
MiRitH: Efficient Post-Quantum Signatures from MinRank
in the Head

Gora Adj1 , Stefano Barbero2 , Emanuele Bellini1 , Andre Esser1 , Luis Rivera-Zamarripa1 ,
Carlo Sanna2 ⋆, Javier Verbel1 , Floyd Zweydinger1

1 Technology Innovation Institute, UAE
{gora.adj,emanuele.bellini,andre.esser,

luis.zamarripa,javier.verbel,floyd.zweydinger}@tii.ae
2 Politecnico di Torino, Italy

{stefano.barbero,carlo.sanna}@polito.it

Keywords: Digital Signature · MinRank · MPCitH · Post-Quantum · ZKPoK · Quantum Analysis

Abstract. Since 2016’s NIST call for standardization of post-quantum cryptographic primi-
tives, developing efficient post-quantum secure digital signature schemes has become a highly
active area of research. The difficulty in constructing such schemes is evidenced by NIST
reopening the call in 2022 for digital signature schemes, because of missing diversity in ex-
isting proposals. In this work, we introduce the new post-quantum digital signature scheme
MiRitH. As direct successor of a scheme recently developed by Adj, Rivera-Zamarripa and
Verbel (Africacrypt ’23), it is based on the hardness of the MinRank problem and follows the
MPC-in-the-Head paradigm. We revisit the initial proposal, incorporate design-level improve-
ments and provide more efficient parameter sets. We also provide the missing justification for
the quantum security of all parameter sets following NIST metrics. In this context we design
a novel Grover-amplified quantum search algorithm for solving the MinRank problem that
outperforms a naive quantum brute-force search for the solution.
MiRitH obtains signatures of size 5.7 kB for NIST category I security and therefore com-
petes for the smallest signatures among any post-quantum signature following the MPCitH
paradigm. At the same time MiRitH offers competitive signing and verification timings
compared to the state of the art. To substantiate those claims we provide extensive im-
plementations. This includes a reference implementation as well as optimized constant-time
implementations for Intel processors (AVX2), and for the ARM (NEON) architecture. The
speed-up of our optimized AVX2 implementation relies mostly on a redesign of the finite
field arithmetic, improving over existing implementations as well as an improved memory
management.

1 Introduction

The development of digital signature schemes that are efficient and post-quantum secure is a per-
sistent challenge. As so, the first standardization process for such schemes launched in 2016 by
the National Institute of Standards and Technology (NIST) failed to achieve the desired level of

⋆ C. Sanna was partially supported by the project SERICS (PE00000014) under the MUR National Re-
covery and Resilience Plan funded by the European Union – NextGenerationEU; and by the project
QUBIP (https://www.qubip.eu) under the Horizon Europe framework programme [grant agreement
no. 101119746] funded by the European Union.

https://orcid.org/0000-0002-9308-1510
https://orcid.org/0000-0003-2423-6061
https://orcid.org/0000-0002-2349-0247
https://orcid.org/0000-0001-5806-3600
https://orcid.org/0000-0002-1779-421X
https://orcid.org/0000-0002-2111-7596
https://orcid.org/0000-0003-1388-6667
https://www.qubip.eu


diversity among final candidates. This led to NIST initiating a renewed call for proposals whose
submission deadline recently passed in June 2023. For this new standardization effort to be success-
ful significant research efforts are required. In order to solve the problem of missing diversity, new
efficient schemes based on different hardness assumptions are required or established schemes need
to be enhanced to reach a competitive level. This requires a thorough examination on all levels
of the design process of those schemes, including their initial construction, parameter selection,
security justification as well as improved implementations for different platforms.

In this work we contribute to this challenge of defining the next post-quantum secure standards
by presenting the new post-quantum digital signature scheme MiRitH, currently submitted to the
renewed NIST call. At its core MiRitH is based on the recently proposed scheme by Adj, Rivera-
Zamarripa and Verbel [ARZV22], which itself is constructed via the Fiat–Shamir transform from a
zero-knowledge proof of knowledge (ZKPoK) following the MPC-in-the-Head (MPCitH) paradigm.
The security of the ARZV scheme and correspondingly the security of MiRitH rely on the hardness
of the well-established MinRank problem.

MiRitH extends and improves over the initial proposal from [ARZV22] in various ways, by
leveraging recent techniques from the literature as well as by introducing new design improve-
ments. We provide improved parameters and the so far missing quantum-security justification for
all parameter sets. Furthermore, we provide extensive implementations for the scheme, including a
reference implementation, as well as optimized constant-time implementations for Intel processors
(AVX2) and the ARM (NEON) architecture. Overall, MiRitH positions as a competitive post
quantum secure digital signature scheme.

Fiat–Shamir and MPCitH Signature schemes constructed from ZKPoKs via the Fiat–Shamir trans-
form have been popular ever since. In the context of solving the diversity challenges of currently
available post-quantum secure signature proposals those constructions have received even more
attention. Such schemes offer an alternative to trapdoor constructions by allowing to base secu-
rity on random instances of well-established problems. However, one significant limitation of these
constructions has been their relatively large signature sizes.

When transforming a ZKPoK into a signature scheme, the signature size is typically proportional
to the communication cost of the underlying ZK protocol. Consequently, a substantial portion
of the signature is composed of protocol-related messages, such as commitments and auxiliary
information, which are independent of the chosen problem foundation. However, the increased
interest in these constructions has led to various improvements at the protocol level [IKOS07,
KKW18, Beu20, AMGH+23] , significantly reducing this generic communication cost and in turn
decreasing the corresponding signature sizes.

One notable such improvement is the MPCitH paradigm [IKOS07], in which a prover simulates
all N parties of an MPC protocol (in his head). This MPC protocol is carefully designed so that
if all parties accept, it proves that the initial input shares of the parties form a witness for a valid
solution to the underlying problem. Following the simulation, the verifier challenges the prover to
disclose the initial states of all parties except one (chosen by the verifier), enabling the verification
of the correct simulation for N − 1 out of N parties. This generally leads to a ZKPoK with a
cheating probability, or soundness, of 1/N .

The introduction of MPCitH has initiated a whole line of research on constructions following
this paradigm [FJR22,BG23,FJR23,ARZV22,Wan22,FMRV22,Fen22,CNP+22,BBP+23,GPS22,
BGKM23]. Subsequently, numerous further protocol-level improvements have been proposed [KKW18,

2



KZ22,BG23,AMGH+23], some of which compatible with the MPCitH idea we have incorporated
into the construction of MiRitH.

The MinRank Problem and Related Constructions. MiRitH relies on the hardness of the MinRank
problem. This problem was introduced in [SFB96] and has been extensively studied due to its many
applications in cryptology, especially in cryptanalysis [KS99,GC00, BG06, BFP11, CSV17, Beu21,
Beu22,TPD21]. However, recently the problem became more popular as foundation for signature
schemes constructed via the Fiat–Shamir transform. Initiated by Courtois [Cou01] who proposed
the first signature scheme relying on the hardness of the MinRank problem and followed by an
extension due to Bellini, Esser, Sanna and Verbel [BESV22], called MR-DSS, leveraging the sigma
protocol with helper paradigm due to Beullens [Beu20]. The most recent and efficient constructions
are [ARZV22] shortly followed by [Fen22] which both rely on the MPCitH paradigm. Feneuil [Fen22]
proposes two constructions. The first relies on an MPC protocol similar to [ARZV22], which verifies
a matrix product relation of the form A · B = C that proves knowledge of the MinRank solution.
While the protocol in [Fen22] is a slightly more efficient special case of [ARZV22], the latter uses
a more efficient relation based on the Kipnis-Shamir modeling which involves smaller matrices
A,B,C. MiRitH incorporates the most efficient techniques of the two schemes. The second scheme
proposed in [Fen22] uses an MPC protocol for verifying roots of polynomials in Fq extensions, and
is mostly unrelated to [ARZV22] and MiRitH.

Our Contribution We present the new signature scheme MiRitH. MiRitH obtains competitive
signatures with 5.7 kB for NIST category I security. In comparison the schemes from [ARZV22] and
[Fen22] obtain 7.4 kB and 7.2 kB signatures respectively, while the scheme based on q-polynomials
given in [Fen22] is roughly on par with 5.5 kB signatures. Note that the q-polynomials version of
[Fen22] is the basis for the signature scheme MIRA [ABB+23c] which is also currently submitted to
the NIST process. MIRA also obtains signatures of roughly same size with 5.6 kB for NIST category
I security. MiRitH is therefore in competition for the smallest signatures for any construction based
on the MPCitH paradigm.

Furthermore, our optimized constant-time implementations show that MiRitH offers greatly
competitive performance. At 5.7 kB signature size, signing and verification can be performed in
roughly 30 MCycles using our AVX2 implementation, which improves on MIRA’s 40 MCycles by
about 25%. Our NEON implementation offers even better performance allowing for signing and
verification in about 20 MCycles.

Our benchmarks on a single benchmarking platform reveal that the true speed advantage of
MiRitH over MIRA is almost 50% for short signatures (around 5.7 kB) and about a factor of x10
for the faster instantiations of both schemes. The speed advantage for fast instantiations stems from
the fact that MiRitH offers great size-performance trade-offs. An increase of the signature to 7.9
kB allows for a speedup of a factor roughly x6. More precisely, signing and verification in that case
can be performed at 5 MCycles using our AVX2 implementation and 3 MCycles using our NEON
implementation.

In order to obtain those improvements and to build a solid foundation for MiRitH, we provide
improvements on multiple levels of the design process. In the following we categorize the different
contributions.

Design Related Improvements First, we improve the core of the construction, namely the MPC
protocol used to prove the matrix product relation, using two improvements found in the literature.

3



The first originates from Kales and Zaverucha [KZ22, Section 2.5] and also found application in
[Fen22]. This improvement is related to the aforementioned more efficient special case. Second, we
apply a technique by Feneuil [Fen22] to reduce a challenge matrix sent by the verifier at the expense
of increasing the soundness error originating from guessing that challenge.

Additionally, in [ARZV22] the challenge matrix has to be sampled from an exceptional set, which
is not necessary for MiRitH, improving performance. We provide the updated security statements
and outline differences to the proofs from [ARZV22] whenever necessary. For the self-contained full
proofs we refer to the corresponding specification document of which an anonymized version can
be found in the supplementary materials.

