2 0 1 4
3 0 0 8

(C) CLDF w/ weights.

Reference
1 2 3

Pr
ed

ic
te

d 1 3 0 0
2 0 1 0
3 0 0 12

(D) CLDF w/o weights.

TABLE 5.15: Confusion matrices obtained from applying the strategies to the testing data
set of UnbalERBA.

Reference
1 2 3

Pr
ed

ic
te

d 1 15 0 0
2 0 25 11
3 1 20 9

(A) OVA.

Reference
1 2 3

Pr
ed

ic
te

d 1 16 0 3
2 0 44 1
3 0 1 16

(B) OVO.

Reference
1 2 3

Pr
ed

ic
te

d 1 16 0 0
2 0 41 7
3 0 4 13

(C) CLDF w/ weights.

Reference
1 2 3

Pr
ed

ic
te

d 1 16 0 0
2 0 45 8
3 0 0 12

(D) CLDF w/o weights.

TABLE 5.16: Confusion matrices obtained from applying the strategies to the training
data set of UnbalAll.
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Reference
1 2 3

Pr
ed

ic
te

d 1 1 4 1
2 1 0 5
3 0 5 2

(A) OVA.

Reference
1 2 3

Pr
ed

ic
te

d 1 2 0 1
2 0 9 0
3 0 0 7

(B) OVO.

Reference
1 2 3

Pr
ed

ic
te

d 1 1 0 0
2 1 9 0
3 0 0 8

(C) CLDF w/ weights.

Reference
1 2 3

Pr
ed

ic
te

d 1 2 0 0
2 0 9 1
3 0 0 7

(D) CLDF w/o weights.

TABLE 5.17: Confusion matrices obtained from applying the strategies to the testing data
set of UnbalAll.

By observing the confusion matrices in Tables 5.2 to 5.17, we observe that there is

rarely any confusion in distinguishing classes 1 and 3. The most frequent confusion be-

tween classes concerns classes 2 and 3. Occasionally, we observed confusion between

classes 1 and 2.

Moreover, when unbalancing the classes, it is possible to realise that the error rate

may be higher for the minority classes. For example, in Table 5.4a, the minority class is

2. Regarding the number of units that belong to class 2, we verify that approximately

63.64% (7/11) were classified as belonging to the other classes. Regarding class 1, 0%

were classified as belonging to the other classes and, regarding class 3, 9.30% (4/43) were

classified as belonging to the class 2. Therefore, the error rate associated with class 2 is

higher than the ones associated with the remaining classes.

It is possible to understand that the One-Versus-All (OVA) strategy displays the worst

performance. Notice that One-Versus-One (OVO) performs extremely well, regardless of

the model used to produce the networks. Moreover, Consecutive Linear Discriminant

Functions (CLDF) strategies also perform fairly well.

Table 5.18 considers the global accuracy associated with the classifications obtained by

applying each strategy developed. As expected, the accuracy values associated with the

training data set tend to be higher than those associated with the testing data set.

In the vast majority of cases, the One-Versus-All (OVA) strategy does not provide good

models to classify the data. This is clearly evident when analysing the testing data set

results. Even with a fairly good fit on the training data set, the generalisation is not ad-

equate. For previously unseen data, the accuracy values registered can reach 50.00% or
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CLDF CLDF
OVA OVO w/ weights w/o weights

train test train test train test train test
Balanced 54.14 28.57 96.24 94.29 87.22 85.71 90.98 85.71
UnbalER 89.00 41.67 98.00 91.67 79.00 75.00 83.00 66.67
UnbalWS 65.66 48.00 84.85 80.00 89.90 96.00 92.93 96.00
UnbalBA 56.57 32.00 93.94 96.00 88.89 92.00 86.87 100.00

UnbalERWS 87.50 50.00 98.44 87.50 89.06 68.75 89.06 93.75
UnbalWSBA 41.67 40.00 96.67 95.00 95.00 95.00 76.67 85.00
UnbalERBA 79.69 31.25 98.44 87.50 90.62 75.00 87.50 100.00

UnbalAll 60.49 15.79 93.83 94.74 86.42 94.74 90.12 94.74

TABLE 5.18: Accuracy for the multi-class classification strategies (%).

can be as low as 15.79% which is unacceptable.

On the other hand, One-Versus-One (OVO) and both Consecutive Linear Discrimi-

nant Functions (CLDF) strategies tend to provide good models. One-Versus-One (OVO)

performs extremely well, registering accuracy values consistently higher than 84% on the

training data set and higher than 80% on the testing data set. In respect of the UnbalAll,

where the accuracy of the testing data set is higher than the accuracy of the training

data set, it is possible that the model is incurring in underfitting in the optimisation step.

