
Secret-Shared Shuffle with Malicious Security

Xiangfu Song∗, Dong Yin‡, Jianli Bai§, Changyu Dong†,B, Ee-Chien Chang∗
∗National University of Singapore, †Guangzhou University, ‡Ant Group, §University of Auckland

Email: {songxf, changec}@comp.nus.edu.sg, dybean1994@gmail.com, jbai795@aucklanduni.ac.nz, changyu.dong@gmail.com

Abstract—A secret-shared shuffle (SSS) protocol permutes a
secret-shared vector using a random secret permutation. It has
found numerous applications, however, it is also an expensive
operation and often a performance bottleneck. Chase et al.
(Asiacrypt’20) recently proposed a highly efficient semi-honest
two-party SSS protocol known as the CGP protocol. It utilizes
purposely designed pseudorandom correlations that facilitate a
communication-efficient online shuffle phase. That said, semi-
honest security is insufficient in many real-world application
scenarios since shuffle is usually used for highly sensitive ap-
plications. Considering this, recent works (CANS’21, NDSS’22)
attempted to enhance the CGP protocol with malicious security
over authenticated secret sharings. However, we find that these
attempts are flawed, and malicious adversaries can still learn
private information via malicious deviations. This is demonstrated
with concrete attacks proposed in this paper. Then the question
is how to fill the gap and design a maliciously secure CGP
shuffle protocol. We answer this question by introducing a set
of lightweight correlation checks and a leakage reduction mecha-
nism. Then we apply our techniques with authenticated secret
sharings to achieve malicious security. Notably, our protocol,
while increasing security, is also efficient. In the two-party setting,
experiment results show that our maliciously secure protocol
introduces an acceptable overhead compared to its semi-honest
version and is more efficient than the state-of-the-art maliciously
secure SSS protocol from the MP-SPDZ library.

I. INTRODUCTION

Secret-shared shuffle (SSS) protocols [1–3] allow mutually
distrustful parties to randomly permute a secret-shared vector.
Typically, SSS protocols should ensure privacy and correct-
nesss. Roughly, privacy ensures hiding the shared secrets and
the permutation being used, and correctness ensures a correct
shuffling and integrity of the secrets being shuffled. Secret-
shared shuffle is a fundamental primitive in secure multiparty
computation (MPC). It has found numerous applications in re-
cent days, and mainstream MPC frameworks [4–7] implement
SSS as a core functionality. We discuss the following example
applications using SSS and refer to §A for concrete use cases.

• Collaborative data analysis [8–15]. In many such applica-
tions, data are contributed by mutually distrustful parties
who want to pool their data together for knowledge dis-
covery. To protect privacy, data is secret-shared and MPC
protocols are employed to perform the analysis using the
shares. While secret-sharing can protect the confidentiality
of the data, it cannot prevent leakage from access patterns.
To fully protect privacy, it is often required that certain
operations (e.g., filtering, selection, matching) be performed
without revealing which items in the underlying dataset have
been affected. A common approach thus is to employ SSS
to shuffle the dataset first before doing the actual analysis.

This is the full version of a paper with the same title appearing at NDSS’24
B Corresponding author

• Anonymous communication [2, 16]. End-to-end encrypted
communication has become widespread. However, com-
munication patterns (i.e., metadata) can still break the
anonymity of the communication parties. Many anony-
mous communication systems adopt the Mixnet-based ap-
proach [17] using verifiable shuffle, which is computation-
ally expensive due to the involved zero-knowledge proofs
to achieve public verifiability [18, 19]. Recently, there has
been another line of anonymous communication systems
[2, 16, 20] based on SSS in a distributed-trust setting.
In these systems, there are multiple servers, each holding
a secret share of the data shared by senders, and the
servers collaboratively shuffle the data and conduct integrity
checks. These systems achieve much better performance
in general, with the price of introducing a non-collusion
assumption: verifiability is not public, but if the number of
corrupted servers is below a threshold, then any party can
still be convinced of correct shuffling when the protocol
ends without abort. The non-collusion assumption allows
more efficient design and is assumed by many metadata-
hiding systems [2, 16, 21, 22], among which [22] are already
deployed by Mozilla [23].
• Shuffle model of differential privacy [24–27]: When collect-

ing data from end users, local differential privacy is often
used such that the users locally add noise to their data
before submitting. However, the noise added significantly
limits the accuracy of computations. Recently, it has been
demonstrated that adding a shuffler that randomly permutes
the messages can amplify differential privacy guarantees so
that the amount of noise added locally can be decreased
significantly. The so-called shuffle model is currently one
of the most active research topics in differential privacy.
While most of the shuffle-DP protocols assume a black-box
shuffler, some works (e.g., [26]) are specially designed on
top of secret sharing, which makes SSS more suitable.

The state-of-the-art two-party SSS protocol was proposed
by Chase et al. [1], known as the CGP protocol. The CGP
protocol can be divided into two phases: an offline correlation
generation phase and an online shuffle phase. In the offline
phase, the parties collaboratively generate correlations called
shuffle tuples. Shuffle tuples facilitate a highly efficient online
shuffle phase. Due to its simplicity and good efficiency, the
CGP protocol and its variants were recently explored in many
privacy-preserving applications [2, 3, 9, 12, 28, 29].

The original CGP protocol is secure in the presence of
semi-honest adversaries, which preserves privacy (correctness
is trivial to achieve in the semi-honest setting). Ensuring pri-
vacy and correctness in the presence of malicious adversaries is
necessary for many scenarios because shuffling is usually used
in sensitive applications, e.g., private health data analysis and
anonymous communication. In view of this, recent works [2, 3]

attempted to design maliciously secure CGP-like shuffle pro-
tocols. In particular, the maliciously secure SSS protocols
proposed by Eskandarian and Boneh [2] serve as the core
protocols in their anonymous communication system Clarion.
However, we find that existing maliciously secure CGP-like
SSS protocols failed to achieve their claimed security. To show
this, we propose concrete attacks to break privacy claims of
existing works, revealing the data being shuffled and/or partial
information about the underlying permutations. In particular,
our attacks to [2], if successful, reveal “who sends to whom”
in Clarion. These attacks highlight that designing maliciously
secure CGP-like SSS protocols is not as trivial as expected.

Apart from security analysis, our goal is to design a mali-
ciously secure SSS protocol for authenticated secret sharings,
using CGP as a starting point. Roughly, our strategy to obtain
malicious security with low overhead is the following: We first
propose a set of lightweight correlation checks. These corre-
lation checks ensure the well-formness of generated correla-
tions, which defeats attacks that exploit incorrect correlations.
However, these checks are subject to selective failure attacks,
which leak information about the underlying permutation(s)
in successful attacks. Then our second step is to design a
leakage-reduction mechanism to remove possible leakage. Our
leakage reduction mechanism explores properties both from
permutations and the involved selective failure attacks, and we
formally analyze its effectiveness using a new cut-and-choose
analysis method, which is of independent interest. Finally, we
combine all the techniques with authenticated secret sharing to
design a maliciously secure secret-shared shuffle protocol. We
also exploit nice properties of the involved correlations and
protocol components to optimize overall efficiency concretely.

In the presence of a malicious adversary who can behave
arbitrarily, our SSS protocol ensures privacy in any case and
correctness if the protocol completes (i.e., malicious security
with abort). We focus on the two-party setting and show how
to extend it to the multi-party setting using a pair-execution
paradigm from previous works [2, 3]. In the multiparty case,
the adversary can corrupt all but one party, and security
guarantees hold as long as there is one honest party.

We have implemented our protocol and evaluated its per-
formance. The correlation checks introduce a low overhead
compared to the correlation generation protocols with semi-
honest security. In particular, the running time is only doubled,
and there is about 20% additional overhead in communication.
Compared with existing maliciously secure SSS protocol from
MP-SPDZ library [4], our protocol is about 15× faster in the
offline phase and 7× faster in the online phase.

Contribution. We summarize our contribution as follows:

• We study the (in)security of existing maliciously secure
CGP-like SSS protocols [2, 3]. Our proposed attacks show
a better understanding of existing CGP-like SSS protocols
on security, demonstrating that designing maliciously secure
CGP-like SSS protocols is highly non-trivial.

• We design lightweight correlation checks and a leakage
reduction mechanism for designing maliciously secure CGP
SSS protocols, along with a new cut-and-choose leakage
reduction analysis method. Our techniques exploit nice
properties from underlying primitives to improve efficiency
and security, some of them may not limited to this paper.

• We implement our protocol and compare the concrete effi-
ciency with existing protocols. The introduced overhead for
malicious security is acceptable and our protocol is more
efficient than existing maliciously secure SSS protocols.

II. PRELIMINARY & BACKGROUND

A. Notations

We use κ and λ to denote computational and statistical
security parameters, respectively, and negl(·) to denote a
negligible function. We use G to denote an abelian group and
F to denote a finite field (e.g., F = Fpk for a prime p) with
elements of ℓ bits. We use [n] to denote the set {0, 1, ..., n−1}
and [l, r] to denote {l, l + 1, ..., r − 1, r}. Given a set X ,
x

$←− X denotes that x is uniformally sampled from X . We
use a||b to denote strings concatenation of a and b. For an
h-bits string b ∈ {0, 1}h, we use bi to denote its i-th bit and
b = b1||b2|| · · · ||bh. We use x⃗ to denote a vector, and x⃗i or
x⃗[i] interchangeably to denote its i-th element. We use bold
font M to represent a matrix and denote its element at the i-th
row and the j-th column as Mi,j or M[i, j].

B. Permutation

A permutation is a bijective function π : [n] 7→ [n]. We
denote Sn as the symmetric group containing all [n] 7→ [n]
permutations. We denote π−1 as the inverse of a permutation
π, and π ◦ ρ as the composition of two permutations π and
ρ such that π ◦ ρ(i) = π(ρ(i)) for i ∈ [n]. When applying π
over a vector x⃗ of n elements, we have

y⃗ = π(x⃗) = (x⃗π(0), · · · , x⃗π(n−1)), (1)

where y⃗i = x⃗π(i), or equivalently, x⃗i = y⃗π−1(i), for i ∈ [n].

C. Puncturable Pseudorandom Functions

The CGP protocol relies on puncturable pseudorandom
functions to generate correlations. A puncturable pseudoran-
dom function (PPRF) F : K × X 7→ Y is a special pseudo-
random function (PRF) such that given a PPRF master key
K ∈ K and a punctured index α, an evaluator who receives a
punctured key can evaluate over X except α, and F (K,α) is
pseudorandom to the evaluator. Def. 1 defines PPRF formally.

Definition 1 (Puncturable pseudorandom functions [30]).
A puncturable pseudorandom function (PPRF) with master
key space K, domain X , and range Y , is a pseudoran-
dom function F with an additional punctured key space
Kp and three probabilistic polynomial-time (PPT) algorithms
(KeyGen,Puncture,Eval) such that:

• F.KeyGen(1κ): Output a random key K
$←− K.

• F.Puncture(K,α): On input a key K ∈ K, and a punctured
index α ∈ X , output a punctured key K{α} ∈ Kp; we use
K∗ and K{α} interchangeably when the context is clear.

• F.Eval(K{α}, x): On input a punctured key K{α}, and an
index x, output F (K,x) if x ̸= α, and ⊥ otherwise.

Security of PPRF requires that a punctured key holder who
has (α,K{α}) cannot distinguish F (K,α) from a random
element y $←− Y . Formally, we have Def. 2 for PPRF security.

2

Definition 2 (PPRF selective security [30]). A PPRF is
selectively secure if for any PPT adversary A, and any α ∈ X
choosen by A such that∣∣∣∣∣∣Pr

K ← F.KeyGen(1κ),
K{α} ← F.Puncture(K,α), : A(1κ, α,K{α}, y) = 1

y
$←− Y.


−Pr

K ← F.KeyGen(1κ),
K{α} ← F.Puncture(K,α), : A(1κ, α,K{α}, y) = 1
y ← F.Eval(K,α).

∣∣∣∣∣∣
is negligible in κ.

PPRF from GGM tree. A PPRF F : {0, 1}κ × {0, 1}h 7→
{0, 1}κ can be constructed from the seminal GGM tree [1, 30–
32] using a length-doubling pseudorandom generator (PRG)
G : {0, 1}κ 7→ {0, 1}2κ as follows:

• F.KeyGen(1λ): Sample a random key K
$←− {0, 1}κ, i.e., an

initial seed for G.
• F.Puncture(K,α): On input a key K and a punctured index

α = α1||α2|| · · · ||αh ∈ {0, 1}h, set K(0) ← K. For i ∈
[1, h], compute (K

(i)
0 ,K

(i)
1)← G(K(i−1)), and set K(i) ←

K
(i)
αi . Return K{α} ← {K(1)

1−α1
, · · · ,K(h)

1−αh
}.

• F.Eval(K{α}, x): On input a punctured key K{α} and an
index x = x1||x2|| · · · ||xh ∈ {0, 1}h, output ⊥ if α = x.
Otherwise, parse {K(1)

1−α1
, · · · ,K(h)

1−αh
} ← K{α}, find the

key K
(i)
1−αi

such that 1− αi = xi, and set K(i) ← K
(i)
1−αi

.
For j ∈ [i+1, h], compute (K

(j)
0 ,K

(j)
1)← G(K(j−1)), and

set K(j) ← K
(j)
xj . Output K(h)

xh .

PPRF with key verification. When using PPRF in maliciously
secure protocols, a master key holder may provide a non-
wellformed key. In this case, it’s necessary to check whether
the key is well-formed. This is formalized as a key verification
property in Def. 3 by [30]. Looking ahead, GGM PPRF
supports key verification.

Definition 3 (Verification of PPRF keys [30]). Let F =
(KeyGen, Puncture, Eval) be a PPRF with master key space
K, domain X , and range Y . We say that F allows verification
of malicious keys for K̃, the malicious keyspace, if there exist
efficient algorithms (Ver,Puncture∗,Eval∗), such that:

• Ver takes as input a malicious key K̃ ∈ K̃ and a set I ⊆ X
and outputs 0/1.

• Puncture∗ takes as input a malicious key K̃ and an index
α ∈ X and outputs a key K̃{α} punctured at α.

• Eval∗ takes as input a malicious key K̃, a set I ⊆ X and
an index x ∈ X , and outputs a value in Y or ⊥.

Further, we require for all I ⊆ X and K̃ ∈ K̃: if Ver(K̃, I) =
1 then Eval(K̃{α}, x) = Eval∗(K̃, I, x) for all α ∈ I , x ∈
X \ {α}, where K̃{α} ← Puncture∗(K̃, α). If this holds then
we say K̃ is consistent with the set I .

D. Authenticated Secret Sharing

Linear secret sharing. We use JxK to denote an additive linear
secret sharing (LSS) for x ∈ F shared between k parties. Each
Pi holds a random share JxKi ∈ F such that

∑
i∈[k]JxKi =

x. The secret x can be constructed iff all the parties reveal
their shares and then sum them up, which means this scheme
preserves perfect privacy against k− 1 corrupted parties. LSS
supports the following local linear operations.

