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Abstract. Weightwise degree-d functions are Boolean functions that take the values of a function of degree at most
d on each set of fixed Hamming weight. The class of weightwise affine functions encompasses both the symmetric
functions and the Hidden Weight Bit Function (HWBF). The good cryptographic properties of the HWBF, except
for the nonlinearity, motivates to investigate a larger class with functions that share the good properties and have a
better nonlinearity. Additionally, the homomorphic friendliness of symmetric functions exhibited in the context of
hybrid homomorphic encryption and the recent results on homomorphic evaluation of Boolean functions make this
class of functions appealing for efficient privacy-preserving protocols.
In this article we realize the first study on weightwise degree-d functions, focusing on weightwise affine and
weightwise quadratic functions. We show some properties on these new classes of functions, in particular on the
subclass of cyclic weightwise functions. We provide balanced constructions and prove nonlinearity lower bounds
for all cyclic weightwise affine functions and for a family of weightwise quadratic functions. We complement
our work with experimental results, they show that other cyclic weightwise linear functions than the HWBF have
better cryptographic parameters, and considering weightwise quadratic functions allows to reach higher algebraic
immunity and substantially better nonlinearity.
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1 Introduction.

Weightwise affine functions have been introduced in [GM22], they are Boolean functions that are affine on
each subset of Fn2 with vectors with fixed Hamming weight, also called slices Ek,n = {x ∈ Fn2 |wH(x) = k}.
More generally, we call weightwise degree-d functions the Boolean functions that take the same values as a
function of degree at most d on each slice (potentially a different function on each slice). Weightwise degree-
0 and weightwise degree-1 functions have been studied in various research domains such as cryptography,
with a different formalism. The weightwise degree-0 functions, constant on all slices, are the intensively
studied symmetric functions e.g. [Car04, CV05, BP05, SM07, CL11, CM19, Méa19, Méa21, CM22].

One weightwise degree-1 function have received a lot of attention since its introduction by Bryant
in [Bry91], the Hidden Weight Bit Function (HWBF). This function takes the value xk on each slice Ek,n
for k ∈ [1, n] (and 0 in 0n), it has been considered as the simplest example of function with binary decision
diagram of exponential size [Bry91, BLSW99]. Since both computing the Hamming weight and applying
an affine function are cheap in different models of computation, the HWBF can be implemented efficiently
and has been considered in different contexts. For example, the cryptographic properties of HWBF have
been investigated in [WCST14], showing good algebraic properties for this function, but a nonlinearity
insufficient to use it alone as filter in a stream cipher design. Since then, various generalizations of the
HWBF have been proposed to conserve the good cryptographic properties and improve the nonlinearity,
such as in [WTS14] and recently in [Car22].

Generalizing symmetric functions and the HWBF to weightwise degree-d functions for small values
of d allows to obtain a bigger class of functions that are still efficiently computable and with potentially
better cryptographic parameters. In particular, in the context of hybrid homomorphic encryption [NLV11],



private key ciphers such as LowMC [ARS+15], Kreyvium [CCF+16], FLIP [MJSC16], Rasta [DEG+18]
and FiLIP [MCJS19] have been designed to be homomorphic friendly, that is, with components that can
be efficiently evaluated homomorphically. Moreover, the homomorphic evaluation of symmetric functions
can be made very efficient as demonstrated in [HMR20, CDPP22, MPP23]. The efficient evaluation of
multiplexers for homomorphic schemes like FHEW [DM15] and TFHE [CGGI16] allows to evaluate the
Hamming weight of an input as shown in [HMR20] and therefore enable to efficiently evaluate weightwise
low degree functions. The homomorphic evaluation of Boolean functions is a growing research topic, leading
to better and better performances as shown recently by [BCBS23, BSS+23, TCBS23, BOS23, BPR23].

In this article we realize the first study on the cryptographic properties of weightwise affine and
weightwise degree-2 functions:

– In Section 3 we give general properties on the class of weightwise degree-d functions and provide
balanced constructions.

– We focus on the subfamily of cyclic weightwise functions in Section 4, defining them and showing some
particular characteristics.

– In Section 5 we prove lower bounds on the nonlinearity of all weightwise affine functions, and on a
family of weightwise quadratic function. The techniques we use allow to find differently the result on
the nonlinearity of the HWBF and to derive bounds on some generalizations.

– We perform experiments on weightwise affine and quadratic functions up to 16 variables and summarize
the results in Section 6. These experiments show that other weightwise linear functions and mostly
weightwise quadratic functions allow to obtain better cryptographic parameters than the HWBF, in
particular relatively to the nonlinearity.

2 Preliminaries.

We denote [n] the subset of all integers between 1 and n: {1, . . . , n}. For readability we use the notation +
instead of ⊕ for the addition in F2. For a vector v ∈ Fn2 we denote wH(v) its Hamming weight wH(v) =
|{i ∈ [n] | vi = 1}|. For two vectors v and w of Fn2 we denote dH(v, w) the Hamming distance between v
and w, dH(v, w) = wH(v + w).

2.1 Generalities on Boolean functions

Definition 1 (Boolean Function). A Boolean function f in n variables (an n-variable Boolean function) is
a function from Fn2 to F2. The set of all Boolean functions in n variables is denoted by Bn.

Definition 2 (Equivalences Notions (adapted from [Car21], Definition 5)). Two n-variable Boolean
functions f and a0 + f ◦ L+ g where:

L : (x1, . . . , xn) 7→ (x1, . . . , xn)×M+ (a1, . . . , an), are called:

– extended affine equivalent if a0 ∈ F2, L is an affine automorphism of Fn2 , M being an n×n nonsingular
matrix over F2, (a1, . . . , an) ∈ Fn2 , and g is an affine n-variable Boolean function.

– linear equivalent if a0 = 0 and L is a linear automorphism of Fn2 , M being an n×n nonsingular matrix
over F2, (a1, . . . , an) = 0n, g is null.

– permutation equivalent if they are linear equivalent with M having exactly one 1 by row and by column.
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Definition 3 (Algebraic Normal Form (ANF) and degree). We call Algebraic Normal Form of a Boolean
function f its n-variable polynomial representation over F2 (i.e. belonging to F2[x1, . . . , xn]/(x

2
1 +

x1, . . . , x
2
n + xn)):

f(x) =
∑
I⊆[n]

aI

(∏
i∈I

xi

)
=
∑
I⊆[n]

aIx
I ,

where aI ∈ F2.

– The algebraic degree of f is: deg(f) = max{I | aI=1} |I| (with the convention that deg(0) = 0).
– Any term

∏
i∈I xi in such an ANF is called a monomial and its degree equals |I|.

2.2 Cryptographic criteria of Boolean functions

For more details on the criteria of Boolean function used in cryptography we refer to [Car21].

Definition 4 (Balancedness). A Boolean function f ∈ Bn is said to be balanced if and only if |supp(f)| =
|supp(f + 1)| = 2n−1, where the support of f denotes the set {x ∈ Fn2 , such that f(x) = 1}.

Definition 5 (Resilience). A Boolean function f ∈ Bn is calledm-resilient if any of its restrictions obtained
by fixing at most m of its coordinates is balanced. We denote by res(f) the maximum resilience (also called
resilience order) of f and set res(f) = −1 if f is unbalanced.

