
Aloha-HE: A Low-Area Hardware Accelerator for
Client-Side Operations in Homomorphic Encryption

Florian Krieger, Florian Hirner, Ahmet Can Mert, Sujoy Sinha Roy
Institute of Applied Information Processing and Communications, Graz University of Technology, Graz, Austria

{florian.krieger, florian.hirner, ahmet.mert, sujoy.sinharoy}@iaik.tugraz.at

Abstract—Homomorphic encryption (HE) has gained broad
attention in recent years as it allows computations on encrypted
data enabling secure cloud computing. Deploying HE presents
a notable challenge since it introduces a performance overhead
by orders of magnitude. Hence, most works target accelerating
server-side operations on hardware platforms, while little attention
has been given to client-side operations. In this paper, we present a
novel design methodology to implement and accelerate the client-
side HE operations on area-constrained hardware. We show how
to design an optimized floating-point unit tailored for the encoding
of complex values. In addition, we introduce a novel hardware-
friendly algorithm for modulo-reduction of floating-point numbers
and propose various concepts for achieving efficient resource
sharing between modular ring and floating-point arithmetic.
Finally, we use this methodology to implement an end-to-end
hardware accelerator, Aloha-HE, for the client-side operations
of the CKKS scheme. In contrast to existing work, Aloha-HE
supports both encoding and encryption and their counterparts
within a unified architecture. Aloha-HE achieves a speedup of up
to 59× compared to prior hardware solutions.

Index Terms—CKKS, Homomorphic Encryption, Hardware
Accelerator, FPGA, Microsoft SEAL.

I. INTRODUCTION

Homomorphic Encryption (HE) is a special technique that
allows direct computation on the encrypted data, meaning that
operations on the encrypted data yield the same result as on its
plain counterpart. This property allows to preserve the confi-
dentiality of data in the context of cloud computing. In the HE
setting, there are two parties, client and cloud. A client encodes
and encrypts its data, and sends it to the cloud in encrypted
format. The cloud performs computations homomorphically on
the encrypted data while keeping it confidential. Finally, the
client reads the processed data from the cloud in the encrypted
format, and then decrypts and decodes it. There are different
HE schemes in the literature [1], [2].

The CKKS scheme [2] has emerged as a promising HE
scheme as it allows computations on real numbers, hence
enabling many applications such as privacy-preserving neural
networks. Computations on real numbers add further com-
plexity to the CKKS scheme since it requires two distinct
transformations. First, the Fast Fourier transform (FFT), which
operates on complex numbers, is used during encoding. It maps
the complex-valued input vector to a polynomial ring element
before its encryption. The second transformation used in CKKS
is the Number Theoretic Transform (NTT). It operates on

This project was funded in part by the CONFIDENTIAL-6G EU project
(Grant No: 101096435). It was also supported in part by the State Government
of Styria, Austria – Department Zukunftsfonds Steiermark.

polynomial ring elements and ensures performant polynomial
multiplications during homomorphic computations.

Despite HE enables secure computation, its adoption still
suffers from its massive memory and computational require-
ments, which are several orders of magnitude higher compared
to plaintext operations. Recently, the United States Department
of Defense initiated the DPRIVE competition [3] to boost the
development of HE schemes, including acceleration of HE
on hardware platforms. Most research works as well as the
DPRIVE competition focus on accelerating cloud-side opera-
tions on high-end FPGA and ASIC platforms [4], [5]. Yet, little
attention is given to client-side operations including encryption,
encoding, and their respective counterparts. In many cases,
a low-end device is deployed on the client-side. This makes
it challenging to perform required operations while meeting
various resource and performance constraints. These challenges
inspired recent works to design solutions targeting client-side
operations on either software or hardware platforms. SEAL-
Embedded [6] is a software library optimized for low memory
consumption to allow its use on embedded devices for CKKS.
However, it comes at a cost of high latency. There are also
works targeting hardware acceleration for client-side CKKS
operations [7]–[9]. They provide support for encryption and
its sub-operations including NTT. The major drawback of these
designs is the expensive CKKS encoding performed in software
as it requires floating-point computations during FFT.

This paper presents Aloha-HE, an end-to-end hardware ac-
celerator for client-side CKKS operations. Aloha-HE is the
first work that provides support for encoding, encryption and
their counterparts in hardware while prior hardware works only
provide support for encryption. The main contributions of this
work can be summarized in five points. (1) We implement an
FFT unit including an IEEE-754 compliant floating-point unit.
Our design benefits from a high degree of resource sharing
between FFT and NTT units. (2) We introduce a novel and
hardware-friendly approach to compute the modular reduction
of floating-point values by exploiting the IEEE-754 format. (3)
We implemented a co-processor for accelerating client-side HE
operations. As a demonstration, we target CKKS scheme. (4)
Our implementation, Aloha-HE, on low-cost FPGAs shows a
speedup of up to 59× compared to prior works. (5) We publish
our source code at [10] to support further research in this area.