Additionally, we translate to MiRitH the recent MPCitH-hypercube technique by Aguilar-
Melchor et al. [AMGH+23], introduced in the context of a ZKPoK proving knowledge of a solution
to the syndrome decoding problem. This technique allows to achieve the same soundness as an
MPC protocol with ND parties by only simulating D MPC protocols with N parties each. As
still input shares for ND parties have to be prepared, the input preparation starts dominating the
computation time rather quickly. However, we show that in our setting, the hypercube technique
allows to speed up signing and verification by more than 2.5 times.

Parameters and Security Justification We provide re-optimized parameters for the NIST security
categories I, III and V, showing that some of the previous suggestions from [ARZV22] were slightly
suboptimal.

Additionally, we provide the missing quantum security justification for all parameter sets. There-
fore we construct a novel quantum search enhanced algorithm that outperforms a naive Grover
improved brute-force for the MinRank solution. Our algorithm exploits the Kipnis-Shamir model-
ing, which models knowledge of a MinRank solution as a matrix vector product involving a secret
matrix K. We show that a subset of columns of K relates to a matrix with a rank defect which can
be used to distinguish those columns from random ones in the search process, allowing to construct
an oracle. Furthermore we show at the same time that knowledge of these few columns of K is al-
ready sufficient to recover the MinRank solution. Subsequently, we show that under NIST quantum
security metrics, which restrict the maximum depth of the used quantum circuit, all parameter sets
have a positive security margin, i.e., they exceed the defined quantum security thresholds.

Implementations and Benchmarks We provide extensive implementations for MiRitH in form
of a first reference implementation as well as optimized constant-time implementations for Intel
processors (AVX2) and the ARM architecture (NEON)3. For the ARM architecture we provide an
implementation for high performance devices such as the Mac M1 as well as for low-power units
such as the Cortex-M4. We provide all these implementations with and without the hypercube
improvement from [AMGH+23].

In the context of our optimized implementation we provide a new improved matrix arithmetic
leveraging AVX2 instructions that outperform previous implementations from [BCH+23]. This is
achieved in two ways: first we replace the needed lookup table of [BCH+23], with an efficient use
of the vpblendvb instruction. Second, as the matrices in MiRitH are generally small we load the
full matrices directly into the necessary registers, rather than having to move rows or columns into
memory during computation.

Further we provide a comparison of MiRitH to other NIST submissions following the MPCitH /
Fiat-Shamir paradigm. In this comparison we compare public key and signature sizes as well as key

3 Available at https://github.com/Crypto-TII/mirith_nist_submission

4

https://github.com/Crypto-TII/mirith_nist_submission


generation, signing and verification speed (compare to Table 6). In this context we re-benchmark
all considered schemes on a single benchmarking platform to enable a fair comparison.

Outline. In Section 2 we cover general notations, introduce the MinRank problem and recall the
ARZV scheme. In Section 3 we then introduce MiRitH in full detail. Subsequently in Section 4 we
provide updated parameters for MiRitH for the different NIST security categories. In Section 4.2
we describe our new quantum algorithm and analyze quantum security of the suggested parameter
sets. Eventually, in Section 5 we give insights on our optimized constant-time implementations and
comparison to other NIST candidates.

2 Preliminaries

2.1 General Notation

Let Fq be a finite field of q elements, let Fm×n
q be the vector space of m× n matrices over Fq, and

let Rank(M) be the rank of the matrix M . We define [i] := {1, 2, . . . , i} for every positive integer i.
Further, let log be the logarithm in base 2. We write a← A(x) if a is the output of an algorithm A
on input x and a

$← S if a is sampled uniformly at random from the set S. We use a← PRG(seed)
if a is generated by the pseudorandom generator PRG using the seed seed. In the following Hash
denotes a cryptographic-secure hash function.

Additive Sharing We recall that an additive sharing of an element a is a tuple JaK := (JaK1 , . . . , JaKN )

such that a =
∑N

i=1 JaKi. In the MPC context, an additive sharing JaK is distributed between
N parties, i.e., each party obtains one of the N shares JaKi. The linearity of the sum allows the
parties to compute certain operations such as the summation of elements on individual shares, while
maintaining a valid additive share for the result of that operation. Such operations include the sum
of elements, since Jx+ yK = JxK + JyK, and the multiplication by a constant c, as Jc · xK = c · JxK.
Further the addition of a constant can also be modeled since Jc+ xK = (JxK1 , . . . , JxKN−1 , c+JxKN ),
i.e., only one party performs the addition.

2.2 MinRank Problem and Kipnis–Shamir Modeling

The MinRank problem is the underlying hard problem of MiRitH.

Problem 1 (MinRank). Let q,m,n,k, and r be positive integers, with q a prime power. The MinRank
problem with parameters (q,m, n, k, r) is defined as:

Given: (k + 1)-tuple M = (M0,M1, . . . ,Mk) ∈ (Fm×n
q )k+1.

Find: α = (α1, . . . , αk) ∈ Fk
q such that Rank

(
M0 +

∑k
i=1 αiMi

)
≤ r.

To prove the knowledge of a MinRank solution we use the Kipnis–Shamir modeling [KS99],
which is based on the following fact. Given an instance M of the MinRank problem, if there exists

a vector α ∈ Fk
q and a matrix K ∈ Fr×(n−r)

q such that(
M0 +

k∑
i=1

αiMi

)
·
[

I
−K

]
= 0, (1)

5



where I ∈ F(n−r)×(n−r)
q is a non-singular matrix, then α is a solution to the instance M .

If in Eq. (1) we fix I to be the identity matrix of size (n− r)× (n− r), then we obtain

ML
0 +

k∑
i=1

αiM
L
i =

(
MR

0 +

k∑
i=1

αiM
R
i

)
·K, (2)

where for any matrix A ∈ Fm×n
q , we let AL, respectively AR, be the matrix consisting of the first

n − r columns, respectively the last r columns, of A. Further, this allows to rewrite Eq. (2) as

ML
α = MR

α ·K, with Mα := M0 +
∑k

i=1 αiMi.

2.3 The ARZV Signature Scheme

In its core the ARZV scheme relies on an MPC protocol Π to verify matrix-multiplication triples in
zero-knowledge, which was introduced together with the scheme in [ARZV22]. A matrix-multiplication
triple is a set (X,Y, Z) of matrices fulfilling X · Y = Z. This protocol Π is then used to verify the
triple (ML

α ,MR
α ,K), i.e., to show that this triple satisfies the Kipnis-Shamir equation from Eq. (2),

which in turn proves that α is a solution to the MinRank problem defined on the matrices M .
In order to verify a matrix-multiplication triple, the protocol requires as input an auxiliary

matrix-multiplication triple (A,B,C) (shared among the parties). This auxiliary triple is used in
the verification process, but no information on it is revealed.

From there the scheme is constructed using the general MPCitH framework to first construct a
ZKPoK in which the prover simulates all MPC parties and then relies on the Fiat-Shamir transform
to obtain a EUF-CMA secure signature scheme in the random oracle model.

3 MiRitH Signature Scheme

In this section, we present a new MPCitH-based signature scheme called MiRitH. We first describe
its underlying MPC protocol, denoted by Πs, and its corresponding proof of knowledge protocol.
Afterwards, we outline the signature scheme which is obtained by employing the Fiat-Shamir trans-
formation.

3.1 MPC Protocol

MiRitH uses an MPC protocol with additive shares between N parties to verify the validity of a
MinRank solution via the Kipnis-Shamir modeling, i.e., the protocol verifies that ML

α = MR
α ·K

(compare to Section 2.2). Therefore, each party i holds an additive share JαKi of the MinRank

solution α, such that JαK =
∑N

i=1 JαKi, and an additive share JKKi of the matrix K, such that

JKK =
∑N

i=1 JKKi. Based on its shares, each party can construct its own share of ML
α and MR

α .
Once each party obtained its input shares the protocol Πs is executed. Similarly to [ARZV22],

MiRitH uses a MPC protocol to prove that the shares of (ML
α ,MR

α ,K) of all parties form a valid
matrix-multiplication triple, which in turn proves knowledge of the MinRank solution. However,
the MPC protocol employed by MiRitH, which we call Πs, improves upon the protocol introduced
in [ARZV22] in several ways. In Fig. 1, we outline the full protocol Πs that verifies the validity of
the solution α with a false-positive rate of 1/qs in the semi-honest setting, i.e., when all the parties
follow the protocol. The improvements of Πs over the MPC protocol of [ARZV22] are the following.

6



First, the used auxiliary matrix-multiplication triple (A,B,C) is chosen as (A,K,C) with A
being chosen randomly, rather than A and B being chosen randomly. Besides involving one ma-
trix less this leads to further cancellation effects in the subsequent computations, which results in
increased efficiency.

Second, the random matrix R has no special structure, while the protocol in [ARZV22] requires
to select R from a special set of exceptional matrices, which is computationally more expensive.
Third, employing an optimization by Feneuil [Fen22], the random matrix R is chosen to have size
s×m, with s < m. This consequently reduces the size of the matrices S, C and K in Fig. 1 which
in turn reduces the communication cost and ultimately the signature size.

Inputs: Each party knows the MinRank instance M and takes a share of the following

sharings as input: JαK and JKK, where α ∈ Fk
q and K ∈ Fr×(n−r)

q ; JAK, where A has been

uniformly sampled from Fs×r
q ; and JCK, where C = A ·K.

MPC Protocol:

1 : The parties locally compute JML
αK and JMR

α K.
2 : The parties get a random matrix R

$← Fs×m
q .

3 : The parties locally set JSK = R · JMR
α K + JAK.

4 : The parties open JSK so that they all obtain S.

5 : The parties locally compute JV K = S · JKK−R · JML
αK− JCK.

6 : The parties open JV K to obtain V .

7 : The parties output accept if V = 0 and reject otherwise.

Fig. 1. The MPC protocol Πs to check that ML
α = MR

α ·K.

Proposition 1 states the correctness the protocol Πs (Fig. 1) and its false-positive rate.

Proposition 1. If ML
α = MR

α ·K then the protocol Πs in Fig. 1 always outputs accept. If ML
α ̸=

MR
α ·K then Πs outputs accept with probability at most 1/qs.