Definition 6 (Nonlinearity). The nonlinearity NL(f) of a Boolean function f ∈ Bn, where n is a positive
integer, is the minimum Hamming distance between f and all the affine functions in Bn:

NL(f) = min
g, deg(g)≤1

{dH(f, g)},

with dH(f, g) = #{x ∈ Fn2 | f(x) 6= g(x)} the Hamming distance between f and g, and g(x) = a · x+ ε;
a ∈ Fn2 , ε ∈ F2 (where · is an inner product in Fn2 ).

Definition 7 (Walsh transform ). Let f ∈ Bn be a Boolean function, its Walsh transform Wf at a ∈ Fn2 is
defined as:

Wf (a) :=
∑
x∈Fn

2

(−1)f(x)+a·x.

Property 1 (Nonlinearity, resilience and Walsh transform, e.g. [Car21]). Let n ∈ N∗, for every n-variable
Boolean function f :

NL(f) = 2n−1 −
maxa∈Fn

2
|Wf (a)|

2
.

A function f is balanced if and only if Wf (0n) = 0.

Definition 8 (Algebraic Immunity, [MPC04]). The algebraic immunity of a Boolean function f ∈ Bn,
denoted as AI(f), is defined as:

AI(f) = min
g 6=0
{deg(g) | fg = 0 or (f + 1)g = 0},

where deg(g) is the algebraic degree of g. The function g is called an annihilator of f (or f + 1).
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2.3 Slices and symmetric functions

Definition 9 (Slices of the Boolean hypercube). For k ∈ [0, n] we call slice of the Boolean hypercube (of
dimension n) the set Ek,n = {x ∈ Fn2 |wH(x) = k}.

Following Definition 9 the Boolean hypercube is partitioned into n + 1 slices where the elements have
the same Hamming weight. For properties holding on the slices we use the adjective weightwise.

Definition 10 (Restricted Walsh transform, [CMR17]). Let f ∈ Bn be a Boolean function and S ⊂ Fn2 ,
its Walsh transform restricted to S at a ∈ Fn2 is defined as:

Wf,S(a) :=
∑
x∈S

(−1)f(x)+a·x.

For S = Ek,n we denote Wf,Ek,n
(a) byWf,k(a).

The n-variable Boolean symmetric functions are the functions that are constant on each slice.

Definition 11 (Symmetric Functions). Let n ∈ N∗, the Boolean symmetric functions are the functions
which are constant on each Ek,n for k ∈ [0, n]. The set of n variable symmetric functions is denoted SYMn

and |SYMn| = 2n+1. We distinguish families of symmetric functions:
– Elementary symmetric functions. Let i ∈ [0, n], the elementary symmetric function of degree i in n

variables, denoted σi,n, is the function which ANF contains all monomials of degree i and no monomials
of other degrees.

– Threshold Functions. Let d ∈ [0, n], the threshold function of threshold d is defined as:

∀x ∈ Fn2 , Td,n(x) =

{
0 if wH(x) < d,

1 otherwise.

– Slice indicator functions. Let k ∈ [0, n], the indicator function of the slice of weight k is defined as:

∀x ∈ Fn2 , ϕk,n(x) =

{
1 if wH(x) = k,

0 otherwise.

The n+ 1 n-variable symmetric functions of each family form a basis of SYMn (that is every element
of SYMn can be written as a linear combination of these n+ 1 functions).

Definition 12 (Weightwise degree-d functions). Let n ∈ N∗ and for k ∈ [0, n] ϕk,n denotes the indicator
function of Ek,n. An n-variable Boolean function f , written as f =

∑n
k=0 fkϕk,n, is called weightwise

degree-d if and only if for each k ∈ [0, n] fk coincide with a function of degree at most d over Ek,n.
The set of weightwise degree-d functions is denoted byWDdn.

In [GM22] the authors study the relationship between weightwise perfectly balanced functions
(functions balanced on all the slices, see for example [CMR17, LM19, TL19, MSL21, MKCL22, ZLC+23,
YCL+23, GM23]) and weightwise affine functions i.e. weightwise degree-1 functions. In fact weightwise
degree-1 and degree-0 functions have been studied for their cryptographic properties in many works, without
the same formalism. The weightwise constant functions (WD0

n) are the symmetric functions that have been
extensively studied (e.g. [Car04, CV05, BP05, SM07, CL11, CM19, Méa19, Méa21, CM22]). Thereafter, the
hidden weight bit function introduced in [Bry91] is a weightwise degree-1 function, the one obtained by
fixing f0 = 0 and fk = xk for k ∈ [n]. The cryptographic properties of this function have been studied
in [WCST14], showing good algebraic properties for this function. In [CMR17], the bent functions in
Propositions 1 and 2 are weightwise affine.
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2.4 Spherically Punctured Reed-Muller Codes

Reed Muller codes RM(r, n) are binary codes of length 2n whose codewords are the evaluations of all
Boolean functions of algebraic degree at most r in n variables on their 2n entries. Fixing the Hamming
weight to the entries to k gives the spherically punctured Reed-Muller codes studied by Kapralova and
Dumer [DK13, DK17]. The properties of these codes are connected to Boolean functions with fixed weight
entries.

Definition 13 (Spherically punctured Reed Muller codes of order-d). For all n ∈ N∗, k, d ∈ [0, n], we
denote by Pk,n,d the punctured order-d Reed Muller code of length

(
n
k

)
obtained by puncturing all entries of

Hamming weight different from k.

Property 2 (Dimension of Pn,k,d, [DK13] Corollary 3). Let n ∈ N∗, k, d ∈ [0, n], the dimension of Pn,k,d
is: {(

n
d

)
if k ∈ [d, n− d],(

n
k

)
otherwise.

2.5 Krawtchouk polynomials

We recall the definition of Krawtchouk polynomials and some of their properties. They naturally appear
when we study the restriction of the Walsh transform on a slice for an affine function. We refer to e.g.
[MS78] for more details on these polynomials and their properties.

Definition 14 (Krawtchouk polynomials). The Krawtchouk polynomial of degree k, with 0 ≤ k ≤ n is

given by: Kk(`, n) =
k∑
j=0

(−1)j
(
`

j

)(
n− `
k − j

)
.

Property 3 (Krawtchouk polynomials relations). Let n ∈ N∗ and k ∈ [0, n], the following relations hold:

– Kk(`, n) =
∑

x∈Ek,n
(−1)a·x, where a ∈ Fn2 and ` = wH(a),

– Kk(n− `, n) = (−1)kKk(`, n),
– [DMS06] (adapted from Lemma 5), ∀k ∈ [0, n]\{n2 } and ` ∈ [1, n−1]\{n2 }, |Kk(1, n)| ≥ |Kk(`, n)|.
– [DMS06] (Proposition 5), For n even, k ∈ [0, n] Kk(n/2, n) = (−1)k/2

(n/2
k/2

)
if k is even, and null

otherwise.
–
(
n
`

)
Kk(`, n) =

(
n
k

)
K`(k, n).

3 Generalities on weightwise degree-d functions

In this part we focus on the general properties of the set of weightwise degree-d functions, introduced in
Definition 12. First, we determine the cardinal of these functions and introduce the notion of weightwise
degree. Then, we provide constructions of balanced weightwise degree-d functions, by exhibiting sufficient
conditions on the fk components of the weightwise degree-d function f .
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3.1 Cardinality and weightwise degree

Proposition 1 (Number of weightwise degree-d functions). Let n ∈ N∗ and d ∈ N such that 0 ≤ d ≤ n,
the F2-vector space of Boolean functions from the setWDdn has dimension D where:

D =
∑

k∈[0,d]∪[n−d,n]

(
n

k

)
+
n−d−1∑
k=d+1

(
n

d

)
, and |WDdn| = 2D.