This paper is structured as follows. Sec. II gives notation and
background for CKKS scheme. Sec. III presents our accelerator
design. Sec. IV shows our results and Sec. V concludes paper.

CKKS Encryption and DecryptionCKKS Encoding and Decoding

Expand Round to
Integers

Residue Number
System

Coeff-Wise
Multiplication

Error Sampling Untrusted
Cloud Service

Coeff-Wise
MultiplicationProject Convert to

Floating-Point
Chinese Remainder

Theorem

Modular Ring
Domain

Floating-Point
Domain

Input Vector
from

Output Vector
from

Fig. 1. Flow chart of the CKKS encoding+encryption and decoding+decryption operations.

II. BACKGROUND

In this section, we present notation with required mathemat-
ical building blocks and introduce the CKKS scheme.

A. Notation

Lattice-based cryptosystems relying on the Ring Learning-
With-Errors (RLWE) commonly operate over a polynomial
ring denoted by RQ = ZQ[x]/(x

n + 1). This is the set of
polynomials with degree at most n − 1 and with coefficients
from ZQ. The 2n-th cyclotomic polynomial Φ2n(x) = xn + 1
serves as the irreducible polynomial required for reducing a
polynomial multiplication result back to RQ. We refer to Q
as ciphertext modulus, which is a product of distinct primes
Q = q0 · . . . · qL−1 with a maximum bit-size defined by
the polynomial size n to ensure a certain security level [11].
Each prime qi has the property qi ≡ 1 mod 2n and thus
enables Number Theoretic Transform (NTT) based polynomial
multiplication in RQ. Throughout this paper, we refer to integer
and polynomial multiplication as · and ×, respectively.

B. Mathematical Building Blocks

The Fast Fourier Transform (FFT) is an efficient approach to
compute the Discrete Fourier Transform (DFT) of a complex-
valued input vector x ∈ Cn. It iterates a so-called butterfly
operation n

2 log2(n) times over the input vector x. There exist
two types of butterfly configurations, the Gentleman-Sande
(GS) butterfly is used in decimation-in-frequency (DIF) trans-
formations while the Cooley-Tukey (CT) butterfly is used in
decimation-in-time (DIT) transformations [12]. Each butterfly
operation gets two coefficients as input and produces two
as output. Additionally, a 2n-th primitive root of unity, the
so-called twiddle factor ω, is used during butterfly computa-
tions [4]. As the FFT is defined over the field of complex
numbers C, floating-point computations are required in digital
systems. Each complex value x = xr+jxi ∈ C consists of two
floating-point values, the real part xr ∈ R and the imaginary
part xi ∈ R. Complex addition a+ b = (ar + br) + j(ai + bi)
requires two floating-point additions, while complex multipli-
cation a · b = (ar · br −ai · bi)+ j(ar · bi+ai · br) requires four
floating-point multiplications and two floating-point additions.

The NTT is the DFT defined over Zq . It follows the
same concepts as the FFT, except a different underlying field
structure, Zq , instead of C. It is a central building block in
lattice-based cryptography as it allows faster polynomial mul-
tiplications in O(n log n) time complexity than the schoolbook

approach with a complexity of O(n2). This allows a significant
speedup for large n as used in HE settings.

The Residue Number System (RNS) representation of an
element x ∈ ZQ, is a decomposition of x into smaller
residuals x0, . . . , xL−1, where Q is defined as in Sec. II-A.
Each residual xi ∈ Zqi is computed as xi = x mod qi.
The RNS representation allows operations on the L residues
separately by using smaller integer arithmetic. The operations
performed on smaller integers in the RNS domain (i.e., xi) are
reflected in the combined integer (i.e., x) which can be obtained
by applying the Chinese Remainder Theorem on the residues.

C. CKKS Scheme
In 2017, Cheon et al. proposed a homomorphic encryption

scheme, CKKS [2], which allows homomorphic computations
on real numbers. Later, an efficient RNS variant of the CKKS
scheme is proposed, RNS-CKKS [13]. For the rest of the paper,
we use term CKKS to refer to the RNS-CKKS.