Proof (Proof (sketch)). Correctness easily follows. If ∆ := ML
α −MR

α · K ̸= 0 then Πs accepts
if and only if R · ∆ = 0 and, by the Rouché–Capelli theorem, the number of such R’s is at most
q(m−1)s, thus the claim follows.

3.2 ZKPoK for MinRank

Starting from the MPC protocol Πs, we build a ZKPoK of a solution to an instance of the MinRank
problem via a 5-pass protocol. A pseudocode of the ZKPoK is shown in Fig. 2. It employs a
commitment scheme Com, a pseudorandom generator PRG, and a seed tree TreePRG. The phases
of the protocol can be interpreted as follows

1) The prover prepares all inputs for the different parties of the MPC protocol and commits to
those initial states.

7



ZKProof(Prover(M ,α,K), Verifier(M))

Phase 1: Prover sets up the inputs for the MPC protocol Πs:

1 : seed
$← {0, 1}λ, (seedi, ρi)i∈[N ] ← TreePRG(seed)

2 : For each party i ∈ [N − 1]

JαKi, JKKi, JAKi, JCKi ← PRG(seedi)

statei ← seedi

3 : JαKN ← α−
∑

i ̸=N
JαKi, JKKN ← K −

∑
i ̸=N

JKKi

4 : JAKN ← PRG(seedN ), JCKN ← A ·K −
∑

i ̸=N
JCKi

5 : aux← (JαKN , JKKN , JCKN) , stateN ← (seedN , aux)

6 : Commit to each party’s state: comi ← Com
(
statei, ρi

)
, for all i ∈ [N ].

7 : Prover computes h1 ← Hash(com1, . . . , comN) and sends it to Verifier.

Phase 2: Verifier samples R
$← Fs×m

q and sends it to Prover.

Phase 3: Prover simulates the MPC protocol Πs:

8 : The parties locally compute JML
αK and JMR

αK.
9 : The parties locally set JSK = R · JMR

αK + JAK.
10 : The parties open JSK so that they all obtain S.

11 : The parties locally compute JV K = S · JKK−R · JML
αK− JCK.

12 : Prover computes h2 ← Hash
(JSK1, JV K1, . . . , JSKN , JV KN

)
.

13 : Prover sends h2 to Verifier.

Phase 4: Verifier samples i∗
$← [N ] and sends it to Prover.

Phase 5: Prover sends rsp :=
(
(statei, ρi)i̸=i∗, comi∗, JSKi∗

)
to Verifier.

Verification:

14 : Verifier recompute (JSKi, JV Ki)i ̸=i∗ from (statei)i ̸=i∗ .

15 : JV Ki∗ ← −
∑

i̸=i∗
JV Ki

16 : Verifier accepts if and only if comi = Com(statei, ρi), for each i ̸= i∗,

h1 = Hash(com1, . . . , comN), h2 = Hash
(JSK1, JV K1, . . . , JSKN , JV KN

)
.

Fig. 2. Zero-knowledge proof of knowledge for MinRank.

2) The verifier provides the first challenge R ∈ Fs×m
q .

3) The prover executes the MPC protocol Πs for each party based on the challenge R and commits
to the final views of all parties.

4) The verifier provides the second challenge i∗ ∈ [N ].

5) The prover opens all commitments corresponding to parties i ̸= i∗ and provides the final view of
party i∗, to allow the verifier to recompute all parties’s views and commitments of the protocol.

8



It can be proven that the protocol described in Fig. 2 is correct, honest-verifier ZKPoK, and
sound with soundness error

ε :=
1

qs
+

(
1− 1

qs

)
1

N
.

Proofs for these statements follow mostly along the lines of the proofs provided in [ARZV22]. Only
the change to a different first challenge matrix R leads to minor necessary adaptations.

3.3 Signature Scheme via the Fiat–Shamir Transform

To transform the ZKPoK of Fig. 2 into a non-interactive signature scheme, which we call MiRitH,
we use a standard generalization of the Fiat–Shamir transform for canonical 5-pass protocols [FS87].
We provide the corresponding algorithms for signing and verification in Fig. 4 and Fig. 5.

Theorem 1 shows that MiRitH is existentially unforgeable under adaptive chosen-message at-
tacks in the random oracle model.

Theorem 1 (Unforgeability). Suppose that PRG is (t, εPRG)-secure and that any adversary
running in time t has at most an advantage εMR against the underlying MinRank problem associated
with a public key M . Moreover, assume that Hash0, Hash1, and Hash2 are modeled as random
oracles. Let A be an adaptive chosen-message adversary against the signature scheme described in
Fig. 4, running in time t, making qs signing queries, and qi queries to Hashi for i = 0, 1, 2. Then
A succeeds in outputting a valid forgery with probability

Pr [Forge] ≤ 3(q0 + τNqs)
2

22λ+1
+

qs(qs + q0 + q1 + q2)

22λ
+ qsτεPRG + εMR + max

0≤t≤τ
P (t),

where P (t) =

(
1−

[
1−

(
1
qs

)t(
1− 1

qs

)τ−t(
τ
t

)]q1)(
1−

[
1− 1

Nτ−t

]q2)
.

Proof. This theorem is essentially obtained from Theorem 4 of [ARZV22] by considering the prob-
ability 1

qs instead of 1
qn due to the corresponding change to the ZKPoK in Section 3.2.

Key Generation The uncompressed public and secret key of our scheme are a random instance M
of the MinRank problem and the corresponding witness (α,K), respectively. If stored directly, this
would require mn(k+1) log q bits for the public and

(
k+ r(n− r)

)
log q bits for the secret key. We

employ the original key generation scheme which compresses the public key into λ+mn log q bits
and the secret key into λ bits. This key generation scheme is detailed in Fig. 3.

We remark that using the key generation scheme proposed by Di Scala and Sanna [DSS23] would
allow to compress the public key further to λ+(m(n− r)− k) log q bits, at the cost of computation
time.

3.4 Hypercube Variant

Recently, Aguilar-Melchor et al. [AMGH+23] introduced a general technique, called hypercube, that
makes possible to reduce from ND to only ND the number of parties that an MPCitH based on a
linear secret sharing needs to simulate. They applied the hypercube to a MPCitH for the syndrome
decoding problem to produce a code-based digital signature. In MiRitH, we applied the hypercube

9



KeyGen()

1 : (seedpk, seedsk)
$← {0, 1}λ × {0, 1}λ

2 : M1, . . . ,Mk ← PRG(seedpk)

3 : α,K,ER ← PRG(seedsk)

4 : E ← ER ·K | ER

5 : M0 ← E −
k∑

i=1

αiMi

6 : pk← (seedpk,M0)

7 : sk← seedsk

return (pk, sk)

DecompressPK(pk)

1 : seedpk,M0 ← pk

2 : M1, . . . ,Mk ← PRG(seedpk)

return (M0, . . . ,Mk)

DecompressSK(sk)

1 : seedsk ← sk

2 : α,K,ER ← PRG(seedsk)

return (α,K)

Fig. 3. Algorithms for generating, compressing, and decompressing the keys.

technique to our MPCitH of MinRank. In the following, we briefly describe how the technique is
applied. Overall, the hypercube application results in further computational speedups.

Consider the original ZKPoK from Fig. 2 with ND parties (instead of N). In this ZKPoK
protocol, the shares for the ND parties, which are called leaf parties in the following, are set up
and committed as usual. So, the hypercube variant uses the same initialization.

However, instead of running an MPC protocol on ND parties, the hypercube variant expresses
each leaf party i ∈ [ND] as coordinates in a D dimensional hypercube with sides of length N . Hence,
each leaf party i is uniquely identified via a set of coordinates (i1, . . . , iD) ∈ [N ]D. Next, D sets of N
main parties each are constructed from the leaf parties. On each of those sets follows an execution
of the MPC protocol with N parties. The share JXK(k,j) of a value X, k ∈ [D], j ∈ [N ], for the
j-th main party in the k-th set, is defined as the sum of all leaf party shares that have coordinates
lying on the j-th hyperplane orthogonal to the k-th dimension. Put differently, the share JXK(k,j) is
the sum of the shares JXKi held by the leaf parties i = (i1, . . . , iD) having ik = j. Straightforward
computations show that by this construction method each of the values from the original protocol,
i.e., α, K, A and C, is recovered by summing all corresponding shares of the N main parties in one
set.

All D MPC protocols are executed in parallel on the same initial challenge R. The rest of
the protocol proceeds as usual. That is, the verifier provides a second challenge value i∗ ∈ [N ]D

corresponding to one of the leaf parties. The prover then reveals all initial states of the leaf parties
except for leaf party i∗, for which it provides the corresponding communication. The reason for
the resulting protocol offering the same soundness as an MPC protocol with ND parties lies in the
specific crafting of the input shares, namely, disclosing all but one of the leaf party shares discloses
the value of all but one main party share per set. For the full details we refer to [AMGH+23].