• JzK← JxK + JyK: Pi computes JzKi ← JxKi + JyKi.
• JzK← c · JxK: Pi computes JzKi ← c · JxKi.
• JzK ← c + JxK: P0 computes JzK0 ← c + JxK0 and Pi

computes JzKi ← JxKi for all i ∈ [k] \ {0}.
We can verify that Jx+ yK = JxK + JyK, Jc · xK = c · JxK, and
Jc+ xK = c+ JxK.

Authenticated secret sharing. Authenticated secret sharing
(ASS) ensures the integrity of shared secrets. A typical SPDZ-
like ASS [33–35] relies on information-theoretic message
authentication codes (IT-MACs) for integrity. Concretely, the
parties additionally share JξK for a secret MAC key ξ

$←− F. For
a sharing JxK, the parties additionally share its MAC sharing
Jγ(x)K such that γ(x) = ξ · x. We call ⟨x⟩ = (JxK, Jγ(x)K)
as an authenticated secret sharing for a secret x and ⟨x⟩i =
(JxKi, Jγ(x)Ki) ∈ F2 as an authenticated share held by Pi.
Since the soundness error is proportional to the inverse of the
field size, we require F to be sufficiently large (i.e., |F| > 2λ);
this is crucial to detect errors with overwhelming probability.
ASS supports the following local computation:

• ⟨z⟩ ← ⟨x⟩+ ⟨y⟩: ⟨z⟩ ← (JxK + JyK, Jγ(x)K + Jγ(y)K).
• ⟨z⟩ ← c · ⟨x⟩: ⟨z⟩ ← (c · JxK, c · Jγ(x)K).
• ⟨z⟩ ← c+ ⟨x⟩: ⟨z⟩ ← (c+ JxK, c · JξK + Jγ(x)K).

We can verify that ⟨x+ y⟩ = ⟨x⟩+ ⟨y⟩, ⟨c · x⟩ = c · ⟨x⟩, and
⟨c+ x⟩ = c+ ⟨x⟩.

The above definitions for LSS and ASS generally extend
to vectors. We use Jx⃗K to denote a vector sharing of x⃗, and
γ(x⃗) to denote its MAC vector sharing where γ(x⃗i) = ξ · x⃗i.

Other operations. The SPDZ-family protocols support a
variety of useful operations: 1) generating a sharing for a
random secret, 2) sharing a secret known by one party, and 3)
generating multiplication triples, etc. All the above commands
are supported by an ideal SPDZ functionality, which can be
securely realized from existing protocols [34, 36, 37]. We will
use the corresponding ideal functionality directly whenever
these operations are required. For all these functionalities, we
refer to existing SPDZ protoocls [34, 36, 37].

E. Malicious SSS: Protocol Setting and Security Goals

A malicious SSS protocol involves k parties who jointly
share an authenticated vector sharing ⟨x⃗⟩ = (Jx⃗K, Jγ(x⃗)K)
where x⃗, γ(x⃗) ∈ Fn. The parties want to compute an authen-
ticated shared vector ⟨y⃗⟩ (with re-randomization) such that
y⃗ = π(x⃗), using a random permutation π that neither party
knows. We focus on k = 2 in this paper and show how to
extend our techniques to k > 2. We assume the adversary,
who behaves arbitrarily, can corrupt at most k−1 parties at the
beginning of the protocol (i.e., dishonest majority setting with
static corruption). In this setting, our malicious SSS protocol
preserves privacy and correctness defined as follows:

• Privacy: ensuring secrecy of the secret values being shuffled
and the permutation being used.

• Correctness: ensuing integrity of secrets being shuffled and
a correct shuffling, if the protocol completes.

3

F. Security Definition

We follow the simulation-based security model [38] with
static corruption and malicious security with abort. Security
goals are formally captured by an ideal functionality F, a
trusted entity that receives inputs from the parties, performs
computation, and sends output to the parties. In the real world,
an adversary A on behalf of corrupted parties runs the protocol
with the honest parties. A simulator S interacts with F in the
ideal world. Let C be the set of corrupted parties. We use
RealΠ,A(z),C(1

κ, 1λ, {xi | i /∈ C}) to denote the joint output
of honest parties and A, where xi is the input from Pi and z
is the auxiliary input of A. IdealΠ,S(z),C(1

κ, 1λ, {xi | i /∈ C})
denotes the outputs of honest parties and the simulator in the
ideal world execution with F.
Definition 4 (Adapted from [39]). A protocol Π securely
computes functionality F in the presence of a malicious
adversary if for every PPT adversary A there exists a PPT
simulator S such that

RealΠ,A(z),C(1
κ, 1λ, {xi | i /∈ C})

c
≡ IdealΠ,S(z),C(1

κ, 1λ, {xi | i /∈ C}).

We say that Π securely computes F with statistical error
2−λ if there exists a negligible function negl(·) such that the
distinguishing probability between outputs of the real and ideal
world is less than 2−λ + negl(κ)1.

III. MALICIOUSLY SECURE SSS PROTOCOLS & ATTACKS

In this section, we first revisit the semi-honest CGP pro-
tocol [1]. Then we present our attacks that break the privacy
claim of existing malicious CGP-like shuffle protocols [2, 3].

A. The Semi-honest CGP Protocol

We review correlations used in the CGP protocol [1] and
how to use them for two-party SSS.

Oblivious punctured vector (OPV). OPV is the basic corre-
lation in the CGP protocol. In an OPV correlation, a sender
owns a vector v⃗ ∈ Gn and a receiver holds (α, w⃗) ∈ [n]×Gn

such that w⃗i = v⃗i for i ∈ [n] \ {α} and w⃗α =⊥. In this
overview, from now on we will assume P0 is the receiver and
P1 is the sender.

M̃ M
OPV
OPV
· · ·
OPV

Fig. 1: An example n × n OPM correlation. Each row forms
an OPV with the punctured location colored in black. The
punctured location is π(i) for i-th row where π ∈ Sn.

Oblivious punctured matrix (OPM). An n-dimention OPM
consists of n OPVs with n punctured indexes organized ac-
cording to a permutation π ∈ Sn. As shown in Fig. 1, a sender
holds a matrix M ∈ Gn×n, while the receiver holds a permu-
tation π ∈ Sn and a punctured matrix M̃ ∈ Gn×n. For i ∈ [n],
the i-th row of M and M̃ forms an OPV correlation punctured

1Looking ahead, computational security is from computationally secure
primitives (e.g., PRG/PPRF). Statistical security comes from our cut-and-
choose game and MAC checks, which are secure in the statistical sense.

at π(i). We use ⟨[π]⟩ = ((π, M̃), (M)) ∈ (Sn×Gn×n)×Gn×n

to denote an OPM correlation.

Shuffle tuple. In a shuffle tuple ([π]) = ((π, ∆⃗), (⃗a, b⃗)) ∈ (Sn×
Gn)× (Gn ×Gn), a sender holds two vectors a⃗, b⃗ ∈ Gn, and
a receiver holds a permutation π ∈ Sn plus an n-dimension
vector ∆⃗ ∈ Gn, where ∆⃗ = π(⃗a)− b⃗. A shuffle tuple can be
non-interactively converted from an OPM correlation ⟨[π]⟩ =
((π, M̃), (M)). Specifically, the parties compute (⃗a, b⃗) and ∆⃗,
respectively, according to equation (2).

a⃗i ←
∑
j

Mj,i, b⃗i ←
∑
j

Mi,j , ∆⃗i ←
∑
j ̸=i

M̃j,π(i) −
∑

j ̸=π(i)

M̃i,j (2)

One can verify ∆⃗ = π(⃗a)− b⃗ as required.

Secret-shared shuffle from shuffle tuples. The CGP protocol
computes the following ideal SSS functionality Fsss with
semi-honest security: On inputting a secret-shared vector Jx⃗K,
sample a random π ∈ Sn, and output Jy⃗K where y⃗ = π(x⃗).
Fsss ensures neither party learns x⃗ or π.

This can be done with the help of shuffle tuples. Suppose
P0 and P1 generate a shuffle tuple ([π]) = ((π, ∆⃗), (⃗a, b⃗)) ∈
(Sn × Gn) × (Gn × Gn) with G = F, where P0 holds
(π, ∆⃗), and P1 has (⃗a, b⃗). The parties simply run the pro-
tocol as follows: P1 sends δ⃗ ← Jx⃗K1 − a⃗ to P0. P0 sets
Jy⃗K0 ← π(Jx⃗K0 + δ⃗) + ∆⃗ and P1 sets Jy⃗K1 ← b⃗. Clearly,
Jy⃗K0 + Jy⃗K1 = π(Jx⃗K0 + Jx⃗K1 − a⃗) + π(⃗a) − b⃗ + b⃗ = π(x⃗).
We call the above protocol one-sided secret-shared shuffle as
P0 knows the underlying permutation. The parties repeat the
above process using another tuple with the role reversed to
achieve fully secret-shared shuffle, as required by Fsss.

Remark. We call ([π]) = ((π, ∆⃗), (⃗a, b⃗)) ∈ (Sn×Gn)× (Gn×
Gn) a shuffle tuple over Gn. We stress that G can be d-ary,
i.e., G = Fd. In this case, the above shuffle tuple can be used
to permute a secret-shared vector of tuples defined over (Fd)n.
The d sub-elements in each Fd element will be moved together
when being permuted.

B. Maliciously Secure Protocols & Online-phase Attacks

We review the online phase of existing maliciously secure
CGP-like SSS protocols [2, 3]. For the sake of overview, we
sketch a simplified version of [3] and show a concrete attack to
reveal sensitive information about the underlying permutation.

CGP shuffle for ASS. Existing works [2, 3] design malicious-
secure CGP-like SSS protocols over authenticated secret
sharings. In a nutshell, an authenticated share ⟨x⟩i =
(JxKi, Jγ(x)Ki) ∈ F × F can be packed as an element from
F2. So, to shuffle an authenticated vector sharing ⟨x⃗⟩ =
(Jx⃗K, Jγ(x⃗)K), the parties can perform the CGP shuffle using a
shuffle tuple ([π]) = ((π, ∆⃗), (⃗a, b⃗)) ∈ (Sn×Gn)× (Gn×Gn)
with G = F2. From now on, we will use shuffle tuples with
the above form for shuffling authenticated secret sharings.

Let us assume shuffle tuples have been generated by the
parties in the offline phase. The parties use the tuple to shuffle
an authenticated vector sharing ⟨x⃗⟩ = (Jx⃗K, Jγ(x⃗)K). To ensure
data integrity and correct shuffling, both [3] and [2] rely on
post-execution checks to detect errors at the end of the proto-
col. The post-execution check methods in [3] and [2], despite
slight differences, both rely on the integrity of the permuted

4

Protocol ΠMACCheck

Parameter: MAC key JξK shared between the parties.
Protocol: On inputting an authenticated vector sharing ⟨m⃗⟩
with m⃗ ∈ Fn:
1. The parties call {ci}i∈[n] ← Fcoin(Fn) and ⟨r⟩ ←
Frand(F)

2. The parties compute ⟨t⟩ ←
∑

j cj · ⟨mi⟩+ ⟨r⟩.
3. The parties open t (not its MAC) and compute JsK ←

Jγ(t)K− t · JξK.
4. After all the parites commit to the shares of JsK using
Fcom, each party invoke Fcom to decommit all the shares
and open s. If the protocol aborts or s ̸= 0, return False.
Otherwise, return True.

Fig. 2: Post-execution MAC check protocol ΠMACCheck. Here
Fcoin are used for generating random coins, Frand is used
for generating a random ASS sharing, and Fcom is an ideal
commitment functionality.

shared MAC values to enforce correctness. A concrete post-
execution check is a batch MAC check protocol in Fig. 2,
which is used by [2] to detect errors. Combining shuffle tuples
over (F2)n, post-execution check, and authenticated secret
sharings, we sketch the protocol Πleaky as follows:

1. A pre-computed shuffle tuple ([π]) = ((π, ∆⃗), (⃗a, b⃗)) ∈
(Sn× (F2)n)× ((F2)n× (F2)n) is held by the parites. The
sender P1 holds (⃗a, b⃗) and the receiver P0 holds (π, ∆⃗).

2. P1 sends δ⃗ = ⟨x⃗⟩1 − a⃗ to P0. P1 sets ⟨y⃗⟩1 ← b⃗.
3. P0 receives δ⃗ and sets ⟨y⃗⟩0 ← π(⟨x⃗⟩0 + δ⃗) + ∆⃗.
4. Run post-execution check over ⟨y⃗⟩ to detect errors.

When both parties behave honestly, we have:

⟨y⃗⟩0 + ⟨y⃗⟩1 = π(⟨x⃗⟩0 + δ⃗) + ∆⃗ + b⃗

= π(⟨x⃗⟩0 + ⟨x⃗⟩1 − a⃗) + π(⃗a)− b⃗+ b⃗

= π(⟨x⃗⟩0 + ⟨x⃗⟩1)
= (π(Jx⃗K0 + Jx⃗K1), π(Jγ(x⃗)K0 + Jγ(x⃗)K1))
= (π(x⃗), π(γ(x⃗))).

A key observation from [2, 3] is that even though the shuffle
tuple is not authenticated by MAC, it can be used to shuffle
authenticated shares because the shares in a shuffle tuple
essentially are blinding masks and will be canceled out at the
end of step 3. Hence if the parties are honest, this will not affect
the correctness of the authenticated shares being shuffled and
the post-execution check in step 4.

Online selective failure attack. Now we show our attacks
to Πleaky. First, a malicious receiver P0 cannot perform any
feasible attack either to privacy or correctness. Intuitively, δ
reveals no information about ⟨x⃗⟩1 to P0 because the mask a⃗ is
hidden from P0. As for integrity, P0 cannot perform any attack
without being caught. The reason is that if a malicious receiver
tampers with the shares locally, it can always be detected by
the integrity check performed over the authenticated secret
sharing. On the other hand, this is not the case for a malicious
sender. A malicious sender is expected to send δ⃗ = ⟨x⃗⟩1 − a⃗
to the receiver, but it may add errors to δ⃗. At first glance, the
post-execution check will detect the errors so that nothing can

go wrong. This is taken for granted in [2, 3], but actually not
true. We show a selective failure attack for a malicious sender
to learn secret information about the receiver’s permutation
with non-negligible probability. A malicious sender can do the
following deviations in Πleaky:

• Instead of sending the correct message δ⃗ = ⟨x⃗⟩1 − a⃗ to P0,
P1 samples a vector u⃗ ∈ (F2)n, where a non-zero element
e ∈ F2 appears at position q and all other positions are all
set to 0. P1 sends δ⃗ = ⟨x⃗⟩1 − a⃗+ u⃗ to P0.

• P1 guesses π(p) = q. Before running the post-execution
check, P1 generates a vector v⃗ ∈ (F2)n such that v⃗ is all
zero except v⃗p = e. P1 sets ⟨y⃗⟩1 ← b⃗− v⃗.