Proof. First, note that if f ∈ Bn and g ∈ Bn are both in the setWDdn then there exist functions of degree at
most d fi and gi for all i ∈ [0, n] such that f =

∑n
i=0 fiϕi,n and g =

∑n
i=0 giϕi,n. Thereafter, any F2-linear

combination of f and g can be written as a · f + b · g =
∑n

i=0(a · fi + b · gi)ϕi,n, and for all i the function
a · fi + b · gi has degree at most d, therefore a · f + b · g ∈ WDdn.

Then, we determine the dimension of the vector space, using Property 2. The n-variable Boolean
functions of degree up to d are in bijection with the Reed Muller code RM(d, n) (each function being
identified uniquely by its truth table). For i ∈ [0, n] the truth table of fiϕi,n is equal to 0 on all slices
different from i, therefore the dimension of < ϕi,nfi, fi ∈ Bn | 0 ≤ deg(fi) ≤ d > is the dimension of the
code Pn,i,d. Since for all i 6= j we have supp(ϕj,n) ∩ supp(ϕi,n) = ∅ we get:

dim(WDdn) =
n∑
i=0

dim(Pn,i,d) =
d∑

k=0

(
n

k

)
+
n−d−1∑
k=d+1

(
n

d

)
+

n∑
k=n−d

(
n

k

)
,

where the last equality comes from Property 2.

From this result we can derive the dimension of SYMn, weightwise affine and weightwise quadratic
functions, the main focuses of this work.

Corollary 1. Let n ∈ N∗, for the first values of d the set WDdn (as F2-vector space) has the following
dimension:

dim(WD0
n) = n+ 1, dim(WD1

n) = n2 − n+ 2, and dim(WD2
n) =

n3 − 4n2 + 7n+ 4

2
.

A natural question coming with the representation of a Boolean function as a weightwise degree-d
function is to determine the minimal d such that the function belongs toWDdn. We formalize this notion as
weightwise degree and show that such d is bounded by bn/2c.

Definition 15 (Weightwise degree). Let n ∈ N∗, we call weightwise degree of the function f the smallest
integer d such that f ∈ WDdn, and we denote it by wdeg(f).

Proposition 2. Let n ∈ N∗, for all f ∈ Bn, there exists d ∈ [0, bn/2c] such that f ∈ WDdn.

Proof. Using Proposition 1 we have |WDdn| = 2D where

D =
∑

k∈[0,d]∪[n−d,n]

(
n

k

)
+
n−d−1∑
k=d+1

(
n

d

)
.

6



Since for d = bn/2c for all n ∈ N it holds [d+ 1, n− d+ 1] = ∅, the formula gives D =
∑n

k=0

(
n
k

)
= 2n.

Hence, on one hand, |WDbn/2cn | = 2D = 22
n
= |Bn|, and on the other handWDnbn/2c ⊂ Bn soWDbn/2cn =

Bn. By Definition 12, since a weightwise degree d function is also a weightwise degree-t function for t ≥ d
we have WD0

n ⊂ WD1
n ⊂ . . . ⊂ WDbn/2c−1n ⊂ WDbn/2cn . It allows to conclude: for all f ∈ Bn, there

exists d ∈ [0, bn/2c] such that f ∈ WDdn.

3.2 Conditions for balancedness

We exhibit two sufficient conditions on the fi functions to have the associated function f balanced.

Proposition 3. Let n ∈ N∗, and fi ∈ Bn for all i such that 0 ≤ i < n/2. The weightwise degree-d function
f =

∑n
i=0 fiϕi,n obtained by taking:

– fn−i(x) = 1 + fi(1n + x) for i ∈ [0, (n− 1)/2], if n is odd,
– fn−i(x) = 1 + fi(1n + x) for i ∈ [0, n/2− 1], and fn/2 a function balanced on En/2,n if n is even,

is balanced.

Proof. Let n be an odd number, f =
n∑
i=0

fiϕi,n. We know that Wf (0n) =
∑
i∈[0,n]

∑
x∈Ei,n

(−1)fi(x). So, for

i ∈ [0, (n− 1)/2], we have:∑
x∈En−i,n

(−1)fn−i(x) =
∑

x∈En−i,n

(−1)1+fi(1n+x) =
∑
x∈Ei,n

(−1)1+fi(x).

Hence, ∑
x∈Ei,n

(−1)fi(x) +
∑

x∈En−i,n

(−1)fn−i(x) =
∑
x∈Ei,n

(−1)fi(x) + (−1)1+fi(x) = 0.

Since it holds for all i ∈ [0, (n− 1)/2], we obtain Wf (0n) = 0, hence f is balanced by Property 1.
For n even, we can argue the same way for all i ∈ [0, n/2 − 1], and the sum

∑
i∈En/2,n

(−1)fi(x) is equal

to 0 by hypothesis. It allows to conclude, f is balanced.

Proposition 4. Let n ∈ N∗, Let Pi for i ∈ [0, n] n + 1 permutations from Sn. The function g ∈ Bn is
balanced if and only if the weightwise degree-d function f defined by fi = g(Pi(x)) is balanced.

Proof. Let us define the function f as f =
∑n

i=0 fiϕi,n with fi(x) = g(Pi(x)), where g is a given function
and Pi is such that:

Pi : Ei,n → Ei,n

x 7→ Pi(x) = (xπi(1), xπi(2), · · · , xπi(n)),

where πi ∈ Sn for i ∈ [0, n]. Our goal is to demonstrate the equivalence between f being balanced and
g being balanced, respectively. On the one hand x and Pi(x) have the same Hamming weight, for every
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x ∈ Fn2 and Pi. Then, we have:

Wf (0n) =
∑
x∈E0,n

(−1)f0(x) + · · ·+
∑

x∈En,n

(−1)fn(x)

=
∑
x∈E0,n

(−1)g(P0(x)) + · · ·+
∑

x∈En,n

(−1)g(Pn(x))

On the other hand we have that Pi is a bijection over Ei,n for all i ∈ [0, n] since πi ∈ Sn. So,∑
x∈Ei,n

(−1)g(Pi(x)) =
∑

x∈Ei,n
(−1)g(x), and therefore Wf (0n) =

∑
x∈Fn

2
(−1)g(x) =Wg(0n).

4 Subfamily of interest: cyclic weightwise functions

We focus our study on a particular family of weightwise degree-d functions, defined by f1 = g and then the
other fi are defined as g applied on a cyclic shift of x.

4.1 Definition

Definition 16 (Cyclic weightwise degree-d function).
Let n ∈ N∗, and g ∈ Bn, we call cyclic weightwise degree-d function associated to g the weightwise

degree-deg(g) function defined by:

– f1 = g,
– for i ∈ [0, n] \ {1}, fi(x) = g(Oi−1(x)), where Oi denotes the cyclic shift by i positions:

Oi(x1, . . . , xn) = (x1+i mod n, . . . , xn+i mod n), the representative modulo being taken as the integer
between 1 and n.
We denote by CWDdn the set of cyclic weightwise degree-d function.

Example 1. For n = 4 and g(x1, x2, x3, x4) = x1 + x2x3 the associated cyclic weightwise quadratic
function is:

f(x1, x2, x3, x4) =

4∑
i=0

g(Oi−1(x))ϕi,4(x),

= (x1 + x2x3)ϕ1,4(x) + (x2 + x3x4)ϕ2,4(x) + (x3 + x1x4)ϕ3,4(x) + (x4 + x1x2)ϕ4,4(x),

= x1 + x1x3 + x1x4 + x2x3 + x2x4 + x3x4.

