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Abstract

Evolution is inevitable and part of it is overcoming problems by looking at them as opportunities
for innovation. This is an era of sustainability where the application of different sources of energy
is in development and there are significant energy concerns causing drastic changes in drive
technology. Gears, as the main tribological element used to transmit motion and power, will play
a prominent role in energy generation and mobility trends. It is up for gear engineers to step up
and turn into value all their knowledge in order to find the necessary gear designs. The purpose
of this work is to develop a gear mesh stiffness model capable of keeping up with current and
forthcoming needs so a low computational cost approach is taken as it allows to easily explore
different gear design solutions.

A study on the different types of gear mesh stiffness models in the literature is performed,
establishing four types of models: analytical, finite element, hybrid and approximate. Their
implementation procedures as well as positive and negative features are analyzed, showing that
approximate gear mesh stiffness models have the lowest computational cost. The developed gear
mesh stiffness model, which is of the approximate type, comprises two instances, the definition of
the single tooth pair slice mesh stiffness and the gear mesh stiffness modeling algorithm for both
spur and helical gears. The gear modeling also includes the implementation of a gear-shaft-bearing
dynamic model. This results in a set of tools for gear quasi-static and dynamic evaluation that is
applied for a parametric study of a modeling stiffness variable, which is mostly neglected in the
literature; an analysis of the overlap ratio influence on gear behavior as a preliminary approach
to experimental testing on the concept of integer overlap ratio gear design and a research on
gear design optimization aiming at improved dynamic behavior without computing the dynamic
response.

The developed work gives an approximate definition of the single tooth pair slice mesh stiffness
which when applied to approximate analytical models improves the accuracy of their mesh stiffness
estimations due to the asymmetrical shape considered and the removal of free/user-defined
parameters. The developed approximate gear mesh stiffness model is simple to implement and
gives fast mesh stiffness estimations that can consider extension of contact, profile modifications,
border weakening effect and any type of manufacturing/assembly error that can be modeled as a
change in the separation distance - it is sound and flexible as it can attend current needs and be
adapted for future investigations.

Keywords: Gear modeling, Gear mesh stiffness, Gear dynamics, Gear design, Gear optimization.
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Resumo

A evolução é inevitável e parte dela consiste em superar os problemas encarando-os como
oportunidades de inovação. Esta é uma era de sustentabilidade onde a aplicação de diferentes
fontes de energia está em desenvolvimento e existe uma grande preocupação energética que leva
a alterações drásticas no projeto de transmissões mecânicas. As engrenagens, como principal
elemento tribológico usado para transmitir movimento e potência, têm um papel preponderante
nas novas tendências de geração de energia e mobilidade. Cabe aos engenheiros transformar o seu
conhecimento em valor para definir engrenagens que satisfaçam os requisitos impostos. O objetivo
deste trabalho é desenvolver um modelo da rigidez de engrenamento capaz de acompanhar as
necessidades atuais e emergentes. Para isso, uma modelação de baixo custo computacional é
estudada pois permite explorar facilmente diversas geometrias de engrenagens.

Os diferentes modelos de rigidez de engrenamento são estudados, de onde são definidos quatro
tipos diferentes: analíticos, elementos finitos, híbridos e aproximados. Os seus processos de
implementação assim como as suas principais vantagens e desvantagens são analisados, revelando
que os modelos de rigidez de engrenamento aproximados são os que possuem o custo computacional
mais baixo. O modelo de rigidez de engrenamento desenvolvido, que é do tipo aproximado,
inclui duas componentes, a definição da rigidez de um par de dentes de largura infinitesimal
e do algoritmo de modelação da rigidez de engrenamento para engrenagens de dentado reto
e helicoidal. A modelação de engrenagens também inclui a implementação de um modelo
dinâmico de engrenagens, veios e rolamentos. Isto resulta numa ferramenta para avaliação
do comportamento quase-estático e dinâmico de engrenagens que é utilizado para um estudo
paramétrico de uma variável de modelação da rigidez, que é tipicamente desprezada na literatura;
uma análise da influência da razão de condução suplementar no comportamento de engrenagens
como uma abordagem preliminar aos testes experimentais ao conceito de projeto de engrenagens
com razão de condução suplementar com valor inteiro e uma pesquisa sobre otimização do projeto
de engrenagem para melhorar o comportamento dinâmico sem necessidade de calcular a resposta
dinâmica.

O trabalho desenvolvido proporciona uma definição para a rigidez de um par de dentes de largura
infinitesimal que, quando aplicada a modelos aproximados, melhora a exatidão das estimativas
de rigidez de engrenamento devido à forma assimétrica considerada e à remoção de parâmetros
livres. O modelo aproximado da rigidez de engrenamento desenvolvido é simples de implementar
e fornece estimativas rápidas da rigidez que podem considerar extensão de contato, modificações
de perfil, efeito de enfraquecimento da borda e qualquer tipo de erro de fabrico/montagem que
pode ser modelado como uma mudança na distância de separação - é um modelo robusto e
flexível, pois pode atender às necessidades atuais e ser adaptado para investigações futuras.

Palavras-chave: Modelação de engrenagens; Rigidez de engrenamento; Dinâmica de engrenagens;
Projeto de engrenagens; Otimização de engrenagens.
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“Live as if you were to die tomorrow. Learn as if you were to live forever.”

Mahatma Gandhi
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Chapter 1

Introduction

1.1. Background and motivation

Evolution is inevitable and part of it is overcoming problems by looking at them as opportunities
for innovation. Drive technology is facing drastic changes due to the current global challenges
such as descarbonization, circular economy and green pressure, representing opportunities for the
fields of energy generation and mobility [1]. This era of sustainability means, for mobility, that
powertrains will be subjected to changes due to the different sources of energy [2]. Moreover,
there are renewable energy targets for the reduction of greenhouse gas emissions that must be
met, revealing the necessity of increasing the capacity for renewable energies, with great focus on
wind energy [3].

Focusing on tribological contacts, and according to Holmberg and Erdemir [4], these stand for
around 23% of the world’s total energy consumption. It is also stated that transportation and
power generation sectors are expected to have the largest short term energy savings [4]. This
shows how influential tribology is and will be in future times because of how it aligns with the
discussed needs. Gears, as the main tribological element used to transmit motion and power,
will play a prominent role in energy generation and mobility trends. It is up to gear engineers
to step up and turn into value all their knowledge in order to find the required gear designs.
Given the energy concerns, improvements in gear efficiency are of significant contribution. On
another perspective, investigation on gear manufacturing can originate more ecological processes
with higher productivity while repairing methods can extend the gears’ lifespan. Noise, vibration
and harshness are three key parameters for gear transmissions which besides affecting their
performance and reliability also have their share on health and comfort [5–7].

Gears, as sources of failure, noise and vibration of gear transmission systems, need to have their
behavior improved and modified to tackle their flaws and adjust it to desired requisites. In order
to do so, it is necessary to characterize them and, therefore, gear modeling becomes of the utmost
importance. Within gear modeling, gear mesh stiffness takes a critical function. Gear mesh
stiffness modeling allows for the estimation of the load sharing ratio and transmission error which
can be associated with gear meshing efficiency and its performance, affecting noise, vibration
and durability. Due to the broad information that can be extracted from the gear mesh stiffness,
it has applicability in several gear research topics such as design, optimization, dynamics and
reliability. Consequently, as long as gears need to be adapted to the world’s evolution, gear mesh
stiffness is not going to leave their side.
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2 1. Introduction

1.2. Objective and research approach
This work takes on gear mesh stiffness modeling as the central topic of research given its
importance and wide applicability in gear engineering. The purpose of this investigation is to
develop a low computational cost gear mesh stiffness model to explore gear design solutions so
that gears can keep up with current and upcoming needs. A low computational cost approach
is taken as it allows for multiple and consecutive calculations to be performed in feasible time
which is essential when it is necessary to explore different gear design solutions. The steps taken
to fulfill this objective and prove its applicability are:

• look at the current state of gear mesh stiffness models by performing an extensive literature
review on the different modeling approaches. Then, considering the intended outcome, the
most suitable type gear mesh stiffness model is selected;

• develop the gear mesh stiffness model considering the main shortcomings of existing models
as well as including the indispensable phenomena for an accurate gear mesh stiffness
estimation. With the successful development of the gear mesh stiffness model, an extensive
range of possibilities opens up;

• implement a gear-shaft-bearing dynamic model and perform large-scale parametric studies
at both quasi-static and dynamic levels;

• perform numerical testing of a previously developed gear design concept (integer overlap
ratio helical gears [8]) by evaluating how the modification of the overlap ratio influences
the gear mesh stiffness, dynamic behavior and emitted noise level. Part of having a fast
and accurate gear mesh stiffness model and an implementation of a dynamic model is
being capable of performing numerical studies prior to experimental tests. Thus, giving an
estimation of the expected behavior and allowing for the selection of the most appropriate
equipment;

• study gear optimization approaches to find a dynamically optimized design in a straightfor-
ward manner, without computational demanding procedures.

The outcome of this work is a tool capable of exploring and studying gear transmissions for
current and unforeseen issues. Whatever the problems/opportunities that arise, the developed
gear mesh stiffness model and its unfolding gear analysis models will be useful.

1.3. Scientific contributions
The scientific publications originated from the work performed during the philosophiae doctor are
presented in two sets. The first set is for papers that are reproduced in this document: contents
are reproduced with permission of their respective publishers.

Paper A. João D.M. Marafona, Pedro M.T. Marques, Ramiro C. Martins, and Jorge H.O.
Seabra. Mesh stiffness models for cylindrical gears: A detailed review. Mechanism and
Machine Theory, 166:104472, 2021.

Paper B. João D.M. Marafona, Pedro M.T. Marques, Ramiro C. Martins, and Jorge H.O.
Seabra. Approximate expression for the single tooth pair slice mesh stiffness. Mechanism
and Machine Theory, 187:105367, 2023.
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Paper C. João D.M. Marafona, Pedro M.T. Marques, Stephane Portron, Ramiro C.
Martins, and Jorge H.O. Seabra. Gear mesh stiffness and dynamics: Influence of tooth
pair structural stiffness asymmetry. Mechanism and Machine Theory, 190:105447, 2023.

Paper D. João D.M. Marafona, Pedro M.T. Marques, Ramiro C. Martins, and Jorge
H.O. Seabra. Effect of overlap ratio on gear dynamic behavior and noise level. In VDI
Wissensforum GmbH, editor, International Conference on Gears 2023, volume 2422 of
VDI-Berichte. VDI Verlag, Düsseldorf, 2023. doi: doi.org/10.51202/9783181024225.

Paper E. João D.M. Marafona, Gonçalo N. Carneiro, Pedro M.T. Marques, Ramiro C.
Martins, Carlos C. António, and Jorge H.O. Seabra. Gear design optimization: stiffness
versus dynamics. Mechanism and Machine Theory, 191:105503, 2024.

Investigations/collaborations conducted during the philosophiae doctor resulted in further
manuscripts/presentations/posters (second set) that are published or under review on scientific
journals or conference proceedings.

1. Pedro M.T. Marques, João D.M. Marafona, and Jorge H.O. Seabra. Crowned Spur
Gears for Constant Mesh Stiffness: A Conceptual Approach. Mechanism and Machine
Theory, 189:105426, 2023.

2. Pedro M.T. Marques, João D.M. Marafona, Ramiro C. Martins, and Jorge H.O. Seabra.
A continuous analytical solution for the load sharing and friction torque of involute spur
and helical gears considering a non-uniform line stiffness and line load. Mechanism and
Machine Theory, 161:104320, 2021.

3. João D.M. Marafona, Pedro M.T. Marques, Ramiro C. Martins, and Jorge H.O.
Seabra. Influence of single tooth mesh stiffness asymmetry on gear mesh stiffness and
dynamic response. 2nd Portuguese Conference on Multibody System Dynamics, 2022. ISBN:
978-989-33-4087-5.

4. João D.M. Marafona, Pedro M.T. Marques, Ramiro C. Martins, and Jorge H.O.
Seabra. Gear Mesh Stiffness: Comparative review and modeling. 5th Meeting of the Young
Researchers of LAETA: Book of Abstracts, 2022.

5. João D.M. Marafona, Pedro M.T. Marques, Ramiro C. Martins, and Jorge H.O. Seabra.
A Look into Gear Mesh Stiffness. Porto-Lyon Seminar 2021: Book of Abstracts, 2022. DOI:
10.24840/978-972-752-293-4.

6. João D.M. Marafona, Pedro M.T. Marques, Ramiro C. Martins, and Jorge H.O.
Seabra. The Shooting Method: Discontinuous Stiffness Systems. Symposium on Mechanical
Engineering: Book of Abstracts and Invited Lectures, 2021. ISBN: 978-972-752-286-6.

7. João D.M. Marafona, Pedro M.T. Marques, Ramiro C. Martins, and Jorge H.O. Seabra.
Analysis of the dynamic loads on integer overlap ratio helical gears. Doctoral Congress in
Engineering 2019, Porto, Portugal, june 2019. ISBN-13: 978-972-752-252-1.
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1.4. Outline
The document comprises seven chapters, being each one briefly described as follows.

Chapter 1: Introduction - contextualization of the philosophiae doctor research while
also providing insight on its organization and presented contents.

Chapter 2 (Paper A): Mesh stiffness models - review on the different types of gear
mesh stiffness models including implementation guidelines and comparative discussion.

Chapter 3 (Paper B): Single tooth pair slice mesh stiffness - development of an
approximate expression for the single tooth pair slice mesh stiffness; necessary component
for improved accuracy in gear mesh stiffness modeling.

Chapter 4 (Paper C): Gear modeling - presentation of the developed approximate
gear mesh stiffness model and of the implemented gear-shaft-bearing dynamic model;
large-scale gear exploratory study on the influence of a stiffness modeling parameter on
gear quasi-static and dynamic behaviors.

Chapter 5 (Paper D): Integer overlap ratio gears: preliminary study - design
of integer overlap ratio gears and research on how overlap ratio affects their gear mesh
stiffness, dynamic response and noise level.

Chapter 6 (Paper E): Gear design optimization - optimization study to compare
the design of gears with two approaches, gear mesh stiffness and dynamic behavior.

Chapter 7: Conclusion - highlight of relevant topics and main conclusions of this work;
suggestions for future research.
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Chapter 2

Mesh stiffness models

Gear transmissions have always been a subject of study for many different reasons which change
due to the constant evolution of technology. Consequently, new topics must be addressed and
different ways to solve the upcoming problems must be discovered. Gear mesh stiffness is a
central topic for both gear design and gear dynamic modeling due to its ability to represent the
gears’ behavior, making it a subject of high interest in the field of gear transmissions. Different
types of models are used to establish the gear mesh stiffness, namely, analytical, finite element,
hybrid and approximate analytical models. In this chapter, implementation guidelines for each
class of model are presented along with relevant literature, providing a broad range of information
in great detail. Lastly, the main conclusions for each type of model are discussed and an overview
of the future evolution of gear mesh stiffness is given.

2.1. A look into mesh stiffness

Gears, the most common machine element used to transmit motion and power, are constantly
adapting to today’s requirements. Whatever the shifts in demands that are awaiting, gears will
prevail and find their way. The mesh stiffness of gears characterizes their behavior, which is
crucial for their development. Whether the topic is design, optimization, dynamics or noise,
the gear mesh stiffness plays one of the leading roles. So, in order for gears to keep adjusting
throughout time, a proper definition of the gear mesh stiffness must exist.

Gear mesh stiffness is a central topic of research since it is the core element of a gear pair. In
dynamics, it is the main responsible for the noise, vibration and dynamic loads, thus, the usage
of an appropriate gear mesh stiffness representation largely affects the results of dynamic models
[9–20]. In the design stage or for optimization purposes, gear mesh stiffness can be utilized as a
tool to establish both the macro- and micro-geometry while considering the dynamic performance
of gears due to its clear dynamic influence [8; 21–23].

Stiffness is the resistance of a body to the deflection induced by an applied load. In its simplest
form (linear single degree of freedom system such as a spring), stiffness (k) is defined as the ratio
of an applied load (L) over the corresponding generated displacement (χ), equation (2.1).

Contents in Chapter 2: Mesh stiffness models are reproduced with permission of the respective publisher from
João D.M. Marafona, Pedro M.T. Marques, Ramiro C. Martins, and Jorge H.O. Seabra. Mesh stiffness models for
cylindrical gears: A detailed review. Mechanism and Machine Theory, 166:104472, 2021.
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6 2. Mesh stiffness models

k =
L

χ
(2.1)

For a linear system with n degrees of freedom, the stiffness is defined by a n× n matrix. Each
element of the matrix (kij) is obtained according to equation (2.2), this is, the coefficient between
the load applied in the degree of freedom i and the displacement produced by that load in the
degree of freedom j.

kij =
Li

χj
(2.2)

When the issue is the gear mesh stiffness, a similar description is usually applied, so the gear mesh
stiffness represents the load on the gear mesh required for a given displacement. The deformations
occurring during the loading process of a gear tooth are described by Attia [24], enlightening the
complexity and multiple phenomena affecting the gear mesh stiffness. According to Attia [24],
first the Hertzian deformation takes place at the contact point on the profile. Then, the load is
transmitted to the tooth’s body which causes bending, shear and compression deformations. The
combination of these deformations at every cross-section defines their magnitude and direction.
The load then reaches the tooth root and is also transferred to its adjacent parts. Finally, the
load gets to the gear body and, if it is strained, there can be angular tooth deformation with
respect to the gear center [24].

When discussing the stiffness of gears, it is important to leave a note on the transmission error
(TE). Transmission error represents the difference between the perfect position (unmodified,
geometrically perfect and infinitely rigid gears) and the actual position of a gear, in other words,
it is the relative displacement of the output gear with respect to the input gear - mathematically
expressed in its angular form by equation (2.3).

δθ = θ2 −
rb1
rb2

θ1 (2.3)

where θi is the rotational angle of gear i and rbi is the base radius of gear i. Notice that the
transmission error is negative when the output gear (gear 2) lags behind its conjugate position.
The transmission error in equation (2.3) can be modified to its linear form by multiplying it by
rb2, becoming a displacement along the line of action.

Depending on the working conditions of the gear pair, two types of transmission error are
commonly established, the static transmission error and the dynamic transmission error. The
transmission error can be related to the gear mesh stiffness since it can be viewed as the
displacement caused by an applied load, which, in this scenario, is referred to as static or
loaded-static transmission error.

Gear mesh stiffness can be evaluated by means of torsional stiffness or linear stiffness, which
can be related to each other. The torsional mesh stiffness, defined in equation (2.4), is given
by the ratio of the applied torque (T ) and the transmission error. Notice that the concept
of stiffness is related to the elastic deflections and, therefore, the no-load transmission error
(associated to the manufacturing errors) should, by definition, be removed from the transmission
error when calculating the gear mesh stiffness since it does not translate as elastic deflections but
as rigid-body displacement. Although, contributions of the no-load transmission error should not
be disregarded when modeling a gear pair as they can remarkably modify its behavior.
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kt =
T

δθ
(2.4)

The linear mesh stiffness, established in equation (2.5), is the ratio of the applied load (L) and
the displacement (δ) in the load’s direction, usually along the line of action. In this situation δ is
the linear transmission error.

kl =
L

δ
(2.5)

Either way, the relation between torsional and linear gear mesh stiffness is established according
to equation (2.6).

kt =
T2
δθ

=
L rb2
δθ

=
L r2b2
δθ rb2

=
L r2b2
δ

= kl r2b2 (2.6)

The determination of stiffness requires an exact description of the load and displacement [25],
which makes the computation of gear mesh stiffness a complex task. The complexity of the
gear mesh stiffness arises from the many variables that affect the gear geometry and the contact
conditions that change the description of the load and displacement.

The gear mesh stiffness can be obtained numerically or experimentally, although, experimental
methods are mostly used for empirical studies, validation of numerical models or as monitoring
techniques. So, experimental methods are not addressed in this chapter since the main concern
is the gear mesh stiffness modeling. Regardless, some investigations on the measurement of
stiffness and transmission error in gears are presented. For instance, [26–34] perform experimental
measurements of the transmission error and [35–41] measure the stiffness of a single tooth, teeth
pairs and of damaged teeth. Encoder error on the measurement of gear transmission error is
studied in [42] and different methods for the measurement of angular speed and gear transmission
error are reviewed and discussed in [43] and [44], respectively.

The literature research conducted on numerical methods for gear mesh stiffness modeling
divided the different models into four classes: analytical, finite element, hybrid and approximate
analytical. In short, every model resorts to different techniques to describe the gear mesh stiffness:
analytical models use analytical expressions; finite element models employ the finite element
method; hybrid models apply both analytical expressions and the finite element method and the
approximate analytical models make use of simple and computational inexpensive approximate
analytical expressions. All of the mentioned models have their advantages/disadvantages and
are usually developed with a specific purpose, which may vary, for example, from the study
of gear dynamics, profile modifications, teeth deflections, cracked teeth and the effects of gear
geometrical parameters/errors on the mesh stiffness.

Early gear investigations were not directly concerned with gear mesh stiffness but rather with
the strength of gear teeth. The question to answer was: “What is the breaking load of gear
teeth?”. Lewis’ bending strength equations [45] answered that question and unified the around
forty-eight “rules” for calculating the bending strength in existence at that time. None of those
rules took into account the actual tooth form (unlike Lewis’ equations) and they could present
differences up to 500%. The Lewis’ formula is based on the fact that a parabola enclosed on
the gear tooth defines a beam of uniform strength. Later, it was found by empirical evidence
(photoelastic technique) that Lewis’ equations were wrong, as expected since it violated the
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8 2. Mesh stiffness models

Saint Venant’s principle, as stated by Wellauer and Seireg [46]. Many authors then improved
Lewis’ equations to be in agreement with the results from the photoelastic technique while others
developed completely new approaches [46]. The works of Baud and Peterson [47] and Walker
et al. [48] both presented equations for the gear teeth deflections. However, to deduce those
formulae, Baud and Peterson [47] considered the tooth as a non-uniform cantilever beam while
Walker et al. [48] resorted to experimental measurements taken on a fixed single tooth.

Constantin Weber and Kurt Banaschek [49; 50] presented a series of studies on the deflection
of gears where it is established that the total deformation of meshing gear pairs emerges from
three sources: tooth bending, gear body deformation and Hertzian contact. The developed
expressions became a reference for the calculation of gear deflections and the foundation for
future investigations which are currently employed in several different types of models [49; 50].
The works of Timoshenko and Goodier [51] and Timoshenko and Woinowsky-Krieger [52] give
essential information of the theory of elasticity and the theory of plates and shells. These books
[51; 52] present solutions to engineering problems of practical importance which are the basis for
many engineering investigation, where gears are no exception.

The modeling of a gear tooth as a cantilever plate was first accomplished, according to [46],
by C. W. MacGregor in 1935 [53] where the deflections and moments on a thin plate with
infinite length under a concentrated load on the free edge were calculated. The investigations
of Holl [54] and Jaramillo [55] on cantilever plates were fundamental for the development of
many other studies including the semiempirical solution presented by Wellauer and Seireg [46].
This semiempirical solution relies on the superposition principle and the moment-image method
(developed procedure) to obtain the bending moment distribution on a finite cantilever-plate
under any transverse loads. The results were in agreement with experimental tests conducted
on thin plates and tooth-shaped thick plates [46]. Attia [24] investigated the deflections of gear
teeth with thin rims resorting to strain-energy theories. The gear teeth deflection accounted for
the bending, shear and compression deformations of the gear tooth and adjacent part of the gear
body, circumferential deformations of the gear body as well as the impact of deflections in the
neighboring teeth [24]. Umezawa et al. [56] obtained a numerical solution by the finite difference
method for the deflections due to a concentrated load of a finite length cantilever thick plate.
New boundary conditions were applied which produced results in consonance with experimental
deflections on a cantilever thick plate [56]. Then, Umezawa [57] expanded the previous work
([56]) for a rack-shaped cantilever plate with finite width, meaning that the deflections and
moments were determined for a variable thickness cantilever plate under transverse loads applied
at any location on the surface [57]. Seager [58] developed a set of equations describing the
loading and deflections of a pair of involute helical gear teeth with the purpose of analyzing the
static/quasi-static behavior of gear pairs and selecting the most adequate profile modifications.
This work [58], based on Seager’s dissertation, discusses several topics such as convective effects,
separation distance, contact stiffness, profile modification and load distribution [58].

Terauchi and Nagamura [59] used two dimensional elastic theory and conformal mapping functions
to determine the tooth deflections. The normal tooth load is approximated by a set of concentrated
loads and the mapping functions are used to establish the tooth profile to finally reach the tooth
deflections. The method was compared with well-known tooth deflection formulas to prove its
validity. A discussion on the Hertzian contact deformation is also presented [59]. In a subsequent
work Terauchi and Nagamura [60] employed the previously developed calculation method ([59])
to compute the deflections of several spur gear teeth. From these results simple and approximate
expressions for the tooth deflections and contact Hertzian deformations were proposed [60].
Cardou and Tordion [61] seek the solution to the two difficulties found when calculating the gear
tooth flexibility by the complex potential method: (i) the indeterminacy of the displacements
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and (ii) the singularity at the point of interest (teeth contact point). While the first problem
was solved by selecting a proper reference point for the calculations, the second was dealt with
by calculating the displacements at a certain depth under the surface. Flexibility curves were
compared with other works and found to be in agreement [61]. Steward [62; 63] presents a
3D elastic model for the meshing of spur gears. A 3D finite element analysis was applied to
establish the influence coefficients that allow to determine the tooth centerline deflections curves
for different tooth geometries. Concerning the contact compliance, it is included by 2D Hertzian
contact theory with semiempirical correction coefficients for the regions close to the tooth tip.
Deflections results agreed with experimental measurements [62; 63]. Yau et al. [64] use the
Rayleigh-Ritz energy method to compute the deflections of tapered plates under concentrated
loads, which are implemented to simulate gear teeth. When comparing the determined deflections
with theoretical and experimental results, the differences found were assigned to the neglected
shear deformations in the theoretical models and base distortion in the experimental tooth
models [64].

Stegemiller and Houser [65] developed a model to determine the base deflections of wide facewidth
gear teeth. This model is based on several finite element analysis and applies the moment image
method presented in [46]. The base rotations and translations obtained with the model are in
agreement with the acquired finite element results [65]. Kim et al. [66] adopted the finite prism
method to calculate the load sharing, pressure distribution, mesh stiffness and tooth fillet stresses
on webbed spur gears. The conducted analysis allowed the development of simple formula that
can estimate with reliability the tooth root stress accounting for the effects of thin rims and
webs [66]. Litvin et al. [67] resorted to the finite element method and tooth contact analysis
to consider a distributed contact force in the calculation of transmission error, loaded tooth
deflections, load sharing ratio, real contact ratio and tooth bending stress [67]. Guilbault et al.
[68] integrate the finite strip method with a pseudo 3D model of the tooth base to compute the
tooth bending stiffness and fillet stresses. The procedure is intended to be a fast and precise gear
design tool. These facts were proved by the acceptable precision of the results and the reduced
time required in processing the model when compared to 3D finite element analysis [68].

Smith [69] presented a comprehensive explanation and analysis to the design, development,
metrology and troubleshooting of noise and vibration of gear. Among the several elucidated
topics it stands out the transmission error measurement and modeling of spur and helical gears,
including the thin slice assumption, as well as practical guidelines for a complete setup of
experimental procedures [69]. Linke et al. [70] conduct a complete analysis to cylindrical gears
covering every gear topic from the fundamental principles of gearing to the manufacturing.
The load capacity and running performance of gears is thoroughly presented, incorporating the
meshing characteristics and stiffness description/modeling [70].

The aforementioned investigations shed light on the developments of gear stiffness related
studies throughout time. Some non-gear researches are mentioned due to their contributions in
the development of gear investigations. The contents presented in those works contain useful
information for any gear study as they explain gear phenomena in a direct and clear way. Besides
that, a lot of experimental results are also shown. All the classes of gear mesh stiffness models
currently employed can be found is these investigations.

This review is divided into seven sections, beginning with an introduction that defines the gear
mesh stiffness, highlights its importance and presents some of the first developments on the
deflections, stress and load sharing of gears. Then, a specific section for each class of gear mesh
stiffness model is presented where not only the existing works are analyzed but also a description
of the models’ implementation procedures is performed. That being said, analytical models are

FEUP | 2023 | João D.M. Marafona



10 2. Mesh stiffness models

the first ones to be studied (Section 2.2) with emphasis to the potential energy method (complete
description on how to obtain the gear mesh stiffness for spur gears) followed by the literature
review. Section 2.3 is dedicated to the finite element models where guidelines for the key aspects
are given together with the presentation of some works. The next section explores hybrid models
(Section 2.4) and the approximate analytical models are detailed in Section 2.5. Section 2.6
analysis polymer gears and describes works related to their mesh stiffness. Throughout these
sections there are discussions focusing critical aspects of the models. This chapter ends with an
analysis of the different models studied, stating their advantages, disadvantages and purposes, as
well as an overview of the gear mesh stiffness trends.

2.2. Analytical models

Analytical models express the gear mesh stiffness through the usage of analytical expressions
acquired from mechanics of materials. The most common analytical method found in the
literature is the potential energy method (PEM). There are also some references to the Ishikawa
method, which is very similar to the potential energy method but the gear teeth are simplified
as the combination of a rectangle and a trapezoid [71]. For these reasons, the potential energy
method is going to be described.

2.2.1. Potential energy method

In the potential energy method, the gear tooth is modeled as a nonuniform cantilever beam fixed
at the root (dedendum) circle. The total potential energy of a gear tooth (Ut) due to the external
work done in deforming it can be divided into bending energy (Ub), shear energy (Us) and axial
compressive energy (Ua), as shown in equation (2.7). Equations (2.8) to (2.10) define the strain
energy of the individual components [72]. The coordinate y is given by the axis defined along
the tooth centerline with origin at the gear rotation center, as it can be seen in Figure 2.1.

Ut = Ub + Us + Ua (2.7)

Ub =

∫
M2

2EIs
dy (2.8)

Us =

∫
CfV

2

2AcG
dy (2.9)

Ua =

∫
F 2

c
2AcE

dy (2.10)

In equations (2.8) to (2.10), M is the bending moment, E is the modulus of elasticity of the
material, Is is the second moment of area of the cross-section, Cf is the shear correction factor
(Cf = 1.2 for rectangular cross-section), V is the shear load, Ac is the area of the cross-section,
G is the transverse modulus of elasticity of the material and Fc is the compressive load [72].

Considering the geometrical parameters of the involute tooth as described by Figure 2.1, the
previously mentioned parameters can be defined from equations (2.11) to (2.15). The work of
Pedrero et al. [73] is taken as a reference in the following description.
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Figure 2.1: Geometrical parameters of involute tooth. Reprinted from [73].

M = F cos(αC)(yC − y) (2.11)

Is =
b e3(y)

12
(2.12)

V = F cos(αC) (2.13)

Ac = b e(y) (2.14)

Fc = F sin(αC) (2.15)

where F is the involute profile normal load, αC is the load angle, b is the facewidth, e(y) is the
tooth chordal thickness at section y and yC is the coordinate of the load section.

Replacing the terms defined in equations (2.11) to (2.15) into equations (2.8) to (2.10), equa-
tions (2.16) to (2.18) are obtained.

Ub = 6
F 2 cos2(αC)

Eb

∫ yC

yp

(yC − y)2

e3(y)
dy (2.16)

Us = 0.6
F 2 cos2(αC)

Gb

∫ yC

yp

dy

e(y)
(2.17)

Ua =
F 2 sin2(αC)

2Eb

∫ yC

yp

dy

e(y)
(2.18)

The integration limits, yp and yC, are the values of y corresponding to the fixed boundary of the
tooth and the load section. The fixed boundary is given by the chordal tooth root line while the
load section is defined by the intersection of the line of action and the tooth centerline. Attend
on Figure 2.1 for a visual interpretation of the previous geometrical parameters.

The next step consists on defining the geometrical parameters as a function of the load point.
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12 2. Mesh stiffness models

For that purpose, a normalized coordinate (ξC), which is the ratio between the curvature radius
at the load point C (TC) and the circular base pitch (pb), is defined in equation (2.19).

ξC =
TC
pb

=

√
r2C − r2b

mnπ cos(α)
(2.19)

The parameters/coordinates that remain undefined are the load angle (αC), radius of the load
point (rC), tooth chordal thickness (e(y)) and the integration limits (yp and yC) which are all
established in equations (2.20) to (2.27).

First, the load angle is defined by equations (2.20) to (2.22).

αC = αT − 0.5γC (2.20)

αT = arccos

(
rb
rC

)
(2.21)

γC = 2
(s
d
+ inv(αt)− inv(αT)

)
(2.22)

where s is the tooth thickness at the pitch radius, d is the pitch diameter, inv is the involute of an
angle and αt is the transverse pressure angle. After some mathematical work on equation (2.20),
the load angle can be written as a function of the coordinate ξC, as presented in equation (2.23).

αC =
2π

z
ξC − π

2z
− 2x tan(α)

z
− inv(αt) (2.23)

In equation (2.23) x is the profile shift coefficient.

The tooth chordal thickness e(y) is presented on equation (2.24) as a function of the angular
thickness of the tooth (γ(y), defined on equation (2.25)).

e(y) = 2r(y) sin

(
γ(y)

2

)
(2.24)

γ(y) = γb − 2ν(y) (2.25)

ν(y) is the polar angle of the profile which is measured from the radius of the involute start point
at the base circle, see Figure 2.1. This angle is defined for both the involute profile and the root
trochoid in [74].

Finally, the integration limits yp and yC are defined in equations (2.26) and (2.27), respectively.

yp = rp cos(γp) (2.26)

yC =
rb

cos(αC)
(2.27)
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where γp is the angular thickness of the tooth at the root radius.

Considering that the load-deflection relationship is linear, the strain energy relates with the
stiffness according to equation (2.28) [72].

U =
L2

2k
(2.28)

U is the total potential energy of the system, which in this scenario is the single tooth total
potential energy, L is the total load applied in the system, meaning it is the involute profile
normal load (F ) and k is the system’s stiffness (single tooth stiffness).

Equation (2.29) defines the total potential energy for a single tooth, Ut. Also, to easily work the
expression, F 2/2 is taken out of each term, highlighting the specific total tooth potential energy
- ut.

Ut = Ub + Us + Ua =
F 2

2
ut (2.29)

Substituting equation (2.29) into equation (2.28), the single tooth stiffness can be written in
order to the specific total potential energy, see equation (2.30).

kst =
1

ut
(2.30)

At this point, the stiffness of a single tooth is obtained. However, the entire system is not made
of a single tooth. The gear mesh stiffness includes at least one pair of teeth, meaning that the
contact stiffness must be taken into account. Moreover, the contribution of the gear body to the
tooth deflections must not be disregarded, so the fillet-foundation stiffness must be included.

Concerning the contact stiffness, three main approaches were found to calculate the contact
compliance (yH) [75]: (1) an approximate Hertzian and compression approach originally used at
Hamilton Standard [75]; (2) a semi-empirical approach developed by Palmgren [76] and (3) a
closed form approach developed by Weber [49]. The approaches are presented as follows [75].

(1) Approximate Hertzian and compression approach originally used at Hamilton Standard
[75]:

yH ≈ 4F

πb

[(
1− ν21
E1

)
+

(
1− ν22
E2

)] [
1 +

π

4

]
(2.31)

(2) Semi-empirical approach developed by Palmgren [76]:

yH =
1.275F 0.9

E0.9
12 b

0.8
=

4
(
1− ν2

)
F

πE12b

{
1.10

b2E12

F

}0.1

(2.32)

where E12 =
1

2

(
1

E1
+

1

E2

)
.
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(3) Closed form approach developed by Weber [49]:

yH =
2F

πb

[(
1− ν21
E1

){
ln

2h̄1
bH

−
(

ν1
2 (1− ν1)

)}
+

(
1− ν22
E2

){
ln

2h̄2
bH

−
(

ν2
2 (1− ν2)

)}] (2.33)

bH =

{
4F

πb

[(
1− ν21
E1

)
+

(
1− ν22
E2

)]/[
1

RX1
+

1

RX2

]}1/2

(2.34)

where bH, given in equation (2.34), is the half Hertz contact width, h̄1 and h̄2 are the
distances on the pinion and on the wheel between the point of contact and the tooth
centerline along the line of action and RX1 and RX2 are the curvature radii of the pinion
and wheel, respectively.

The Hertzian contact stiffness can then be obtained through the Hertzian compliance according
to the relationship presented in equation (2.35).

kH =
F

yH
(2.35)

Still on the topic of gear contact stiffness, Sainsot and Velex [77] perform an in-depth analysis to
several gear teeth contact deflection formulae in the literature, including the ones shown from
equations (2.31) to (2.34). The comparison study revealed that some of the gear teeth contact
expressions applied in mesh stiffness models are not adequate for such purpose. An expression
for gear teeth contact deflections/stiffness, which corroborated with finite element simulations, is
developed and presented by Sainsot and Velex [77], equation (2.36).

yH =

ln
((

1 +

√
1 +

1

k
2

)
k

)
− 0.429

1 +

√
1 +

1

k
2

[b2H4
(

1

RX1
+

1

RX2

)]
(2.36)

where k is a datum depth in the normal direction normalized by the half Hertz contact [77].

The most common fillet-foundation compliance analysis is the one developed by Sainsot et al.
[78] based on the theory of Muskhelishvili applied for circular elastic rings. The expression for
the fillet-foundation compliance, equation (2.37), depends only on h = rp/rhub and θp, which
are the ratio between the tooth root radius and the hub radius and the angle between the tooth
centerline and the junction with the root circle, respectively [78].

yf =
F cos2 αC

Eb

{
L∗
(
up
sp

)2

+M∗
(
up
sp

)
+ P ∗ (1 +Q∗ tan2 αC

)}
(2.37)

with

L∗, M∗, P ∗ and Q∗: functions which depend on h and θp;

αC: load angle;
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up: distance along the tooth centerline measured from the tooth root to the loading tooth
section;

sp: tooth root thickness.

Under the assumption of plain strain conditions, the functions L∗, M∗, P ∗ and Q∗ were fitted to
polynomial functions for a realistic range of h and θp, leading to equation (2.38) [78].

Xi (h, θp) = Ai/θ
2
p +Bih

2 + Cih/θp +Di/θp + Eih+ Fi (2.38)

the coefficients Ai, Bi, Ci, Di, Ei and Fi are shown in Table 2.1.

Table 2.1: Coefficients of the polynomial curve fitting. Reprinted from [78].

Ai × 105 Bi × 103 Ci × 104 Di × 103 Ei Fi

L∗ (h, θp) −5.574 −1.9986 −2.3015 4.7702 0.0271 6.8045

M∗ (h, θp) 60.111 28.100 −83.431 −9.9256 0.1624 0.9086

P ∗ (h, θp) −50.952 185.50 0.0538 53.300 0.2895 0.9236

Q∗ (h, θp) −6.2042 9.0889 −4.0964 7.8297 −0.1472 0.6904

A more detailed explanation of the theory and calculation procedure behind the fillet-foundation
compliance can be found in [78]. Equation (2.35) can also be used to obtain the fillet-foundation
stiffness by replacing the Hertzian compliance by the fillet-foundation compliance, as presented
in equation (2.39).

kf =
F

yf
(2.39)

The fillet-foundation stiffness accounts for the effect of the gear body deflection on a single tooth,
meaning that when two pairs of teeth are in mesh (each of the engaging gear bodies has two
teeth in mesh), the fillet-foundation stiffness presented will lead to an overestimation of the gear
mesh stiffness. Take one of the gear bodies as an example, where actually the contributions of
two gear bodies, each one with a single tooth, are being added when, what should be included
are the contributions of two teeth in a single body. In order to solve this issue, Ma et al. [17]
developed a procedure to account for more than one teeth pair in mesh by calculating correction
coefficients with the Finite Element Method (FEM). The fillet-foundation stiffness for two teeth
pairs in contact is assumed to be proportional to the fillet-foundation stiffness of a single pair
in contact with a constant ratio. This ratio, computed with the Finite Element Method, is the
fillet-foundation correction coefficient. Later, Xie et al. [79] developed analytical expressions for
the fillet-foundation deflections resorting to the elastic circular ring theory of Muskhelishvili that
took into account the cross influence of simultaneously loaded gear teeth and hence analytically
fixing the fillet-foundation stiffness overestimation. Consult the works of Ma et al. [17] and Xie
et al. [79] for a more comprehensive description of these solutions.

Since this section is dedicated to analytical methods, namely the potential energy method, the
gear mesh stiffness presented will not account for the fillet-foundation correction coefficients.
The single tooth pair mesh stiffness is given by equation (2.40) as the previously established
stiffness terms are in series.
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ktp =
1

1

kst
1

+
1

kst
2

+
1

kH
+

1

kf1
+

1

kf2

(2.40)

Equation (2.40) gives the stiffness for a single pair of teeth. If both the pinion and the wheel only
had a single tooth, its gear mesh stiffness would be given by equation (2.40). The fillet-foundation
stiffness is not, in this scenario, being overestimated. Although, when the entire gear mesh is
considered and there is more than one pair of teeth engaged, there will be an overestimation of
the gear mesh stiffness, as previously explained. Moreover, note that in case of nonlinear Hertzian
contact stiffness (advised Hertzian contact stiffness formulation according to [77]) equation (2.40)
is only valid for each discrete position and corresponding applied load (local slope/tangent
stiffness), requiring an iterative process.

The gear mesh stiffness is obtained by adding the single tooth pair mesh stiffness of all gear
teeth pairs in mesh according to their position, which is described by equation (2.41).

K =
N∑
i=1

ktp
i (2.41)

being N the total number of teeth pairs in mesh.

The gear mesh stiffness established here is one of the ways to determine the gear mesh stiffness
of spur gears and it is a solid basis for other implementations of the potential energy method.
Besides the variety of procedures for spur gears, there are also different methods to calculate the
gear mesh stiffness for helical gears which slightly diverge from the spur gear methodology. The
different calculation approaches for helical and spur gears will not be presented here, although,
along the next section those procedures will be briefly reported.

2.2.2. Literature review on analytical models

Several models with distinct purposes can be found in the literature. Some compare different
approaches and others evaluate the effect of gear parameters and errors on the gear mesh stiffness.
A wide variety of works is presented in order to get an overview of the researches on analytical
methods for the calculation of gear mesh stiffness. As the following studies are summarized, for
a complete description it is recommended to check the references.