The workflow of client-side operations in CKKS is illustrated
in Fig. 1. The encoding marked in yellow first expands the
input from Cn/2 to Cn by adding each element’s conjugate
complex and by reordering the vector according to a dedicated
pattern. Afterward, an n-point FFT is applied to the expanded
vector, which generates a vector from Rn as the imaginary
parts vanish due to the properties of expansion and FFT. A
final rounding of the real parts to integers yields a vector in
ZQ[x]/(x

n + 1). Finally, the resulting vector is decomposed
into multiple vectors/polynomials with smaller coefficients (i.e.,
a vector in Zqi [x]/(x

n + 1)) using RNS.
The encoded and RNS-mapped message is then encrypted

as shown in Eq. 1 for asymmetric encryption, where pki are
the public key polynomials, m is the encoded message, and ei
and v are randomly sampled error polynomials from a centered
binomial and ternary distribution, respectively. As shown in
Fig. 1, the NTT representation is used to speedup polynomial
multiplications.

(C0, C1) = (pk0 × v + e0 +m, pk1 × v + e1) (1)
m′ = C1 × sk + C0 (2)

Decryption, shown in Eq. 2, calculates an approximation of
the message m′ to be decoded, where sk refers to the secret key.
Decoding is the opposite operation of encoding mapping m′ to
a vector of n/2 complex numbers by using the inverse FFT.
We consider the plaintext-to-ciphertext (pt-to-ct) conversion
to consist of encoding and encryption, while ciphertext-to-
plaintext (ct-to-pt) refers to decryption and decoding.

III. THE PROPOSED DESIGN

This section presents our optimization techniques and hard-
ware design. It focuses on the novelties of the proposed work
including the FFT-based encoding, the synergy of FFT and
NTT in terms of resource sharing, and the efficient RNS
computation. Less attention is given to modular ring operations
like NTT, as these are already extensively covered by prior
works in the literature. For a demonstration of our concepts, we
choose the parameter n = 8192 which requires a corresponding
Q of at most 202 bits for 128-bit post-quantum security [11].
Each modulus qi can have from 46 up to 54 bits. Despite this
parameter selection, the proposed design can easily be extended
to support different parameter sets as well. For implementation
and verification of CKKS client-side operations, our work
closely follows the CKKS implementation in Microsoft SEAL
library [14].

A. Floating-Point Unit and FFT

The CKKS scheme uses a different encoding procedure
based on FFT compared to other HE schemes that operate over
integer inputs, like BFV [1]. This means that CKKS requires
floating-point arithmetic to perform computations during FFT.

The iterative FFT algorithm takes a vector a ∈ Cn and
iterates over it log2(n) times. We refer to these iterations as
stages, denoted as si, where i = 0 . . . log2(n)− 1. Each stage
performs a total of n/2 so-called butterfly operations over
a taking two elements of a and one twiddle factor ωi for
computation. The computation inside the butterfly unit depends
on the desired decimation method. CKKS uses DIF FFT during
encoding and DIT inverse FFT during decoding. Fig. 2 gives
an overview of both butterfly configurations in (a) and (b) as
well as a unified version in (c). As shown on the left side
both configurations contain a complex addition, subtraction,
and multiplication unit. In order to save resources DIF and
DIT configurations can be merged into a single architecture
by adding additional multiplexers, as shown in Fig. 2 (c). Our
design instantiates one such unified butterfly unit for FFT.

We accelerate the FFT by utilizing our custom floating-
point unit (FPU) following the IEEE-754 standard for double-
precision. In double-precision floating-point format, each num-
ber is encoded within a 64-bit word, containing one sign bit s,
11 biased exponent bits eb, and 52 significant bits m. Based on
that, the actual value v is computed as v = (−1)s · {1,m} · 2ê,
where ê = eb − bias − 52 is the unbiased exponent and
{·, ·} indicates bit-wise appending. The FPU implementation
supports addition, subtraction, and multiplication and allows
several optimizations for lowering its area consumption. Mul-
tiplications of floating-point values with powers of two are just
additions to the exponent. This is, for example, exploited in
the decoding phase where the factor n−1 must be multiplied
to each element. Instead of instantiating a dedicated complex
multiplier, a simple adder is sufficient. Second, a complex
subtractor is the same hardware circuit as an adder. Just a
flip of the subtrahend’s sign bit is needed. Furthermore, within
the butterfly operations, the adder (yellow) and subtractor
(orange) always get the same inputs, as Fig. 2 highlights. This

