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Abstract

This study explores the application of machine learning in the prediction of stroke occurrences, a

critical task in healthcare with the potential to save lives and reduce the impact of this life-altering

medical event. Leveraging the "Healthcare Stroke Data" dataset, we employed two powerful

classification models, the Random Forest and Support Vector Machine (SVM), to forecast stroke

likelihood. Our analysis encompasses data preprocessing, model training, and comprehensive

evaluation using classification metrics and confusion matrices. The study reveals the trade-offs

between accuracy, recall, precision, and the F1 score in both models. While the Random Forest

exhibits higher accuracy, the SVM excels in recall, a crucial factor in healthcare. Precision challenges

in both models highlight the need for further refinement. Additionally, we conducted a feature

importance analysis, emphasizing the pivotal role of age, BMI, and glucose levels in stroke prediction.

This work exemplifies the potential of machine learning in healthcare and contributes to ongoing

efforts in improving stroke prediction and prevention.

Keywords: Stroke prediction, machine learning, classification models, data preprocessing, Random

Forest, Support Vector Machine, healthcare, feature importance analysis, classification metrics,

confusion matrices, public health.

Introduction

Strokes are life-altering medical events that can have severe consequences, ranging from permanent

brain damage to fatality. The ability to accurately predict and identify individuals at a higher risk of

experiencing a stroke is not only crucial for public health but also for ensuring timely medical

SciELO Preprints - This document is a preprint and its current status is available at: https://doi.org/10.1590/SciELOPreprints.7182

https://orcid.org/0000-0002-8599-9436


intervention. In this article, we delve into the realm of predictive healthcare by harnessing the power

of machine learning to create classification models aimed at forecasting the likelihood of a patient

suffering a stroke. Our pursuit of accurate stroke prediction is underpinned by the utilization of the

"Healthcare Stroke Data" dataset, a publicly accessible treasure trove of information pertinent to

stroke occurrences.

As we embark on this journey, it is essential to acknowledge the wealth of research that has paved the

way for predictive models in stroke analysis. A thorough understanding of these past endeavors not

only informs our approach but also exemplifies the collaborative spirit of the scientific community.

For instance, Sudha et al. emphasized the effectiveness of classification methods in stroke prediction

(Sudha et al., 2012). In addition, Singh et al. (2017, 2020), Al-Zubaidi et al. (2022), and others have

made significant contributions to the field of stroke prediction, expanding our knowledge (Singh et

al., 2017; Singh et al., 2020; Al-Zubaidi et al., 2022).

The objectives of our study are threefold. First, we delve into the realm of data preprocessing,

transforming raw data into a format suitable for machine learning models. Second, we employ

powerful classification models, including the Random Forest and Support Vector Machine (SVM), to

make accurate stroke predictions. Finally, we undertake a comprehensive evaluation of these models,

assessing their performance through a range of classification metrics such as accuracy, recall,

precision, and the F1 score. Additionally, we visualize their performance using confusion matrices. By

addressing these objectives, we aim to not only create effective predictive models but also to identify

the pivotal factors that influence stroke occurrences, contributing to the ongoing pursuit of medical

advancements in stroke prediction.

In this endeavor, we strive to not only create robust predictive models but also to unravel the

enigmatic factors that influence stroke occurrences. As a key contributor to the expanding body of

knowledge on stroke prediction, our work aligns with the broader healthcare objective of minimizing

the impact of this life-altering medical event.

**Objectives of the Study:**

1. To preprocess healthcare data, making it suitable for machine learning models.

2. To implement Random Forest and Support Vector Machine models for accurate stroke predictions.

3. To evaluate model performance using classification metrics and confusion matrices.
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Data Preprocessing

In the data preprocessing phase of this study, we focused on enhancing the dataset's suitability for

building accurate stroke prediction models. Our initial step involved loading the dataset, a valuable

source of information related to strokes. During this phase, we addressed several critical aspects to

ensure data quality and usability.

One fundamental concern was the handling of missing values, which is essential to prevent

inaccuracies in our models. We specifically targeted missing BMI values and employed a Decision

Tree Regressor to impute these values. This approach considered the relationships between other

variables and BMI, contributing to the preservation of data integrity.