Spur gears

Mahr and Kissling [80] from KISSsoft® performed a comparative study on the calculation of
the tooth meshing stiffness with different tooth contact analysis software packages. KISSsoft®’s
gear mesh stiffness model, for spur and helical gears, is a discretized toothing model (based
on Petersen and Weber/Banaschek models) with torsional coupling, smoothing of the tooth
form curvature for the Hertzian deformations (commonly applied at the tooth tip) and reduced
bending stiffness on the side edges of helical gear teeth. The deformation components comprised
in the model are the bending and shear deformations, the gear body deformations and the
Hertzian deformations - more information can be found in KISSsoft®’s User Manual [81]. The
bending, shear and gear body deformations are proportional to the external load but the Hertzian
deformations are nonlinear. Two different types of tooth meshing stiffness are mentioned, the
secant and tangent stiffnesses. The secant stiffness (absolute stiffness) is measured from the
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unloaded tooth to the tooth in operation while the tangent stiffness (operating stiffness) describes
the dynamic behavior of the mesh. The single tooth pair stiffness using KISSsoft®’s package was
compared with a FEM analysis and they were in agreement [80].

Since gear design softwares were mentioned, the opportunity to talk about other softwares will
be taken as there are distinct approaches amongst them. Mahr and Kissling [80] and Beinstingel
et al. [82] compare and discuss stiffness results from various softwares. KISSsoft®’s approach
[80], based on Petersen and Weber/Banaschek models, was already presented above. LVR®,
according to [80], is based on the same spring-slice model of Petersen and Weber/Banaschek
but, as opposed to KISSsoft®, the slices are in the normal section. Furthermore, LVR® considers
coupling between the slices and the buttressing effect yet the influence of the neighboring teeth
in mesh is neglected. Next, RIKOR® [80] uses a spring-slice model with slice coupling regarding
tooth deformation, tooth tilting and Hertzian deformations and it does not take into account
effect of buttressing. Although, RIKOR®’s stiffness model does include the influence between the
teeth in mesh through the effect of torsion and shear deformations of the gear body. STIRAK®

[80; 82] combines the work of Neupert with a finite element model to estimate the gear mesh
stiffness. Even though STIRAK® models the gears’ exact tooth geometry it does not take into
consideration the extension of contact, evidence is found by the abrupt changes in the mesh
stiffness from single to double contact regions in [82]. Simpack® and DPZ®, respectively based on
the works of Weber/Banaschek and Schmidt, approximate the tooth root contour and in the
presence of undercut teeth, suitably reduce the wheel’s tip diameter which leads to different
starting meshing points when compared to the other softwares [82].

Dai et al. [83] proposed an analytical model for the mesh stiffness calculation of spur gears.
The engagement of external-external and external-internal spur gears is studied taking special
attention to the effect of addendum modifications. Bending, shear, axial compressive, fillet-
foundation and Hertzian contact stiffnesses are the components considered in the potential
energy method for the estimation of the gear mesh stiffness. By taking advantage of this model,
the influence of the addendum modification on the gear mesh stiffness is evaluated and an
experimental verification of the gear tooth bending stiffness for several torques is performed. The
experimental tooth bending stiffness, acquired resorting to strain gauges placed at the tooth root
of an internal spur gear, is found to be enclosed by the analytical tooth bending stiffness curves
obtained when the addendum modifications are and are not considered [83].

Luo et al. [18] investigated the effects of center distance variation on spur gears’ mesh stiffness.
In this study, both time-varying and constant center distance variations can be included, hence
assembly errors, runout errors, shaft bending and bearing deformation can all be taken into
account in this model. For the definition of the gear mesh stiffness, the potential energy method
is used along with a new gear mesh kinematic model which can evaluate the actual contact
positions of tooth engagement. The model was validated by comparing the results with others
found in the literature. When studying the gear mesh stiffness with and without runout errors, it
was concluded that the runout errors change the frequency content of the mesh stiffness. Besides
that, the peak-to-peak mesh stiffness variation and the gear center distance variation have a
linear relationship, as shown in Figure 2.2. Finally, when analyzing multiple faults simultaneously,
it was discovered that the effects of multiple faults is not the same as the combination of the
individual faults, so the faults merge in a nonlinear manner [18].

Xiong et al. [20] modified the potential energy method to include the influence of backlash on the
gear mesh stiffness. The backlash is included by developing tooth profile equations as a function
of the backlash. The components of the tooth pair energy are the Hertzian, bending, shear, axial
compressive and fillet-foundation energies. The effect of backlash on the gear mesh stiffness
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Figure 2.2: Trend of the peak-to-peak mesh stiffness variation with the center distance variation.
Reprinted from [18].

was studied and it was concluded that increasing the backlash, reduces the mesh stiffness. The
nonlinear dynamic behavior of spur gears with different backlash values was analyzed by fitting
the mesh stiffness curves obtained with the previous model in a Fourier series [20].

A very similar gear mesh stiffness model was used by Yang et al. [84] to investigate the nonlinear
dynamic response of a spur gear pair. The obtained analytical gear mesh stiffness is inserted in a
single degree of freedom torsional model where the mesh damping, backlash and transmission
error are also included. The calculation of the transmission error considers profile modifications
and spacing errors. So, profile modifications and spacing errors are not included in the mesh
stiffness model but are accounted for in the dynamic model [84].

Ma et al. [17] developed an analytical method for the calculation of the mesh stiffness of spur
gears which takes into consideration tooth profile modifications, extended tooth contact, Hertzian
stiffness and an improved fillet-foundation stiffness. This model solves the overestimate of double
tooth contact engagement where an extra gear body stiffness was taken into account when
more than one pair of teeth was in contact - issue present on some analytical methods. The
calculation schematic starts with the definition of the tooth stiffness as a cantilever beam -
bending, shear and compressive stiffnesses - and then the teeth pair stiffness is computed by
adding the stiffness of each tooth with the Hertzian contact stiffness, which are all in series.
The total mesh stiffness for all teeth pairs in mesh is the summation of their stiffnesses with
the contribution of the gear body - where FEM calculated coefficients are used to correct the
extra gear body. Figure 2.3 shows a spring schematic for the traditional (left) and improved
(right) analytical methods. The left schematic on Figure 2.3 leads to an overestimation of the
gear mesh stiffness as the fillet-foundation stiffness is included twice - there is only one gear
body for two teeth, not two gear bodies each one with a tooth. Although, on the right side
of Figure 2.3, the fillet-foundation is properly included due to the correction coefficients. In
order to include the extended tooth contact on the gear mesh stiffness, the meshing position and
separation distances are required to conclude if one, two or three pairs of teeth are in contact -
the stiffness modifications are performed accordingly to obtain the final tooth mesh stiffness. The
model is compared with FE (Finite Element) results, Chen’s method [85] (traditional analytical
method) and Fernandez del Rincon’s method [86] (hybrid model). Ma et al. [17]’s model shows
improved results compared to Chen’s method considering the FE model as the reference. The
FE model is coherent with Fernandez del Rincon’s method but the improved analytical model
had a slightly higher maximum mesh stiffness value when compared to the two previous models.
The currently presented model was used to evaluate the effect of the length and magnitude of
profile modifications on the gear mesh stiffness [17].
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Figure 2.3: Spring schematic of traditional analytical method (left) and improved analytical
method (right). Reprinted from [17].

Ma et al. [87] presented further developments on the previous work ([17]) by introducing the
effects of tip-fillet and friction in their model. For the introduction of friction, a Coulomb friction
model was considered with a constant coefficient of friction. Therefore, the gear radial and
tangential meshing loads are modified, changing the gear bending, shear and axial compressive
stiffnesses. The tip-fillet, a modification to the gear tooth profile, was included via the profile
errors. The gear mesh stiffness under different coefficients of friction and tip-fillet radius is
evaluated and validated with the finite element method. According to the results, the friction
has an higher impact than the tip-fillet on the gear mesh stiffness [87].

Wang et al. [88] defined a gear mesh stiffness model for spur gears with two main characteristics,
them being the tooth coupling stiffness and the errors along the tooth width direction. The gear
tooth is sliced along its width direction (slicing method) and the stiffness of each sliced tooth
pair is composed by bending, shear and axial compressive stiffnesses (potential energy method),
the Hertzian contact stiffness as well as the fillet-foundation stiffness with correction coefficients
for multi-tooth contact [17]. The coupling effect of teeth slices was simulated as springs, attend
on Figure 2.4 for a schematic of the slice coupling model. In Figure 2.4, kts is the slice tooth
stiffness, Fs is the force applied on a slice and kc

ij is the coupling stiffness between tooth slice i
and j. The tooth coupling stiffness (kc

ij) depends on the stiffness of the adjacent tooth slices, gear
module, tooth slice width and a slice coupling factor (Cc). The contact coupling effect between
teeth slices is ignored. The misalignment errors and lead crown modifications are introduced in
the gear mesh stiffness as spacing errors along the tooth width direction. The model is validated
and the effect of the tooth coupling is studied by comparing three mesh stiffness models, a finite
element model, the presented tooth coupling model (Cc = 2.75) and a slice without coupling
model (SWCM, Cc = 0). The models were compared considering both misalignment and lead
crown which led to the conclusion that the coupling effect is fundamental for the evaluation
of the mesh stiffness with spacing errors in the tooth width direction. The maximum relative
error for the misalignment and lead crown analysis was of 5.1% and 17.1% for the SWCM while
for the proposed model was 2.0% and 1.3% when taking the FE model as the reference. The
proposed model was in corroboration with the finite element analysis and hence was utilized to
analyze the effect of different magnitudes of misalignment and lead crown relief on the gear mesh
stiffness [88].

Xie et al. [79] established analytical expressions for gear body deflections induced by gear teeth
through structure coupling effect. The formulas are developed based on the elastic circular ring
theory of Muskhelishvili and assume a different stress distribution as it is found in [78]. While
in [78] the normal and tangential stress distributions were assumed to be linear and constant,
respectively, in [79] a cubic and parabolic stress distributions were correspondingly presupposed
for the normal and tangential stress distributions. The new gear body-induced deflections were
compared with a finite element analysis and Sainsot et al.’s [78] formulas. The proposed formula
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Figure 2.4: Tooth slice coupling model. Reprinted from [88].

presented closer results to the FE model than Sainsot et al.’s [78] formulas. Regarding the
structure coupling gear body-induced tooth deflections, the maximum error found was of around
5%. Along with this findings, an enhanced gear mesh stiffness model was introduced which
proved to be in agreement with a FE model [79]. In another work [89], the previously mentioned
model was further improved.

Xie and Shu [89] presented four different spur gear mesh stiffness models which are successive
improvements of each other. The first one discussed is the rigid gear body (RGB) model where
the only flexibility comes from the gear teeth. The gear mesh stiffness is determined considering
the bending, shear and axial compressive flexibilities of the gear tooth with the potential energy
method and a linear Hertzian contact flexibility. Next, the flexible gear body (FGB) model
employs the contributions of the gear body deflections through the expressions developed in
[78] and the influence of tooth profile error (deformation compatibility conditions). The revised
flexible gear body (RFGB) model does not contemplate tooth profile errors but it accounts for
the coupling effect of adjacent teeth by finite element calculated correction coefficients. The
proposed model, improved flexible gear body (IFGB) model, uses the formulas developed in [79]
to analytically describe the gear body induced tooth flexibility with coupling effect, eliminating
the need of the finite element method for correction coefficients. Moreover, this model updated
the deformation compatibility conditions to include the effect of adjacent teeth, allowing both
tooth profile modifications and coupling effects simultaneously. All the models were compared
with the IFGB and FEM models. The improved flexible gear body model is the most complete
model presented in [89] and it does not require the need for the finite element methods. When all
four models were compared to the FEM results, the IFGB model showed the smallest error [89].

Chen et al. [90] calculated the gear mesh stiffness of spur gears with tooth profile deviations with
an analytical model that includes the tooth deformation, contact deformation, fillet-foundation
deformation and gear body structure coupling. The tooth deformation is determined with the
potential energy method, the contact deformation with a nonlinear Hertzian contact expression
and both the fillet-foundation and the gear body structure coupling are defined analytically with
the expressions developed in [79]. With all the stiffness components defined and given the tooth
deviations, the gear mesh can be computed. The validation procedure consists on the application
of a finite element analysis to three distinct gear pairs each under three hub bore radius. Due to
the flexibility of this model, the influence of several effects/parameters on the gear mesh stiffness
can be studied, hence, tooth profile modifications, teeth linear and nonlinear contact, coupling
methods and tooth profile errors were investigated [90].

Discussion Up until now, the described works were dedicated to the mesh stiffness of spur
gears. There are a few topics that deserve a more extensive discussion, namely, the overestimation
of the fillet-foundation stiffness under multi-tooth contact, to which Ma et al. [17] presented a
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solution to. Although, this methodology resorts to the finite element method to define correction
factors which makes the calculation process more time consuming and less flexible (a finite
element model for each gear pair analyzed). This setback was solved and the gear body coupling
effect can be analytically determined with the expressions developed by Xie et al. [79]. This is a
substantial improvement for analytical gear mesh stiffness models since it eliminates the need of
a finite element analysis, which an analytical model should not require.

A topic that differs among the works analyzed and will also vary in the upcoming investigations
is what kind of Hertzian contact stiffness is implemented: linear and nonlinear expression for the
Hertzian deformations were found in the literature. According to Chen et al. [90], linear Hertzian
contact stiffness leads to an overestimation of the gear mesh stiffness against the nonlinear
expression. From the aforementioned, the best approach is to consider the nonlinear Hertzian
contact deformations as the results should be more accurate. This subject is also analyzed by
Sainsot and Velex [77], where it is shown that Hertzian contact deflections are nonlinear.

The extension of tooth contact occurs when the teeth deflections due to the applied load are
higher than the distance that separates them. This phenomenon, that takes place outside the
normal path of contact, loads the teeth tip corner, which is undesirable and is one of the main
reasons why profile modifications are applied in gears. To properly estimate the contact extension
and include it in an analytical model, the separation distance needs to be defined. Several authors
[35; 91–95] studied the separation distance and the impact of tooth contact extension on the
transmission error. There can be significant changes in the quasi-static and dynamic behavior of
spur gears when teeth contact extension is considered, showing its importance for gear mesh
modeling.

In the determination of the mesh stiffness of spur gear, it is not very common to use the slicing
method (division of the gear in thin slices along its width direction), although Wang et al. [88]
employed it when analyzing spur gears with tooth width modifications along with a slice coupling
model. If all slices were contributing equally for the gear mesh stiffness, the coupling between the
slices would not affect the final results. For these situations, the coupling effect can be neglected,
but that does not mean it does not exist since the load will always be transferred between each
slice. However, when the slices are different from each other, their contributions are not the
same so a weighting/distribution function is required for a proper gear mesh modeling.

A very complete analytical spur gear mesh stiffness model can be implemented considering all
the studies shown so far. That model would include extension of contact, tooth profile errors,
tooth width errors, analytical gear body coupling and slice coupling. A recap of the analyzed
works on analytical models for spur gears can be found on Table 2.2.

Helical gears

Chung et al. [96] analytically studied the mesh stiffness and transmission error of helical gears.
The geometry and contact positions of the helical gear are completely defined and the mesh
stiffness is computed with the potential energy method by dividing the tooth into thin slices
along its width. Each slice is viewed as an independent spur gear, see Figure 2.5 for a visual
interpretation of the slicing procedure. The stiffness calculation of each slice comprises the tooth
stiffness (bending, shear and axial compressive stiffnesses), the fillet-foundation stiffness (as in
[78]) and the contact stiffness. The mesh stiffness is obtained by adding the stiffnesses according
to the meshing position, slice tooth and number of contacting gear tooth pairs. Finite element
analysis on three distinct gear geometries (one spur and two helical gears) validated the results
obtained by this model. The impact of neglecting the trochoidal root profile on the mesh stiffness
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Table 2.2: Summary of spur gear analytical models.

Analytical
Model

Transverse
and

Contact
Stiffnesses

Fillet-foundation
Stiffness

FE corrected
Fillet-foundation

Stiffness

Analytical
(corrected)

Fillet-foundation
Stiffness

Profile
Errors

Tooth
Width
Errors

Tooth
Friction

Slice
Coupling
Stiffness

Dai et al. [83] X X - - - - - -

Luo et al. [18] X X - - - - - -

Xiong et al. [20] X X - - - - - -

Yang et al. [84] X X - - X∗ - - -

Ma et al. [17] X - X - X - - -

Ma et al. [87] X - X - X - X -

Wang et al. [88] X - X - - X - X

Xie et al. [79] X - - X - - - -

Xie and Shu [89] X - - X X - - -

Chen et al. [90] X - - X X - - -
∗ not directly included in the mesh stiffness model.

and transmission error was investigated. It was discovered that the mistreatment of the root
profile leads to less accurate results, mainly in the bending component due to the variations in
the moment arm [96].

Figure 2.5: Schematic of the helical tooth slice division. Reprinted from [96].

Feng et al. [16] defined the time-varying mesh stiffness of helical gears analytically using the
slicing and the potential energy methods. The mesh stiffness at a given position is equal to
the sum of the slices’ stiffness at that same position. Figure 2.5 shows the schematic of tooth
slices. Each independent thin gear slice is viewed as a spur gear, hence its mesh stiffness is
obtained with the potential energy method, which in this work considers the fillet-foundation
stiffness with FE calculated coefficients, Hertzian stiffness, bending stiffness, shearing stiffness
and axial compressive stiffness. The tooth-face friction affects the bending, shear and axial
compressive stiffnesses according to the modifications it introduces in the tooth load. The model
was validated by comparing the results with a FE model, Chang’s method [12], Cai’s method
[97], Gu’s method [13], Wang’s method [98] and ISO 6336. For the gears analyzed, the model
presented results very close to the FE model and in some conditions yields closer values to the
FE model than other of the previously mentioned models. Upon validation, this analytical model
was used to investigate the effect of the helix angle, gear width, modification coefficient and
friction coefficient on helical gears’ mesh stiffness [16].

Yu and Mechefske [14] created a new model for the determination of the single tooth pair
stiffness of helical gears. This improved analytical model uses the slicing principle method
where a parabola-like weighting factor distribution along the tooth facewidth is applied for the
coupling effect. The “thin-slice” approach (slicing principle) divides a helical gear into slices of
spur gears. The stiffness of each equivalent spur gear is calculated through analytical formulae
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(potential energy method) and accounts for the bending, shearing, compressive, Hertzian and
fillet-foundation stiffnesses. Since the helical gear was assumed as a series of staggered spur
gears, the helical single tooth stiffness is given by the sum of the stiffness of each slice (spur gear).
Although, by doing this, each slice is independent from each other. To include the coupling
within each slice, a Gaussian curve is applied for each slice considering that the amplitude of the
Gaussian curve is higher for the slices on the tooth edges. The non-uniform weighting distribution
is obtained by the sum of Gaussian curves of each slice, originating a parabolic-like curve with
the maximum at the middle and minimum at the edges. The final tooth stiffness is reached
by including the weighting function in the tooth stiffness expression. Different kind of models
are compared with the developed model - analytical model with no coupling, ISO standard and
FE model - which revealed more accurate stiffness curves in terms of shape and values when
compared to the analytical models without slice coupling [14].

Wang et al. [99] developed a model to establish the mesh stiffness of helical gears with profile
modifications by slicing a helical gear teeth with planes normal to the gear rotation axis, as
shown in Figure 2.5. In this model, each slice is viewed as a two-dimensional model and the
calculation of the deformation of each slice takes into account the loads applied in other slices,
meaning that each slice is not independent. The process of computing the mesh stiffness of helical
gears with linear tip modification starts with the calculation of the time-varying contact line
length for a perfect helical gear. Then, the gear is divided into slices and the deformation and
modification amounts are defined for each slice. There are two possible situations, the amount of
modification is larger than the deformation (meaning that the slices do not contact each other) or
the contact line is on the modified flank. For the first case, the contact line length and stiffness
are defined as zero whereas for the second case, the contact line length and stiffness for the slices
are computed through the contact status of each slice (contact line length) and the division of the
loads by the deformations (stiffness). The deformation of each slice is calculated considering the
bending, shearing, contact and fillet-foundation deformations. The stiffness of each tooth is given
by combining the stiffness of each slice. The single tooth pair stiffness is obtained combining
the wheel’s and the pinion’s tooth stiffnesses. The resulting stiffness was compared with a finite
element model and even tough the shape obtained is close, the stiffness values are slightly off.
Regardless, the model was still considered approved and was used to study the influence of linear
tip modification on the total contact length and mesh stiffness of helical gear pairs [99].

Tang et al. [100] established a mesh stiffness model for spur gears which was modified for helical
gears to include the coupling effects. The spur gear mesh stiffness is obtained from the potential
energy method with bending, shear and axial compressive energies, Hertzian contact stiffness
and fillet-foundation stiffness ([78]). This spur gear model was the basis for the development of
two different helical gear models, a single coupling model and a double coupling model. The
helical gear is divided into slices along its width and each slice is connected by a single spring
(single coupling model). In this model, the coupling stiffness relates both the gear body and
tooth stiffness of each slice. Its value is given by the torsional stiffness of the gear body and the
shear stiffness between the teeth slices. In the double coupling model, the gear body and gear
tooth slices are connected separately. The gear body coupling stiffness consists on the torsional
and shear stiffness of the slices while the tooth slices are connected by a shear stiffness and a
scale factor to account for the different load locations in the tooth profile between slices along
a line of contact. The spur and helical gear models were validated with a FEA and by other
models found in the literature. The tooth and gear body coupling stiffnesses were analyzed for
different helical gear pairs and it was found that the tooth coupling stiffness has more impact on
the gear mesh stiffness than the gear body coupling stiffness [100].

Wang et al. [101] presented a gear mesh stiffness model for helical gears where the axial mesh
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stiffness component is also introduced. The total mesh stiffness is composed by two components,
transverse mesh stiffness and axial mesh stiffness. The transverse mesh stiffness is given by the
sum of the stiffnesses of each tooth slice without tooth coupling. This mesh stiffness component
includes the bending, shear and axial compressive stiffnesses by the potential energy energy,
the Hertzian contact stiffness and the transverse gear foundation stiffness considering a FE
correction factor. The axial mesh stiffness is comprised by the tooth axial stiffness and axial gear
foundation stiffness, both determined by the potential energy method. However, while the first
accounts for the bending and torsional energies, the second only considers the bending energy.
The axial gear foundation stiffness model assumes a semicircular variable cross-section cantilever
beam to determine the bending energy which, according to a finite element analysis, is a good
approximation. The model is validated by the finite element method in three distinct studies.
The first study evaluates the maximum single tooth stiffness, the second is the comparison of the
gear mesh stiffness while considering or not the axial mesh stiffness component and the last one
is equal to the second one but for a different gear geometry. Finally, the effect of the helix angle
on the gear mesh stiffness was investigated and the main conclusion is that the axial stiffness
component has a relevant role on the total gear mesh stiffness as the results showed that the
maximum relative error found when ignoring it is around 10% for an helix angle equal to 10°
and keeps increasing from that point forward [101].

Hou et al. [102] developed a robust gear mesh stiffness model for helical gears by considering
slice coupling stiffnesses between the teeth and fillet-foundation as well as including the axial
stiffness. The stiffness of each slice is composed by the tooth and the fillet-foundation stiffnesses.
The tooth stiffness is determined by potential energy method for both the axial and transverse
components. The axial component includes the bending, shear and torsional energies while
the transverse component the bending, shear and axial compressive energies. Concerning the
fillet-foundation stiffness, its axial component is established by the potential energy method
assuming the body as a cantilever beam (bending energy) while its transverse component is
computed resorting to the expressions developed in [79]. For the Hertzian contact stiffness a
nonlinear equation is applied. The neighboring slices are connected by springs in both the tooth
and fillet-foundation regions. The stiffness of these springs is calculated with the contributions
of the torsional and shear stiffnesses. Two gear pairs are submitted to a finite element analysis
to perform the validation of the developed gear mesh stiffness model. The maximum error found
when evaluating the mean, maximum and minimum values of the gear mesh stiffness was lower
than 5%. By taking advantage of the inclusion of the axial stiffness and coupling effects on the
model, the influence of the helix angle on the gear mesh stiffness fluctuations and mean value was
analyzed. Two configurations were investigated, one where the axial effects were neglected and
another where they were not. It was concluded that the axial effects do not have a significant
influence on the mesh stiffness fluctuations yet ignoring them leads to an overestimation of the
average mesh stiffness value, specially for helix angle values above 20° [102].

Discussion The main differences found in the helical gear models are related to the gear body
coupling, the slice coupling and the axial stiffness. The axial mesh stiffness is not considered in
many works when evaluating the total gear mesh stiffness but Wang et al. [101] and Hou et al.
[102] included and studied it with their models. Similar conclusions were obtained, the axial
mesh stiffness plays a relevant role in the gear mesh stiffness. Naturally, for small helix angles,
the effects are not that pronounced but as it increases they cannot be disregarded.

The gear coupling effect has to be considered for helical gears. The analytical expressions in [79]
allow to include the gear body coupling effect without the FEM. As for the slice coupling effect,
it is fundamental for helical gears since the contribution of each slice is different even without
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modifications. For any meshing position, the contact line is not perpendicular to the path of
contact and therefore each slice will have different contact points along the tooth profile. The
helical gear slice coupling is sometimes neglected by considering narrow-faced helical gear with
small helix angles, situation where the coupling effect is very small. Nevertheless, this is still an
approximation.

It is recommended that the previously discussed effects are incorporated in any helical gear mesh
stiffness model. Table 2.3 sums up the studies of analytical models for helical gears.

Table 2.3: Summary of helical gear analytical models.

Analytical
Model

Transverse
and

Contact
Stiffnesses

Axial
Stiffness

Fillet-foundation
Stiffness

FE corrected
Fillet-foundation

Stiffness

Analytical
(corrected)

Fillet-foundation
Stiffness

Profile
Errors

Tooth
Width
Errors

Tooth
Friction

Slice
Coupling
Stiffness

Chung et al. [96] X - X - - - - -

Feng et al. [16] X - - X - - - X -

Yu and Mechefske [14] X - X - - - - - X

Wang et al. [99] X - X - - X - - X

Tang et al. [100] X - X - - - - - X

Wang et al. [101] X X - X - - - - -

Hou et al. [102] X X - - X - - - X

Damaged gears

The mesh stiffness of damaged gears is also a highly investigated topic. Several types of gear
tooth damaged are studied such as pitting, spalling, wear and tooth cracks. In this section, both
spur and helical gears are investigated, being spur gears analyzed first. Analytical models might
not be the most accurate type of model for this kind of evaluation, nevertheless many authors
obtained satisfactory results, as shown next.

Chen and Shao [85] created an analytical mesh stiffness model for spur gears capable to account
for gear tooth errors and cracked teeth. In this model, the pinion and wheel were assumed to
have rigid bodies. Also, the wheel was considered fixed while the pinion could rotate freely. The
geometric formulation of the contact positions considered tooth errors - tooth profile modifications
can be incorporated as tooth profile errors. Then, the relationship between gear tooth errors
and gear mesh stiffness, load sharing ratio and loaded static transmission error is defined. For
the calculation of these parameters, the single tooth pair stiffness needs to be obtained, so the
potential energy method was adopted. The single tooth pair stiffness is given by adding the
stiffnesses of the single tooth, the fillet-foundation and the Hertzian contact. The single tooth
stiffness is obtained by integrating the bending, shear and axial compression stiffnesses along
the tooth width. The presence of the tooth crack is translated into the model as a reduction
in the second moment of area and the area of the cross-section. The effects of tooth profile
modifications, applied torque and gear tooth root crack on the mesh stiffness were investigated
for both low contact and high contact ratio gears [85].

Meng et al. [103] investigated the vibration of a spur gear pair in the presence of tooth root crack
and spalling by analytically defining the gear mesh stiffness. Like in the previous model, the
potential energy method is applied with the fillet-foundation and Hertzian contact stiffnesses. In
order to establish the gear mesh stiffness with a tooth root crack or spalling, the tooth cross-section
and second moment of area are modified accordingly. The impact of different crack lengths,
spalling widths, spalling lengths and spalling locations on the gear mesh stiffness is studied.
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The gear mesh stiffness with the desired tooth damage is inserted in a six degrees of freedom
lumped-parameter model to analyze the fault characteristics in the dynamic response [103].

Wang and Zhu [104] took advantage of the potential energy method, the nonlinear Hertzian
contact stiffness and the FE corrected fillet-foundation stiffness to define the mesh stiffness of
spur gears with spalled teeth and time-varying coefficient of friction. As it is commonly found in
analytical models with tooth surface defects, the spall is defined as a rectangle and affects the
tooth stiffness by modifying its cross-section area and the second moment of area. The friction
coefficient under mixed elasto-hydrodynamic lubrication is obtained considering a weighting
factor function and the coefficients of friction in boundary and full film lubrication. The gear
mesh stiffness with time-varying friction coefficient and spalled teeth are studied separately [104].

Liu et al. [105] combine an analytical geometry description of external and internal spur gears
with tip chipping and the potential energy method to accurately evaluate their mesh stiffness.
Five energy components were included in the potential energy method for the calculation of the
gear mesh stiffness: bending, shear, axial compressive, fillet-foundation and Hertzian contact.
The analytical model is discussed separately for external-external and external-internal spur gears
and accounts for the damage variations along the tooth width. The analytical procedure was
validated by a finite element analysis for both external-external and external-internal spur gears.
The tip chipping can vary along the involute profile (point A), addendum tooth tip (point B)
and tooth width (point C) as shown in Figure 2.6. The left side of Figure 2.6 displays the entire
tooth while the right side presents a damaged cross-section. The mesh stiffness of different tip
chipping shapes is investigated resorting to the comparison of mesh stiffness curves, differences in
stiffness amplitude and attenuation rate relatively to a healthy tooth mesh. The results provided
evidence that the position along the involute profile (point A) has the highest impact on the
mesh stiffness [105].

Figure 2.6: Illustration of tooth with tip chipping. Reprinted [105].

Chen et al. [106] employ the potential energy method to research the effect of wear on the gear
mesh stiffness of external spur gears. To include the wear in the analytical model, Archard’s
wear prediction model is applied and the tooth related energies are modified to account the
evolution of wear. Only the bending, shear and axial compressive energies were affected while the
remaining, Hertzian contact and fillet-foundation energies, were not altered by this phenomenon.
Figure 2.7, presented by Shen et al. [107] in an investigation on the effect of wear on the mesh
stiffness of a planetary gear set, shows how wear influences the shape of a gear tooth profile. The
potential energy method together with the deformation compatibility equations give the gear
mesh stiffness for both single and double tooth pair contact regions. The model is found to be
validated by comparing the results with a finite element model for both healthy and worn gears.
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The mesh stiffness of gears with different number of revolutions (N) is analyzed, concluding that
wear mainly affects the double tooth contact region and that the mean mesh stiffness reduction
has an approximately linear relation with the maximum wear depth for N < 5× 105 [106].

Figure 2.7: Example of gear tooth profiles with different wear cycles. Reprinted from [107].

Chen and Ji [108] examine the gear mesh stiffness and transmission error of spur gear teeth
including wear, profile modifications, extension of contact and structure coupling (influence of
the neighboring teeth deflections). To accomplish this objective, the potential energy method
was implemented (bending, shear, axial compressive, Hertzian contact and fillet-foundation
components) with a fillet-foundation formulation developed in [79] that accounts for the deflections
on the neighboring teeth. Wear, profile modifications and extension of contact are incorporated by
the application of the principle of rotation displacement coordination (deformation compatibility
equations) which require the amount of wear, profile modification and separation distances. The
amount of profile modification is defined by the designer, the separation distance only depends
on the gear geometry and the amount of wear is established via the Archard’s wear prediction
model. A successful validation was acquired through a finite element analysis of two distinct gear
geometries with and without profile modifications. A combination of profile modifications and
cycles of wear was analyzed which lead to the conclusion that even if the maximum wear depth
is smaller than the amount of profile modification, it can have the most significant influence on
the gear mesh stiffness [108].

Yousfi et al. [109] assessed the gear mesh stiffness of spur gears considering more realistic surface
defects instead of using, as it is commonly found in the literature, specific geometries like circles,
rectangles or triangles. The gear mesh stiffness is defined by a developed contact detection
algorithm and the potential energy method which involves the bending, shear, axial compressive,
fillet-foundation and Hertzian contact stiffnesses. The gear tooth surface is discretized in the length
and width directions granting the possibility of varying the defect depth in the two directions. This
way, irregular surface defects can be modeled without defining their mathematical expressions.
The coordinates of the contact points in the path of contact during meshing considering the
irregular defects are defined in the contact detection algorithm by minimizing the distance
between two points, one on the pinion surface and other on the wheel surface. The model was
validated for an healthy gear by comparing with finite element and analytical models. Upon
validation, the gear mesh stiffness under different nonuniform shaped spalls and pitting defects
is studied. The nonuniform shaped defects are generated by a Matlab® function that creates
two-dimensional random rough surfaces with a Gaussian height distribution. Even though this
approach was taken to define the irregular defects, the true potential of this model relies in the
possibility of considering real damaged tooth surfaces without any mathematical expression.
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This is, with the proper equipment, direct tooth surface measurements can be introduced in the
model for the calculation of the gear mesh stiffness [109].

Chen et al. [110] resorted to the potential energy method and the slicing method to determine the
mesh stiffness of helical gear pairs with spalling. The mesh stiffness considers bending, shearing,
axial compressive, fillet-foundation with correction coefficients and Hertzian stiffnesses. For each
slice it is verified whether it is a healthy or spalling meshing position - see Figure 2.8 for an
example of a tooth slice with spalling. In case of a faulty meshing point, the effect of the spalling
in the gear mesh stiffness is introduced through a spalling correction coefficient. The developed
procedure allows to evaluate the mesh stiffness for different spalling lengths, widths and positions.
The proposed method was compared with a finite element model under different types of spalling
defects and the results obtained are in good agreement [110].

Figure 2.8: Sliced tooth with spalling. Reprinted and adapted from [110].

Wan et al. [111] developed the accumulated potential energy method to define the mesh stiffness
of a helical gear pair. The accumulated potential energy method arises from the application of
the potential energy method, used for spur gear, to helical gears. Assuming that a helical gear
can be viewed as a series of staggered spur gears with no elastic coupling (valid for narrow-faced
gears with low helix angles), the stiffness of the helical tooth can be achieved by integration
along facewidth, therefrom the name accumulative potential energy method. The mesh stiffness
of a helical gear pair with cracked tooth was evaluated in this model (modification in the effective
cross-section area and second moment of area) by assuming the cracked tooth as a cantilevered
beam and that the crack depth changes linearly with the facewidth. The model was validated
with comparison to a FE model and the ISO 6336. The presence of a tooth crack and the effects
of normal module, helix angle and facewidth on the mesh stiffness of a helical gear pair were
investigated. Moreover, the mesh stiffness obtained by this method was included in a dynamic
model to evaluate the dynamic response of a helical gear pair with the variation of geometric
parameters and containing a cracked tooth [111].

Jiang and Liu [112] modeled the mesh stiffness of helical gears containing tooth cracks. The
potential energy and slice methods are used to determine the stiffness of the tooth as well as the
deflection of the gear body. The cantilever beam model presented consists of half the gear body
(fixed along the gear center) with a single tooth. The stiffness of each sliced pair is obtained by
adding the bending, shear and axial compressive tangential components; the bending, shear and
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torsional axial components and the Hertzian contact stiffness. The implemented cantilever beam
model allows to account for the contributions of the tooth crack in both the gear tooth and gear
body deflections. So, in the presence of tooth crack, the second moment of area, cross-section
area and the polar moment of area are all suitably modified. The single tooth pair mesh stiffness
is computed by integrating the stiffness of each sliced tooth pair along the contact line, then
the gear mesh stiffness is given by the sum of all gear tooth pairs in mesh. Since this model
describes the crack depth along the tooth width and integrates the tooth slices along the contact
lines, healthy and damaged tooth slices are properly assessed. The proposed model is validated
by comparing the gear mesh stiffness results with a finite element analysis under three different
circumstances, they are, in the presence of tooth crack considering or not the gear body deflection,
ignoring or not certain stiffness components and different crack propagation scenarios [112].

Discussion In the analytical models of damaged gears, the tooth defects are usually taken
into account in the tooth stiffness by modifying its cross-section area and second moment of area.
It is common to find in these models non-realistic defects such as rectangles or circles to simulate
pitting and/or spalling. They might be a good approximation for some situations but they are
not valid for most of them. To overcome this, Yousfi et al. [109] developed a model where it is
possible to introduce realistic shapes from real tooth surface measurements. The best results are
obtained when the model is as close to reality as possible.

Finally, when modeling gears with defects that are not uniform along the entire tooth width, there
will be damaged and healthy gear slices so, in order to properly include them, the slice coupling
effect needs to included. In addition, if only the damaged slice is considered for the calculation, it
is almost the same as considering that the defect is in the entire tooth width (cross-section area
accounts for tooth width damage). Care must be taken to the simplifications/approximations
performed when dealing with damaged gears. Table 2.4 compiles all the works presented on
analytical models of damaged gears along with their main characteristics. There is no column
for the tooth width errors since pitting, spalling and tooth cracks can be seen as errors along the
tooth width. From Table 2.4, it can be concluded that there is not any work with slice tooth
coupling in damaged gears.

Table 2.4: Summary of damaged gears analytical models.

Analytical
Model

Transverse
and

Contact
Stiffnesses

Axial
Stiffness

Fillet-foundation
Stiffness

FE corrected
Fillet-foundation

Stiffness
Profile
Errors

Tooth
Friction

Slice
Coupling
Stiffness

Pitting
and/or

Spalling
Tooth
Cracks Wear Tip

Chipping
Realistic

Tooth
Surface

Chen and Shao [85] X - X - X - - - X - - -

Meng et al. [103] X - X - - - - X X - - -

Wang and Zhu [104] X - - X - X - X - - - -

Liu et al. [105] X - X - - - - - - - X -

Chen et al. [106] X - X - - - - - - X - -

Chen and Ji [108] X - X1 - X - - - - X - -

Yousfi et al. [109] X - X - X2 - - X - - - X

Chen et al. [110] X - X - - - - X - - - -

Wan et al. [111] X - - X - - - - X - - -

Jiang and Liu [112] X X X - - - - - X - - -
1 analytical formulation in [79].
2 the realistic tooth surface allows for profile errors.
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2.3. Finite element models

The finite element method (FEM) is a procedure used to find numerical solutions of equations
that define the behavior of any system. These problems are usually defined resorting to the
laws of physics, algebraic equations, differential equations or integrals. Concerning structural
analysis, FEM is a powerful tool to calculate displacements, stresses and deformations of loaded
structures [113–115].

This numerical method is characterized for dividing a continuous domain of a problem into
several non-overlaped subdomains, the finite elements. The finite elements are interconnected
by nodes and together they create a mesh that discretizes the entire domain. The number and
location of the nodes depends of the geometry of the elements and the polynomial approximation
used. For each element the solution is approximated by the combination of the values at each
node and by assembling all the elements, the entire problem is solved. The assembly process is
conducted considering that the solution is continuous along the elements. Moreover, this process
depends on the boundary conditions and initial conditions of the problem. The solution can only
be found after imposing these conditions [113–115].

However, no method is perfect and FEM is no exception. FEM has errors associated to the
modeling of the problem, discretization of the domain and from numerical computation. The
modeling errors can be minimized by improving the conceptual and structural models that
describe the system’s behavior. The errors that arise from the approximation of the domain
through finite elements - discretization process - are usually taken care by selecting a more
appropriate element, by increasing the precision of the selected element or by increasing the
number of elements. The computational errors, which are normally small, are associated to the
capacity of the computer in representing data by finite numbers which, for the finite element
method, is aggravated due to its accumulation [113–115].

In short, the finite element method allows the analysis of a system with complex geometries,
boundary conditions, loadings and material properties as well as nonlinear configurations whether
due to the material or geometry, meaning it is a powerful calculation and analysis tool [113–115].

For the gear mesh stiffness, the finite element method comes in handy, as its determination
involves very complicated geometry, loading and, in some situations, material properties. The
high precision of the finite element method allows to account for many different effects that are,
sometimes, neglected in analytical methods, for instance, corner and back contact, border effects
and, for helical gears, axial deformations. The main disadvantage of the finite element method is
its high computational effort which may not be, in some situations, affordable.

Common applications of the finite element method regarding the gear mesh stiffness are validation
of other techniques (the finite element method is considered the most accurate), analysis of mesh
stiffness with tooth crack, spalling and pitting, study of gear geometrical parameters on the mesh
stiffness and assessment of the mesh stiffness for dynamic purposes.

2.3.1. Details of finite element method

The purpose of this section is to describe details of the application of the finite element method
to the gear mesh stiffness. The addressed points are softwares, system modeling, commonly used
elements, mesh discretization and mesh stiffness extraction.

• Softwares: Table 2.5 shows commonly used softwares for finite element analysis of the
gear mesh stiffness as well as the corresponding works that use them.
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Table 2.5: Softwares used to perform finite element analysis of the gear mesh stiffness.

Softwares ABAQUS® ANSYS® Calyx® COSMOS/M® MSC Software®
(Nastran solver)

Works [116] [15; 16; 110; 117–120] [9] [121] [122]

• Gears’ modeling: There are different ways to model the gears for the finite element
method and they vary according to what is desired to analyze. The full gear can be modeled,
this is, the entire body with all the teeth, or only some of the teeth might be represented
in the entire gear body. Also, partial gear body and corresponding gear teeth can also be
utilized (sector models). Table 2.6 summarizes the different types of gear modeling found.

Table 2.6: Modeling of gears for finite element analysis of the gear mesh stiffness.

Type of
Gear Modeling Full Gear Gear Body with

a Single Tooth
Gear Body with

Several Teeth
Single Tooth
Sector Model

Three Teeth
Sector Model

Works [9; 15; 118; 120] [121] [16; 110; 117; 122] [116] [116; 119]

• Type of elements: A finite element model can contain different types of elements so that
the most appropriate elements are utilized according to the intended purpose. Table 2.7
resumes the types of elements used for the works analyzed.

Table 2.7: Types of elements for finite element analysis of the gear mesh stiffness.