(c) Unified(b) DIT

(a) DIF

Complex
Adder

Complex
Subtractor

in_a

in_b
out_a

out_b

Complex
Multiplier

in_tw

Complex
Subtractor

Complex
Multiplier

Complex
Adder

out_a

out_b

Complex
Subtractor

Complex
Adder

out_a

out_b
Complex
Multiplier

in_a

in_b

in_tw

in_a

in_b

in_tw

Fig. 2. (a) DIF butterfly, (b) DIT butterfly, (c) unified butterfly. Multiplexers
ensure the correct connection of the subcomponents in (c) to yield configura-
tions as in (a) and (b).

allows to share the floating-point preprocessing, including the
denormalization of one operand, between the complex adder
and subtractor. Finally, we reduce the number of registers in
the butterfly module by loading its inputs just in time from the
BRAM. The results are also directly stored back as soon as their
computation is done without any registering. Due to the fact
that each complex coefficient is 128-bit wide, a considerable
amount of registers can be saved by this measure.

During one butterfly operation, a power of twiddle factor ωi

in C is multiplied with another operand. These twiddle factors
depend on the polynomial size n and moduli qi, and thus are
fixed in our design. We provide the users with two design-time
options for the FFT twiddle factor delivery: They are either
generated on the fly or stored in memory. The first option
requires an additional complex multiplier responsible for the
twiddle factor generation. Thus, it introduces a higher FPGA
resource utilization. However, the stored alternative consumes
a comparably large block ROM with 128-bit wide elements for
storing the needed complex-valued twiddle factors.

Furthermore, our design exploits the symmetry of the roots
of unity in C to reduce the number of required factors from
2n to n/2. This is possible since the twiddle factors needed
in the inverse transformation are the complex conjugate of the
ones in the forward transformation. In addition to that, each
transformation uses pairs of twiddle factors in the form of ωi =
a+jb and ωn−i = −a+jb, where the real part a of the complex
twiddle factor is either positive or negative. Thus, the sign bit
of the floating-point value needs to get flipped depending on
the required twiddle factor.

B. NTT and Resource Sharing

The NTT is another important building block in CKKS.
It is very similar to the FFT, the only difference is that the
underlying field C is replaced by Zq . This switch from C to
Zq requires a dedicated datapath within the architecture. Yet,
the overall execution flow as well as the twiddle factor order
are exactly the same. This similarity allows reusing the entire
control logic of FFT during NTT.

The NTT butterfly contains modular addition, subtraction,
and multiplication instead of their complex counterparts in FFT.
The design of modular addition and subtraction is relatively
simple while a modular multiplier is more challenging. It
requires an integer multiplication combined with a modular

Complex
Multiplier

Mod-Ring
Multiplier

 Twiddle Gen.

Direct Memory
Access

DMA
control

DDR3

Control LogicInstruction
interface

Complex
BRAM

Modular
Ring

BRAM 1

Modular
Ring

BRAM 2

Modular
Ring

BRAM 0

Modular
Ring

BRAM 3

Unified Transformation

FFT Butterfly

NTT Butterfly 0

NTT Butterfly 2

NTT Butterfly 1

Twiddle Factor
Generation / Storage

Control Logic

Integer to
Floating-
Point Unit

Point-Wise
Multiplication

Unit

Projection
Unit

PRNG and
Sampling

Unit

Error Poly
BRAM

CKKS Coprocessor

Montgomery
Reduction

Floating-Point
Postprocessing

Mod. Ring
Result

Floating-
Point Result

Floating-Point
Preprocessing

Floating-Point
input A

Floating-Point
input B

Mod. Ring
input A

Mod. Ring
input B

54b

54b

108b

RNS
Unit

Shared Arithmetic Unit

Montgomery
Reduction

Shared
Multiplier

Lo
ca

l D
at

a
Bu

s

Local Data Bus

Local Data Bus

AXI4

AXI4

AXI4

Shared
Multiplier

Unit

Mod-Ring
Multiplier

NTT Butterfly 0

Shared
Multiplier

Unit

Mod-Ring
Multiplier

NTT Butterfly 1

Shared
Multiplier

Unit

Mod-Ring
Multiplier

NTT Butterfly 2

Shared
Multiplier

Unit

Fig. 3. Shared multiplier module. Black components are shared between the
modular ring (blue) and the floating-point (red) multiplier. Four floating-point
multipliers form one complex multiplier.

reduction unit. The double-precision floating-point multipliers
used during FFT are internally capable of 54-bit integer multi-
plications. This property allows us to reuse them in our modular
ring multipliers, as they require the same input bit-width.