The communication complexity of the hypercube variant is equivalent to the non-hypercube
variant with ND parties. However, the hypercube approach still offers a two-fold advantage. First,
the computational complexity is improved by having to simulate exponentially fewer parties (N ·D
instead of ND). Second, even though ND initial states have to be prepared for the leaf parties,

10



Sign(M ,α,K,msg)

1 : salt
$← {0, 1}2λ

Phase 1: Set up the views for the MPC protocols

for ℓ ∈ [τ ] do

2 : seed(ℓ)
$← {0, 1}λ, (seed

(ℓ)
i )i∈[N ] ← TreePRG(salt, seed(ℓ))

for i ∈ [N − 1] do

3 : JA(ℓ) Ki, Jα(ℓ) Ki, JC(ℓ) Ki, JK(ℓ) Ki ← PRG(salt, seed
(ℓ)
i )

4 : state
(ℓ)
i ← seed

(ℓ)
i

5 : JA(ℓ) KN ← PRG(salt, seed
(ℓ)
N ), Jα(ℓ) KN ← α−

∑
i ̸=N

Jα(ℓ) Ki
6 : JK(ℓ) KN ← K −

∑
i̸=N

JK(ℓ) Ki, JC(ℓ) KN ← A(ℓ) ·K −
∑

i ̸=N
JC(ℓ) Ki

7 : aux(ℓ) ← (Jα(ℓ) KN , JK(ℓ) KN , JC(ℓ) KN ), state
(ℓ)
N ← (seed

(ℓ)
N , aux(ℓ))

8 : com
(ℓ)
i ← Hash

(
salt, ℓ, i, state

(ℓ)
i

)
, for all i ∈ [N ]

Phase 2: First challenges

9 : h1 ← Hash
(
msg, salt, (com

(ℓ)
i )i∈[N ],ℓ∈[τ ]

)

10 : R(1), . . . , R(τ) ← PRG(h1)

Phase 3: Simulation of the MPC protocols

for ℓ ∈ [τ ] do

11 : Compute JML,(ℓ)
α K, JMR,(ℓ)

α K from Jα(ℓ) K
12 : JS(ℓ) K← R(ℓ) · JMR,(ℓ)

α K + JA(ℓ) K
13 : S(ℓ) ←

∑
i
JS(ℓ) Ki

14 : JV (ℓ) K← S(ℓ) · JK(ℓ) K−R(ℓ) · JML,(ℓ)
α K− JC(ℓ) K

Phase 4: Second challenges

15 : h2 ← Hash
(
msg, salt, h1,

(JS(ℓ) Ki, JV (ℓ) Ki
)
i∈[N ], ℓ∈[τ ]

)

16 : i∗,(1), . . . , i∗,(τ) ← PRG(h2)

Phase 5: Assembling the signature σ

17 : σ ←
(
salt, h1, h2,

((
state

(ℓ)
i

)
i ̸=i∗,(ℓ) , com

(ℓ)

i∗,(ℓ)
, JS(ℓ) Ki∗,(ℓ)

)
ℓ∈[τ ]

)

return σ

Fig. 4. Signing algorithm of MiRitH.

which usually becomes the dominating part after applying the technique, all but one of those states
can be set up offline, giving rise to interesting online-offline computation ratios.

11



Verif(M ,msg, σ)

1 : R[1], . . . , R(τ) ← PRG(h1)

2 : i∗,[1], . . . , i∗,(τ) ← PRG(h2)

for all ℓ ∈ [τ ] do

3 : Compute JV (ℓ) Ki as in Sign

4 : Compute com
(ℓ)
i and JS(ℓ) Ki as in Sign, for all i ∈ [N ]\{i∗,(ℓ)}

5 : S(ℓ) ←
∑

i
JS(ℓ) Ki

6 : Compute JV (ℓ) Ki as in Sign, for all i ∈ [N ]\{i∗,(ℓ)}
7 : JV (ℓ) Ki∗,(ℓ) ← −

∑
i ̸=i∗,(ℓ)

JV (ℓ) Ki
8 : h′

1 ← Hash
(
msg, salt, (com

(ℓ)
i )i∈[N ],ℓ∈[τ ]

)

9 : h′
2 ← Hash

(
msg, salt, h1,

(JS(ℓ) Ki, JV (ℓ) Ki
)
i∈[N ], ℓ∈[τ ]

)

10 : Output accept if h′
1 = h1 and h′

2 = h2, otherwise output reject

Fig. 5. Verification algorithm of MiRitH.

4 Parameters

In Table 2, we propose parameter sets forMiRitH achieving the different security levels I, III, and V
defined by NIST, which correspond to 143, 207, and 272 bits of classical security, respectively [NIS].

The MinRank problem parameters (q,m, n, k, r) are chosen with respect to the best-known
classical attacks against random instances. These attacks follow the hybrid approach introduced
in [BBB+22]. First, they guess a < ⌈ k

m⌉ vectors in the kernel of the unknown low-rank matrix E
and ℓ coefficients of the solution vector. Then, for each guess, they solve a smaller instance with
parameters (q,m, n− a, k −ma− ℓ, r). This smaller instance is solved by using either the Kernel-
Search (KS) [GC00], the Support-Minors (SM) [BBC+20] or the Big-k algorithm [Cou01]. The bit
complexities to solve the MinRank instances of MiRitH against the best classical attacks are shown
in Table 1. Further, in Section 4.2 we provide a justification for parameter security in a quantum
setting under NIST security metrics.

Set q m n k r KS (a, ℓ) SM (a, ℓ) big-k(a, ℓ)

Ia 16 15 15 78 6 151(4,4) 144(5,0) 154(5,4)

Ib 16 16 16 142 4 159(8,0) 165(8,0) 226(0,0)

IIIa 16 19 19 109 8 207(5,0) 209(5,0) 427(0,0)

IIIb 16 19 19 167 6 232(8,0) 236(8,0) 347(0,0)

Va 16 21 21 189 7 273(8,1) 274(6,0) 278(9,1)

Vb 16 22 22 254 6 303(11,0) 301(11,0) 421(0,0)

Table 1. Bit complexities of the MinRank instances of MiRitH against known attacks.

12



Set Variant λ q m n k r s N D τ Bit security Public key Signature

Ia

fast

128 16 15 15 78 6

5 2 4 39

144 129

7,877
short 9 2 8 19 5,673
shorter 12 2 12 13 5,036
shortest 12 2 16 10 4,536

Ib

fast

128 16 16 16 142 4

5 2 4 39

159 144

9,105
short 9 2 8 19 6,309
shorter 12 2 12 13 5,491
shortest 12 2 16 10 4,886

IIIa

fast

192 16 19 19 109 8

7 2 4 55

207 205

17,139
short 9 2 8 29 12,440
shorter 13 2 12 19 10,746
shortest 13 2 16 15 9,954

IIIb

fast

192 16 19 19 167 6

7 2 4 55

232 205

18,459
short 9 2 8 29 13,136
shorter 13 2 12 19 11,202
shortest 13 2 16 15 10,314

Va

fast

256 16 21 21 189 7

10 2 4 71

273 253

31,468
short 10 2 8 38 21,795
shorter 14 2 12 26 19,393
shortest 14 2 16 20 17,522

Vb

fast

256 16 22 22 254 6

10 2 4 71

301 274

34,059
short 10 2 8 38 23,182
shorter 14 2 12 26 20,394
shortest 14 2 16 20 18,292

Table 2. Parameters of MiRitH with corresponding public key and signatures sizes in bytes.

The remaining parameters, i.e., the number of rows of the challenge matrix R, the number of
parties ND in the underlying MPC protocol and the number τ of repetitions of the identification
protocol, are computed such that the forgery cost of the best known generic attack on 5-pass
protocols from [KZ20] is at least 2λ.

We provide two classes of parameter sets, namely: a and b sets. The Xa sets minimize the
signature size, while precisely matching the NIST security level definitions. We re-optimize the
original parameter sets and find that they allow for a slightly smaller choice of k. This reduces
signature size and increases efficiency. Following [ARZV22], we provide with the Xb sets a more
conservative choice of parameters which include some security margin to account for potential future
attack improvements.

Further, for each parameter set, we provide a “Fast”, “Short”,“Shorter” and “Shortest” variant
leveraging a trade-off between signing/verification time and signature size that originates from
the use of the MPC protocol. In fact, lowering the number of MPC parties allows to reduce the
computation time, but to maintain the same forgery cost the number of repetitions has to be
increased, which in turn results in larger signature sizes.

4.1 Signature and Key Sizes

Additionally, Table 2 states the public key sizes λ + mn log q (compare to Section 3.3) and the
corresponding maximum signature size. The maximum signature for MiRitH is of size (compare

13



to Fig. 4)

6λ︸︷︷︸
salt,h1,h2

+τ

(k + r(n− r) + s(n− r) + sr) · log q︸ ︷︷ ︸
Jα(ℓ)K

ND ,JK(ℓ)K
ND ,JC(ℓ)K

ND ,JS(ℓ)K
i∗,(ℓ)

+λ ·D · logN︸ ︷︷ ︸
(seed

(ℓ)
i )i̸=i∗

+ 2λ︸︷︷︸
com

i∗,(ℓ)


bits. Note that in comparison to Fig. 4 the number of parties changed from N to ND due to the
hypercube improvement (see Section 3.4). The secret key for each parameter set is derived from a
single seed of size λ bits.

4.2 Quantum Analysis

We restrict our analysis to polynomial memory quantum algorithms. This is motivated by the fact
that it is widely unclear to which degree QRAM such as quantum accessible classical memory
(QACM) or quantum accessible quantum memory (QAQM) can be realized in practice. Also the
computational overheads of the corresponding circuits are expected to be significant. Therefore we
are interested in leveraging quantum search speedups, also known as Grover search, to solve the
MinRank problem.

Grover Search [Gro96] Given a quantum accessible function F : D → {0, 1} with a unique
element x ∈ D for which it holds that F(x) = 1, a Grover search finds the element x ∈ D within
O(
√
D) calls to the quantum oracle F with high probability.

A first obvious strategy is a quantum search improved brute-force for the solution α ∈ Fk
q . In

that case the quantum oracle F is defined with domain Fk
q and F(x) = 1 iff x is a solution to

the MinRank problem. The amount of calls to the oracle to find the solution α in that case is
O(2(k log q)/2). However, in the following we construct a better suited quantum oracle to be used for
a Grover search which relies on the Kipnis-Shamir modeling (see Eq. (1)).

A Quantum Algorithm Solving MinRank The main idea of our quantum algorithm consists
in searching for a subset of the columns of the secret matrix K from Eq. (1).

By Eq. (1), any set of t columns of K yields an affine linear system of k variables and tm
equations, where the MinRank solution α is also a solution to that linear system. In particular, the
vector (α, 1) ∈ Fk+1

q belongs to the left kernel of the matrix representing the linear system. This
fact is highlighted in Proposition 2, where we also show the matrix defining the linear system for
every guess of the first t columns of K.

Proposition 2. Let M = (M0, . . . ,Mk) be a MinRank instance, where Mℓ = [µ
(ℓ)
(i,j)]

m,n
i,j=1 ∈ Fm×n

q

with solution α = (α1, . . . , αk). Let K = [κ(i,j)]
r,n−r
i,j=1 ∈ Fr×(n−r)

q be as in Eq. (1) and 1 ≤ t ≤ n− r

be an integer. For xt = (x(1,1), x(1,2), . . . , x(r,t)) ∈ Frt
q define

B(xt) =

B1(xt)
...