This also tends to happen when using the strategies of Consecutive Linear Discriminant

Functions (CLDF) according to the Definition 3.8, i.e., without using weights. Although

One-Versus-One (OVO) performs better than Consecutive Linear Discriminant Functions

(CLDF), these strategies tend to properly fit the data. Regarding the Consecutive Linear

Discriminant Functions (CLDF), when considering the Definition 3.9, i.e., using weights,

the worst model registered has associated accuracy values of 79% and 75% on the training

and testing data sets, respectively, still providing a good fit. Regarding the Consecutive

Linear Discriminant Functions (CLDF), when considering the Definition 3.8, i.e., without

using weights, the worst model registered has accuracy values of 83% on the training and

66.67% on the testing data sets.

Therefore, One-Versus-One (OVO) and both Consecutive Linear Discriminant Func-

tions (CLDF) strategies tend to perform well. Moreover, this performance is better than

the one associated with One-Versus-All (OVA). It is possible to realise that unbalanced

data does not imply a decrease in the accuracy. In these data sets, this may be explained

since there is confusion in distinguishing correctly the models Erdős-Renyi (class 2) and

Watts–Strogatz (class 3). Therefore, unbalancing the data in such a way that the number of
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units associated with these networks is lower may increase the performance of the model.

Tables 5.19, 5.20 and 5.21 display the balanced accuracy values associated with the

classes 1, 2 and 3, respectively.

CLDF CLDF
OVA OVO w/ weights w/o weights

train test train test train test train test
Balanced 86.89 46.00 100.00 95.00 98.34 95.00 99.43 95.00
UnbalER 98.15 47.14 100.00 96.43 97.99 70.00 98.15 65.00
UnbalWS 97.96 61.04 97.78 95.45 94.44 100.00 99.07 95.45
UnbalBA 100.00 59.78 100.00 100.00 100.00 75.00 100.00 100.00

UnbalERWS 95.24 73.08 100.00 92.31 96.46 80.77 94.08 96.15
UnbalWSBA 83.33 32.35 100.00 100.00 100.00 97.06 88.89 100.00
UnbalERBA 99.09 47.44 100.00 100.00 94.44 100.00 94.44 100.00

UnbalAll 96.88 60.29 97.69 97.06 100.00 75.00 100.00 100.00

TABLE 5.19: Balanced accuracy for class 1 for the multi-class classification strategies (%).

Concerning class 1, both One-Versus-One (OVO) and Consecutive Linear Discrimi-

nant Functions (CLDF) capture extremely well the behaviour of this class. One-Versus-

One (OVO) balanced accuracy values are consistently higher than 92%. Regarding the

Consecutive Linear Discriminant Functions (CLDF) strategy according to the Definition

3.9, i.e., using weights, balanced accuracy values are consistently higher than 70%. Re-

garding the Consecutive Linear Discriminant Functions (CLDF) strategy according to

the Definition 3.8, i.e., without using weights, balanced accuracy values are consistently

higher than 65%. Even One-Versus-All (OVA), which registers the worst performance,

displays balanced accuracy values above 83% in the training data set.

It is also relevant to mention that this class behaviour is perfectly captured twenty-one

times.

Concerning class 2, the balanced accuracy values associated with One-Versus-All (OVA)

are clearly lower than those associated with One-Versus-One (OVO) or Consecutive Lin-

ear Discriminant Functions (CLDF). In general, One-Versus-One (OVO) and Consecutive

Linear Discriminant Functions (CLDF) learn this class behaviour and classify it prop-

erly in previously unseen data. Moreover, Consecutive Linear Discriminant Functions

(CLDF), according to the Definition 3.8 and 3.9, tend to perform slightly worse than One-

Versus-One (OVO).

When observing the balanced accuracy values associated with data set UnbalER for

the strategy One-Versus-One (OVO), it is evident the low value in the testing data set:
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CLDF CLDF
OVA OVO w/ weights w/o weights

train test train test train test train test
Balanced 50.88 40.38 97.22 95.45 89.95 82.34 92.73 85.49
UnbalER 65.93 86.96 98.88 47.83 84.22 86.96 82.48 82.61
UnbalWS 63.41 56.41 83.41 79.49 90.00 95.83 93.41 96.15
UnbalBA 56.86 41.91 94.12 97.06 89.22 94.12 87.25 100.00

UnbalERWS 63.64 90.00 99.06 93.33 89.79 83.33 86.19 96.67
UnbalWSBA 51.57 58.79 95.90 92.86 91.18 96.15 80.16 85.16
UnbalERBA 55.32 33.33 99.06 93.33 94.34 86.67 92.45 100.00

UnbalAll 62.50 20.00 97.50 100.00 85.83 95.00 88.89 95.00

TABLE 5.20: Balanced accuracy for class 2 for the multi-class classification strategies (%).

47.83%. The reason behind this may be connected to the data set constitution. Recall that

the UnbalER data set is unbalanced, because the class Erdős-Renyi (class 2) only has 12

units.