As mentioned in Sec. II, each complex multiplication re-
quires four floating-point multipliers. These four floating-point
multipliers can share their contained integer multipliers with
four modular multiplication units. We use three of them to
perform three NTT transformations in parallel and one to
generate the required twiddle factor. Fig. 3 gives an overview
of the four shared multiplier units and their usage within
either the complex or the modular multipliers. Further, it shows
the architecture of the datapath within the shared multiplier.
Depending on the currently executed suboperation, access to
the integer multiplier (black) is granted via the multiplexers
either to the FPU (red) or modular ring unit (blue). Through
this optimization, we are able to save a considerable amount
of 44 DSPs.

C. Adapted Word-Level Montgomery Reduction

Modular multiplication requires a modular reduction after the
integer multiplication. Microsoft SEAL [14] and other related
works [8], [9] use Barrett reduction [15], which requires large
internal integer multipliers with inputs of up to twice the modu-
lus size. The bit-width of the operands has a quadratic influence
on DSP utilization making Barrett reduction unsuitable for low-
area implementations.

The design of our reduction unit instead relies on the word-
level Montgomery algorithm presented in [16] to reduce the
number of DSPs. The authors exploit the prime format of NTT-
friendly moduli that follow the format q = qH · 2w + 1, where
w ≥ log2(2n) is the so-called word size. We adapt their prime
format to qH = 2k−w−qm for a k-bit prime q. This influences
step 8 of Algorithm 3 from [16] as shown in Eq. 3 and results
in Eq. 4. This means that the k − w bit-wide multiplication
operand qH of Eq. 3 is replaced by a smaller m bit-wide qm
in Eq. 4.

Result

0200

significant

e-53+1e

0 0

<<

>>
Round

Significant

Exponent

Montgomery
Reduction

Montgomery
Reduction

-

Sign

si
gn

-b
it

Exponent
Logic

b

o

Region 1

Region 2

Region 3

4k-2*53+26k-2*53+1

6k-3*53+38k-3*53+2

o b

Region 0

2k-53+14k-53

02k-1

1

0

RNS Module

Result
<<

>>
Round

Significant

Exponent

Montgomery
Reduction

Montgomery
Reduction

-

Sign

Exponent
Logic

b

o
1

0

Fig. 4. Architecture of the RNS module. The yellow reduction unit is shared
with the NTT Twiddle factor generation, and the red components form the
modular multiplier from an NTT butterfly.

T1 = T1H + qH · T2[w − 1 : 0] + cin (3)
T1 = T1H + T2 ≪ (k − w)− qm · T2[w − 1 : 0] + cin (4)

The advantage of this approach is that m can be freely chosen
depending on the DSP input width. We select the parameters
w = 24 and m = 17, which allows the use of a single DSP
for the multiplication leading to a DSP-saving design. The
disadvantage of Montgomery reduction is the introduction of
a multiplicative factor R−1 in the reduction result. To reverse
this effect, one input of each modular multiplication contains
the factor R that cancels out R−1 after multiplication. This
applies to the twiddle factors and key coefficients which are
modified accordingly at design time before loading them to
memory.

D. Efficient and Hardware-Friendly RNS Algorithm

The conversion of floating-point numbers to an RNS rep-
resentation is another crucial step during encoding. This con-
version includes rounding of potentially huge double-precision
floating point numbers to integer values. The resulting integer
values are then reduced by each prime qi contained in the
ciphertext modulus Q. CKKS limits Q to 202 bits in case of a
polynomial degree n = 213 to guarantee 128-bit post-quantum
security [11]. This restricts the absolute values of floating-point
inputs to be smaller than 2201 to avoid mapping different input
values to the same element of ZQ. Our approach benefits from
the limited inputs but is not dependent on it. No additional
Montgomery reduction or multiplier units are needed when
larger input values should be supported.

The double-precision IEEE-754 floating-point format, as
presented in Sec. III-A, is the central part of our RNS design.
We use the property in Eq. 5 of the modulo operation and apply
it to the IEEE-754 floating-point format as in Eq. 6.

a · b % q = (a % q) · (b % q) % q (5)

{1,m} · 2ê % q = ({1,m} % q) · (2ê % q) % q (6)

= ({1,m} ≪ o % q) · (2b % q) % q (7)

It splits up the reduction of the large floating-point word into
two smaller ones. Their results are then multiplied and again
reduced. However, the 53-bit wide significant {1,m} does not
fully fill the Montgomery reduction unit’s input of 2k bits,
where k = 46 is the bit-width of the smallest supported modu-
lus. Therefore, the overall operation can further be improved as

in Eq. (7). The parameters o and b follow the relation o+b = ê,
while o + 53 ≤ 2k must hold to not exceed the Montgomery
units bit-width. We further select b = i(2k−53+1) with i ∈ N0

in a way such that a minimal number of distinct values for b
are needed to fully cover the possible input range. This number
depends on k, the maximum bit-size of Q, and the bit-width
of the significant. For our selected parameter set, four values
are required.