In the above attack, there will be two cases depending on
whether P1 guesses q = π(p) correctly:

• Case 1 - π(p) = q: P1 makes a correct guess thus v⃗ = π(u⃗)
(refer to equation (1) on how permutation is applied over
a vector). Now ⟨y⃗⟩0 + ⟨y⃗⟩1 = π(⟨x⃗⟩0 + ⟨x⃗⟩1 − a⃗ + u⃗) +
π(⃗a)− b⃗+ b⃗− v⃗ = (π(x⃗), π(γ(x⃗))) still holds. In this case,
the integrity of shuffled secrets and the shuffled MACs are
still preserved. Hence, the check will output True.

• Case 2 - π(p) ̸= q: P1 guesses incorrectly. Now we have
⟨y⃗⟩0 + ⟨y⃗⟩1 = π(⟨x⃗⟩0 + ⟨x⃗⟩1− a⃗+ u⃗) + π(⃗a)− b⃗+ b⃗− v⃗ =
(π(x⃗), π(γ(x⃗))) + π(u⃗) − v⃗. In this case, the integrity is
broken due to the introduced error π(u⃗) − v⃗. Hence, the
check can detect the error and output False.

The problem comes from case 1 as the adversary learns
π(p) = q without being caught. This is a selective failure attack
with a success probability of 1/n, which is non-negligible.
One can generalize this attack from adding error to one place
to multiple places, though the success probability will drop
accordingly. We show more details about our online attack to
[3] and [2] in Appendix E and F, respectively.

Summary. This attack starts from the unauthenticated pro-
tocol message δ⃗ since the receiver cannot directly verify the
legitimacy of δ⃗, and δ⃗ is further entangled with subsequent
computation and check. By manipulating δ⃗ and learning the
check output, a malicious sender can extract sensitive infor-
mation about the permutation with non-negligible probability.
This attack breaks the privacy but not the correctness of
existing maliciously secure SSS protocols [2, 3].

C. Maliciously Secure Protocols & Offline-phase Attacks

This section demonstrates that CGP correlation generation
protocols also suffer from malicious attacks. We propose two
attacks: OPV attack and OPM attack. Both attacks exploit
incorrect correlations to break privacy.

The semi-honest OPV generation. We first revisit how to
generate OPV correlations in the semi-honest setting.

The parties can generate OPVs using a PPRF with domain
X = [n]. At a high level, P1 samples a PPRF key K, and runs
a protocol with P0 who specifies a punctured index α ∈ [n].
The protocol terminates with P0 receiving a punctured key
K{α}. With K{α}, P0 locally recovers n − 1 PRF outputs
except for F (K,α). P1 can compute all n PRF outputs using
K. As required, the parties generate an OPV correlation.

5

Receiver P0

K

s10 s11

s20 s21 s22 s23

0 1

0 1 0 1

Sender P1

K

s10 s11

s20 s21 s22 s23

0 1

0 1 0 1

OT

OT

K1
0 = s10

K1
1 = s11

α1 = 0

K1
0

K2
0 = s20 ⊕ s22

K2
1 = s21 ⊕ s23

α2 = 0

K2
0

Fig. 3: A 4-dimension OPV generation protocol. P1 samples
a PPRF master key K and P0 inputs a punctured index α =
3 (i.e., α1 = 1, α2 = 1) and obtains a punctured key K{3} =
{s10, s22} which expends to recover all leaf nodes except s23.

The original CGP protocol [1] proposes a concrete OPV
generation protocol using GGM PPRF and oblivious trans-
fer (OT). Fig. 3 sketches the protocol. Specifically, P1 samples
a seed K and expands it to a GGM tree. Then, the parties run
a layer-to-layer evaluation. For the i-th layer, P1 computes two
intermediate keys Ki

0 and Ki
1, where Ki

0 is the XOR of all left-
half nodes and Ki

1 is the XOR of all right-half nodes in this
layer. During the evaluation, the parties maintain an invariant
that P0 holds all but one node in the i-th layer. This means P0

can recover all but two elements for the next layer using G.
To maintain the invariant, P0 runs OT with P1 who provides
OT messages (Ki+1

0 ,Ki+1
1). The receiver chooses one of two

values with a choosing bit αi+1, recovering one of the two
missed values, thus maintaining the invariant. At the end of
the protocol, the receiver holds a punctured key K{α} that
can recover all leaves except the one at α.

Remark. The range of the above GGM PPRF is {0, 1}κ.
Following existing method [1, 30], we can modify the range
to G = F2 by applying a conversion function to the leaves;
we defer the details to §V-A.

Previous approaches. To generate correlation in the presence
of malicious adversaries, [3] simply resorts to an ideal func-
tionality to generate shuffle tuples without giving a concrete
instantiation. [2] replaces the semi-honest OTs with mali-
ciously secure OTs, while other parts remain the same as the
semi-honest correlation generation protocol. We show that the
enhancement from [2] is insufficient for malicious security.

OPV attack. [2] uses maliciously secure OTs to enhance
the semi-honest OPV generation protocol. Although using
maliciously secure OTs can ensure malicious security for the
OT functionality itself, it is insufficient to achieve malicious
privacy for the upper-level OPV generation protocol. We show
that a malicious sender can mount a selective failure attack via
OT message substitution.

Receiver P0

K

s10 s11

s20 s21 s22 s23

0 1

0 1 0 1

Sender P1

K

s10 s11

s20 s21 s22 s23

0 1

0 1 0 1

OT

OT

K1
0 = s10 + e

K1
1 = s11

α1 = 0

K1
0

K2
0 = s20 ⊕ s22

K2
1 = s21 ⊕ s23

α2 = 0

K2
0

Fig. 4: OT message substitution attack on OPV generation.

Ideally, P1 is expected to compute all OT messages faith-
fully using a GGM tree derived from a single seed K, which
is not true in malicious cases. We demonstrate this with an
example in Fig. 4. The sender P1 computes a correct GGM
tree in the beginning, but it wants to guess α1 by selectively
corrupting one of two OT messages (K1

0 ,K
1
1) for the first

layer. In particular, the attacker makes a guess α1 = 0 by
adding a non-zero error e into K1

0 . There will be two outcomes
depending on the true value α1.

• Case 1 - α1 = 0: P1 guessed correctly and the correct K1
1

is choosen. The parties still share a correct OPV correlation.
• Case 2 - α1 = 1: P1 made an incorrect guess and the errored

K0
1 is choosen. The parties share an incorrect OPV.

The malicious sender P1 does not know whether it guessed
correctly or not after the OPV generation, but it will know in
the online phase after the post-execution integrity check. The
OPV generated in the offline phase will be used to construct a
shuffle tuple used for the online phase. If the OPV is erroneous
(case 2), the tuple containing the OPV will be erroneous too.
Consequently, the authenticated sharings, after being shuffled,
will be erroneous and will be detected by the post-execution
integrity check (refer to §III-B). The problem is that in this
example, the adversary can guess correctly with a probability
of 1/2 (case 1). When this happens, the parties still share
a valid OPV and the online phase protocol execution will
end normally. By learning the protocol does not abort, the
adversary learns some information (i.e., α1) without being
caught. Clearly, this is a selective failure attack with a success
probability of 1/2. The malicious sender may perform the
above attack over more OT instances in the OPV generation
protocol, and the success probability will drop accordingly.

OPM attack. Recall that a correct OPM correlation requires
all n punctured indexes to be organized according to a per-
mutation π ∈ Sn. A malicious receiver may organize these
indexes following arbitrary strategies. However, previous work
[2] does not check the well-formness of OPM correlations,
and we show how a malicious receiver P0 can deviate in the
protocol to break privacy.

M̃ M
OPV
OPV
· · ·
OPV

(⃗a0, a⃗1, a⃗2) δ⃗ = ⟨x⃗⟩1 − a⃗ from the sender

(x⃗0, x⃗1, x⃗2), (γ(x⃗0), γ(x⃗1), γ(x⃗2))

Fig. 5: OPM attack from a malicious receiver.

A malicious P0 may puncture the same column for more
than one row. Fig. 5 shows an example. P0 always punctures
the fourth column and thus can learn (⃗a0, a⃗1, a⃗2) for free.
Combined with the message δ⃗ = ⟨x⃗⟩1 − a⃗ in the online
phase and the receiver’s local share ⟨x⃗⟩0, the receiver can fully
recover (x⃗0, x⃗1, x⃗2) and their MACs (γ(x⃗0), γ(x⃗1), γ(x⃗2)). In
this attack, P0 learns n− 1 full columns of the OPM matrix,

6

M̃ M

G′ G′

M̃(1)

③ Recover M(1)

M̃(0)

Receiver

M(1)

M(0)

Sender

① ①

② (
∑

j M
(1)

0,j ,
∑

j M
(1)

1,j , · · · ,
∑

j M
(1)

n−1,j)

EQ
④ M(1)

④ 0/1
④ M(1)

④ 0/1

OPM check:
①: Local OPM extension

②: The sender sends column-wise sum to the receiver

③: The receiver recovers matrix M(1) using M̃(1) and messages from ②

④: Perform equality check

Fig. 6: OPM check from OPM extension and sacrifice

then n − 1 values of a⃗. Leaking a⃗ will reveal corresponding
shared secrets and MAC values, breaking privacy.

Summary. The OPV attack is a selective failure attack from
a malicious sender, which undermines the secrecy of the
permutation used by the receiver. Differently, the OPM attack
is from a malicious receiver. It reveals shared secrets and
MACs. Above attacks highlight that incorrect correlations can
be exploited to break privacy.

IV. OVERVIEW OF OUR COUNTERMEASURES

To defend against the aforementioned attacks by the re-
ceiver, we use correlation checks to ensure the well-formness
of the OPV and OPM correlations. These checks cannot
resolve the attacks from the sender. Even worse, the OPM
check introduces a new selective failure attack. All selective
failure attacks allow a malicious sender to learn sensitive
information about the permutation chosen by the receiver
with a certain success probability. Hence we further develop
a leakage reduction mechanism to tackle the leakages from
selective failure attacks so that we can achieve full privacy.

OPV check. To check OPV correctness, we utilize a con-
sistency check trick for GGM trees [30, 40]. The idea is to
additionally expand a GGM tree for an additional layer and
map the punctured index α to its left children at α||0. P1 sends
a hash of all right extended leaf nodes to P0, from which
P0 can compare with its own value to check consistency. We
stress that a malicious P1 can still perform the OPV (selective
failure) attack. The purpose of the OPV check is not to fix the
privacy problem but to detect incorrect OPV correlations right
after its generation (rather than waiting until the online phase).

OPM check. We propose a lightweight OPM check to check
whether the OPM receiver punctures OPM honestly. Since the
parties perform OPV checks right after OPV generation, this
means that row-wise OPVs are correct if all previous OPV
checks pass. Condition on that, it remains to check whether
each column also maintains an OPV correlation. If this is true,
P1 is convinced that all n punctured indexes are organized
properly according to a permutation.

Check OPM via sacrifice. The challenge here is checking
OPM without leaking information about the permutation being
used. We propose a sacrifice-based OPM check strategy. At a
high level, our technique allows P0 to fully recover the whole
OPM matrix held by P1 if and only if P0 punctures the OPM

honestly. To sacrifice an OPM, P1 simply sends n column-
wise sum (i.e., the vector a⃗ of the produced tuple) to P0.
Now, if P0 punctures the OPM honestly, it can recover a full
OPM matrix for sure; otherwise, P0 would have missed two
more values for certain columns and cannot recover the whole
matrix. Therefore, P1 can instead check whether P0 can fully
recover the complete matrix. This can be done by each party
committing its own matrix first and then revealing to check
equality, a common trick dating back to [41].

Check without destroying correlation. However, sacrifice
destroys an OPM correlation (as the whole matrix is revealed
to the receiver). To enable check without losing correlation,
we further propose an OPM extension trick. In principle, the
parties can generate two OPM correlations embedded with
identical punctual information. Thus, the parties can sacrifice
one OPM and keep the other for subsequent shuffle operations.
As we will show, this OPM extension can be directly achieved
by modifying the range of GGM PPRF, using a PRG G′.
Combining the extension trick and OPM sacrifice-based check,
we design a check for OPM correlations, as sketched in Fig. 6.

New selective failure attack. Unfortunately, our OPM
check introduces a new selective failure attack from a ma-
licious sender P1. In particular, suppose P1 guesses q = π(p).
It can selectively add a non-zero error e to the q-th column-
wise sum. By definition, the error will be moved to M̃

(1)
π−1(q),q

by P0. P1 adds e to M
(1)
p,q and use the updated M

(1)
p,q for

equality check. Now, if P1 guessed q = π(p) correctly, the
error will be added to the same place thus the equality check
completes normally; in this case, P1 learns q = π(p) without
being caught. Otherwise, P1 would be caught. Clearly, this
introduces a coordinate-wise selective failure attack, which is
of the same type as the online selective failure attack.

The leakage reduction mechanism. We have captured three
kinds of selective failure leakage: 1) leakage from offline OPV
check; 2) leakage from offline OPM check; and 3) leakage
from online post-execution check. To reduce leakage, we first
observe an inherent property of selective failure attacks: they
can be detected with a probability.

Reduce leakage via repeated execution. We use sufficient
tuples to perform repeated execution to reduce the leakage.
Specifically, whenever a random shuffle over ⟨x⃗⟩ is required,
the parties will perform B cascaded shuffle execution using
B tuples ([π0]), ([π1]), · · · , ([πB−1]), and the parties perform
post-execution MAC check for each shuffle. In this manner,

7

the parties share ⟨y⃗⟩ = ⟨π(x⃗)⟩ where π = πB−1 ◦ · · · ◦ π1 ◦
π0. To learn information about π, the adversary must guess
correctly B times and pass all checks. With a large enough
B, the probability of the attacks going undetected becomes
negligible. As long as one non-attacked permutation exists,
the resulting permutation π will still be random in the view of
the malicious sender, hence preventing leakage.

Cut-and-choose leakage reduction and analysis. We fur-
ther design a cut-and-choose bucketing strategy to reduce B
for generating a batch of correlations. In particular, given a
bucket number N , the parties will generate NB tuples and they
randomly assign NB tuples into N buckets, each containing B
tuples. Since the number of leaky tuples is limited, it’s possible
to generate a large number of tuples such that each bucket
contains sufficient non-leaky tuples. Each bucket of B tuples
will be used in the online phase for leakage reduction.

To analyze B in this game, we propose a combinatorial
analysis using generating functions [42, 43]. Our method can
compute the tightest B given batch size N , tuple dimension
n, and statistical security parameter λ. However, combinatorial
analysis using generating functions will face a combination
explosion for large Ns. We propose a faster polynomial
multiplication algorithm and exploit inherent constraints be-
tween involved parameters, making this approach practical.
Our method may be helpful to other protocols using a similar
cut-and-choose game, which is of independent interest.

Put all pieces together. With correlation checks, leakage
reduction, and carefully combining them with authenticated
secret sharing, we design a maliciously secure secret-shared
shuffle protocol. Our protocol provides privacy in any case
and correctness if the protocol does not abort. Furthermore,
our protocol inherits good properties from the original CGP
protocol; thus, existing optimizations can be directly applied
to our protocol to improve efficiency. We will provide more
details in the following sections.

V. OUR MALICIOUSLY SECURE SSS PROTOCOL

Following the intuition stated in the previous section, we
present the concrete protocols in this section.

