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Abstract. Envelope encryption is a method to encrypt data with two
distinct keys in its basic form. Data is first encrypted with a data-
encryption key, and then the data-encryption key is encrypted with a
key-encryption key. Despite its deployment in major cloud services, as
far as we know, envelope encryption has not received any formal treat-
ment. To address this issue, we first formalize the syntax and security
requirements of envelope encryption in the symmetric-key setting. Then,
we show that it can be constructed by combining encryptment and au-
thenticated encryption with associated data (AEAD). Encryptment is
one-time AEAD satisfying that a small part of a ciphertext works as a
commitment to the corresponding secret key, message, and associated
data. Finally, we show that the security of the generic construction is
reduced to the security of the underlying encryptment and AEAD.

Keywords: Authenticated encryption · Key wrap · Key-committing ·
Encryptment

1 Introduction

1.1 Background

Envelope encryption involves encrypting data using a symmetric encryption
scheme with a secret key known as a data-encryption key. This key is then
encrypted with one or more key-encryption keys. Envelope encryption allows a
recipient, holding a secret key corresponding to one of the key-encryption keys,
to recover the data-encryption key by using the secret key and to decrypt the
encrypted data with the data-encryption key. Envelope encryption is deployed in
primary cloud services such as Amazon Web Services, Google Cloud Platform,
IBM Cloud, and Microsoft Azure.

Envelope encryption usually employs authenticated encryption with associ-
ated data (AEAD) [20] to encrypt data. AEAD is an established symmetric-key
cryptographic primitive providing privacy and authenticity. Albertini et al. [1]
noted that the underlying AEAD must be key-committing. Namely, it should
ensure that only the secret key used to create a ciphertext can decrypt it. For
non-key-committing AEAD, a ciphertext C may exist which can be decrypted
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into distinct data P1 and P2 by two secret keys K1 and K2, respectively. Then,
a recipient receiving C together with K1 recovers P1, and another recipient re-
ceiving C together with K2 recovers P2.

Meanwhile, as far as we know, no formal treatment is given to envelope
encryption. It is left open what is secure envelope encryption and how we can
achieve it.

1.2 Our Contributions

Envelope encryption is effective for multicast from a server to multiple clients,
where each client shares a secret key with the server. The server encrypts data
with an ephemeral data-encryption key and the ephemeral data-encryption key
with the secret keys of recipients among the clients. In some use case, it may
be sufficient to guarantee the secrecy of data for a certain period, and the data-
encryption key may be disclosed after the period. Even in such a case, ciphertext
unforgeability is required. Namely, a malicious adversary should not be able to
utilize the disclosed ephemeral data-encryption key and forge a ciphertext.

We first formalize the syntax and security requirements of envelope encryp-
tion in the symmetric-key setting. The formalized security requirements are con-
fidentiality, ciphertext integrity, and soundness. The confidentiality and cipher-
text integrity are inherited from AEAD. The ciphertext integrity covers the use
case for multicast described in the previous paragraph. The soundness captures
the notion that all the recipients allowed to decrypt the same encrypted data
should obtain the same recovered data. Then, we present a generic construction
for envelope encryption combining encryptment [5] and AEAD. Finally, we prove
the security of the generic construction in a multi-user setting. The confidential-
ity is reduced to the confidentiality of encryptment and AEAD. The ciphertext
integrity is reduced to the second ciphertext unforgeability of encryptment and
the ciphertext integrity of AEAD. The generic construction utilizes the com-
pactly committing characteristic of encryptment for ciphertext integrity. The
soundness is reduced to the strong receiver-binding property [5] of encryptment.

1.3 Related Work

Formal treatments of authenticated encryption were initiated by Katz and Yung [12]
and Bellare and Namprempre [3]. The first dedicated schemes were presented by
Jutla [11]. AEAD was first formalized and investigated by Rogaway [20].

Committing AEAD and its variations were explored by Farshim et al. [7], Len
et al. [15], Bellare and Hoang [2], and Chan and Rogaway [4]. For committing
AEAD, a whole ciphertext serves as a commitment in general.

Commonly used AEAD schemes are not key-committing. Dodis et al. [5]
presented a practical attack showing that AES-GCM [18] is not key-committing.
Then, Albertini et al. developed an extensive attack and applied it effectively on
AES-GCM, ChaCha20-Poly1305 [17], AES-GCM-SIV [9], and OCB3 [13,14].
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Compactly committing AEAD (ccAEAD) was introduced by Grubbs et al. [8],
which is useful for message franking [6]. For ccAEAD, a small part of the cipher-
text serves as a commitment to the secret key, message, and associated data.
Encryptment was introduced by Dodis et al. [5] as a core component of ccAEAD.
They showed that encryptment with one call to AEAD or two calls to PRF pro-
duces ccAEAD. Hirose and Minematsu [10] showed that encryptment with one
call to a tweakable block cipher [16] produces ccAEAD.

1.4 Organization

Section 2 introduces AEAD and encryptment. Section 3 formalizes the syntax
and security requirements of envelope encryption. Section 4 presents the generic
construction of envelope encryption combining AEAD and encryptment and
proves its security. Section 5 gives a concluding remark.