Type of
Elements

Gap
Elements

High
Stiffness

Truss
Elements

3-noded
Plane Stress

Elements

4-noded
Plane Stress

Elements

Linear
Elements:
SOLID185

Contact
Elements:

CONTA174
TARGE170

20-node
Structural
Elements

8-node
Linear
Brick

Elements
(C3D8)

8-node
Trilinear

Hexahedral
Elements

10-node
Tetrahedral

Elements

Liang et al. [15] - - - - X - - - - -

Feng et al. [16] - - - - X X - - - -

Chen et al. [110] - - - - X X - - - -

Thirumurugan
and Gnanasekar [116] - - - - - - - X - -

Zhan et al. [117] - - - - X X - - - -

Wang and
Howard [118] - - - X - - - - - -

Zouari et al. [119] - - - - - - X - - -

Liang et al. [120] - - - - X - - - - -

Arafa and
Megahed [121] X X X X - - - - - -

Hedlund and
Lehtovaara [123] - - - - - - - - X -

Natali et al. [122] - - - - - - - - - X

• Elements’ size: The elements’ size is most critical when analyzing the contact between
gear teeth for a proper incorporation of the Hertzian contact effects and the tooth root
regions due to the high stresses involved. The meshes are usually made in order to obtain
the best results with the minimum computational effort, therefore finer meshes are only
applied when strictly necessary. There are different approaches for meshing in order to
minimize the computational time: adaptive meshing is a technique where at each step
there is a remeshing of the contact area, that is, the contact zone is always finely meshed
independently of its location; layer meshing is the application of a layer of fine elements
along the tooth profile and teeth meshing consists in refining the entire teeth that are
going to mesh. Coy and Chao [124] developed a method of selecting the grid size for the
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finite element study of gear tooth deflection in order to include the full effects of Hertzian
deformations. This method was established resorting to the analysis of two cylinders in
line contact and it was determined that the ratio of element size to Hertz contact width
(e/(2bH)) is related to grid aspect ratio (c/e: element dimension in the direction normal to
the loaded edge divided by the element size measured along the loaded edge) according to
equation (2.42). In [118] it is ensured that the maximum allowable element edge in the
contact zone is equal to half the contact zone considering the maximum tooth contact
stress at the tooth tip, whereas in [121] the elements’ size in the contact region is 1/10 of
half the Hertz contact width. The average element dimension at the contact region in [122]
is 0.14 mm.

e

2bH
= −0.2

(c
e

)
+ 1.2, where 0.9 <

c

e
< 3 (2.42)

• Mesh stiffness extraction: There are two main ways to extract the gear mesh stiffness.
One of them requires the rotational displacement (transmission error) and the other the
deflections in the direction of the applied load. The previously mentioned data are related
to the torsional mesh stiffness (rotational displacement) and the linear mesh stiffness (linear
deflections) which in turn can be related with each other, as it was previously explained
(see equation (2.6)). Depending on the boundary conditions included in the developed
finite element model, the computation of either the rotational or linear displacements can
be more accessible. There are models where the rotational displacement of the output gear
can be directly obtained from the finite element results, meaning that the torsional stiffness
can be determined in a straightforward process. This methodology is usually associated
with the creation of a master node that represents the total rotational displacement of the
entire gear body [16; 110; 117; 118]. When only the linear displacements are available, there
are two possible approaches. One considers the linear displacements in the load direction,
which can be applicable to both 2D or 3D models. However, in order to apply this approach
for 3D models either the averaging of the displacements along the tooth width or the
displacements at a particular position have to be determined ([116; 119; 121; 122]). The
other approach consists in computing the tangential displacements at a specified radius with
averaging or curve fitting of the results which allows for the computation of the rotational
displacement ([9; 15; 120]).

2.3.2. Literature review on finite element models

In this section, the literature review on the usage of the finite element method to acquire the
gear mesh stiffness is exhibited. The models presented only take advantage of the finite element
method to reach the gear mesh stiffness. The subsequent works are shortly described. For further
details consult the references.

Cooley et al. [9] compared different approaches for the calculation of the gear tooth mesh stiffness:
the average slope method (secant stiffness) and the local slope method (tangent stiffness). The
gear tooth mesh stiffness is determined by applying the two methods to the force-deflection curve
obtained with the finite element method. With the average slope method the gear mesh stiffness
is obtained by dividing the mesh force by the mesh deflections at each point whereas the local
slope method is the actual slope of the force-deflection curve at a specific point (first-order finite
difference approximation). Attend to Figure 2.9 to see a graphical representation of the average
and local slope methods. Both approaches are compared for unmodified teeth, teeth with profile
modifications and teeth with lead crown. Overall, the local slope method presents higher average
mesh stiffness. The main shape differences are found in the transition between one and two teeth
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pairs in contact and in the double teeth contact area. The average slope method is significantly
more affected than the local slope model when teeth modifications are applied. Upon an analysis
to the mesh forces, it became clear that the average slope stiffness captures the gear deflections
relative to an unloaded state while the local slope stiffness evaluates the deflections of the gears
relative to a loaded state. Therefore, it was concluded that for static conditions, e.g. load sharing
ratio, the average slope stiffness should be used. Although, for dynamic gear models where there
is an oscillation around a static deflection, the local slope stiffness is more appropriate [9].

Figure 2.9: Finite element calculation of the force-deflection curve with representation of
different stiffness approaches. Reprinted from [9].

Arafa and Megahed [121] created a FE model to evaluate the mesh compliance of spur gears.
In this work, the modeling is performed in the commercial package COSMOS/M® and uses
gap elements for the contact between the engaging teeth. Some of the assumptions included are
that there is no sliding friction between the mating teeth; the load distribution along the tooth
facewidth is uniform in order to apply a 2D finite element analysis with plane stress conditions;
there are no geometrical errors and the effect of lubricant oil film pressure is neglected. The
gears are modeled with a single tooth and in order for the tooth deflections to be independent of
the rim effects, the rim thickness is set to 2.5 times the tooth height. Concerning the boundary
conditions, one of the gears has its bore rigidly fixed while the other can only rotate about its
center. The latest boundary condition is applied by connecting the bore nodes to a center node
with high stiffness truss elements. The torque is applied on the gear that rotates by loading it
with two equal and opposite tangential loads at two diametrically opposed nodes at the gear bore.
The mesh consists of three- and four-node isoparametric plane stress elements. The elements’ size
in the contact area is equal to 1/10 of half the Hertz contact width and they were applied along
the contacting involute profiles so that remeshing is avoided. The elements’ size increases as the
distance to the contacting zone increases. The results of the model are validated by comparing
with other analytical, numerical and experimental methods. The model is then used to analyze
the compliance, load sharing ratio and mesh stiffness of gears [121].
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Liang et al. [15] established three finite element models for the mesh stiffness assessment of
standard involute spur gears. The three-dimensional finite element models were implemented in
ANSYS® and used hexahedral SOLID185 elements with the pinion’s and wheel’s nodes coupled
in advance to avoid contact finite elements. The first model (model 1) assumes that the gear
body and teeth are elastic but the bore surface of the wheel is assumed to be rigid. A rigid
bore surface was implemented by coupling every node of the bore surface with a fixed distance
from each other. Attend to Figure 2.10 to see the finite element model developed. The angular
displacement of the wheel bore surface was then withdrew from the finite element results to
compute the mesh stiffness. Two other existing finite element models were implemented for
comparison purposes. It was concluded that the gear body deflection cannot be neglected since
that yields significantly different mesh stiffness values. Model 2 takes on the same approach
as model 1 but with an elastic bore surface. In this model, the angular deflections of the end
surface circle of the gear bore are determined for a number of points evenly distributed along the
end surface circle and fitted to a cosine curve. Then, the minimal angular deflection according
to the approximation curve is used to obtain the mesh stiffness for the corresponding meshing
position. The process is repeated for each meshing position. The results obtained from model 1
and 2 are in agreement. The last model presented (model 3) has the same assumptions as model
2, however instead of obtaining the angular deflection of several distributed points at the end
surface circle of the gear bore, only an arbitrary position of that circle is required. By doing this,
it is necessary to rotate the gear by angles corresponding to the mesh period in order to obtain
the entire end surface circle angular deflections and perform the cosine curve fitting. From this
point on, the process is the same as previously explained. The mesh stiffness computed from
model 3 is in accordance with the one of model 2. Since there is the possibility that the gear
bore radius affects the mesh stiffness, a study was conducted where different bore radius were
applied. Models 2 and 3 revealed to be in agreement with model 1 for the different bore radius
applied [15].

Figure 2.10: Finite element model of a spur gear pair with bore surfaces highlighted. Reprinted
from [15].

Natali et al. [122] implemented different approaches of FE models, hybrid models and analytical
models with the objective of comparing them and studying particular critical parameters. Within
those models, Natali et al. developed a FE model that consists on three finite element analysis,
two linear analysis (full and partial models) and a nonlinear analysis of a contacting tooth pair.
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While the linear analysis has the purpose of obtaining the linear global deflections, the nonlinear
analysis is intended to establish the local nonlinear contact deflections. Two linear finite element
analysis are required to reach the global deflections because the incorrect local displacements
given by the application of a nodal load at the contact position need to be removed. The full
model (gear body with six teeth and fixed hub surface) will give the tooth bending, gear body
and incorrect local deformations and the partial model (single tooth restrained to avoid bending
and gear body deflections) will only yield the incorrect local deformations. The nonlinear single
tooth pair model has all surfaces not related to the tooth contact rigidly connected to the center
of the corresponding gear. The wheel tooth is fixed and the pinion tooth has the imposed torque.
The finite element models are meshed with free mapped 3D tetrahedral elements with ten nodes
and an average size of 1.35 mm. For the nonlinear analysis contact elements are applied and the
contact zones are refined, attaining an average element dimension of 0.14 mm. The FE analysis
were all run in the MSC Nastran solver by MSC Software®. Concluding, a comparison between
the different models in terms of mesh stiffness accuracy and computation times is performed [122].

Feng et al. [16], whose analytical method for calculating the gear mesh stiffness of helical gears
was previously presented, utilized the finite element method to validate the analytical model.
ANSYS® was used to perform the FE analysis. The gear was modeled with five teeth and meshed
with solid elements (SOLID185) and contact elements (TARGE170 and CONTA174) for the
contact between the teeth surfaces. A layer of finer mesh was defined along the teeth profiles on
the contact areas. The inner ring nodes of the driving gear are coupled to a master node at its
center which is allowed to rotate freely. However, the inner ring nodes of the driven gear and
the end-faces of both gears are constrained. The torque was applied on the driving gear. The
results of the analytical model and others found in the literature were compared taking the finite
element method described here as a reference [16].

The finite element models presented until now were dedicated to the analysis of the meshing
stiffness of spur and helical gears without any kind of modification or damage. The following works
[117; 118] use the finite element method to investigate the influence of tip fillet, misalignment
and profile modifications on the gear mesh stiffness.

Zhan et al. [117] developed an CAD-FEM-QSA integrated technique to study the effect of tip
fillet and misalignment on the gear mesh stiffness. The technique is divided into three main
steps: (i) CAD modeling; (ii) finite element analysis and (iii) results generation (quasi-static
algorithm). For the first step, the software NX is used for the modeling of the gear pair where
five teeth are modeled on each gear. Then the finite element analysis is conducted with ANSYS®

Workbench. Each gear only has the rotational degree of freedom as their hubs are connected
with Body-Ground Revolute joints, one joint is assigned a very low rotational speed and the
other a drive torque. The contact of the gear pair is defined resorting to frictionless and contact
elements, CONTA174 and TARGE170. Only three of the five teeth are modeled with a fine
mesh (the three teeth that will contact) in order to reduce the computational time. Linear finite
elements SOLID185 are applied to mesh the teeth and gear body. The relative rotation between
the gears can be obtained directly using the joint probe. The torsional and linear mesh stiffness
can then be obtained. The tip fillet radius study showed that there is a decrease in the length
of the double tooth pair contact region and an increase in the single tooth pair contact region
due to the increasing tip fillet radius. The presence of misalignment reduced the mesh stiffness
magnitude, affecting more significantly the double tooth contact region [117].

Wang and Howard [118] studied the effect of different profile modifications on the meshing of
high contact ratio spur gears resorting to a finite element analysis. Customized ANSYS® APDL
looping programs calculate the transmission error, torsional gear mesh stiffness, load sharing
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ratio, contact stress and the maximum tooth root stress for various input loads over a mesh cycle.
The 2D FE analysis used 4-node quadrilateral plane stress elements with an adaptive mesh for
the contact points. The elements’ size was defined considering the local Hertzian contact, which
if not established carefully can deteriorate the quality of the numerical solution with chaotic
solutions and unconverged data points. The mesh obtained is characterized by its high density
on the contact points with a controlled transition to larger elements at the gear body - entire
gear is modeled. The output of the numerical analysis is the torsional displacement of the driving
gear hub. The hub nodes are all radially constrained and coupled to a master node at the driving
gear’s center of rotation. The driven gear hub was completely restrained. For each meshing
position the quasi-static transmission error is obtained and after applying consecutive angular
increments, the entire quasi-static transmission error curve is established. The gear mesh stiffness
can be acquired by dividing the input load and the quasi-static transmission error. Four types of
profile modifications were evaluated on high contact ratio spur gears with a very constructive
analysis considering the applied load, contact stress, root stress, transmission error, meshing
stiffness and load sharing ratio [118].

As previously stated, one of the advantages of the finite element method is the high precision
representing complex geometries. By taking advantage of that, several authors developed models
to study damaged gears with tooth cracks, pitting and spalling.

Zouari et al. [119] used a 3D finite element model to evaluate the effect of teeth foot cracks
on the gear mesh stiffness. Only a portion of the entire gear is modeled (three teeth sector
model) being clamped at its inner diameter and two lateral borders. 3D 20-node structural
elements are used to mesh the three teeth considering a constant load along their width. The
displacements are computed in the direction of the applied load for each meshing position. With
the previously data retrieved, the gear mesh stiffness can be established and the effect of crack
depth, propagation direction and position on the mesh stiffness can be evaluated [119].

Thirumurugan and Gnanasekar [116] studied the effect of different FE models, load distribution
and load sharing ratio on the crack propagation path of spur gear drives resorting to ABAQUS®.
Even though this work ([116]) is not focused on the analysis of the mesh stiffness of gears, it
is still determined to obtain the load sharing ratio and hence the finite element model is going
to be summarized. Two different 3D FE models are used, namely, a three teeth sector model
(TTSM) and a single tooth sector model (STSM). Both models are meshed with linear brick
elements with 8-nodes (C3D8) and constrained in the direction normal to the sector surfaces.
In the TTSM, the adjacent teeth are loaded according to the meshing position. The stiffness is
acquired by dividing the applied load by the deflection due to that load. The STSM and TTSM
are employed to evaluate the SIFs (Stress Intensity Factors) at the crack initiation stage and the
crack propagation. The FE simulation with actual load distribution showed very similar results
to the experimental tests for the crack path [116].

Liang et al. [120] analyzed the effect of tooth pitting on the mesh stiffness of a spur gear pair with
analytical expressions from the potential energy method and then validated them by comparing
the results with a finite element computation in ANSYS®. The 3D analysis is conducted by
modeling the entire gears. SOLID185 elements are used, which are mapped hexahedral for the
gear body and healthy teeth but tetrahedral for the pitted tooth. The mesh is refined for six teeth
when the middle one or two teeth are in mesh. As for boundary conditions, the driven gear bore is
fixed and the driving gear bore is under an applied torque. The linear mesh stiffness is calculated
with the angular displacement and compared with the results of the analytical model. The
analytical model presented results which are in agreement with the finite element model meaning
that the analytical model can estimate the gear mesh stiffness of spur gears with pitting [120].
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Chen et al. [110] developed an analytical model resorting to the potential energy and slicing
methods to investigate the mesh stiffness of helical gears with spalling. In order to validate
the model, a finite element analysis on ANSYS® was conducted. The gear body was modeled
with five teeth to improve the computational efficiency and the spalling was simplified as a
parallelepiped. The mesh implemented consisted of SOLID185, CONTA174 and TARGE170
elements, being the last two types of elements used to establish the contact between the gears.
The teeth in mesh are refined along their profiles. The inner hole nodes of each gear were
connected to a master node at the center of each gear. Each master node was defined as a mass
element (MASS21). The master node of the driven gear was fully constrained while the master
node of the driving gear, which was loaded with the torque, was only allowed to rotate. The end
faces of both gears were constrained to remove the effects of the axial force. The linear mesh
stiffness was determined through the angular displacement [110].

Discussion Among the works presented, there are not many investigations on the effect of
geometrical parameters/modifications on the gear mesh stiffness. The reason for this is the high
computational costs of FEM, which is emphasized by the repeated simulations required for this
kind of analysis. For these situations, analytical/approximate analytical models are the preferred
choice.

When developing a finite element model for gears there are some aspects that should not be
overlooked. An accurate definition of the mesh size is one of those aspects, specially for the
contact and tooth root regions. Regarding the mesh on the contact region Coy and Chao
[124] defined the required mesh size to properly include the Hertzian effects. Nevertheless, a
convergence study must be conducted to understand the effect of the mesh applied on the output
and perform an accuracy/computational cost analysis.

The finite element models are considered the most accurate and for that reason, are used as a
validation tools for other types of models. However, the finite element models should be validated
themselves. It is very common to find the definition of the models but not their validation. The
finite element models could be validated by comparing the results with other models in the
literature and/or experimental results. Just because this kind of models are very accurate it does
not mean it was correctly implemented and that the results are legitimate. The finite element
method is not flawless.

On a last note, the ability of the finite element method to obtain accurate results should not
be exploit to validate other models. When using the finite element method, the simulation
should be as close to reality as possible and not simplified so that the results are the same as the
model being validated. The simplifications performed on a finite element model should neither
significantly deteriorate the quality of the results nor eliminate any effect.

2.4. Hybrid models

Hybrid models are characterized by having two components, one of them is the finite element
method and the other usually is an analytical method - that is why these models can also be
named analytical-FE models. While the finite element method is used to compute the global
deformations, the analytical method is applied to determine the local (Hertzian) deformations.
By doing this, the mesh does not need to be as refined as when only using the finite element
method. That being said, the major purpose of hybrid models is to reduce the computational
cost of the finite element method while trying to keep a precise result. There is no detailed
explanation for the hybrid models since they consist of a combination of previously displayed
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methods. The following works employ hybrid models as a technique to study the mesh stiffness
of gears.

Lars Vedmar [125; 126] is one of the earliest researchers to propose a hybrid model to study
external involute gears. Vedmar’s methodology allows to determine the gear tooth stiffness
by superposition of three different cases. The first two cases correspond to a finite element
analysis with concentrated loads applied at the contact position (global deflections) while the
third case consists on analytically computing the local displacements. The global deflections
are equal to the sum of two finite element models, namely, the full and partial models. When
applying the concentrated load on the full model (first case), the results close to the nodal load
will be incorrect due to local distortions, hence the need of the partial model to remove the
local contribution of the displacements. This partial model (second case) is defined by a fixed
layer of thickness h parallel to the tooth flank. The distance h is required to be large enough to
comprise the displacements around the application point. The displacements from the second
case, considering the same load as in the global model, are subtracted to the deflections of
the first case thus eliminating all local displacements. In the third and final case the Hertzian
displacements along the fixed layer are included by an analytical expression derived by Weber
and Banascheck [125; 126].

Hedlund and Lehtovaara [123] evaluate the mesh stiffness of a helical gear pair resorting to a
parameterized numerical model comprised by a finite element method for the structural analysis
and a Hertzian contact analysis. The intent of using the Hertzian contact analysis is to reduce the
high computational cost derived from the dense meshes required for a proper Hertzian analysis
in the finite element method. The 3D FE study, developed in Matlab®, employs eight-node
trilinear hexahedral elements to model a single tooth with an elliptical foundation. The mesher
automatically applies a finer mesh just bellow the teeth since that is a high stress concentration
location. The structural stiffness is obtained by applying equivalent nodal loads according to the
contact line. The displacement is not measured on the surface, but a few elements bellow to
minimize the effect of local contact deformations. For the Hertzian contact analysis, the contact
along the line of action is modeled as roller contact with radii that changes for each meshing
position. The radii of curvature is calculated numerically through a circumradius method and
included in the Hertzian line contact formula. The single tooth pair stiffness is computed by
assuming that the structural stiffness of each tooth and the Hertzian stiffness are all in series.
Then, the total mesh stiffness is obtained by summing the single tooth pair stiffness of every
teeth pair in mesh. The effect of the FE mesh on the mesh stiffness results was evaluated and an
analysis on the frequency domain to the mesh stiffness variation was conducted [123].

Rincon et al. [11] created an hybrid model which uses the finite element method and an analytical
formulation to obtain the gear mesh stiffness for a dynamic model. The formulation of the gear
mesh is comprised by three main steps, namely, the definition of the tooth geometry, the location
of the contact points and the determination of the contact points’ deflection. Regarding the
tooth geometry, this is established based on a rack-type tool following Litvin’s vector approach.
The location of the contact points, which is done analytically, is accomplished by defining the
separation distance between the tooth profiles. For this calculation, involute-involute and involute-
rounding tip contacts as well as direct and reverse contacts are considered. The deflections of
the contact points are divided into global and local deflections. The global deflections include
the tooth body deflections created by the linear effects of bending, shearing and compression
while the local deflections consider the nonlinear Hertzian deformations. To acquire the global
deformations two FE models (global and partial models) are used, observe Figure 2.11 for a
schematic of this procedure. The global model corresponds to an entire gear with only the
necessary number of teeth according to the contact ratio. The usage of this kind of models
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introduces a local distortion where the nodal load is applied. So, the partial model (composed
by the active flank of the gear tooth) takes action to remove the distortions - the procedure
consists on applying a unitary load, with opposite direction of the load applied in the global
model, to the node being corrected while the nodes at the interface with the tooth are fixed.
By adding the two previously mentioned FE models, one reaches the global deflections. The
nonlinear local deflections are introduced via analytical formulae. The gear meshing forces are
obtained by solving a nonlinear system of equations with inequality constraints. The effects of
the sliding friction are also included in this model assuming a Coulomb model with constant
friction coefficient and considering the direction variation of the sliding friction forces. The model
was validated by comparing it with other formulations and used to study how the transmitted
torque, friction and variation of the center distance affect the gear mesh stiffness. Moreover, this
model was applied in other works to study the efficiency of spur gear transmissions [127–129]
and the effect of manufacturing and assembly errors on the gear transmission dynamics [86; 130].

Figure 2.11: Global and partial FE models. Reprinted from [11].

Chang et al. [12] developed a model to determine the mesh stiffness of cylindrical gears which
incorporates the finite element method and a local analysis of elastic bodies. The purpose of
such division is to separate the linear global deformations from the nonlinear local deformations,
which are calculated by the finite element method and an analytical local analysis, respectively.
The usage of the finite element method for the calculation of the linear global deformations
has the advantage that the mesh does not need to be as refined as it generally is for contact
problems. However, one needs to extract the local deformations from the FE model. To achieve
this, two FE models are employed: a full model that obtains all deformations and a partial
model to determine the local distortions, see Figure 2.12. The full model is a simplification of an
entire gear with three teeth while the partial model is a single tooth constrained to prevent tooth
bending and gear body deflection. The global deformations are obtained by subtracting the local
distortions to the deformations of the full model. The nonlinear local contact deformation was
calculated from analytical formulae. The mesh stiffness model was validated and the results
were in agreement with other methods. This model was then used to evaluate the effect of gear
parameters on the mesh stiffness [12]. The methodology used here ([12]) to obtain the gear mesh
stiffness is implemented by Yuan et al. [131] to serve as an input to a three-dimensional dynamic
contact model with the aim of investigating the dynamic behavior and dynamic load distribution
of cylindrical gear pairs [131].

Langlois et al. [132] implemented a hybrid Hertzian and FE-based approach to determine the
transmission error of helical gears. A finite element model is responsible for incorporating the
bending stiffness and base rotation of the teeth while the Hertzian contact stiffness is included
via an analytical formulation. The FE model considers multiple teeth so that the compliance of
adjacent teeth is taken into account. Local displacements need to be removed from the FE model
due to the distortions created by the nodal load and because the contact stiffness is introduced
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Figure 2.12: Full and partial FE models. Reprinted from [12].

by an analytical procedure. A second FE model replicating the nodal load is created to remove
the local displacements. The difference is that this second model is considered to be fixed at the
tooth centerline in order to disregard/minimize the tooth bending and base rotation deflections.
The results from a full finite element model developed in ANSYS® corroborated the model. The
influence of contact extension is evaluated, concluding that significant differences can be found
on account of this effect. Furthermore, Langlois et al. also compare the transmission error curves
from several model and discuss the reasons for the discrepancies encountered [132].

Chen et al. [133] created an analytical-finite element model to calculate the mesh stiffness of
spur gears with complex foundation types and cracks. Matlab® is used to develop the 2D finite
element analysis which is responsible to determine the global deformations. Each gear is modeled
with five teeth and the nodes located at the hub circles are constrained. A local area near the
contact zone is defined as rigid in order to avoid local deformations in the FE model. This rigid
area was defined with a Young’s modulus 1000 times higher than the remaining body and its size,
according to extensive testing, should be 0.2 the module. Figure 2.13 shows the finite element
model (left) and tooth contact model (right) which enlighten the previous statements. The global
stiffness is obtained with the displacements along the line of action. A nonlinear load dependent
Hertzian compliance - analytical procedure - is included to account for the local deformations.
The effect of the extended tooth contact was also added by considering the separation distances
and the potential contact points via the deformation compatibility equation. To model the gear
foundation, the planar elements’ thickness is adjusted according to the gear body part they are
associated to. Figure 2.14 (left side) shows the elements of the web structure in red which need to
have their thickness modified to the web thickness. The 3D model used to verify this procedure
is also shown in Figure 2.14 (right side). Regarding the crack path, it is included in the model by
performing a separate simulation. The simulation uses a fixed crack propagation increment (0.2
mm) and a crack propagation angle which depends on the stress intensity factors - computed
with a finite element model. The mesh stiffness determined by this method was validated by
comparison with the potential energy method and the finite element method. The influence of
the web and rim thicknesses on the mesh stiffness was evaluated and it was found that the web
thickness is more impactful [133]. Huangfu et al. [134] use the same model ([133]) to estimate
the gear mesh stiffness with wear for a subsequent gear dynamic analysis. The amount of wear is
defined by Archard’s wear prediction model and introduced as profile error in the deformation
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compatibility equations. The maximum relative difference between the mesh stiffness from this
model ([134]) and a finite element model for gears with different tip reliefs and wear cycles was
under 6%.

Figure 2.13: Finite element model (left) and tooth contact model (right). Reprinted from [133].

Figure 2.14: Web structure for the proposed finite element model (left) and the
three-dimensional finite element model (right). Reprinted from [133].

Beinstingel et al. [82] combined a finite element analysis with an analytical description of the
contact deformation to establish the mesh stiffness of cylindrical gears. The finite element
method, employed to determine the global compliance factors, resorts to an isogeometric analysis
to numerically describe the solid volume by means of Non-Uniform Rational B-Splines (NURBS).
The global compliance factors (αij) include the tooth bending and gear body deformations in the
direction normal to the contact point i for both the pinion and the wheel when a normal load is
applied at contact point j. There is also a parameter that defines the theoretical distance between
the pinion and the wheel along the line of action allowing to consider manufacturing errors,
profile modifications and extension of contact. The coupling effects between the different gear
teeth are neglected since the analysis is only conducted for a single tooth pair. The local contact
deformation is introduced in the compliance matrix through analytical formula. Several mesh
discretizations were tested so that the best mesh considering the relation between accuracy and
computational cost is selected. The gear mesh stiffness for spur and helical gears calculated with
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this model is validated and compared with other research and software tools. The approaches of
the different gear mesh tools are analyzed and the reasons for the deviations found discussed [82].

Discussion Hybrid models are mainly differentiated by the strategy employed to remove the
local deformations from the FE model. Three distinct techniques were used: (i) displacement of
the FE model measured a few elements below the surface; (ii) definition of a rigid local area near
the contact zone and (iii) an extra local FE model. The last option requires the development
of another finite element model which, when compared to the other options is much more time
consuming in both preparation and computation times. The other two methodologies are more
straightforward since with some modifications in the FE model, the local deformations are not
included. In the first technique, the local deformations are not actually removed from the model
but the measurement procedure of the global deformations minimizes their effects. The second
approach removes the local deformations because the location where they occur is rigid. This
last technique seems to be the most balanced in terms of preparation time, computational costs
and effectiveness in removing the local deformations.

2.5. Approximate analytical models

Approximate analytical models have the lowest computational cost off all models as they only
require a few simple numerical steps to obtain the gear mesh stiffness. In this group of models,
complex phenomena that involve many steps and high numerical computation are represented by
a direct and effortless expression.

The simplicity of these models is specially highlighted while using iterative processes. In these
cases, as the same calculations have to be constantly repeated, with a simple model, computation
time can be drastically reduced [135]. As an example, this is the case for gear dynamic modeling
and iterative gear design optimization.

The models in this section have been divided according to the approximation developed, that is,
estimation of the single tooth pair mesh stiffness and estimation of the gear mesh stiffness from
an analytical description of contact lines’ length.

2.5.1. Models for the estimation of the single tooth pair mesh stiffness

Parabolic model

Cai and Hayashi [136] performed a linear approximation to the nonlinear equation for the
rotational vibration of spur gear pairs. The analytical solution was determined and validated by
comparing with the numerically calculated result of the nonlinear vibration and experimental
testing [136].

During the linearization and normalization processes, the normalized equivalent error was defined.
This variable is the static force-induced displacement which is a function of the normalized stiffness
and normalized profile errors. Focusing on the normalized stiffness, a parabolic approximation
for the stiffness of a tooth pair was developed, attend on equation (2.43) [136].

k̂tp =

[
−1.8

(εαtz)
2 t

2 +
1.8

εαtz
t+ 0.55

]
/(0.85εα) (2.43)

where t is the meshing time of tooth pairs, tz is the meshing period time and εα is the contact
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ratio. An example of the normalized single tooth pair stiffness for a gear with εα = 1.5 is shown
in Figure 2.15 [136].

0 0.5 1.0 1.5
0

0.5

0.85εα

1

0.85εα

t/tz

k̂
tp

Figure 2.15: Normalized single tooth pair stiffness (εα = 1.5) according to equation (2.43).

The total gear mesh stiffness is established by adding the mesh stiffness of all tooth pairs in
mesh and it is normalized according to the integral average stiffness of the gear pair - Kavg.

The analytical approximation for the single tooth pair stiffness presented by Cai and Hayashi
[136] is widely used, either for comparison with other methods or implementation in other models
[136]. Later, Cai [97] developed a stiffness function for a helical involute tooth pair based on
the study of Umezawa et al. [137] for a helical gear rack pair. The work of Cai [97] improved
the work of Umezawa et al. [137] so that the single tooth pair mesh stiffness function took into
account the number of teeth and the profile shift coefficients. This improvement was attained
based on the 1990 Draft of ISO 6336 to calculate the gear stiffness value at the pitch point,
equation (2.44). The helical tooth pair stiffness function agrees with other theoretical calculations
and the resonance frequency estimated is in line with experimental results [97]. The single tooth
pair mesh stiffness for helical gears can be calculated by equations (2.44) to (2.49).

Kp =
bavg

c0 + c1

(
1

zv1
+

1

zv2

)
+ c2

(
x1
zv1

+
x2
zv2

)
+ c3

(
1

z2v1
+

1

z2v2

)
+ c4 (x1 + x2) + c5

(
x21 + x22

)
(2.44)

In equation (2.44) c0 is defined according to equation (2.45).

c0 =
2.25

[−0.166 (bavg/Ht) + 0.08]

(
β
180

π
− 5

)
+ 44.5

(2.45)

The coefficients c1 to c5, presented in equation (2.44), were adjusted using the least squares
approximation, resulting in: c1 = −0.00854; c2 = −0.11654; c3 = 2.9784; c4 = −0.00635 and
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c5 = 0.00529. bavg is the effective gear facewidth and Ht is the total tooth depth, defined
respectively in equations (2.46) and (2.47).

bavg =
b1 + b2

2
(2.46)

Ht = 2.25 m (2.47)

The single tooth pair mesh stiffness was then calculated according to equation (2.48), where Ca
was defined according to equation (2.49).

ktp(t) = Kp exp

(
Ca

∣∣∣∣ t− (εtz) /2

1.125 εαtz

∣∣∣∣3
)

(2.48)

Ca = 0.322 (β
180

π
− 5) + [0.23 (bavg/Ht)− 23.26] (2.49)

Cosine model

Sánchez et al. [19] approached a previously developed load distribution model based on the
potential energy method [73] from the stiffness point of view in order to easily introduce the
effects of Hertzian stiffness [19].

The single tooth pair stiffness (ktp), which depends on the contact point ξC, is given by equa-
tion (2.50) [19].

ktp(ξC) =

(
1

kst
1

+
1

kst
2

)−1

=

(
1

kb1
+

1

ks1
+

1

ka1
+

1

kb2
+

1

ks2
+

1

ka2

)−1

(2.50)

Equation (2.50) shows that the single tooth pair stiffness is obtained by adding the tooth stiffness
of the pinion (kst

1 ) and the wheel (kst
2 ). Further, each tooth stiffness is the sum of the bending (kb),

shear (ks) and compressive (ka) stiffnesses. It was verified that the shape obtained when plotting
equation (2.50) for different gears was always very similar. By considering a normalization so
that Ktp

max is equal to 1, an approximate equation to the normalized single tooth pair stiffness
can be defined as shown in equation (2.51) [19].

k̂tp(ξC) ' cos (b0 (ξC − ξm)) (2.51)

where b0 and ξm are presented in equations (2.52) and (2.53), respectively [19].

b0 =

[
1

2

(
1 +

εα
2

)2
− 1

]−1/2

(2.52)

ξm = ξinn +
εα
2

(2.53)

ξinn is the normalized coordinate for the start point of meshing.
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The approximation defined by equations (2.51) to (2.53) does not include the contributions of
the Hertzian deflections. Updating the single tooth pair stiffness (equation (2.50)) to include the
Hertzian stiffness leads to equation (2.54) [19].

ktp(ξC) =

(
1

ktp +
1

kH

)−1

=

(
1

kb1
+

1

ks1
+

1

ka1
+

1

kb2
+

1

ks2
+

1

ka2
+

1

kH

)−1

(2.54)

The Hertzian stiffness is defined according to equation (2.55) [19].

kH =
π

4

Eb

1− ν2
(2.55)

E is the modulus of elasticity, b is the gear width and ν is the Poisson’s ratio.

Modifications to the approximate formulation given by equations (2.51) to (2.53) are required to
introduce the effects of the Hertzian stiffness. According to the authors [19], equations (2.51)
and (2.53) are kept the same and only the parameter b0 is adjusted, see equation (2.56) [19].

b0 =

[
1

2

(
1.11 +

εα
2

)2
− 1.17

]−1/2

(2.56)

In order to validate the Cosine approximation with Hertzian stiffness - equations (2.51), (2.56)
and (2.53) - two different separate studies for low and high contact ratio spur gears were
conducted. 3775 cases for low contact ratio spur gears and 2835 cases for high contact ratio spur
gears were compared with the numerical results obtained by integration. Note that these spur
gear geometries were obtained by combining geometrical parameters in a limited range. The
Cosine approximation model with Hertzian effects was successfully validated and applied in the
calculation of contact and tooth root stresses [19].

This model was further improved by the introduction of the extension of contact and profile
modifications [138; 139]. In [138] the authors enhanced the model and analyzed the influence of
profile modifications on the mesh stiffness, transmission error and load sharing ratio for spur
gears. Then, by taking advantage of such model, optimum tip reliefs for minimum peak-to-peak
amplitude of quasi-static transmission error and minimum dynamic load where obtained [139].
In the latest work, Pleguezuelos et al. [140] study, with this model, the gear meshing of spur
gears with profile modifications under non-nominal/variable loading conditions [140].

2.5.2. Models based on the analytical description of the contact lines’ length

Fourier model

Gu et al. [13] investigated an analytical description for the mesh stiffness of solid spur and helical
gears. For this method, the thin-slice approach is applied so gears are defined as the stack of
infinitesimal width gears that are staggered for helical gears. This approach also divides the
contact lines, therefore infinitesimal contact segments of length dM are created. The overall
mesh stiffness, presented in equation (2.57), can be defined associating a normal stiffness per
unit of contact length, KM (τ), with every length segment [13].

K(τ) =

∫
Lgm(τ)

KM (τ) dM (2.57)
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τ is the time normalized to the mesh period and Lgm(τ) is the time-varying contact length.
KM (τ) consists on the pinion and the wheel structural stiffness as well as the contact stiffness [13].

There are two effects that are neglected due to the usage of the formulation presented in
equation (2.57). One of them is the intertooth elastic couplings and the other is the elastic
couplings between the points of contact on the same tooth pair [13].

The normal stiffness for an ideal unmodified tooth pair of infinitesimal width, KM (τ), can be
established in equation (2.58) [13].

KM (τ) = k0 (1 + αFourier ϕM (τ)) (2.58)

In equation (2.58), k0 is the average mesh stiffness per unit of contact length which is defined, for
example, according to ISO 6336 [141]. αFourier is the relative variation in stiffness amplitude and
ϕM (τ) represents the shape variation during meshing, which is approximated by the parabolic
expression in equation (2.59) [13].

ϕM (τ) ∼= A+Bτ + Cτ2 (2.59)

The integral in equation (2.57) can be determined by a discrete summation over the instantaneous
contact lines and resorting to a Fourier series. Fourier series are utilized to represent the meshing
conditions as they are repeated every mesh period.

The dimensionless time-varying mesh stiffness function, presented in equation (2.60), can be
computed considering the previous statements [13].

K̂(τ) = 1 +

∞∑
k=1

Sinc (kεβ)

πkεα

[
2 sin (πkεα) cos (πk (2τ − εα − εβ))+

+αFourier

(
−A+

C

2π2k2

)
sin (πk (−2τ + εβ))+

+αFourier

(
A+Bεα + Cε2α

(
1− 1

2π2k2ε2α

))
sin (πk (2εα − 2τ + εβ))+

+αFourier

(
− B

2πk

)
cos (πk (−2τ + εβ))+

+αfourier

(
B

2πk
+
Cεα
πk

)
cos (πk (2εα − 2τ + εβ))

]
(2.60)

K̂(τ) = K(τ)/Kavg and Sinc(X) = sin(πX)/πX is the sine cardinal function [13].

The values of the coefficients for the stiffness time-variations (A,B and C) can be established
assuming that the tooth pair stiffness for any infinitesimal spur gear is symmetric between
approach and recess. Normalizing the function so that ϕM (τ = 0) = ϕM (τ = εα) = −1 and
by applying

∫ εα
0 ϕM (τ)dτ = 0, the values A = −1, B = 6/εα and C = −6/ε2α are reached.

The relative variation in stiffness amplitude αFourier was set to 0.3 which is an average value
considering the works of other authors in the literature [13].

The expression for the dimensionless time-varying mesh stiffness can be further simplified by
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replacing the coefficients by their values, as presented in equation (2.61) [13].

K̂(τ) = 1 + 2

∞∑
k=1

Ξk (εα) Sinc (kεβ) cos (πk (2τ − εα − εβ)) (2.61)

where the function Ξk (εα) is defined in equation (2.62).

Ξk (εα) ∼=
(
0.7 +

(
0.09/k2ε2α

))
Sinc (kεα)−

(
0.09/k2ε2α

)
cos (πkεα) (2.62)

The model established in equation (2.60) and (2.61) was validated resorting to refined 2D finite
element models and benchmark results from the literature [13].

The Fourier model shows that the mesh stiffness fluctuations can be controlled by only a few
parameters. Moreover, it gives fast mesh stiffness estimations that allow to perform parametric
studies and be included in dynamic models.

Heaviside model

In past investigations, Marques et al. [135] introduced the Heaviside analytical contact line length
and mesh stiffness models [135; 142], which were used to study the length of a gear pair’s contact
lines and to obtain a new gear design with reduced vibrations and dynamic overload as well as
potential noise reduction [8].

Continuing to improve on these investigations [135], Marques et al. [143] have introduced an
analytical mesh stiffness/load sharing ratio and friction torque models that rely on the same
contact lines’ length description based on the Heaviside function [143]. The model is valid for
parallel axis spur and helical gears and it has no limitations in the admissible range for overlap
and contact ratios. One of the main innovations of this work is in the mathematical approach that
was introduced which allowed a continuous description of the gearing phenomena without using
piecewise functions. Furthermore, the contact line stiffness and line load sharing functions were
not assumed uniform. The work [143] is quite lengthy and goes into the details of establishing
each equation that was proposed. Here, only the main and essential equations related to the
determination of the gear mesh stiffness will be presented and discussed.

Marques et al. [143] start by defining a set of normalized coordinates based on the gear geometry,
ξ and η. ξ is the coordinate along the path of contact with origin at the theoretical start point
of meshing, point A in Figure 2.16, and normalized using the transverse base pitch, pbt. η is
the coordinate along a contact line normalized by the quantity b/cosβb, which has either the ξ
axis (ξ < εα) or the line of the theoretical end point of meshing EE’ (ξ > εα) as an origin - see
Figure 2.16 [143].

It is based on this coordinate system that the analytical description of the length of the contacting
lines using the Heaviside approach is presented. The Heaviside function was selected due to its
step like shape which is representative of the behavior of the length of the lines of contact for
spur gears. In addition, the Heaviside function can be combined with linear functions to replicate
the behavior of helical gears. The Heaviside function was approximated using equation (2.63)
using a value of KH = 104 [143].
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Figure 2.16: Definition of coordinates ξ and η for a gear with an arbitrary overlap ratio, εβ.
Reprinted from [143].

H(ξ) = lim
KH→+∞

(
1

1 + e−2 KH ξ

)
(2.63)

Equations (2.64) and (2.65) represent the length of the lines of contact over tooth i for spur and
helical gears respectively. This way for a tooth pair that is currently in mesh, the length of the
lines of contact for all the meshing tooth pairs that will enter the contact can be accounted for
by making i = − floor(ε) : 1 : floor(ε). In equations (2.64) and (2.65), εα is the contact ratio,
εβ is the overlap ratio, ε is the total contact ratio (ε = εα + εβ) and floor is a rounding down
function [143].