The interests of Cyclic Weightwise (CW) functions are their easiness of implementation among the
weightwise degree-d functions (cyclic shifts for each fi), and that we expect this subfamily to be general
enough to contain functions with good cryptographic parameters. For example, note that the HWBF is a CW
function, the one defined by g(x) = x1.
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4.2 Properties

In the following we first remark some direct properties of CWDdn, then we show the equivalence of functions
from CWD1

n. The latter allows us to restrict our experimental study in Section 6.

Property 4. Let n ∈ N∗, the following holds:

– ∀i ∈ [0, n], CWDdn ⊂ WDdn,
– |CWDdn| ≤ 2D where D =

∑d
i=0

(
n
i

)
.

In this part we focus on functions in CWD1
n, more particularly on the cyclic weightwise linear functions;

the ones such that g is linear. In this case, g(x) = a · x and the 2n linear functions can be represented by the
2n elements of Fn2 (seen as length-n vectors). For a ∈ Fn2 we denote by fa the function in CWD1

n defined
by g(x) = a · x. First, we show that if a and b are such that Oi(b) = a for an i in [0, n] (that is, if they are
in the same orbit) then fa and fb are permutation equivalent functions (see Definition 2). Then, we show
that if a and b are such that a + b = 1n then fa and fb are extended affine equivalent. Since permutation
equivalent functions have the same cryptographic parameters, and extended affine equivalent functions have
the same nonlinearity (and degree and algebraic immunity differing by at most one), we can restrict our
study (Section 6) to one representative of each orbit where the elements have Hamming weight at most n/2.

Proposition 5. Let n ∈ N∗ and a, b ∈ Fn2 , if there exists i ∈ [0, n] such that Oi(b) = a then fa and fb are
permutation equivalent functions.

Proof. We denote j the integer such that Oj(b) = a. Then:

fa =

n∑
i=0

ϕi,n a · Oi−1(x) =
n∑
i=0

ϕi,nO
j(b) · Oi−1(x) =

n∑
i=0

ϕi,n b · On−j+i−1(x).

We define the permutation of indices: ∀i ∈ [1, n], xi 7→ xj+i mod n, and the associated matrix M.
Therefore:

fa(x×M) =

n∑
i=0

ϕi,n(x×M)b · On−j+i−1(x×M) =

n∑
i=0

ϕi,n(x)b · Oi−1(x) = fb(x),

which proves that fa and fb are permutation equivalent (see Definition 2).

Proposition 6. Let n ∈ N∗ and a, b ∈ Fn2 , if a + b = 1n then fa and fb are extended affine equivalent
functions.

Proof. We rewrite fa:

fa(x) =

n∑
i=0

ϕi,n(x) a · Oi−1(x) =
n∑
i=0

ϕi,n(x)
(
b · Oi−1(x) + 1n · Oi−1(x)

)
,

=

n∑
i=0

ϕi,n(x) b · Oi−1(x) +
n∑
i=0

ϕi,n(x) 1n · Oi−1(x),

=

n∑
i=0

ϕi,n(x)b · Oi−1(x) + (wH(x) mod 2),

= fb(x) + σ1,n(x).

9



Accordingly, fb and fa are extended affine equivalent (see Definition 2) since σ1,n(x) =
∑n

i=1 xi = wH(x)
mod 2 is linear.

5 On the nonlinearity of weightwise cyclic functions.

In this part we show lower bounds on the nonlinearity of some cyclic weightwise functions. First, we derive
a bound on the nonlinearity of any cyclic affine weightwise function, it generalizes the result of [WCST14]
giving the nonlinearity of the HWBF function. Then, we give a lower bound on the weightwise quadratic
function given by g(x) = x1 + x2x3. We obtain both bounds by studying the Walsh transform restricted to
the slices, and using properties of Krawtchouk polynomials.

5.1 Lower bound on the nonlinearity of CW linear functions

Lemma 1. Let n ∈ N∗, b ∈ Fn2 \{0n} and f be the CW linear function associated to g = b ·x, the following
holds on its Walsh transform:

Wf (a) =

n∑
k=0

Kk(wH(O
1−k(b) + a), n).

Proof. We prove the expression of Wf (a) in terms of Krawtchouk polynomials:

Wf (a) =
∑
x∈Fn

2

(−1)f(x)+a·x =

n∑
k=0

∑
x∈Ek,n

(−1)f(x)+a·x

=

n∑
k=0

∑
x∈Ek,n

(−1)g(Ok−1(x))+a·x =

n∑
k=0

∑
x∈Ek,n

(−1)(O1−k(b)+a)·x

=

n∑
k=0

Kk(wH(O
1−k(b) + a), n),

where the equality comes from Property 3 Item 1.

Lemma 2. Let n ∈ N∗, b ∈ Fn2 \ {0n} and f be the CW linear function associated to g = b · x. We denote
Ba,b the bound on |Wf (a)| given by Ba,b =

∑n
k=0 |Kk(wH(O

1−k(b) + a), n)|. Then:

Ba,b ≤
∑

k∈[0,n]\{n
2
}

|Kk(1, n)|+|Kn
2
(wH(O

1−k(b)+a), n)|+
∑

k∈[0,n]\{n2 }
wH(O1−k(b)+a)∈{0, n2 ,n}

|Kk(wH(O
1−k(b)+a), n)|.

Proof. We give the upper bound on |Wf (a)| using Lemma 1:

|Wf (a)| = |
n∑
k=0

Kk(wH(O
1−k(b) + a), n)| ≤

n∑
k=0

|Kk(wH(O
1−k(b) + a), n)| = Ba,b.

From Property 3 Item 3 we can bound Ba,b since |Kk(1, n)| is higher than the other absolute values in most
cases:

Ba,b ≤
∑

k∈[0,n]\{n
2
}

|Kk(1, n)|+|Kn
2
(wH(O

1−n/2(b)+a), n)|+
∑

k∈[0,n]\{n2 }
wH(O1−k(b)+a)∈{0, n2 ,n}

|Kk(wH(O
1−k(b)+a), n)|.

10



Lemma 3. Let n ∈ N∗, b ∈ Fn2 \ {0n} and f be the CW linear function associated to g = b · x. For all
a ∈ Fn2 , Ba,b = Ba+1n,b

Proof. First, we write the Walsh transform of Wf (a+ 1n) using Lemma 1:

Wf (a+ 1n) =

n∑
k=0

Kk(wH(O
1−k(b) + a+ 1n), n)

=

n∑
k=0

Kk(n− wH(O
1−k(b) + a), n)

=
n∑
k=0

(−1)kKk(wH(O
1−k(b) + a), n),

where the last equality comes from Property 3 Item 2.
Since Ba,b =

∑n
k=0 |Kk(wH(O

1−k(b) + a), n)|, we obtain Ba,b = Ba+1n,b

From Lemma 3 we can use the same bound of Ba,b for a and a + 1n, therefore we restrict our study to
the vectors a of Hamming weight at most n/2.

Lemma 4. Let n ∈ N∗, b ∈ Fn2 \{0n} and f be the CW linear function associated to g = b ·x, the following
holds on its Walsh transform:

Ba,b ≤ 2

(
n− 1

dn2 e − 1

)
+ Ca,b, where

Ca,b = |Kn
2
(wH(O

1−n/2(b) + a), n)|+
∑

k∈[0,n]\{n2 }
wH(O1−k(b)+a)∈{0, n2 ,n}

|Kk(wH(O
1−k(b) + a), n)|.