2 Preliminaries

Let Σ := {0, 1} and Σ∗ :=
⋃
i≥0Σ

i. For a set S, let s ←← S represent that s is
assigned an element chosen uniformly at random from S.

2.1 Authenticated Encryption with Associated Data

Authenticated encryption with associated data (AEAD) [20] is a primitive of
symmetric-key cryptography providing privacy and authenticity. Here, AEAD is
formalized as deterministic authenticated encryption [21].

Syntax. An AEAD scheme is a tuple of algorithms AE := (AEkg,AEenc,AEdec).
It is associated with the following subsets of Σ∗: a key space KAE, an associated-
data space AAE, a message spaceMAE, and a ciphertext space CAE. It also has
a targeted security level, which determines the key length and affects the length
of each ciphertext. Let KAE := Σ`AE .

– The key-generation algorithm AEkg simply returns a secret key K ←← KAE.
– The encryption algorithm is a function such that AEenc : KAE × AAE ×
MAE → CAE. For any (K,A,M) ∈ KAE×AAE×MAE, if C ← AEenc(K,A,M),
then |M | determines |C|, and it is assumed that there exists some function
clenAE : N→ N such that |C| = clenAE(|M |).

– The decryption algorithm is a function such that AEdec : KAE×AAE×CAE →
MAE ∪ {⊥}, where ⊥ 6∈ MAE.

It is assumed that AE satisfies correctness: For any (K,A,M) ∈ KAE × AAE ×
MAE, AEdec(K,A,AEenc(K,A,M)) = M . For any (K,A,C) ∈ KAE × AAE ×
CAE, (A,C) is invalid with respect to K if AEdec(K,A,C) = ⊥.

Security Requirements. The security requirements of AEAD are confiden-
tiality and ciphertext integrity. Here, they are formalized in a multi-user setting.
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Confidentiality. The two games MU-REAL and MU-RAND in Fig. 1 are intro-
duced to formalize the confidentiality as real-or-random indistinguishability. In
both of the games, an adversary A is given oracles AEnew and AEenc. For a
new call, AEnew generates a secret key of a new user u. In response to a valid
query, AEenc returns a ciphertext produced by AEenc in MU-REAL and a uni-
form random sequence in MU-RAND. A is not allowed to repeat the same query
to AEenc. Finally, A outputs 0 or 1. The advantage of A for the confidentiality
is

Advmu-ror
AE (A) :=

∣∣Pr[MU-REALA
AE = 1]− Pr[MU-RANDA

AE = 1]
∣∣.

u← 0
b← AAEnew,AEenc

return b

AEnew()
u← u+ 1; Ku ←← KAE

AEenc(i, A,M)
if i 6∈ [1, u] then

return ⊥
end if
C ← AEenc(Ki, A,M)
return C

(a) MU-REALA
AE

u← 0
b← AAEnew,AEenc

return b

AEnew()
u← u+ 1; Ku ←← KAE

AEenc(i, A,M)
if i 6∈ [1, u] then

return ⊥
end if
C ←← ΣclenAE(|M|)

return C

(b) MU-RANDA
AE

Fig. 1: Games for confidentiality of AEAD

Ciphertext Integrity. The game MU-CTXT in Fig. 2 is introduced to formalize
the ciphertext integrity as existential unforgeability. In this game, an adversary
A is given oracles AEnew, AEcorrupt, AEenc, and AEdec. The oracles
AEnew and AEenc are equivalent to those of MU-REAL except that AEenc
stores all of its outputs. AEcorrupt returns the secret key of a user specified by
A. For a query, AEdec runs AEdec and sets win true if and only if A succeeds
in forgery. The advantage of A for the ciphertext integrity is

Advmu-ctxt
AE (A) := Pr[MU-CTXTA

AE = true].

Remark 1. For confidentiality, A is not allowed to corrupt users. Otherwise, A
can trivially distinguish MU-REAL and MU-RAND.

2.2 Encryptment

Syntax. Encryptment [5] is formalized as a tuple of algorithms EC := (ECkg,
ECenc,ECdec,ECver). It is associated with the following subsets of Σ∗: a key
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u← 0; Y ← ∅; Z ← ∅;
win ← false

AAEnew,AEcorrupt,AEenc,AEdec

return win

AEnew()
u← u+ 1; Ku ←← KAE

AEcorrupt(j)
if j 6∈ [1, u] then

return ⊥
end if
Z ← Z ∪ {j}
return Kj

AEenc(i, A,M)
if i 6∈ [1, u] then

return ⊥
end if
C ← AEenc(Ki, A,M)
Y ← Y ∪ {(i, A,C)}
return C

AEdec(i, A,C)
if i 6∈ [1, u] then

return ⊥
end if
M ′ ← AEdec(Ki, A,C)
if (i, A,C) 6∈ Y ∧j 6∈ Z ∧M ′ 6= ⊥ then

win ← true

end if
return M ′

Fig. 2: Game MU-CTXTA
AE for ciphertext integrity of AEAD

space KEC, an associated-data space AEC, a message space MEC, a ciphertext
space CEC, and a binding-tag space TEC. It also has a targeted security level,
which determines the key length and the binding-tag length. Let KEC := Σ` and
TEC := Στ .