Ulsi (ξ, i) =
[
H(ξ − i)−H(ξ − εα − i)

]
(2.64)

Ulhi (ξ, i) =
1

εβ

[
H(ξ − i) (ξ − i)−H(ξ − εβ − i) (ξ − εβ − i)

−H(ξ − εα − i) (ξ − εα − i)H(ξ − ε− i) (ξ − ε− i)
] (2.65)

In order to establish the single tooth pair mesh stiffness, it is assumed that a gear can be viewed
as a stack of coupled thin slices, where the coupling stiffness between slices can be described
using a parabolic function, kL, along the contact line (coordinate η). The single tooth pair
slice stiffness along the path of contact (coordinate ξ), ks,hi , is also assumed parabolic. The
maximum single tooth pair mesh stiffness was calculated according to ISO 6336 [141] (KISO

max),
therefore, due to the parabolic line load assumption, in order to keep a compatibility between
this standard and the proposed model, a stiffness correction factor is introduced, equation (2.66).
In equation (2.66), εL is the maximum length of a line of contact normalized to b

cosβb
, which is

equal to 1 for spur gears (εL = 1), while for helical gears it depends on the relationship between
εα and εβ, as described by equation (2.67) [143].

KISO
max εL = cs,hf KISO

max

εL∫
0

[
ks,hi

(ε
2
, η, 0

)
kL

(ε
2
, η, 0

)]
dη (2.66)

εL =
1

εβ

[
εβ −H(εβ − εα) (εβ − εα)

]
(2.67)
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The normalized single tooth pair mesh stiffness can then be established using equation (2.68) [143].

k̂tp(ξ, i) = cs,hf

Uls,hi∫
0

(
ks,hi kL

)
dη (2.68)

The aforementioned principle (equation (2.68)) is applied to spur and helical gears. Marques
et al. [143] concluded that the normalized single tooth pair mesh stiffness of spur gears is not
affected by the stiffness distribution along a contact line, resulting in the product between lines’
length and single slice tooth mesh stiffness, equation (2.69). The normalized unbounded single
tooth pair mesh stiffness for spur gears is defined according to equation (2.70) [143].

ˆktps
(ξ, i) = Ulsi

ˆ
ktps

U (2.69)

ˆ
ktps

U (ξ, i) =
4(αk − 1)

ε2α
(ξ − i)2 − 4(αk − 1)

εα
(ξ − i) + αk (2.70)

The application of this principle (equation (2.68)) to helical gears brought additional complexity
which is mainly related to the mathematical description of the problem for ξ > εα. The same
principles that were described still apply, however the necessary equations are different and
necessarily more complex. For this reason, only the equations essential to the implementation
of this model are presented. The details behind each equation are exhaustively discussed in
Marques et al. [143].

From the adoption of equation (2.68) to helical gears, the normalized single tooth pair mesh
stiffness is obtained, equation (2.71). Note that the correction factor for the maximum normalized
single tooth pair mesh stiffness for helical gears chf , defined in equation (2.72), does not cancel
out and therefore appears in equation (2.71) [143].

ˆktph
(ξ, i) = Ulhi

[
ε2β
AB

5
Ulhi

4 − εβ
AB

4
Ulhi

3
[
εβεL − εα + 2

(
ξ − φL

i εβ − κ
)]

+
Ulhi

2

3

[
αLBε

2
β +A

[
αk +B

(
κ
(
2εβ
(
2φL

i − εL
)
− 2ξ + εα

)
− ξ
(
2εβ
(
2φL

i − εL
)
+ εα

)
+ εβ

(
φL
i εβ
(
φL
i − εL

)
− εα

(
εL − 2φL

i

))
+ κ2 + ξ2

)]]
+
Ulhi
2

[
αLBεβ

(
2κ− 2ξ + εα

)
−A

[
αk

(
εL − 2φL

i

)
+B

(
κ
(
2φL

i εβ
(
εL − φL

i

)
+(

εα − 2ξ
)(
εL − 2φL

i

))
+ εβφ

L
i

(
φL
i − εL

)(
2ξ − εα

)
+
(
κ2 + ξ2 − εαξ

)(
εL − 2φL

i

))]]

+
(
αL +AφL

i

(
φL
i − εL

))(
αk +B

(
κ− ξ

)(
κ− ξ + εα

))]
chf

(2.71)
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chf = εL

[
1

120

(
10αLεL

(
12αk +B

(
ε2β
(
4ε2L − 6εL + 3

)
+ 12εβψ

(
εL − 1

)
+ 12ψ2 − 3ε2α

))

−Aε3L

(
20αk +B

(
ε2β
(
6ε2L − 10εL + 5

)
+ 20εβψ

(
εL − 1

)
+ 20ψ2 − 5ε2α

)))]−1 (2.72)

Equations (2.71) and (2.72) depend on the parameters defined by equations (2.67) and (2.73) to
(2.79) [143].

φL
i (ξ, i) =

1

εβ
H(ξ − i− εα − (1− εL) εβ) (ξ − i− εα − (1− εL) εβ) (2.73)

A =
4 (αL − 1)

εL2
(2.74)

B =
4 (αk − 1)

ε2α
(2.75)

κ = i+ φi (2.76)

φi(ξ, i) = εβ

[
Ul∞i − Ulhi

]
(2.77)

Ul∞i (ξ, i) =
1

εβ

[
H(ξ − i) (ξ − i)−H(ξ − εβ − i) (ξ − εβ − i)

]
(2.78)

ψ =
ε

2
−H

(ε
2
− εβ

) (ε
2
− εβ

)
− εβεL (2.79)

Taking into account the necessary equations, for spur or helical gears, the normalized gear mesh
stiffness can be calculated by superposition of effects according to equation (2.80) [143].

ˆKs,h(ξ) =

 floor(ε)∑
i=−floor(ε)

k̂tp

T ls,h (2.80)

T ls,h(ξ), equation (2.81), is a function whose purpose is to trim and bound ˆKs,h(ξ), so that
ˆKs,h(ξ) 6= 0 only for ξ ∈ [0; ε] [143].

T ls,h(ξ) = H(ξ)−H(ξ − ε) (2.81)

The absolute gear mesh stiffness can then be estimated by taking the product of the maximum
single tooth pair mesh stiffness from ISO 6336 [141] (KISO

max) and the normalized gear mesh
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stiffness ( ˆKs,h(ξ), equation (2.80)), resulting in equation (2.82) [143].

K(ξ) = KISO
max · ˆKs,h(ξ) (2.82)

In equations (2.70), (2.71) and (2.72) , αk is the ratio between the single tooth pair (slice)
stiffness at ξ = 0 and ξ = εα and its value at ξ = εα

2 [143].

Due to its importance, an equation for the estimation of αk is also presented, equation (2.83),
where R is the load sharing ratio for a spur gear at the start of meshing (ξ = 0). It is relevant to
point out that equation (2.83) is only valid for εα ∈ ]1; 2[. From the AGMA 925-03 [144] and the
work of Sánchez et al. [19] a value of R = 0.36 is suggested [143].

αk = − 4R (εα − 1)

ε2α (2R− 1)− 4Rεα + 4R
(2.83)

Additionally, in equations (2.71) and (2.72) αL is the ratio between the contact line stiffness
at η = 0 and η = 1 and its value at η = 1

2 . Based on the work of Yu and Mechefske [14], a
guiding value of αL = 0.25 is suggested. Note that for a value of αL = 1, the line stiffness sharing
function becomes uniform, thus removing the slice coupling effect, making it comparable to the
Fourier model suggested by Gu et al. [13].

Discussion The approximate analytical models require a balance between accuracy and com-
putation time. The approximation performed cannot neither be computational expensive nor
deteriorate the quality of the results. Four approximate analytical models were presented, which
can be divided in two groups: models based on the approximation of the single tooth pair stiffness
and models based on the analytical description of the length of the contact lines.

In the first group are the models from Cai and Hayashi [136] (parabolic approximation) and
Sánchez et al. [19] (cosine approximation) which are both very similar regarding computational
time and effectiveness in the approximation for spur gears. The models of Cai and Hayashi [136]
and Cai [97] can be applied to spur and helical gears, while the model of Sánchez et al. [19] was
developed exclusively for spur gears. The model of Sánchez et al. [19] explicitly considered the
Hertzian contact stiffness while the works of Cai and Hayashi [97; 136] did not.

Regarding the second group, the Fourier series in Gu et al. [13] and the Heaviside function in
Marques et al. [143] are used to describe the length of the contacting lines. These two models
also resort to a quadratic approximation of the single tooth pair slice stiffness to determine
the gear mesh stiffness. In addition, the model proposed by Marques et al. [143] considers
slice coupling through a parabolic stiffness sharing function along the contact line, while the
Fourier model does not. The Gu et al. [13] model, based on Fourier series, presents overshoot
at step like discontinuities (Gibbs phenomenon) whereas the Heaviside function describes the
contact line length behavior of spur gears the best since they both theoretically behave like step
functions. Furthermore, in the Fourier model the contribution of each meshing tooth pair cannot
be separated from the gear mesh stiffness, while in the Heaviside model this is possible.

As for the computational cost among the approximate analytical models, the Fourier model
should be the most expensive model due to the need to sum a large amount of harmonics to obtain
a reasonably accurate solution while the remaining models ought to have similar costs. Although,
for dynamic analysis, the Fourier model is more suitable due to the ease in separating the gear
mesh stiffness in its fundamental harmonics. Both Fourier and Heaviside models depend on an
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adjusting parameter ( αFourier and αk) that describes the relationship between the maximum of
the single tooth pair slice mesh stiffness and its values at the start and end points of meshing. A
relationship between each of the adjusting parameters can be established such as αFourier = 1−αk.

A final note on the coordinate systems used to describe the gear mesh stiffness along the path
of contact according to the different models should be made. The works of Cai [97]; Cai and
Hayashi [136] and Gu et al. [13] take advantage of the meshing time normalized to the mesh
period, counting from the start of meshing (point A in Figure 2.16). The model proposed by
Marques et al. [143] has a similar approach, but instead of considering time quantities, their
spatial equivalents are used, resulting in a mathematical similarity between the coordinate of
these three models, as stated in equation (2.84).

τ =
t

tz
= ξ (2.84)

Despite Sánchez et al. [19] considering the spatial coordinate normalized to the spatial mesh
period, the starting point for the coordinate is the contact point tangent at the base circle of the
driving gear, point T1 in Figure 2.16. In order to represent the model of Sánchez et al. [19] in the
same coordinate system as the other three models, the transformation stated in equation (2.85)
must be considered.

ξC = ξ + ξinn (2.85)

2.6. Polymer gears

A dedicated section to polymer gears is presented since the majority of gear mesh stiffness
investigations are devoted to steel gears and there are significant differences on the gear mesh
stiffness modeling for each type of material. Polymer gears have a lightweight nature, self-
lubricating ability, are quieter, more resistance to corrosion and have lower mass production costs
than steel gears [145–151]. On the other hand, this type of gears have, when compared to steel
gears, reduced load capacity, inferior temperature resistance and thermal conductivity, worse
manufacturing tolerances, might be sensible to humidity and have a short running life, limiting
the applicability of these gears [146–148; 151]. All these different characteristics lead to distinct
failure modes which are reported in [152]. The meshing of polymer gears is more complex than
metal gears because of the added dependencies on the displacement, temperature and humidity
(depending on the hygroscopic behavior of the material). Hence, to properly establish the mesh
stiffness of polymer gears these factors need to be accounted for.

In the following works, not all of them directly investigate the mesh stiffness of polymer gear,
although they analyze the meshing characteristics mainly through the transmission error, which
can be related to the gear mesh stiffness. Besides that, the models developed on those works can
be used to extract the gear mesh stiffness, hence, these investigations are summarily presented.

Tsai and Tsai [145] performed a multi-tooth contact analysis using the finite element method,
more precisely, the contact option of the finite element package MARC to study the static
transmission error of plastic spur gears. A four or five teeth sector gear model is employed where
the two contacting teeth are more refined. The elements used for the mesh are quadrilateral
plane strain elements. Concerning the boundary conditions, the driven gear is fixed while the
driving gear is, at every increment, rotated by a small angle. Two different configurations were
implemented, them being, steel/plastic gears and plastic/plastic gears. The finite element results
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were compared with an analytical method for steel gears which did not consider the extension of
contact. It was concluded that the large tooth deflections in plastic gears cannot be disregarded
as it leads to significant deviations in the determination of the transmission error. The mentioned
analytical model was modified to include the extension of contact and the new results were
significantly improved to the extent that only slight differences can now be detected [145].

Lin and Kuang [146] determined the mesh stiffness of plastic spur gears for a dynamic model
resorting to the finite element method. The model consists of a full gear and a partial cylinder
that changes its radius of curvature according to the contact point being analyzed. The gear
has a finer mesh on the measured teeth and even more refined mesh near the contact region.
The MARC finite element package is used with its contact elements to obtain the single tooth
stiffness. The stiffness results for Nylon 66 at 20◦C are curve-fitted and defined by the number
of teeth, profile shift coefficient, loading position, pitch radius and module. Five characteristic
loading points are selected for the approximation. From the simulations conducted, the single
tooth stiffness for POM at 20◦C is approximated as 1.5 times the single tooth stiffness of Nylon
66. In order to include the effects of temperature on the gear mesh stiffness, a linear relationship
between the stiffness and the Young’s modulus was considered. The single tooth stiffness for any
temperature is acquired by describing the Young’s modulus as a function of temperature. The
gear mesh for the plastic gear is finally defined considering the number of tooth pairs in contact
and that each tooth pair is formed by two springs in series. The mesh stiffness is inserted in a
dynamic model to study the relations between the dynamic contact loads and the tooth profile
wear [146].

Karimpour et al. [147] investigated the meshing kinematics of polymer spur gears resorting to the
finite element model in ABAQUS® and analytical procedures in the BS ISO 6336. The contact
behavior of polymer gears was analyzed through the load sharing ratio, bending stresses and
contact stresses. There is not a direct study of either the transmission error or the mesh stiffness,
nevertheless, a finite element model for polymer gears is presented along with an evaluation
of the load sharing ratio and the extension of the path of contact under different conditions.
For the FEM analysis, the entire gear body with ten teeth was modeled with two tooth pairs
having a higher density structured mesh along the involute profile and the remaining ones a
coarse mesh. The elements employed were plane strain 4-node bilinear with reduced integration
and hourglass control (CPE4R). The nodes of the gear hub were attached to a rigid-body shaft
which is then used to apply the boundary conditions. The driving and driven gears were under
opposing torques, creating a resistance torque, and the driving gear was rotated in order to obtain
a mesh cycle for at least one tooth pair. The developed model, which assumed a isotropic linear
elastic material model, allowed to perform simulations at different but constant temperatures by
modification of the material’s Young modulus as well as different torques and friction coefficients.
With the increasing torque and temperature, the maximum load sharing ratio decreased whereas
with the increase of the friction coefficient, the opposite was found to be true [147].

Letzelter et al. [148] developed a model to establish the loaded mechanical behavior of polyamide
6.6 gears. This model takes advantage of the generalized Kelvin model to determine the
viscoelastic properties of the material which includes the wide relaxation time spectrum and
depends on the temperature and humidity (time temperature superposition principle). By
incorporating the viscoelastic model within a previously developed quasi-static load sharing
model, the loaded transmission error, mesh stiffness, load sharing ratio and tooth root stresses
at different temperatures, humidity and rotating speeds can be established. Even though it is
possible to obtain the gear mesh stiffness with this model, only the transmission error is analyzed
and compared with experimental results from a developed testing device. The experimental
and simulated transmission error curves have similar shape and amplitude which proves the
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validity of the model. Nevertheless, the model defined here can still be improved since it
assumes that the temperature is constant during operation which is shown not to be true.
The temperature variation during operation should not be neglected specially considering the
sensitivity of polymeric materials with the temperature [148].

Cathelin et al. [149] compared the transmission error of polymer gears from a developed numerical
model and experimental measurements. The numerical model comprises three main steps: (i)
definition of the real tooth geometry, (ii) kinematics simulation and (iii) loaded calculation. The
gear geometry is obtained by simulating the manufacturing process and then, in an unloaded
kinematics simulation, the potential contact regions are established. In the last step, the
transmission error is calculated considering the viscoelastic displacement and loading history
of the polymeric material based on the generalized Kelvin-Voigt method. The measurement
of the transmission error is performed in a dedicated test bench with optical encoders. The
simulation results without deviations and inclination errors showed similar trend and amplitudes.
However, variations in the positions of the axis were noticed during the experimental procedure.
Other simulations were conducted under different deviations, inclinations and center distances
which led to an approximation to the experimental measurements. Other measurements and
simulations at a higher rotating speed suggested that the shorter loading time caused a smaller
displacement and consequently a reduction in the transmission error amplitude. The source of
this phenomenon was assigned to the time dependent viscoelastic properties of the material. In
order to improve the correlation between the numerical and experimental results, it was suggested
to acquire precise information of the center distance, deviation and inclination during meshing
as these proved to have great impact on the transmission error [149].

Kodeeswaran et al. [150] studied the transmission characteristics of steel-polymer gear mesh with
FEM and compared it with experimental results. Both the transmission error and gear mesh
stiffness were analyzed. Regarding the geometric nonlinear finite element analysis in ABAQUS®,
the gear was designed with a full body and five teeth for reduced computational cost. The
mesh size was defined resorting to a convergence study. The tooth root and contact regions
were the most refined regions with elements of 8µm and 55µm, respectively. Plain stress 4-node
bilinear elements with reduced integration and hourglass control were implemented and the
material model was set to isotropic linear elastic. The hub of the driven gear was completely
constrained while the hub center of the driving gear had a kinematic constrain to the gear hub
diameter and was only allowed to rotate. It is on this reference node (driving gear hub center)
that the torque is applied. A coefficient of friction equal to 0.1 was imposed for every simulation
conducted. From the numerical results, it was concluded that both the transmission error and
the gear mesh stiffness increased with the increase in the applied torque. In addition, both
parameters showed an increase in the single and double tooth contact regions. When FEM
results were compared with the experimental tests, a high relative error in the single and double
tooth pair contact regions was found for every applied load. The encountered discrepancies
were attributed to the poor manufacturing quality of the polymer gear, practical difficulties in
the experimental measurement and the variations found along the single and double tooth pair
contact regions [150].

Roda-Casanova et al. [151] proposed two 2D finite element models in ABAQUS® to perform the
thermal-stress analysis of polymer gears. This heating contact analysis considers the heating
produced by friction between the gear teeth and the nonlinear properties of the material. A
transient coupled thermal-stress model is firstly presented. The pinion and the wheel are
discretized into linear quadrilateral finite elements which comprise displacement and temperature
degrees of freedom (CPE4T). On the boundary conditions, the gear bore edges are defined as
rigid and are linked to the references nodes (center of rotation) of each gear. It is on these
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reference nodes, which are only allowed to rotate, that the torque and velocity are applied.
While a torque is imposed on the pinion reference node, an angular velocity is defined at the
wheel’s reference node. A constant coefficient of friction (µ = 0.3) is imposed at the contact even
tough it is possible to make this parameter temperature dependent. The heat is transferred by
conduction and convection. The second FE model (simplified model) was developed to reduce
the high computational time and cost of the first model. This is done by dividing the entire
process in two separate and sequential stages, each one with its own FE model: (i) heating
during contact and (ii) cooling while unmeshed. The model in the first step (simplified heating
contact analysis) is very similar to the previously described full model but only part of the
gear body is modeled. The cooling FE model uses elements that only contain temperature
degrees of freedom (DC2D4) to model the same gear parts as in the simplified heating contact
model. Also, there are no contacting parts during this step, allowing to treat the pinion and the
wheel as two separate bodies. The simplified model is validated by comparing, with the coupled
thermal-stress model, the temperature variations with time for several nodes. Transmission error
curves are plotted for different meshing cycles showing that the increase in temperature causes an
increase in the transmission error and consequently a reduction in the mesh stiffness. However,
from the results presented, only the single tooth pair regions have a noticeable increase in the
transmission error [151].

Discussion Since polymer gears have more particularities than steel gears, and consequently a
more extensive exploration field, it would be expected to find more works on this topic. Although,
from the analysis shown, it is clear that the amount of works is severely reduced when compared
to steel gears. On top of that, there is not much diversity on the type of models used, only finite
element models (majority) and analytical models (a few) were implemented, and there are not
mesh stiffness/transmission error results for any other than type of polymer gears but spur gears.

The mesh stiffness modeling of polymer gears has the potential to be more explored and
exploited than steel gears due to the nonlinear behavior of polymer properties with temperature,
displacement and humidity as well as the large geometrical distortions during the meshing process.
Nevertheless, there is still a long way to go on this area but when the right step is taken, a whole
new spectrum of possibilities will be available.

2.7. New trends and the gear mesh stiffness

There are two aspects that must be highlighted regarding new trends and gear mesh stiffness,
electric vehicles (EVs) and polymer gears. The impact of electric vehicles at both industrial
and environmental levels is of great proportions, specially considering the increase in production
volume over the last few years. Two common drivetrain configurations can be found in electric
vehicles. For small EVs, the electric motor (low/average speed motor) is typically attached
directly to the wheels while for EVs with the objective of replacing the internal combustion
engine vehicles, the electric motor (high speed motor) is coupled to a transmission [153]. The
high speed motors typically work between 8900 and 16000 rpm [154] (but it is expected to reach
30000 rpm) which completely changes the design requirements for gears and bearings [155]. This
modifies the modeling of the gear mesh stiffness since some effects are enhanced and new ones
need to be accounted for, to name a few, Hertzian dampening, extension of contact, loss of
contact, centrifugal expansion, manufacturing errors, teeth friction, precession and gyroscopic
effect. There are gear mesh stiffness models that consider some of these phenomena although
there is not a model that includes all of them simultaneous; a demand for proper modeling of
this transmissions.
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The application of polymer gears has been increasing for the last decades, nevertheless, there are
not many models analytically describing the mesh stiffness or transmission error for this kind of
gears. The main gear mesh modeling tool for polymer gears is the finite element method. This
numerical method is the tool of choice mainly due to the ease in incorporating the nonlinear
material properties with the temperature and displacement. The significantly lower Young
modulus compared to steel gears leads to higher deflections and hence the extension of contact
is mandatory for any polymer gear mesh stiffness model, for instance, the associated increase
in the contact ratio must be considered in the calculation of the tooth root stress of polymer
gears [156; 157]. The aforementioned phenomena highlight the need to include, for example,
the manufacturing errors and misalignment which become more significant for polymer gears
[149; 158]. In addition, the influence of the temperature on the gear mesh stiffness of polymer gears
has shown to be of great importance and therefore it must be studied - some investigations on the
temperature distribution of polymer gear teeth have been conducted in [159–163]. Temperature
variations directly influence the mesh stiffness by modifying the material’s Young modulus,
moreover, due to the higher thermal coefficient of expansion and lower conductivity of polymer
gears, their geometry will certainly change. Kashyap et al. [164] developed analytical models to
describe the gear geometry considering the thermal expansion with the purpose of incorporating
them in the prediction of load sharing distribution, mesh stiffness and transmission error. In
many situations, polymer gears mesh with steel gears, resulting in stiffness imbalance, which
impacts the gear mesh stiffness by increasing its peak-to-peak amplitude [165]. All these effects
must not be disregarded when designing/modeling polymer gears.

There is a lack of optimization studies on polymer gears even though there are a lot of interesting
topics to explore [23] - this might be related to the absence of analytical models. As previously
discussed, analytical models are suited for optimization purposes, contrary to the finite element
models which, on account of the high computational costs, are not the best option. Precision
gearing, an application of polymer gears where the transmission error is of major importance, is
one of the fields that can benefit from the analytical modeling of the gear mesh stiffness. An
optimization of the transmission error would surely improve the design of polymer gears. There
are a lot of other areas to be investigated on polymer gears, namely, composite materials, new
design approaches, friction, lubrication, coatings, vibration and noise, revealing a great potential
for improvements and expansion of their applicability.

2.8. Closure

As it was demonstrated along the review, gear mesh stiffness has always been a topic of great
concern among gears’ researchers and the fact that it is still being studied proves its importance
and complexity.

In the analytical models, the most commonly used method is the potential energy method.
This method is extensively used due to its good results and high flexibility in incorporating
geometrical modifications to the tooth, for example, tip relief, tooth cracks and spalling. The
potential energy method is described with detail and several works for both spur and helical
gears are presented. This method shows results close to those from the finite element method
with a reduced computational time. Nevertheless, the computational cost of the potential energy
method is not the lowest due to the need of the numerical integration, besides that, due to the
extensive expressions required to code, there is a reasonable implementation time with the chance
of programming errors. The analytical models emerge as an option for any situation, whether it
is gear design, optimization or dynamics yet one must be aware that this type of models may
not comprise the required phenomena for a particular investigation and further developments
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must be performed. The implementation of new phenomena demands its comprehension and
description which might be difficult to do analytically.

The calculation of the gear mesh stiffness with the finite element method is also reviewed. Details
regarding the softwares, gear modeling, types of elements and their sizes as well as the mesh
stiffness extraction are summarized. A description of some works and their objectives in using
the finite element method for the gear mesh stiffness computation is presented. The main
disadvantage found for the finite element method consists on performing consecutive analysis for
different gear geometries owing to the high computational time and different modelings required
- making it very time consuming for gear design/optimization purposes. On the other hand, the
finite element method allows for a geometrical and contact accuracy that is not attainable in
other methods and exhibits great flexibility regarding materials and geometries.

The hybrid models try to solve the problem of the high computational time of the finite element
method by calculating the nonlinear Hertzian component separately. The Hertzian deformations
are the main restriction to the selection of the elements’ mesh as they require a fine mesh
to be properly calculated. Hence, in hybrid models, the finite element method is used for a
global analysis and an analytical procedure is applied to compute the contact deformations.
A comprehensive analysis is not conducted as hybrid models combine previously presented
techniques, this is, the finite element method and analytical procedures. From the literature
review, hybrid models present a reduction in the computational time while keeping an accuracy
close to the finite element method models. Hence, the applicability range of this kind of model
is expanded compared to that of the finite element method, making it more appropriate for
consecutive analysis.

The final type of gear mesh stiffness models presented are the approximate analytical models.
The principle behind this kind of models is reducing a phenomena defined by expensive numerical
calculations to an approximate and simple function. Four approximate analytical methods were
presented, they were named the Parabolic model (Cai and Hayashi [136] and Cai [97]), the Cosine
model (Sánchez et al. [19]), the Fourier model (Gu et al. [13]) and the Heaviside model (Marques
et al. [143]). In short, the Parabolic model uses a quadratic function to approximate the single
tooth pair mesh stiffness whereas the Cosine model uses the cosine trigonometric function for
the same purpose. Gu et al. [13] and Marques et al. [143] take advantage of the Fourier series
and the Heaviside function, respectively, to describe the length of the contacting lines for the
estimation of the gear mesh stiffness. These models are very similar to the analytical methods
regarding both benefits and drawbacks however the simpler and more direct expressions they
present facilitate the implementation procedure and reduce the computation time by orders of
magnitude as it is shown in the comparative study for spur gears performed by Natali et al. [122].
The approximate analytical models give reliable results in a very short computational time, in
fact, its ratio between accuracy and computational cost is one of, if not, the best.

Mesh stiffness models for cylindrical gears are reviewed with great detail. Any researcher/practi-
tioner, either experienced or novice, can find here a complete source of information to get an
update or rapidly know what was and is currently done in the field of gear mesh stiffness and
how to do it.

The selection of the absolute best gear mesh stiffness model is not possible since it depends
on the needs, knowledge and interests of each individual. What can be stated is that the best
model for a certain individual contains all the necessary effects for the intended application and
is within the implementation capabilities of the individual. It should be clarified that including
all possible effects that exist for the modeling of gear mesh stiffness is not the best approach,
including unnecessary/unused effects is useless and can even be pernicious due to the increased
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computational cost it might bring.

A comparison between key characteristics of each group of models is performed in Table 2.8
to supply information for deciding which class of model is the most suited for a specific inves-
tigation. The parameters compared in Table 2.8 are the accuracy of the results, computation
time/repeatability, easiness in the implementation procedure and required resources for modeling.
Note that this is a general overview of the models and that these are the expected outcomes for
each class of model - there might be exceptions. The gear mesh stiffness modeling categories are
classified from the best (1st) to the worse (4th) for each parameter.

Table 2.8: Comparison between the different types of gear mesh stiffness models.

Model Accuracy Computation cost Implementation procedure Resources

Analytical 3 2 2 2

Finite Element 1 4 3 4

Hybrid 2 3 4 3

Approximate Analytical 4 1 1 1

Table 2.8 grants the possibility to verify which aspect is the most challenging or needs further
improvement for each kind of model. From Table 2.8 it can be concluded:

• Considering a correct and equivalent implementation for every type of model, finite element
models are the most accurate. The high accuracy of these models makes them the preferred
choice for many researcher/practitioners. The accuracy decreases when selecting hybrid
models, analytical models and approximate analytical models;

• Approximate analytical models have the lowest computational cost. The simple and direct
procedures that define these models lead to a significant reduction in the computational cost
and allow their repeatability, crucial for optimization algorithm and gear dynamic analysis.
Oppositely to these models are the finite element models and between the remaining models,
hybrid models are closer to finite element, as expected by their similarities;

• Hybrid models are selected as being the hardest to implement since they require the
combination of the finite element method and analytical expressions as well as a procedure
to remove the local deformations from the finite element model. Next are the finite element
models, which even resorting to finite element softwares/solvers require a solid basis of
knowledge on the topic. Programming finite element models from scratch is even harder and
requires high level of mathematical and programming skills. The analytical and approximate
analytical models can be implemented with the minimum mathematical/programming
skills but analytical models are more prone to implementation errors due to the need of
performing the integrals;

• Resources classify the utilities and computational power necessary to perform the analysis
for each model, therefore, this topic is closely related to the computation time. Finite
element models are at the bottom as powerful machines are needed for an adequate analysis
- some finite element models are not worth solving if the computational machine available
cannot solve the problem within demanded/reasonable time. At the top are the approximate
analytical models which are affordable in almost every computer.

FEUP | 2023 | João D.M. Marafona



2.8. Closure 59

Lastly, there is one question that comes to mind: what would be the perfect gear mesh stiffness
model? The perfect gear mesh stiffness model can accurately represent the mesh stiffness of any
gear mesh under any condition within a computation time that allows it to be used as a tool
for any application. As this is not attainable yet, the focus is on the new trends and how they
modify the current gear mesh stiffness models.

Next Comparing the different types of models and taking into account the goal of reaching an
accurate and low computational cost gear mesh stiffness model, using an approximate analytical
model is the best strategy - Heaviside model [135] used as a basis. Early implementations of the
Heaviside model [135] to include extension of contact on spur gears revealed some inconsistencies
when comparing the results with KISSsoft® in terms of magnitude and for gears with u 6= 1. After
further investigation, the former discrepancies were attributed to the definition of the maximum
stiffness value (established according to ISO 6336 [141]) while the latter to the symmetrical
shape of the single tooth pair mesh stiffness that was being assumed since for gears with gear
ratio u = 1 full agreement was found. Later, in the work of Marques et al. [143] (improved
Heaviside model) there is a strong dependence of the model on the parabolic approximation for
the definition of the single tooth pair slice mesh stiffness. This expression results in a symmetric
shape for the stiffness component and relies on the definition of a free parameter which, in
the state it is presented, has no correlation with the gear geometry. Three key issues must be
addressed for the quality of the estimation given by the approximate analytical models to be
improved: (i) definition of a single tooth pair (slice) mesh stiffness shape accounting for the
possible asymmetries; (ii) determination of the free parameter depending on gear geometry and
(iii) improved estimation of the maximum stiffness value. This was found to be the first major
step towards the development of the gear mesh stiffness model.
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Chapter 3

Single tooth pair slice mesh stiffness

In many gear mesh stiffness models, the single tooth pair mesh stiffness is commonly approximated
as having a parabolic-like symmetric shape along the path of contact with a fixed or contact
ratio dependent amplitude. Even though this is a valid approximation under certain conditions,
there is an asymmetry being disregarded and an amplitude being roughly approximated. In this
chapter, a new straightforward analytical expression for the single tooth pair slice mesh stiffness is
defined resorting to a parabolic approximation of the tooth pair structural stiffness that requires
the definition of the asymmetry, relative amplitude and maximum value as a function of the
gear parameters. In order to assess the developed work in terms of applicability and accuracy,
a random sample of gears have their tooth pair structural stiffness approximation tested. The
established asymmetry, relative amplitude and maximum value allow, in a fast and simple fashion,
to obtain an accurate approximation. Different formulations of the single tooth pair slice mesh
stiffness are compared, highlighting the importance of including the asymmetry and showing the
improvements due to the new parameters.

3.1. Background

There are many different kinds of gear mesh stiffness models, ranging from analytical, finite
element, hybrid and approximate. Each type of model comprises their own advantages and
drawbacks, so the selection of the right type of model depends, to some extent, of the requirements
imposed by the user. When it comes to situations where the number of gear mesh stiffness
computations can be very high, for instance, optimization of gear design and gear dynamics, the
approximate gear mesh stiffness models are the best option [166]. In this type of models, it is
very common to find approximations to the single tooth pair (slice) mesh stiffness, either giving
them parabolic or trigonometric shape functions [13; 19; 135; 136; 143]. Therefore, the accuracy
of the single tooth pair (slice) mesh stiffness will influence the results of the gear mesh stiffness.
Bearing that in mind, an analysis of the current applications of single tooth pair mesh stiffness
approximations is conducted to stress out the main characteristics of each one of them.

Cai and Hayashi [136] developed the parabolic approximation for the stiffness of a tooth pair
when working on the linearization process of the nonlinear equation for the rotational vibration
of spur gear pairs. The approximate single tooth pair mesh stiffness is normalized by the average

Contents in Chapter 3: Single tooth pair slice mesh stiffness are reproduced with permission of the respective
publisher from João D.M. Marafona, Pedro M.T. Marques, Ramiro C. Martins, and Jorge H.O. Seabra. Approximate
expression for the single tooth pair slice mesh stiffness. Mechanism and Machine Theory, 187:105367, 2023.
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62 3. Single tooth pair slice mesh stiffness

gear mesh stiffness value and, as displayed in equation (3.1), is a function of the contact ratio
(εα), meshing period (tz) and meshing time (t).

k̂tp =

[
−1.8

(εαtz)
2 t

2 +
1.8

εαtz
t+ 0.55

]
/(0.85εα) (3.1)

Analyzing equation (3.1), the amplitude of the curve depends on the contact ratio and is equal
to 0.45/(0.85 εα). By performing this approximation, it is being assumed that the meshing of
the tooth pairs occurs symmetrically.

Gu et al. [13] also made use of a parabolic and symmetrical approximation, to establish the
normalized, with respect to the average stiffness value, single tooth pair mesh stiffness for an
analytical description of the mesh stiffness of solid spur and helical gears - attend to equation (3.2).

k̂tp = 1 + αFourier

(
−6

ε2α
τ2 +

6

εα
τ − 1

)
(3.2)

In equation (3.2), τ is the time normalized by the meshing period. In the approximation proposed
by Gu et al. [13], the amplitude depends on the value applied for αFourier - relative variation in
stiffness amplitude - which varies between 0.25 and 0.35. This range of values was obtained by
computing αFourier for different gear geometries and according to various procedures. An average
value of αFourier = 0.3 is implemented, making the amplitude equal to 0.45.

Marques et al. [143] presented a continuous analytical solution for the gear mesh stiffness of
involute spur and helical gears considering a non-uniform contact line stiffness distribution. This
model resorts to a symmetrical parabolic approximation to define the single tooth pair stiffness
for a spur gear slice, as shown in equation (3.3).

ˆktp,s =
4(αk − 1)

ε2α
ξ2 − 4(αk − 1)

εα
ξ + αk (3.3)

The variable ξ in equation (3.3) is the distance from the start of meshing divided by the transverse
base pitch. The value for αk, which defines the minimum stiffness ratio along the path of contact
was studied and a relationship between αk and R (load sharing ratio at the theoretical start of
the meshing process for gears with 1 < εα < 2) was established according to equation (3.4).

αk = − 4R (εα − 1)

ε2α(2R− 1)− 4Rεα + 4R
(3.4)

Since the amplitude of this parabolic approximation is 1 − αk, it depends on the value of R
and the transverse contact ratio. Considering the evaluation conducted in [143], several studies
suggest that a value of R = 0.36 would give results close to reality. Unlike the previously
discussed works, this curve is normalized by the maximum single tooth pair mesh stiffness value.

Sánchez et al. [19] use the cosine trigonometric function to approximate the single tooth pair
mesh stiffness and, with that formulation, evaluate the contact and tooth root stresses of spur
gears. The applied approximation is shown in equation (3.5).

k̂tp = cos
(
b0

[
ξC −

(
ξinn +

εα
2

)])
(3.5)
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where b0 is defined according to equation (3.6) and ξinn is the point where the tooth pair starts
meshing. The coordinate ξC defines the contact point and is equal to the length along the line of
action normalized by the transverse base pitch.

b0 =

[
1

2

(
1.11 +

εα
2

)2
− 1.17

]−1
2 (3.6)

Establishing the minimum stiffness ratio along the path of contact for the cosine approximation
leads to equation (3.7), which presents very similar values to equation (3.4) when R = 0.36 [143].

αSanchez
k = cos

εα
2

[
1

2

(
1.11 +

εα
2

)2
− 1.17

]−1
2

 (3.7)

Even though only symmetrical approximations are presented in the work of Sánchez et al. [19], it
is referred that modifications must be applied in situations where the addendum of the standard
basic rack tooth profile is different than one (h∗aP 6= 1) and for non-standard center distance.
Furthermore, in other works [73; 167; 168], the influence of undercut at the tooth root and
non-equal tooth addendum on the pinion and the wheel on the load distribution along the line of
contact is evaluated. Asymmetrical curves need to be considered when reduced tooth height,
vacuum gearing at pinion root, enlarged tooth height and modifications to the standard center
distance have to be included in the single tooth pair mesh stiffness approximations. The solutions
proposed in [73; 167; 168] to these cases resort to a fictitious contact ratio which neglects all
those modifications and consequently leads to fictitious gear geometries. Then, by considering
the actual starting and ending points of teeth contact, the fictitious curve is trimmed and the
final result, which can be asymmetric or not, is obtained.

When it comes to approximate gear mesh stiffness models, three key features were found (a
discussion between approximate gear mesh stiffness models can be found in [166]): (i) the curve
is (most times) considered to be symmetric, (ii) these models rely on the ISO 6336-1 [141]
standard to establish an absolute value for the single tooth pair mesh stiffness and (iii) there
are different formulations for the relative amplitude of the curves. Upon this analysis, there are
a number of questions that can be raised, for instance, what is the relationship between gear
geometry/parameters and shape of the single tooth pair mesh stiffness? Also, how far can the
ISO 6336-1 [141] describe the maximum value for the single tooth pair mesh stiffness? Even
though approximate gear mesh stiffness models mostly deal with the single tooth pair mesh
stiffness, the single tooth pair slice mesh stiffness is, conceptually, a broader parameter that
gives a wider range of modeling, allowing the mesh stiffness estimation for both spur and helical
gears. Taking the aforementioned into account, there is the need to define these parameters as
a function of the gear geometry, giving better estimations for approximate gear mesh stiffness
models. For that purpose, an extensive study on the single tooth pair slice mesh stiffness where
its shape, relative amplitude and maximum absolute value are evaluated is required to shed some
light on this topic and expand the modeling range of approximate gear mesh stiffness model.

For that purpose it is necessary to be capable of accurately computing the single tooth pair slice
mesh stiffness multiple times. Considering the aforementioned restrictions, the potential energy
method (PEM) is the selected gear mesh stiffness model to determine the single tooth pair slice
mesh stiffness [166]. The potential energy method is a well-established analytical procedure
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for the calculation of the single tooth pair and gear mesh stiffnesses. This method views the
gear tooth as a non-uniform cantilever beam fixed at its dedendum circle and estimates its total
potential energy due to external work resorting to analytical expressions from mechanics of
materials [72; 166]. The potential energy method can be employed to compute the gear mesh
stiffness of spur [17; 83; 87; 88; 90] and helical [14; 16; 99–101] gears including profile and width
modifications/errors as well as damaged gears (both spur and helical) from pitting, spalling,
cracked teeth and wear [85; 105; 106; 109–111].

For this work, the potential energy method is used to study the tooth pair structural stiffness,
this means that the components considered for the computation are the bending, shear and
axial compressive energies of both the pinion and the wheel. Consequently, the contact stiffness
and fillet-foundation stiffness are not taken into account for this investigation. In fact, there is
currently no need to further investigate these stiffness components since both the contact [77]
and the fillet-foundation [78; 79] deflections already have analytical, simple and computationally
inexpensive expressions. This chapter focuses on defining the tooth pair structural stiffness
by simple analytical expressions without any numerical method so that the contact and fillet-
foundation components can be combined to establish the single tooth pair slice mesh stiffness.

To reach that goal, the tooth pair structural stiffness is approximated by a quadratic expression
including two parameters to define its shape plus a third parameter to establish its maximum
value. Firstly, the shape parameters, asymmetry parameter and relative amplitude parameter, of
the tooth pair structural stiffness are evaluated. Then, the maximum single tooth pair mesh
stiffness from the ISO 6336-1 [141] is adapted to fit the maximum tooth pair structural stiffness
according to the potential energy method. This study is centered on slices of both spur and
helical gears. When approximate gear mesh stiffness models are implemented for parallel axis
cylindrical gears, most times, they resort to the slicing method [14; 16; 99–101; 166] and therefore
gears are viewed as a series of staggered spur gears, which are the slices. In addition, the research
is conducted for the ISO 53 [169] Profile A (α = 20°, h∗aP = 1, h∗fP = 1.25 and ρ∗fP = 0.38) and
considering a linear elastic behavior of the gears’ material.

As an output, analytical expressions for the asymmetry, relative amplitude and maximum
value of the parabolic approximation of the tooth pair structural stiffness are established which
together with the existing contact and fillet-foundation stiffness give an unique formulation for
the single tooth pair slice mesh stiffness. By defining these parameters as a function of the gear
geometry/parameters, there is no need to rely on further simplifications or on free/user-defined
parameters, thus improving the accuracy and reliability of approximate gear mesh stiffness
models. This improvement in accuracy will be highlighted when the extension of contact (contact
outside the path of contact) is considered since it is influenced by the stiffness at the starting and
ending points of contact [138; 140]. The load sharing distribution, friction losses and location of
critical points for bending and wear calculations can also be better estimated considering the
newly established approximation for the single tooth pair slice mesh stiffness.