CLDF CLDF
OVA OVO w/ weights w/o weights

train test train test train test train test
Balanced 58.68 51.45 94.32 95.83 82.95 91.30 87.50 87.32
UnbalER 90.96 59.44 97.67 96.15 77.91 100.00 82.56 96.15
UnbalWS 63.71 41.30 92.70 91.30 92.75 97.83 70.00 100.00
UnbalBA 53.28 51.67 92.68 96.67 86.59 96.67 84.15 100.00

UnbalERWS 94.44 57.14 95.00 100.00 75.00 100.00 80.00 100.00
UnbalWSBA 52.40 62.50 92.79 87.50 81.25 100.00 88.46 81.25
UnbalERBA 75.45 54.17 98.86 91.67 94.32 83.33 92.05 100.00

UnbalAll 55.29 39.77 89.18 93.75 79.22 100.00 80.00 93.75

TABLE 5.21: Balanced accuracy for class 3 for the multi-class classification strategies (%).

Regarding class 3, both One-Versus-One (OVO) and Consecutive Linear Discriminant

Functions (CLDF) perform better than One-Versus-All (OVA). The behaviour of this class

is perfectly captured nine times. Moreover, these perfectly balanced accuracy values tend

to be associated with the Consecutive Linear Discriminant Functions (CLDF) strategies.

The balanced accuracy values associated with strategy One-Versus-One (OVO) are

consistently higher than 87%, the ones associated with strategy Consecutive Linear Dis-

criminant Functions (CLDF), according to the Definition 3.9, i.e., using weights, are con-

sistently higher than 75% and the ones associated with strategy Consecutive Linear Dis-

criminant Functions (CLDF), according to the Definition 3.8, i.e., without using weights,
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are consistently higher than 70%. One-Versus-One (OVO) tends to be more stable since

the generalisation worsens no more than 8%.

Although the balanced accuracy was the measure used, we realise that, in the presence

of unbalanced data sets, the balanced accuracy smooths the higher error rate that may

be associated with the minority classes. For example, as referenced previously, in Table

5.4a, regarding the number of units that belong to class 2, we noticed that approximately

63.64% (7/11) were classified as belonging to the other classes and, in Table 5.20, we notice

a balanced accuracy of 65.93%. Regarding class 1, 0% were misclassified and the balanced

accuracy registered, in Table 5.19, is 98.15%. Finally, regarding class 3, 9.30% (4/43) were

classified as belonging to class 2 and the balanced accuracy registered, in Table 5.21, is

90.96%. Although the error rate associated with class 2 is much higher than the ones

associated with the remaining classes, the balanced accuracy values do not register such

a large difference between the classes. Therefore, when drawing conclusions based on

the balanced accuracy values we must keep in mind that the results associated with the

minority classes may be mitigated.

Tables 5.22 and 5.23 display the average number of samples performed in the binary

subproblems and the exact number of samples performed in the majority vote part of the

classification. The number of sample operations performed suggests the level of random-

ness in the classification process.

OVA OVO CLDF CLDF
binary MV binary MV w/ weights w/o weights

Balanced 0 105 1 15 0 0
UnbalER 0 11 0 4 0 8
UnbalWS 0 56 0 28 1 2
UnbalBA 0 83 0 10 0 1

UnbalERWS 0 8 1 4 3 0
UnbalWSBA 0 51 1 4 0 4
UnbalERBA 0 17 1 4 0 0

UnbalAll 0 64 5 6 13 0

TABLE 5.22: Number of samples performed in the majority vote for the multi-class clas-
sification strategies on the train data set of network data, including the binary subprob-

lems’ average number of samples.

Both One-Versus-One (OVO) and One-Versus-All (OVA) display a low number of

samples performed in the binary subproblems of the training data set. In general, the

Consecutive Linear Discriminant Functions (CLDF) strategy, when considering the Def-

inition 3.9, i.e., using weights, also displays this behaviour, but the number of sample
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operations performed increases when considering the data set UnbalAll. Therefore, for

this strategy, unbalancing the data sets appears to gradually introduce randomness to the

classification process in the training step. Moreover, the Consecutive Linear Discrimi-

nant Functions (CLDF) strategy, when considering the Definition 3.8, i.e., without using

weights, also displays a fairly low amount of sample operations performed.

One-Versus-All (OVA) registers a very high number of samples in the majority vote,

introducing a lot of randomness in the classification process.

When comparing the data sets, it seems that the Erdős-Renyi model introduces a lot

of randomness. This stems from the fact that UnbalER has a lower number of sample

operations performed, when using the strategies One-Versus-All (OVA) and One-Versus-

One (OVO), compared to UnbalWS and UnbalBA.