– The key-generation algorithm ECkg simply returns a secret key K ←← KEC.
– The encryptment algorithm is a function such that ECenc : KEC × AEC ×
MEC → CEC × TEC. For any (K,A,M) ∈ KEC ×AEC ×MEC, if (C,B) ←
ECenc(K,A,M), then |M | determines |C|, and it is assumed that there exists
some function clenEC : N→ N such that |C| = clenEC(|M |).

– The decryptment algorithm is a function such that ECdec : KEC × AEC ×
CEC × TEC →MEC ∪ {⊥}, where ⊥ 6∈ MEC.

– The verification algorithm is a function such that ECver : AEC ×MEC ×
KEC × TEC → Σ.

It is assumed that EC satisfies correctness. Namely, for any (K,A,M) ∈
KEC × AEC × MEC, if (C,B) ← ECenc(K,A,M), then ECdec(K,A,C,B) =
M and ECver(A,M,K,B) = 1. A stronger notion of correctness called strong
correctness additionally requires that, for any (K,A,C,B) ∈ KEC×AEC×CEC×
TEC, if M ← ECdec(K,A,C,B), then ECenc(K,A,M) = (C,B).

Security Requirements. The security requirements of encryptment are con-
fidentiality, second-ciphertext unforgeability, and binding properties.

Confidentiality. Two games otREAL and otRAND shown in Fig. 3 are intro-
duced to formalize the confidentiality. In both of the games, an adversary A
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is allowed to ask a single query to the oracle ECenc. The advantage of A for
confidentiality is

Advot-ror
EC (A) :=

∣∣Pr[otREALA
EC = 1]− Pr[otRANDA

EC = 1]
∣∣,

where “ot-ror” stands for “one-time real-or-random.”

K ←← KEC

b← AECenc

return b

ECenc(A,M)
(C,B)← ECenc(K,A,M)
return (C,B)

(a) otREALA
EC

b← AECenc

return b

ECenc(A,M)
(C,B)←← ΣclenEC(|M|) ×Στ

return (C,B)

(b) otRANDA
EC

Fig. 3: Games for confidentiality of encryptment

Second-Ciphertext Unforgeability. An adversary A is allowed to ask a single
query (A,M) ∈ AEC×MEC to ECenc(K, ·, ·) and gets (C,B) and K, where K ←←
KEC and (C,B) ← ECenc(K,A,M). Finally, A outputs (A′, C ′) ∈ AEC × CEC.
The advantage of A for second-ciphertext unforgeability is

Advscu
EC (A) := Pr[(A,C) 6= (A′, C ′) ∧ ECdec(K,A′, C ′, B) 6= ⊥].

Binding properties. Binding properties are defined in terms of a receiver and
a sender. Receiver binding ensures that any malicious receiver cannot blame
a non-abusive sender for sending an abusive message. Let A be an adversary
producing a pair of elements in KEC × AEC ×MEC and a binding tag in TEC.
The advantage of A for receiver binding is

Advr-bind
EC (A) := Pr[((K,A,M), (K ′, A′,M ′), B)← A : (A,M) 6= (A′,M ′)

∧ ECver(A,M,K,B) = ECver(A′,M ′,K ′, B) = 1].

The advantage of A for strong receiver binding is

Advsr-bind
EC (A) := Pr[((K,A,M), (K ′, A′,M ′), B)← A : (K,A,M) 6= (K ′, A′,M ′)

∧ ECver(A,M,K,B) = ECver(A′,M ′,K ′, B) = 1].

Sender binding ensures that any malicious sender sending an abusive message
cannot prevent the receiver from blaming it. The advantage of an adversary A
for sender binding is

Advs-bind
EC (A) := Pr[(K,A,C,B)← A,M ← ECdec(K,A,C,B) :

M 6= ⊥ ∧ ECver(A,M,K,B) = 0].

6



3 Envelope Encryption

The syntax and security requirements of envelope encryption are formalized in
the symmetric key setting. Thus, it is assumed that symmetric encryption is
used for encrypting data-encryption keys as well as data. It is essential that
the security requirements are formalized in the multi-user setting since enve-
lope encryption generally assumes that a data-encryption key is encrypted with
multiple key-encryption keys.

3.1 Syntax

A tuple of algorithms EE := (KEKGen,DEKGen,Enc,Wrap,Dec) specify envelope
encryption. It is associated with the following subsets ofΣ∗: a key-encryption-key
space K, a data-encryption-key space L, an associated-data space A, a message
space M, a ciphertext space C, a binding-tag space T , a header space H, and
a wrapped-data-encryption-key space S. It also has a targeted security level,
which determines the key length, the binding-tag length, and the wrapped-data-
encryption-key length.

– The key-encryption-key generation algorithm KEKGen returns a secret key
for key encryption chosen uniformly at random from K.

– The data-encryption-key generation algorithm DEKGen returns a secret key
for data encryption chosen uniformly at random from L.