Bt(xt)


⊤

∈ F(k+1)×(mt)
q ,

14



where

Bj(xt) = −


µ
(1)
(1,j) µ

(k)
(1,j) µ

(0)
(1,j)

... · · ·
...

...

µ
(1)
(m,j) µ

(k)
(m,j) µ

(0)
(m,j)

+

+


∑r

i=1 µ
(1)
(1,n−r+i)x(i,j)

∑r
i=1 µ

(k)
(1,n−r+i)x(i,j)

∑r
i=1 µ

(0)
(1,n−r+i)x(i,j)

... · · ·
...

...∑r
i=1 µ

(1)
(m,n−r+i)x(i,j)

∑r
i=1 µ

(k)
(m,n−r+i)x(i,j)

∑r
i=1 µ

(0)
(m,n−r+i)x(i,j)

 .

Then it holds that
(α1, . . . , αk, 1) ·B(κt) = 0,

where κt := (κ(1,1), κ(1,2), . . . , κ(r,t)) ∈ Frt
q is formed from the first columns of K.

Note that Proposition 2 implies that B(κt) is not full-rank, and, in particular, its last row
belongs to the vector space spanned by the remaining ones. We want to use this as our distinction
factor for the vector κt in the set Ftr

q . To this end, we choose t to be large enough so that, with
high probability, B(κt) is the unique matrix in {B(γ) : γ ∈ Ftr

q } that is not of full-rank.
Precisely, we choose t to be the smallest integer such that ⌈k/m⌉ ≤ t ≤ n − r and rt ≤

(
mt
k+1

)
.

Hence k + 1 ≤ mt, and κt ∈ Frt
q is expected to be the only vector such that B(κt) is not full-rank.

Indeed, the total number of different matrices B(γ) with γ ∈ Frt
q is at most qrt, each of them has(

mt
k+1

)
maximal minors, and any of these minors is zero with probability close to 1/q. Therefore, the

expected number of matrices B(γ) that are not full-rank is close to qrt/q(
mt
k+1) ≤ 1 .

Finally, note that once κt is known, the MinRank solution α can be efficiently recovered by
classical Gaussian elimination using the relation from Proposition 2.

Let us now define the necessary quantum oracle. We aim for a quantum oracle F : Frt
q → F2

such that

F(γ) =
{
1 if γ = κt

0 otherwise.

The computation of our quantum oracle F on input γ := (γ(1,1), γ(1,2), . . . , γ(r,t)) ∈ Frt
q splits

into three parts:

1. Compute the matrix B(γ).
2. Compute, by Gaussian elimination, the row-reduced form of B(γ).
3. Apply a NOT gate to every qubit representing the last row of B(γ), and then output the

product of such qubits.

Notice that F(γ) = 1 if and only if at the end of step 2, the last row of B(γ) is the zero vector.
Grover’s algorithm states that the vector κt can be found with high probability afterO

(
2(rt log q)/2

)
calls to the quantum oracle F . The complexity of computing F is dominated by the Gaussian elim-
ination step, which can be performed in O

(
(k + 1)2 ·mt

)
operations in Fq. Therefore, we estimate

our quantum complexity to be
O
(
2(rt log q)/2 · (k + 1)2mt

)
operations over Fq.

15



Quantum Security of Parameter Sets For the quantum security definition of categories I, III
and V provided by NIST, the maximum depth of the used quantum circuits is limited to 2maxdepth

with maxdepth ≤ 96. A parameter set is said to match the quantum security definition for a category
if an attack requires at least 2b−maxdepth quantum gates for b = 157, 221, 285 for category I, III and
V, respectively.

We lower bound the depth of the described quantum circuit by

D = 2(rt log q)/2k2,

which corresponds to the sequential repetition of the Grover iterations, where we lower bound the
depth of the oracle with k2.

In the case of D > 2maxdepth, the most efficient strategy [Zal99] to restrict the depth of the
quantum circuit is to partition the search space in P equally sized, small enough sets. Subsequently,
the search has to be reapplied for each of the P partitions, which comes at a depth of

DP =
D√
P
.

and leads to DP = 2maxdepth for a choice of P = (D/2maxdepth)2.
The total number of quantum gates necessary to launch the depth-limited attack becomes

T = O(P ·DP ·mt log2 q), (3)

where we count log2 q gates per field multiplication.
In Table 3, we state the estimated quantum security margin for each parameter set. That is the

quotient of the gates necessary to launch a quantum attack according to Eq. (3) and the defined
security threshold of 2b−maxdepth for b = 157, 221, 285 for category I, III and V respectively. Note
that all parameter sets have a positive margin, i.e., they offer higher quantum security than AES
with the corresponding key length.

Set Ia Ib IIIa IIIb Va Vb

t 6 10 6 9 10 12
security margin (bits) 23 43 9 36 37 47

Table 3. Quantum security margin of MiRitH parameter sets.

5 Implementation

We provide three implementations for MiRitH, namely: one reference implementation and two
optimized constant-time implementations 4.

The first optimized implementation is for Intel® processors and optimizes the matrix arithmetic
as well as the use of symmetric primitives such as hash functions by using AVX2 instructions. The
second optimized implementation is for ARM processors and optimizes those parts by using NEON
instructions.

All of our implementations share the same code base, with the exception of the vector finite
field arithmetic and the hash function. Those are specialized for each architecture.

4 Available at https://github.com/Crypto-TII/mirith_nist_submission

16

https://github.com/Crypto-TII/mirith_nist_submission


5.1 Symmetric Primitives

For the symmetric primitives we use shake256 as PRG and sha3 as hash function leveraging the
Extended Keccak Code Package (XKCP5), as it is currently the fastest known implementation of
all Keccak associated algorithms.

5.2 Arithmetic

For all implementations: AVX2, NEON and reference implementation, we pack each column into
the memory, i.e., there is no alignment between two subsequent columns, thus all our matrices are
column-major.

Additionally as the matrices in MiRitH are generally small we are able to fully load each matrix
into a small set of registers, and thus are not forced to reload each column upon the next step in
the matrix-matrix multiplication as done by [BCH+23].

Reference Implementation This implementation is written entirely in ANSI C. It has the only
purpose of showing how the proposed scheme can be implemented without employing any particular
optimization. As all our implementations it represents two finite field elements from F24 in a single
byte. The reference implementation implements the finite field arithmetic over F24 via a lookup
table. The matrix arithmetic is computed element wise, resulting in n3 table lookups for a matrix-
matrix multiplication of two n× n matrices.

The reference implementation relies for the symmetric primitives on the OpenSSL library, due
to its acceptable speed and great availability among most platforms.

AVX Implementation Our optimized implementation of the finite field arithmetic uses the Ad-
vanced Vector Extension (AVX) and Advanced Vector Extension 2 (AVX2) instruction sets, which
are part of every X86 CPU since the Intel Haswell generation from 2013. These instruction sets
introduced 256-bits vector registers while following the Single-Instruction-Multiple-Data (SIMD)
approach. Thus, a broad variety of instructions are available, which allow to manipulate a 256-bit
vector as 8-/16-/32-/64-bit vector elements, while computing all vector elements simultaneously
in constant time. Newer x86 CPUs even support AVX512 which introduced 512-bit vectors and
instructions. But as this extensions did not find broad adoption in consumer hardware, the main
focus of this work lies on an AVX2 implementation.

Finite Field Arithmetic Before we start with the description of our AVX implementation, let us
first have a look into how the scalar multiplication in plain C could be implemented. Given two
elements a = a3x

3 + a2x
2 + a1x+ a0 and b = b3x

3 + b2x
2 + b1x+ b0 ∈ F24 , the multiplication a · b

can be expressed as
∑3

i=0 ai · xi · b.
The code is straightforward, we extract the four bits of a and multiply each with xib, which

is implemented as a lookup into the precomputed table p containing those values. Lastly, we ag-
gregate the partial products by means of XOR operations. This is the foundation of the AVX
implementation, which is a vectorized version of the code in Fig. 6.

The core idea of our implementation is the usage of the vpblendvb instruction. Given three
registers ymm a, ymm b, ymm c ∈ F32

28 this instruction returns each vector element by selecting either

5 https://github.com/XKCP/XKCP

17

https://github.com/XKCP/XKCP


1 tmp1 = ((a & 0x1) >> 0) * p[b*4 + 0];

2 tmp2 = ((a & 0x2) >> 1) * p[b*4 + 1];

3 tmp3 = ((a & 0x4) >> 2) * p[b*4 + 2];

4 tmp4 = ((a & 0x8) >> 3) * p[b*4 + 3];

5 c = tmp1^tmp2^tmp3^tmp4;

Fig. 6. Computation of c = a · b for a, b, c ∈ F24

the corresponding vector element from ymm b or ymm a if the highest bit in the vector element of
ymm c is set or not. Since ai ∈ F2, an addend xi · b in the computation of c =

∑3
i=0 ai · xi · b is

selected depending on ai, which matches the usage of the vpblendvb instruction.

Each register ymm a and ymm b is filled with the maximum amount of rows / columns of the two
input matrices they can hold. The multiplication with xi is implemented via a small lookup table,
which fits into three AVX 256-bit registers utilizing the vpshufb instruction. This instruction shuffles
8-bit vector elements across 128-bit lanes based on a given 4-bit index. More precisely, given two
256-bit registers ymm v i = (v0, . . . , v31) = (0xi, 1xi, . . . , 15xi, 0xi, · · · , 15xi) ∈ F32

24 , representing the
lookup table and ymm w = (w0, . . . , w31), wi ∈ F24 , the lookup is performed by simply computing:

ymm t = vpshufb(ymm v i, ymm w) = (vw0
, . . . , vw31

) = (w0x
i, . . . , w31x

i).

Note that only the lowest 4-bits of each vector element of the variable ymm w are used as a lookup
index, thus the hardware restriction of shuffling only on 128-bit lanes. Additionally note that three
register ymm v i for i = 1, 2, 3 are sufficient to fully save all needed powers of x. Fig. 7 shows how
a single addend of the sum

∑3
i=0 aix

i · b is computed. Be repeating the code from Fig. 7 for each
i = 0, 1, 2, 3, one obtains the full polynomial multiplication.