OVA OVO CLDF CLDF
binary MV binary MV w/ weights w/o weights

Balanced 35 20 0 2 0 0
UnbalER 24 21 0 4 0 0
UnbalWS 25 14 0 13 1 0
UnbalBA 25 14 0 3 0 0

UnbalERWS 16 8 0 2 0 0
UnbalWSBA 20 9 0 2 0 6
UnbalERBA 16 11 0 2 1 0

UnbalAll 19 8 0 1 1 0

TABLE 5.23: Number of samples performed in the majority vote for the multi-class classi-
fication strategies on the test data set of network data, including the binary subproblems’

average number of samples.

Although One-Versus-All (OVA) does not register any number of samples performed

in the binary subproblems of the training data sets, this number registers a steep increase,

when in presence of the testing data set. By analysing Table 5.23, we can say that One-

Versus-All (OVA) is mainly the result of random processes. As a consequence, the accu-

racy and balanced accuracy values are not meaningful.

One-Versus-One (OVO) displays less randomness. Although, performing 13 sample

operations in the majority vote process is fairly high, given the testing data set’s dimen-

sions. Moreover, Consecutive Linear Discriminant Functions (CLDF), when considering

both definitions, also show low values of sample operations performed.
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5.3 Modelling Internet Data

5.3.1 Description of the Data

This data is related to Internet traffic redirection that is the result of Border Gateway Pro-

tocol (BGP) hijacking attacks. Border Gateway Protocol (BGP) is a gateway protocol that

is used so that the Internet can exchange routing information between autonomous sys-

tems. In other words, Border Gateway Protocol (BGP) enables systems to interact and

communicate with each other. A sequence of systems is called a route.

This protocol does not support security mechanisms, leading the way to attacks. These

attacks induce a traffic redirection that may cause flawed routing information on a world-

wide scale. It was proposed a methodology for the detection of these attacks based on

a set of probes that are spread worldwide [29]. They not only periodically measure the

Round-Trip Time (RTT) and trace routes to targets, but also report their measurements.

Round-Trip Time (RTT) is the time interval that the packages take to follow the route

probe −→ target −→ probe.

By studying these measurements in several probes, it is possible to detect traffic redi-

rection. Traffic can be classified as either:

• no relay or regular: this is what is expected in a normal situation.

probe −→ target −→ probe

• under attack: when under attack, the traffic is deviated before reaching the target.

probe −→ relay −→ target −→ probe

What is here on out referenced as target is the autonomous system that receives data

and sends it to the respective probe. A probe is a machine from which data packages

are sent, received and measures are assessed. These measures are useful to decide if an

observation is atypical or not. A relay concerns the attacker that deviates the traffic from

probe to target.

In the data, we considered four targets (Chicago, Frankfurt, Hong Kong and London),

twelve probes and four relays. Moreover, the classification problem relies on identifying

the relays (5 classes):

• 0 - no relay (regular);
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• 1 - relay in Los Angeles;

• 2 - relay in Madrid;

• 3 - relay in Moscow;

• 4 - relay in São Paulo;

5.3.2 Data sets

Based on the structure proposed, the data sets used in this thesis were obtained. There

are four distinct data sets with a different number of observations, but the same num-

ber of histogram-valued variables. Each histogram-valued variable is associated with

information collected from a specific probe. There are 12 probes, therefore there are 12

histogram-valued variables. Every 120 seconds, each probe sends 10 packets, measures

10 Round-Trip Time (RTT), and records minimum, median and maximum. Table 5.24

displays the targets, probes and relays used in these data sets.

Targets Probes Relays
Chicago1 Amsterdam Iceland SaoPaulo2 LA1

Frankfurt1 Chicago2 Israel Johannesburg1 Madrid
Hong Kong VdM LA2 Johannesburg2 Moscow

London Frankfurt2 Milan Sweden SaoPaulo1

TABLE 5.24: Targets, probes and relays used in the data sets.

Each dataset is referenced in this thesis as:

1. data.T1.all: data measured, by all 12 probes, for target 1 (Chicago) ;

2. data.T2.all: data measured, by all 12 probes, for target 2 (Frankfurt);

3. data.T3.all: data measured, by all 12 probes, for target 3 (Hong Kong);

4. data.T4.all: data measured, by all 12 probes, for target 4 (London).

The description of each dataset is given in Table 5.25. Notice that the classes are unbal-

anced. The data associated with class 0, i.e., no relay (regular) clearly display the majority

of the units in the data sets.

Each data set was fairly heavy, hence, with the function sample in RStudio, only a

sample was used to run the strategies developed. The description of each sampled dataset

is given in Table 5.26.
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0 1 2 3 4
data.T1.all 8732 848 598 768 914
data.T2.all 8663 745 538 832 798
data.T3.all 8544 770 564 808 810
data.T4.all 8569 681 567 782 835

TABLE 5.25: Number of units per relay in each Internet dataset.