3.2. Potential energy method

In this section, the potential energy method is described together with the presentation of
the expressions necessary to determine the gear tooth potential energy so that the tooth pair
structural stiffness can be established. According to the potential energy method, the total
potential energy of a gear tooth (Ut), shown in equation (3.8), due to the external work done
in deforming it can be separated into three components: the bending energy (Ub), the shear
energy (Us) and the axial compressive energy (Ua). Each of these energy components is defined
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by equations (3.9) to (3.11) [72; 166].

Ut = Ub + Us + Ua (3.8)

Ub = 6
F 2 cos2(αC)

Eb

∫ yC

yp

(yC − y)2

e3(y)
dy (3.9)

Us = 0.6
F 2 cos2(αC)

Gb

∫ yC

yp

dy

e(y)
(3.10)

Ua =
F 2 sin2(αC)

2Eb

∫ yC

yp

dy

e(y)
(3.11)

where y is the coordinate given by the axis defined along the tooth centerline with origin at the
gear rotation center, F is the involute profile normal load, αC is the load angle, b is the facewidth,
e(y) is the tooth chordal thickness at section y. E and G are, respectively, the modulus of
elasticity and transverse modulus of elasticity of the material. The integration limits, yp and yC ,
are the values of y corresponding to the fixed boundary of the tooth and the load section. The
fixed boundary is given by the chordal tooth root line while the load section is defined by the
intersection of the line of action and the tooth centerline [73; 166]. The tooth pair structural
stiffness can then be obtained by using the single tooth total potential energy of the pinion and
the wheel.

3.3. Shape parameters

In previous works [8; 135; 143], the single tooth pair (slice) mesh stiffness was approximated by
a parabolic expression to define its shape and by the ISO 6336-1 [141] to specify its maximum
absolute value. For the approximation of the tooth pair structural stiffness, a similar expression
is employed, where the amplitude parameter αk is kept and a new parameter to characterize the
asymmetry of the curve λ is added, attend to equation (3.12).

ˆkstr =
4(αk − 1)

ε2α
(ξ − λ)2 − 4(αk − 1)

εα
(ξ − λ) + αk (3.12)

The amplitude αk is, for a symmetric curve, the ratio between the minimum and maximum tooth
pair structural stiffness along the path of contact. The asymmetric parameter is the quantity
which the parabolic curve is shifted to the right (if λ > 0) or to the left (if λ < 0). Figure 3.1
shows an example of how the shape parameters influence the behavior of the normalized tooth
pair structural stiffness curve according to equation (3.12) - this shows the high variability of the
curves with the shape parameters.
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(b) Variation of λ:
αk = 0.6 and λ = 0.1.
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(c) Variation of αk and λ:
αk = 0.8 and λ = 0.1.

Figure 3.1: Example of the effect of the shape parameters on the tooth pair structural stiffness:
εα = 1.5, αk = 0.6 and λ = 0.

3.3.1. Asymmetry parameter, λ

The effect of the gears’ geometrical parameters on the asymmetry is evaluated for each parameter
individually. However, since the helix angle, module and facewidth do not create asymmetries,
these are not studied. That being said, for the number of teeth, profile shift coefficients and
addendum reduction, expressions are developed. The asymmetry parameter is defined by
equation (3.13) where λGR, λPS and λAS are the asymmetries caused by the number of teeth, the
profile shift coefficients and the addendum shortening - each parameter is discussed in its own
section. From the different fitting approaches that were tried, it was found that the topology
used for equation (3.13) is the simplest given that the contribution of each parameter can be
individually approximated.

λ = λGR + λPS + λAS (3.13)

To determine λ, the first step is to obtain the tooth pair structural stiffness from PEM. Then,
the PEM curve is normalized such that its maximum value is equal to one. Following that, a
parabolic interpolation of the region near its maximum value is performed to accurately obtain
its location. Finally, λPEM is computed from the difference between the position of the actual
maximum value and the position where the maximum would be if the tooth pair structural
stiffness was considered symmetric, this is, halfway between the start and end of meshing. Once
λPEM is determined, it is approximated according to the gear parameters in study and thus λ is
achieved.

Number of teeth

On the asymmetries caused by the number of teeth, it should be noted that there are no
asymmetries when the gear ratio is equal to one (z1 = z2) and if the profile shift coefficients
are x1 = x2 - meaning that under these circumstances, one can alter the number of teeth that
the tooth pair structural stiffness will remain symmetric. Although, this does not mean that
only the gear ratio has influence on the asymmetries because for different values of z1 and a
fixed value of gear ratio, different values of asymmetries can be found. Starting by defining the
unbalance in the path of contact imposed by the number of teeth ψGR leads to equation (3.14).
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ψGR =
1

2 pbt

[(
−1

2
(z2 − z1)mt sin(αt)

)
+√(

1

2
mtz2 +mn

)2

−
(
1

2
z2mt cos(αt)

)2

−√(
1

2
mtz1 +mn

)2

−
(
1

2
z1mt cos(αt)

)2
] (3.14)

When comparing the asymmetry parameter from PEM (λPEM) with ψGR, it was discovered
that they shared the same shape, although the amplitude required to be adjusted by a factor of
0.9642. This result was determined by varying the number of teeth between 18:300 and the gear
ratio between 1:8 while keeping the module equal to 8 mm and the facewidth to 20 mm - see
Table 3.1. The values attributed to the module and facewidth have no particular reason for their
selection and impose no influence in the results.

Table 3.1: Gear parameters for the number of teeth evaluation.

Gear parameters Range

z1/- 18:300
z2/- z1× 1:8
mn/mm 8
α/° 20
β/° 0
b/mm 20
x1/- 0
x2/- 0
E/GPa 206

Taking the aforementioned into account, equation (3.15) describes the asymmetries caused by
the variation in the number of teeth.

λGR = 0.9642 ψGR (3.15)

Profile shift coefficients

The asymmetries imposed by the profile shift coefficients are evaluated for the geometries
presented in Table 3.2.

The analysis begins by determining the modifications on the starting and ending points of meshing
created by x1 and x2. These are established by equation (3.16) for x1 and equation (3.17) for x2.
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Table 3.2: Gear parameters for the profile shift coefficients evaluation.

Gear parameters Range

z1/- 18:300
z2/- z1

mn/mm 8
α/° 20
β/° 0
b/mm 20
x1/- -1:1∗

x2/- -1:1∗

E/GPa 206
∗ limited by undercut for z1

ψPSA =
1

2 pbt

[
−

√(
1

2
mtz2 +mn(1 + x2)

)2

−
(
1

2
z2mt cos(αt)

)2

+√(
1

2
mtz2 +mn

)2

−
(
1

2
z2mt cos(αt)

)2
] (3.16)

ψPSB =
1

2 pbt

[ √(
1

2
mtz1 +mn(1 + x1)

)2

−
(
1

2
z1mt cos(αt)

)2

−√(
1

2
mtz1 +mn

)2

−
(
1

2
z1mt cos(αt)

)2
] (3.17)

Then, considering the deviations caused by the profile shift coefficients on the path of contact
(ψPSA and ψPSB), the procedure is divided in two stages. On the first stage, only symmetric
profile shift coefficients (x1 = −x2) are modeled, leading to equation (3.18).

λsym
PS =

1

7.3678× 10−2z2 + 1.2945
ψPSA +

1

7.3678× 10−2z1 + 1.2945
ψPSB (3.18)

On the second stage, x1 = 0 is fixed and x2 is varied between -1 and 1. The ratio between λPEM

and λsym
PS is computed to find out that it can be replicated by a linear function in xi whose

coefficients are a parabolic and linear functions of zi - resulting in the final form of λPS, displayed
in equation (3.19) accompanied by equations (3.20) and (3.21).

λPS = γ1 ψPSA + γ2 ψPSB (3.19)

γ1 =
(−2.513× 10−6z22 + 1.498× 10−3z2 − 0.5824)x2 − 7.651× 10−5z2 + 1.029

7.3678× 10−2z2 + 1.2945
(3.20)
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γ2 =
(−2.513× 10−6z21 + 1.498× 10−3z1 − 0.5824)x1 − 7.651× 10−5z1 + 1.029

7.3678× 10−2z1 + 1.2945
(3.21)

Addendum shortening

The last parameter to be studied for the asymmetric shift is the addendum shortening kad which
is the height removed to the tooth normalized by the normal module. Since this process consists
in the reduction of the teeth’s height by removal of the correspondent material, it leads to a
reduction on the path of contact. Even though the path of contact is reduced, the stiffness
values are kept the same owing to the fact that the contact points between the gears are exactly
in the same position. That being said, for the addendum shortening, an exact expression for
the asymmetries can be established, resulting in equation (3.22). Note that this addendum
shortening can also include any further desired tooth height reduction.

λAS =
1

2 pbt

[√(
1

2
mtz2 +mn(1− kad)

)2

−
(
1

2
z2mt cos(αt)

)2

−√(
1

2
mtz2 +mn

)2

−
(
1

2
z2mt cos(αt)

)2

−√(
1

2
mtz1 +mn(1− kad)

)2

−
(
1

2
z1mt cos(αt)

)2

+√(
1

2
mtz1 +mn

)2

−
(
1

2
z1mt cos(αt)

)2
]

(3.22)

3.3.2. Amplitude parameter, αk

The amplitude parameter to be approximated is the one that minimizes the difference between the
potential energy method and the normalized approximate function for the tooth pair structural
stiffness in equation (3.12) while using the asymmetric parameter established by the potential
energy method. A first analysis has unveiled that the amplitude parameter depends on the
number of teeth, helix angle and the profile shift coefficients. The resulting expression for the
amplitude parameter is of the type shown in equation (3.23).

αk = αz
k α

β
k α

x
k (3.23)

where αz
k, αβ

k and αx
k are functions that account for the influence of the number of teeth, helix

angle and profile shift coefficients in the amplitude parameter, respectively. αz
k is estimated

first to be used as a reference. Then, αβ
k and αx

k are introduced to account for the variations
imposed by the profile shift coefficients as well as the helix angle. The three following sections
are dedicated to the investigation of the aforementioned parameters in αk.

Number of teeth

The value of the amplitude parameter is computed for the gears established by Table 3.1,
maintaining the range that is used for λGR. When looking at the results, the amplitude
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parameter took a very similar shape for every value of gear ratio, which can be described by a
power function of z1, as in equation (3.24).

αz
k = Azz

Bz
1 + Cz (3.24)

The parameters Az, Bz and Cz in equation (3.24) control the shape of the power function with
the gear ratio. Upon determining these values, they are correspondingly fitted by expressions
shown in equations (3.25), (3.26) and (3.27).

Az = 2.746× 1011 exp

(
−28.88

z2
z1

)
+ 1.095 exp

(
0.03794

z2
z1

)
(3.25)

Bz = −0.7036

(
z2
z1

)0.08683

(3.26)

Cz = 0.2851

(
z2
z1

)0.004734

(3.27)

Helix angle

The helix angle of the analyzed gears is varied between 0° and 40° as it can be seen from Table 3.3
which shows all gear parameters for αβ

k .

Table 3.3: Gear parameters for the helix angle evaluation.

Gear parameters Range

z1/- 18:300
z2/- z1

mn/mm 8
α/° 20
β/° 0:40
b/mm 20
x1/- 0
x2/- 0
E/GPa 206

The results of αk are divided by the ones obtained when β = 0° prior to the modeling - the
achieved ratio is a surface with axis z1 and β. To develop the fitting function, the average value
of the ratio for every β is taken. Ergo, the dependence on z1 is removed and the function given
by equation (3.28) is established.

αβ
k =

0.9896β2 − 64.76β + 1349

β2 − 65.81β + 1347
(3.28)
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Profile shift coefficients

The procedure taken for modeling the amplitude parameter considering the profile shift coefficients
is the same as for assessing the influence of the profile shift coefficients on the asymmetry
parameter, described in section 3.3.1. The values of the amplitude parameter according to
Table 3.2 are divided by αz

k prior to their examination, leading to αx
k and thus guaranteeing that

equation (3.23) holds true. This procedure gives rise to a second degree polynomial function on
x1 and x2 to approximate αx

k, as expressed in equation (3.29), with functions Ax, Bx, Cx and
Dx dependent on z1 - shown from equation (3.30) to (3.33).

αx
k = Ax −Bx(x2 + x1) + Cx(x

2
2 + x21) +Dxx2x1 (3.29)

Ax = −1.4× 105z−5.429
1 + 0.9982 (3.30)

Bx =
0.004049z21 + 3.236z1 − 17.06

z21 − 48.98z1 + 1444
(3.31)

Cx = 6.449z−0.9202
1 (3.32)

Dx = −11.74z−1.143
1 (3.33)

3.4. Maximum stiffness
The maximum value for the tooth pair structural stiffness is studied resorting to the potential
energy method and the standard ISO 6336-1 [141]. The ISO 6336-1 [141] is used as a basis
which is reworked by different functions to give results in accordance with the potential energy
method. Different gear parameters are analyzed, such as, the number of teeth, helix angle,
module, facewidth, profile shift coefficients and Young’s modulus of the gear’s material. The
maximum single tooth pair stiffness, KISO

max is expressed by equation (3.34).

KISO
max = c′

b

cos(βb)
106 (3.34)

where c′ is computed according to the ISO 6336-1 [141] standard.

The overall procedure to adapt the maximum stiffness value from ISO 6336-1 [141] to be consistent
with the maximum values obtained for the tooth pair structural stiffness from the potential energy
method comprises two parts. The first part consists in the computation of the maximum tooth
pair structural stiffness with the PEM for several gear geometries where only the geometrical
parameter to be studied is modified. In the second part, the ratio between the PEM and ISO∗

maximum stiffness (RK , equation (3.35)) is evaluated to find a fitting function. When this
function is found, one can multiply it by the ISO maximum stiffness to obtain the maximum tooth
pair structural stiffness from PEM. So, for each parameter that requires adjustment, a fixing
function is developed and a new maximum ISO stiffness KISO∗

max is obtained. Upon establishing a
fixing function, these are kept for the analysis of the following gear parameter. The final result is
the maximum tooth pair structural stiffness, KSTR

max , as shown by equation (3.36).
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RK =
KPEM

max
KISO∗

max
(3.35)

KSTR
max = KISO

max × fz × fβ × fx × fE (3.36)

3.4.1. Number of teeth

The first parameter to be evaluated is the number of teeth. The maximum tooth pair structural
stiffness with the potential energy method is computed for the gears defined by Table 3.1 but
with z1 = z2. After acquiring the results, the ratio between the maximum stiffness from PEM
and ISO is evaluated, giving Figure 3.2.

0 50 100 150 200 250 300
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3.7
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3.9
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4.1

z1

R
K z 1

Figure 3.2: Stiffness ratio between the PEM and the ISO∗ maximum stiffness for each z1.

It was found that the function given by equation (3.37) fits the ratio curve very accurately for
the studied range. Even though the variation of the number of teeth z1 is already accounted for,
the fact that different gear ratios can be applied is not. Therefore, a new run is required where
both z1 and z2 are varied. On that account, z1 = 18:100 and z2 = z1× 1:8, where the gear ratio
was changed for every z1 (gears from Table 3.1). When the stiffness ratio was plotted, it was
noticed that it was very close to 1 for every point. These results indicate that the standard ISO
6336-1 properly accounts for the variation of the gear ratio considering the adjustment already
performed for the number of teeth z1 and, consequently, there is no need for an extra fixing
function.

fz = −53.4 z−1.677
1 + 4.05 (3.37)

3.4.2. Helix angle

The range of values for the gear parameters used in order to determine how the helix angle affects
the maximum value of the tooth pair structural stiffness are displayed in Table 3.3 - the same for
the evaluation of the helix angle in αk. The outcome revealed that there is a dependence with
both the number of teeth and the helix angle. The fixing function for the helix angle, displayed
in equation (3.38), is a double exponential function with coefficients Aβ, Bβ, Cβ and Dβ which
are a function of z1, attend on equations (3.39) to (3.42).
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fβ = Aβ exp(Bββ) + Cβ exp(Dββ) (3.38)

Aβ = 0.9159 exp
(
−4.93× 10−6z1

)
− 0.1216 exp(−0.1426z1) (3.39)

Bβ = −0.001563 exp(−0.06567z1)− 0.003835 exp
(
−4.806× 10−5z1

)
(3.40)

Cβ = 0.1015 exp(−0.1235z1) + 0.07971 exp
(
3.44× 10−5z1

)
(3.41)

Dβ = −0.1636z−0.9882
1 + 0.06932 (3.42)

3.4.3. Module and facewidth

According to the ISO 6336-1 [141], the value of the maximum single tooth pair stiffness does not
depend on the module and is proportional to the facewidth. When running the gears presented
in Table 3.4, the outcome demonstrated that the ISO 6336-1 [141] successfully describes the
behavior for these parameters and thus, no further modifications are required.

Table 3.4: Gear parameters for the module/facewidth evaluation.

Gear parameters Module Facewidth

z1/- 18:300
z2/- z1

mn/mm DIN 780∗ 8
α/° 20
β/° 0
b/mm 20 5:100
x1/- 0
x2/- 0
E/GPa 206
∗ all module values from DIN 780 Series I

3.4.4. Profile shift coefficients

To analyze the effect of the profile shift coefficients on the maximum tooth pair structural
stiffness, they are both varied simultaneously for every number of teeth and according to the
data presented in Table 3.2. This makes it so that the stiffness ratio for each number of teeth z1
is a surface. In order to fit each surface, a quadratic bivariate polynomial function such as in
equation (3.43) is selected. Then, each of the coefficients A to F are expressed as functions ruled
by z1, as it can be seen from equation (3.44) to (3.49).

fx = A+B x2 + C x1 +D x22 + E x2 x1 + Fx21 (3.43)
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A = −1.105× 10−5 exp (0.0208 z1) + 0.9964 exp
(
2.944× 10−5 z1

)
(3.44)

B = 10.26 z−1.187
1 − 0.0341 (3.45)

C = 8.587 z1−1.01 − 0.1288 (3.46)

D =
0.03383 z21 − 3.775 z1 + 52.73

z21 − 30.96 z1 + 251.6
(3.47)

E =
−0.006403 z21 + 14.8 z1 − 213.9

z21 − 3.057 z1 − 215.8
(3.48)

F =
0.104 z21 − 6.334 z1 + 77.86

z21 − 28.87 z1 + 211.1
(3.49)

3.4.5. Young’s modulus

The Young’s modulus is the only parameter studied which is not a geometrical parameter. In
this investigation, the material is assumed to have a linear elastic behavior. Therefore, a linear
fixing function of E is necessary, giving rise to equation (3.50).

fE =
E

206
(3.50)

3.5. Assessment process
To conclude the analysis of the tooth pair structural stiffness, both the shape parameters and
the maximum stiffness are tested for a sample of varied gear geometries to verify its accuracy
and applicability. Firstly, the intervals for the gear geometrical parameters need to be defined.
On that regard, the ISO 53 [169] Profile A tooth proportions (α = 20°, h∗aP = 1, h∗fP = 1.25 and
ρ∗fP = 0.38) together with the boundaries for the gear geometrical parameters in Table 3.5 and
restrictions on cutting interference, mating interference as well as on the tooth crest width [170]
define the possible gears to be evaluated. The number of teeth z2 is obtained by rounding the
result of u× z1 to the closest integer, also z2 cannot be higher than 300.

Secondly, the number of gears to be examined needs to be determined. For that purpose,
Yamane’s sample size formula, given by equation (3.51), is used to guarantee that the sample
is representative of all possibly gear geometries in the previously mentioned conditions. For a
precision, e = 0.01 and considering all possible combinations of the gear parameters as the total
population N = 1.8839× 1013, the sample size (n) should be n = 10000.

n =
N

1 +N e2
(3.51)

Thirdly and lastly, the asymmetry parameter, the amplitude parameter and the maximum
stiffness value are computed with the developed expressions as well as with the potential energy
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method for every gear in the random sample.

Table 3.5: Interval of gear parameters for the assessment.

Gear parameters Range

z1/- 18:100
u = z2/z1/- 1:6
mn/mm DIN 780∗

α/° 20
β/° 0:40
b/mm 3 mn:14 mn

x1/- -1:1
x2/- -1:1
E/GPa 180:220
∗ all module values from DIN 780 Series I

3.5.1. Shape parameters

To assess the shape parameters (asymmetry and amplitude) the normalized curves of the tooth
pair structural stiffness from the approximate expression, equation (3.12), and the potential
energy method are compared. Figure 3.3 shows the histogram of the R-squared values of each
set of curves.
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Figure 3.3: Histogram of the R-squared values for the tooth pair structural stiffness shape.

According to the results displayed in Figure 3.3, 73% of the cases have an R-squared above 0.95
and 97% are over 0.90. The average R-squared value is 0.9544. Next, the best and worst cases
of fitting are presented, which correspond to the gear parameters given by Table 3.6.

Figure 3.4 shows the best and worst fit obtained for the tooth pair structural stiffness shape.
The worst result presented is expected to be the worst case that one would face from all possible
gears in the range of the established parameters, showing how solid the model is. From this
analysis, the shape parameters are found to be in agreement with the potential energy method
for the tooth pair structural stiffness.
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Table 3.6: Gear parameters for the best and worst cases.

Gear parameters Best Worst

z1/- 22 31
z2/- 26 124
mn/mm 16 0.7
α/° 20 20
β/° 21 21
b/mm 119 6.1
x1/- -0.18 0.74
x2/- -0.23 -0.87
E/GPa 220 205
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(a) Best fit. R2 = 0.9858.
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(b) Worst fit. R2 = 0.7687.

Figure 3.4: Comparison between the potential energy method ( ) and the model ( ) curves
for the tooth pair structural stiffness shape.

Next, in order to understand how the independent variables affect the fit of the tooth pair
structural stiffness shape, Figure 3.5 is plotted. Figure 3.5 has the domain of the variable in
study divided into intervals. The results comprised in each interval are shown by a modified box
plot as described by the legend in Figure 3.5a. Analyzing each variable leads to the following
conclusions:

• z1 (Figure 3.5a): there is a clear correlation between the number of teeth and the R-squared
values. The mean, boxes and whiskers all follow the same pattern, that is, with the increase
number of teeth there are higher R-squared values.

• u (Figure 3.5b): the mean and boxes show the maximum R-squared values at around
u = 2.2 and tend to decrease as u moves away from this value. Although, the whiskers do
not show any type of relation as they are randomly distributed.

• β (Figure 3.5c): the boxes are all comprised for R-squared > 0.90 and the lowest mean
value of R-squared is around 0.95 - both increasing with β. There is not a relation between
β and the whiskers but it can be verified that the whiskers show higher values when β is in
its upper limit.
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• x1 (Figure 3.5d): regarding mean and boxes, the region slightly to the left of zero is where
the maximum values of R-squared are found. The further away x1 is from this region, the
lower the R-squared values are. The whiskers are dispersed along the domain.

• x2 (Figure 3.5e): two distinct behaviors are found for this variable, one to the left and
another to the right of x2 ≈ −0.3. On one hand, in the right side, R-squared values shows
a small decrease. On the other hand, there is an abrupt decrease in the quality of fitting
when analyzing the left side. However, it must be mentioned that the lowest mean is 0.88
and that there are very few generated gears in this region.

To sum up, the number of teeth of the pinion is the only variable has a consistent relation with
the quality of the tooth pair structural stiffness shape fitting. This is, the trend of the mean
value, the boxes as well as the whiskers is the same - higher R-squared values for higher number
of teeth.

3.5.2. Maximum stiffness

The maximum value for the tooth pair structural stiffness is computed according to equation (3.52).
Each of the functions fz, fα, fx and fE are established by equations (3.37), (3.43) - (3.49) and
(3.50), respectively.

KSTR
max = KISO

max × fz × fβ × fx × fE (3.52)

Figure 3.6 shows the relative error of the maximum tooth pair structural stiffness according
to equation (3.52) compared to the maximum tooth pair structural stiffness obtained from the
potential energy method.

From Figure 3.6 there is a high concentration of cases between −5% and 5% of relative error
which consist on 72% of the cases. Also, 90% of the sample have an absolute relative error < 10%.
Overall, the average absolute relative error is 4.1%. Concluding, the values of the maximum
single tooth pair mesh stiffness from ISO 6336-1 [141] were successfully modified for the tooth
pair structural stiffness.

The distribution of the relative error for each variable is presented in Figure 3.7. Taking an
overview of Figure 3.7, it shows that there is a correlation between the relative error for the
maximum stiffness values and z1, x1 as well as x2 since the mean, boxes and whiskers all follow
the same same trend. Detailing more the analysis to each variable:

• z1 (Figure 3.7a): the relative error decreases with the increase in the number of teeth, as it
was found for the fitting of the tooth pair structural stiffness shape.

• β (Figure 3.7b): almost constant values in the entire domain with slight increase for high
values of helix angle.

• x1 (Figure 3.7c): the mean, boxes and whiskers all show the same behavior with x1. The
minimum relative error is found around x1 = 0. Also, the relative error is proportional to
|x1| in an almost symmetrical manner.

• x2 (Figure 3.7d): similar conclusions to x1 can be performed but for x2 the increase is
higher when x2 is negative. Note that there is a small number of generated gears for x2
around −1.
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(d) Profile shift coefficient: pinion.
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(e) Profile shift coefficient: wheel.

Figure 3.5: Influence of independent variables in the tooth pair structural stiffness shape.
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Figure 3.6: Histogram of the maximum tooth pair structural stiffness relative error comparing to
PEM.
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(c) Profile shift coefficient: pinion.
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(d) Profile shift coefficient: wheel.

Figure 3.7: Influence of independent variables in the maximum tooth pair structural stiffness
value.
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3.6. Single tooth pair slice mesh stiffness

As it was previously noted, there are three main components for the single tooth pair slice mesh
stiffness, them being, tooth pair structural stiffness, the fillet-foundation stiffness and the contact
stiffness. In this chapter, an approximate expression for the tooth pair structural stiffness is
settled. By combining the new tooth pair structural stiffness formulation with other closed-form
analytical expressions for the fillet-foundation [78] and contact stiffnesses [77], one can reach an
accurate and computational inexpensive expression for the single tooth pair slice mesh stiffness,
which is set by equation (3.53).

ktp, s =

(
1

kstr +
1

kf1
+

1

kf2
+

1

kH

)−1

(3.53)

In equation (3.53), kstr is the tooth pair structural stiffness defined by equation (3.54). The
parameters required for its definition are λ, αk and KSTR

max and are established by equations (3.13),
(3.23) and (3.36), respectively; kf1 and kf2 are the fillet-foundation stiffnesses computed according
to Sainsot et al. [78] and kH is the contact stiffness determined with the formulation presented in
Sainsot and Velex [77].

kstr =

[
4(αk − 1)

ε2α
(ξ − λ)2 − 4(αk − 1)

εα
(ξ − λ) + αk

]
KSTR

max (3.54)

Next, and since the stiffness components from equation (3.53) are successfully assessed, some
examples of application of the approximate expression for the single tooth pair slice mesh stiffness
for the spur and helical gears presented in Table 3.7 are discussed.

Table 3.7: Gear parameters for the example gears.

Gear parameters C14 H501

z1/- 16 20
z2/- 24 30
mn/mm 4.5 3.5
α/° 20 20
β/° 0 15
b/mm 14 23
x1/- 0.1817 0.1809
x2/- 0.1715 0.0891
E/GPa 210 210
rhub/mm 15 15

The single tooth pair slice mesh stiffness from the developed model is compared with the results
from PEM and an approximate stiffness model from the literature, Marques et al. [143] model,
attend on Figure 3.8. It is noteworthy here that Figure 3.8a represents the single tooth pair
mesh stiffness for the spur gear while Figure 3.8b shows the single tooth pair slice mesh stiffness
when 93 slices are considered in the helical gear.

When looking at the results for the C14 (Figure 3.8a), the new model can replicate the single
tooth pair stiffness from PEM, however the literature model [143] shows a lower maximum
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Figure 3.8: Comparison between the potential energy method ( ), the developed model ( )
and the Marques et al. [143] model ( ) curves for the single tooth pair slice mesh stiffness.

stiffness value as well as a lack of asymmetry. The results for the H501 (Figure 3.8b) clearly
exhibit the limitation of the ISO 6336 [141] on estimating the maximum stiffness on the literature
model - issue solved with the new formulation of maximum tooth pair structural stiffness of
this work. In addition, the H501 curve is actually highly asymmetric, presenting for the PEM
curve a difference between the starting and ending points of contact normalized by the maximum
stiffness value equal to 14%. Due to the introduction of the asymmetry parameter, the model
presented in this chapter can keep up with asymmetric shapes. These examples highlight the
possible improvements given by the new model when comparing with other type of approximate
models that do not consider the asymmetry, define the relative amplitude with fixed/contact
ratio dependent values and use the ISO 6336 [141] to establish the stiffness value.

3.7. Closure

A new expression to approximate the single tooth pair slice mesh stiffness is developed in this
chapter. The tooth pair structural stiffness, fillet-foundation stiffness [78] and contact stiffness
[77] are the stiffness components included. A new formulation for the tooth pair structural
stiffness, which can replace the potential energy method with a faster estimation, is developed,
allowing the prompt and accurate computation of the tooth pair structural stiffness. This
formulation relies on a parabolic approximation of the tooth pair structural stiffness with three
parameters to define its asymmetry, relative amplitude and maximum stiffness value. Each of
these parameters was assessed for a random sample of gears representative of every possible gear
pair within a broad range of gear parameters, thus proving the authenticity and applicability
of the expressions. In addition, when evaluating how the expression behaves with its variables,
it was found that the number of teeth of the pinion is the independent variable that better
correlates with the quality of the approximation.

The single tooth pair slice mesh stiffness is computed for a spur and helical gear with three
distinct models, the potential energy method, the developed model and an approximate stiffness
model from the literature. The approximate stiffness model reveals the limitations of the
simplifications performed in the literature while the developed model is in accordance with the
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potential energy method.

Concluding, this work provides a significant contribution for approximate analytical gear mesh
stiffness models as it enables an easy implementation with fast and accurate results for the single
tooth pair slice mesh stiffness. To compare the computational cost between the potential energy
method and the developed approximate expressions, the necessary time (intel(R) core(TM)
i7-9700 CPU with 64 GB of memory RAM at 2667 MHz - Matlab® R2023a) to estimate the
tooth pair structural stiffness is used. Considering the sample of 10000 random gear geometries
already created for this work, the potential energy method takes for the estimation of the tooth
pair structural stiffness an average of 2.04 s per estimation while the developed approximate
expression needs 0.021 ms - reduction in the necessary time by 5 orders of magnitude. The
integration of the developed approximate analytical expression in a gear mesh stiffness model
makes it feasible to perform extensive gear parametric and optimization studies.

Next The accomplishment of the approximate expression for the single tooth pair slice mesh
stiffness solves the major accuracy issue of approximate gear mesh stiffness models. The following
phase is to develop a gear mesh stiffness model with the work in this chapter as a basis. The
gear mesh stiffness model is built while keeping in mind a sound yet flexible implementation, in
the sense that it needs to include fundamental effects that characterize the mesh stiffness and
also allow to be easily modified for further phenomena.
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Chapter 4

Gear modeling

There are certainly a lot of different gear mesh stiffness models in the literature, nonetheless,
it is not possible to find comprehensive and in-depth gear parametric studies that sweep the
gear geometrical domain. To do so, it is required to have a fast and accurate gear mesh stiffness
model, which is precisely one of the main developments of this chapter. By taking advantage of
this new model, a parametric study on the influence of tooth pair structural stiffness asymmetry
is conducted. This investigation evaluates how the referred stiffness asymmetry affects the gear
mesh stiffness, dynamic displacements and load distribution by performing an extensive number
of simulations that cover the entire selected gear geometry spectrum - two randomly generated
populations of gears, one for spur and another for helical, are tested with and without the tooth
pair structural stiffness asymmetry. It is concluded that tooth pair structural stiffness asymmetry
cannot be neglected since it can lead to significant modifications on the frequency content of the
gear mesh stiffness as well as the dynamic behavior of the geared system.

4.1. Background

Geared transmissions are core elements of contemporary machinery. Noise, vibration and efficiency
are factors whom without, it is not possible to understand or control the behavior of these
systems. Two of the necessary pieces to link the noise, vibration and efficiency to the geared
transmission are the gear mesh stiffness and dynamic modeling. These three parameters cannot
be obtained if, somewhat along the way, the gear mesh stiffness is not estimated or a dynamic
model is not developed.

Marafona et al. [171] developed an approximate expression for the single tooth pair slice mesh
stiffness resorting to a parabolic function of the tooth pair structural stiffness and existing
formulations for the fillet-foundation [78; 79] and contact [77] stiffnesses. The single tooth pair
slice mesh stiffness expression [171] does not require integration of the tooth profile for every
point and therefore is a much faster and easier to incorporate alternative to the potential energy
method. The single tooth pair slice mesh stiffness approximation [171], defined in equation (4.1),
depends on the tooth pair structural stiffness, fillet-foundation stiffness [79] and contact stiffness
[77]. Approximate gear mesh stiffness models [13; 73; 136; 143] typically consider the single tooth

Contents in Chapter 4: Gear modeling are reproduced with permission of the respective publisher from João
D.M. Marafona, Pedro M.T. Marques, Stephane Portron, Ramiro C. Martins, and Jorge H.O. Seabra. Gear mesh
stiffness and dynamics: Influence of tooth pair structural stiffness asymmetry. Mechanism and Machine Theory,
190:105447, 2023.
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pair slice mesh stiffness as being a symmetric curve with respect to the middle of the theoretical
path of contact (εα/2, Figure 4.2), which is not necessarily true. Asymmetric single tooth pair
mesh stiffness curves are discussed in [73; 167; 168] but referring to asymmetries caused by
non-standard center distance, non-equal tooth addendum and undercut, not due to differences in
the number of teeth and profile shift coefficients between the pinion and the gear, as it is done in
[171]. With the formulation presented in [171], the single tooth pair stiffness asymmetries from
the fillet-foundation and contact stiffness are included in the respective formulations and the
tooth pair structural stiffness asymmetry is established by λ; equation (4.2) defines the tooth
pair structural stiffness where the amount of asymmetry (λ) is included. In order to understand
if the tooth pair structural stiffness asymmetry (λ) can be neglected or not for gear modeling, a
study covering a wide range of gear geometries is necessary. A detailed discussion on how the
different approximate gear mesh stiffness models approach the single tooth pair (slice) mesh
stiffness can be found in reference [171].

In this chapter, two different approaches are taken to evaluate the influence of the tooth pair
structural stiffness asymmetry: a quasi-static approach and a dynamic approach. Either way,
extensive computations of the stiffness and dynamic response are required, so a fast, reliable and
complete gear mesh stiffness model is necessary for such purposes. Looking into gear mesh stiffness
models, there are four different categories, analytical models [14; 17; 84; 87; 89; 90; 99; 100; 102],
finite element models [9; 15; 118; 120; 122], hybrid models [11; 12; 123; 126; 132; 133] and
approximate analytical models [13; 73; 136; 138; 143; 172–174]. The type of models that have
the lowest computation time are analytical and approximate analytical models [166]. Focusing
on analytical/approximate models for spur gears, the works [17; 84; 87; 89; 90; 138; 173] consider
tooth profile error, which include separation distance and/or profile modification. Regarding
helical gears, the slicing method, which consists in viewing the helical gear pair as a set of
staggered spur gears, is commonly used. However, these slices must be coupled so that the
deformation of one slice has influence on the neighboring ones and thus guaranteeing continuity
[14; 99; 100; 102]. Extension of contact and profile modifications in helical gears is a much less
discussed topic in the literature when compared to spur gears. Including profile modification for
the estimation of the gear mesh stiffness of helical gears is found in [99; 172–174].

For the dynamic approach, gear dynamic systems show a wide applicability and can reach results
that compare well with experimental tests with a proper description of the dynamic system
[175–182]. Blankenship and Singh [175] estimated the forces/moments produced and transferred
through the gear mesh interface in a dynamic model. The developed formulation allows the
comparison, in a mathematical level, of several simplifying assumptions commonly applied in gear
dynamic systems [175]. To study a mechanical system with parametric excitation and clearance
type nonlinearity, Blankenship and Kahraman [176] presented a single degree-of-freedom gear
torsional model which is validated with experimental results. Velex and Maatar [177] treated
the gear meshing from a dynamic perspective. The dynamic transmission error and dynamic
tooth loads are obtained as a result of the proposed model which separates the rigid body
displacements from the elastic displacements in its formulation. Both quasi-static and dynamic
solutions show agreement with experimental and analytical results from the literature. The
impact of geometrical errors and profile modifications on the gear dynamics is evaluated resorting
to the developed methodology [177]. Kubur et al. [179] developed and validated experimentally
a helical gear-shaft-bearing system to then analyze a multi-shaft helical gear transmission. The
model employs time-invariant gear mesh stiffness, Timoshenko beam elements for the shafts,
lumped stiffnessess for the bearings and, if necessary, the housing flexibility by a condensed
stiffness matrix derived from the finite element method [179]. Ajmi and Velex [183] developed a
model to simulate the quasi-static and dynamic behavior of solid wide-faced gears. Gear bodies
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were modeled resorting to two node shaft finite elements in bending, torsion and traction; tooth
bending and shear deflections including coupling effects were modeled with the Pasternak’s
foundation model; contact deflections were introduced with the classical approximation based on
semi-infinite elastic spaces; tooth shape deviations and alignment errors were included as normal
deviations. It was found that gear body flexibility is relevant for the quasi-static and dynamic
conditions of wide-faced gears and that the tooth coupling effects are less significant in dynamic
conditions [183]. Kang and Kahraman [181] conducted an experimental study on double-helical
gear pair systems comprising shafts and bearings. Alongside the experimental investigation, the
dynamic modeling of the same system was also performed where the double-helical gear pair
was modeled as a combination of two single helical gear pairs. For that purpose, the gear bodies
of the single helical gear pair were assumed to be rigid and connected by a spring representing
the gear mesh stiffness. The gear mesh stiffness was fixed to its average value and nonlinearities
related with tooth separations were neglected. Shafts are introduced via Euler beam elements
and the bearings as time-invariant stiffnessess. It was shown that the developed dynamic model
can successfully predict the dynamic behavior of double-helical systems [181].

For this work, an approximate gear mesh stiffness model that takes advantage of the formulation
developed by Marafona et al. [171] for the single tooth pair slice mesh stiffness as well as the
line stiffness distribution by Marques et al. [143] for the coupling stiffness between the slices
is developed. In addition, the effect of the extension of contact/contact outside the path of
contact, profile modifications and buttressing are also included in the model - showing significant
improvements to the previous approximate gear mesh stiffness model [143]. The developed
approximate gear mesh stiffness model is fast, accurate and easy to implement. With it, it is
possible to estimate the gear mesh stiffness and the load sharing ratio of a large amount of
gears in a very short time, thus allowing detailed gear parametric studies and optimization
of gear design. For the dynamic evaluation, a single stage gear-shaft-bearing transmission is
modeled. The gears are approximated as rigid disks connected through a time-varying gear
mesh stiffness, the shafts are modeled by applying the finite element method and bearings are
introduced via lumped stiffnesses. First, the developed gear mesh stiffness model is thoroughly
explained and assessed. Second, the dynamic model is described and then verified with results
from the literature. Third, the influence of the tooth pair structural asymmetry is investigated by
creating two random samples of gears, one for spur and another for helical gears. Then, the gear
mesh stiffness, dynamic transmission error and load distribution of the gears are computed with
and without the asymmetry parameter. Finally, one can conclude if the tooth pair structural
stiffness asymmetry (λ) should or should not be included in the modeling of the mesh stiffness
and dynamic behavior for the generality of spur and helical gears. That being said, there are
two main outputs of the current study that are relevant at both academic and industrial levels:

• improvement of approximate gear mesh stiffness models: these models are praised for
being very fast with a straightforward implementation. On the other hand, their main
disadvantage (inherent due to the approximations applied to make them simple) is in their
relatively low accuracy when compared to other types of gear mesh stiffness models like finite
element and hybrid models. In this chapter, every necessary step for the implementation of
a new, complete and more accurate approximate gear mesh stiffness model is presented;

• presentation of large scale gear exploratory study: it is shown that approximate gear
mesh stiffness models can perform gear geometry exploratory studies where it is required
to compute the gear mesh stiffness multiple times. This is applied, in this chapter, to
investigate the effect of tooth pair structural stiffness asymmetry (stiffness modeling
parameter) on the gear mesh stiffness model in order to improve approximate models.
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Other examples of applicability are gear design optimization and nonlinear/iterative gear
dynamic models where for each point the gear mesh stiffness is updated.

4.2. Gear mesh stiffness model

A new approximate gear mesh stiffness model that considers extension of contact, profile
modifications and single tooth pair stiffness asymmetry is presented. This model estimates the
gear mesh stiffness of spur and helical gears based on the slicing method and an approximation
of the single tooth pair slice mesh stiffness. An overall view of the employed methodology is
displayed in Figure 4.1 and is briefly described as follows: the algorithm starts by processing the
gear geometry and then moves to the determination of the slice transmission error, which is the
transmission error for each slice without considering the extension of contact. Then, it enters the
process of including the extension of contact where it is first necessary to compute the distance
that separates the teeth from contacting each other. Next, the algorithm starts an iterative
cycle consisting on the computation of the extension distance (where both the slice transmission
error and the separation distance are necessary), the transmission error with the effect of the
extension of contact and the slice load sharing ratio. At this point, if the convergence criteria is
not accomplished it returns to the computation of the extension distance with the updated slice
transmission error and repeats the cycle. Once convergence is found, the algorithm computes the
transmission error and the gear mesh stiffness.

As it was aforementioned, the problem is analyzed using the slicing method, meaning that the
helical gear is viewed as a combination of staggered slices, each slice being equivalent to a spur
gear. Therefore, for spur gears, the developed model can be simplified if no axial modifications
are introduced - slicing method not required. Nevertheless, the most generic methodology is
going to be presented. Note that each of the following sections matches with a process from
Figure 4.1, thus allowing a parallel analysis for better comprehension of the algorithm.

4.2.1. Slice transmission error

To define the slice transmission error, the single tooth pair slice mesh stiffness from [171] is taken
and combined with a coupling stiffness distribution function and the buttressing effect. The
applied coordinate system is shown in Figure 4.2 where the plane of action of a random helical
gear is presented with some theoretical contact lines. There are two coordinates used for the
description of the gear model: ξ and bs. ξ is the coordinate along the path of contact normalized
by the transverse base pitch, which is zero at the theoretical start point of meshing, point A in
Figure 4.2. bs is the axial coordinate defined along the gear facewidth.