The first line applies the multiplication with xi via the vpshufb instruction, while the second
shifts each 4-bit nibble into the higher 4 bits of each 8-bit vector elements. Line 3,4 shift the lowest
bit of each nibble into the highest bit of the corresponding byte, preparing it to be the selection bit
for the two subsequent lines. These lines apply the vpblendvb instruction, selecting either zero or
the permuted ymm b value, depending on the i-th bit of each nibble of ymm a. The final result must
be added together from the low and high nibbles.

1 __m256i lowlookup = _mm256_shuffle_epi8(ymm_v_i, ymm_b);

2 __m256i highlookup = _mm256_slli_epi16(lowlookup, 4);

3 __m256i tmplow = _mm256_slli_epi16(ymm_a, 7-i);

4 __m256i tmphigh = _mm256_slli_epi16(ymm_a, 3-i);

5 __m256i tmpmu1low = _mm256_blendv_epi8(zero, lowlookup , tmplow);

6 __m256i tmpmulhigh = _mm256_blendv_epi8(zero, highlookup, tmphigh);

7 __m256i tmp = _mm256_xor_si256(tmpmullow, tmpmulhigh);

Fig. 7. Computation of aix
i · b for a, b ∈ F64

24

18



In total we therefore spend 12 shift, 3 vpshufb, 8 vpblendvb and 7 XOR instructions, which
can be computed in 29.5 cycles on a Ryzen 7600X. This is an improvement of 11.5% over the
implementation of [BCH+23] which uses 33.3 cycles on the same system.

PCLMULQDQ Instruction: In our AVX2 code we are not using the PCLMULQDQ instruction as its
computing the carry-less multiplication over F264 and not over F24 as we need it.

NEON Implementation ARM introduced its SIMD solution in 2004 with the ARMv7 Instruction
Set Architecture (ISA), which was extended for ARMv8 to process 128-bit registers. This ISA is
implemented by Apple on the M1 Max chip, which is our test system.

Finite Field Arithmetic The core of our implementation is based on [BCH+23] by utilizing the
vmulq p8 instruction. This instruction computes an 8-bit polynomial multiplication on 16 vector
elements from two input registers. The subsequent reduction is an implementation using a lookup
table.

The only difference to the arithmetic by [BCH+23] is that our implementation, as the AVX2
version, preloads all columns/rows into registers, which speeds up the overall computation of the
matrix-matrix multiplication.

The symmetric primitives are the same as in the AVX2 version, with the only difference that we
use the generic 64-bit version of SHA3 rather than the ARMv8 assembly version, which surprisingly
performed faster on our benchmarking system.

M4 Implementation Additionally to the optimized NEON implementation for the ARM archi-
tecture, we provide a version for low-power devices like the Cortex-M4. These Chips are often build
into restricted IoT devices, because of their low power consumption.

Finite Field Arithmetic Chips like the Cortex-M4 do not provide any SIMD instruction set like
NEON, therefore our implementation is based upon the proposed bitsliced implementation of
[BCH+23].

This technique breaks a field element into its individual bits and processes each bit separately.
Therefore one can pack the same bit of multiple different field elements into a single register. As each
bit is treated as independent, the same operation is performed on all corresponding bits of multiple
binary numbers simultaneously. This parallel processing of individual bits can lead to significant
speed improvements.

For MiRitH this means instead of using a look-up table for the multiplication, writing the
multiplication circuit in software using general logic instructions. Note that one needs to transform
before (and after) each multiplication the input data into (and from) its bitsliced form.

5.3 Performance Data

In this section we provide performance evaluations for all parameter sets of our optimized constant-
time implementation using AVX2 and NEON instructions for MiRitH. The key generation, signa-
ture generation, and verification benchmarks were performed on an 11th Gen Intel(R) Core(TM)
i7-11850H @ 2.50GHz (Turbo Boost disabled) and on an Apple M1 Max chip, respectively. The
reported timings are the medians and are shown in Table 5 given in million CPU cycles.

19



Set Variant

Reference Bit-Slice

Key
Signing Verification

Key
Signing Verification

generation generation

Ia fast 1.74 172 141 1.18 87.5 84.8

Ib fast 2.98 169 144 2.23 135 117

Table 4. Median time (in MCycles) on a STM32F407G Cortex M4 over 10 iterations.

Set Variant

AVX2 NEON-ARM

Key
Signing

Verification
Key

Signing
Verification

generation Online (%) Total generation Online (%) Total

Ia

fast

0.109

28.02 5.19 4.72

0.083

23.75 3.33 2.92
short 4.24 31.91 31.76 3.19 23.06 22.75
shorter 0.41 329.98 326.08 0.30 251.04 250.40
shortest 0.04 4,109.28 4,126.42 0.02 3,108.80 3,111.62

Ib

fast

0.197

28.11 5.51 4.94

0.158

21.37 4.15 3.77
short 4.40 31.40 31.47 3.57 24.14 23.79
shorter 0.43 332.39 332.53 0.34 256.70 254.56
shortest 0.04 4,072.82 4,150.09 0.03 3,175.63 3,155.11

IIIa

fast

0.247

27.30 11.10 10.43

0.206

23.52 6.71 6.16
short 5.65 54.42 54.93 4.09 38.85 38.33
shorter 0.61 529.15 538.78 0.34 389.20 395.78
shortest 0.05 6,777.93 6,750.47 0.04 4,939.69 4,963.37

IIIb

fast

0.373

27.29 12.67 12.34

0.315

22.91 7.27 6.99
short 6.02 56.07 56.53 4.25 39.83 39.40
shorter 0.65 532.81 539.27 0.47 400.99 397.08
shortest 0.06 6,784.73 6,807.26 0.04 5,096.71 5,066.26

Va

fast

0.515

32.38 19.33 17.95

0.408

26.12 12.66 11.92
short. 5.73 92.39. 92.23 4.42 64.95 64.26
shorter 0.61 1,040.72 1,054.26 0.45 765.62 771.81
shortest 0.05 12,869.20 12,966.45 0.04 9,485.61 9,496.04

Vb

fast

0.703

32.19 21.96 20.44

0.602

25.47 15.19 14.62
short. 5.72 103.53 103.47 4.42 76.55 76.44
shorter 0.62 1,047.11 1,064.93 0.47 791.42 796.771
shortest 0.06 12,954.79 13,018.82 0.04 9,743.79 9,866.68

Table 5. Median time (in MCycles) for the AVX2 and NEON-ARM implementation of MiRitH on an
11th Gen Intel(R) Core(TM) i7-11850H @ 2.50GHz (Turbo Boost disabled) and on an Apple M1 Max chip,
respectively.

5.4 Comparison with Other NIST Candidates

In this section we compare the performance of MiRitH against its competitors in the renewed
NIST standardization process. In this comparison we include all schemes which follow a similar
construction strategy, i.e., either they also rely on the MPCitH paradigm or employ more generally
the Fiat-Shamir transform.6 We do not include signature schemes that are not part of the ongoing
NIST standardization process, although some of these schemes might deserve separate attention,
such as [CDG+17,DKR+22,BDK+21,KZ22]. Table 6 states the performance data of all considered
candidates on a single benchmarking system. Additionally, we provide public key and signature

6 With the exception of SQIsign [CSSF+23] as it has a completely different performance profile, targeting
different applications.

20



sizes. All schemes besides MEDS and LESS obtain generally small public keys of size less than
0.25 kB. The smallest signatures are obtained by constructions based on symmetric primitives,
such as AIMER and FAEST as well as by BISCUIT, which relies on a variant of the MQ problem.
In terms of signing and verification times, many schemes lie below the threshold of 5 MCycles,
including MiRitH (for its fast instantiation). We also provide the necessary script to relaunch
the benchmark on an arbitrary system. The single system benchmark shows that MiRitH offers a
higher speedup over MIRA than implied by the specification document.

Name Variant
Signature Size (kB) Performance (Mcc)

pk σ pk + σ Keygen Sign Verify

AIMER [KCC+23,KHS+22]

param1 0.03 5.77 5.80 0.066 1.76 1.42
param2 0.03 4.77 4.80 0.065 3.66 3.37
param3 0.03 4.08 4.11 0.070 11.62 11.28
param4 0.03 3.84 3.87 0.073 56.52 56.72

BISCUIT [BKPV23]
fast 0.05 6.57 6.62 0.083 6.87 6.23
short 0.05 4.65 4.70 0.084 56.02 55.69

CROSS [BBB+23b,BBP+23]
fast 0.04 8.46 8.50 0.036 4.06 2.84
small 0.04 7.45 7.48 0.036 14.64 10.28

FAEST [BBK+23]
fast 0.03 6.19 6.22 0.002 2.74 2.70
short 0.03 4.89 4.92 0.002 25.58 25.83

LESS [BBB+23a,BBPS21]
small-pk 13.38 8.20 21.58 0.922 249.88 261.07
large-pk 93.65 5.08 98.73 5.068 200.55 209.43

MEDS [CNP+23]
fast 12.91 12.67 25.58 1.564 51.50 51.41
small 9.69 9.66 19.35 1.193 307.02 305.20

MIRA [ABB+23c,Fen22]
fast 0.08 7.20 7.29 0.130 44.22 43.58
short 0.08 5.51 5.59 0.132 52.20 49.72

MQOM [FR23]

gf31-fast 0.05 7.44 7.49 0.598 15.03 13.75
gf31-short 0.05 6.20 6.25 0.605 36.13 34.70
gf251-fast 0.06 7.63 7.68 0.454 9.01 8.20
gf251-short 0.06 6.42 6.48 0.460 20.31 19.70

PERK [ABB+23a]

fast-3 0.15 8.15 8.30 0.085 7.52 5.13
short-3 0.15 6.41 6.55 0.090 38.34 25.83
fast-5 0.23 7.84 8.08 0.098 7.07 4.86
short-5 0.23 5.92 6.15 0.104 35.21 24.21

RYDE [ABB+23b,Fen22]
fast 0.08 7.27 7.36 0.059 5.60 4.75
short 0.08 5.82 5.90 0.076 24.62 21.52

SDitH [MFG+23] gf256-hyp 0.12 8.05 8.17 7.083 13.59 12.63

MiRitH (this work)
fast 0.13 7.69 7.82 0.108 4.70 4.45
short 0.13 5.54 5.67 0.108 32.08 31.90

Table 6. Signature Size and Performance comparison in Kilobytes (kB) and MCycles (Mcc), respectively
of MiRitH against MPCitH- and other Fiat-Shamir-based NIST submissions on an 11th Gen Intel(R)
Core(TM) i7-11850H @ 2.50GHz (Turbo-Boost disabled), compiled using gcc 11.4.0.