0 1 2 3 4
data.T1.all 271 30 23 20 16
data.T2.all 285 22 13 26 22
data.T3.all 251 21 12 21 29
data.T4.all 265 22 15 22 34

TABLE 5.26: Number of units per relay in each sampled Internet dataset.

As it is possible to observe we only worked with a small sample of the original data set.

This is due to the execution time run that will be discussed in the following subsection.

5.3.3 Discussion of Results

Concerning the sampled data, we additionally divided into training and testing data sets

considering 80% and 20%, respectively. Since we have 5 classes, the One-Versus-All (OVA)

strategy required 5 binary subproblems, but One-Versus-One (OVO) strategy required 10

binary subproblems.

Tables 5.27, 5.28, 5.29 and 5.30 display the confusion matrices obtained from apply-

ing the strategies One-Versus-All (OVA), One-Versus-One (OVO) and Consecutive Linear

Discriminant Functions (CLDF), considering the Definitions 3.9 (with weights) and 3.8

(without weights), respectively, to the four sampled Internet data sets.

Regarding the One-Versus-All (OVA) strategy, it is clear that the behaviour of class

0 (regular) is not properly learned. Moreover, some peculiarities are clearly identified.

With regards to the data set data.T1.all, this strategy does not properly classify any unit

associated with classes 2 and 4. In the data set data.T2.all and data.T4.all, all units from

class 3 can be classified by the strategy used with every class except class 2. Regarding

data.T2.all every unit that belongs to class 4 is not classified properly. In data data.T3.all

this behaviour is associated with classes 1 and 2. Finally, in the data data.T4.all this be-

haviour is associated with classes 1 and 4.
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Reference
0 1 2 3 4

Pr
ed

ic
ti

on

0 12 1 0 0 1
1 10 2 2 1 2
2 16 1 0 0 0
3 9 1 3 1 2
4 13 4 1 5 0

(A) data.T1.all.

Reference
0 1 2 3 4

Pr
ed

ic
ti

on

0 16 0 0 1 1
1 8 1 2 1 0
2 16 2 1 0 1
3 14 2 1 1 1
4 10 1 1 1 0

(B) data.T2.all.

Reference
0 1 2 3 4

Pr
ed

ic
ti

on

0 11 1 0 0 2
1 12 0 0 0 1
2 5 1 0 1 1
3 9 0 2 3 0
4 13 0 2 0 1

(C) data.T3.all.

Reference
0 1 2 3 4

Pr
ed

ic
ti

on

0 11 1 0 2 0
1 13 0 0 2 2
2 11 2 1 0 3
3 15 0 0 2 1
4 10 0 0 2 0

(D) data.T4.all.

TABLE 5.27: Confusion matrices that result of the model applied to the Internet testing
data set using OVA.

Reference
0 1 2 3 4

Pr
ed

ic
ti

on

0 60 0 0 0 0
1 0 9 0 0 0
2 0 0 6 0 0
3 0 0 0 7 0
4 0 0 0 0 5

(A) data.T1.all.

Reference
0 1 2 3 4

Pr
ed

ic
ti

on

0 64 0 0 0 0
1 0 6 0 0 0
2 0 0 5 0 0
3 0 0 0 4 0
4 0 0 0 0 3

(B) data.T2.all.

Reference
0 1 2 3 4

Pr
ed

ic
ti

on

0 43 0 1 0 0
1 0 2 2 0 0
2 2 0 0 0 0
3 3 0 1 4 0
4 2 0 0 0 5

(C) data.T3.all.

Reference
0 1 2 3 4

Pr
ed

ic
ti

on

0 59 0 0 0 0
1 1 3 0 0 0
2 0 0 1 0 0
3 0 0 0 8 0
4 0 0 0 0 6

(D) data.T4.all.

TABLE 5.28: Confusion matrices that result of the model applied to the Internet testing
data set using OVO.
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In respect of the One-Versus-One (OVO) strategy, the data.T1.all and data.T2.all are

perfectly classified. When observing the results associated with the data.T4.all, we realise

that only one unit, from class 0, is miss classified, as belonging to class 1.

Although the data.T3.all data set is still associated with a fairly high amount of miss

classified units, it is less than the confusion observed in One-Versus-All (OVA) strategy.

Reference
0 1 2 3 4

Pr
ed

ic
ti

on

0 60 0 0 0 0
1 0 9 0 0 0
2 0 0 6 0 0
3 0 0 0 7 0
4 0 0 0 0 5

(A) data.T1.all.

Reference
0 1 2 3 4

Pr
ed

ic
ti

on

0 64 0 0 0 0
1 0 6 0 0 0
2 0 0 5 0 0
3 0 0 0 4 0
4 0 0 0 0 3

(B) data.T2.all.

Reference
0 1 2 3 4

Pr
ed

ic
ti

on

0 7 0 0 0 2
1 11 2 1 0 1
2 13 0 1 1 0
3 1 0 1 2 0
4 18 0 1 1 2

(C) data.T3.all.