In addition to handling missing data, we encountered the need to encode categorical variables, as

many machine learning algorithms require numerical data. Variables such as 'gender,'

'Residence_type,' and 'work_type' were transformed into numerical representations during this

encoding step. This transformation was pivotal to make these variables compatible with the chosen

machine learning models.

Class imbalance, a common issue in medical datasets where positive cases (stroke occurrences) are

significantly outnumbered by negative cases, was another area of focus. To address this, we applied

various techniques like resampling to create a more balanced and representative dataset for our

models.

Lastly, to establish a baseline for our classification models, we calculated the inverse of the Null

Accuracy. This measure helps us gauge how well our models perform in comparison to a basic

predictive model that always predicts the majority class.

Classification Models

This study leverages the predictive capabilities of two robust classification models, the Random

Forest and the Support Vector Machine (SVM). Both models are well-established in the field of

machine learning and were chosen for their suitability in predicting strokes. To prepare these models

for this task, we designed comprehensive pipelines that encompassed critical steps.

An essential part of this preparation was feature scaling. Feature scaling is paramount to ensure that

variables with diverse scales do not unduly influence the model's performance. Scaling features helps
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prevent certain variables from dominating the learning process simply because of their scale. By

doing this, we ensure a fair assessment of each feature's contribution to the model.

These pipelines were meticulously constructed to incorporate feature scaling and the respective

model's implementation. This streamlined process ensures that all necessary steps are executed

efficiently, setting the stage for model training.

Following pipeline setup, we proceeded to train both the Random Forest and SVM models using our

preprocessed dataset. This foundational training phase establishes the basis for evaluating the

performance of our models in subsequent steps.

Performance Evaluation

Evaluating the performance of our classification models is a crucial aspect of our analysis. We utilized

a range of classification metrics to comprehensively assess the models' effectiveness in predicting

stroke occurrences.

The metrics included accuracy, which measures the overall correctness of our models in classifying

cases, offering insights into their general performance. Additionally, we evaluated recall, which

assesses the ability of our models to correctly identify true positive cases, a critical factor in

healthcare where identifying individuals at risk of stroke is of paramount importance. Precision was

also a key metric, gauging the accuracy of positive predictions made by our models. In healthcare

contexts, high precision is crucial to minimize false alarms and ensure the accuracy of positive

predictions. The F1 score, which balances precision and recall, provided a single metric to evaluate

the models' overall performance.

To provide a clear representation of our models' abilities, we visualized their performance using

confusion matrices. This visual aid helped us gain a deep understanding of the strengths and areas for

improvement in our models. Overall, the performance evaluation phase was vital for ensuring the

practical applicability of our predictive models.

Results

The Random Forest model exhibits an accuracy of 88%, implying that it successfully predicted 88%

of the cases in the test dataset. This suggests an overall reasonable performance in terms of correct

classifications. However, the model's recall is relatively low at 23%. It means that the model identified

only 23% of the actual positive cases, which could be concerning in a healthcare context. The
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precision score is also quite low at 11%, indicating that the model's positive predictions are

predominantly false positives. The F1 score, which balances precision and recall, is merely 15%,

reflecting the model's challenge in accurately identifying positive cases while minimizing false

positives.

On the other hand, the SVM model demonstrates an accuracy of 76%, which is lower compared to the

Random Forest model. Although it correctly predicted 76% of the cases, the recall score is notably

higher at 43%. This suggests that the SVM model excels in identifying positive cases, which is of

paramount importance in healthcare scenarios where correctly identifying individuals at risk of stroke

can be life-saving. However, the model's precision is only 9%, implying that most of its positive

predictions are false positives. The F1 score for the SVM model mirrors that of the Random Forest at

15%, indicating a similar trade-off between precision and recall.

In this comparison, the Random Forest model outperforms the SVM model in terms of accuracy.

However, it is crucial to acknowledge that accuracy alone may not provide the full picture,

particularly when dealing with imbalanced datasets. The SVM model shines in terms of recall,

indicating a better ability to identify individuals at risk of a stroke. In a healthcare context, this

characteristic can be critical. Nonetheless, both models struggle with precision, leading to a significant

number of false positives. This is a concern since false positives can trigger unnecessary medical

interventions and create anxiety for patients.