Eventually, we provide in Table 7 a direct comparison between all suggested MiRitH and MIRA
instantiations benchmarked again on a single system. We observe that the speedup of MiRitH over
MIRA increases together with the security category and is generally higher than indicated by the
specification documents.

21



Set Variant

MiRitH MIRA

Key
Signing Verification

Key
Signing Verification

generation generation

I
fast

0.109
5.19 4.72 0.126 43.71 43.16

short 31.91 31.76 0.131 51.86 49.45

III
fast

0.247
11.10 10.43 0.336 124.49 123.97

short 54.42 54.93 0.343 137.47 134.03

V
fast

0.515
19.33 17.95 0.795 375.20 374.66

short 92.39 92.23 0.799 385.78 382.48

Table 7. Median time (in MCycles) for MiRitH and MIRA implementations on an 11th Gen Intel(R)
Core(TM) i7-11850H @ 2.50GHz (Turbo Boost disabled).

References

ABB+23a. Najwa Aaraj, Slim Bettaieb, Löıc Bidoux, Alessandro Budroni, Victor Dyseryn, Andre Esser,
Philippe Gaborit, Mukul Kulkarni, Victor Mateu, Marco Palumbi, Lucas Perin, and Jean-
Pierre Tillich. PERK specification. 2023. available at https://pqc-perk.org/assets/

downloads/PERK_specifications.pdf.
ABB+23b. Nicolas Aragon, Magali Bardet, Löıc Bidoux, Jesús-Javier Chi-Domı́nguez, Victor Dyseryn,

Thibauld Feneuil, Philippe Gaborit, Antoine Joux, Matthieu Rivain, Jean-Pierre Tillich, and
Adrien Vinçotte. RYDE specification. 2023. available at https://pqc-ryde.org/assets/

downloads/RYDE_Specifications.pdf.
ABB+23c. Nicolas Aragon, Magali Bardet, Löıc Bidoux, Jesús-Javier Chi-Domı́nguez, Victor Dyseryn,

Thibauld Feneuil, Philippe Gaborit, Romaric Neveu, Matthieu Rivain, and Jean-Pierre Tillich.
MIRA specification. 2023. available at https://pqc-mira.org/assets/downloads/mira_

spec.pdf.
AMGH+23. C. Aguilar-Melchor, N. Gama, J. Howe, A. Hülsing, D. Joseph, and D. Yue. The Return of

The SDitH. In Advances in Cryptology – EUROCRYPT 2023: 42nd Annual International
Conference on the Theory and Applications of Cryptographic Techniques, Lyon, France, April
23-27, 2023, Proceedings, Part V, page 564–596, Berlin, Heidelberg, 2023. Springer-Verlag.

ARZV22. G. Adj, L. Rivera-Zamarripa, and J. Verbel. Minrank in the head: Short signatures from
zero-knowledge proofs. Cryptology ePrint Archive, Paper 2022/1501, 2022. https://eprint.
iacr.org/2022/1501.

BBB+22. M. Bardet, P. Briaud, M. Bros, P. Gaborit, and J. P. Tillich. Revisiting algebraic attacks on
MinRank and on the rank decoding problem. Cryptology ePrint Archive, Paper 2022/1031,
2022. https://eprint.iacr.org/2022/1031.

BBB+23a. Marco Baldi, Alessandro Barenghi, Luke Beckwith, Jean-François Biasse, Andre Esser, Kris
Gaj, Kamyar Mohajerani, Gerardo Pelosi, Edoardo Persichetti, Markku-Juhani Saarinen,
Paolo Santini, and Robert Wallace. LESS specification. 2023. available at https://www.

less-project.com/LESS-2023-06-01.pdf.
BBB+23b. Marco Baldi, Alessandro Barenghi, Sebastian Bitzer, Patrick Karl, Felice Manganiello,

Alessio Pavoni, Gerardo Pelosi, Paolo Santini, Jonas Schupp, Freeman Slaughter, Anto-
nia Wachter-Zeh, and Violetta Weger. CROSS specification. 2023. available at https:

//www.cross-crypto.com/CROSS_Specification.pdf.
BBC+20. M. Bardet, M. Bros, D. Cabarcas, P. Gaborit, R. Perlner, D. Smith-Tone, J.-P. Tillich, and

J. Verbel. Improvements of algebraic attacks for solving the rank decoding and MinRank
problems. In Advances in cryptology—ASIACRYPT 2020. Part I, volume 12491 of Lecture
Notes in Computer Sciences, pages 507–536. Springer, Cham., 2020.

22

https://pqc-perk.org/assets/downloads/PERK_specifications.pdf
https://pqc-perk.org/assets/downloads/PERK_specifications.pdf
https://pqc-ryde.org/assets/downloads/RYDE_Specifications.pdf
https://pqc-ryde.org/assets/downloads/RYDE_Specifications.pdf
https://pqc-mira.org/assets/downloads/mira_spec.pdf
https://pqc-mira.org/assets/downloads/mira_spec.pdf
https://eprint.iacr.org/2022/1501
https://eprint.iacr.org/2022/1501
https://eprint.iacr.org/2022/1031
https://www.less-project.com/LESS-2023-06-01.pdf
https://www.less-project.com/LESS-2023-06-01.pdf
https://www.cross-crypto.com/CROSS_Specification.pdf
https://www.cross-crypto.com/CROSS_Specification.pdf


BBK+23. Carsten Baum, Lennart Braun, Michael Klooß, Christian Majenz, Shibam Mukherjee, Em-
manuela Orsini, Sebastian Ramacher, Christian Rechberger, Lawrence Roy, and Peter Scholl.
FAEST specification. 2023. available at https://faest.info/faest-spec-v1.1.pdf.

BBP+23. Marco Baldi, Sebastian Bitzer, Alessio Pavoni, Paolo Santini, Antonia Wachter-Zeh, and Vio-
letta Weger. Zero knowledge protocols and signatures from the restricted syndrome decoding
problem. Cryptology ePrint Archive, 2023.

BBPS21. Alessandro Barenghi, Jean-François Biasse, Edoardo Persichetti, and Paolo Santini. LESS-FM:
Fine-tuning signatures from the code equivalence problem. In Jung Hee Cheon and Jean-Pierre
Tillich, editors, Post-Quantum Cryptography - 12th International Workshop, PQCrypto 2021,
pages 23–43. Springer, Heidelberg, 2021.

BCH+23. Ward Beullens, Ming-Shing Chen, Shih-Hao Hung, Matthias J Kannwischer, Bo-Yuan Peng,
Cheng-Jhih Shih, and Bo-Yin Yang. Oil and vinegar: Modern parameters and implementations.
IACR Transactions on Cryptographic Hardware and Embedded Systems, pages 321–365, 2023.

BDK+21. Carsten Baum, Cyprien Delpech de Saint Guilhem, Daniel Kales, Emmanuela Orsini, Peter
Scholl, and Greg Zaverucha. Banquet: Short and fast signatures from AES. In Juan Garay,
editor, PKC 2021, Part I, volume 12710 of LNCS, pages 266–297. Springer, Heidelberg, May
2021.

BESV22. E. Bellini, A. Esser, C. Sanna, and J. Verbel. MR-DSS - Smaller MinRank-Based (Ring-
)Signatures. In Jung Hee Cheon and Thomas Johansson, editors, Post-Quantum Cryptography
- 13th International Workshop, PQCrypto 2022, volume 13512 of Lecture Notes in Computer
Science, pages 144–169. Springer, 2022.

Beu20. W. Beullens. Sigma protocols for MQ, PKP and SIS, and fishy signature schemes. In Advances
in cryptology—EUROCRYPT 2020. Part III, volume 12107, pages 183–211. Springer, Cham,
2020.

Beu21. Ward Beullens. Improved cryptanalysis of UOV and Rainbow. In Anne Canteaut and François-
Xavier Standaert, editors, EUROCRYPT 2021, Part I, volume 12696 of LNCS, pages 348–373.
Springer, Heidelberg, October 2021.

Beu22. Ward Beullens. Breaking rainbow takes a weekend on a laptop. In Yevgeniy Dodis and Thomas
Shrimpton, editors, CRYPTO 2022, Part II, volume 13508 of LNCS, pages 464–479. Springer,
Heidelberg, August 2022.

BFP11. Luk Bettale, Jean-Charles Faugère, and Ludovic Perret. Cryptanalysis of multivariate and odd-
characteristic HFE variants. In Dario Catalano, Nelly Fazio, Rosario Gennaro, and Antonio
Nicolosi, editors, PKC 2011, volume 6571 of LNCS, pages 441–458. Springer, Heidelberg, March
2011.

BG06. Olivier Billet and Henri Gilbert. Cryptanalysis of Rainbow. In Roberto De Prisco and Moti
Yung, editors, SCN 06, volume 4116 of LNCS, pages 336–347. Springer, Heidelberg, September
2006.

BG23. Löıc Bidoux and Philippe Gaborit. Compact post-quantum signatures from proofs of knowl-
edge leveraging structure for the PKP, SD and RSD problems. In Codes, Cryptology and
Information Security (C2SI), pages 10–42. Springer, 2023.

BGKM23. Löıc Bidoux, Philippe Gaborit, Mukul Kulkarni, and Victor Mateu. Code-based signatures
from new proofs of knowledge for the syndrome decoding problem. Designs, Codes and Cryp-
tography, 91(2):497–544, 2023.

BKPV23. Luk Bettale, Delaram Kahrobaei, Ludovic Perret, and Javier Verbel. Biscuit specification.
2023. available at https://www.biscuit-pqc.org/.

CDG+17. Melissa Chase, David Derler, Steven Goldfeder, Claudio Orlandi, Sebastian Ramacher, Chris-
tian Rechberger, Daniel Slamanig, and Greg Zaverucha. Post-quantum zero-knowledge and
signatures from symmetric-key primitives. In Bhavani M. Thuraisingham, David Evans, Tal
Malkin, and Dongyan Xu, editors, ACM CCS 2017, pages 1825–1842. ACM Press, Octo-
ber / November 2017.