Reference
0 1 2 3 4

Pr
ed

ic
ti

on

0 1 0 0 0 0
1 0 3 0 0 0
2 59 0 1 0 0
3 0 0 0 7 0
4 0 0 0 1 6

(D) data.T4.all.

TABLE 5.29: Confusion matrices that result of the model applied to the Internet testing
data set using CLDF with weights.

By observing Table 5.29, we conclude that Consecutive Linear Discriminant Functions

(CLDF) with weights strategy performs perfectly in data.T1.all and data.T2.all. Regarding

data.T4.all, it is possible to understand that the vast majority of units from class 0 are

misclassified as belonging to class 2. Once again, the confusion in data.T3.all is noticeable.

Finally, by observing Table 5.30, we conclude that Consecutive Linear Discriminant

Functions (CLDF), according to the Definition 3.8, i.e., without using weights, performs

perfectly in data.T1.all and data.T2.all. This strategy produces similar results to the ones

presented in Table 5.29.

By analysing Table 5.31, we realise that both One-Versus-One (OVO) and Consecutive

Linear Discriminant Functions (CLDF) perform perfectly for the data set data.T1.all and

data.T2.all, showing an accuracy of 100%, without performing a single sample operation,

concerning the testing data set.

When considering data.T3.all, the accuracy of One-Versus-One (OVO) is fairly good.

Regarding the other methods, the best one uses the One-Versus-All (OVA) approach with

an associated accuracy that is a little over 23%.
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Reference
0 1 2 3 4

Pr
ed

ic
ti

on
0 60 0 0 0 0
1 0 9 0 0 0
2 0 0 6 0 0
3 0 0 0 7 0
4 0 0 0 0 5

(A) data.T1.all.

Reference
0 1 2 3 4

Pr
ed

ic
ti

on

0 64 0 0 0 0
1 0 6 0 0 0
2 0 0 5 0 0
3 0 0 0 4 0
4 0 0 0 0 3

(B) data.T2.all.

Reference
0 1 2 3 4

Pr
ed

ic
ti

on

0 7 0 0 0 2
1 11 2 1 0 1
2 13 0 1 1 0
3 1 0 1 2 0
4 18 0 1 1 2

(C) data.T3.all.

Reference
0 1 2 3 4

Pr
ed

ic
ti

on

0 1 0 0 0 0
1 0 3 0 0 0
2 59 0 1 0 0
3 0 0 0 7 0
4 0 0 0 1 6

(D) data.T4.all.

TABLE 5.30: Confusion matrices that result of the model applied to the Internet testing
data set using CLDF without weights.

CLDF CLDF
OVA OVO w/ weights w/o weights

data.T1.all 17.24 100.00 100.00 100.00
data.T2.all 23.17 100.00 100.00 100.00
data.T3.all 23.08 83.08 21.54 21.54
data.T4.all 17.95 98.72 23.08 23.08

TABLE 5.31: Accuracy for the multi-class classification strategies for the Internet testing
data sets (%).

Finally, data.T4.all is properly modelled by One-Versus-One (OVO), registering an

accuracy value over 98%.

In general, we conclude that One-Versus-All (OVA) strategy does not seem to produce

models that properly fit the data. The best model produced with this strategy registers an

accuracy of 23.17% which is unacceptable.

In general, a lot of randomness is associated with the strategy One-Versus-All (OVA)

in the testing data set. The evidence is displayed in Table 5.32 since the average number

of sample operations performed in the binary subproblems is equal or very close to the

dimension of the testing data set. With the exception of the strategy One-Versus-One

(OVO) over the data set data.T3.all, the remaining strategies display a scarce number of

sample operations performed.
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CLDF CLDF
OVA OVO w/ weights w/o weights

binary MV binary MV MV MV
data.T1.all 87 79 0 0 0 0
data.T2.all 82 64 0 0 0 0
data.T3.all 65 56 0 14 0 0
data.T4.all 78 65 0 1 0 0

TABLE 5.32: Number of samples performed for the multi-class classification strategies
on the test data set of the Internet data set, including the binary subproblems’ average

number of samples.

CLDF CLDF
Class OVA OVO w/ weights w/o weights

data.T1.all

0 56.30 100.00 100.00 100.00
1 51.50 100.00 100.00 100.00
2 39.51 100.00 100.00 100.00
3 47.77 100.00 100.00 100.00
4 35.98 100.00 100.00 100.00

data.T2.all

0 56.94 100.00 100.00 100.00
1 51.10 100.00 100.00 100.00
2 47.66 100.00 100.00 100.00
3 50.96 100.00 100.00 100.00
4 41.77 100.00 100.00 100.00

data.T3.all

0 51.00 89.67 50.33 50.33
1 39.68 98.41 89.68 89.68
2 43.44 48.36 51.03 51.03
3 78.48 96.72 73.36 73.36
4 47.50 98.33 53.33 53.33

data.T4.all

0 50.83 99.17 50.83 50.83
1 38.67 99.33 100.00 100.00
2 89.61 100.00 61.69 61.69
3 51.07 100.00 93.75 93.75
4 41.67 100.00 99.31 99.31

TABLE 5.33: Balanced accuracy per class for the multi-class classification strategies (%).