First, the slice mesh stiffness of tooth pair i is defined as in equation (4.1).

ktp,s(ξ, bs, i) =

(
1

kstr +
1

kf1
+

1

kf2
+

1

kH

)−1

(4.1)

where kstr is the tooth pair structural stiffness defined by equation (4.2) and requires the
parameters λ, αk and KSTR

max which are established in [171] as well as the coordinate bs to
characterize the shift of the stiffness curve along the gear facewidth; kf1 and kf2 are the fillet-
foundation stiffnesses computed according to [78; 79] and kH is the contact stiffness determined
with the formulation presented in Sainsot and Velex [77].
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Figure 4.1: Flowchart of the gear mesh stiffness model.

kstr(ξ, bs, i) =

[
4(αk − 1)

ε2α
(ξ − bs

b
εβ − λ− i)2 − 4(αk − 1)

εα
(ξ − bs

b
εβ − λ− i) + αk

]
KSTR

max (4.2)
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Figure 4.2: Definition of the coordinate system.

It is in equation (4.2) that the tooth pair structural stiffness asymmetry (parameter in study),
defined by λ, appears. This parameter makes the parabolic curve of the tooth pair structural
stiffness shift right or left and thus modifies the stiffness values along the path of contact - the
asymmetry parameter can cause significant stiffness changes in the theoretical start and end of
the path of contact.

Second, the coupling stiffness distribution is defined as a parabolic function along the contact
lines [143], see equation (4.3).

kL(ξ, bs, i) = cf

[
4(αL − 1)

ε2L

(
bs
b
+ φL − φ

εβ

)2

− 4(αL − 1)

εL

(
bs
b
+ φL − φ

εβ

)
+ αL

]
(4.3)

where cf, εL, φL and φ are established by equations (4.4), (4.5), (4.6) and (4.7) according to [143].

cf =

[
2 + αL

3

]−1

(4.4)

εL =
1

εβ

(
εβ −H(εβ − εα) · (εβ − εα)

)
(4.5)

φL(ξ, i) =
1

εβ
H(ξ − i− εα − (1− εL)εβ) · (ξ − i− εα − (1− εL)εβ) (4.6)

φ(ξ, i) = H(ξ − i− εα) · (ξ − i− εα)−H(ξ − i− ε) · (ξ − i− ε) (4.7)

Third, in helical gears, the stiffness on the side edges is reduced when there is not a full
tooth normal section supporting the load in the normal direction - this reduction is referred
to as buttressing or border weakening factor. In order to incorporate such phenomenon in the
computation of stiffness, a correction factor R is introduced as proposed by KISSsoft® [81], see
equation (4.8).

R =

(
s̄red

s̄

)0.5

(4.8)
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In equation (4.8), s̄red is the reduced chordal tooth thickness at the pitch point and s̄ is the
normal tooth thickness at the pitch normal for every contact point.

Forth, the final form of the single tooth pair slice mesh stiffness with the effects of the coupling
stiffness distribution and the buttressing effect is obtained by equation (4.9).

ks,i(ξ, bs, i) = ktp, s · kL ·R (4.9)

It is possible to compute the gear slice mesh stiffness by adding the stiffness of all tooth pairs in
contact, as shown by equation (4.10). Notice that i (integer number obtained by the rounding
down function “floor”) makes a translation of the stiffness curves so that all necessary tooth
pairs are accounted for the stiffness estimation along the path of contact.

Ks =

floor(εα)∑
i=−floor(εα)

ks,i (4.10)

In order to determine the transmission error for each slice, it is required to determine the load
applied in each slice. For that purpose, the constrained expression for elastic potential energy,
equation (4.11), is specified.

I(F 1, ..., FNS ,Λ) =

NS∑
s=1

1

2

F s2

Ks + Λ

(
NS∑
s=1

F s rb2 − T2

)
(4.11)

where F s is the load applied on slice s and Ks is the gear slice mesh stiffness, NS is the total
number of slices and Λ is the Lagrange multiplier. Minimizing the total elastic potential energy
of the system leads to equation (4.12) for the load applied in each slice and equation (4.13) for
the Lagrange multiplier.

F s =
T2
rb2

Ks

NS∑
s=1

Ks

(4.12)

Λ = − T2
r2b2

1
NS∑
s=1

Ks

(4.13)

Finally, the transmission error for each slice s is given by equation (4.14).

δs =
F s

Ks (4.14)

4.2.2. Extension of contact

The extension of contact results from the deformation of the gear teeth which makes their contact
begin earlier and end later than the theoretical points thus leading to contact outside the path
of contact [35; 92–95]. The application of the extension of contact is divided in three main
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steps which correspond to: (1) computation of the separation distance; (2) determination of
the extension distance which requires the transmission error and separation distance and (3)
calculation of the extended transmission error, which is the modification of the transmission
error to consider the extension of contact. The procedure presented is applied for a gear slice,
thus is valid for both spur and helical gears.

Separation distance

The separation distance (∆s) is the distance that separates two teeth from contacting each
other and is divided into the geometrical separation distance (∆g) and the profile modification
separation distance (∆p), equation (4.15).

∆s = ∆g +∆p (4.15)

The geometrical separation distance is computed resorting to the formulation developed by
Munro et al. [95]. The profile modification separation distance can be determined by the imposed
profile modifications according to equation (4.16).

∆p =

[
C

(
ξ − (εα − LC)

LC

)nC ][
H(ξ − (εα − LC))−H(ξ − εα)

]
+[

C

(
LC − ξ

LC

)nC ][
H(ξ)−H(ξ − LC)

] (4.16)

In equation (4.16), C is the amount of relief, LC is the length of the modification normalized by
the transverse base pitch and nC defines the type of modification, which can either be linear
(nC = 1) or parabolic (nC = 2). Notice that the total separation distance can be divided into
approach and recess distances, which refers to the distances separating the teeth as they enter
and leave contact.

Extension distance

The applied load on the gear pair will make the teeth deform and consequently increase the path
of contact, making the contact start earlier and end later: phenomena of extension of contact.
While the teeth deformations are higher than the distance that separate them, contact will remain.
So, the actual starting and ending points are given by the location where the separation distance
equals the tooth pair deflection, attend on Figure 4.3 for a graphical example of this phenomena.
Since the transmission error can be viewed as the deflection caused by the applied load, together
with the separation distance, the extension distance can be acquired. Thus, extension distance
approach/recess is the distance between the actual and theoretical starting/ending points -
extension distance is considered positive when the path of contact increases. For the example
shown in Figure 4.3, the extension distance is given by the width of the shaded areas which are
extended double tooth contact regions.
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Figure 4.3: Theoretical transmission error and separation distances in recess and approach for
teeth.

Extended slice transmission error

The load supported by a given slice (F s) is always the same regardless the number of teeth in
contact, thus equation (4.17) can be written.

F s = ks,1 ·
(
δs,1 −∆s,1

s
)
+ ks,0 ·

(
δs,0 −∆s,0

s
)
+ ks,−1 ·

(
δs,−1 −∆s,−1

s
)

(4.17)

where ks,i is the final single tooth pair slice mesh stiffness of pair i, δs,i is the slice transmission
error of tooth pair i and ∆s,i

s is the total separation distance of tooth pair i in slice s.

The single tooth pair slice mesh stiffness is not defined beyond the theoretical starting and
ending points of contact. In order to define the transmission error beyond the theoretical points,
it will be assumed that the single tooth pair slice mesh stiffness for the approach and recess
extension region are constant and equal to the value at the theoretical starting and ending points,
respectively.

The slice transmission error of tooth pair i is defined by equation (4.18) where F s,i is the load
applied on tooth pair i of slice s. Developing equation (4.18), leads to the conclusion that the
slice transmission error for every tooth pair is the same and equal to the slice transmission error.

δs,i =
F s,i

ks,i = F s,i · 1

ks,i =
ks,i

Ks F
s · 1

ks,i =
F s

Ks = δs =⇒ δs,1 = δs,0 = δs,−1 (4.18)

Combining equations (4.17) and (4.18), the extended transmission error is established in equa-
tion (4.19). The transmission error considering the extension of contact for any situation can
be computed according to equation (4.19) and only depends on the single tooth pair slice mesh
stiffness modified to include the extended regions, the load on each slice and the total separation
distance for every tooth pair of each slice.
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δs =

F s +

floor(εα)∑
i=−floor(εα)

ks,i ·∆s,i
s

Ks

(4.19)

Slice load sharing ratio

The load applied in each slice is modified considering the extended slice transmission error
from equation (4.19) and thus must be recalculated - the constrained expression for the elastic
potential energy is given by equation (4.20).

I(F 1, ..., FNS ,Λ) =
∑

s

1

2
F sδs + Λ

(∑
s
F s rb2 − T2

)
(4.20)

After rearranging the terms, the load is defined by equation (4.21) and the Lagrange multiplier
by equation (4.22).

F s = Ks

rb2 Λ−

1

2

∑
i

ks,i ·∆s,i
s

Ks

 (4.21)

Λ = −

T2
rb2

+
1

2

∑
s

∑
i

ks,i ·∆s,i
s

rb2
∑

s
Ks

(4.22)

To conclude the iteration cycle, an updated slice transmission error is determined with the slice
load along with the calculation of the slice load sharing ratio, shown in equation (4.23).

Ls =
ks,i
(
δs −∆s,i

s
)

∑
i

ks,i (δs −∆s,i
s
) (4.23)

4.2.3. Mesh stiffness and transmission error

The next step consists in computing the transmission error, which is used as the control variable
for the convergence criteria. The transmission error is the product of the Lagrange multiplier
(directly obtained from the minimization of the potential energy of the system) and the base
radius of the wheel, see equation (4.24).

δ = rb2 Λ (4.24)

The implemented convergence criteria is defined by equation (4.25), which considers the trans-
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mission error from the previous iteration (δref) and the latest transmission error (δ).

Citer =

√√√√∑
ξ

(
2 (δref − δ)

δref + δ

)2

(4.25)

Once the convergence criteria is met, the gear mesh stiffness can be determined by equation (4.26),
as the ratio between the total normal load and the transmission error. Concerning the load
sharing ratio of the gear pair, it is given by equation (4.27), as the combination of the slice load
sharing ratio and the slice load divided by the nominal transverse load in the plane fo action
(Fbt).

K =
Fbt
δ

(4.26)

L =

∑
s

LsF s

Fbt
(4.27)

4.2.4. Assessment process

The assessment of the gear mesh stiffness model consists in comparing results found in the
literature which are obtained using the finite element method with the ones acquired with
the approximate analytical model to prove its effectiveness. The assessment for spur gears is
performed with an example from Ma et al. [17] and for helical gears from Wang et al. [101] -
ISO 53 [169] Profile A tooth proportions (α = 20°, h∗aP = 1, h∗fP = 1.25 and ρ∗fP = 0.38) with
remaining gear parameters established in Table 4.1. Both FE models resort to master nodes at
the center of each gear body to which their inner hole nodes are connected to. The external
torque is applied to the pinion while the wheel is fixed. The FE analysis for the assessment of
spur gears uses a 2D model with contact elements [17] while in the case of helical gears resorts
to 3D contact surfaces [101].

Table 4.1: Gear parameters for the assessment gears.

Gear parameters z1/- z2/- mn/mm β/° b/mm rhub/mm C/µm LC/- nC/- ρ/kgm−3 E/GPa ν/- T1/Nm

Spur 28 28 3.175 0 6.35 20 15 0.3201 1 7850 210 0.3 100
Helical 35 35 5 15 20 14 - - - 7850 210 0.3 200

Figure 4.4 shows the gear mesh stiffness curves achieved by the approximate and finite element
models. These results are very similar, capturing even the smallest details. For instance, in
Figure 4.4a, the model is capable of replicating the change in slope found in the FEM just before
ξ = 0.2 and after ξ = 0.8. Regarding the helical gear, the curves are very close to each other,
presenting a round shape just near the start and end of the plateaus. This round shape appears in
the model because contact extension is taken into account, otherwise the curve would have sharp
edges in the transition areas. Overall, a good agreement is found between the approximate model
and the FEM. An average absolute relative difference of 3.0% and 4.0% is found respectively for
the spur and helical gear with corresponding maximum absolute relative difference of 8.2% and
6.3%.

Even though two examples are presented here, other gears were tested to guarantee the reliability
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(b) Helical gear.

Figure 4.4: Gear mesh stiffness assessment: comparison between the developed model ( ) and
FEM ( ).

of the approximate model - in general, a good agreement was observed. Additionally, this
assessment is more directed towards the methodology implemented to estimate the gear mesh
stiffness since all the expressions employed in the model were already successfully assessed in
other works. Therefore, not requiring a wide range of tested gears.

The last step in the assessment process consists in finding the number of points per mesh period
that leads to the convergence of the gear mesh stiffness. Three different gears were used to
perform this evaluation, a spur gear, an helical gear with εα > εβ and another helical gear but
with εα < εβ . The number of points/slices is increased until no relevant modification is found in
the gear mesh stiffness. It was concluded that it is enough to keep 100 points per mesh period
and a number of slices equal to rounding up 100 εβ, therefore this is the discretization used for
the gear mesh stiffness study. It is noteworthy here that the model has an approximately linear
relationship between the number of points used in the discretization and the computational cost.

4.3. Dynamic model
The dynamic model is a representation of a single stage gear-shaft-bearing transmission, as
exemplified in Figure 4.5. The system has two shafts, the input shaft and the output shaft, both
modeled resorting to the finite element method. A rotating speed is imposed on the input shaft
while a resisting torque is applied on the output shaft. Also, each shaft is supported by two
bearing elements - housing is assumed to be infinitely rigid. The gear pair, either spur or helical,
connects both shafts through their meshing. The following sections explain the gear, shaft and
bearings components; the formulation of the equations of motion and the algorithm implemented.

4.3.1. Gear components

The gears are approximated as rigid disks by their base radius and connected through a time-
varying gear mesh stiffness which is established with the previously presented gear mesh stiffness
model. Nonlinearities related to tooth separations are considered but the contact frictional forces
are disregarded as it was shown that tooth friction has negligible effect on the torsional, axial
and line-of-action motions of the gear pair [181; 184; 185].
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Figure 4.5: Schematic of the dynamic system.

That being said, a 12 degree-of-freedom subsystem is developed for the gear pair - see Figure 4.6,
where the equations of motions are determined by the Lagrange equations, expressed in generalized
coordinates (qj) in equation (4.28).

Figure 4.6: Gear subsystem. Adapted from [181].

d

dt

(
∂T

∂q̇j

)
− ∂T

∂qj
+
∂V

∂qj
= Qj j = 1, . . . , n. (4.28)

with Qj being the generalized forces of each coordinate, T is the kinetic energy of the subsystem
and V is the potential energy of the subsystem. In Figure 4.6, αpg is the angle between the line
formed by the centers of the gear bodies and the positive x-axis; and ψ is the angle given by the
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plane of action and the positive y-axis. The kinetic and potential energies of the subsystem are
defined by equations (4.29) and (4.30).

T =
1

2

[
m1

(
ẋp

2 + ẏp
2 + żp

2
)
+ I1

(
˙θxp

2
+ ˙θyp

2
)
+ J1 ˙θzp

2
+

m2

(
ẋg

2 + ẏg
2 + żg

2
)
+ I2

(
˙θxg

2
+ ˙θyg

2
)
+ J2 ˙θzg

2
] (4.29)

V =
1

2
KN(t)∆l

2 (4.30)

where 1 or “p” relates the quantities to the pinion and 2 or “g” to the wheel. m is the mass,
I and J are mass moment of inertia, KN(t) is the time-varying mesh stiffness in the normal
direction and ∆l is the reference displacement in the tooth normal direction as a function of
the degrees-of-freedom. The time-varying normal stiffness can be obtained with the gear mesh
stiffness (K), which is established in the transverse direction, by considering that the total elastic
energy introduced by K in the system is the same as KN - resulting in equation (4.31).

V (KN) = V (K) ⇔ KN =
K

cos2(βb)
(4.31)

The displacement of the spring (∆l) is defined as positive when its length is increased by the
degrees-of-freedom. Hence, it is established by equation (4.32).

∆l =(xg − xp) sin(ψ) cos(βb) + (yg − yp) cos(ψ) cos(βb) + (zp − zg) sin(βb)+

(−rb1 sin(ψ) sin(θxp)− rb2 sin(ψ) sin(θxg)) sin(βb)+

(−rb1 cos(ψ) sin(θyp)− rb2 cos(ψ) sin(θyg)) sin(βb)+

(−rb1θzp − rb2θzg) cos(βb)

(4.32)

Since external loads are not considered in this subsystem and the damping is going to be
included in modal form for the entire system. Applying equation (4.28) to equations (4.29)
and (4.30), gives the equations of motion for pinion and the wheel, which are, correspondingly,
equations (4.33) and (4.34).



m1ẍp −KN∆l sin(ψ) cos(βb) = 0

m1ÿp −KN∆l cos(ψ) cos(βb) = 0

m1z̈p +KN∆l sin(βb) = 0

I1 ¨θxp −KN∆l rb1 sin(ψ) sin(βb) = 0

I1 ¨θyp −KN∆l rb1 cos(ψ) sin(βb) = 0

J1 ¨θzp −KN∆l rb1 cos(βb) = 0

(4.33)



m2ẍg +KN∆l sin(ψ) cos(βb) = 0

m2ÿg +KN∆l cos(ψ) cos(βb) = 0

m2z̈g −KN∆l sin(βb) = 0

I2 ¨θxg −KN∆l rb2 sin(ψ) sin(βb) = 0

I2 ¨θyg −KN∆l rb2 cos(ψ) sin(βb) = 0

J2θ̈zg −KN∆l rb2 cos(βb) = 0

(4.34)

Putting equations (4.33) and (4.34) in matrix form leads to the equation of motion of the gear
subsystem, equation (4.35).

FEUP | 2023 | João D.M. Marafona



4.3. Dynamic model 97

MG q̈G(t) +KG(t) g(t) qG(t) = 0 (4.35)

qG(t) is the vector containing the degrees-of-freedom of the gear subsystem, MG is the gear
diagonal elemental mass matrix, KG(t) is the gear elemental time-varying stiffness matrix and
g(t) is the contact loss function described by equation (4.36).

g(t) =

{
1, −wT

G qG(t) ≥ 0,

0, −wT
G qG(t) < 0.

(4.36)

Equation (4.36) depends on the displacements in the normal direction, −wT
G qG(t), that is, the

product between the gear projection vector (wT
G) and the gear displacements (qG(t)). The contact

loss function, equation (4.36), considers the loss of contact between the gear teeth. However,
it does not take into account the amount of backlash and, therefore, regardless the amount of
displacement, there is not back-side contact.

4.3.2. Shaft components

The shafts of the gearbox are introduced via Timoshenko beam elements. The hollow cylindrical
shaft elements comprise two nodes with six degrees-of-freedom per node, thus leading to 12× 12
mass and stiffness elemental matrices (MS and KS). The description of the components
incorporating the elemental mass and stiffness matrices are presented in [186; 187].

4.3.3. Bearing components

The bearing elements are implemented by lumped stiffnesses, which means that six linear elastic
and time-invariant springs are introduced to the node where this element supports the shaft.
The 6× 6 diagonal bearing matrix (KB) includes kxx and kyy as radial stiffnesses, kzz as axial
stiffness, kθxθx and kθyθy as torsional stiffnesses in the radial direction and kθzθz as torsional
stiffness in the axial direction. The torsional stiffness in the axial direction is set to zero.

4.3.4. Equations of motion

With the mass and stiffness matrices of the individual gearbox components determined, the
equation of motion of the entire system is shown in equation (4.37).

M q̈(t) +C q̇(t) +K(t) q(t) = f (4.37)

The vector q(t) contains the degrees-of-freedom of the entire gearbox system and the matrices M
and K(t), mass and stiffness matrices of the system, are assembled according to equations (4.38)
and (4.39), where A(·) is the assembly operator to localize the gear, shaft and bearing elemental
matrices in the global matrices of the system.

M = A (MG) +A (MS) (4.38)

K(t) = A (KG(t) g(t)) +A (KS) +A (KB) (4.39)

If any other elements, such as discrete inertias or elastic couplings, need to be included then they
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are added as lumped parameter elements to the intended node.

Regarding the damping matrix C, it is introduced by modal damping. Hence, the problem of
the eigenvalues (Ω2) and eigenvectors (Φ) of the system is solved considering the mass matrix of
the system, equation (4.38), and a time-invariant stiffness matrix Keig where the contact loss
function is removed and the time-varying mesh stiffness (KN) is replaced by its average value.
The projection of the damping matrix in the modal system is given by equation (4.40) and allows
to determine the damping matrix of the system by imposing a damping ratio ζ to the system.

ΦTCΦ = 2ζΩ (4.40)

Finally, the system has a fixed output torque which needs to be imposed at a node of the output
shaft and corresponding location in the external load vector f .

4.3.5. Algorithm

The algorithm starts by getting all the necessary inputs on every component (gears, shafts,
bearings) and working conditions, as seen in Table 4.2. Following the inputs, the individual mass
and stiffness matrices required for the gearbox components are built. Then, the gear, shafts and
bearings components are assembled in a single matrix according to the degrees-of-freedom. At
this point, the damping matrix is computed and the equations of motion completely defined. To
solve the equations of motion of the gearbox dynamic model, a Newmark integration algorithm
is used with the constants that make it unconditionally stable (δ = 0.5 and α = 0.25). The gear
mesh stiffness for the dynamic model is estimated considering a discretization of 50 points per
mesh period (100 points if β ≥ 35) as well as 100 slices per unit of overlap ratio (rounded up to
an integer number); time discretization is the same as for the gear mesh stiffness. Steady-state
conditions are considered to be reached after one complete turn of the pinion.

Table 4.2: Inputs for gearbox dynamic model.

Gear inputs

Number of teeth
Pressure angle

Helix angle
Facewidth

Normal module
Profile shift coefficients

Profile modification (type)
Amount
Length

Density
Young’s modulus

Poisson’s ratio

Nr. points per period

Shaft inputs

Outside diameter
Inside diameter

Length

Density
Young’s modulus

Poisson’s ratio

Nr. elements

Bearing inputs

Radial stiffness
Axial stiffness

Torsional stiffness
(radial direction)

Working conditions

Start speed
End speed
Speed step

Torque
Damping ratio
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4.3.6. Dynamic parameters

The displacements resulting from the dynamic model need to be processed to give a clear
representation of the gears behavior for every speed. Hence, the dynamic transmission error
(DTE) is determined for every speed that is simulated. There are different approaches when it
comes to computing the DTE, which is evaluated as seen from the transverse plane. On one hand,
the DTE can be computed considering the transverse displacements of the gear teeth, which
would result in equation (4.41). Note that even though vector q(t) contains the displacements of
the entire system, the projection vector wT only relates to the displacements of the pinion and
wheel bodies. On the other hand, the DTE can be obtained only considering the rotations along
the z-axis for the pinion and wheel, in which case, it is defined by equation (4.42).

DTE =
−wT

cos(βb)
q(t) (4.41)

DTEθz = rb2θzg + rb1θzp (4.42)

Regardless of the DTE approach, its oscillating component around the quasi-static solution of
the system (QSTE, quasi-static transmission error) is obtained by equation (4.43).

DTEosc = DTE − QSTE (4.43)

where the degrees-of-freedom necessary to compute the QSTE, according to either specification
of the DTE (equation (4.41) or (4.42)), are given by equation (4.44).

q(t)QS = K(t)−1f (4.44)

The dynamic transmission error is a time dependent variable, meaning that it evaluates the
behavior of the system for a single speed. Therefore, to look at the performance of the system
throughout all imposed speeds, root-mean-square functions are applied - equation (4.45) defines
the root-mean-square and equation (4.46) specifies the equivalent root-mean-square.

RMS(X) =

√
1

Tm

∫ Tm

0
X2 (4.45)

ARMS(X) =
√
A2

1 +A2
2 +A2

3 (4.46)

In equations (4.45) and (4.46), X is the variable in study, Tm is the meshing period and A1, A2

and A3 are the magnitude of the first three harmonics from the Fast Fourier Transforms of X.

4.3.7. Assessment process

To verify that the dynamic model is properly implemented, the single stage drive model presented
in the work of Raclot and Velex [178] is replicated. Results for both a spur gear and helical
gear setup are shown and all the necessary data is given in [178]. Figure 4.7 shows the TE
(transmission error) shape factor using two different methods, the Spectral and Newmark methods,
as given by [178] together with the results from the implemented model. For the spur gear,
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Figure 4.7a, the model correlates with the other results: location of the peaks is in complete
agreement with minor differences in the magnitude values. Regarding the TE shape factor for
the helical gear, Figure 4.7b, the shape of the curves are all very close to each other with a small
difference in magnitude at around 6000 rpm.
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(a) Spur gear.
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Figure 4.7: Dynamic assessment: comparison between the implemented model and Raclot and
Velex [178].

4.4. Effect of asymmetry
The effect of the tooth pair structural stiffness asymmetry is investigated in spur and helical gears
separately. To perform such an evaluation, random samples of spur and helical gears with ISO
53 [169] Profile A tooth proportions and steel material properties (ρ = 7830 kgm−3, E = 206
GPa and ν = 0.3) are generated. The limits for the geometric parameters are established in
Table 4.3 to which restrictions on cutting interference [170], mating interference [170], tooth crest
width [170] as well as z2 being equal to the closest integer given by u× z1 are added. Due to the
existing validity domains for the fillet-foundation stiffness models, the gear geometric parameters
in Table 4.3 end up being considerably restricted. The model developed by Xie et al. [79] only
allows for the number of teeth to be between 37 ≤ zi ≤ 75, constraining the maximum allowable
gear ratio in this study to umax = 2.0. The other analytical option for the fillet-foundation
stiffness would be the one developed by Sainsot et al. [78] which is much less restrictive, however,
it leads to a significant overestimation of the gear mesh stiffness in the regions where there are
more than one tooth pair in contact. For this reason, it is opted to go with the formulation of Xie
et al. [79] and thus restricting the evaluated domain for the sake of having more accurate results.

An estimation for the necessary sample size is given by Yamane’s formula, equation (4.47),
considering a precision e = 0.01 and a population size of Nspur = 2.3258× 1011 and Nhelical =
9.3033× 1012, yielding n = 10000.

n =
N

1 +N e2
(4.47)

Next, the generated samples have their gear mesh stiffness and dynamic behavior estimated twice,
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Table 4.3: Interval of gear parameters for the evaluation of the asymmetry effect.

Gear parameters Range

z1/- 37:75
u = z2/z1/- 1:2
mn/mm DIN 780∗

α/° 20
β/° 0:40
b/mm 3 mn:14 mn

x1/- -1:1
x2/- -1:1
∗ all module values from DIN 780 Series I

once including the tooth pair structural stiffness asymmetry (λ [171]) and another one disregarding
it (λ = 0). Note that the gear geometry is random, therefore there are a few parameters that
need to be adjusted so that every gear mesh stifffness/dynamic behavior evaluation is equivalent
to each other. For instance, the load applied in each gear pair is calculated so that it reaches
80% of the maximum allowable stress according to Dufailly [188]. The same type of adjustment
also needs to be done for the gear hub radius which was defined as being equal to 30% of the
dedendum radius for both the pinion and the wheel. Regarding the dynamic system, the shafts’
diameter is adjusted for the hub diameter and the length is made proportional to the gear
facewidth using the FZG test gearbox with the C14 assembled as the reference [8; 189] - meaning
that each shaft has a length of 7.8571 b. The shafts’ material properties are ρ = 7830 kgm−3,
E = 206 GPa and ν = 0.3. The bearing stiffnesses are as displayed in Table 4.4 and the damping
ratio is set to ζ = 0.1 [178] for every simulation. The selection of the speed range is determined by
using a Campbell diagram, see Figure 4.8 for an example: the natural frequencies of the system
are filtered so that only the ones that have more than 5% of gear mesh stiffness contribution
are considered; then, the intersection of the third gear mesh frequency with the lowest filtered
natural frequency of the system gives the lower bound and the intersection of the first gear mesh
frequency with the highest filtered natural frequency of the system gives the upper bound. To
make sure all effects within that interval are captured, the speed interval (uniformly divided into
100 points) is established as 0.9 the lower bound and 1.1 the upper bound.

Table 4.4: Bearing stiffnesses for each shaft.

Bearing inputs Pinion’s shaft Wheel’s shaft

Radial stiffness / Nm−1 1.40× 108 2.50× 108

Axial stiffness / Nm−1 3.50× 107 6.00× 107

Torsional stiffness (radial direction) / Nmrad−1 1.00× 1012 1.00× 1012

4.4.1. Gear mesh stiffness

The results for the influence of the tooth structural asymmetry on the gear mesh stiffness are
summarized in Figure 4.9 for spur gears and Figure 4.10 for helical gears. The tooth pair
structural asymmetry is represented in the x-axis, and there are two y-axis. The left y-axis
corresponds to the average absolute relative difference and the right y-axis shows how many
gears are within an established λ interval. Also, for the left y-axis, the maximum and minimum
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Figure 4.8: Example of Campbell’s diagram for selection of the speed range.

values of differences for each group of gears in that λ are plotted. Note that both y-axis share the
same x-axis, so the results are grouped for the same λ interval. To reach the average absolute
relative difference for a gear, one computes the relative difference for every point of the path of
contact and then determines its mean absolute relative difference, E/%. Then, it is a matter of
grouping the gears by their λ values and calculate the average value of each group.

First, looking at the distribution of the number of cases along λ, very similar distributions are
found for both spur and helical gears. Although, the range of values for λ is broader for spur
gears. Figures 4.9 and 4.10 show that most gear pairs have values of λ around 0.

Identical relative difference values are obtained for both spur and helical gears but they exhibit
different shapes. Although, as expected, the relative difference is close to zero for λ near 0 and
it increases as the amount of asymmetry increases. The maximum average absolute relative
difference found between all spur gears is of 2.38% while the same parameter reaches a value of
2.33% for helical gears.

It is noteworthy here that since λ is straightforward to implement, any improvement in accuracy
it brings is welcome. Also, the range of values for the average absolute relative differences can be
within the same order of values as the ones that the approximate model presents when compared
to the finite element method in the assessment process. Superimposing the differences inherent
to the approximate gear mesh stiffness model with the ones from disregarding the tooth pair
structural stiffness asymmetry can potentially cause relevant differences in the gear mesh stiffness
shape due to cumulative effects. Thus, the asymmetry should not be neglected when modeling
the gear mesh stiffness.
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Figure 4.9: Effect of asymmetry on the gear mesh stiffness: spur gears.
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Figure 4.10: Effect of asymmetry on the gear mesh stiffness: helical gears.

4.4.2. Dynamic transmission error

For the analysis of the dynamic transmission error, the relative difference in the ARMS(DTEosc)
is taken as the reference parameter - attend on equations (4.41) to (4.46) for the definition of this
parameter. Figures 4.11 and 4.12 show very similar average values of absolute relative difference:
maximum average relative difference of 3.49% and 2.55% for spur and helical gears respectively.
However, when analyzing the maximum absolute difference for each λ interval, the values can
go up to 37.1%/28.3% for spur/helical gears. This result is unexpected considering that every
system is equivalent to each other and that the gear mesh stiffness is the only excitation of the
dynamic model, where the results, apparently, do not exhibit significant differences.

To better understand the reasons behind the high relative difference in this dynamic analysis, the
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Figure 4.11: Effect of asymmetry on gear dynamics: spur gears.
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Figure 4.12: Effect of asymmetry on gear dynamics: helical gears.

group spur and helical gears that have the highest absolute relative differences are investigated.
Figure 4.13 shows the ARMS(DTEosc) for the spur gear with the highest absolute relative difference
(“worst spur gear”). It can be concluded that the high relative differences comes from the gap in
the magnitude for the whole speed range because the location of the peaks are very close to each
other.

Figure 4.14a shows the mesh stiffness along the path of contact with and without λ. The mean
absolute relative difference between them is only around 1.0%, so it is not a simple difference in
the stiffness magnitude that can explain the differences in the dynamic response. In order to go
further in the analysis, the mesh stiffness has been decomposed using an FFT - the decomposition
is shown in Figure 4.14b. The relative difference for each of the first three harmonic is of 17.1%,
71.6% and 48.3%, which explains the differences in the dynamic response.
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Figure 4.13: Dynamic analysis for the worst spur gear: with ( ) and without ( )
asymmetry.
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Figure 4.14: Stiffness analysis for the worst spur gear: with ( ) and without ( ) asymmetry.

Concerning the dynamic transmission error oscillations of the “worst helical gear” with and
without λ, from Figure 4.15 it can be concluded that the curves have very similar shapes with
different values which leads to the average relative difference of 28.1%.

The gear mesh stiffness for this helical gear is studied by analyzing its shape, Figure 4.16a,
and the magnitude of its first three gear mesh stiffness harmonics, Figure 4.16b. The relative
difference in the gear mesh stiffness has an average value of approximately 0.9%. Also, note
that there is an effect of an extra tooth pair in contact in the transverse plane, in other words,
the contact ratio, which is theoretically lower than 2, due to the contact extension increases to
a value higher than 2 and thus creates the peaks located at the start and end of the meshing
period. The FFT analysis to the gear mesh stiffness, Figure 4.16b, shows a relative difference
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Figure 4.15: Dynamic analysis for the worst helical gear: with ( ) and without ( )
asymmetry.

in the magnitude of the first three harmonics of 13.1%, 41.9% and 57.8%. Despite having a
very low average point by point absolute relative difference, the magnitude of each harmonic are
considerably different. From a dynamics point of view, the differences in the magnitude of the
harmonics justify the mismatch between having very similar shapes of gear mesh stiffness and
distinct modeled dynamic transmission error fluctuations.
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Figure 4.16: Stiffness analysis for the worst helical gear: with ( ) and without ( )
asymmetry.

To sum up, even though the gear mesh stiffness might have similar shape, the dynamic transmission
error oscillations of those gears is not necessarily close to each other. The top 5 “worst” spur and
helical gears were submitted to a stiffness analysis as shown in this section. A common factor
found between those gears is the addition of another tooth pair in the gear meshing process, for
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instance, the triple tooth contact region located between 0.8 < ξ < 1 for Figure 4.14a and the
extra tooth pair in the transverse plane for Figure 4.16a shown at the start and end of the meshing
period. The tooth structural asymmetry affects the stiffness values at the theoretical start and
end of the path of contact, therefore it makes sense that with higher extension of contact, the
influence of λ becomes more pronounced. One of the main modifications that the extension of
contact can produce to the gear mesh stiffness, is the introduction of another tooth pair in the
gear meshing. It is precisely under those conditions that the tooth structural asymmetry cannot
be neglected as, according to the presented analysis, accounting for it remarkably changes the
dynamic modeling results.

4.4.3. Load distribution

Load distribution is of interest for gear analysis since it affects the estimations of tooth bending,
pitting and meshing efficiency performances. When it comes to gear quasi-static behavior, the
load sharing ratio is the parameter of reference. Under dynamic conditions, to evaluate the load
distribution, the dynamic mesh force is determined.

Quasi-static analysis

In order to compare the results of the load sharing ratio with and without the tooth pair structural
stiffness asymmetry, the relative point-by-point difference between the load sharing ratios is
taken as presented in equation (4.48).

∆L =

∣∣∣∣Lλ0 − Lλ

Lλ

∣∣∣∣ (4.48)

In equation (4.48), Lλ and Lλ0 are the load sharing ratios of the gears with and without the
asymmetry parameter, respectively. The mean value of ∆L (∆L) is computed for every gear.
These results are averaged for the gears in the same range of λ with whiskers representing the
group’s extreme values, as shown in Figure 4.17 for spur gears and Figure 4.18 for helical gears.
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Figure 4.17: Effect of asymmetry on load sharing ratio: spur gears.
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Figure 4.18: Effect of asymmetry on load sharing ratio: helical gears.

Figures 4.17 and 4.18 show much higher relative difference when compared to the results obtained
for gear mesh stiffness (Figures 4.9 and 4.10). The shape of the curves, when comparing spur and
helical gears with their respective gear mesh stiffness analysis, follow the same trend, increasing
with the higher asymmetry values. The significant increase in the relative difference can be
explained by the definition of the load sharing ratio, equations (4.23) and (4.27). The single
tooth pair mesh stiffness takes an important role in the definition of the load sharing ratio. Also,
since the effect of the tooth pair structural stiffness asymmetry is more noticeable on the single
tooth pair mesh stiffness than on the gear mesh stiffness, it originates this increased relative
difference. A maximum average relative difference of correspondingly 6.7% and 7.8% for spur
and helical gears with the worst results (spur: 6.9% and helical: 8.5%) for each λ range not
presenting any drastic increase from their average values. That being said, the importance of the
tooth pair structural stiffness asymmetry is more relevant for the load sharing ratio than for the
gear mesh stiffness. Therefore, its effect must not be disregarded.

Dynamic analysis

The dynamic analysis of the load distribution is performed using the dynamic mesh force
oscillating component, as defined in equation (4.49), which takes the dynamic mesh force (DMF),
seen as the force in the gear mesh due to dynamic displacements, and subtracts its static
component (Fbt).

DMFosc = K · DTE − Fbt (4.49)

There is a steady-state dynamic mesh force curve for every speed evaluated. Thus, this data needs
to be compacted into a single value for each speed. To do so, for each pinion rotating speed, the
equivalent root-mean square of the dynamic mesh force oscillating component (ARMS(DMFosc))
is computed. Then, for each speed, the relative difference between the two gear pairs (one with
and another without asymmetry) is determined according to equation (4.50).
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∆DMF =

∣∣∣∣ARMS(DMFosc)
λ0 −ARMS(DMFosc)

λ

ARMS(DMFosc)λ

∣∣∣∣ (4.50)

The values calculated for every speed are averaged, resulting in a single value for the two gear
pairs being compared - ∆DMF. Figures 4.19 and 4.20 summarize the results for the dynamic
mesh force for the spur and helical gears respectively.
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Figure 4.19: Effect of asymmetry on dynamic mesh force: spur gears.
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Figure 4.20: Effect of asymmetry on dynamic mesh force: helical gears.

When looking at the dynamic load distribution results with λ in Figures 4.19 and 4.20, the
average relative differences for each λ interval are, overall, in line with their dynamic displacement
counterpart (Figures 4.11 and 4.12), presenting maximum average values of 5.2% (spur) and
4.1% (helical). Moreover, the magnitude of the maximum relative difference values along λ are
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close to the ones shown for the dynamic transmission error (38.9%/26.8% for dynamic mesh
force and 37.1%/28.3% for dynamic transmission error: spur/helical). Even their distributions
with λ are very similar. An examination to the “worst” results in the dynamic load distribution
disclosed that it is due to the same phenomena (distinct frequency content of the gear mesh
stiffness) of the dynamic displacement that the dynamic mesh force has its highest values, with
the same gears appearing in both cases. So, the combination of an extra tooth pair in the gear
meshing with the tooth pair structural stiffness asymmetry causes pronounced differences in the
dynamic mesh force oscillating component.

4.5. Closure

Throughout this chapter, a new approximate gear mesh stiffness model was developed for spur
and helical gears. This model takes advantage of an approximate expression for the single tooth
pair slice mesh stiffness [171] and includes the effects of coupling between gear slices, contact
extension, profile modifications and buttressing. Thanks to the low computational cost of this
gear mesh stiffness model, it is now feasible to perform large parametric studies on gears with
good accuracy. Along with the gear mesh stiffness model, a gear-shaft-bearing dynamic model
has also been implemented. From the large-scale analysis on the effect of tooth structural stiffness
asymmetry on spur and helical gears, it was concluded that:

• the low computational cost feature of the gear mesh stiffness model developed can be
evaluated using the computational time as a measurement. Taking the two 10000 random
gear geometries as samples, the average gear mesh stiffness estimation time (intel(R)
core(TM) i7-9700 CPU with 64 GB of memory RAM at 2667 MHz - Matlab® R2023a) is
5.1 ms for a spur gear and 1.0 s for a helical gear.

• the tooth structural stiffness asymmetry does not significantly modify the shape of the
gear mesh stiffness: highest average absolute relative difference is around 2.4%. However,
superimposing the differences inherent to the approximate gear mesh stiffness model with
the ones from disregarding the tooth pair structural stiffness asymmetry can potentially
cause relevant differences in the gear mesh stiffness shape due to cumulative effects;

• for gear dynamic displacements, the asymmetry must be considered since it can lead to
relative differences of up to 37.1%. Although small differences can be found in the shape
of the gear mesh stiffness, the magnitude of the gear mesh stiffness harmonics can be
drastically modified, causing different dynamic behavior;

• the differences caused by λ in the load sharing ratio (quasi-static load distribution) are
increased in comparison with the ones for the gear mesh stiffness, maximum relative
difference of 8.5%. The dynamic mesh force analysis revealed differences in the same range
of values as for the gear dynamic displacement (maximum of 38.9%). Worst cases are
obtained under the same circumstances of the gear dynamic displacement, having matching
worst gear sets;

• the phenomena leading to significant differences in the results at a dynamic level is a
combination of neglecting the tooth pair structural stiffness asymmetry with the fact that,
due to the applied load and consequently elastic deformations, an extra tooth pair enters
the gear meshing. Thus, this can occur depending on the applied load, gear mesh stiffness
magnitude and contact/overlap ratios of the gear being analyzed.
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Taking the aforementioned into account, it can be stated that the tooth pair structural stiffness
asymmetry cannot be neglected and should be included for the modeling of gear mesh stiffness
(which enters in the dynamic evaluation) and load distribution. Moreover, it is shown that the
approximate gear mesh stiffness model is effective and reliable for gear exploratory studies.

Next At this point, a set of tools for gear quasi-static and dynamic evaluation is acquired with
the achievement of the gear mesh stiffness model and the implementation of a gear-shaft-bearing
dynamic model. With it, the next chapter is dedicated to the exploration of a previously presented
gear design concept - integer overlap ratio helical gears [8].
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Chapter 5

Integer overlap ratio gears:
preliminary study

In previous works it was found that for certain combinations of overlap and contact ratios, the
fluctuation of the theoretical length of the lines of contact was zero, promoting an almost constant
gear mesh stiffness. This led to the design of integer overlap ratio helical gears in order to reach
an almost constant gear mesh stiffness. Being the overlap ratio the central parameter for the
design of these new gears, it is relevant to evaluate how the gears mesh stiffness, dynamic behavior
and noise level are affected by it. Resorting to the developed gear mesh stiffness model, the
implemented gear-shaft-bearing dynamic model and Masuda’s noise level equation, a correlation
between the overlap ratio, gear mesh stiffness fluctuations, dynamic transmission error as well as
gear noise level is found. Integer overlap ratio gears present better overall performance.