– The data-encryption algorithm is a function such that Enc : L × A×M→
C×T . For any (L,A,M) ∈ L×A×M, if (C,B)← Enc(L,A,M), then |M |
determines |C|, and it is assumed that there exists a function clen : N → N
such that |C| = clen(|M |).

– The key-wrap algorithm1 is a function such that Wrap : K×T ×L×H → S.
– The decryption algorithm is a function such that Dec : K×A×C×T ×S×H →
M×L ∪ {⊥}, where ⊥ 6∈ M×L.

It is assumed that EE satisfies correctness: For any (K,L,A,M,H) ∈ K ×
L × A ×M × H, if (C,B) ← Enc(L,A,M) and S ← Wrap(K,B,L,H), then
Dec(K,A,C,B, S,H) = M . For any (K,A,C,B, S,H) ∈ K×A×C×T ×S×H,
(A,C,B, S,H) is invalid with respect to K if Dec(K,A,C,B, S,H) = ⊥.

The formalization above specifies the data-encryption algorithm and the key-
wrap algorithm separately, and both of them have their associated data, where
the latter is called a header. It allows incremental key wrapping. In a cloud appli-
cation serving encrypted data, for example, a server can allow a new recipient to
recover the data by wrapping the data-encryption key with the key-encryption
key of the recipient on demand.

3.2 Security Requirements

The security requirements of envelope encryption are confidentiality, ciphertext
integrity, and soundness, which are formalized in a multi-user setting.

1 We do not expect that the key-wrap algorithm specified here is confused with the
methods in NIST SP 800-38F [19].
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Confidentiality. The two games MU-MO-REAL and MU-MO-RAND in Fig. 4
are introduced to formalize the confidentiality as real-or-random indistinguisha-
bility in a multi-opening setting. In both of the games, an adversary A is given
oracles New, Enc, Wrap, ChalEnc, and Dec. For a new call, New gener-
ates a secret key-encryption key of a new user u. In response to a query, Enc
returns a ciphertext produced by Enc. In response to a valid query, Wrap re-
turns a wrapped data-encryption key produced by Wrap in MU-MO-REAL and
a uniform random sequence sampled from S in MU-MO-RAND. In response to a
query, Dec returns a pair of a message and a data-encryption key if the query is a
ciphertext produced by Enc and Wrap. ChalEnc returns a ciphertext produced
by Enc in MU-MO-REAL and a uniform random sequence in MU-MO-RAND.
Finally, A outputs 0 or 1. The advantage of A for the confidentiality is

Advmu-mo-ror
EE (A) :=

∣∣Pr[MU-MO-REALA
EE = 1]− Pr[MU-MO-RANDA

EE = 1]
∣∣.

In this formalization, A is not allowed to corrupt users. Otherwise, A can triv-
ially distinguish MU-MO-REAL and MU-MO-RAND.

Ciphertext Integrity. The game MU-MO-CTXT in Fig. 5 is introduced to
formalize the ciphertext integrity as existential unforgeability. In this game, an
adversary A is given oracles New, Corrupt, Enc, Wrap, and Dec. The oracles
New, Enc, and Wrap are equivalent to those of MU-MO-REAL. Corrupt
returns the secret key-encryption key of a user specified by A. For a query, Dec
runs Dec and sets win true if and only if A succeeds in forgery. The advantage
of A for the ciphertext integrity is

Advmu-mo-ctxt
EE (A) := Pr[MU-MO-CTXTA

EE = true].

Soundness. The soundness captures the notion that users should recover the
same message from a ciphertext produced by Enc. The advantage of an adversary
A for soundness is

Advsnd
EE (A) := Pr[((K,A,C,B, S,H), (K ′, A′, C ′, B′, S′, H ′))← A :

(A,C,B) = (A′, C ′, B′) ∧
Dec(K,A,C,B, S,H) 6= ⊥ ∧ Dec(K ′, A′, C ′, B′, S′, H ′) 6= ⊥ ∧
Dec(K,A,C,B, S,H) 6= Dec(K ′, A′, C ′, B′, S′, H ′)].

Since Dec is deterministic, (A,C,B) = (A′, C ′, B′) and Dec(K,A,C,B, S,H) 6=
Dec(K ′, A′, C ′, B′, S′, H ′) imply that (K,S,H) 6= (K ′, S′, H ′).

4 Generic Construction of Envelope Encryption
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u← 0; d← 0; X ← ∅; Y ← ∅
b← ANew,Enc,Wrap,ChalEnc,Dec

return b

New()
u← u+ 1; Ku ←← K

Enc(A,M)
d← d+ 1; Ld ←← L
(Cd, Bd)← Enc(Ld, A,M)
(Ad,Md)← (A,M); X ← X ∪ {d}
return (Cd, Bd)

Wrap(i, j,Hi,j)
if (i, j) 6∈ [1, u]× [1, d] then

return ⊥
end if
Si,j ←Wrap(Ki, Bj , Lj , Hi,j)
if j ∈ X then
Y ← Y∪{(i, Aj , Cj , Bj , Si,j , Hi,j)}

end if
return Si,j

ChalEnc(A,M)
d← d+ 1; Ld ←← L
(Cd, Bd)← Enc(Ld, A,M)
return (Cd, Bd)