23

https://faest.info/faest-spec-v1.1.pdf
https://www.biscuit-pqc.org/


CNP+22. Tung Chou, Ruben Niederhagen, Edoardo Persichetti, Tovohery Hajatiana Randrianarisoa,
Krijn Reijnders, Simona Samardjiska, and Monika Trimoska. Take your MEDS: Digital Sig-
natures from Matrix Code Equivalence. Cryptology ePrint Archive, 2022.

CNP+23. Tung Chou, Ruben Niederhagen, Edoardo Persichetti, Lars Ran, Tovohery Hajatiana Randri-
anarisoa, Krijn Reijnders, Simona Samardjiska, and Monika Trimoska. MEDS specification.
2023. available at https://www.meds-pqc.org/spec/MEDS-2023-07-26.pdf.

Cou01. Nicolas Courtois. Efficient zero-knowledge authentication based on a linear algebra problem
MinRank. In Colin Boyd, editor, ASIACRYPT 2001, volume 2248 of LNCS, pages 402–421.
Springer, Heidelberg, December 2001.

CSSF+23. Jorge Chavez-Saab, Maria Corte-Real Santos, Luca De Feo, Jonathan Komada Eriksen, Basil
Hess, David Kohel, Antonin Leroux, Patrick Longa, Michael Meyer, Lorenz Panny, Sikhar
Patranabis, Christophe Petit, Francisco Rodŕıguez Henŕıquez, Sina Schaeffler, and Benjamin
Wesolowski. SQIsign specification. 2023. available at https://csrc.nist.gov/csrc/media/
Projects/pqc-dig-sig/documents/round-1/spec-files/sqisign-spec-web.pdf.

CSV17. Daniel Cabarcas, Daniel Smith-Tone, and Javier A. Verbel. Key recovery attack for ZHFE.
In Tanja Lange and Tsuyoshi Takagi, editors, Post-Quantum Cryptography - 8th International
Workshop, PQCrypto 2017, pages 289–308. Springer, Heidelberg, 2017.

DKR+22. Christoph Dobraunig, Daniel Kales, Christian Rechberger, Markus Schofnegger, and Greg
Zaverucha. Shorter signatures based on tailor-made minimalist symmetric-key crypto. In Pro-
ceedings of the 2022 ACM SIGSAC Conference on Computer and Communications Security,
pages 843–857, 2022.

DSS23. A. J. Di Scala and C. Sanna. Smaller public keys for MinRank-based schemes. arXiv preprint,
2023. https://arxiv.org/abs/2302.12447.

Fen22. T. Feneuil. Building MPCitH-based Signatures from MQ, MinRank, Rank SD and PKP.
Cryptology ePrint Archive, Paper 2022/1512, 2022. https://eprint.iacr.org/2022/1512.

FJR22. Thibauld Feneuil, Antoine Joux, and Matthieu Rivain. Syndrome decoding in the head: Shorter
signatures from zero-knowledge proofs. In Yevgeniy Dodis and Thomas Shrimpton, editors,
CRYPTO 2022, Part II, volume 13508 of LNCS, pages 541–572. Springer, Heidelberg, August
2022.

FJR23. Thibauld Feneuil, Antoine Joux, and Matthieu Rivain. Shared permutation for syndrome
decoding: new zero-knowledge protocol and code-based signature. Designs, Codes and Cryp-
tography, 91(2):563–608, 2023.

FMRV22. Thibauld Feneuil, Jules Maire, Matthieu Rivain, and Damien Vergnaud. Zero-knowledge pro-
tocols for the subset sum problem from MPC-in-the-head with rejection. In Shweta Agrawal
and Dongdai Lin, editors, ASIACRYPT 2022, Part II, volume 13792 of LNCS, pages 371–402.
Springer, Heidelberg, December 2022.

FR23. Thibauld Feneuil and Matthieu Rivain. MQOM specification. 2023. available at https:

//mqom.org/docs/mqom-v1.0.pdf.
FS87. A. Fiat and A. Shamir. How to prove yourself: Practical solutions to identification and signa-

ture problems. In A. M. Odlyzko, editor, CRYPTO 1986, pages 186–194, Berlin, Heidelberg,
1987. Springer Berlin Heidelberg.

GC00. Louis Goubin and Nicolas Courtois. Cryptanalysis of the TTM cryptosystem. In Tatsuaki
Okamoto, editor, ASIACRYPT 2000, volume 1976 of LNCS, pages 44–57. Springer, Heidelberg,
December 2000.

GPS22. Shay Gueron, Edoardo Persichetti, and Paolo Santini. Designing a practical code-based sig-
nature scheme from zero-knowledge proofs with trusted setup. Cryptography, 6(1):5, 2022.

Gro96. Lov K. Grover. A fast quantum mechanical algorithm for database search. In Proceedings
of the Twenty-Eighth Annual ACM Symposium on Theory of Computing, STOC ’96, page
212–219, New York, NY, USA, 1996. Association for Computing Machinery.

IKOS07. Y. Ishai, E. Kushilevitz, R. Ostrovsky, and A. Sahai. Zero-knowledge from secure multiparty
computation. STOC ’07, page 21–30, New York, NY, USA, 2007. Association for Computing
Machinery.

24

https://www.meds-pqc.org/spec/MEDS-2023-07-26.pdf
https://csrc.nist.gov/csrc/media/Projects/pqc-dig-sig/documents/round-1/spec-files/sqisign-spec-web.pdf
https://csrc.nist.gov/csrc/media/Projects/pqc-dig-sig/documents/round-1/spec-files/sqisign-spec-web.pdf
https://arxiv.org/abs/2302.12447
https://eprint.iacr.org/2022/1512
https://mqom.org/docs/mqom-v1.0.pdf
https://mqom.org/docs/mqom-v1.0.pdf


KCC+23. Seongkwang Kim, Jihoon Cho, Mingyu Cho, Jincheol Ha, Jihoon Kwon, Byeonghak
Lee, Joohee Lee, Jooyoung Lee, Sangyub Lee, Dukjae Moon, Mincheol Son, and Hyojin
Yoon. AIMER specification. 2023. available at https://aimer-signature.org/docs/

AIMer-NIST-Document.pdf.
KHS+22. Seongkwang Kim, Jincheol Ha, Mincheol Son, Byeonghak Lee, Dukjae Moon, Joohee Lee,

Sangyub Lee, Jihoon Kwon, Jihoon Cho, Hyojin Yoon, and Jooyoung Lee. Aim: Symmetric
primitive for shorter signatures with stronger security (full version). Cryptology ePrint Archive,
Paper 2022/1387, 2022. https://eprint.iacr.org/2022/1387.

KKW18. J. Katz, V. Kolesnikov, and X. Wang. Improved non-interactive zero knowledge with ap-
plications to post-quantum signatures. CCS ’18, page 525–537, New York, NY, USA, 2018.
Association for Computing Machinery.

KS99. A. Kipnis and A. Shamir. Cryptanalysis of the HFE public key cryptosystem by relineariza-
tion. In M. Wiener, editor, Advances in Cryptology — CRYPTO’ 99, pages 19–30, Berlin,
Heidelberg, 1999. Springer.

KZ20. D. Kales and G. Zaverucha. An attack on some signature schemes constructed from five-pass
identification schemes. In S. Krenn, H. Shulman, and S. Vaudenay, editors, Cryptology and
Network Security, pages 3–22, Cham, 2020. Springer International Publishing.

KZ22. D. Kales and G. Zaverucha. Efficient lifting for shorter zero-knowledge proofs and post-
quantum signatures. Cryptology ePrint Archive, Paper 2022/588, 2022. https://eprint.

iacr.org/2022/588.
MFG+23. Carlos Aguilar Melchor, Thibauld Feneuil, Nicolas Gama, Shay Gueron, James Howe, David

Joseph, Antoine Joux, Edoardo Persichetti, Tovohery H., Randrianarisoa, Matthieu Rivain,
and Dongze Yue. SDITH specification. 2023. available at https://sdith.org/docs/sdith-v1.
0.pdf.

NIS. NIST. Post-Quantum Cryptography – Security (Evaluation Crite-
ria). https://csrc.nist.gov/projects/post-quantum-cryptography/

post-quantum-cryptography-standardization/evaluation-criteria/

security-(evaluation-criteria). Accessed: March 15, 2023.
SFB96. J. O. Shallit, G. S. Frandsen, and J. F. Buss. The computational complexity of some problems

of linear algebra, 1996.
TPD21. Chengdong Tao, Albrecht Petzoldt, and Jintai Ding. Efficient key recovery for all HFE signa-

ture variants. In Tal Malkin and Chris Peikert, editors, CRYPTO 2021, Part I, volume 12825
of LNCS, pages 70–93, Virtual Event, August 2021. Springer, Heidelberg.

Wan22. William Wang. Shorter signatures from MQ. Cryptology ePrint Archive, Report 2022/344,
2022. https://eprint.iacr.org/2022/344.

Zal99. C. Zalka. Grover’s quantum searching algorithm is optimal. Phys. Rev. A, 60:2746–2751, Oct
1999.

25

https://aimer-signature.org/docs/AIMer-NIST-Document.pdf
https://aimer-signature.org/docs/AIMer-NIST-Document.pdf
https://eprint.iacr.org/2022/1387
https://eprint.iacr.org/2022/588
https://eprint.iacr.org/2022/588
https://sdith.org/docs/sdith-v1.0.pdf
https://sdith.org/docs/sdith-v1.0.pdf
https://csrc.nist.gov/projects/post-quantum-cryptography/post-quantum-cryptography-standardization/evaluation-criteria/security-(evaluation-criteria)
https://csrc.nist.gov/projects/post-quantum-cryptography/post-quantum-cryptography-standardization/evaluation-criteria/security-(evaluation-criteria)
https://csrc.nist.gov/projects/post-quantum-cryptography/post-quantum-cryptography-standardization/evaluation-criteria/security-(evaluation-criteria)
https://eprint.iacr.org/2022/344

	MiRitH: Efficient Post-Quantum Signatures from MinRank in the Head