5.1. Background
One of the main sources of vibration in a geared transmission system is the gear pair. Its
mesh stiffness fluctuations excite the entire system. The generated vibration energy passes
through the shafts and bearings to then reach the gearbox housing. The gearbox housing vibrates
and radiates noise accordingly [190–192]. Therefore, designing a gear pair whose gear mesh
stiffness fluctuations are non-existent or insignificant would result in an overall improved dynamic
performance of the system [135; 142].

Several authors [8; 193–195] showed with distinct methodologies that for integer values of the
contact/overlap ratios, the theoretical length of the contact lines is constant. Under these
circumstances, the gear has an almost constant gear mesh stiffness [8; 135; 142]. By taking
advantage of this concept, Marafona et al. [8] developed a gear design algorithm to create integer
overlap ratio gears considering the tooth bending strength, surface durability as well as gear
meshing efficiency. The newly designed gears were tested showing reduced dynamic transmission
error oscillations and lower dynamic overload.

The basis of this work is the concept of integer overlap ratio (IOR) gears. For the development of

Contents in Chapter 5: Integer overlap ratio gears: preliminary study are reproduced with permission of the
respective publisher from João D.M. Marafona, Pedro M.T. Marques, Ramiro C. Martins, and Jorge H.O.
Seabra. Effect of overlap ratio on gear dynamic behavior and noise level. In VDI Wissensforum GmbH, editor,
International Conference on Gears 2023, volume 2422 of VDI-Berichte. VDI Verlag, Düsseldorf, 2023. doi:
doi.org/10.51202/9783181024225.
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this new concept, gears need to be manufactured and then experimentally tested. This chapter
consists on a preliminary numerical study, prior to experimental testing, on the effect of varying
the overlap ratio of a gear in its dynamic behavior. First, the previously developed algorithm [8]
is used to design IOR gears. The overlap ratio is varied between 0.5 and 2.5 for the designed
gear by changing its facewidth. To keep an equivalent analysis for all evaluated cases, the
maximum contact pressure is fixed for all gears. Second, the gear mesh stiffness is investigated
with the model developed in [196]. As for the dynamic behavior, the employed model comprises
Timoshenko beam elements for the shafts, lumped stiffness for the bearing elements and the
previously estimated gear mesh stiffness [196]. The overall noise level emitted by the gearbox is
determined with the semi-empirical equation developed by Masuda et al. [197]. Finally, the gear
mesh stiffness, gear dynamic behavior and emitted noise level are related to the overlap ratio
with focus on integer values.

5.2. Gear design
To design the gears for the dynamic evaluation of the overlap ratio, a previously developed gear
design algorithm [8] is made use of while taking into account the test rig available (FZG test rig)
- this way, the gears can be manufactured and experimental tests can then be performed. A brief
description of the algorithm employed for the development of the IOR gears is presented here
but a detailed explanation can be found in [8].

The algorithm requires a gear geometry to initiate the optimization procedure. Two different
gear geometries are used as starting points, the H501 and the H951, as defined in Table 5.1. The
H501 is a standard helical gear while the H951 is a “low loss” helical gear pair. Note that the
parameters that define the starting gear geometries in Table 5.1 are the same given as the output
of the algorithm.

Table 5.1: Geometrical parameters of the H501 and H951 gears.

Gear H501 H951
Driving Driven Driving Driven

z/- 20 30 38 57
m/mm 3.5 1.75
β/◦ 15 15
b/mm 23 23
x/- +0.1809 +0.0891 +1.6915 +2.0003
ρ∗

fP/- 0.38 0.38
ρ∗

fP: root fillet radius of the basic rack for cylindrical gears per module

Data regarding the geometry (pressure angle, working center distance and velocity ratio),
operating conditions, gears’ material and lubricant properties needs to be given as an input for
the algorithm - Table 5.2 shows the information required and used in this optimization procedure.

Concerning the constraints imposed, they are the limitation of the contact ratio, imposition of
the gear ratio, impossibility of interference, equal maximum specific sliding and assurance of the
correct center distance.

The definition of the objective function, established in equation (5.1), involves the calculation
of the gear surface durability and tooth bending strength [141], which are introduced in the
equation through their respective safety factors, SH and SF . Moreover, the objective function
accounts for the gear meshing efficiency through the gear loss factor HG

V [142]. Finally, to include
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Table 5.2: Parameters imposed for the development of the IOR gears.

Parameters Value

α/° 20
a/mm 91.5
u/- 1.5
n1/rpm 1200
T1/Nm 477.78
Material/- 16MnCr5 (Class Eh)
Ra/µm 0.35

Rz root / µm 20

Rz flank/µm 2.5

KA/- 1.25
Accuracy Grade/- 6
Lubricant/- ISO-VG 220 (Mineral-oil base)
Required Service Life/hours 20000

all the different parameters in a single objective function, the constants Ci are introduced as
weights for each term.

Obj. Fun.=C1|SFmin1−SF1|+C2|SFmin2−SF2|+C3|SHmin−SH|+C4H
G
V (5.1)

Since the implemented algorithm [8] is going to find the minimum of the objective function
while satisfying the constraints, the calculated safety factors tend to the imposed safety factors
(Smin = 2.0) and the gear loss factor is going to be minimized.

A wide variety of gears is intended from the algorithm so that when choosing the gears, a broader
range of alternatives is available. From all the obtained gears, the selected gears are presented in
Table 5.3 along with the C14 and C40 which are reference gears for the test and slave gearboxes
of the FZG test rig. The new gears are named Integer Overlap Ratio (IOR) Gears followed by
their total number of teeth. Table 5.3 shows the starting gear geometry and constants applied
in the objective function for each gear. In addition, the gear geometrical parameters, contact
ratio and overlap ratio are also included. The safety factors and power loss shown in Table 5.3
were calculated in KISSsoft®. The conditions employed for their computation were a torque
of T1 = 477.8 Nm at the pinion and a pinion rotating speed n1 = 1200 rpm (non-mentioned
conditions are KISSsoft®’s default values). The gears developed from the algorithm vary from
high safety factor gears to high efficiency gears, from low to high helix angles and from overlap
ratios equal to one and two.

The C14 and C40 (Table 5.3) are the standard gears used in the FZG gear test rig so their safety
factors are taken as a reference for the IORGears. The IORGears are displayed in Table 5.3
ordered by increasing total number of teeth. It can be verified that the power loss is related with
the size and number of teeth of the gear pair - the higher the number and the smaller the teeth
are, the more efficient the gear pair is. Moreover, a correlation with the safety factors can also
be made: as the meshing efficiency increases, the safety factors decrease.

The IOR55 was selected to be a replacement for the C40 so their safety factors are as high as the
C40. The higher power loss of the IOR55 comparing to the C40 does not stand a problem as this
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Table 5.3: Parameters for the IOR gears developed.

Gear C14 C40 IOR55 IOR60 IOR651 IOR652 IOR70 IOR85 IOR100

Starting Gear - - H501 H501 H951 H951 H951 H501 H951
C1 - - 1.00 0.90 0.10 1.00 0.15 0.00 0.40
C2 - - 1.00 0.90 0.10 1.00 0.15 0.00 0.40
C3 - - 1.00 0.90 0.10 1.00 0.15 0.00 0.40
C4 - - 1.00 0.50 0.70 0.70 0.80 1.00 0.60

z1/- 16 16 22 24 26 26 28 34 40
z2/- 24 24 33 36 39 39 42 51 60
m/mm 4.50 4.50 3.00 2.75 2.75 2.50 2.50 2.00 1.75
β/◦ - - 28.1147 25.5926 12.4733 23.1225 11.3236 18.3101 15.9554
b/mm 14 40 40 40 40 40 40 40 40
x1/- 0.1817 0.1817 -0.1021 0.1147 0.1218 0.6354 0.4824 0.4947 0.1923
x2/- 0.1715 0.1715 -0.5303 -0.1055 -0.1347 0.7557 0.4997 0.5575 0.0953
ρ∗

fP/- 0.38 0.38 0.25 0.25 0.25 0.25 0.25 0.25 0.25

εα/- 1.438 1.438 1.482 1.423 1.605 1.218 1.410 1.399 1.598
εβ/- - - 2.000 2.000 1.000 2.000 1.000 2.000 2.000

SF1/- 0.84 2.34 2.42 1.95 1.64 1.47 1.32 1.16 1.07
SF2/- 0.87 2.43 2.35 1.93 1.63 1.44 1.30 1.13 1.05
SH1/- 0.54 0.91 1.01 1.05 1.07 1.04 1.07 1.08 1.09
SH2/- 0.59 0.99 1.02 1.06 1.08 1.05 1.08 1.09 1.10

PVZP/W 634.0223 609.1162 767.0451 666.4143 572.8135 524.6879 475.1985 448.9556 428.4298

gear is supposed to be mounted on the slave box. In fact, this can be seen as a positive aspect,
as it was concluded in [142], a high power loss gear with low dynamic excitation would be the
ideal gear for power loss studies of the lubricant. The high power loss and low dynamic effects
allow for a better experimental torque measurement due to the almost constant high torque loss
level output.

The IOR60 is another high safety factor gear that when compared with the IOR55 has lower
helix angle, safety factors and power loss - this gear is another option for the replacement of the
C40.

Two gears with a total of 65 teeth were obtained so an extra number corresponding to the overlap
ratio was added to their names. These are very similar gears, being their main differences on
the module and helix angle - geometrical parameters that contribute for the overlap ratio. Still,
these differences lead to higher safety factors for the IOR651 and a more efficient gear meshing
for the IOR652.

The other gear made with an overlap ratio equal to 1 is the IOR70. It is clear the difference in
the helix angle between the gears with different overlap ratios. The IOR70 and IOR651 both
show the lowest helix angles among all the developed gears. A major benefit of low helix angles
is the lower axial loads transmitted to bearings which contribute to a higher efficiency of the
entire system. The IOR70 presents the best balance between power loss and safety factors of all
gears in Table 5.3.

Finally, the IOR85 and IOR100 are the gears with the best meshing efficiency and the lowest
safety factors. Regardless, they both show safety factors higher than the C14. Between these two
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gears, the IOR100 has higher total contact ratio, lower helix angle and higher meshing efficiency.
Hence, after analyzing this data, it is expected that the IOR100 leads to an improved system
efficiency and lower dynamic excitation when comparing to the IOR85.

Figures 5.1 and 5.2, the IOR maps, show the facewidth as a function of the helix angle in order
to obtain an overlap ratio equal to 1 and 2, respectively, for the range of modules presented in
Table 5.3 - it can be extended for any module. For each module presented in Figures 5.1 and 5.2,
the point closest to the origin gives the geometrical parameters for the IORGear with the lowest
possible helix angle and facewidth. Also, the lower the gear module, the closer the curve is to
the origin and therefore an IORGear with a lower facewidth and helix angle can be obtained.
The IOR maps help to understand the relation between all variables that define the overlap ratio
and can also be used as transformation maps, meaning that, one can easily find the facewidth
required to modify an existing helical gear pair to make it an IOR gear.
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Figure 5.1: IOR map for εβ = 1.

Upon a thorough discussion on the obtained IOR gears (Table 5.3), a geometry for the evaluation
of the dynamic behavior with the overlap ratio needs to be selected. To do so, the facewidth of
the selected gears is changed to obtain the desired overlap ratios. The modification of the gear
facewidth is the less intrusive option to vary the overlap ratio as every tooth proportion in the
transverse plane is exactly the same for every overlap ratio studied. Nevertheless, this imposes
an issue on how to select a proper loading torque for an equivalent analysis of every case. The
criteria used is that the load selected is the one that gives the same maximum contact pressure
according to the Hertz theory.

The values intended for the overlap ratios are εβ = 0.50, 0.75, 1.00, 1.25, 1.5, 1.75 and 2.00.
Given the options presented in Table 5.3, the IOR651 and IOR70 cannot have their facewidth
further increased due to the limitation of the available gearbox and are therefore not an option to
perform this study. From the remaining gears, the IOR100 is the selected gear pair as it presents
the lowest helix angle and the lowest power loss.

Given the options presented in Table 5.3, the IOR651 and IOR70 cannot have their facewidth
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Figure 5.2: IOR map for εβ = 2.

further increased due to the size of the available gearboxes. From the remaining gears, the
IOR100 is the one selected since it presents the lowest power loss and helix angle. Table 5.4 shows
the geometrical parameters of the IOR100 and its variants with their corresponding contact and
overlap ratios.

Table 5.4: Parameters for the IOR100 variants.

Gear IOR100-200 IOR100-175 IOR100-150 IOR100-125 IOR100-100 IOR100-075 IOR100-050

z1/- 40 40 40 40 40 40 40
z2/- 60 60 60 60 60 60 60
m/mm 1.75 1.75 1.75 1.75 1.75 1.75 1.75
β/◦ 15.9554 15.9554 15.9554 15.9554 15.9554 15.9554 15.9554
b/mm 40 35 30 25 20 15 10
x1/- 0.1923 0.1923 0.1923 0.1923 0.1923 0.1923 0.1923
x2/- 0.0953 0.0953 0.0953 0.0953 0.0953 0.0953 0.0953
ρ∗
fP /- 0.25 0.25 0.25 0.25 0.25 0.25 0.25

εα/- 1.598 1.598 1.598 1.598 1.598 1.598 1.598
εβ/- 2.000 1.750 1.500 1.250 1.000 0.750 0.500

On the nominal testing conditions, the torque does not impose any restriction as a great variety
is available and different values can easily be added to the accessible test rig. Thus, a nominal
torque of T1 = 200 Nm is selected for the reference gear, IOR100-200. The torques for the
remaining gears are computed by making the maximum Hertz pressure the same for every gear
pair. Regarding the range of rotating speeds, the test rig available can currently go up to
4500 rpm. Nevertheless, a nominal rotating speed for the pinion equal to 5000 rpm is selected.
Table 5.5 shows the torque values for every IOR100 variant and their safety factors under
the nominal conditions according to KISSsoft®- all gears have their safety factors above the
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minimum required [81].

Table 5.5: Experimental tests safety factors for the IOR100 variants.

Gear IOR100-200 IOR100-175 IOR100-150 IOR100-125 IOR100-100 IOR100-075 IOR100-050

n1/rpm 5000 5000 5000 5000 5000 5000 5000
T1/Nm 200 175 150 125 100 75 50

SF1/- 1.779 1.788 1.797 1.806 1.828 1.762 1.700
SF2/- 1.758 1.767 1.776 1.785 1.807 1.742 1.680
SH1/- 1.416 1.418 1.421 1.422 1.429 1.374 1.326
SH2/- 1.434 1.436 1.438 1.440 1.447 1.395 1.351

Since the results presented in this work consist on a preliminary numerical analysis of the effect
of the overlap ratio on the gear mesh stiffness and gear dynamic behavior, the number of gears
and range of overlap ratios studied is increased. 41 gears uniformly distributed between εβ = 0.5
and 2.5 are analyzed, meaning that a gear is evaluated for every increment of 0.05 in the overlap
ratio. These values of overlap ratio are obtained by varying the facewidth and the torque is
determined as it was aforementioned. In addition, the spectrum of testing conditions is broaden
in what regards the speed range. The dynamic behavior of the gears is simulated between 50 rpm
and 10000 rpm.

5.3. Gear mesh stiffness
The gear mesh stiffness of the IOR100 gears is analyzed by resorting to a previously developed
model [196]. The model used [196] is an approximate gear mesh stiffness model that employs
the slicing method. The stiffness of each slice is estimated with the expression from Marafona
et al. [171] and the slices are coupled with a parabolic contact line stiffness distribution. This
gear mesh stiffness model also considers extension of contact, profile modifications as well as the
border weakening effect in helical gears. For this research, the number of points per mesh period
is set to 100 while the number of slices is made proportional to the overlap ratio with 100 slices
per unit of overlap ratio. The gears’ material properties are as in Table 5.6.

Table 5.6: Gears’ material properties.

Properties Value

E /GPa 206
ν /- 0.3
ρ /kgm−3 7830

Figure 5.3 shows the gear mesh stiffness of part of the gears studied. Two key features of
Figure 5.3 must be stressed out, one of them is the increasing average stiffness value with the
increasing overlap ratio. The other one is that the mesh stiffness for the gears with integer
overlap ratios is close to being a straight line and therefore it is almost constant.

To investigate the fluctuation of the gear mesh stiffness, the average gear mesh stiffness value is
subtracted to each stiffness curve (∆K), resulting in Figure 5.4. This parameter highlights the
very low amplitude of the gear mesh stiffness as a consequence from imposing integer overlap
ratios. Moreover, from Figure 5.4, the gears can be divided into four groups where even though
they can have completely different average gear mesh stiffness values, their variation is basically
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Figure 5.3: Gear mesh stiffness.

the same. These groups consist on the gears that have the same decimal places, for instance, the
gears with εβ = 0.50, 1.50 and 2.50 show almost coincident curves. Of course if these values are
normalized by the average stiffness, their amplitudes would differ. Within each group, a higher
average gear mesh stiffness would result in a lower relative amplitude.
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Figure 5.4: Gear mesh stiffness fluctuation around its average.

The peak-to-peak amplitude (PPA) of the gear mesh stiffness and the root-mean-square (RMS) of
the gear mesh stiffness fluctuation are shown in Figures 5.5 and 5.6. These parameters attribute
a unique value to each gear, classifying the mesh stiffness for each value of the overlap ratio. The
trend of the curves in Figures 5.5 and 5.6 match each other showing minimum values for integer
values of the overlap ratio and maximum values when εβ = 0.50, 1.50 and 2.50.

Figure 5.7 shows the RMS of the gear mesh stiffness fluctuation normalized by its average value.
When compared to Figure 5.6, Figure 5.7 has the minimum and maximum values located at the

FEUP | 2023 | João D.M. Marafona



5.4. Gear dynamics 121

0.50 0.75 1.00 1.25 1.50 1.75 2.00 2.25 2.50
0.0

2.0

4.0

×107

εβ/-

PP
A

(K
)/
N
m

−
1

Figure 5.5: Peak-to-peak amplitude of the
gear mesh stiffness amplitude.
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Figure 5.6: RMS of the gear mesh stiffness
fluctuation around its average.

same overlap ratios. However, with the normalization, there is a decrease in the values with the
overlap ratio due to the increasing average gear mesh stiffness.
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Figure 5.7: RMS of the normalized gear mesh stiffness fluctuation around its average.

5.4. Gear dynamics
The dynamic analysis of the gears is conducted considering the FZG test gearbox as a reference
for the dimensions. Accordingly, a single stage gear-shaft-bearing transmission is modeled.
Figure 5.8 shows a representation of the dynamic system being modeled, where the rotating
speed is imposed on the input shaft and a torque is applied on the output shaft. The gear pair
being tested connects the two shafts which are supported by two bearings elements each. The
gears are modeled as rigid disks by their base radius which are connected by a time-varying
mesh stiffness estimated by the approximate gear mesh stiffness model in [196]. Timoshenko
beam elements are employed for the shafts and the bearing elements are introduced via lumped
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stiffnesses. The damping matrix is determined using modal damping. Once the equations of
motion are established, they are solved with the unconditionally stable Newmark integration
algorithm (δ = 0.5 and α = 0.25); time discretization is the same as for the time-varying mesh
stiffness, 50 points per period (50 slices per unit of overlap ratio). Steady-state conditions are
considered to be reached after one complete turn of the pinion. More details on the formulation
of the equations of motion and the algorithm implemented can be found in [196].

INPUT

OUTPUT

NODE SHAFT BEARING

PINION

GEAR

1 2 3 4 5 6

7 8 9 10 11 12

Figure 5.8: Schematic of the dynamic system.

The shafts of the system are defined in Table 5.7 where two different finite element lengths are
used, one of 10 mm and other of 40 mm. Table 5.8 shows the bearing stiffness implemented on
both shafts. A damping ratio of 0.10 is employed to determine the damping matrix. Gears are
tested from 50 rpm up to 10000 rpm in steps of 50 rpm.

Table 5.7: Shaft data.

Shaft inputs Diameter /mm Length /mm E /GPa ν /- ρ /kgm−3

Pinion’s shaft 30 110 206 0.3 7830
Wheel’s shaft 30 110 206 0.3 7830

Table 5.8: Bearing data.

Bearing inputs Pinion’s shaft Wheel’s shaft

Radial stiffness / Nm−1 1.40× 108 2.50× 108

Axial stiffness / Nm−1 3.50× 107 6.00× 107

Torsional stiffness (radial direction) / Nmrad−1 1.00× 1012 1.00× 1012

The evaluation of the dynamic response is based on the two parameters. The first one is the
peak-to-peak amplitude of the dynamic transmission error (DTE), which is shown in Figure 5.9
for every simulated rotating speed. It can be noted that there is not a consistent decrease in
the PPA(DTE) with the increase of the overlap ratio. The IOR gears have significantly lower
peak-to-peak amplitudes for the speeds tested, even when compared with gears that have more
than the double of the overlap ratio.
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Figure 5.9: Peak-to-peak amplitude of the DTE.

The second parameter is ARMS(DTEosc) which is the equivalent root-mean-square (ARMS) of
the oscillating component of the DTE (DTEosc). Looking at Figure 5.10, the location of the
peaks for ARMS(DTEosc) changes between gears due to the variation in both mass and gear mesh
stiffness introduced by varying the gears’ facewidth. Nevertheless, the gears with εβ = 0.75, 1.25,
1.75 and 2.25 show very similar shapes with deceasing magnitudes. On the other hand, the gears
with εβ = 1.50 and 2.50 do not present a peak at around 6200 rpm and pass below these curves.
The integer overlap ratio gears are placed at the very bottom.
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Figure 5.10: Variation of the first three harmonic amplitudes of DTEosc.

Figures 5.9 and 5.10 are summed up for every gear by computing the average value for each curve,
this way their variation with the overlap ratio can be shown, resulting in Figures 5.11 and 5.12,
respectively. Just like the results presented for the gear mesh stiffness (Figures 5.5, 5.6 and 5.7),
there is always a minimum for integer overlap ratios. On the other hand, the decreasing amplitude
of stiffness parameter with the overlap ratio only occurs in Figure 5.7 for the normalized stiffness
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parameter, whereas this trend is always verified in the dynamic parameters. Moreover, there is a
reduction of the average ARMS of the DTE oscillating component, Figure 5.10, for εβ = 1.5 and
2.5. This occurs because in the speed range being tested, it is the second gear mesh stiffness
frequency that is being excited. Since the amplitude of the second gear mesh stiffness frequency
is significantly smaller for εβ = 1.5 and 2.5 when compared to nearby overlap ratios, it exhibits
this decrease.
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Figure 5.11: Average DTE peak-to-peak
amplitude.
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Figure 5.12: Average ARMS of the DTE
oscillating component.

5.5. Gear noise level

The noise level equation presented by Masuda et al. [197] is an improvement of a previous
semi-empirical equation. Besides modifying the speed factor that was previously employed, a
dynamic parameter is also introduced. Masuda et al. [197] found that for a wide variety of
finishing methods and operating conditions, the noise level has a strong dependence with both
transmitted power and vibration amplitude. According to Masuda et al. [197], the overall noise
level at 1 meter from the gearbox (L1m [dB(A)]) can be estimated according to equation (5.2).

L1m =
20(1− tan(β/2))u1/8

εα1/4

√
5.56 +

√
v

5.56
+ 20 log (W ) + 20 log

(
X̃
)
+ 20 (5.2)

Equation (5.2) is a semi-empirical expression that depends on six gear pair parameters: helix
angle (β), gear ratio (u), contact ratio (εα), pitch line velocity (v [m s−1]), transmitted power
(W [kW]) and peak-to-peak amplitude of the DTE normalized by the transmission error (X̃).
To determine the vibration amplitude, Masuda et al. [197] used a torsional vibration model
where the stiffness of a tooth pair is approximated by a half-sine wave. For helical gears, only
the increase in the total contact ratio due to the helix angle in taken into account - no other
modifications are applied [197].

Figure 5.13 presents the different noise levels computed according to equation (5.2) for a set of
rotating speeds. Notice that the only terms that are modified in equation (5.2) when evaluating
the different gear geometries are the power transmitted and the normalized vibration amplitude
(X̃). That being said, it is not clear enough that for a given speed there is a reduction of the
noise level for εβ = 2.00. However there is a decrease in the noise level when εβ = 1.00, which
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for some speeds it is the gear with lowest noise level.
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Figure 5.13: Overall noise level at different rotating speeds.

5.6. Closure
Three approaches to evaluate the influence of the overlap ratio on the gear behavior were taken.
These are from the point of view of gear mesh stiffness, dynamic behavior and noise emission.
To conduct this work, an integer overlap ratio was designed resorting to a previously developed
gear design algorithm. Then, the gear facewidth is modified to achieve the desired overlap ratios
for investigation. Considering the numerical simulations performed, it can be concluded that:

• Stiffness: increasing the overlap ratio does not necessarily lead to a reduction of the gear
mesh stiffness peak-to-peak amplitude. Although, since it leads to an increase of the
average gear mesh stiffness value, consequently, the fluctuations normalized by the average
stiffness value are decreased. Nevertheless, it is for integer overlap ratios that gear mesh
stiffness fluctuations are at their lowest regardless of the parameter used.

• Dynamics: the gears’ dynamic behavior is investigated with a gear-shaft-bearing system.
Results show that there is an overall decrease of the dynamic excitation with the increase
of the overlap ratio. Though, minimums for dynamic fluctuations are found for integer
overlap ratio gears.

• Noise: the overall noise level was evaluated for distinct overlap ratios at given rotating
speeds. Considering the different torques applied at each gear, for the same rotating speed
the gears with higher overlap ratio are transmitting more power. Nevertheless, an increase
in the noise level with the overlap is not found as the normalized vibration amplitude tends
to decrease with the overlap ratio. Minimums of noise levels are achieved for εβ = 1.00,
1.50, 2.00 and 2.50 depending on the speed in study. However, there is a consistent decrease
in the noise level for εβ = 1.00.

Integer overlap ratios lead to a reduction of gear mesh stiffness fluctuations as well as reduced
dynamic excitation. However, for noise emission, a clear connection between integer overlap
ratios and overall noise levels was not found. Given the conclusions presented, the developed
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IOR maps are a useful tool for a quick and easy starting point for the design of helical gears
with low transmission error fluctuations and improved dynamic performance.

Next Another prime applicability of the gear analysis tool set developed is optimization of
gear transmissions which can currently be performed at several levels, for instance, definition
of gear macro- and/or micro-geometry, shaft dimensions, bearing stiffness. These variables can
be defined with different objectives regarding gear mesh stiffness, gear transmission dynamic
behavior or volume as well as gear meshing efficiency. The following and last chapter focuses
on a investigation of gear design optimization approaches - different objective functions are put
face-to-face for solving two distinct gear design optimization problems.

FEUP | 2023 | João D.M. Marafona



Chapter 6

Gear design optimization

Optimization is a flexible methodology for gear design since it allows for diverse approaches
according to current demands. Thus, lightweight, efficient, small, quiet or robust gears can all
be achieved according to the designers’ needs. However, these problems can easily become a
computational burden due to the large amount of calculations necessary. In this chapter, a macro-
geometry gear design optimization problem solved by a genetic algorithm is investigated to find
the best approach to reach minimum dynamic excitation, comparing as objective functions gear
mesh stiffness and dynamic behavior. Given that gear dynamic evaluation can be significantly
more computationally expensive than gear mesh stiffness evaluation, the goal is to discuss
how optimizing a gear design towards minimum gear mesh stiffness fluctuations compares
with optimizing for minimum dynamic excitation. Two gear optimization problems, one more
restrictive than the other, are solved with the two objective functions. A genetic algorithm is
implemented so that the evolution can be considered equivalent regardless the objective function.
From the results obtained, a computationally efficient yet effective gear design optimization
approach is proposed.

6.1. Background
The application of optimization to engineering design results in a structured approach, sustained
by mathematical principles, to find designs of engineering systems with superior performance
by optimizing a design objective subject to a set of design constraints that define the search
domain. When considering gear design, optimization gives the freedom to reach any type of
required design while also taking into account the system it is inserted in. This means that one
can consider any type of design variable, for instance, number of teeth, module, profile shift
coefficients, facewidth, profile modification parameters, amount of backlash and also variables
related to the shafts, bearings and gearbox. Following the same thought, the objective function
and restrictions of the optimization can be the manufacturing costs, volume, efficiency, emitted
noise, robustness, vibration and/or stiffness. One way of dividing gear design optimization
is according to the type of gear geometrical parameters used as design variables, them being,
(i) macro-geometry and (ii) micro-geometry gear design optimization. According to the data
presented in [23], macro-geometry gear optimization is more directed towards mass, volume

Contents in Chapter 6: Gear design optimization are reproduced with permission of the respective publisher
from João D.M. Marafona, Gonçalo N. Carneiro, Pedro M.T. Marques, Ramiro C. Martins, Carlos C. António,
and Jorge H.O. Seabra. Gear design optimization: stiffness versus dynamics. Mechanism and Machine Theory,
191:105503, 2024.
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128 6. Gear design optimization

and meshing efficiency while micro-geometry gear optimization is more for transmission error
fluctuations or emitted noise which can be related to dynamic behavior.

Regarding gear macro-geometry design optimization, Yokota et al. [198] solved the optimal
spur gear weight problem using a genetic algorithm. The problem variables are the facewidth,
pinion/wheel diameters, number of teeth of the pinion and module. Five constraints were applied,
namely regarding the bending strength, surface durability, torsional strength of both shafts and
center distance. The adopted approach led to a reduction of 48.8% in the weight as well as a 33.6%
decrease in the gear pair average surface area [198]. Savsani et al. [199] compared the solutions of
spur gear pair weight optimization problem by a genetic algorithm, particle swarm optimization
and simulated annealing. Two different cases were evaluated (based on the formulation by Yokota
et al. [198]) where the design vector consists mainly on gear macro-geometry and constraints
on gear bending strength, gear surface durability, torsional strength of the shafts and center
distance. All the algorithms in study are applicable for spur gear weight optimization problems
but depending on the design variables and constraints included particle swarm optimization and
simulated annealing can present better solutions [199]. Miler et al. [200] studied the influence of
including the profile shift coefficients as variables for the gear pair volume optimization process.
Two identical optimizations were performed where in one of them the profile shift coefficients
were set to zero (x1 = x2 = 0) and the other where the profile shift coefficients were used as
design variables. In both optimization problems, there were constraints regarding the gear tooth
root stress as well as surface durability. Results indicate that profile shift coefficients should
be considered as design variables when the goal is to minimize the gear pair volume since it
lead to gear pair volumes more than 30% lower when compared to not using the profile shift
coefficients for optimization [200]. In another work, Miler et al. [201] performed multi-objective
optimization of a gear pair to reduce its volume and power loss. An analytical description of the
power loss is implemented to decrease computational cost. The variables are the number of teeth
of the pinion, facewidth, module and both profile shift coefficients. The problem is constrained so
that tooth root strength and surface durability conditions are fulfilled along with the continuity
of action (εα ≥ 1.2). The Pareto optimal solutions for different sets of data (nominal working
conditions and gear material) are analyzed. Correlation between the design variables and the
two objectives are discussed. Given the results, it is recommended, as a general guideline, to
select a low facewidth, high number of teeth of the pinion and positive profile shift coefficients to
achieve a good spur gear design in terms of volume and efficiency [201]. Salomon et al. [202]
employed active robust optimization method to define the number of gear stages as well as their
ratios to minimize production cost and energy consumption. This optimization procedure proved
to be effective since a set of robust solutions were found given the uncertainty of the demanded
load [202].

Moving to researches that consider gear micro-geometry for design variables, Younes et al. [203]
studied the optimization of a gear unit in terms of power loss and gear meshing excitation resorting
to both macro and micro gear geometrical parameters. For that purpose, two multi-objective
problems were implemented, where both include the root-mean-square of the transmission error
variation. However, while one only considers the gear meshing power loss, the other takes into
account power losses of the entire transmission via a thermal network. The problem is constrained
by ensuring a minimum contact ratio and guaranteeing tooth root bending and contact integrity.
Different combinations of variables, including macro-geometry (pressure angle and helix angle)
and/or micro-geometry (tip relief) were studied. Using the micro-geometry for the optimization
variables remarkably enhanced the gear unit efficiency [203]. Bonori et al. [21] used a genetic
algorithm to optimize the tip and root reliefs of spur gears. Two objective functions based
on the static transmission error are employed: the peak-to-peak of static transmission error
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and the average value of the static transmission error harmonics. 2D plain strain nonlinear
finite element analysis are conducted to determine the static transmission error for the objective
function. Even though a static objective function was employed, the optimization was effective
in reducing the gears vibrations. A reliability analysis considering manufacturing errors is done,
revealing that the GA was capable of finding robust results [21]. Velex et al. [204] minimize
the dynamic mesh forces on multi-mesh systems by minimizing the transmission errors as a
direct mathematical correlation between the two parameters was shown. A genetic algorithm
is used to find the optimum symmetric tip relief (depth and length of modification). Two
distinct multi-mesh systems are optimized; results corroborate the proposed methodology for
minimization the dynamic mesh forces. In addition, the profile modifications obtained by the
optimization agreed with the ones from the analytical master curves [205] derived to minimize
the transmission error variations [204]. With the goal of improving the quasi-static behavior
of a geared transmission, Lagresle et al. [206] optimized the micro-geometry of the gears by
a modified particle swarm optimization algorithm. Multi- and single-objective functions are
evaluated which can include the maximum contact pressure on the gear flanks, the variation of
the loaded transmission error signal, the tooth bending stress and a pressure-speed factor. The
optimization procedure showed tendency to apply long tip reliefs for the minimization of the
transmission error fluctuations with symmetrical linear tip reliefs as well as for the optimization
of contact pressures. Applying a robustness procedure for different misalignment conditions
proved to be effective; there was a significant reduction on the average value of objective function
under various misalignment circumstances when compared to the non-modified version [206]. Lei
et al. [207] used a particle swarm optimization algorithm in order to optimize the micro-geometry
of gears of an electric bus gearbox for reduced vibration and noise. According to the conducted
studied, a weighted multi-objective function considering peak-to-peak value of the transmission
error, amplitude of the transmission error harmonics as well as the maximum tooth surface load
is found to be a better approach for reducing vibration and noise than single-objective function
considering the peak-to-peak value of the transmission error. This is because by reducing the
transmission error harmonics’ amplitude, the excitation of the remaining system is prone to be
reduced. The optimized gear pair was tested in the noise bench showing the effectiveness of the
optimization procedure in reducing the noise levels [207]. Bozca and Fietkau [208] optimized a
gearbox considering an empirical average rattle noise level expression for the objective function.
Constraints for bending stress, contact stress and constant center distance were included. The
optimization variables are the module, number of teeth, axial clearance and backlash. The
optimized gearbox showed a reduction of 14% in the rattle noise when compared to the sample
gearbox. In addition, it was found that increasing the module and number of teeth lead to
increased rattle noise [208].

For more details on optimization of cylindrical gear pairs, a comprehensive review is performed by
Miler and Hoić [23], analyzing the selection of design variables, objective functions and constraints
of several optimization works in the literature while also providing gear design optimization
guidelines.

Optimization is a process that requires multiple evaluations of the objective function. The
gear design problem in hands is finding the gear macro-geometry that reduces gear dynamic
excitation. Micro-geometry, such as tip/root relief, is not included in this work even though the
implemented models can account for them because it requires a separate study to evaluate the
different possible approaches: should it be a simultaneous, sequential or multi-level optimization.
Nevertheless, this does not change the fact that computing the steady-state dynamic response
for an entire speed range has a high computational cost and therefore, other alternatives must be
considered. The minimization of the gear mesh stiffness fluctuation is a possible approach since
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the gear mesh stiffness can be the main excitation of a gear system and there are fast and reliable
models for its estimation. So, in this chapter, two optimization problems are solved, with an
implemented genetic algorithm, for two objective functions each, one for minimizing gear mesh
stiffness fluctuations and other for minimizing gear vibration over a speed range. Among the
constraints included are minimum requirements for safety factors and gear meshing efficiency. It
is due to these constraints that the two optimization problems differ: one is less restricted than
the other since it does not include an efficiency restriction and requires less demanding nominal
working conditions, hence has a bigger search domain. The goal is to compare the evolution as
well as understand the connections, through an optimization point of view, between the stiffness
and dynamic objective functions in order to reach a feasible and effective gear design criteria for
minimum dynamic excitation.

To start, the gear design optimization problem is explained which includes the description of
the single-stage transmission system being considered, definition of the optimization problem
statement (design variables, constraints and penalty problem), explanation of the models employed
for the determination of the objective functions as well as the characterization of the implemented
genetic algorithm. Then, for each optimization problems, namely relaxed (less restricted/bigger
search domain) and full problems, the optimum solutions are analyzed in terms of geometry, gear
mesh stiffness and dynamic behavior; the evolution of the stiffness and dynamic fitness value of
the best individual for each objective function and the individuals with the highest fitness values
from each optimization approach are related in terms of stiffness, dynamic behavior and noise
level. Lastly, there is an overall discussion of the presented results with highlight to the main
conclusions and a proposal of a gear design optimization methodology for minimization of the
dynamic excitation.

6.2. Gear design optimization problem

The proposed optimization problem consists in finding gear designs for a single-stage transmission
system based on the FZG test gearbox, schematically shown in Figure 6.1. The system comprises
a gear transmission, two shafts (connected through the gear pair) and four bearing elements, two
supporting each shaft. A rotating speed is imposed on the input shaft and a resisting torque on
the output torque.

INPUT

OUTPUT

SHAFT BEARING

PINION

GEAR

Figure 6.1: Schematic of the single-stage transmission system.
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In more detail, the system has two 30 mm diameter shafts with 110 mm length. The bearing to
bearing distance is 80 mm and the shafts’ short end measured from the bearing element is 10
mm. Gears are centered in between the bearing elements and have ISO 53 [169] Profile A tooth
proportions (α = 20°, h∗aP = 1, h∗fP = 1.25 and ρ∗fP = 0.38). The center distance (a) is fixed at
91.5 mm and the gear ratio (u) is 1.5. The material of the gears and shafts has the following
properties: ρ = 7830 kgm−3; E = 206 GPa and ν = 0.3. Table 6.1 specifies other desired and
imposed details of the single-stage gear system.

Table 6.1: Parameters from the single-stage gear system.

Parameters Value

a/mm 91.5
u/- 1.5
Gears’ material/- 16MnCr5 (Class Eh)
Rz/µm 4.8

KA/- 1.25
Accuracy grade/- 6
Lubricant/- ISO-VG 150 (oil bath)
Required service life/hours 20000

Next, the gear design optimization problem is formulated in view of the implemented genetic
algorithm. The numerical tools for the computation of the objective functions in study, namely,
the gear mesh stiffness and gear-shaft-bearing dynamic models, are briefly explained as a
comprehensive presentation of both models can be found in [196]. Lastly, the genetic algorithm
is explained.

6.2.1. Problem statement

This section is dedicated to the formulation of the gear design optimization problem. It starts by
establishing the design variables, which are the gear macro-geometry parameters:

X = {z1,mn, b, x1, β} ∈ S with S =

{
X :

4∑
j=1

hj(X) = 4

}

where z1 is an integer variable representing the number of teeth of the pinion; mn is a real-valued
discrete variable with normalized values from DIN 780; b, x1 and β are continuous variables,
respectively depicting the facewidth, profile shift coefficient of the pinion and helix angle. The
functions hj(X) are introduced to guarantee that the gears can be evaluated in the gear mesh
stiffness model [196]. These functions have as an output value of 1 when the gear can be evaluated
and 0 when it does not respect any of the required conditions. The functions hj(X) are:

h1(X): feasible domain considering the limitations from the fillet-foundation stiffness model
[79] and single tooth pair slice mesh stiffness model [171], namely, (i) the root radius of
both gear bodies need to be comprised between 30 ≤ rpi ≤ 75 [79]; (ii) z1 cannot be equal
to 36 [79] and (iii) profile shift coefficient of the wheel is between −1 ≤ x2 ≤ 1 [171];

h2(X): exclude gears with cutter interference [170];

h3(X): mating interference is not permitted [170];
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h4(X): limitation on the minimum tooth crest width, s∗ai ≥ 0.4 [170].

The lower and upper bounds for the design variables are restricted given the limitations of the
models used for computing the objective function as well as characteristics of the system being
optimized:

36 ≤ z1 ≤ 50: these bounds are established by the limitation on the tooth root half-angle
(0.04 ≤ θp ≤ 0.08) from the fillet-foundation stiffness model [79] used within the gear mesh
stiffness model which limits the number of teeth between [37; 75]. Combining this with
the imposition on the gear ratio (u = 1.5), results that the upper limit is z1 ≤ 50 as it
will result in z2 > 75. Even though z1 = 36 is used as a lower bound, this value is not
admissible since it is out of the domain S;

0.7 ≤ mn ≤ 4: other limitation of the fillet-foundation stiffness model [79] is on the ratio
between the tooth root radius and hub radius (2 ≤ h ≤ 5). Considering the bounds for all
the other variables involved in this coefficient, the lowest and highest admissible values for
the module are achieved;

2.1 ≤ b ≤ 40: minimum facewidth value is determined as three times the lowest module
value. The maximum facewidth value is set at 40 mm since this value is the maximum
allowable in the system being studied and it is lower than maximum permissible facewidth
to module ratio (bmax = 14 mn);

−1 ≤ x1 ≤ 1: the profile shift coefficients are contained in this interval due to the single
tooth pair slice mesh stiffness approximate expression [171];

0 ≤ β ≤ 30: an upper limit of β = 30° is selected to keep the compatibility between the
different methods in DIN 3990 and the ISO 6336.