Dec(i, A,C,B, S,H)
if (i, A,C,B, S,H) 6∈ Y then

return ⊥
end if
return Dec(Ki, A, C,B, S,H)

(a) MU-MO-REALA
EE

u← 0; d← 0; X ← ∅; Y ← ∅
b← ANew,Enc,Wrap,ChalEnc,Dec

return b

New()
u← u+ 1; Ku ←← K

Enc(A,M)
d← d+ 1; Ld ←← L
(Cd, Bd)← Enc(Ld, A,M)
(Ad,Md)← (A,M); X ← X ∪ {d}
return (Cd, Bd)

Wrap(i, j,Hi,j)
if (i, j) 6∈ [1, u]× [1, d] then

return ⊥
end if
S(i,j) ←← S
if j ∈ X then
Y ← Y ∪ {(i, Aj , Cj , Bj , Si,j , Hi,j)}

end if
return Si,j

ChalEnc(A,M)
d← d+ 1; Ld ←← L
(Cd, Bd)←← Σclen(|M|) × T
return (Cd, Bd)

Dec(i, A,C,B, S,H)
if (i, A,C,B, S,H) 6∈ Y then

return ⊥
end if
return (Mj , Lj) . (i, A,C,B, S,H) =
(i, Aj , Cj , Bj , Si,j , Hi,j) ∈ Y

(b) MU-MO-RANDA
EE

Fig. 4: Games for confidentiality of envelope encryption
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u← 0; d← 0; Y ← ∅; Z ← ∅
win ← false

ANew,Corrupt,Enc,Wrap,Dec

return win

New()
u← u+ 1; Ku ←← K

Corrupt(j)
if j 6∈ [1, u] then

return ⊥
end if
Z ← Z ∪ {j}
return Kj

Enc(A,M)
d← d+ 1; Ld ←← L
(Cd, Bd)← Enc(Ld, A,M)
Ad ← A
return (Cd, Bd)

Wrap(i, j,Hi,j)
if (i, j) 6∈ [1, u]× [1, d] then

return ⊥
end if
Si,j ←Wrap(Ki, Bj , Lj , Hi,j)
Y ← Y ∪ {(i, Aj , Cj , Bj , Si,j , Hi,j)}
return Si,j

Dec(i, A,C,B, S,H)
if i 6∈ [1, u] then

return ⊥
end if
if Dec(Ki, A,C,B, S,H) = ⊥ then

return ⊥
end if
if (i, A,C,B, S,H) 6∈ Y∧j 6∈ Z then

win ← true

end if
return Dec(Ki, A, C,B, S,H)

Fig. 5: Game MU-MO-CTXTA
EE for ciphertext integrity of envelope encryption

4.1 Construction

We present generic construction of envelope encryption GEE := (GKEKGen,
GDEKGen,GEnc,GWrap,GDec) from encryptment EC := (ECkg,ECenc,ECdec,
ECver) and AEAD AE := (AEkg,AEenc,AEdec). The generic construction fol-
lows the observation by Albertini et al. [1] and utilizes encryptment, which is
one-time key-committing AEAD, for data encryption. For key wrap, the generic
construction utilizes AEAD, which takes a binding tag of encryptment as (a part
of) its associated data. This prevents an adversary from forging a ciphertext of
envelope encryption by using a disclosed data-encryption key due to, for exam-
ple, expiration. New data encrypted with a disclosed data-encryption key will
be accompanied with a new binding tag.

Key-encryption-key generation AEkg works as GKEKGen. A secret key-encryption
key is chosen from K := KAE uniformly at random.

Data-encryption-key generation ECkg works as GDEKGen. A secret data-
encryption key is chosen from L := KEC uniformly at random.

Encryption ECenc works as GEnc. For (L,A,M) ∈ L × A × M, (C,B) ←
ECenc(L,A,M), where A ⊆ AEC and M⊆MEC.

Key Wrap AEenc works as GWrap. For (K,B,L,H) ∈ K × T × L × H, S ←
AEenc(K, (B,H), L), where T ×H ⊆ AAE and L ⊆MAE.

Decryption GDec(K,A,C,B, S,H) is defined as follows:
1. L′ ← AEdec(K, (B,H), S).
2. If L′ = ⊥, then return ⊥. Otherwise, M ′ ← ECdec(L′, A,C,B).
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3. If M ′ = ⊥, then return ⊥. Otherwise, return (M ′, L′).

Remark 2. For the proposed generic construction, AE can be instantiated by
nonce-based AEAD, though AE is formalized as deterministic authenticated en-
cryption in Sect. 2. The discussions on security in the subsequent part of this
section apply to such instantiations.

Fig. 6: Diagram of envelope encryption

4.2 Security

Confidentiality. GEE satisfies the confidentiality if the underlying AE and EC
satisfy the confidentiality:

Theorem 1. For any adversary A against GEE for confidentiality making qw
queries to the Wrap oracle and qc queries to the ChalEnc oracle, there exists
some adversaries Ȧ and Ä such that

Advmu-mo-ror
GEE (A) ≤ Advmu-ror

AE (Ȧ) + qc ·Advot-ror
EC (Ä).