A. Concrete GGM PPRF Instantiation

As required for shuffling authenticated sharings and for
facilitating correlation checks, we use a GGM PPRF:

F ′ : {0, 1}κ × {0, 1}h+1 7→ (F2 × {0, 1}κ)× {0, 1}κ.

F ′ is obtained from a standard GGM PPRF F with K =
{0, 1}h, X = {0, 1}h and Y = {0, 1}κ using G : {0, 1}κ 7→
{0, 1}2κ, by simply applying a PRG G′ : {0, 1}κ 7→ (F2 ×
{0, 1}κ)×{0, 1}κ to extend one additional layer over the h-th
layer of the GGM tree. We will parse each extended leaf node
(at level h+ 1) as ((m0,m1), β) ∈ (F2 × {0, 1}κ)× {0, 1}κ,
where (m0,m1) is the left children and β is the right children.
This arrangement facilitates correlation checks and shuffling
authenticated sharings: β ∈ {0, 1}κ will serve the OPV check,
m1 ∈ {0, 1}κ will serve the OPM check, and m0 ∈ F2 is kept
for generating shuffle tuples if the checks passed.

B. Offline Phase Protocol: OPV Setup with Check

We present OPV setup protocol with up to selective failure
attacks in the presence of a malicious sender S.

Functionality FGenV

Parameters: n ∈ N; PPRF F ′ with malicious key space K̃.
Gen: Upon receiving α from S:
• Honest S : Sample K ← {0, 1}κ and compute K∗ ←

F ′.Puncture(K,α||0).
• Corrupted S:

- Wait for the adversary A to input a guess set I ⊆ [n]
and a key K̃ ∈ K̃.

- Check α ∈ I and Ver(K̃, I) = 1. If the check fails,
send abort to R and wait for a response. When R
responds with abort, forward to S and halt.

- Compute K∗ ← F ′.Puncture∗(K̃, α||0).
• Send (K∗, α) to R. S receives K (K̃ for a malicious S)

Fig. 7: OPV setup functionality.

Protocol ΠGenV

Parameters: n, h ∈ N where n = 2h; a hash function h1 :
{0, 1}nκ 7→ {0, 1}2κ; two PRGs G : {0, 1}κ 7→ {0, 1}2κ
and G′ : {0, 1}κ 7→ (F2 × {0, 1}κ)× {0, 1}κ.
Protocol: R inputs an index α ∈ [n]:
1. S samples a random K ∈ {0, 1}κ and defines s00 ← K.
2. For each i ∈ [1, h], S computes (si2j , s

i
2j+1) ← G(si−1

j)

for all j ∈ [1, 2i−1]. Then, for each i ∈ [1, h], S computes
Ki

0 ←
⊕

j∈[2i−1] s
i
2j and Ki

1 ←
⊕

j∈[2i−1] s
i
2j+1.

3. For i ∈ [1, h], the parties invoke FOT such that in the i-th
OT, R inputs a choice bit αi, and S inputs (Ki

0,K
i
1). R

receives Ki
αi

.
4. R defines s1α1

← K1
α1

. For i ∈ [2, h]: R computes
(si2j , s

i
2j+1) ← G(si−1

j) for j ∈ [2i−1] \ {α1 · · ·αi−1};
R defines α∗

i ← α1|| · · · ||αi−1||αi and computes siα∗
i
←

Ki
αi
⊕ (

⊕
j∈[2i−1] s

i
2j+αi

).
5. For j ∈ [1, n], S computes (sh+1

2j , sh+1
2j+1) ←

G′(shj). S computes Kh+1
1 =

⊕
j∈[n] s

h+1
2j+1, τ =

h1(s
h+1
1 , sh+1

3 , · · · , sh+1
2n−1), and sends (Kh+1

1 , τ) to R.
6. Let K{α||0} ← {Ki

αi
}i∈[h] ∪ {Kh+1

1 }. With K{α||0},
R can compute all right leaf nodes {sh+1

2j+1}j∈[n] at level
h+ 1.

7. R sets γj = sh+1
2j+1 for all j ∈ [n], and computes τ ′ =

h1(γ0, γ1, · · · , γn−1). If τ = τ ′, R outputs (K{α||0}, α).
Otherwise, R aborts.

Fig. 8: OPV setup protocol ΠGenV.

Ideal OPV setup functionality. We formalize functionality
FGenV by adapting the one for PPRF setup from [30], with
simplification to suit the OPV setting. FGenV receives a PPRF
master key K from a sender S and a punctured index α from a
sender R, output a punctured key K{α||0} to R. FGenV ensures
malicious security against corrupted R, but FGenV is up to
selective failure attacks from a corrupted S, which allows the
adversary to guess an index range I; this captures the OPV
selective failure attack from S, as mentioned in §III-C.

8

OPV setup with check. Protocol ΠGenV in Fig. 8 is for
securely computing FGenV. There are two enhancements com-
pared with its semi-honest version. First, ΠGenV uses mali-
ciously secure OTs in the punctured PPRF key generation
phase, for which we directly use ideal OT functionality FOT.
Since we use a GGM PPRF F ′ : {0, 1}κ × {0, 1}h+1 7→
(F2×{0, 1}κ)×{0, 1}κ in this paper, R will map the punctured
coordinate α to 2α (equivalently, α||0). Second, the parties run
the OPV check at the end of the protocol. S sends τ , a tag
computed by hashing all the right leaves at layer h+1. Since R
can compute a tag τ ′ of the right leaves, R can check whether
τ = τ ′, and aborts if it is not the case.

Complexity. Communication comes from h OTs of κ-bit
messages plus a 2κ-bit tag for OPV check, thus the communi-
cation complexity is O(κ log n). Computation-wise, each party
invokes O(n) PRG evaluation for GGM tree expansion.

Security. Theorem 1 shows that ΠGenV securely computes
FGenV. The proof is in §G.

Theorem 1. Protocol ΠGenV securely computes functionality
FGenV in the FOT-hybrid model in the presence of a malicious
adversary, assuming G and G′ are secure PRGs, and h1 is a
collision-resistance hash function.

C. Offline Phase Protocol: OPM Setup with Check

Ideal OPM setup functionality. We design a functionality
FGenM in Fig. 9. FGenM ensures malicious security against a
corrupted R, but it allows a corrupted S to selectively guess a
subset index set per row; this is to capture the selective failure
attacks from a malicious sender, as we discussed in §III-C.

Functionality FGenM

Parameters: n ∈ N; PPRF F ′ with malicious key space K̃.
Gen: Upon receiving π from R:
• If π /∈ Sn, abort.
• Sample Ki ← {0, 1}κ for i ∈ [n] and compute K∗

i ←
F ′.Puncture(Ki, π(i)||0).

• If S is corrupted:
- Wait for the adversary to input n sets I0, · · · , In−1 ⊆
[n] and a set of keys K̃0, · · · , K̃n−1 ∈ K̃.

- For i ∈ [n], check π(i) ∈ Ii and Ver(K̃i, Ii) = 1. If
any check fails, send abort to R and wait for a response.
When R responds with abort, forward to S and halt.

- K∗
i ← F ′.Puncture∗(K̃i, π(i)||0) for i ∈ [n].

• Send (π, {K∗
i }i∈[n]) to R. S receives {Ki}i∈[n]

({K̃i}i∈[n] for malicious S).

Fig. 9: OPM setup functionality.

OPM setup with check. Fig. 10 shows the OPM generation
protocol ΠGenM with OPM check. The challenge is checking
R punctures the OPM according to a valid permutation; this is
crucial to ensure privacy as discussed in §III-C.

We propose a sacrifice-based check strategy. In particular,
S sends n column-wise sum to R and our protocol checks
whether R can recover the exact matrix held by S. We use
a common equality check functionality Feq dating back to

[41]. Feq allows the parties to check whether they hold
the same value followed by revealing inputs. To reduce the
communication, each party hashes its own matrix to generate
a short tag. The parties instead use Feq over tags to perform
equality check. Using a concrete protocol from [41] for Feq,
this check only requires O(κ) bits of communication.

PPRF F ′ supports OPM check without losing correlation.
In particular, S can non-interactively parse the matrix OPM M
as two matrices: M(0) ∈ (F2)n×n and M(1) ∈ ({0, 1}κ)n×n.
Similarly, R obtains the punctured matrices M̃(0) and M̃(1).
Note that M̃(0) and M̃(1) are punctured in the same way.
The parties can sacrifice ⟨[π]⟩(1) for check and keep ⟨[π]⟩(0) to
generate a shuffle tuple over (F2)n for online use.

Protocol ΠGenM

Parameters: n ∈ N; PPRF F ′; hash function H :
{0, 1}n

2κ 7→ {0, 1}2κ.
Protocol: R inputs π ∈ Sn. S inputs n PPRF keys {Ki}i∈[n].
1. For i ∈ [n], R and S call FGenV for n times with respective

inputs π(i) and ⊥. R receives {π(i),K∗
i }i∈[n] and S

receives {Ki}i∈[n]. If any call fails, R receives abort from
FGenV.

2. The parties generate an OPM correlation ⟨[π]⟩ =

((π, M̃), (M)), where M ∈ (F2 × {0, 1}κ)n×n, as
follows:
a) For i ∈ [n] and j ∈ [n] S computes Mi,j ←

F ′.Eval(Ki, j||0).
b) For i ∈ [n] and j ∈ [n] \ {π(i)}, R computes M̃i,j ←

F ′.Eval(K∗
i , j||0).

3. The parties locally parse ⟨[π]⟩ = ((π, M̃), (M)) as two
OPMs:

⟨[π]⟩(0) = ((π, M̃(0)), (M(0))), ⟨[π]⟩(1) = ((π, M̃(1)), (M(1))),

where M(0) ∈ (F2)n×n and M(1) ∈ ({0, 1}κ)n×n.
4. The parties sacrifice ⟨[π]⟩(1) for OPM check:

a) For j ∈ [n], S computes ωj ←
⊕

i∈[n] M
(1)
i,j . S sends

{ωj}j∈[n] to R.
b) R recovers M

(1)

i,π(i) ← ωπ(i)⊕ (
⊕

j ̸=π(i) M̃
(1)
i,j) for i ∈

[n]. R updates M̃
(1)

i,π(i) ←M
(1)

i,π(i) for i ∈ [n].
c) S computes τ ← H1(M

(1))). Similarly, R computes
τ̃ ← H1(M̃

(1)). S and R invoke Feq with inputs τ and
τ̃ , respectively. Feq will abort if τ ̸= τ̃ .

5. R outputs (π, {K∗
i }i∈[n]) and S outputs {Ki}i∈[n].

Fig. 10: OPM setup protocol ΠGenM.

From keys to correlations. Protocol ΠGenM outputs a pair
of correlated OPM keys after the OPM well-formness check.
With the correlated keys, the parties obtain an OPM correlation
⟨[π]⟩(0) = ((π, M̃(0)), (M(0))), and then a shuffle tuple:

([π]) = ((π, ∆⃗), (⃗a, B⃗)) ∈ (Sn × (F2)n)× ((F2)n × (F2)n).

Note that ([π]) is defined over (F2)n in order to shuffle
authenticated secret sharings. When invoking FGenM in the
hybrid model, the parties can locally expand their keys to share
⟨[π]⟩(0), from which they define a shuffle tuple ([π]) over (F2)n.
We will assume this local computation when invoking FGenM

in our maliciously secure SSS protocol.

9

Complexity. Communication complexity is O(κn log n) from
OPV key generation. Besides, R sends n column-wise sum
values, which incurs additional O(κn) communication. The
communication complexity is O(κn log n + κn). In terms
of computation, each OPV requires O(n) PRG invocations
resulting in O(n2) computation complexity in total.

Security. Like FGenV, we capture the selective failure attacks
in FGenM. ΠGenM securely computes FGenM in Theorem 2. The
proof can be found in §H.

Theorem 2. Protocol ΠGenM securely computes functionality
FGenM in the (FGenV,Feq)-hybrid model in the presence of a
malicious adversary, assuming H1 is a random oracle.

D. Online Phase Protocol

Our online phase protocol is essentially the CGP protocol
plus online authenticated sharing checks and leakage reduction.
Recall that the offline checks ensure correct correlations,
the online check ensures correct shuffling and integrity, and
the leakage reduction mechanism deals with selective failure
attacks. Together they achieve correctness and full privacy. We
focus on the leakage reduction mechanism in this section, for
the CGP online protocol with authenticated sharing checks,
please refer to the previous section.

Ideal functionality. Our goal is to compute a two-party one-
sided secret-shared shuffle functionality Foss: the parties S and
R jointly hold an authenticated secret-shared vector ⟨x⃗⟩ and
R additionally choose a permutation π ∈ Sn. Foss computes
y⃗ = π(x⃗) and shares ⟨y⃗⟩ (with randomization) between the
parties. Fig. 11 shows a formal description of Foss.

Functionality Foss

Parameters: n ∈ N; a dictionary Val storing all authenti-
cated secrets.
Inputs: R provides a permutation π ∈ Sn; the identifiers
{idi}i∈[n] for the values being shuffled, and the identifiers
{id′i}i∈[n] for the shuffled values to be stored with.
Functionality: receiving (oss, π, {idi}i∈[n], {id′i}i∈[n]) from
R and (oss, {idi}i∈[n], {id′i}i∈[n]) from S:
• If π /∈ Sn, abort.
• Define a vector x⃗ such that x⃗i = Val[idi] for i ∈ [n].
• Compute y⃗ = π(x⃗) and store Val[id′i]← y⃗i for i ∈ [n].

Fig. 11: Functionality for one-sided secret-shared shuffle.

Leakage reduction via repeated execution. As mentioned
in §IV, we use repeated shuffle to amplify the hardness of
a selective failure attack. Specifically, ⟨x⃗⟩ is shuffled with B
cascaded sub-shuffles, i.e. y⃗ = πB−1 ◦πB−2 ◦ · · · ◦π0(x⃗). The
parties run the MAC checks at the end of each sub-shuffle.

Let us assume shuffle tuples are distributed by a trusted
party. In this case, a malicious S is restricted to performing the
online-phase selective failure attack with success probability
at most 1/n for each guess. Now S will face a dilemma:
on the one hand, if S wants to learn non-trivial information
about the composed permutation π, S must guess all immediate
coordinates of mapping correctly. The success probability will

drop to n−B in this case. By setting B > ⌈ λ
log2 N ⌉, we

can ensure n−B < 2−λ, which means S will be caught
with probability at least 1 − 2−λ. On the other hand, if
S only attacks a small (strict) subset of B permutations, S
may luckily not be caught. Nevertheless, the remaining non-
attacked permutations can still ensure full privacy. Namely,
π = πB−1 ◦ πB−2 ◦ · · · ◦ π0 is still a random permutation in
the view of S. Therefore, the attacker will either be detected
with overwhelming probability (in the first case), or S will
learn no information (in the second case).

Reducing B via cut-and-choose batch generation. The above
analysis only considers online-phase leakages. We extend it
to handle leakages uniformly from the offline and the online
phases. Now, the attacker has more advantage in the online-
phase attack since the (possible) accumulated offline-phase
leakage can facilitate the online-phase attack.