The proposed gear design problem has the primal problem established as:

min f(X)

subjected to gj(X) ≤ 0, j = 1, 2, . . . , 11

f(X) represents the objective function of the design problem and the functions gj represent the
constraints of the optimization problem. There are several sets of constraints, namely, functions
g1 to g6 are geometrical restrictions for the design space:

g1(X) = 1− ε/1.2: minimum contact ratio ε ≥ 1.2

g2(X) = ε/4− 1: maximum total contact ratio ε ≤ 4;

g3(X) = 1− εα/0.9: minimum contact ratio εα ≥ 0.9;

g4(X) = εα/3− 1: maximum contact ratio εα ≤ 3;

g5(X) = 1− b/(3 mn): minimum facewidth to module ratio b ≥ 3 mn;

g6(X) = b/(14 mn)− 1: maximum facewidth to module ratio b ≤ 14 mn;
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There are also functions to ensure the minimum surface durability and tooth root bending
resistance. These are established resorting to the DIN 3990:

g7(X) = 1− SH1: minimum surface durability safety factor for the pinion SH1 ≥ 1;

g8(X) = 1− SH2: minimum surface durability safety factor for the wheel SH2 ≥ 1;

g9(X) = 1− SF1/1.4: minimum tooth root stress safety factor for the pinion SF1 ≥ 1.4;

g10(X) = 1− SF2/1.4: minimum tooth root stress safety factor for the wheel SF2 ≥ 1.4;

In order to guarantee a minimum gear meshing efficiency, function g11(X) is introduced to limit
the gear loss factor HV. The gear loss factor is computed as in [142] with a constant gear mesh
coefficient of friction equal to µ = 0.05.

g11(X) = HV/0.15− 1: maximum gear mesh loss factor HV ≤ 0.15.

The conversion of the optimization problem into a penalty problem to maximize the fitness is,
considering the established primal problem, presented as:

max fit(X) =


Cp −

λff(X) + λp

11∑
j=1

max (gj(X), 0)2

 , X ∈ S

Cp − 0.99× 1012, X /∈ S

where Cp, λf and λp are constants. Cp is employed to guarantee positive fitness values, λf is a
proportionality factor and λp is the penalty parameter.

6.2.2. Gear mesh stiffness

The gear mesh stiffness model developed by Marafona et al. [196] is implemented to optimize the
gear pair with regard to its mesh stiffness fluctuations. It is an approximate gear mesh stiffness
model, meaning it resorts to straightforward and effortless expressions that are simplifications
of high computational cost numerical procedures. Therefore, this model presents very low
computational cost making it the ideal choice for optimization processes where it is necessary to
run the models multiple times.

To estimate the gear mesh stiffness of both spur and helical gears, the model [196] applies the
slicing method, where helical gears are interpreted as being a combination of staggered spur
gears. Each slice has its stiffness determined by combining the expression for the single tooth
pair slice mesh stiffness from [171] with the a parabolic contact line stiffness distribution that
couples the slices. Phenomena like the extension of contact, in which contact occurs outside the
path of contact due to the deflections of the gear mesh; border weakening factor, reduction of
the stiffness in helical teeth due to the lack of a full supporting teeth in the normal direction;
and profile modifications, changes in the gear tooth profile (micro-geometry) that are applied to
obtain improved gear behavior, can all be accounted for in the model.

The gear mesh stiffness (K) for a given design variable is computed with 100 points per mesh
period and a number of slices equal to 100 per unit of overlap ratio. The objective function for
the gear mesh stiffness optimization is the root-mean-square of the gear mesh stiffness fluctuation
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around its average value, given by equation (6.1), where Tmesh is the mesh period and Kavg is
the average gear mesh stiffness.

f(X) = RMSK =

√
1

Tmesh

∫ Tmesh

0
(K −Kavg)

2 dt (6.1)

6.2.3. Gear dynamics

A single-stage gear-shaft-bearing dynamic model [196] is used to optimize the single-stage geared
transmission towards improved dynamic behavior. A representation of the dynamic model is
shown in Figure 6.2. Main characteristics of the dynamic model are:

• The gear pair is introduced as two rigid disks by their base radius with a time-varying
stiffness representing their meshing. The shafts are included by Timoshenko beam elements
[186; 187] with two different length of elements, 10 mm and 40 mm. In Figure 6.2, the
numbered dots refer to the nodes of the Timoshenko beam elements. Lumped stiffnesses
are employed for the representation of the bearing elements, see Table 6.2.

Table 6.2: Bearing data.

Bearing inputs Pinion’s shaft Wheel’s shaft

Radial stiffness / Nm−1 1.40× 108 2.50× 108

Axial stiffness / Nm−1 3.50× 107 6.00× 107

Torsional stiffness (radial direction) / Nmrad−1 1.00× 1012 1.00× 1012

• The equations of motion are obtained by first considering a 12 degree-of-freedom subsystem
for the gear pair which is then incorporated with the other elements of the system in
the global mass and stiffness matrices. The damping matrix is determined using modal
damping and a damping ratio of ζ = 0.1, in accordance with [178].

• The unconditionally stable Newmark integration algorithm, with corresponding constants
δ = 0.5 and α = 0.25, is utilized to solve the equations of motion;

• time discretization and stiffness discretization are the same for the dynamic model, which is
50 points per period (50 slices per unit of overlap ratio). The dynamic response is regarded
of being in steady-state conditions after one complete turn of the pinion. The system is
tested from input speeds starting at 50 rpm (nstart) up to 4500 rpm (nend) in steps of 50
rpm.

A full presentation of this dynamic model covering the formulation of the equations of motion as
well as details about the algorithm implemented is found in [196].

For the objective function of the dynamic optimization, the average value the ARMS(DTEosc) for
the analyzed speed range is considered, equation (6.2).

f(X) = RMSD =
1

nend − nstart

∫ nend

nstart

ARMS(DTEosc) dn (6.2)
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Figure 6.2: Schematic of the dynamic system.

where ARMS(DTEosc) is an equivalent root-mean-square of the DTE oscillating component,
defined according to equation (6.3). Ai(DTEosc) is the ith harmonic amplitude of the Fast
Fourier Transform of DTEosc.

ARMS(DTEosc) =
√
A2

1(DTEosc) +A2
2(DTEosc) +A2

3(DTEosc) (6.3)

6.2.4. Genetic algorithm

The applied genetic algorithm has a more complex algorithmic structure than the simple genetic
algorithm. It is designed so that its operators aim to achieve a good balance between exploration
and exploitation. Therefore an explanation of the algorithm itself and the genetic operators
used is performed. Figure 6.3, presented at the end of this section, shows the pseudo-code of the
genetic algorithm.

Let Bl be the set of binary strings of length l. An element s ∈ Bl is called a genotype and is
the binary representation of a solution in the search space, decoded via the usual binary-to-real
transformation. A population P t, at generation t, is a list (s1, . . . , snP

) of size nP , ordered in
terms of fitness and allowing repetition. A list Et ∈ P t, containing the genotypes with the highest
fitness, defines the elite of the population, and Bt defines the list of all offspring genotypes,
generated by the crossover operator.

A set of diverse evolutionary operators is introduced, combining high selective pressure (supported
by a strong elitist strategy) with highly disruptive operators. The benefits of such a polarized
approach are discussed by Eshelman [209]. The set of chosen operators is based on the algorithm
presented in [210], with necessary adaptations to suit the current problem.

Random initialization

The initialization process is applied at different stages of the evolution: each genotype s ∈ P t is
initialized uniformly at random. In the first generation, the entire population is initialized. At
later stages, only selected genotypes are reinitialized.
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“Elitist” parent selection

The parent selection mechanism begins by sorting P t, according to the fitness of its elements.
The mechanism is responsible for the stochastic selection of nB parent-lists that compose the
mating pool, at each generation. Each parent-list contains two individuals chosen at random
by two independent fitness-proportional selection processes: one parent selected from the elite
group Et and another from the remaining population P t \ {Et}.

Such a bipartite selection procedure implies that, for each pair of parents, one parent belongs
necessarily to the elite group, hence being deemed as “elitist”. With it, it is expected to achieve
two simultaneous goals: first, an increased selective pressure (bias) towards the best fitted
individuals of the population; second, an increased reproduction probability of the weakest
individuals of the population.

Uniform crossover

For each parent-list, one (and only one) offspring solution is constructed and stored in the offspring
population Bt, hence generating a total of nB solutions. The uniform crossover operator consists
of selecting at random from which parent each gene comes from. The process is biased by the
parameter ruc, representing the probability of selecting genes from the elite parent.

In the presence of (strong) elitism, it is desirable to have an operator capable of generating
productive genetic recombination, avoiding stagnation of the search process, due to the excessive
preservation of genetic features. The interesting property of uniform crossover is that a genetic
feature is not heritable unless it is common to both parents. As such, uniform crossover is a
highly disruptive recombination operator with the ability to create new linkages among the genes
of the offspring solutions, induced by the conflicting genes of the respective parents. Indeed,
the greater the genetic difference between two parents the more explorative uniform crossover
becomes.

Elitist survivors selection

After genetic recombination, the entire population is extended to a list P t ∪Bt. The survivor
selection mechanism is responsible for the composition of the population of the next generation.
The overall selection process is performed by three elitist operators.

Similarity control In later generations, the fittest genotypes often recombine with near
relatives and the explorative ability of uniform crossover degenerates. Two genotypes s1, s2 ∈ Bl

have an equal variable if s(Xi)1 = s(Xi)2, for i = 1, . . . , N . Two genotypes are similar if the
number of equal variables is larger than some εSC ≤ N . The similarity control operator is
introduced as an elitist and highly disruptive replacement mechanism. Similarity is evaluated
variable-by-variable. After fitness-based ranking of P t ∪Bt, each genotype is compared against
all the weaker ones, one at a time. For each pair of similar genotypes, the one with smaller
fitness value is removed from the population. After the comparison process, the size of P t ∪Bt

is recovered with the random initialization of new genotypes.

Replacement mechanism In order to achieve a monotone evolution, it is adopted an elitist
(nP +nB) replacement mechanism, where the newly created offspring and the existent population
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members compete for survival: the extended population P t ∪ Bt is ranked by fitness, after
which only the top nP genotypes are selected to survive. Unlike the elitist parent selection,
characterized by two independent moments of stochastic selection, the adopted elitist replacement
scheme imposes a deterministic selection rule, steered by fitness. This replacement scheme is
robust against the quality loss in the solutions generated by the recombination operator, in the
sense that both top and average genotypes are allowed to survive longer, if not outperformed by
the offspring.

Implicit mutation The combination of uniform crossover and similarity control may have a
positive effect delaying premature convergence. But these mechanisms cannot guarantee desirable
levels of genetic diversity throughout the entire evolution. As the number of generations increases,
it is expected that the algorithm manages to preserve in the population only those genotypes
that are as similar as possible. In such case, the similarity control operator loses importance as it
is no longer called to inject raw diversity. After restoring the original size of the population, the
nbot < nP genotypes with smaller fitness value are eliminated from the population and initialized
at random. Contrary to the similarity control operator, the main goal of implicit mutation is
to inject raw diversity into the population, affecting the evolution in the long-term. Indeed, its
combination with the elitist parent selection of the next generation promotes the recombination
between the elite and the newly generated individuals, in future generations.

repeat

for P t do
Fitness-based ranking
Elitist parent selection of nB parent-lists

one parent from Et and another from P t \ {Et}
Uniform crossover

generate nB offspring solutions, one per parent-list
Allocate offspring solutions into Bt

end do

for P t ∪Bt do
Fitness-based ranking
Similarity control

for each pair of similar individuals, replace the worst with a random one
Fitness-based ranking
(nP + nB) replacement mechanism

eliminate the worst nB individuals
end do

for P t do
Implicit mutation

replace the worst nbot individuals with nbot random individuals
end do

Set t = t+ 1

until stopping criterion

Figure 6.3: Pseudo-code of the genetic algorithm.
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Genetic algorithm parameters

Table 6.3 defines the parameters used for the gear design optimization for both optimization
functions, stiffness and dynamics, which were established with a preliminary study of the
optimization problem.

A stopping criterion of t = 10000 generations is used for convergence of the population in order
to correlate the optimization results from the stiffness and dynamic objective functions. With the
same purpose, a constant λf was introduced so that the evolution can be as similar as possible
even with different objective function values.

Table 6.3: Genetic algorithm parameters.

Parameters Value

nP , population size 50
nE , elite size (elite ratio) 17 (0.33)
nB , number of offsprings (cross rate) 16 (0.65)
ruc, bias ratio 0.60
εSC, similarity control 2
nbot, implicit mutation ratio 0.10

Cp 1× 1012

λp 5× 109

λf, stiffness / dynamics 1 / 1× 1012

stopping criterion t = 10000

Concerning the design variables, z1 and mn, the respective genes encode integer values representing
the index/position in the set of possible values, as in equations (6.4) and (6.5). For the number
of teeth, only even integer numbers are included due to the gear ratio that is imposed in the
system. Both sets were adapted so that the number of possible values satisfies 2q, where q is a
predetermined number of bits. That being said, z1 is coded with 3 bits, mn with 4 and b, x1 as
well as β are encoded with 7 bits.

z1 = {36, 38, 40, 42, 44, 46, 48, 50} (6.4)

mn = {0.7, 0.8, 0.9, 1, 1.125, 1.25, 1.375, 1.5, 1.75, 2, 2.25, 2.5, 2.753, 3.5, 4} (6.5)

6.3. Gear optimization: relaxed problem

The first gear optimization study is a less restricted problem in terms of both applied constraints
and required nominal working conditions which allows for a broader design domain. In the
relaxed problem there is not the gear meshing efficiency restriction (g11(X)) and the nominal
conditions are displayed in Table 6.4.

After performing the optimization for both the gear mesh stiffness (identified as RMSK) and
gear dynamics (labeled as RMSD) objective functions, the obtained optimum design variables
for each process is shown in Table 6.5 with the corresponding values for the objective functions.
The number of teeth and module is the same for both functions (strong indicator of similarity
between the two optimization approaches) with the remaining geometrical parameters begin
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Table 6.4: Nominal working conditions for the relaxed problem.

Parameters Value

n1/rpm 1000
T1/Nm 100

very close to each other. Despite that, there are some differences in the values of the objective
functions in relative terms. However, it must be stressed out that these objective function values
are very low, meaning that they are both excellent gears in what regards gear mesh stiffness
fluctuation and dynamic behavior, as it is exhibited in Figure 6.4 by their gear mesh stiffness
and ARMS curves.

Table 6.5: Design variables of the optimum individuals: relaxed problem.

f(X) z1/- mn/mm b/mm x1/- β/° RMSK/Nm−1 RMSD/m

RMSK 46 1.50 13.7386 -0.4646 21.0236 9.4720× 104 1.9191× 10−9

RMSD 46 1.50 14.0370 -0.4616 20.5512 1.2171× 105 1.1298× 10−9

Figure 6.4, which displays the gear mesh stiffness (Figure 6.4a) and ARMS (Figure 6.4b) for
the optimum solutions, highlights their affinity. The limits for the y-axis in Figure 6.4a are
established as 2.5% above/below of the highest/lowest average stiffness value of the two gears.
This way, the almost constant characteristic of the gear designs becomes clear. As for the dynamic
behavior, looking at Figure 6.4b, the order of magnitude of the equivalent root-mean-square is in
the order of the 0.002 µm which is ridiculously low. Regardless, the shape of the curves are close
to each other with the main difference being in the magnitude of the values.
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Figure 6.4: Comparison between the optimum solutions with stiffness and dynamic objective
functions.

At this point, the high-end population from both problems is studied for possible correlations
between stiffness and dynamic optimizations as well as geometrical features. High-end population
is defined as the top 30 individuals that respect the problem restrictions ranked according to
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their objective function values. The top 30 is selected from combining both the final population
with the highest fitness individual found along the generations.

In a previous work, Marafona et al. [8] designed sets of gear pairs that had integer overlap ratio
since it was shown that under those circumstances the resulting gear mesh stiffness fluctuations
are minimized. Considering that in the conducted optimization process there is no imposition for
integer values of either contact/overlap ratio, if the high-end population tended to those values,
there is a strong indication that designing a gear for integer contact/overlap ratios is a guideline
to consider for minimization of gear mesh stiffness fluctuations and low dynamic excitation. To
reach a conclusion on this topic, the contact/overlap ratio maps of the high-end populations
for the stiffness and dynamic objective functions is plotted in Figure 6.5 - the contact ratio is
computed considering the extension of contact.

1.2 1.4 1.6 1.8 2.0 2.2
0.5

1.0

1.5

2.0

2.5

εw
α/-

ε β
/-

(a) Stiffness objective function.
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(b) Dynamic objective function.

Figure 6.5: Comparison between the high-end individuals in a contact/overlap ratios map.

Overall, from Figure 6.5, it can be stated that there is a tendency for the gear designs to gather
around integer values of the overlap ratio with a major cluster formed at the intersection of
εw
α = 2 and εβ = 1. In this particular problem, very few individuals are place close to εβ = 2.

The values of the contact and overlap ratios for the optimum are εw
α = 2.0241/εβ = 1.0459 for

the stiffness objective function and εw
α = 2.0143/εβ = 1.0457 for the dynamic objective function.

All considered, the positioning of the high-end individuals on the contact/overlap ratio maps is
no coincidence. Although, the number of bits used for each variable and the similarity control
applied in the genetic algorithm reduce the freedom in obtaining a wide variety of solutions
with exact integer values. A separate optimization study is required to achieve more substantial
evidence.

6.3.1. Stiffness versus Dynamics

The investigation conducted in this section is to relate the stiffness and dynamic approaches
concerning their evolution along the generations. The purpose is to evaluate to what extent one
evolution contradicts the other, for instance, as the best individual is improved from a dynamic
perspective along the generations how is its stiffness fluctuations being affected. To do so, the
best individual from the stiffness evolution and the dynamic evolution is taken. Then, the values
of the fitness score, according to equation (6.6), are computed with respect to the gear mesh
stiffness and dynamic objective functions, equations (6.1) and (6.2) respectively.
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Sfit = λff(X) + λp

11∑
j=1

max (gj(X) , 0)2 (6.6)

By doing this, the values of the stiffness Sfit can be compared when using a stiffness and dynamic
objective functions. The same procedure is also carried out for the dynamic Sfit. The result of this
analysis for the relaxed problem creates Figure 6.6 - data is taken from 250 to 250 generations.
When looking at the stiffness and dynamic evolution in both figures, it can be stated that the
stiffness evolution reaches its optimum solution earlier than the dynamic evolution. Also, Sfit

is decreasing when is of the same type as the evolution. From the stiffness parameter SK
fit in

Figure 6.6a, the dynamic curve shows that for the relaxed problem reducing the gear mesh
stiffness variations is part of improving the dynamic behavior since there is a consistent decrease
along the generations. Although, for the dynamic analogue analysis, early stiffness evolution
leads to worse dynamic score which is suddenly decreased, putting the stiffness evolution closer
to the dynamic one.
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Figure 6.6: Evolution of the best solution along the generations: relaxed problem.

To analyze the high-end populations obtained from the different objective functions, the objective
function value of the stiffness is determined for the dynamic high-end population and vice-versa.
With this operation, the cross values are obtained and the same parameter can be compared for
two different populations and correlations can be established. Besides comparing values of the
stiffness and dynamic objective functions, the emitted noise level is also evaluated - even though
there is no objective function or any kind of constraint to the problem on the emitted noise level.
After computing the parameters being studied, the high-end population is reordered given the
parameter being analyzed and then compared by ranking.

RMSK is the first investigated parameter with its results graphically represented in Figure 6.7.
Note that RMSK(K) means that the stiffness high-end population is used and RMSK(D) refers to
the dynamic high-end population (same nomenclature is applied for every parameter). Figure 6.7
shows the individuals of the high-end populations in the sense that each dot contains the
information from the equally ranked individuals. Then, points are fitted by a linear function
using the linear least squares method. The same procedure is repeated for RMSD, attend to
Figure 6.8.
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Figure 6.7: Correlation for gear mesh
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Figure 6.8: Correlation for gear dynamics -
relaxed problem.

It can be seen in both Figure 6.7 and 6.8 that the bottom ranked individuals deviate from the
trend that the remaining individuals are creating, which decreases the quality of the linear fit.
The reason attributed to this deviation is an incomplete convergence of the high-end individuals,
showing that more generations might be necessary for improved agreement. Nevertheless, high
R-squared values are achieved for both situations. On the linear fits, their slope values can
provide information about the connection between the optimization processes. For Figure 6.7
and 6.8 the x-axis represents the optimization parameter with the population that is optimized
with it. Therefore, a higher slope points towards a higher difference in the range of values. For
instance, the slopes obtained are mK = 2.997 for the stiffness and mD = 5.517 for the dynamics.
This implies that the dynamic objective function is better at improving the gear mesh stiffness
fluctuations than the stiffness objective function is at reducing the average ARMS(DTEosc).

6.3.2. Noise level

When studying the noise level emitted by gear pairs with different finishing methods and under
varied operating conditions, Masuda et al. [197] found that the transmitted power and relative
vibration amplitude play a major role on its definition. Hence, a semi-empirical expression,
presented in equation (6.7), was developed considering the retrieved experimental data.

L1m =
20(1− tan(β/2))u1/8

εα1/4

√
5.56 +

√
v

5.56
+ 20 log (W ) + 20 log

(
X̃
)
+ 20 (6.7)

Equation (6.7) defines the overall emitted noise level ((L1m [dB(A)])) 1 meter above the gearbox
which can be estimated with six parameters, the helix angle (β), gear ratio (u), contact ratio
(εα), pitch line velocity (v [m s−1]), transmitted power (W [kW]) and peak-to-peak amplitude of
the DTE normalized by the transmission error (X̃).

Masuda’s noise level prediction, equation (6.7), is employed to give an estimation of the average
emitted noise level of the high-end populations in the speed range assessed: used not for noise level
prediction but as a parameter for relative comparison between the individuals. Figure 6.9 shows
the average noise level for the dynamic and stiffness populations. Even though the correlation is
not as strong as for the stiffness and dynamics objective functions, shown in Figures 6.7 and
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6.8, the slope obtained from the noise level linear fit is close to 1, mL = 0.836. With a slope
close to 1, further analysis was conducted on the parameters that define the estimation of the
noise level. Looking into equation (6.7), X̃ is established as the ratio between a dynamic and a
quasi-static transmission error, being the latter closely related to the gear mesh stiffness. From
Figure 6.10, it is shown that X̃ values from stiffness and dynamic populations have an almost
linear relationship since the linear fit has an R-squared = 0.978. The slope of the linear fit
in Figure 6.10 is mX̃ = 2.059, meaning that the dynamic objective function promotes a lower
relative vibration amplitude than the stiffness one. The strong correlation found for X̃ explains
to some extend the similarity in the values of the emitted noise level as other influential factors
relate to gear geometrical parameters (design variables) as well as operating conditions, which
are the same for every individual.
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Figure 6.9: Correlation for noise level -
relaxed problem.
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Figure 6.10: Correlation for normalized
dynamic amplitude - relaxed problem.

It is noteworthy here that the very low X̃ values obtained for the high-end population lead to
negative values its logarithm in equation (6.7). The main reason for this to occur is assigned
to the dynamic model employed for the estimation of the vibration amplitude - this also shows
that the semi-empirical equation was adjusted for the available experimental data. Masuda
et al. [197] used a torsional model (no shafts or bearing elements included) with the single tooth
pair stiffness being approximated by a half-sine wave for both spur and helical gears, where for
helical gears the total contact ratio is considered. Considering this dynamic model leads to an
overestimation of the relative dynamic amplitude, which, most likely, will not result in X̃ < 1.

6.4. Gear optimization: full problem
The second optimization study is a more restricted one in the sense that all the defined restrictions
are included, which accounts for the gear meshing efficiency, and more demanding nominal
operating conditions are selected, attend to Table 6.6. Since the procedure taken is the same as
in the analysis of the relaxed problem (section 6.3), only the necessary explanations are given.

Table 6.7 shows the optimum gear designs according to each objective function, which resulted in
two gear designs that have the same number of teeth and module. However, unlike the relaxed
problem, there is a slight difference in the facewidth and helix angle along with a respectable
difference in the profile shift coefficient of the pinion. Objective function values have higher
relative difference in comparison with the relaxed problem but are still very low in absolute terms
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for both scenarios.

Table 6.6: Nominal working conditions for the full problem.

Parameters Value

n1/rpm 4500
T1/Nm 215.6

Table 6.7: Design variables of the optimum individuals: full problem.

f(X) z1/- mn/mm b/mm x1/- β/° RMSK/Nm−1 RMSD/m

RMSK 40 1.75 19.1102 -0.3701 17.2441 1.2426× 105 5.1100× 10−9

RMSD 40 1.75 18.2150 -0.7008 18.1890 1.9603× 105 1.0163× 10−9

Looking at Figure 6.11 to analyze the optimum solutions in terms of gear mesh stiffness (Fig-
ure 6.11a) and its dynamic performance (Figure 6.11b) the two solutions are clearly more distinct
then for the relaxed problem. It is visually perceptible from Figure 6.11a that the stiffness from
RMSD is not as smooth as the one from RMSK mainly due to the peak right before ξ = 1. Con-
cerning the dynamic response in Figure 6.11b, even though there is some difference for rotating
speeds n1 < 3000 rpm, the fact that in the spanned rotating speeds the gear design from stiffness
objective function has a critical frequency makes all the difference. This is a clear example of
an advantages of using a dynamic objective function for optimizing the dynamic behavior in
contrast to the stiffness which without further information cannot avoid this phenomena: with
the dynamic minimization the algorithm will also consider the mass of the gear pair, making the
dynamic problem more complex which, in turn, gives it more flexibility in the design possibilities.
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Figure 6.11: Comparison between the optimum solutions with stiffness and dynamic objective
functions.

With a different problem at hands, the positioning of the high-end individuals in a contact/overlap
ratios map gives information if the gear meshing efficiency constraint will not allow for the
individuals to reach the areas of integer numbers. Figure 6.12 shows a very similar contact/overlap
ratios map to the relaxed problem (Figure 6.5) with most individuals in the interception of
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εα = 2 with εβ = 1. However, for the full problem, there are more individuals close to the
line of εβ = 2 for the dynamic objective function which is related to the more demanding
conditions combined with the need to remove the critical frequencies from the speed range being
optimized: higher total contact ratio gives rise to higher average gear mesh stiffness which, in
turn, leads to higher critical frequencies. Optimum designs have εw

α = 2.0096/εβ = 1.0304 and
εw
α = 2.0358/εβ = 1.0342 correspondingly for the stiffness and dynamic objective functions.
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(a) Stiffness objective function.
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(b) Dynamic objective function.

Figure 6.12: Comparison between the high-end individuals in a contact/overlap ratios map.

6.4.1. Stiffness versus Dynamics

The first tool for comparison of the stiffness and dynamic evolution for the full problem is the
progression of the best individual during both the stiffness and dynamic objective functions
regarding a stiffness and dynamic score according to equation (6.6). Figure 6.13 shows the
evolution from the stiffness and dynamic point of views. For the stiffness evolution the best
design is found before 500 generations while for the dynamic is before 5000 generations. Adding
this information to the equivalent one from the relaxed problem (Figure 6.13) gives a strong
indication that an optimum stiffness design is faster to find than a dynamic one. The only change
that occurs in the stiffness evolution reduces the gear mesh stiffness fluctuations (as expected)
but causes a worse dynamic excitation. The dynamic evolution in Figure 6.13a reveals that there
is a minimization of the gear mesh stiffness fluctuations yet it was necessary to deteriorate the
solution in what regards stiffness to achieve a dynamically improved design. This action relates
to the adjustment of the system’s critical frequencies which can imply higher gear mesh stiffness
fluctuations.

Moving to the analysis of the high-end individuals in terms of their stiffness and dynamic
parameters, Figures 6.14 and 6.15, it is verified that fewer individuals deviate from the linear fit
when compared to the relaxed problem (Figures 6.7 and 6.8) which implies a higher R-squared
value. In addition, for the full problem, the slope of the linear fits are closer to 1. In particular, for
the gear mesh stiffness in Figure 6.14, the slope is mK = 1.195 meaning that high-end individuals
from the dynamic part have very similar gear mesh stiffness fluctuations as the ones from the
stiffness part. The slope for the linear fit in Figure 6.15 is mD = 1.932 which is higher than for
the stiffness counterpart. Nevertheless, it is still found that the dynamic objective function is
better at optimizing gear mesh stiffness fluctuations than the stiffness objective function is at
minimizing dynamic oscillations.
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Figure 6.13: Evolution of the best solution along the generations: full problem.
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6.4.2. Noise level

To describe the high-end populations with respect to the noise level, equation (6.7), developed
by Masuda et al. [197] is utilized. This way, it is possible to relatively compare the emitted noise
level os the different gear designs. Figure 6.16 shows the estimation of the emitted noise level of
the different individuals from the stiffness and dynamic approaches while Figure 6.17 relates the
normalized vibration amplitude. The slope of the linear fit is mL = 0.7629 which similar to the
slope from the relaxed problem (Figure 6.9). However, there is a significantly higher value for the
R-squared which passed from R-squared = 0.883 in the relaxed problem to R-squared = 0.974
in the full problem. As for the normalized dynamic amplitude, it maintains its high R-squared
value and a very similar slope, which is, for the full problem, of mX̃ = 2.108.
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6.5. Closure

In order to find an expeditious manner to optimize a gear system regarding its dynamic excita-
tion without needing to compute the gear steady-state response, an optimization towards the
minimization of the gear mesh stiffness fluctuations is compared with the direct minimization of
the dynamic excitation of the gear system. To reach this aim, a genetic algorithm is implemented
and previously developed models [196] are used as tools to determine the objective functions.
Concerning the attained results of the gear optimization problems:

• dynamic minimization takes sensibly 5 times more time, on average, than the stiffness one
on each generation for the considered methodologies;

• the optimized gear designs from both objective functions are very similar, meaning that
the main characteristics of the problems are captured by both instances;

• the gear mesh stiffness is almost constant and very low values of DTEosc equivalent root-
mean-square are obtained for all the designs, indicating that either approach can minimize
the other. The major difference found is in the dynamic curve of the full problem which
reveals a key flaw of the stiffness optimization: stiffness optimization does not take into
account the location of the critical frequencies but this is not an impediment of reaching
very low values for the dynamic parameter;

• the contact/overlap ratios maps revealed the tendency of the optimized gear designs of
going for integer overlap ratios, regardless of the objective function. This topic was already
discussed by Marafona et al. [8] where gear design optimization is applied to reach gears
with integer overlap ratios, the concept behind this procedure is that integer values of
contact or overlap ratios make the theoretical length of the contact lines constant. A
dedicated optimization investigation is necessary to verify this tendency for gear mesh
stiffness fluctuation/dynamic excitation minimization;

• the evolution of the best individual along the generations showed that gear mesh stiffness
optimization found the optimum solution earlier than the dynamic optimization. In addition,
as the design is being improved in dynamic terms there is an overall tendency for the gear

FEUP | 2023 | João D.M. Marafona



148 6. Gear design optimization

mesh stiffness fluctuations to also decrease while the inverse statement cannot be said
about the optimization of the stiffness. This means that minimizing gear mesh stiffness
fluctuations is necessary to reduce the dynamic excitation but not sufficient;

• the comparison of the populations for stiffness, dynamic and noise parameters imply that
dynamics is better at optimizing stiffness than stiffness is at optimizing dynamics and
that both objective functions give overall emitted noise levels that are in line with each
considering the discrepancies in the remaining parameters.

Concluding, reducing the gear mesh stiffness fluctuation is a necessary condition for minimizing
the dynamic excitation. Nonetheless, in dynamics, the gears’ mass and average mesh stiffness
value influence the natural frequencies of the gear system. It is almost as if optimizing gear mesh
stiffness fluctuations is a particular case of gear dynamic optimization in the sense that both
go for low mesh stiffness fluctuation but the stiffness optimization is “blind” to the location
of critical frequencies. Hence, for dynamic optimization, it is not necessary to compute the
steady-state dynamic response. Instead, for dynamic optimization, the proposed approach is
to use the minimization of gear mesh stiffness fluctuations with information on the natural
frequencies of the gear system, thus reducing the computational cost.
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Chapter 7

Conclusion

7.1. Conclusions

Throughout this work, several gear research topics are addressed with the objective of establishing
an accurate gear mesh stiffness model that has low computational cost. There are five investigation
elements that represent the path taken to reach that goal and demonstrate the applicability of
the developed modeling approach on several gear research topics. Thus, these elements merit a
discussion and presentation of their main conclusions.

Chapter 2: Mesh stiffness models comprises a broad and in-depth literature review on the
different types of gear mesh stiffness models while also providing guidelines for the selection
and implementation of the type of model that best suits the reader. Considering the literature
review, gear mesh stiffness has consistently been studied and it is still of great concern for gear
engineers. Four types of gear mesh stiffness model were found: (i) analytical; (ii) finite element;
(iii) hybrid and (iv) approximate analytical.

Analytical models express the gear mesh stiffness through the usage of analytical expressions
acquired from material mechanics. The most common analytical model found in the literature is
the potential energy method where the gear tooth is modeled as a cantilever beam fixed at the
dedendum circle. They have low computational cost and flexibility in incorporating geometrical
modifications, hence it shows applicability for teeth damaged with pitting, spalling and/or cracks.
On the other hand, it requires an analytical description of the gear tooth geometry and numerical
integration for every contact point which is not very computationally efficient neither for its
implementation nor for multiple computations.

Finite element models can have high geometrical and contact detail and thus are considered
to be the most accurate type fo gear mesh stiffness model - used as reference for validation of
other models. The different softwares, gear body modeling procedure, types of elements and
mesh stiffness determination are discussed. Different element meshing strategies are debated to
guarantee that critical meshing regions (tooth contact and root) are properly accounted while
keeping computational cost to the minimum. The biggest drawback for finite element models
is their high computational cost which make them impractical for repeated gear mesh stiffness
estimations.

Hybrid models were developed with the objective of reducing the computational cost of finite
element models by coupling them with analytical procedures. Using this hybrid approach, the
global deformations are estimated with the finite element method while the local (contact)
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deformations are determined with analytical models. The implementation of this type of models
requires the removal of the contact deformations from the finite element analysis and combination
of these results with analytically estimated contact deflections. Hybrid models show improved
computational cost when comparing to finite element models with the cost of a reduction (not
significant) in the accuracy of the results.

Approximate analytical models are denoted for reducing expensive numerical calculations to
an approximate and straightforward expression. Presented models resort to a parabolic/cosine
function to describe the single tooth pair (slice) mesh stiffness. Their computational cost is
the lowest and its implementation is the simplest from all types of models. In opposition, their
accuracy is not their strength.

This chapter lead to the conclusion that the best gear mesh stiffness modeling strategy for
consecutive gear mesh stiffness calculations are approximate analytical models.

Chapter 3: Single tooth pair slice mesh stiffness develops an approximate expression
for the single tooth pair slice mesh stiffness in order to improve accuracy of approximate gear
mesh stiffness models. Since the accuracy was the biggest flaw for this type of models, the work
presented in this chapter aims to solve it. The main approximation performed in this type of
models is in the single tooth pair (slice) mesh stiffness which is commonly assumed as having a
symmetrical shape along the path of contact and with its value establish by the ISO 6336 [141].

The single tooth pair slice mesh stiffness is divided into three components: the tooth pair
structural stiffness (includes the tooth bending, shear and axial compressive deformations), the
fillet-foundation stiffness (to account for the gear hub radius) [78; 79] and the contact stiffness [77].
With the fillet-foundation and contact stiffnesses already presenting simple yet good estimations,
this chapter focuses on the tooth pair structural stiffness. The work developed consists on a
series of fits to the results obtained using the potential energy method and maximum stiffness
values from ISO 6336 [141] for a comprehensive range of gear parameters. The tooth pair
structural stiffness has a parabolic shape and requires three modeling parameters to fully define
it: the relative amplitude, the asymmetry parameter and the maximum stiffness value. When
investigating how each variable influences the quality of the approximation, it was found that
the number of teeth of the pinion presents the best correlation - lower number of teeth of pinion
implies a worse approximation.

As an output, an alternative to the potential energy method is presented with an easier im-
plementation and without requiring numerical integration. In addition, with the formulation
developed for the single tooth pair slice mesh stiffness, the accuracy of approximate gear mesh
stiffness models is improved.

Chapter 4: Gear modeling is divided into three main parts, the developed gear mesh stiffness
model, the implemented gear-shaft-bearing dynamic model and a parametric study on the effect
of the asymmetry parameter (presented in the previous chapter).

The gear mesh stiffness model resorts to the slicing method which consists on dividing the gear
body into slices along the axis of rotation and by staggering them to create the approximate
gear body. This methodology is commonly applied for helical gears since this way they can be
viewed as a combination of several spur gears but it can also be used for spur gears to consider
changes along the facewidth. The single tooth pair slice mesh stiffness is the starting stiffness
point leading to the gear mesh stiffness and is defined with the approximate expression developed
in the previous chapter. To define continuity along the gear body, the slices are connected
through a coupling parabolic function. The model considers the phenomena of extension of
contact (contact outside the theoretical path of contact), buttressing (stiffness reduction due
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to not having a full supporting tooth in the load direction) and profile modifications (tip and
root relief for linear and parabolic shapes). The procedure implemented to account for profile
modifications allows for any alteration in the tooth shape, meaning manufacturing errors can
be as easily included in the model. Regarding the gear transmission dynamic model, gears are
included as rigid disks by their base radii with a time-varying mesh stiffness representing their
meshing - tooth contact loss is considered but not back-side contact. Shafts are modeled with
the finite element method (Timoshenko beam elements). Bearings are introduced as lumped
stiffnesses. Damping is included in the modal form with a global damping ratio. Unconditionally
stable Newmark method is implemented to solve the equation of motion.

Being the single tooth pair (slice) mesh stiffness considered symmetric in most approximate gear
mesh stiffness models found in the literature, a parametric study on its influence is conducted.
However, the asymmetry parameter at stake is from one of the components of the single tooth pair
slice mesh stiffness, the tooth pair structural stiffness. To perform this study, two batches (one
for spur and other for helical) of 10000 random gear geometries representing the gear geometrical
domain are created. For each batch, the gear mesh stiffness, load sharing ratio, oscillating
component of both the dynamic transmission error and dynamic mesh force are computed -
comprising a total of 80000 gear quasi-static and dynamic evaluations. It was concluded that
even though the tooth pair structural stiffness asymmetry does not impose significant differences
on the shape of quasi-static gear characteristics, pronounced deviations are found at a dynamic
level due to changes in the frequency content of the gear mesh stiffness.

With this chapter, the successful development of a low computational cost gear mesh stiffness
model giving accurate estimations is settled. An example of application of the newly developed
model for repeated calculations is done, revealing its potential as a powerful tool for exploratory
investigations. The low computational cost approach results, according to the work in this
chapter, in an average gear mesh stiffness computation time (intel(R) core(TM) i7-9700 CPU
with 64 GB of memory RAM at 2667 MHz - Matlab® R2023a) of 5.1 ms for spur gears and 1.0
s for helical gears.

Chapter 5: Integer overlap ratio gears: preliminary study includes the development of
integer overlap ratio gears with a previously developed methodology [8]. By varying the overlap
ratio through the modification of the gear facewidth, numerical testing of the gear mesh stiffness,
dynamic behavior and emitted noise level is performed.

For the gear mesh stiffness and dynamic analysis the models in chapter 4 are employed while for
the estimation of the emitted noise level the semi-empirical expression by Masuda et al. [197]
is utilized. Increasing the overlap ratio does not necessarily mean a decrease in the gear mesh
stiffness fluctuations but minimum gear mesh stiffness fluctuations are found for integer values of
the overlap ratio. Alternatively, from a dynamic point of view, increasing the overlap ratio leads
to an overall decrease in the dynamic transmission error fluctuations yet minimums are still for
integer values of the overlap ratio. According to the noise level evaluation, there is not a clear
minimization of the noise level for integer overlap ratios as minimums can occur for εβ = 1.00,
1.50, 2.00 and/or 2.50 depending on the speed analyzed: εβ = 1 is the only value with consistent
decrease.

Results indicate a high potential for this gear design concept (integer overlap ratio gears) in
terms of reducing gear mesh stiffness fluctuations and dynamic excitation.

Chapter 6: Gear design optimization consists on the application of an implemented genetic
optimization algorithm to study how a gear mesh stiffness and dynamic objective functions
compare to obtain a gear design (macro-geometry) with reduced dynamic excitation. Gear mesh
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stiffness has a significantly lower computational cost when compared to the dynamic evaluation
so finding a way to replace the latter to obtain equivalent gear designs grants the possibility for
a more exploratory and in-depth analysis.

Two different optimization problems, one more restrictive than the other, are solved simultaneously
with the gear mesh stiffness and dynamic objective functions. Final gear designs are mostly
concentrated around a contact ratio of εα = 2.00 and spread along an overlap ratio εβ = 1.00 -
results in agreement with the study conducted in chapter 5 and excellent indicator for the integer
overlap ratio gear design concept. Minimization of gear mesh stiffness fluctuations leads to a
minimization of the dynamic excitation and minimization of the dynamic transmission error
oscillating component originates gears with minimized mesh stiffness fluctuations. However, the
gear mesh stiffness approach is insensible to the location of critical frequencies, in opposition to
the dynamic approach that can adjust the mass and stiffness for improved dynamic behavior in
the working speed range.

The proposed optimization approach consists in using the gear mesh stiffness fluctuations as the
objective function with information on the natural frequencies of the dynamic system (modal
analysis with average gear mesh stiffness value) - yielding a gear dynamic optimization process
while avoiding direct computation of the dynamic response.

7.2. Future work
Future work addresses ideas that came up during the philosophiae doctor as well as other
approaches to problems to which solutions were presented.

• research on approximate procedures for the axial gear mesh stiffness and improve the range
of gear geometry applicability for the fillet-foundation stiffness considering coupling effects;

• influence of gear facewidth modifications and misalignment errors on the gear mesh stiffness,
dynamic behavior and meshing efficiency - by taking advantage of the slicing method this
effects can be included as modifications in the separation distance;

• dynamic modeling of gear behavior while considering the dynamic load to iterate the gear
mesh stiffness at each time step and modeling of multi-mesh transmissions;

• study of the shooting method (numerical solver for nonlinear systems) as an alternative for
the Newmark method to solve the equations of motion in a gear transmission system: faster
computation of the dynamic response and directly output of the steady-state response.

• evaluation of gear meshing efficiency considering the dynamic response: large-scale para-
metric study;

• experimental testing of integer overlap ratio gears on mesh stiffness, dynamic response and
noise level for the proof of concept;

• gear design optimization at macro- and micro-geometry levels - the developed gear mesh
stiffness model has the capability to include micro-geometry parameters.
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