Ȧ makes at most qw queries to the AEenc oracle. The run time of Ȧ and Ä is
at most about that of MU-MO-REALA

GEE.

Proof. For the games MU-MO-REALA
GEE in Fig. 7 and MU-MO-RANDA

GEE in
Fig. 8,

Advmu-mo-ror
GEE (A) =

∣∣Pr[MU-MO-REALA
GEE = 1]− Pr[MU-MO-RANDA

GEE = 1]
∣∣.

The game MU-MO-ROR-GA
1 in Fig. 9 is different from MU-MO-REALA

GEE

in that Dec selects responses for each query in Y based on the queries and
responses of Enc and Wrap. This change is minor, and

Pr[MU-MO-ROR-GA
1 = 1] = Pr[MU-MO-REALA

GEE = 1].

11



The game MU-MO-ROR-GA
2 in Fig. 10 is different from MU-MO-ROR-GA

1

in that Wrap selects Si,j uniformly at random. Let Ȧ be an adversary against AE

for confidentiality. Ȧ runs MU-MO-ROR-GA
1 and MU-MO-ROR-GA

2 in MU-REALȦ
AE

and MU-RANDȦ
AE, respectively. Ȧ runs A and simulates its oracles. For each call

to New made by A, Ȧ makes a call to AEnew. For a query (i, j) ∈ [1, u]× [1, d]
to Wrap made by A, Ȧ makes a query (i, (Bj , Hi,j), Lj) to AEenc and forwards

the response to A. Finally, Ȧ produces the same output as A. Thus,

Advmu-ror
AE (Ȧ) =

∣∣Pr[MU-MO-ROR-GA
1 = 1]− Pr[MU-MO-ROR-GA

2 = 1]
∣∣.

Ȧ makes at most qw queries to AEenc, and its run time is at most about that
of MU-MO-REALA

GEE.
Now, let us introduce the game MU-MO-HYBA

k shown in Fig. 11, where
k ∈ [0, qc]. Except ChalEnc, it uses the oracles of MU-MO-ROR-GA

2 . Thus,
it is equivanet to MU-MO-ROR-GA

2 and MU-MO-RANDA
GEE if k equals 0 and

qc, respectively. Let A′l be an adversary against EC for confidentiality, where

l ∈ [1, qc]. In otREAL
A′

l

EC or otRAND
A′

l

EC , A′l runs MU-MO-HYBA
l−1 except that

A′l asks the l-th query to ChalEnc made by A to ECenc. Finally, A′l pro-

duces the same output as A. Then, otREAL
A′

l

EC and otRAND
A′

l

EC are equivalent

to MU-MO-HYBA
l−1 and MU-MO-HYBA

l , respectively. Thus,∣∣Pr[MU-MO-ROR-GA
2 = 1]− Pr[MU-MO-RANDA

GEE = 1]
∣∣

=
∣∣Pr[MU-MO-HYBA

0 = 1]− Pr[MU-MO-HYBA
qc = 1]

∣∣
≤

qc∑
l=1

∣∣Pr[MU-MO-HYBA
l−1 = 1]− Pr[MU-MO-HYBA

l = 1]
∣∣

≤
qc∑
k=1

∣∣Pr[otREAL
A′

l

EC = 1]− Pr[otRAND
A′

l

EC = 1]
∣∣,

and the run time of A′l is at most about that of MU-MO-REALA
GEE. Thus, there

exists some Ä such that∣∣Pr[MU-MO-ROR-GA
2 = 1]− Pr[MU-MO-RANDA

GEE = 1]
∣∣ ≤ qc ·Advot-ror

EC (Ä),

and the run time of Ä is at most about that of MU-MO-REALA
GEE. ut

Ciphertext integrity. GEE satisfies the ciphertext integrity if the underlying
AE satisfies the ciphertext integrity and EC satisfies the second-ciphertext un-
forgeability. To achieve the ciphertext integrity, the generic construction utilizes
the binding tag to bind a ciphertext of data with the wrapped data-encryption
key instead of relying on the semantics of associated data and headers.

Theorem 2. For any adversary A against GEE for ciphertext integrity making
qe queries to the Enc oracle and qw queries to the Wrap oracle, there exists

12



u← 0; d← 0; X ← ∅; Y ← ∅
b← ANew,Enc,Wrap,ChalEnc,Dec

return b

New()
u← u+ 1; Ku ←← K

Enc(A,M)
d← d+ 1; Ld ←← L
(Cd, Bd)← ECenc(Ld, A,M)
(Ad,Md)← (A,M); X ← X ∪ {d}
return (Cd, Bd)

Wrap(i, j,Hi,j)
if (i, j) 6∈ [1, u]× [1, d] then

return ⊥
end if
Si,j ← AEenc(Ki, (Bj , Hi,j), Lj)
if j ∈ X then
Y ← Y∪{(i, Aj , Cj , Bj , Si,j , Hi,j)}

end if
return Si,j

ChalEnc(A,M)
d← d+ 1; Ld ←← L
(Cd, Bd)← ECenc(Ld, A,M)
return (Cd, Bd)