In conclusion, while the Random Forest model boasts a higher accuracy, the SVM model's superior

recall may be more valuable in a healthcare application. However, both models grapple with precision

issues, highlighting the need for further model refinement and feature engineering to mitigate false

positive predictions and enhance overall performance.

In addition to the analysis of accuracy, recall, precision, and the F1 score, it's important to consider the

practical implications of the model's performance in a healthcare setting. While the Random Forest

model demonstrates higher accuracy, its limited recall may result in a significant number of

undetected stroke cases, which could have severe consequences for patients. On the other hand, the

SVM model's superior recall highlights its potential to identify individuals at risk more effectively.

However, its low precision raises concerns about false positive predictions and the resulting burden on

healthcare resources and patient well-being. Striking a balance between these competing metrics and

addressing precision issues is crucial for creating a predictive model that can genuinely make a

positive impact on stroke prevention and patient care in real-world healthcare applications.
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The feature importance analysis provides valuable insights into the factors contributing to stroke

prediction. Age emerges as the single most influential feature, affirming the well-established

understanding that age is a predominant risk factor for strokes. This underlines the significance of

tailoring stroke prevention strategies to address the needs of older individuals, advocating for regular

health assessments, and promoting lifestyle adjustments to mitigate stroke risk effectively.
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BMI and average glucose levels follow closely in importance, indicating the strong connection

between obesity, diabetes, and stroke risk. High BMI values emphasize the need for weight

management and lifestyle changes, particularly in overweight or obese populations, while elevated

average glucose levels reinforce the importance of glycemic control and diabetes management to

reduce stroke risk.

Furthermore, work type, gender, hypertension, and heart disease, though relatively less important in

the model, all contribute to stroke prediction. This suggests that a comprehensive approach to stroke

prevention should encompass factors such as occupational stress, gender disparities in stroke risk, the

management of hypertension, and the care of individuals with heart disease. These findings offer a

holistic view of stroke risk factors and guide the development of targeted interventions to reduce the

incidence of strokes across diverse populations.

Conclusion

In conclusion, this article has presented a comprehensive analysis of classification models for stroke

prediction, showcasing the potential of machine learning in the field of healthcare. We embarked on

this journey by addressing critical data preprocessing steps, including handling missing values,

encoding categorical variables, and mitigating class imbalance. The utilization of the "Healthcare

Stroke Data" dataset allowed us to create effective predictive models that can play a pivotal role in

identifying individuals at a higher risk of experiencing a stroke.
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By employing the Random Forest and Support Vector Machine (SVM) models, we demonstrated how

machine learning techniques can be harnessed to make accurate stroke predictions. These models

were assessed using a range of classification metrics, including accuracy, recall, precision, and the F1

score, providing insights into their performance. Moreover, the visualization of model performance

through confusion matrices offered a clear representation of their capabilities to correctly classify

stroke and non-stroke cases.

The results of our analysis showcased the trade-offs between accuracy, recall, precision, and the F1

score in both the Random Forest and SVM models. While the Random Forest model exhibited higher

accuracy, the SVM model demonstrated superior recall, which can be particularly vital in a healthcare

context. However, both models encountered challenges in achieving high precision, leading to a

significant number of false positive predictions.

In addition to model performance, our feature importance analysis shed light on the critical factors

influencing stroke prediction. Age, BMI, and average glucose levels emerged as the most influential

features, emphasizing the role of these variables in stroke risk. This information can guide the

development of targeted interventions and preventive measures to reduce the incidence of strokes

across diverse populations.

This article serves as an illustrative example of the potential applications of machine learning in

healthcare, offering insights into the predictive capabilities of these models. It is essential to note that

while the presented models demonstrated promise, further refinement, feature engineering, and

optimization are necessary to address their limitations and enhance their accuracy and precision.

The work presented here aligns with the broader objective of leveraging data-driven approaches to

improve the prediction and prevention of critical medical events. Machine learning and data analysis

continue to be promising avenues for advancing healthcare, and our analysis contributes to this

ongoing pursuit. By adapting and extending the code and methodologies presented in this article,

researchers and healthcare professionals can explore deeper insights and enhance the accuracy of

stroke prediction models, ultimately making significant strides in public health and patient care.
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