Given statistical security parameter λ, the adversary is
allowed to learn at most λ bits of information in the offline
phase, corresponding to detecting probability 1−2λ. Condition
on that, we want to compute a minimal B such that after
running B cascaded shuffles, the composed permutation is still
a random permutation in the view of the adversary, except with
statistical error 2−λ. It is possible to set B = λ+ ⌈ λ

log2 n⌉ for
our purpose: Since the number of the leaky tuples will be at
most λ, we can still ensure at least ⌈ λ

log2 n⌉ non-leaky tuples,
as required to counter online selective failure attack.

To reduce B further, we propose a cut-and-choose leakage
reduction mechanism in a batch tuple generation setting.
Concretely, given a bucket number N , the parties generate
NB tuples and randomly assign them into N buckets, each
containing B tuples. Since the number of leaky tuples from
the offline phase is limited, we want to ensure each bucket
contains at least ⌈ λ

log2 n⌉ non-leaky tuples. It is possible to
generate sufficient tuples and thereby obtain a smaller bucket
size B < λ+⌈ λ

log2 n⌉, such that all the buckets contain at least
⌈ λ
log2 n⌉ non-leaky tuples.

We propose a new combinatorial analysis method based
on generating functions [42, 43]. Using generating function
for combinatorial analysis is a generic method but is usually
impractical for complex combinations. We propose a fast
computing method and exploit inherent constraints in our
analysis to reduce complexity, making this approach practical.
Our analysis method may be helpful to other protocols using a
similar cut-and-choose game, which is of independent interest.
We move details to §B. As a concrete example, we have B = 7
when N = 220, n = 210 and λ = 40.

E. Combine All Together

Two-party OSS protocol. Combining correlation generation
with check, authenticated sharings, MAC check, and leak-
age reduction, we finally propose one-sided protocol Π[R]

oss in
Fig. 12. Π[R]

oss consists an online phase and an offline phase.

Offline phase. The offline phase performs cut-and-choose
batch tuple generation. Specifically, the parties generate NB
tuples by calling FGenM, where the receiver R specifies NB
permutations. Note that FGenM generates a pair of correlated
OPM keys, from which the parties locally generate a tuple

10

Protocol Π[R]
oss

Parameters: N : number of buckets; B: bucket size.

[Offline]: On inputting sharings N and B, do the following:
1. The parties invoke FGenM to generated NB OPM in-

stances, where R plays the role of OPM receiver to specify
all NB permutations. The parties locally evaluate NB
pairs of OPM keys to share NB shuffle tuples, where
each tuple ([π]) is defined as ([π]) = ((π, ∆⃗), (⃗a, b⃗)) ∈
(Sn × (F2)n)× ((F2)n × (F2)n).

2. R samples a random seed seed
$←− {0, 1}κ and sends seed

to S. R and S use seed to determine a random permutation
ρ : [NB]→ [NB].

3. The parties use ρ to permute NB shuffle tuples, then
divide them into N bucket, each containing B tuples.

[Online]: On inputting sharings ⟨x⃗⟩, do the following:
1. Let ⟨x⃗(0)⟩ ← ⟨x⃗⟩.
2. Fetch B shuffle tuples ([π0]), ([π1]), · · · , ([πB−1]) from the

next unused bucket.
3. For i ∈ [B], do the following:

a) S parses ([πi])s = (⃗a(i), b⃗(i)), sends δ⃗(i) = ⟨x⃗(i)⟩s −
a⃗(i) to R. S sets ⟨x⃗(i+1)⟩s ← b⃗(i).

b) R receives δ⃗(i) and parse ([πi])r = (πi, ∆⃗
(i)). R sets

⟨x⃗(i+1)⟩r ← πi(⟨x⃗(i)⟩r + δ⃗(i)) + ∆⃗(i).
4. S and R run ΠMACCheck over (⟨x⃗(1)⟩, ⟨x⃗(2)⟩, · · · , ⟨x⃗(B)⟩).

If the check fails, abort.
5. Output ⟨x⃗(B)⟩ if the protocol does not abort.

Fig. 12: Maliciously secure one-sided shuffle protocol Π[R]
oss.

([π]) = ((π, ∆⃗), (⃗a, B⃗)) ∈ (Sn×(F2)n)×((F2)n×(F2)n). The
order of generated tuples is shuffled using a public permutation
ρ ∈ SNB chosen by the receiver, which is determined by a
κ-bits random seed. The parties divide NB permutated tuples
into N buckets, each containing B tuples. Each bucket of B
tuples will be used to perform OSS shuffle in the online phase.

Online phase. The parties use tuples generated from the
offline phase to perform OSS shuffle for an authenticated
vector sharing ⟨x⃗⟩ and outputs a vector sharing ⟨π(x⃗)⟩. Specif-
ically, the parties fetch B tuples from the next unused bucket,
perform B cascaded CGP shuffles, and run MAC check for all
intermediate shared vectors (⟨x⃗(1)⟩, ⟨x⃗(2)⟩, · · · , ⟨x⃗(B)⟩). If the
check passes, the parties output ⟨x⃗(B)⟩ as the final output.

Correctness. When both parties behave honestly, we can
verify that ⟨x⃗(i+1)⟩r + ⟨x⃗(i+1)⟩s = πi(⟨x⃗(i)⟩r + δ⃗(i)) + ∆⃗(i) +
b⃗(i) = πi(⟨x⃗(i)⟩r + ⟨x⃗(i)⟩s − a⃗(i)) + πi(⃗a

(i)) − b⃗(i) + b⃗(i) =
πi(⟨x⃗(i)⟩r + ⟨x⃗(i)⟩s) = (πi(Jx⃗(i)Kr + Jx⃗(i)Ks), πi(Jγ(x⃗(i))Kr +
Jγ(x⃗(i))Ks)) = (πi(x⃗

(i)), πi(γ(x⃗
(i)))), which is a correct

shuffle of secrets x⃗(i) and the MACs γ(x⃗(i)) using πi. By a
simple induction argument over i ∈ [B], we have x⃗(B) = π(x⃗)
where π = πB−1 ◦ · · · ◦ π1 ◦ π0.

Security. Secuirty of protocol Π
[R]
oss is formalized as Theo-

rem 3, with a proof in §I.

Theorem 3. Π
[R]
oss securely computes Foss in the FGenM-hybrid

model with statistical security error 2−λ, in the presence of
malicious adversaries, under the condition that |F| > 2λ and

proper setting of B as specified in Table V.

SSS protocol. A two-party SSS protocol can be obtained by
invoking Π

[R]
oss twice using the reversed execution strategy (see

§III-A). This is straightforward and we provide such a protocol
Πsss in Fig. 13. The offline phase simply invokes the offline
phase of Π

[R]
oss twice, and each party takes turns playing the

role of the receiver R. In the online phase, the parties run
the OSS online protocol where each party plays the role of
the receiver. Security of Πsss directly follows from Π

[R]
oss (since

Πsss does nothing more than simply invoking Π
[R]
oss twice).

Protocol Πsss

Parameters: N : number of buckets; B: bucket size.
[Offline]: On inputting sharings N and B, do the following:
1. For i ∈ [2], the parties run Π

[Pi]
oss .Offline(N,B), where

Pi specifices NB permutations.

[Online]: On inputting sharings ⟨x⃗⟩, do the following:
1. The parties run ⟨y⃗⟩ ← Π

[P0]
oss .Online(⟨x⃗⟩).

2. The parties run ⟨z⃗⟩ ← Π
[P1]
oss .Online(⟨y⃗⟩).

3. Ourput ⟨z⃗⟩.

Fig. 13: Two-party maliciously secure SSS protocol.

F. Extension and Optimizations

Multi-party shuffle protocols. While this paper focuses on the
two-party setting, we can extend our two-party protocols to the
multi-party setting. Using the pair-wise execution paradigm
from existing works [2, 3], we provide k-party OSS proto-
col Πk -oss and k-party SSS protocol Πk -sss in §C. We note
that Πk -sss requires k2 invocations of pair-wise CGP shuffle,
incurring O(ℓk2n) online communication and O(κk2n log n)
offline communication. It remains to design maliciously secure
multi-party CGP shuffle with a better complexity for large k.

Trade-off using generalized Benes networks. Πoss inherits
the low-communication property of the CGP protocol, but its
computation complexity is proportional to the dimension of
shuffled vector squared, incurring huge computational over-
head when shuffling large-dimension vectors. We borrow a per-
mutation decomposition technique from [1] to balance compu-
tation and communication. This decomposition trick utilizes a
generalized Benes network [44], which we call GBN decompo-
sition. GBN decomposition decomposes a permutation π ∈ Sn

into d = 2⌈log n/log T ⌉ − 1 permutations π1 ◦ π2 ◦ · · · ◦ πd,
and each πi ∈ Sn is composed by n/T disjoint smaller
permutations from ST . Since each T × T OPM requires only
O(T 2) computational cost, the offline computational cost will
be O(dnT). Overall, the smaller T is, the less computational
overhead is required. However, running dn/T small shufflings
increases online communication costs. By configuring T , we
can achieve a trade-off between computation and communi-
cation. We use GBN decomposition in our implementation to
achieve trade-offs between communication and computation.
We discuss more details on GBN decomposition and how to
combine GBN decomposition with our SSS protocols in §D.

11

VI. IMPLEMENTATION AND PERFORMANCE

A. Experiment Settings

We implement our protocol in C++. We use PRG and
hash functions designed from fix-key AES and IKNP-type
maliciously secure OT extension from emp-tookit (https://
github.com/emp-toolkit). We run the experiment on a desktop
PC equipped with Intel(R) Xeon(R) Platinum 8163 CPU at
2.50GHz × 16 running Ubuntu 20.04 LTS and 32 GB of
memory. We use Linux tc command to simulate local-area
network (LAN, RTT: 0.2 ms, 1 Gbps) and wide-area net-
work (WAN, RTT: 80 ms, 40 Mbps). We set the computational
security parameter κ = 128, statistical security parameter
λ = 40, and element size ℓ = 128 bits.

B. Performance of Correlation Generation

We first report the performance of our correlation genera-
tion protocol in terms of running time and communication. Per-
formance is measured for generating one shuffle tuple, where
tuple dimension n is taken from {26, 27, 28, 29, 210, 211, 212}.

26 27 28 29 210 211 212

105

106

107

Tuple dimension n

R
un

ni
ng

tim
e

(m
s)

CGP [1] (LAN)
CGP [1] (WAN)

Ours (LAN)
Ours (WAN)

Fig. 14: Running time (ms) for single tuple generation.

Running time. Fig. 14 compares the running time of our
protocol with [1] on correlation generation under LAN
and WAN settings, respectively. Our protocol is only about
1.1-2.9× (resp. 1.01-2.3×) slower than the semi-honest CGP
protocol [1] in LAN (resp. WAN) setting. The extra overhead
comes from the use of malicious OTs and the correlation
check in correlation generation. We note all OTs execution can
be done in a batch in one round. We use similar low-round
tricks in other parts of implementation to reduce the impact
of a lower network. Notably, our protocol is only 1.3-5.7×
slower in WAN compared with the LAN setting. Also, as n
increases, computation will dominate the running time, and
communication contributes less to the overall running time.

Protocol 26 27 28 29 210 211 212

[1] 0.031 0.056 0.111 0.234 0.504 1.094 2.372
Ours 0.037 0.066 0.119 0.246 0.525 1.131 2.442

TABLE I: Communication (MB) for generating a shuffle tuple

Communication. Our protocol requires maliciously secure
OTs and correlation checks. The maliciously secure IKNP
OT extension introduces little communication overhead. For
correlation checks, we design in a communication-efficient
fashion. As a result, our correlation checks introduce low
communication overhead. As shown in Table I, our protocol
only incurs about 20% more communication than [1].

C. Performance of Shuffle

We report the performance of our protocol and compare
it with the state-of-the-art maliciously secure SSS protocol in
MP-SPDZ library [4].

Settings. We take n from {210, 212, 214, 216, 218, 220} and use
GBN decomposition in our implementation. We use T = 2d

to perform shuffle where d ∈ {4, 6, 8, 10}. Performance
is reported in the two-party setting. Both our protocol and
the protocol from [4] can be divided into offline correlation
generation phase and online shuffle phase. In the offline phase,
the parties generate sufficient correlations to facilitate online
shuffle. The difference is that our protocol utilizes shuffle
tuples while [4] uses multiplications triples to evaluate a two-
swap permutation network.

Protocol LAN
210 212 214 216 218 220

Our (24) 0.08 0.15 0.72 2.54 13.79 49.90
Our (26) 0.03 0.14 0.52 1.68 6.39 38.85
Our (28) 0.02 0.07 0.18 0.72 6.20 22.05
Our (210) 0.01 0.07 0.15 0.69 2.43 9.81

[4] 0.05 0.18 0.73 3.24 17.90 81.89

Protocol WAN
210 212 214 216 218 220

Our (24) 1.34 4.77 9.65 27.26 119.34 456.34
Our (26) 0.92 2.83 6.35 16.30 53.31 282.39
Our (28) 0.73 2.29 3.79 9.14 43.46 165.67
Our (210) 0.57 2.02 3.29 7.91 23.26 84.86

[4] 2.49 3.70 7.98 26.30 119.04 522.38
TABLE II: Online running time (s)

Running time. We report the running time for the online phase
in Table II. All candidate protocols outperform the one from
MP-SPDZ both in LAN and WAN settings. We can see that
T is a tunable parameter. The larger T is, the less running
time is required for shuffling the same dimension of vectors.
In particular, the online running time of our protocol is around
the same level as [4] when T = 24, and the efficiency gap is
enlarged for larger T s. For example, in the WAN setting, our
protocol, taking T = 210, is 4× faster than the SSS protocol
from [4] for n = 210 but is 6× faster for n = 220, showing that
our protocol scales well for shuffling large-dimension vectors.

Table III reports the running time for offline correlation
generation. Since we use cut-and-choose leakage reduction
for our protocol, the running time is computed in an amor-
tized sense. In the LAN setting where computation is the
bottleneck, it is better to use low-dimension tuples to reduce
offline running time. However, when changing to the WAN
setting, communication matters more to overall offline running
time. On average, setting T = 26 achieves a most balanced
efficiency over different ns in the WAN setting, compared to
T = 24 in the LAN setting. When T = 26, the offline running
time of our protocol is about 15× faster than the protocol from
MP-SPDZ (using HE-based preprocessing).

Communication. Table IV reports communication overhead
for offline and online phases. We run both our protocol
and MP-SPDZ shuffle protocol to perform shuffles over the
different dimensions of vectors. MP-SPDZ supports either OT
or HE for preprocessing, thus we report each, respectively.