Dec(i, A,C,B, S,H)
if (i, A,C,B, S,H) 6∈ Y then

return ⊥
end if
return GDec(Ki, A, C,B, S,H)

Fig. 7: MU-MO-REALA
GEE

u← 0; d← 0; X ← ∅; Y ← ∅
b← ANew,Enc,Wrap,ChalEnc,Dec

return b

New()
u← u+ 1; Ku ←← K

Enc(A,M)
d← d+ 1; Ld ←← L
(Cd, Bd)← ECenc(Ld, A,M)
(Ad,Md)← (A,M); X ← X ∪ {d}
return (Cd, Bd)

Wrap(i, j,Hi,j)
if (i, j) 6∈ [1, u]× [1, d] then

return ⊥
end if
Si,j ←← ΣclenAE(|Lj |)

if j ∈ X then
Y ← Y ∪ {(i, Aj , Cj , Bj , Si,j , Hi,j)}

end if
return Si,j

ChalEnc(A,M)
d← d+ 1; Ld ←← L
(Cd, Bd)←← Σclen(|M|) × T
return (Cd, Bd)

Dec(i, A,C,B, S,H)
if (i, A,C,B, S,H) 6∈ Y then

return ⊥
end if
return (Mj , Lj) . (i, A,C,B, S,H) =
(i, Aj , Cj , Bj , Si,j , Hi,j) ∈ Y

Fig. 8: MU-MO-RANDA
GEE
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u← 0; d← 0; X ← ∅; Y ← ∅
b← ANew,Enc,Wrap,ChalEnc,Dec

return b

New()
u← u+ 1; Ku ←← K

Enc(A,M)
d← d+ 1; Ld ←← L
(Cd, Bd)← ECenc(Ld, A,M)
(Ad,Md)← (A,M); X ← X ∪ {d}
return (Cd, Bd)

Wrap(i, j,Hi,j)
if (i, j) 6∈ [1, u]× [1, d] then

return ⊥
end if
Si,j ← AEenc(Ki, (Bj , Hi,j), Lj)
if j ∈ X then
Y ← Y∪{(i, Aj , Cj , Bj , Si,j , Hi,j)}

end if
return Si,j

ChalEnc(A,M)
d← d+ 1; Ld ←← L
(Cd, Bd)← ECenc(Ld, A,M)
return (Cd, Bd)

Dec(i, A,C,B, S,H)
if (i, A,C,B, S,H) 6∈ Y then

return ⊥
end if
return (Mj , Lj) . (i, A,C,B, S,H) =
(i, Aj , Cj , Bj , Si,j , Hi,j) ∈ Y

Fig. 9: MU-MO-ROR-GA
1

u← 0; d← 0; X ← ∅; Y ← ∅
b← ANew,Enc,Wrap,ChalEnc,Dec

return b

New()
u← u+ 1; Ku ←← K

Enc(A,M)
d← d+ 1; Ld ←← L
(Cd, Bd)← ECenc(Ld, A,M)
(Ad,Md)← (A,M); X ← X ∪ {d}
return (Cd, Bd)

Wrap(i, j,Hi,j)
if (i, j) 6∈ [1, u]× [1, d] then

return ⊥
end if
Si,j ←← ΣclenAE(|Lj |)

if j ∈ X then
Y ← Y ∪ {(i, Aj , Cj , Bj , Si,j , Hi,j)}

end if
return Si,j

ChalEnc(A,M)
d← d+ 1; Ld ←← L
(Cd, Bd)← ECenc(Ld, A,M)
return (Cd, Bd)

Dec(i, A,C,B, S,H)
if (i, A,C,B, S,H) 6∈ Y then

return ⊥
end if
return (Mj , Lj) . (i, A,C,B, S,H) =
(i, Aj , Cj , Bj , Si,j , Hi,j) ∈ Y

Fig. 10: MU-MO-ROR-GA
2
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ctr ← 0

ChalEnc(A,M)
ctr ← ctr + 1
d← d+ 1; Ld ←← L
if ctr ≤ k then

(Cd, Bd)←← ΣclenEC(|M|) × T
else

(Cd, Bd)← ECenc(Ld, A,M)
end if
return (Cd, Bd)

Fig. 11: Game MU-MO-HYBA
k

some adversaries Ȧ and Ä such that

Advmu-mo-ctxt
GEE (A) ≤ Advmu-ctxt

AE (Ȧ) + qe ·Advscu
EC (Ä).

Ȧ makes at most qw queries to the AEenc oracle. The run time of Ȧ and Ä is
at most about that of MU-MO-CTXTA

GEE.