Proof. Using Lemma 2 we have: Ba,b ≤ Ca,b +
∑

k∈[0,n]\{n
2
} |Kk(1, n)|. Then, we bound the sum:

∑
k∈[0,n]\{n

2
}

|Kk(1, n)| =
∑
k<n

2

(
n− 1

k

)
−
(
n− 1

k − 1

)
+
∑
k>n

2

(
n− 1

k − 1

)
−
(
n− 1

k

)

= 2
∑
k<n

2

(
n− 1

k

)
−
(
n− 1

k − 1

)
= 2

(
n− 1

dn2 e − 1

)
,

where the first equality comes from the definition of Krawtchouk polynomials (Definition 14). It allows to
conclude.

Note that we want to bound the term Ca,b, which mostly comes from the part where wH(O
1−i(b) + a)

belongs to the set {0, n2 , n}. To bound these contributions to the sum we can consider two approaches, first
we can bound the number of cases where such Hamming weight is possible, then we can bound the sum
of that number of contributions, since for all ` the maximum absolute value of Kk(`, n) is bounded by the
binomial coefficient

(
n
k

)
. We introduce two quantities to study these bounds. First, we denote ord(b) =

min
i∈[1,n]

{i |Oi(b) = b} the order of an element b ∈ Fn2 . The other quantity is the maximal value a sum of i

different binomial coefficients can take, we denote it by M(i, n).
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Definition 17 (Sum of different binomial coefficients). Let n ∈ N∗ and i ∈ N such that i ≤ n, we define
M(i, n) as:

M(i, n) = max
{ i∑
j=1

(
n

kj

)
, where 1 ≤ k1 < · · · < ki ≤ n

}
.

Due to the properties of the binomial coefficients, the following property holds on M(i, n)

Property 5. Let n ∈ N∗ and i ∈ N such that i ≤ n, the value of M(i, n) is given by:

M(i, n) =



0 if i = 0,(
n
n
2

)
+ 2

(i−1)/2∑
j=1

(
n

n
2 − j

)
if n is even, and i− 1 is even,

(
n
n
2

)
+

(
n

n
2 − d

i−1
2 e

)
+ 2

b(i−1)/2c∑
j=1

(
n

n
2 − j

)
if n is even, and i− 1 is odd,

2

i/2∑
j=1

(
n

dn2 e − j

)
if n is odd, and i is even,

(
n

dn2 e − di/2e

)
+ 2

bi/2c∑
j=1

(
n

dn2 e − j

)
if n is odd, and i is odd.

.

With these notations we can give the main theorem.

Theorem 1 (Nonlinearity bound of weightwise cyclic linear functions). Let n ∈ N, n ≥ 2, b ∈ Fn2 such
that wH(b) ∈ [1, n/2] and f be the CW linear function associated to g = b · x, the following holds on its
Walsh transform:

NL(f) ≥



2n−1 −
(
n−1
dn
2
e−1
)
− 1

2

(
max

{
M
(

n
ord(b) − 1, n

)
+ 2,M

(
n

ord(b) , n
)})

if n is odd,

2
(∑(n−3)/2

i=0

(
n−1
i

))
− 1

2

(
n

(n−1)/2
)

if n is odd, and ord(b) = n,

2n−1 − 1
2

(
n
n/2

)
− 2n/2−1 −

(
n−1
dn
2
e−1
)
− 1

2

(
max

{
M
(

n
ord(b) − 1, n

)
+ 2,M

(
n

ord(b) , n
)})

if

n is even, and wH(b) 6= n/2,

2n−1 −
(
n
n/2

)
−
(
n−1
dn
2
e−1
)
− 2n/2−1 if n is even, wH(b) 6= n/2, and ord(b) = n,

2n−1 − 1
2

(
n
n/2

)
− 2n/2−1 −

(
n−1
dn
2
e−1
)
−
(
M
(

n
ord(b) , n

)
+ 1
)

if n is even and wH(b) = n/2.

.

Proof. We bound the nonlinearity by bounding the absolute value of the Walsh transform, to do so we bound
the term Ca,b for all a ∈ Fn2 . From Lemma 4 we have that Ca,b is a bound on Ba,b and therefore on |Wf (a)|
by Lemma 2. Using Lemma 3 we know we can restrict our study to the vectors a such that wH(a) ≤ n/2.

First we take care of the cases where n is odd. In this case the first part of Ca,b is null (Kn/2(k, n)) is
not defined for n odd), then the terms in the summation comes only from the cases where O1−k(b) + a is
equal to 0 or n. Since for n odd we restrict our study to the vectors a and b such that wH(a) < n/2 and
wH(b) < n/2, O1−k(b) + a cannot have Hamming weight n. Hence, we need to bound the contributions to
the sum only when wH(O

1−k(b) + a) = 0, that is when O1−k(b) = a. It means that b is in the orbit of a
(using the vocabulary of group action, considering the group action where the group is the group of cyclic
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permutations, acting on the set of length-n binary vectors), and the maximum number of weights k between
0 and n such that O1−k(b) = a depends on the order of b. On a period (of size n) Oi(b) equals a n/ord(b)
times, therefore at most n/ord(b) + 1 times for the weights between 0 and n since O0(b) = On(b). We
denote S(a, b) the set defined as S(a, b) = {i ∈ [0, n− 1] |O1−i(b) = a}, we have:

|S(a, b)| =

{
0 if b is not in the orbit of a,
n

ord(b) otherwise.
.

Accordingly, the number of weights k ∈ [0, n] such that O1−k(b) = a is 0 if b is not in the orbit of a,
n/ord(b) if O1−0(b) = O1−n(b) 6= a and n/ord(b) + 1 otherwise. Since |Kk(0, n)| = |Kk(n, n)| =

(
n
k

)
, we

can bound Ca,b using M(i, n) the bound on the sum of i different binomial coefficients. Thereafter, we get
the following bounds on Ca,b:

Ca,b ≤


0 if b is not in the orbit of a,
M( n

ord(b) − 1, n) + 2 O1(b) = a ,

M( n
ord(b) , n) otherwise.

.

For the second case, we use the bound M( n
ord(b) − 1, n) + 2 instead of M( n

ord(b) + 1, n) since the rotation
of b equals a on the slices of weight 0 and n where

(
n
k

)
= 1. It allows to conclude for the case n odd, taking

the maximum over all vectors a ∈ Fn2 :

NL(f) = 2n−1 − 1

2
max
a∈Fn

2

|Wa|

≥ 2n−1 − 1

2
max
a∈Fn

2

(
2

(
n− 1

dn2 e − 1

)
+ Ca,b

)
≥ 2n−1 −

(
n− 1

dn2 e − 1

)
− 1

2

(
max

{
M

(
n

ord(b)
− 1, n

)
+ 2,M

(
n

ord(b)
, n

)})
,

where the first line is obtained using Property 1, the second one applying Lemma 4 and the third one using
the bound on Ca,b right above.

In particular, for elements b of maximal order (ord(b) = n), for all a we get Ca,b ≤ max
(
2,
(

n
(n−1)/2

))
.

For n > 1 it gives the bound:

NL(f) ≥ 2n−1 −
(
n− 1

dn2 e − 1

)
− 1

2

(
n

(n− 1)/2

)
= 2

(n−3)/2∑
i=0

(
n− 1

i

)− 1

2

(
n

(n− 1)/2

)
.