Table 5.33 displays the balanced accuracy values associated with all classes in the test-

ing data sets. In general, One-Versus-All (OVA) is unable to properly capture the be-

haviour associated with each class. The balanced accuracy values are clearly lower when

compared to the ones concerning One-Versus-One (OVO).

With the exception of data.T3.all, One-Versus-One (OVO) and Consecutive Linear Dis-

criminant Functions (CLDF) seem to adjust fairly well to every class behaviour in the

Internet data sets.

By observing Table 5.34, it is possible to understand that, even for a small portion of
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OVA OVO CLDF CLDF
w/ weights w/o weights

data.T1.all 2.35 1.94 0.25 0.25
data.T2.all 2.27 2.16 0.38 0.35
data.T3.all 2.00 2.03 0.43 0.40
data.T4.all 2.14 2.41 0.73 0.68

TABLE 5.34: Execution time, in hours, associated with each sampled Internet data set.

the original data sets, the execution time is fairly high. The best time runs are associ-

ated with the Consecutive Linear Discriminant Functions (CLDF) strategies. These con-

sistently take less than an hour. Both One-Versus-One (OVO) and One-Versus-All (OVA)

display execution time runs that are longer than two times the time it takes to run the

Consecutive Linear Discriminant Functions (CLDF) approaches.

Moreover, there were attempts to assess the performance of the strategies in a larger

sample of the data, particularly for 10% of the data. However, the execution time run

was immense. For a sample of 10% of the data associated with data.T1.all, regarding the

strategy One-Versus-All (OVA), the execution time run is higher than 35.70 hours. At this

time, the strategy One-Versus-All (OVA) was running the first binary subproblem. Re-

garding the strategy One-Versus-One (OVO), the execution time run is higher than 23.41

hours. At this time, the strategy One-Versus-One (OVO) was also running the first binary

subproblem. Regarding the strategy Consecutive Linear Discriminant Functions (CLDF),

concerning both the Definitions 3.8 (without weights) and 3.9 (with weights) after 11.63

hours the execution was completed, registering a perfect accuracy without performing

sample operations.

5.4 Modelling Car Data

5.4.1 Description of the Data

This data was examined in order to display an application with interval-valued variables.

This data consists of characteristics of car models. The classification problem relies on

identifying the model class (4 classes):

• 1 - Utilitarian;

• 2 - Berlina;
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• 3 - Luxury;

• 4 - Sportive;

The description of the classes in this dataset is given in Table 5.35.

Utilitarian Berlina Luxury Sportive
10 8 8 7

TABLE 5.35: Number of units per class in the cars dataset.

5.4.2 Data set

This data set is fairly small. It has 33 units and 4 interval-valued variables:

• Price: it indicates how expensive a car is;

• Engine Capacity: it indicates how powerful the car is;

• Top Speed: it indicates the fastest the car can go;

• Acceleration: it indicates the rate that a car increases its speed;

5.4.3 Discussion of Results

Since this data set is very small, we performed leave-one-out cross-validation. In each

case, in the testing unit, we evaluate if the class is correctly predicted.

CLDF CLDF
OVA OVO w/ weights w/o weights
51.52 96.97 - -

TABLE 5.36: Mean accuracy for the multi-class classification strategies for the cars data
set (%).

Table 5.36 displays the mean accuracy of each strategy. We conclude that One-Versus-

All (OVA) is the strategy that displays the worst performance since it produces models

with an average accuracy of 51.52%. One-Versus-One (OVO) displays the best strategy,

with a mean accuracy of 96.97%.

The results associated with the Consecutive Linear Discriminant Functions (CLDF)

strategies are not displayed since the optimisation process declares either primal infeasi-

bility or is stuck at an edge of dual feasibility, giving up.
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Validation OVA OVO CLDF CLDF
set binary MV binary MV w/ weights w/o weights
1 0 1 0 1 - -
2 0 0 0 1 - -
3 0 0 0 0 - -
4 0 1 0 1 - -
5 0 1 0 0 - -
6 0 0 0 0 - -
7 0 0 0 0 - -
8 0 1 0 0 - -
9 0 0 0 0 - -
10 0 1 0 0 - -
11 0 1 0 0 - -
12 0 1 0 0 - -
13 0 1 0 0 - -
14 0 1 0 0 - -
15 0 1 0 0 - -
16 0 1 0 0 - -
17 0 1 0 0 - -
18 0 1 0 0 - -
19 0 0 0 0 - -
20 0 1 0 0 - -
21 0 1 0 0 - -
22 0 1 0 0 - -
23 0 1 0 0 - -
24 0 1 0 0 - -
25 0 1 0 0 - -
26 0 0 0 0 - -
27 0 1 0 0 - -
28 0 1 0 0 - -
29 0 1 0 0 - -
30 0 1 0 0 - -
31 0 1 0 0 - -
32 0 0 0 1 - -
33 0 0 0 1 - -