These observations are used for our hardware-friendly ar-
chitecture of Aloha-HE, illustrated in Fig. 4. The exponent
logic first tests whether ê is negative. In this case, b is 0,
and a right shift followed by rounding of the significant is
performed. Otherwise, b and o are given by ê as previously
described and the significant gets shifted left by o. Afterward,
the corresponding intermediate result enters a Montgomery
reduction unit (yellow). The value of b selects one of four
precomputed constants in form of 2b ·R2 % q stored in a small
ROM. It contains the multiplicative factor R2 to compensate for
the two Montgomery reductions and gets modulo-multiplied to
the first reduction’s output (red). Finally, a conditional additive
inversion depending on the sign bit yields the overall result.

The proposed architecture allows rounding and reduction of
any valid floating-point input in constant time. Its datapath is
fully pipelined and can be easily extended to support single
precision floating point formats or different modulus sizes.

E. Overall Design

Aloha-HE is designed as a co-processor for client-side op-
erations in homomorphic encryption. The overall architecture
together with the main components is illustrated in Fig.5. AXI4
bus connections shown on the top left establish the interface to
the host CPU and main memory. Instructions, operands, and
status information are exchanged directly between the CPU
and accelerator, while the transfer of the large polynomials is
handled by direct memory access (DMA). The DMA controller
is configured via a second AXI4 port and streams the desired
polynomials directly from RAM into the co-processor’s BRAM
set without consuming CPU time.

The core element in Aloha-HE is the shared arithmetic unit
marked in grey. It contains the datapath of the four shared
integer multipliers and Montgomery reduction units. Besides
sharing of multipliers between floating-point and modular ring
multipliers as discussed in Sec. III-B, additional resource
sharing is possible. The RNS unit makes use of two Mont-
gomery reduction units and one integer multiplier. Furthermore,
two point-wise multiplications of polynomials featuring two
modular multipliers can be performed concurrently. This high
re-utilization of existing hardware resources leads to low idle
times of components and thus to an efficient design.

IV. RESULTS

This section gives an overview of relevant prior works,
presents our results and a comparison with prior works.

A. Prior Works

There are a few works in the literature targeting the imple-
mentation and acceleration of client-side CKKS operations on

Complex
Multiplier

Mod-Ring
Multiplier

 Twiddle Gen.

Direct Memory
Access

DMA
control

DDR3

Control LogicInstruction
interface

Complex
BRAM

Modular
Ring

BRAM 1

Modular
Ring

BRAM 2

Modular
Ring

BRAM 0

Modular
Ring

BRAM 3

Unified Transformation

FFT Butterfly

NTT Butterfly 0

NTT Butterfly 2

NTT Butterfly 1

Twiddle Factor
Generation / Storage

Control Logic

Integer to
Floating-
Point Unit

Point-Wise
Multiplication

Unit

Projection
Unit

PRNG and
Sampling

Unit

Error Poly
BRAM

CKKS Coprocessor

Montgomery
Reduction

Floating-Point
Postprocessing

Mod. Ring
Result

Floating-
Point Result

Floating-Point
Preprocessing

Floating-Point
input A

Floating-Point
input B

Mod. Ring
input A

Mod. Ring
input B

54b

54b

108b

RNS
Unit

Shared Arithmetic Unit

Montgomery
Reduction

Shared
Multiplier

Lo
ca

l D
at

a
Bu

s

Local Data Bus

Local Data Bus

AXI4

AXI4

AXI4

Shared
Multiplier

Unit

Mod-Ring
Multiplier

NTT Butterfly 0

Shared
Multiplier

Unit

Mod-Ring
Multiplier

NTT Butterfly 1

Shared
Multiplier

Unit

Mod-Ring
Multiplier

NTT Butterfly 2

Shared
Multiplier

Unit

Fig. 5. Overview of Aloha-HE’s hardware architecture.