12

https://github.com/emp-toolkit
https://github.com/emp-toolkit

Protocol LAN WAN
210 212 214 216 218 220 210 212 214 216 218 220

Ours (24) 0.36 1.22 6.29 24.78 132.43 507.21 6.56 12.35 44.51 155.06 761.93 3,030.09
Ours (26) 0.48 1.78 11.11 44.70 178.15 986.47 4.89 9.92 42.88 147.25 571.71 3,213.94
Ours (28) 1.30 5.40 20.41 79.67 553.30 2,126.90 5.39 13.37 83.60 145.72 938.52 4,005.16
Ours (210) 1.68 18.44 76.84 273.84 1,125.21 4,578.25 4.33 26.49 91.04 345.30 1,365.92 5,853.09
[4] (OT) 9.53 45.27 211.41 1,077.76 4,209.90 - 125.21 593.10 2,769.98 12,706.00 - -
[4] (HE) 4.73 17.81 79.36 357.64 1,610.24 - 59.26 90.71 427.87 1,978.11 9,056.06 -

TABLE III: Amortized offline running time (s)

Protocol Offline Online
210 212 214 216 218 220 210 212 214 216 218 220

Ours (24) 7.03 27.8 155.17 620.34 3,189.88 12,759.18 1.06 4.26 23.86 95.42 490.73 1,962.93
Ours (26) 4.76 18.76 124.65 498.16 1,992.38 11,156.93 0.49 1.97 13.11 52.43 209.72 1,174.41
Ours (28) 4.98 19.73 78.71 314.64 2,097.22 8,388.68 0.39 1.57 6.29 25.17 167.77 671.09
Ours (210) 1.84 21.39 85.39 341.38 1,365.31 5,461.04 0.11 1.38 5.51 22.02 88.08 352.32
[4] (OT) 1,757.43 8,561.07 40,193.90 184,763.00 835,816.00 - 1.37 6.65 31.33 144.18 652.22 2,910.86
[4] (HE) 123.89 497.72 1,115.25 5,050.48 22,832.60 - 1.37 6.65 31.33 144.18 652.22 2,910.86

TABLE IV: Amortized communication (MB) for offline and online phases

Our protocol requires much less communication than [4]. The
gap between communication consumption is particularly large
for the offline phase: even compared with our protocol using
T = 24, HE-based MP-SPDZ preprocessing requires at least
7× more communication, and OT-based preprocessing requires
two orders of magnitude more communication.

Our protocol utilizes GBN decomposition to achieve flex-
ible trade-offs when configured with different T s. For online
communication, our protocol requires the least communication
when T = 210. This is clear since using large-dimension
shuffle tuples can reduce online communication.

Towards offline communication, setting T = 210 only
sometimes achieves the best communication among all can-
didates of our protocol. As we can see, setting T = 26,
T = 28 and T = 28 result in the least communication over
n = 212, 214, and 216, respectively. We stress this is because
d = 10 does not divide n for these cases: the parties use tuples
of dimension 210 to shuffle the middle layers of the Benes
network with less than 10 layer, which essentially makes a
waste. As such, we recommend choosing d that divides log2 n
to optimize offline communication.

VII. RELATED WORK

Secret-shared shuffle protocols are essential in many secure
computation tasks, including oblivious sorting [45–48], private
set intersection/union [9, 49–51] and private function evalua-
tion [52, 53], anonymous communication [2, 16], oblivious
RAM/database [8, 54], and private data analysis [10, 12, 55].

There are two classical approaches for designing secret-
shared shuffle protocols: homomorphic encryption based [18,
49] and MPC-based on permutation network [49, 52, 53].
Protocols constructed on homomorphic encryption can achieve
asymptotically optimal linear communication complexity, but
the computation overhead is relatively high. In order to achieve
malicious security, each party has to use zero-knowledge proof
to prove it follows the shuffle protocol honestly, which can
be expensive for vectors with large dimensions. The approach
based on permutation networks relies on MPC techniques to
compute atomic swaps of a permutation network, in which re-
randomization is done to ensure the obliviousness of the swap.

Using OT extension techniques, protocols from the second
approach only require a constant number of public-key oper-
ations plus cheap symmetric operations. Their communication
overhead is proportional to ℓn log n, where ℓ is the bit length
of elements and n is the dimension of the vector to be shuffled.
The overhead will be increased for malicious security.

Other SSS protocols [8, 10, 51, 56] designed in the three-
party honest-majority setting. We note that techniques under
the honest-majority assumption cannot trivially apply to the
dishonest-majority settings.

VIII. CONCLUSION & DISCUSSION

This paper proposes a maliciously secure secret-shared
shuffle protocol. We first show existing constructions are inse-
cure by proposing concrete attacks. We then design lightweight
correlation check and leakage reduction mechanisms and
carefully combine them with authenticated secret sharing to
achieve malicious security. The experiments show that our
protocol introduces acceptable overhead and is more efficient
than the state-of-the-art.

Limitations & future work. Our work has limitations and
leaves future work that requires further investigation:

• More efficient leakage reduction mechanisms. While our
protocol can generate correct correlations with low over-
head, the cost of leakage reduction for the online phase
is still relatively high. It is worth designing an efficient
mechanism to directly check the legitimacy of δ⃗ instead of
running a post-execution check.
• More efficient multi-party SSS protocols. Although we can

extend our protocol to multi-party settings, each party must
run a one-sided shuffle with all the other parties, requiring
k2 invocations of pair-wise shuffle. It remains to design
maliciously secure CGP protocols with better complexity.

ACKNOWLEDGEMENT

We thank anonymous reviewers for their insightful com-
ments and suggestions.

13

This research is supported by the National Research Foun-
dation, Singapore under its Strategic Capability Research Cen-
tres Funding Initiative and the National Natural Science Foun-
dation of China under Grant 62072132, Grant 62261160651,
and Grant 62302118. Any opinions, findings and conclusions
or recommendations expressed in this material are those of the
author(s) and do not reflect the views of National Research
Foundation, Singapore.

REFERENCES

[1] M. Chase, E. Ghosh, and O. Poburinnaya, “Secret-shared
shuffle,” in International Conference on the Theory and
Application of Cryptology and Information Security.
Springer, 2020, pp. 342–372.

[2] S. Eskandarian and D. Boneh, “Clarion: Anonymous
communication from multiparty shuffling protocols,” in
NDSS, 2022.

[3] P. Laud, “Linear-time oblivious permutations for spdz,”
in International Conference on Cryptology and Network
Security. Springer, 2021, pp. 245–252.

[4] M. Keller, “Mp-spdz: A versatile framework for multi-
party computation,” in Proceedings of the 2020 ACM
SIGSAC conference on computer and communications
security, 2020, pp. 1575–1590.

[5] “Secretflow,” https://github.com/secretflow/secretflow,
accessed: 2023-11-17.

[6] “Private computation framework library from meta,”
https://github.com/facebookresearch/fbpcf/tree/main/
fbpcf/mpc std lib/shuffler, accessed: 2023-11-17.

[7] “Petace (release 0.1.0),” https://github.com/
tiktok-privacy-innovation/PETAce, 2023, tikTok Pte.
Ltd.

[8] P. Mohassel, P. Rindal, and M. Rosulek, “Fast database
joins and psi for secret shared data,” in Proceedings of
the 2020 ACM SIGSAC Conference on Computer and
Communications Security, 2020, pp. 1271–1287.

[9] Y. Jia, S. Sun, H. Zhou, J. Du, and D. Gu, “Shuffle-based
private set union: Faster and more secure,” in USENIX
Security 2022, 2022, pp. 2947–2964.

[10] T. Araki, J. Furukawa, K. Ohara, B. Pinkas, H. Rose-
marin, and H. Tsuchida, “Secure graph analysis at scale,”
in Proceedings of the 2021 ACM SIGSAC Conference on
Computer and Communications Security, 2021, pp. 610–
629.

[11] G. Asharov, K. Hamada, D. Ikarashi, R. Kikuchi, A. Nof,
B. Pinkas, K. Takahashi, and J. Tomida, “Efficient secure
three-party sorting with applications to data analysis and
heavy hitters,” in Proceedings of the 2022 ACM SIGSAC
Conference on Computer and Communications Security,
2022, pp. 125–138.

[12] E. Anderson, M. Chase, F. B. Durak, E. Ghosh, K. Laine,
and C. Weng, “Aggregate measurement via oblivious
shuffling,” Cryptology ePrint Archive, 2021.

[13] S. Zahur, X. Wang, M. Raykova, A. Gascón, J. Doerner,
D. Evans, and J. Katz, “Revisiting square-root oram:
efficient random access in multi-party computation,” in
2016 IEEE Symposium on Security and Privacy (SP).
IEEE, 2016, pp. 218–234.

[14] Q. Luo, Y. Wang, Z. Ren, K. Yi, K. Chen, and X. Wang,
“Secure machine learning over relational data,” arXiv
preprint arXiv:2109.14806, 2021.

[15] P. Mohassel and Y. Zhang, “Secureml: A system for
scalable privacy-preserving machine learning,” in 2017
IEEE symposium on security and privacy (SP). IEEE,
2017, pp. 19–38.

[16] D. Lu and A. Kate, “Rpm: Robust anonymity at scale,”
Cryptology ePrint Archive, 2022.

[17] D. Chaum, “Untraceable electronic mail, return ad-
dresses, and digital pseudonyms,” Commun. ACM,
vol. 24, no. 2, pp. 84–88, 1981.

[18] C. A. Neff, “A verifiable secret shuffle and its application
to e-voting,” in Proceedings of the 8th ACM conference
on Computer and Communications Security, 2001, pp.
116–125.

[19] S. Bayer and J. Groth, “Efficient zero-knowledge ar-
gument for correctness of a shuffle,” in Advances in
Cryptology–EUROCRYPT 2012: 31st Annual Interna-
tional Conference on the Theory and Applications of
Cryptographic Techniques, Cambridge, UK, April 15-19,
2012. Proceedings 31. Springer, 2012, pp. 263–280.

[20] N. Alexopoulos, A. Kiayias, R. Talviste, and T. Zacharias,
“Mcmix: Anonymous messaging via secure multiparty
computation.” in USENIX security symposium, 2017, pp.
1217–1234.

[21] W. Chen and R. A. Popa, “Metal: A metadata-hiding file-
sharing system,” in NDSS Symposium 2020, 2020.

[22] H. Corrigan-Gibbs and D. Boneh, “Prio: Private, ro-
bust, and scalable computation of aggregate statistics.”
in NSDI, 2017, pp. 259–282.

[23] J. Aas and T. Geoghegan, “Introducing isrg prio
services for privacy respecting metrics,” https://www.
abetterinternet.org/post/introducing-prio-services/,
accessed: 2023-06-01.

[24] Ú. Erlingsson, V. Feldman, I. Mironov, A. Raghunathan,
K. Talwar, and A. Thakurta, “Amplification by shuffling:
From local to central differential privacy via anonymity,”
in SODA, T. M. Chan, Ed., 2019, pp. 2468–2479.

[25] A. Cheu, A. D. Smith, J. R. Ullman, D. Zeber, and
M. Zhilyaev, “Distributed differential privacy via shuf-
fling,” in EUROCRYPT, 2019, pp. 375–403.

[26] B. Balle, J. Bell, A. Gascón, and K. Nissim, “Private
summation in the multi-message shuffle model,” in ACM
CCS ’20, J. Ligatti, X. Ou, J. Katz, and G. Vigna, Eds.,
2020, pp. 657–676.

[27] A. Cheu and M. Zhilyaev, “Differentially private his-
tograms in the shuffle model from fake users,” in IEEE
SP, 2022, pp. 440–457.

[28] N. Attrapadung, G. Hanaoaka, T. Matsuda, H. Morita,
K. Ohara, J. C. Schuldt, T. Teruya, and K. Tozawa,
“Oblivious linear group actions and applications,” in
Proceedings of the 2021 ACM SIGSAC Conference on
Computer and Communications Security, 2021, pp. 630–
650.

[29] P. Laud, “Efficient permutation protocol for mpc in the
head,” in International Workshop on Security and Trust
Management. Springer, 2021, pp. 62–80.

[30] E. Boyle, G. Couteau, N. Gilboa, Y. Ishai, L. Kohl,
P. Rindal, and P. Scholl, “Efficient two-round ot exten-
sion and silent non-interactive secure computation,” in
Proceedings of the 2019 ACM SIGSAC Conference on
Computer and Communications Security, 2019, pp. 291–
308.

[31] O. Goldreich, S. Goldwasser, and S. Micali, “How to con-

14

https://github.com/secretflow/secretflow
https://github.com/facebookresearch/fbpcf/tree/main/fbpcf/mpc_std_lib/shuffler
https://github.com/facebookresearch/fbpcf/tree/main/fbpcf/mpc_std_lib/shuffler
https://github.com/tiktok-privacy-innovation/PETAce
https://github.com/tiktok-privacy-innovation/PETAce
https://www.abetterinternet.org/post/introducing-prio-services/
https://www.abetterinternet.org/post/introducing-prio-services/

struct random functions,” Journal of the ACM (JACM),
vol. 33, no. 4, pp. 792–807, 1986.

[32] A. Kiayias, S. Papadopoulos, N. Triandopoulos, and
T. Zacharias, “Delegatable pseudorandom functions and
applications,” in Proceedings of the 2013 ACM SIGSAC
conference on Computer & communications security,
2013, pp. 669–684.

[33] I. Damgård and C. Orlandi, “Multiparty computation for
dishonest majority: From passive to active security at low
cost,” in Annual cryptology conference. Springer, 2010,
pp. 558–576.

[34] I. Damgård, M. Keller, E. Larraia, V. Pastro, P. Scholl,
and N. P. Smart, “Practical covertly secure mpc for
dishonest majority–or: breaking the spdz limits,” in Eu-
ropean Symposium on Research in Computer Security.
Springer, 2013, pp. 1–18.

[35] M. Keller, E. Orsini, and P. Scholl, “Mascot: faster
malicious arithmetic secure computation with oblivious
transfer,” in Proceedings of the 2016 ACM SIGSAC
Conference on Computer and Communications Security,
2016, pp. 830–842.

[36] I. Damgård, V. Pastro, N. Smart, and S. Zakarias, “Multi-
party computation from somewhat homomorphic encryp-
tion,” in Annual Cryptology Conference. Springer, 2012,
pp. 643–662.

[37] M. Keller, E. Orsini, and P. Scholl, “Actively secure ot
extension with optimal overhead,” in Annual Cryptology
Conference. Springer, 2015, pp. 724–741.

[38] R. Canetti, “Security and composition of multiparty cryp-
tographic protocols,” Journal of CRYPTOLOGY, vol. 13,
pp. 143–202, 2000.

[39] J. Furukawa, Y. Lindell, A. Nof, and O. Weinstein, “High-
throughput secure three-party computation for malicious
adversaries and an honest majority,” in Annual inter-
national conference on the theory and applications of
cryptographic techniques. Springer, 2017, pp. 225–255.

[40] K. Yang, C. Weng, X. Lan, J. Zhang, and X. Wang,
“Ferret: Fast extension for correlated ot with small com-
munication,” in Proceedings of the 2020 ACM SIGSAC
Conference on Computer and Communications Security,
2020, pp. 1607–1626.

[41] J. B. Nielsen, P. S. Nordholt, C. Orlandi, and S. S.
Burra, “A new approach to practical active-secure two-
party computation,” in Annual Cryptology Conference.
Springer, 2012, pp. 681–700.