Then, we consider the case when n is even. In this case Ca,b has potentially more non null terms than
in the n odd case: the term T = |Kn

2
(wH(O

1−n/2(b) + a), n)|, and the ones in the sum where the weight of
O1−k(b) + a) equals n/2 or n (from Lemma 4). First, we bound T using Property 3 Item 5:

T = |Kn
2
(wH(O

1−n/2(b) + a), n)| ≤ max
`∈[0,n]

|Kn
2
(`, n)| = max

`∈[0,n]
|
(
n

n/2

)(
n

`

)−1
K`(n/2, n)|.

Then, using Property 3 Item 4 it gives:

T ≤ max
`∈[0,n]
` even

|
(
n

n/2

)(
n

`

)−1(n/2
`/2

)
|.
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Since for all ` even
(n/2
`/2

)
≤
(
n
`

)
(using Pascal’s relation the latter binomial can be written as a sum containing

the former) we obtain T ≤
(
n
n/2

)
.

In the following we consider the contributions to the sum coming from the cases where the weight of
O1−k(b) + a) equals n/2 or n. First, we consider the case wH(b) < n/2, in this context since we restricted
our study to vectors a of Hamming weight at most n/2 (since we can derive the associated bound on the
absolute value of the Walsh spectrum in a + 1n using Lemma 3), O1−k(b) + a cannot reach the weight n.
Hence, we need to bound only the cases where wH(O

1−k(b) + a)) = n/2 (for an Hamming weight equal
to 0, we will use the bound already derived from case n odd). Since |Kk(n/2, n)|, is relatively small we
consider the bound taking the sum over all k ∈ [0, n], rather than on limited number of weights as before.
From Property 3 Item 4 we obtain:

Da,b =
∑

k∈[0,n]\{n2 }
wH(O1−k(b)+a)=n

2

|Kk(wH(O
1−k(b) + a), n)|

≤
∑
k∈[0,n]

|Kk(n/2, n)| =
∑

k′∈[0,n/2]

|(−1)k′
(
n/2

k′

)
| = 2n/2 = U.

Thereafter, adding the bound on the contributions when wH(O
1−k(b) + a)) = 0, for n even and b such that

wH(b) < n/2 we obtain:

NL(f) ≥ 2n−1 − T

2
− U

2
−
(
n− 1

dn2 e − 1

)
− 1

2

(
max

{
M

(
n

ord(b)
− 1, n

)
+ 2,M

(
n

ord(b)
, n

)})
≥ 2n−1 − 1

2

(
n
n
2

)
− 2

n
2
−1 −

(
n− 1

dn2 e − 1

)
− 1

2

(
max

{
M

(
n

ord(b)
− 1, n

)
+ 2,M

(
n

ord(b)
, n

)})
.

In particular, when ord(b) = n it gives:

NL(f) ≥ 2n−1 − 1

2

(
n

n/2

)
− 2n/2−1 −

(
n− 1

dn2 e − 1

)
− 1

2

(
max

{
2,

(
n

n/2

)})
≥ 2n−1 −

(
n

n/2

)
−
(
n− 1

dn2 e − 1

)
− 2n/2−1.

Finally, we consider the case wH(b) = n/2. In this case the element O1−k(b) + a can have Hamming
weight n, which means that O1−k(b)+a = 1n. As for the case O1−k(b)+a = 0n, it is possible only n/ord(b)
times on a period of n, therefore we can bound this contribution to the sum byM(n/ord(b), n)+1 as before.
It allows to conclude for this case:

NL(f) ≥ 2n−1 − 1

2

(
n

n/2

)
− 2n/2−1 −

(
n− 1

dn2 e − 1

)
−
(
M

(
n

ord(b)
, n

)
+ 1

)
.

Remark 1. From Remark 1 of [WCST14] the exact value of the nonlinearity of the n-variable HWBF is

2

(n−3)/2∑
i=0

(
n− 1

i

). This function corresponds to wH(b) = 1 that has then maximal order. We remark

that for n odds the general bound of Theorem 1 adds only a term 1
2

(
n

(n−1)/2
)
, and

(
n
n/2

)
+ 2n/2−1 when n is

even.
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Theorem 1 gives bounds on the nonlinearity valid for all CW linear functions, but it can be tighten in
many cases. For example, when the bound on Ca,b is computed the contribution to the sum from the weight
k such that O1−k(b) + a = 0n is added without removing |Kk(1, n)| from the sum. For n even, the bound
have an extra contribution for all even weights that could be removed for a tighter bound.

5.2 Lower bound on the nonlinearity of a CW quadratic function

In this part we bound the nonlinearity of the CW quadratic function given by g = x1+x2 ·x3. First, we study
the absolute value of a particular sum appearing when computing the Walsh transform of such functions.

Proposition 7. Let n ∈ N∗, k, ` ∈ N such that k ∈ [0, n], ` ∈ [0, n− 2] and let µ, ν ∈ {0, 1}, we denote by
Ak,`,µ,ν the quantity:

Ak,`,µ,ν =
∑

x∈Ek,n

(−1)x1x2+µx1+νx2+b·y,

where y = (x3, . . . , xn) and b ∈ E`,n−2.
For all µ, ν ∈ {0, 1}2 the following hold:

|Ak,`,µ,ν | ≤ |Kk(`, n− 2)|+ 2|Kk−1(`, n− 2)|+ |Kk−2(`, n− 2)|.

Proof. First we consider the case µ = ν = 0, we get:

|Ak,`,µ,ν | = |
∑

x∈Ek,n

(−1)x1x2+b·y|

= |
∑

y∈Ek,n−2

(−1)0+b·y + 2
∑

y∈Ek−1,n−2

(−1)0+b·y +
∑

y∈Ek−2,n−2

(−1)1+b·y|

= |Kk(`, n− 2) + 2Kk−1(`, n− 2)− Kk−2(`, n− 2)|
≤ |Kk(`, n− 2)|+ 2|Kk−1(`, n− 2)|+ |Kk−2(`, n− 2)|,

where the second equality is obtained by partitioning on the possible values of x1 and x2.
Similarly, for the other possible values of µ and ν only the signs before the 4 terms Kk(`, n − 2),

Kk−1(`, n− 2), Kk−1(`, n− 2) and Kk−2(`, n− 2) change. Therefore the same bound applies.

Theorem 2 (Nonlinearity bound of a weightwise cyclic quadratic function). Let n ∈ N, n ≥ 3, and f
be the CW quadratic function associated to g = x1 + x2x3, the following holds on its nonlinearity:

NL(f) ≥

2n−1 − 2
(
2
(
n−3
dn
2
e−2
)
+
(
n−2
dn
2
e−1
)
+ 1
)

if n is odd,

2n−1 − 2
(
2
(
n−3
n
2
−2
)
+
(
n−2
n/2−1

)
+ 2n/2−1 +

(
n−2
n
2
−1
)
+ 1
)

if n is even.
.
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Proof. The proof follows the main ideas of the one of Theorem 1. First, as for CW linear functions we
bound the nonlinearity by bounding the absolute value of the Walsh spectrum:

Wf (a) =
∑
x∈Fn

2

(−1)f(x)+a·x =

n∑
k=0

∑
x∈Ek,n

(−1)Ok−1(x1+x2x3)+a·x.

|Wf (a)| ≤
n∑
k=0

|
∑

x∈Ek,n

(−1)Ok−1(x1+x2x3)+a·x| ≤
n∑
k=0

|Ak,`k,µk,νk |

≤
n∑
k=0

(|Kk(`k, n− 2)|+ 2|Kk−1(`k, n− 2)|+ |Kk−2(`k, n− 2)|) ,

where for the second line we use that Ok−1(x1+x2x3)+a ·x = x(k mod n)+x(k+1 mod n)x(k+2 mod n)+
a · x (using the cyclic shift definition from Definition 16). This expression can be written as:

x(k+1 mod n)x(k+2 mod n) + µx(k+1 mod n) + νx(k+2 mod n) + b · y,

where µ = a(k+1 mod n), ν = a(k+1 mod n), b is the (n − 2)-length vector obtained from a by removing
the indices (k+ 1 mod n) and (k+ 2 mod n). For each k in the sum we define such µ, ν and ` = wH(b)
and index them with k. The last equation comes from Proposition 7.