Proof. The game MU-MO-CTXTA
GEE is given in Fig. 12. Without loss of general-

ity, it is assumed that, whenever MU-MO-CTXTA
GEE outputs true, A terminates

right after a response from Dec to its query succeeding in setting win true.
Suppose that MU-MO-CTXTA

GEE outputs true and (i∗, A∗, C∗, B∗, S∗, H∗)
sets win true. Then, there are two cases for the process of Dec on (i∗, A∗, C∗, B∗,
S∗, H∗): (1) for every (i, A,C,B, S,H) ∈ Y, (i, B, S,H) 6= (i∗, B∗, S∗, H∗); (2)
there exists some (i′, A′, C ′, B′, S′, H ′) ∈ Y such that (i′, B′, S′, H ′) = (i∗, B∗, S∗,
H∗) and (A′, C ′) 6= (A∗, C∗). Let Win1 and Win2 be the events such that
MU-MO-CTXTA

GEE outputs true in the first case and the second case, respec-
tively. Then,

Advmu-mo-ctxt
GEE (A) ≤ Pr[Win1] + Pr[Win2].

For Win1, let A1 be an adversary against AE for the ciphertext integrity. In
MU-CTXTA1

AE , A1 runs MU-MO-CTXTA
GEE. For a call to New by A, A1 makes

a call to AEnew. For a query to Corrupt by A, A1 asks it to AEcorrupt and
forwards the reply to A. A1 simulates Enc for A. For a query (i, j,Hi,j) ∈ [1, u]×
[1, d] × H to Wrap by A, A1 makes a query (i, (Bj , Hi,j), Lj) to AEenc and
forwards the reply to A. A1 simulates Dec by making use of AEdec for AEenc.
Then, in MU-CTXTA1

AE , (i∗, (B∗, H∗), S∗) sets win true. Thus, Pr[Win1] ≤
Advmu-ctxt

AE (A1). A1 makes at most qw queries to AEenc. The run time of A1

is at most about that of MU-MO-CTXTA
GEE.

Let us see Win2. Let A2 be an adversary against EC for the second cipher-
text unforgeability. A2 first samples r ∈ [1, qe] uniformly at random. Then,
A2 runs MU-MO-CTXTA

GEE. A2 simulates the oracles of A except that it asks
the r-th query (A,M) to Enc made by A to its ECenc oracle and forwards
(C,B) among the reply to A2. A2 is successful if the r-th query corresponds to
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(i′, A′, C ′, B′, S′, H ′). Thus, (1/qe) Pr[Win2] ≤ Advscu
EC (A2). The run time of A2

is at most about that of MU-MO-CTXTA
GEE.

There may exist adversaries Ȧ and Ä obtaining better advantages than A1

and A2, respectively, using the same amount of computational resources. ut

u← 0; d← 0; Y ← ∅; Z ← ∅
win ← false

ANew,Corrupt,Enc,Wrap,Dec

return win

New()
u← u+ 1; Ku ←← K

Corrupt(j)
if j 6∈ [1, u] then

return ⊥
end if
Z ← Z ∪ {j}
return Kj

Enc(A,M)
d← d+ 1; Ld ←← L
(Cd, Bd)← ECenc(Ld, A,M)
Ad ← A
return (Cd, Bd)

Wrap(i, j,Hi,j)
if (i, j) 6∈ [1, u]× [1, d] then

return ⊥
end if
Si,j ← AEenc(Ki, (Bj , Hi,j), Lj)
Y ← Y ∪ {(i, Aj , Cj , Bj , Si,j , Hi,j)}
return Si,j

Dec(i, A,C,B, S,H)
if i 6∈ [1, u] then

return ⊥
end if
L′ ← AEdec(Ki, (B,H), S)
if L′ = ⊥ then

return ⊥
end if
M ′ ← ECdec(L′, A, C,B)
if M ′ = ⊥ then

return ⊥
end if
if (i, A,C,B, S,H) 6∈ Y then

win ← true

end if
return (M ′, L′)

Fig. 12: Game MU-MO-CTXTA
GEE

Soundness. GEE satisfies the soundness if the underlying encryptment EC sat-
isfies the strong correctness and the strong receiver binding property:

Theorem 3. Suppose that EC satisfies the strong correctness. Then, for any
adversary A against GEE for soundness, there exists some adversary Ȧ such
that

Advsnd
GEE(A) ≤ Advsr-bind

EC (Ȧ).

The run time of Ȧ is at most about that of A.

Proof. Ȧ first runs A and gets a pair (K,A,C,B, S,H) and (K ′, A′, C ′, B′, S′, H ′)
produced by A. Suppose that A succeeds in breaking the soundness of GEE.
Then, (A,C,B) = (A′, C ′, B′) and Ȧ can compute
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– L← AEdec(K, (B,H), S), M ← ECdec(L,A,C,B) and
– L′ ← AEdec(K ′, (B,H ′), S′), M ′ ← ECdec(L′, A,C,B)

satisfying (M,L) 6= (M ′, L′). Finally, Ȧ outputs ((L,A,M), (L′, A,M ′), B).
Since EC satisfies the strong correctness, ECver(A,M,L,B) = ECver(A,M ′, L′, B) =
1. ut

5 Conclusion

We have formalized the syntax and security requirements of envelope encryption.
We have proposed a generic construction using encryptment and AEAD and
confirmed its security based on the security of the components. Our proposal
brings a new application of compactly committing property of authenticated
encryption. It presents a purely cryptographic solution for the unforgeability of
envelope encryption.
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