low-end devices. SEAL-Embedded [6] is a software library that
adapts the encoding and encryption of Microsoft SEAL [14]
for memory-constrained embedded systems. These systems are
expected to only encrypt and send data to the server. Thus,
no decryption functionality is provided by SEAL-Embedded,
which is a limitation of possible application scenarios of this
approach. Azad et al. builds up on SEAL-Embedded and
present RACE [7], an ASIC co-processor for modular ring
operations including NTT and point-wise multiplication. They
later extended this work to a newer version, named RISE [8].
The RISE extends the RACE with an error sampling unit
and additional NTT butterfly units, and further speeds up
encryption. Both works still perform the encoding procedure
in software. This limits the achievable speedup and introduces
the need for floating-point support on the host CPU. The
work in [9] presents an FPGA-based accelerator to perform
symmetric encryption in the SEAL-Embedded library. Similar
to the RISE, hardware support for modular ring operations and
error sampling is provided, however, the encoding is performed
in software. Thus, this leads to the same limitations as in [7]
and [8].

B. Implementation Results and Comparison

We use Xilinx Vivado 2019.1 to synthesize and implement
our design, Aloha-HE. The resulting hardware is verified on
actual hardware with two different low-cost FPGAs, namely
Kintex-7 FPGA (Genesys2, xc7k325tffg900-2) and ZYNQ-
7000 SoC (pynq-z2, xc7z020clg400-1). The ZYNQ architecture
provides a dual-core ARM CPU running at 650MHz. The
Aloha-HE is instantiated on the FPGA in ZYNQ SoC and
runs at 130MHz. On the Kintex-7 FPGA, the soft CPU and
Aloha-HE reside on the FPGA and run at 200MHz. As the soft
CPU, we use MicroBlaze softcore IP from Xilinx. In Table I,

TABLE I
IMPLEMENTATION RESULTS AND COMPARISON WITH RELATED WORK

Work Platform n logQ
Area Latency (in ms)

LUT REG DSP BRAM Encr. Decr.
Microsoft SEAL [14] Intel Core i5-8250U @2.4GHz 8192 3×54 bit - 4.91 0.73
SEAL-Embedded [6] ARM Cortex-A7 @494MHz 4096 3×30 bit - 91.27 -

RACE [7] ASIC 12nm @1GHz 8192 130 bit 63,788 µm2 110.28 19.08
RISE [8]b ASIC 12nm @1GHz 8192 180 bit 113,705 µm2 20 19

[9] Zynq Ultrascale+ @150MHz 8192 32 bita 3320a 1480a 42a 29.5a 7.79 -
Ourc Kintex-7 @200MHz 8192 3×54 bit 17680 14431 56 97 1.87 0.87
Ourd Kintex-7 @200MHz 8192 3×54 bit 20728 17647 100 82.5 1.87 0.87
Ourc ZYNQ-7000 @130MHz 8192 3×54 bit 19274 15163 56 97 3.04 1.30
Ourd ZYNQ-7000 @130MHz 8192 3×54 bit 20253 18152 100 82.5 3.04 1.30

a Utilization for NTT unit only. Parameters: n = 4096, 32-bit modulus. b Implementation results just presented in diagrams. No exact
values are available. c Our implementation using stored FFT twiddle factors. d Our implementation using generated FFT twiddle factors.

we present area and performance results of our work (for two
platforms) and the other works in literature targeting client-
side operations of CKKS. Note that our performance results,
measured using actual FPGAs, present end-to-end execution
time for CKKS encryption and decryption operations including
time required for data transfers.

Compared to the hardware accelerators RISE [8] and
RACE [7], Aloha-HE on the Kintex-7 FPGA improves the
encryption latency by 10.7× and 59×, respectively. Although
these ASIC designs operate at 1GHz, Aloha-HE running at
200MHz outperforms them significantly by additionally over-
taking the encoding from the CPU. The FPGA design in [9]
reports performance result for encryption and hardware utiliza-
tion figures only for the NTT unit, making a direct comparison
hard. Aloha-HE shows an improvement in latency of 4.2×
compared to [9]. Although the Aloha-HE variant storing FFT
twiddle factors uses 33% more DSPs, Aloha-HE supports
larger moduli up to 54 bits while the design in [9] targets 32
bit moduli. Finally, our work is compared with the software
libraries SEAL [14] and SEAL-Embedded [6]. Compared to
the SEAL library running on a high-end Intel Core i5 CPU,
Aloha-HE allows up to 2.6× faster pt-to-ct conversion for the
same parameter set. For ct-to-pt conversion, our work shows
slightly lower performance as the number of operations that
can be accelerated during the decryption operation is low.
Moreover, data transfer overhead prevails over the latency of the
operation in FPGA for ct-to-pt conversion. However, the SEAL
library running on high-end CPUs is not suitable for area-
constrained or embedded systems. Compared to the SEAL-
Embedded library, our work shows up to 49× speedup for pt-to-
ct conversion, although our design supports a larger parameter
set.