Then, we bound the sums of absolute value of Krawtchouk polynomials similarly as is in the proofs of
Section 5.1. Recall that using Property 3 Item 3, |Kk(1, n)| is greater than the others values unless k = n/2
or ` ∈ {0, n/2, n}. As previously, we bound by considering the sum of all Krawtchouk polynomials with
k = 1 plus the limited number of special cases where this upper bound does not apply.

As in the proof of Theorem 1, for |Kk(`k, n − 2)| we can neglect the case `k = n − 2 since the bound
on |Wf (a)| and |Wf (a+ 1n)| is the same. Accordingly, we can restrict the study to a ∈ Fn2 , wH(a) ≤ n/2.

The case k = n/2− 1 can be treated separately as before, since the maximal possible contribution from
this part is small. Using Property 3 Item 4 it gives:

max
`∈[0,n−2]

|Kn/2−1(`, n− 2)| ≤ max
`∈[0,n−2]

` even

|
(
n− 2

n/2− 1

)(
n− 2

`

)−1(n/2− 1

`/2

)
| ≤

(
n− 2

n/2− 1

)
.

The cases `k = n/2 − 1 can be handled as previously since the sum is small, using Property 3 Item 4
we obtain:

∑
k∈[0,n−2]

|Kk(n/2− 1, n− 2)| =
∑

k′∈[0,n/2−1]

|(−1)k′
(
n/2− 1

k′

)
| = 2n/2−1.

The last special cases are the ones such that `k = 0, we can bound their contribution using M(i, n −
2) introduced in Definition 17 as before, counting the maximum number of times a and x1 + x2x3 can
coincide on the linear part restricted to y along an orbit. This is equivalent to the cardinal C = |{i ∈
[n], supp(Oi(a)) ⊂ [3] and Oi(a)1 = 1}|. We consider the different cases based on the Hamming weight of
a. When wH(a) = 0 the set is empty. When wH(a) = 1, C = 1. For wH(a) ∈ {2, 3} C ≤ 1 since if a is a
rotation of 120n−2 or 1010n−3 or 1110n−3 once per orbit it coincides. When wH(a) > 3, C = 0.
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Summing up we obtain the following bound:

|Wf (a)| ≤
n∑
k=0

(|Kk(`k, n− 2)|+ 2|Kk−1(`k, n− 2)|+ |Kk−2(`k, n− 2)|)

≤ 4

 ∑
k∈[0,n−2]\{n/2−1}

|Kk(1, n− 2)|+
(
n− 2

n/2− 1

)
+ 2n/2−1 +M(1, n− 2) + 1


≤ 4

(
2

(
n− 3

dn2 e − 2

)
+

(
n− 2

n/2− 1

)
+ 2n/2−1 +

(
n− 2

dn2 e − 1

)
+ 1

)
.

The last equation is obtained by summing (over k) the values |Kk(1, n − 2)| as in the proof of Lemma 4,
and plugging the value of M(1, n− 2) using Property 5.

Using Property 1 we can conclude on the bound on the nonlinearity of such functions. When n is even

NL(f) ≥ 2n−1 − 2

(
2

(
n− 3
n
2 − 2

)
+

(
n− 2

n/2− 1

)
+ 2n/2−1 +

(
n− 2
n
2 − 1

)
+ 1

)
.

When n is odd:

NL(f) ≥ 2n−1 − 2

(
2

(
n− 3

dn2 e − 2

)
+

(
n− 2

dn2 e − 1

)
+ 1

)
.

6 Experimental results

In this part we summarize the results of our experiments on cyclic weightwise affine and quadratic functions,
up to 16 variables.

6.1 Cyclic weightwise linear and quadratic functions in 8 variables

In Table 1 we give the cryptographic parameters of the 8-variable CW linear functions. Based on
Proposition 5 and Proposition 6 we give only on representative of each orbit, for the elements of Hamming
weight at most 4. We remark that the second row corresponds to the HWBF (in red), we observe that almost
all other functions have equal or better nonlinearity. Additionally, some functions with wH(a) ∈ {3, 4} have
strictly better nonlinearity, with the same degree, algebraic immunity and resilience order.

Still in 8 variables, we give the cryptographic parameters of some 8-variable CW quadratic functions in
Table 2. We observe that the nonlinearity of this functions is at least as good as the best one for a CW linear
function.
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a degree algebraic immunity nonlinearity resilience

(0, 0, 0, 0, 0, 0, 0, 0) 0 0 0 −1
(1, 0, 0, 0, 0, 0, 0, 0) 7 4 88 0

(1, 1, 0, 0, 0, 0, 0, 0) 7 3 92 0

(1, 0, 1, 0, 0, 0, 0, 0) 5 4 88 0

(1, 0, 0, 1, 0, 0, 0, 0) 7 3 92 0

(1, 0, 0, 0, 1, 0, 0, 0) 3 3 96 0

(1, 1, 1, 0, 0, 0, 0, 0) 7 4 88 0

(1, 1, 0, 1, 0, 0, 0, 0) 7 4 96 0

(1, 1, 0, 0, 1, 0, 0, 0) 7 4 88 0

(1, 1, 0, 0, 0, 1, 0, 0) 7 4 88 0

(1, 1, 0, 0, 0, 0, 1, 0) 7 4 96 0

(1, 0, 1, 0, 1, 0, 0, 0) 7 4 88 0

(1, 0, 1, 0, 0, 1, 0, 0) 7 4 88 0

(1, 1, 1, 1, 0, 0, 0, 0) 5 3 88 0

(1, 1, 1, 0, 1, 0, 0, 0) 7 4 92 0

(1, 1, 1, 0, 0, 1, 0, 0) 5 4 88 0

(1, 1, 1, 0, 0, 0, 1, 0) 7 4 92 0

(1, 1, 0, 1, 1, 0, 0, 0) 5 4 88 0

(1, 1, 0, 0, 1, 1, 0, 0) 3 2 64 0

(1, 1, 0, 1, 0, 1, 0, 0) 7 4 92 0

(1, 1, 0, 1, 0, 0, 1, 0) 5 3 88 0

(1, 1, 0, 0, 1, 0, 1, 0) 7 4 92 0

(1, 0, 1, 0, 1, 0, 1, 0) 1 1 0 3

Table 1. Cryptographic parameters of the 8-variable CW linear functions fa.

g degree algebraic immunity nonlinearity resilience

x1 + x2x3 6 4 96 0

x1 + x3x4 7 4 102 0

x1 + x4x5 6 4 104 0

x1 + x5x6 7 4 98 0

x1 + x6x7 6 4 100 0

x1 + x7x8 7 4 98 0

x1 + x2x4 7 4 98 0

x1 + x3x5 7 4 102 0

x1 + x2x3 + x4x5 7 4 102 0

x1 + x2x3 + x4x5 + x6x7 7 4 104 0

Table 2. Cryptographic parameters of some 8-variable CW quadratic functions.
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6.2 Properties of cyclic weightwise linear and quadratic functions in 16 variables