[42] P. Doubilet, G.-C. Rota, and R. Stanley, “On the founda-
tions of combinatorial theory. vi. the idea of generating
function,” in Proceedings of the Sixth Berkeley Sympo-
sium on Mathematical Statistics and Probability, Volume
2: Probability Theory. University of california press,
1972, pp. 267–318.

[43] R. L. Graham, D. E. Knuth, O. Patashnik, and S. Liu,
“Concrete mathematics: a foundation for computer sci-
ence,” Computers in Physics, vol. 3, no. 5, pp. 106–107,
1989.

[44] V. E. Beneš, “Optimal rearrangeable multistage connect-
ing networks,” Bell system technical journal, vol. 43,
no. 4, pp. 1641–1656, 1964.

[45] D. Bogdanov, S. Laur, and R. Talviste, “A practical
analysis of oblivious sorting algorithms for secure multi-
party computation,” in Nordic Conference on Secure IT
Systems. Springer, 2014, pp. 59–74.

[46] K. Hamada, R. Kikuchi, D. Ikarashi, K. Chida, and
K. Takahashi, “Practically efficient multi-party sorting
protocols from comparison sort algorithms,” in Interna-
tional Conference on Information Security and Cryptol-
ogy. Springer, 2012, pp. 202–216.

[47] S. Laur, J. Willemson, and B. Zhang, “Round-efficient
oblivious database manipulation,” in International Con-
ference on Information Security. Springer, 2011, pp.
262–277.

[48] G. Asharov, T. H. Chan, K. Nayak, R. Pass, L. Ren,
and E. Shi, “Bucket oblivious sort: An extremely simple
oblivious sort,” in Symposium on Simplicity in Algo-
rithms. SIAM, 2020, pp. 8–14.

[49] Y. Huang, D. Evans, and J. Katz, “Private set intersection:
Are garbled circuits better than custom protocols?” in
NDSS, 2012.

[50] G. Garimella, P. Mohassel, M. Rosulek, S. Sadeghian,
and J. Singh, “Private set operations from oblivious
switching,” in IACR International Conference on Public-
Key Cryptography. Springer, 2021, pp. 591–617.

[51] P. H. Le, S. Ranellucci, and S. D. Gordon, “Two-party
private set intersection with an untrusted third party,”
in Proceedings of the 2019 ACM SIGSAC Conference
on Computer and Communications Security, 2019, pp.
2403–2420.

[52] P. Mohassel and S. Sadeghian, “How to hide circuits in
mpc an efficient framework for private function evalua-
tion,” in Annual International Conference on the Theory
and Applications of Cryptographic Techniques. Springer,
2013, pp. 557–574.

[53] P. Mohassel, S. Sadeghian, and N. P. Smart, “Actively
secure private function evaluation,” in International Con-
ference on the Theory and Application of Cryptology and
Information Security. Springer, 2014, pp. 486–505.

[54] O. Ohrimenko, M. T. Goodrich, R. Tamassia, and E. Up-
fal, “The melbourne shuffle: Improving oblivious storage
in the cloud,” in International Colloquium on Automata,
Languages, and Programming. Springer, 2014, pp. 556–
567.

[55] S. Mazloom, P. H. Le, S. Ranellucci, and S. D. Gordon,
“Secure parallel computation on national scale volumes
of data,” in 29th USENIX Security Symposium (USENIX
Security 20), 2020, pp. 2487–2504.

[56] K. Chida, K. Hamada, D. Ikarashi, R. Kikuchi,
N. Kiribuchi, and B. Pinkas, “An efficient secure three-
party sorting protocol with an honest majority,” Cryptol-
ogy ePrint Archive, 2019.

[57] P. Miao, S. Patel, M. Raykova, K. Seth, and M. Yung,
“Two-sided malicious security for private intersection-
sum with cardinality,” in Annual International Cryptology
Conference. Springer, 2020, pp. 3–33.

[58] J. Katz and Y. Lindell, Introduction to modern cryptog-
raphy. CRC press, 2020.

[59] T. Araki, A. Barak, J. Furukawa, T. Lichter, Y. Lindell,
A. Nof, K. Ohara, A. Watzman, and O. Weinstein,
“Optimized honest-majority mpc for malicious adver-
saries—breaking the 1 billion-gate per second barrier,”
in 2017 IEEE Symposium on Security and Privacy (SP).
IEEE, 2017, pp. 843–862.

15

APPENDIX

A. Concrete Use Cases Using SSS

Collaborative data analysis [8–15]. SSS protocols are
useful for reducing/eliminating leakage from access patterns.
We provide an example in Fig. 15. Suppose two computing
parties jointly share a table T with three attributes C1,
C2, C3, where C1 is a binary attribute denoting whether
a person has diabetes. In the data collection phase, though
the sensitive attribute values are hidden from the parties using
secret sharing, the computing parties know who contributes to
each record. When the parties want to execute an SQL query
SELECT (C2, C3) FROM T WHERE C1 = 1 to select
out the shared (C2, C3) values of records satisfying C1=1
for certain private data analysis. The parties cannot reveal
column C1 in plaintext because this approach reveals whether
a person has diabetes. The parties can jointly perform a row-
wise secret-shared shuffle, then reveal column C1 in clear to
make the selection. The second approach hides which two out
of four have diabetes.

C1 C2 C3

Alice J·K J·K J·K

Bob J·K J·K J·K

Cora J·K J·K J·K

Dave J·K J·K J·K

C1 C2 C3

0 J·K J·K

1 J·K J·K

1 J·K J·K

0 J·K J·K

SSS
Revel C1

Fig. 15: Record filtering using SSS. J·K denotes a shared secret.

SSS for secure sorting [10, 11, 45]. Assume two service
providers (SPs) want to run a secure sorting protocol over
their joint dataset (e.g., computing top-k elements), where the
initial inputs are shared between two SPs from many data
contributors. If using a non-oblivious sorting algorithm (e.g.,
quick sort), even if the comparison is securely computed,
the adversary can still learn sensitive information by simply
observing access patterns. A common approach is evaluating
an oblivious sorting algorithm over the shared data with an
access pattern that is independent of the secrets to be sorted.
Existing oblivious sorting protocol with practical efficiency
(e.g., bitonic sort) requires O(n log2 n) secure comparisons.
Several works [10, 11, 45] exploit shuffling to secure sorting
protocols to improve efficiency, known as the shuffle-then-
compute paradigm. The idea is that the parties perform SSS
over the input secrets to break the relation between the shuffled
secrets and the original inputs, then run a non-oblivious sort
algorithm with O(n log n) comparison (e.g., quick sort) over
the shuffled inputs. In these works, an efficient shuffle proto-
col is vital: it’s meaningless to use the shuffle-then-compute
paradigm if the overhead introduced from shuffling is larger
than the overhead reduction from using non-oblivious sorting.

Private attribution reporting. Google released a private
intersection-sum (PSI-SUM) protocol with applications to at-
tributing aggregate ad conversions (https://developer.chrome.
com/en/docs/privacy-sandbox/attribution-reporting). In this ap-
plication, one party holds a set of identifiers corresponding
to users who have seen the advertising campaign, and the
identifiers and integer values held by the other party correspond
to the users who bought the related item and how much they
paid, respectively. The goal is to compute the sum of integer
values associated with all matched identifiers and the number

of matched identities, but nothing more. A maliciously secure
PSI-SUM protocol [57] was proposed to compute the above
task using shuffling via homomorphic encryption and zero-
knowledge proofs, which is computationally expensive but
communicationally efficient. We can compute the same func-
tionality in the secret-shared fashion using our SSS protocol
plus two-party secure computation.

B. Combinatorial Analysis

We define our cut-and-choose leakage reduction game and
propose an efficient method to compute the tightest B in the
batch correlation generation setting.

We define a “ball-and-bin” game to capture selective failure
attacks from a corrupted adversary in the offline phases. The
game G(N,B, n, k) is defined as follows:

• Setup: The game samples NB random permutations, where
B ≥ ⌈ λ

log2 n⌉.
• Offline-phase attack: For the i-th permutation πi, the adver-

sary can guess ci bits of information about πi. The adversary
can guess k bits of information combined from all NB
permutations. If any guess in this phase fails, the game
aborts and terminates. If all guesses are correct, we call
these attacked permutations as leaky permutations and non-
attacked ones non-leaky permutations.
• Cut-and-choose: the game randomly shuffles all NB per-

mutations and divides NB permutations into N buckets
sequentically, each contains B permutations.
• Output: the game outputs 1 if 1) the game does not abort and

2) every bucket contains ≥ ⌈ λ
log2 n⌉ non-leaky permutations;

the first condition corresponds to the adversary succeeds in
the offline attack and the second condition is required to
defeat against online-phase attacks.

We need to ensure that all buckets contain sufficient non-leaky
permutations, under the condition that there exists k ∈ [λ]
leaky permutations in the cut-and-choose game. Specifically,
we want

Pr[G(N,B, n, k) = 1] ≥ 1− 2−λ,

For all k ∈ [λ].

We use generating functions [42, 43] to compute the exact
combinations that each bucket contains less than M = B −
⌈ λ
log2 n⌉ leaky permutations. Let us first define the generating

function for one single bucket. For a bucket with a capacity of
B, the bucket may contain i ∈ [0, B] leaky permutations, thus
there are

(
B
i

)
ways to have i (i ∈ [0, B]) leaky permutations

in the bucket. The generating function for a single bucket
containing at most M leaky permutations can be represented as

A(x) = a0 + a1x+ a2x
2 + · · ·+ aMxM , (3)

where ai =
(
B
i

)
= B!

i!(B−i)! . Since there are N buckets in the
game, the generating function to count all layouts following
the condition is

C(x) = A(x)N = c0 + c1x+ c2x
2 + · · ·+ cNMxNM .

Following the definition of generating functions, the coefficient
ck corresponds to all possible placements of k leaky permu-
tations over N buckets under the condition that each bucket

16

https://developer.chrome.com/en/docs/privacy-sandbox/attribution-reporting
https://developer.chrome.com/en/docs/privacy-sandbox/attribution-reporting

Cut-and-choose batch size N
24 25 26 27 28 29 210 211 212 213 214 215 216 217 218 219 220

D
im

en
si

on
n

24 27 24 21 20 19 18 17 16 15 15 15 14 14 14 14 13 13
25 25 22 19 18 16 15 15 13 13 13 12 12 12 12 12 11 11
26 23 20 18 17 15 14 14 13 12 12 12 11 11 11 11 10 10
27 22 19 17 16 14 13 13 12 11 11 11 10 10 10 10 9 9
28 21 18 16 14 13 12 12 11 10 10 10 9 9 9 9 8 8
29 21 18 16 14 13 12 12 11 10 10 10 9 9 9 9 8 8
210 20 17 15 13 12 11 10 10 9 9 9 8 8 8 8 7 7

TABLE V: Bucket size for statistical security λ = 40. Given batch size N ∈ {24, 25, · · · , 219, 220} and tuple dimension
T ∈ {24, · · · , 29, 210}, the bucket size we give in the table can ensure that each of N buckets contains at least ⌈λ/ log2(n)⌉
non-leaky tuples with probability 1− 2λ.

contains less or equal to M leaky permutations after the cut-
and-choose game.

If we can efficiently compute ck, then we have
Pr[Game(N,B, n, k) = 1] = ck/

(
NB
k

)
. To ensure

Pr[Game(N,B, n, k) = 1] ≥ 1− 2−λ, we only need

ck/

(
NB

k

)
≥ 1− 2−λ. (4)

Our goal is: given λ, N , and n, we need to find the minimal
B such that the inequation (4) always holds for all k ∈ [λ].

Fast parameter computation. Using generating functions
for combinatorial analysis is a generic method, the chal-
lenge is handling combination explosion when computing
C(x). We propose a fast polynomial exponentiation algorithm
PolyExp in Fig. 16. We first leverage “square-and-multiply”
trick [58] (Line. 3-6, Algorithm 16) to reduce polynomial
multiplication complexity from O(N) to O(logN). However,
the computation overhead is still high as the polynomial
coefficients are large during computation and the polynomial
degree doubles after each polynomial multiplication.

Algorithm PolyExp(A(x), N)

1: C(x)← 1, T (x)← A(x).
2: while N > 0 do
3: if N is odd then
4: C(x)← C(x) · T (x), N ← N − 1.
5: end if
6: T (x)← T (x)2, N ← N/2.
7: Get {ti}i∈[0,λ] of T (x). Set T (x)←

∑λ
i=0 tix

i.
8: Get {ci}i∈[0,λ] of C(x). Set C(x)←

∑λ
i=0 cix

i.
9: end while

10: return C(x).

Fig. 16: Fast polynomial exponentiation algorithm

Since we care about the coefficient ck for k ∈ [B, λ], only
the coefficients of lower degrees k ∈ [B, λ] contribute to the
computation. Hence, we can drop all high-degree coefficients
during computation (Line. 7-8, Algorithm 16). This allows two
low-degree polynomials throughout the computation, saving
huge computation overhead. Since B ∈ [⌈ λ

log2 n⌉, λ+⌈
λ

log2 n⌉],
we use binary search to find the minimal B that just satisfies
inequation (4). Table V shows the computation result for
different N ’s under statistical security parameter λ = 40.

Comparison with existing analysis methods. We stress that
our cut-and-choose analysis method is different from the
existing ones used in [39, 59]; though we get inspirations from
this method. The method from [39, 59] is for checking the
correctness of multiplication triples. Their main idea is to first
randomly pick a few tuples and open them completely and the
remaining ones are bucketed, and then the parties check the
correctness of triples in each bucket using a triple-based re-
execution method. Differently, our goal is for leakage reduction
rather than for correctness check (all correlations are checked
before bucketing). This results in different winning conditions
for the adversaries in the two cut-and-choose games. In addi-
tion, our method uses generating functions (not concentration
inequalities) to compute B, which can compute the tightest B.

C. k-party SSS Protocol

Functionality Fk -oss

Parameters: n ∈ N; a dictionary Val storing all authenti-
cated values; k parties set P = {Pi}i∈[k].
Inputs: A party R ∈ P provides a permutation π ∈ Sn;
the identifiers {idi}i∈[n] for the values being shuffled, and
the identifiers {id′i}i∈[n] for the shuffled values to be stored
with.
Functionality: receiving (oss, π, {idi}i∈[n], {id′i}i∈[n]) from
R and (Shuffle, {idi}i∈[n], {id′i}i∈[n]) from P \ {R}:
1. If π /∈ Sn, abort.
2. Define a vector x⃗ such that x⃗i = Val[idi] for i ∈ [n].
3. Compute y⃗ = π(x⃗) and store Val[id′i]← y⃗i for i ∈ [n].

Fig. 17: Functionality for k-party OSS

Ideal k-party OSS functionality. We define a k-party one-
side secret-shared shuffle functionality Fk -oss in Fig. 17. One
single party R provides a permutation π which is used to
shuffle the authenticated secret-shared vector x⃗ stored by the
functionality. Fk -oss checks if π is well-formed, and performs
shuffle over x⃗ to obtain a new shuffled vector y⃗ = π(x⃗).

k-party OSS protocol. We provide an k-party OSS protocol
Π

[Pi]
k -oss in Fig. 18 to compute Fk -oss. Π

[Pi]
k -oss is an extension of

the two-party OSS protocol Π[R]
oss. In particular, it runs a pair-

wise CGP shuffle between any two parties. Now we show the
offline phase and online phase, respectively.