TABLE 5.37: Number of samples performed in the majority vote for the multi-class clas-
sification strategies on the cars’ data, including the binary subproblems’ average number

of samples.
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Table 5.37 displays the average number of samples performed in the binary subprob-

lems and the exact number of samples performed in the majority vote part of the clas-

sification in the validation set. Since we performed leave-one-out, the validation set is

composed exactly of one unit.

In general, One-Versus-All (OVA) performs more sample operations and the unit’s

classification tends to be subjected to one sample operation usually in the majority vote.

One-Versus-One (OVO) performs a scarce number of sample operations and, when it is

performed, it tends to be in the majority vote.

5.5 General Observations

In summary, we can conclude that Consecutive Linear Discriminant Functions (CLDF) is

the most deterministic strategy, i.e., it is the method that performs the lowest number of

sample operations. Furthermore, One-Versus-One (OVO) does not tend to perform a sig-

nificant number of samples. One-Versus-All (OVA) is, by far, the method that executes the

most randomised operations. It is fair to assume that the number of samples performed is

correlated to the performance of the model. A higher number of sample operations tends

to be associated with models with lower accuracy. Moreover, it stands to reason that data

that does not display clear and distinct classes are inclined to execute more sample oper-

ations.

Although unbalancing data sets does not imply a decrease in accuracy, the error rates

associated with the minority classes tend to be higher than the ones associated with the

remaining classes.

Some conclusions can also be drawn about the performance of the three strategies

developed for multi-class classification. One-Versus-All (OVA) displays consistently the

worst results, occasionally providing inaccurate classifications. In general, both One-

Versus-One (OVO) and Consecutive Linear Discriminant Functions (CLDF) show stellar

results.





Chapter 6

Conclusion

There has been an increase in the development of new approaches to cope with the higher

power of data storage. One of these approaches is Symbolic Data Analysis (SDA) which

comes with several advantages and disadvantages. Among the disadvantages, it is im-

portant to point out that most existing concepts and models developed for classic data

become no longer viable. Nevertheless, one advantage stands out. It concerns the pos-

sibility of retaining the inherent variability associated with the data. We have, therefore,

more informative and valuable results.

This thesis explored the possibility of developing a model to properly assess the class

to which a unit belongs to in a multi-class classification problem. It focuses on linear

discriminant analysis, in a multi-class setting, extending the binary classification method

developed in [1].

6.1 Conclusion and Perspectives

The proposed extension of the discriminant method for histogram-valued variables al-

lows for addressing multi-class classification problems associated with symbolic data.

On the one hand, we can reduce the multi-class classification problem to several bi-

nary subproblems. Classification is performed in two steps. Firstly, we use the Mallows

distance between the scores of each unit and the barycentric scores of each class in the

binary subproblems. Then, this is used to build the multi-class classification by comput-

ing the majority vote. The approaches developed in this thesis that lie on this idea are

One-Versus-One (OVO) and One-Versus-All (OVA).

97
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On the other hand, the problem may be addressed by constructing several linear dis-

criminant functions (Consecutive Linear Discriminant Functions (CLDF)). The optimisa-

tion requires additional conditions in order to guarantee that the successive discriminant

functions are uncorrelated. The classification is based on the Mallows distance between

the scores of each unit and the barycentric scores of each class.

The performance of these three strategies is comparatively consistent. Even though

One-Versus-All (OVA) shows the worst results, One-Versus-One (OVO) and Consecutive

Linear Discriminant Functions (CLDF) tend to perform very well. However, every strat-

egy is inadequate when the data for which we aim to provide a multi-class classification

does not display a clusterable structure.

To conclude, the three techniques yield a way of performing multi-class classification

of symbolic data that has not been executed until now. These procedures are likely to be

useful in classification problems, with more than two a priori classes, where the variability

associated with the data is crucial.

6.2 Limitations and Future Work

Currently, the main issue identified was the heavy computations required. For large

data sets, either with a large amount of histogram-valued variables or units, the time

required to run the linear discriminant analysis is immense, especially for the strategies

One-Versus-All (OVA) and One-Versus-One (OVO). Moreover, the time it takes to run the

analysis is also sensitive to the number of subintervals of the realisations of the histogram-

valued variables. For this reason, improving the code time run is in great demand.

Furthermore, the software used to perform the optimisation step may not be the most

appropriate. It would be of interest to study options that make use of software tools that

were developed entirely for mathematical optimisation.
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