For n = 16 we give the degree, nonlinearity and resilience order of some examples of both CW linear and
CW quadratic functions in Table 3, the HWBF function corresponds to the first row (in red). As for n = 8
we observe that CW quadratic functions have nonlinearity sensibly better than CW linear functions.

g degree nonlinearity resilience

x1 15 25904 0

x1 + x2 15 25772 0

x1 + x2 + x3 15 25888 0

x1 + x2 + x3 + x4 13 25864 0

x1 + x2 + x3 + x4 + x5 + x6 + x7 + x8 9 25840 0

x1 + x9 7 26432 0

x1 + x5 + x9 15 25904 0

x1 + x3 + x5 + x7 + x9 + x11 + x13 + x15 1 0 7

x1 + x2x3 14 27884 0

x1 + x2 + x2x3 15 28412 0

x1 + x2 + x3x4 15 28266 0

x1 + x2x3 + x4x5 15 29554 0

x1 + x2x3 + x4x5 + x6x7 14 30736 0

x1 + x2x3 + x4x5 + x6x7 + x8x9 15 31346 0

x1 + x2x3 + x4x5 + x6x7 + x8x9 + x10x11 14 31600 0

x1 + x2x3 + x4x5 + x6x7 + x8x9 + x10x11 + x12x13 15 31490 0

x1 + x2x3 + x4x5 + x6x7 + x8x9 + x10x11 + x12x13 + x14x15 14 31616 0

Table 3. Cryptographic parameters of some 16-variable CW functions.

6.3 Comparisons of cyclic weightwise functions up to 16 variables

We compare the parameters of 4 CW functions in 4 to 16 variables. First we consider to CW linear functions,
the HWBF in Table 4 and the one given by g = x1 + x2 in Table 5 we call s. Then, we consider the CW
quadratic function given by g = x1+x2 ·x3 in Table 6, which nonlinearity is bounded by Theorem 2. Finally

we consider the CW quadratic function given by g(x) = x1 +
∑bn−1

2
c

i=1 x2ix2i+1 in Table 7. For readability
we denote t and u these functions.
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n 4 5 6 7 8 9 10 11 12 13 14 15 16

Degree 3 4 5 6 7 8 9 10 11 12 13 14 15

AI 2 3 3 3 4 4 4 5 5 5 5 6 6

Nonlinearity 4 10 22 44 88 186 372 772 1544 3172 6344 12952 25904

Resilience 0 0 0 0 0 0 0 0 0 0 0 0 0

Table 4. Cryptographic parameters of the HWBF in n variables, for n ∈ [4, 16].

n 4 5 6 7 8 9 10 11 12 13 14 15 16

Degree 3 4 5 6 5 8 9 10 11 12 13 14 13

AI 2 2 3 3 4 4 4 5 5 5 5 6 6

Nonlinearity 4 10 22 44 88 188 376 784 1568 3226 6452 13172 26344

Resilience 0 0 0 0 0 0 0 0 0 0 0 0 0

Table 5. Cryptographic parameters of the CW linear function s given by g = x1 + x2 in n variables, for n ∈ [4, 16].

n 4 5 6 7 8 9 10 11 12 13 14 15 16

Degree 2 4 5 6 6 8 9 10 11 12 13 14 14

AI 2 3 3 3 4 4 5 5 5 6 6 6 7

Nonlinearity 4 10 22 46 96 196 404 816 1672 3358 6854 13722 27884

Resilience 0 0 0 0 0 0 0 0 0 0 0 0 0

Table 6. Cryptographic parameters of the CW quadratic function t given by g = x1 + x2x3 in n variables, for n ∈ [4, 16].

n 4 5 6 7 8 9 10 11 12 13 14 15 16

Degree 2 4 4 6 6 8 8 10 10 12 12 14 14

AI 2 3 3 3 4 4 5 5 6 6 6 6 7

Nonlinearity 4 10 24 48 104 220 456 924 1888 3862 7816 15748 31616

Resilience 0 0 0 0 0 0 0 0 0 0 0 0 0

Table 7. Cryptographic parameters of the CW quadratic function u given by g = x1 +
∑bn−1

2
c

i=1 x2ix2i+1 in n variables, for
n ∈ [4, 16].

From these experiments we observe the following for the different criteria:
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– Degree. The degree of the HWBF is n− 1 (as proven in former works), we observe the same trend for
s and t except when n is a power of 2. The one of u equals n− 1 when n is odd and n− 2 otherwise.

– Algebraic immunity. For all these values we observe the following relation: AI(HWBF ) ≤ AI(s) ≤
AI(t) ≤ AI(u).

– Nonlinearity. The HWBF is the one with the lowest nonlinearity, its is overreached by the one of u
since n = 6, the one of t since n = 7 and the one of s since n = 9. We also have the relation
NL(HWBF ) ≤ NL(s) ≤ NL(t) ≤ NL(u) for all values of n we tried.

– Resilience. The resilience order is 0 for all these functions, they are all balanced but not 1-resilient.

The nonlinearity of u is way higher than for the other functions, based in the experimental values we
conjecture the following:

∀` ∈ N∗, NL(u4`) = 24`−1 − 22`−1 − 23`−2.

7 Conclusion and open questions

In this article we realized the first study on weightwise degree-d functions. First, we defined this notion and
explained how it generalizes different classes of functions already studied in the context of cryptography.
After determining their cardinality and exhibiting some balanced constructions, we focused on the subfamily
of cyclic weightwise functions that are motivated by efficient implementation. Then, for this class of
functions we investigated their nonlinearity, deriving lower bounds. Our techniques based on sum of absolute
values of Krawtchouk polynomials allowed to generalize the result known only for the HWBF to any CW
affine function, and also on a family of CW quadratic functions. Finally, we presented experimental results
for Boolean function up to 16 variables. This experiment shows that other CW linear functions have better
cryptographic parameters than the HWBF. More importantly, we can observe that CW quadratic functions
allow to get a substantially higher nonlinearity, the main weakness that prevent HWBF to be considered in
stream cipher designs.

Different open questions arose during this work, we highlight the following ones:

– First, the nonlinearity bounds of Section 5 are not tight. It would be interesting to improve these bounds
or determine exactly the nonlinearity as in the case of the HWBF since we can see from Section 6.3 that
the real values are far better than the bounds. The proofs could also be adapted to other subfamilies, for
example to generalize the results to all CW quadratic functions.

– Then, an engaging direction consists in determining or bounding the degree and algebraic immunity of
specific CW families. From Section 6.3 we can observe that t and u functions have AI better than or
equal to the HWBF, it would be interesting to prove or refute that the AI is strictly higher for n big
enough.

– In Section 6.3 we conjecture the exact nonlinearity of the function u, it is appealing to prove it, or the
exact value for another family with at least this nonlinearity. This family is the one with best nonlinearity
we observed in the experimental part of this work, it is interesting to exhibit balanced CW quadratic
functions with better nonlinearity.

– Finally, one future direction consists in designing a stream cipher using a CW quadratic function as
filter function. The main challenges are determining the number of variables necessary to have a strong
enough filter, and how to use the cyclic properties to gain in efficiency.
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GM22. Agnese Gini and Pierrick Méaux. On the weightwise nonlinearity of weightwise perfectly balanced functions. Discrete
Applied Mathematics, 322:320–341, 2022.
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