V. CONCLUSION

In this paper, we present Aloha-HE, the first hardware
accelerator supporting the whole client-side operations for the
CKKS scheme, following Microsoft SEAL implementation.
Aloha-HE benefits from a high degree of resource sharing
between similar FFT and NTT execution and data flows. More-
over, it uses our novel floating-point-based RNS algorithm.
Despite targeting a resource-saving approach tailored for low-
end hardware platforms, Aloha-HE reduces the latency of the
client-side operations by a factor of up to 59× compared

to the existing CKKS hardware accelerators. Our presented
methodology can easily be extended to various parameter sets
or even different HE schemes, which can allow the adoption
of Aloha-HE in a broad field of applications in the encrypted
computation domain.

REFERENCES
[1] J. Fan and F. Vercauteren, “Somewhat practical fully homomorphic

encryption,” Cryptology ePrint Archive, Paper 2012/144, 2012.
[2] J. H. Cheon, A. Kim, M. Kim, and Y. Song, “Homomorphic encryption

for arithmetic of approximate numbers,” in Advances in Cryptology –
ASIACRYPT 2017, T. Takagi and T. Peyrin, Eds. Cham: Springer
International Publishing, 2017, pp. 409–437.

[3] D. B. Cousins et al., “Trebuchet: Fully homomorphic encryption acceler-
ator for deep computation,” Cryptology ePrint Archive, Paper 2023/521,
2023.

[4] A. C. Mert, E. Öztürk, and E. Savaş, “Design and implementation of a fast
and scalable ntt-based polynomial multiplier architecture,” in 2019 22nd
Euromicro Conf. on Digital System Design (DSD), 2019, pp. 253–260.

[5] B. Reagen et al., “Cheetah: Optimizing and accelerating homomorphic
encryption for private inference,” in 2021 IEEE International Symposium
on High-Performance Computer Architecture (HPCA), 2021, pp. 26–39.

[6] D. Natarajan and W. Dai, “Seal-embedded: A homomorphic encryption
library for the internet of things,” IACR Trans. on Cryptographic Hard-
ware and Embedded Systems, vol. 2021, no. 3, p. 756–779, Jul. 2021.

[7] Z. Azad et al., “Race: Risc-v soc for en/decryption acceleration on the
edge for homomorphic computation,” in Proceedings of the ACM/IEEE
International Symposium on Low Power Electronics and Design. Asso-
ciation for Computing Machinery, 2022.

[8] ——, “Rise: Risc-v soc for en/decryption acceleration on the edge
for homomorphic encryption,” IEEE Transactions on Very Large Scale
Integration (VLSI) Systems, pp. 1–14, 2023.

[9] S. D. Matteo, M. L. Gerfo, and S. Saponara, “Vlsi design and fpga
implementation of an ntt hardware accelerator for homomorphic seal-
embedded library,” IEEE Access, vol. 11, 2023.

[10] “Aloha-he source code,” https://github.com/flokrieger/Aloha-HE.
[11] M. Albrecht et al., “Homomorphic encryption standard,” Cryptology

ePrint Archive, Paper 2019/939, 2019.
[12] P. Longa and M. Naehrig, “Speeding up the number theoretic transform

for faster ideal lattice-based cryptography,” Cryptology ePrint Archive,
Paper 2016/504, 2016.

[13] J. H. Cheon et al., “A full rns variant of approximate homomorphic
encryption,” in Selected Areas in Cryptography–SAC 2018: 25th Interna-
tional Conference, Calgary, AB, Canada, August 15–17, 2018, Revised
Selected Papers 25. Springer, 2019, pp. 347–368.

[14] “Microsoft SEAL (release 4.1),” https://github.com/Microsoft/SEAL, Jan
2023, microsoft Research, Redmond, WA.

[15] P. Barrett, “Implementing the rivest shamir and adleman public key
encryption algorithm on a standard digital signal processor,” in Advances
in Cryptology — CRYPTO’ 86, A. M. Odlyzko, Ed. Berlin, Heidelberg:
Springer Berlin Heidelberg, 1987, pp. 311–323.

[16] A. C. Mert, E. Karabulut, E. Öztürk, E. Savaş, M. Becchi, and A. Aysu, “A
flexible and scalable ntt hardware : Applications from homomorphically
encrypted deep learning to post-quantum cryptography,” in 2020 Design,
Automation & Test in Europe Conf. & Exhib. (DATE), 2020, pp. 346–351.