Offline phase. In the offline phase, Pi run the two-party

17

cut-and-choose tuple generation protocols with each Pj for
j ∈ [k] \ {i}. To ensure correctness, Pi has to use the same
NB permutations and the same permutation ρ with each of
Pj for j ∈ [k]\{i}. The formal description can be found from
the offline phase of Π[Pi]

k -oss in Fig. 18.

Online phase. The online phase of Πk -oss is a straightfor-
ward extension of the two-party OSS protocol Π[R]

oss. The goal
of the online phase is to (secret-shared) shuffle ⟨x⃗⟩ using B

permutations {π(i)
t }t∈[B] known by the party Pi.

Protocol Π[Pi]
oss

Parameters: n ∈ N; N denotes cut-and-choose bucket
number and B denotes cut-and-choose bucket size. k parties
P = {Pj}j∈[k]; a party Pi ∈ P with id i ∈ [k].
[Offline]: On inputting sharings N and B, do the following:
1. For any j ∈ [k] \ {i}, the parties Pi and Pj invoke
FGenM to generated NB OPM instances, where Pi plays
the role of OPM receiver and provides NB permutations
{π(i)

t }t∈[NB]. We denote the t-th shuffle tuple between Pi

and Pj as ([π
(i)
t])(j) = ((π

(i)
t ,∆

(i,j)
t), (⃗a

(i,j)
t , b⃗

(i,j)
t)) ∈

(Sn × (F2)n)× ((F2)n × (F2)n) where t ∈ [NB].
2. Pi samples a random seed s

$←− {0, 1}κ and sends s to
P \ {Pi}. All the parties use s to determine a random
permutation ρ ∈ SNB .

3. For j ∈ [k] \ {i}, Pi and Pj use ρ to shuffle the order
of NB OPMs and divide the permuted OPM instances
into N bucket, each containing B OPMs. The parties can
locally compress OPMs to get NB shuffle tuples.

[Online]: On inputting sharings ⟨x⃗⟩, do the following:
1. For j ∈ [k] \ {i}, fetch the next unused bucket of B

tuples between Pi and Pj , in which the t-th shuffle is
denoted as ([π

(i)
t])(j) = ((π

(i)
t ,∆

(i,j)
t), (⃗a

(i,j)
t , b⃗

(i,j)
t)) ∈

(Sn × (F2)n)× ((F2)n × (F2)n).
2. Let ⟨x⃗(0)⟩ ← ⟨x⃗⟩.
3. For t ∈ [B]:

a) For j ∈ [k] \ {i}, Pj sends δ⃗
(i,j)
t = ⟨x⃗(t)⟩j − a⃗

(i,j)
t to

Pi, and Pj sets ⟨x⃗(t+1)⟩j ← b⃗
(i,j)
t .

b) Pi receives δ⃗
(i,j)
t from Pj for j ∈ [k] \ {i}. Pi com-

putes ⟨x⃗(t+1)⟩i ← π
(i)
t (⟨x⃗(t)⟩i +

∑
j∈[k]\{i} δ⃗

(i,j)
t) +∑

j∈[k]\{i} ∆⃗
(i,j)
t .

4. Run b ← ΠMACCheck over (⟨x⃗(1)⟩, ⟨x⃗(2)⟩, · · · , ⟨x⃗(B)⟩). If
b = False, abort. Otherwise, output ⟨x⃗(B)⟩.

Fig. 18: Maliciously secure k-party OSS protocol.

The parties run B iteration as required for leakage reduc-
tion. In the t-th iteration, Pi run k − 1 pair-wise CGP shuffle
with each Pj for j ∈ [k] \ {i} (step 3, Πk -oss.online). This is
done by using the shuffle tuples that Pi has generated with
each Pj for j ∈ [k] \ {i}. In particular, for j ∈ [k] \ {i}, each
Pj sends the CGP shuffle message δ⃗

(i,j)
t = ⟨x⃗(t)⟩j + a⃗

(i,j)
t

to Pi (step 3a, Πk -oss.online). After receiving all δ⃗
(i,j)
t for

j ∈ [k] \ {i}, Pi can compute ⟨x⃗(t+1)⟩i ← π
(i)
t (⟨x⃗(t)⟩i +∑

j∈[k]\{i} δ⃗
(i,j)
t) +

∑
j∈[k]\{i} ∆⃗

(i,j)
t (step 3b, Πk -oss.Online).

If all parties behave honestly, one can verify correctness:

⟨x⃗(t+1)⟩i +
∑

j∈[k]\{i}
⟨x⃗(t+1)⟩j

=π
(i)
t (⟨x⃗(t)⟩i +

∑
j∈[k]\{i}

δ⃗
(i,j)
t) +

∑
j∈[k]\{i}

∆⃗
(i,j)
t +

∑
j∈[k]\{i}

b⃗
(i,j)
t

=π
(i)
t (⟨x⃗(t)⟩i) + π

(i)
t (

∑
j∈[k]\{i}

δ⃗
(i,j)
t) +

∑
j∈[k]\{i}

∆⃗
(i,j)
t +

∑
j∈[k]\{i}

b⃗
(i,j)
t

=π
(i)
t (⟨x⃗(t)⟩i) + π

(i)
t (

∑
j∈[k]\{i}

⟨x⃗(t)⟩j)− π
(i)
t (

∑
j∈[k]\{i}

a⃗
(i,j)
t)

+
∑

j∈[k]\{i}
(π

(i)
t (a⃗

(i,j)
t)− b⃗

(i,j)
t) +

∑
j∈[k]\{i}

b⃗
(i,j)
t

=π
(i)
t (⟨x⃗(t)⟩i) + π

(i)
t (

∑
j∈[k]\{i}

⟨x⃗(t)⟩j)

=π
(i)
t (x⃗(t)).

This means ⟨x⃗(t+1)⟩ is a correct shuffle of ⟨x⃗(t)⟩ using
permutation π

(i)
t . By a simple induction arguement, we have

x⃗(B) = π(x⃗) where π = πB−1 ◦ · · · ◦ π1 ◦ π0.

At the end of the online protocol, the parties run the
MAC check protocol ΠMACCheck for all intermediate sharings
{⟨x⃗(t)⟩}t∈[B] and abort if the check fails.

k-party SSS protocol. With the k-party OSS protocol Πk -oss,
Fig. 19 shows how to construct a k-party SSS protocol Πk -sss.

Protocol Πk -sss

Parameters: N denotes cut-and-choose bucket number and
B denotes cut-and-choose bucket size.
[Offline]: On inputting N and B, do the following:
1. For i ∈ [k], the parties run Π

[Pi]
oss .Offline(N,B), where Pi

provides NB permutations.

[Online]: On inputting sharings ⟨v⃗⟩, do the following:
1. Let ⟨v⃗(0)⟩ ← ⟨v⃗⟩.
2. For i ∈ [k], run ⟨v⃗(i+1)⟩ ← Π

[Pi]
oss .Online(⟨v⃗(i)⟩).

3. Ourput ⟨v⃗(k)⟩.

Fig. 19: k-party maliciously secure SSS protocol.

In the offline phase, each party Pi for i ∈ [k] run the OSS
offline tuple generation protocol with the other k−1 parties. In
doing this, each pair of two parties (Pi,Pj)i∈[k],j∈[k]\{i} will
share NB shuffle tuples such that Pi knows the permutations.

In the online phase, each party Pi takes turns running
⟨v⃗(i+1)⟩ ← Π

[Pi]
oss .Online(⟨v⃗(i)⟩) with the other k − 1 parties,

which shuffles ⟨v⃗(i)⟩ using B permutations choosen by Pi. The
protocol outputs ⟨v⃗(k)⟩ = π(v⃗) where π is a composition of
kB permutations in which each party contributes B of them.
In this way, no subset of k parties learn information about π.

D. More Details about GBN Decomposition

In this section, we detail how the GBN decomposition
works and how the decomposition trick is combined with our
cut-and-choose batch tuple generation protocol.

18

Benes Network [44]. The Benes network (BN) for per-
muting n elements has 2 log n − 1 layers, each layer con-
taining n/2 2-element permutations. Suppose the inputs are
indexed with 0, 1, ..., n − 1, and each index σ is parsed as
σ1||σ2|| · · · ||σh where n = 2h. The j-th and 2 log n − j-th
layer of the Benes network contains 2-element permutations,
each acting on two indexes σ1|| · · · ||σj−1||0||σj+1|| · · · ||σh

and σ1|| · · · ||σj−1||1||σj+1|| · · · ||σh, for all σ1, · · · , σj−1,
σj+1, · · · , σh ∈ {0, 1}h−1.

0

1

2

3

4

5

6

7

Fig. 20: An example Benes network structure for S8.

Fig. 20 shows a toy example of the Benes network,
containing 5 layers from the left to the right. We use edges
between nodes to denote the possible swap within each layer.
In particular, there are 4 pairs of 2-element permutations for
each layer, and we mark each of them with different colors.
As we can see, each 2-element permutation forms a butterfly
structure, which can be either an identity permutation or a
swap when configuring the network concretely.

Generilized Benes Network [1]. BN decomposes a permuta-
tion using 2-element permutations. Chase et al. [1] proposed
a generalized decomposition trick to decompose permutations
to T -element permutations where T = 2t for t ≥ 1. GBN
decomposes a permutation π ∈ Sn as π1 ◦ · · · ◦ πd where
d = ⌈ logn

t ⌉. To achieve this, we set π1 to consist of the
first t layers (1, · · · , t) of the Benes network, π2 to consist
of the next t layers (t+1, · · · , 2t), and so on, and the middle
permutation π⌊ d

2 ⌋+1 consists of 2t − 1 layers. Each layer of
GBN consists of n/T T -element permutations. GBN sets each
πi for i = 1, · · · , ⌈d2⌉, to consist of t consecutive layers
number i · t− (t− 1), · · · , i · t− 1, i · t, and π for i = ⌈d2⌉+
2, · · · , d are defined symmetricly. For the i-th layer, πi can be
further decomposed as n/T T -element permutations, and each
permutation is defined over σ1|| · · · ||σ(i−1)·t||x||σi·t, · · · , σh

for x ∈ {0, 1}t and fixed σ1, · · · , σ(i−1)·t, σ(i+1)·t, · · · , σh.
For example, when T = 4, one can parse the 5-layer BN in
Fig. 20 as a 3-layer GBN, where the 1-th and 3-th layers of
the GBN correspond to the 1-th and 5-th layers of the BN,
respectively, and the 2-th layer of GBN corresponds to the
combined (2,3,4)-th layers of the BN. Each layer of the GBN
consists of two 4-element permutations. In particular, the 4-
element permutations of the first layer of the GBN are defined
over indexes (0, 2, 4, 6) and (1, 3, 5, 7), respectively.

GBN with Cut-and-Choose Batch Generation. One should
be careful when using GBN-based optimization in our ma-
liciously secure SSS protocol. Recall that we use cut-and-

choose-based shuffle tuple generation. To enable GBN-based
optimization, one may simply generate NB shuffle tuples
for NB random T -element permutations using our cut-and-
choose-based tuple generation, and then compose sufficient
shuffle tuples using the GBN trick in the online phase to
perform shuffle over n secret-shared values. We call the above
method the bottom-up approach. However, it’s known that this
bottom-up approach cannot generate a uniformly random n-
element permutation [49].

Instead, one should always use a top-down manner follow-
ing the GBN decomposition. In particular, the sender should
sample random n-element permutations first, and then obtain
many smaller T -element permutations by decomposing the
bigger permutations following the GBN structure. Now, for
each obtained T -element permutation π, the sender further
samples B T -element random permutations π0, π1, · · · , πB−1

under the constraint π = πB−1 ◦ · · · ◦ π2 ◦ π1. After that, all
T -element permutations will be fed into the cut-and-choose
game. However, recall that these permutations will be shuffled
by a random permutation ρ chosen by the sender in our
cut-and-choose game, the sender needs to ensure that these
T -element permutations still form the pre-chosen n-element
permutations after the shuffling. Our method is that the sender
uses the reverse permutation ρ−1 to pre-organize all T -element
permutation before the cut-and-choose game so that they can
still form the desired random n-element permutations when
they are combined together following the GBN structure, after
the cut-and-choose tuple generation phase.

E. Attacks to Laud’s SSS protocol [3]

Laud [3] proposed an oblivious permutation protocol by
combining shuffle tuples with authenticated secret sharing. The
protocol exploits the idea from the CGP protocol to perform
shuffling. We review the protocol and show our attacks.

Protocol description. Laud’s SSS protocol [3] assumes that an
ideal functionality Fprep.shuffle can generate the desired CGP
shuffle tuples. Fprep.shuffle receives a permutation πi from Pi,
generates a shuffle tuple, and sends z⃗(i,j) to Pi and x⃗(i,j), y⃗(i,j)
to Pj such that z⃗(i,j) = πi(x⃗

(i,j))− y⃗(i,j).

In the online phase, the parties essentially permute the
secrets and the corresponding MAC values using two inde-
pendent instances of shuffle tuples with the same underlying
permutation; one is applied over the shared secrets, and another
is applied over the MAC values of the secrets. The parties
may not follow the protocol honestly, e.g., adding errors to
protocol messages. In [3], the authors use a polynomial-based
check technique to enforce honest behaviors. In particular, to
check whether v⃗(k) = π(v⃗(0)), the parties use a polynomial
f(x⃗, r) =

∏
i∈[n](x⃗i − r), where r

$←− F. Therefore, if
f(v⃗(0), r) = f(v⃗(k), r), we have v⃗(k) = π(v⃗(0)) except
with probability n/|F|, by the Schwartz–Zippel lemma. In
the protocol, the parties use ⟨r′⟩ to hide the revealed value,
ensuring no additional information is leaked from the check.

Attacks. The construction of [3] relies on a correlation gener-
ation protocol to securely realize Fprep.shuffle, but [3] didn’t
give a concrete protocol for Fprep.shuffle. As we showed in
§III-B, even if the correlations are correctly and securely
generated, simply combining shuffle tuples with authenticated

19

Protocol ΠObliviousShuffle

[Offline]: Each pair of two parties (Pi,Pj) generate sufficient
number of shuffle tuples:
1. Each party Pi selects a random permutation of length n:
2. Each pair of parties Pi and Pj , runs two instances of
Fprep.shuffle, with Pi providing the input πi. Let the result
of t-th instance be z⃗

(i,j)
t for Pi and x⃗

(i,j)
t , y⃗(i,j)

t for Pj .

[Online] On inputting a secret-shared vector ⟨v⃗(0)⟩ of length
n:
1. For i ∈ [k], do the following:

a) For j ̸= i, do the following:
i) Pj sends w⃗

(i,j)
1 ← Jv⃗(i−1)Kj − x⃗

(i,j)
1 and w⃗

(i,j)
2 ←

Jγ(v⃗(i−1))Kj − x⃗
(i,j)
2

ii) Pi computes r⃗ij ← πi(w⃗
(i,j)
1) + z⃗

(i,j)
1 and s⃗ij ←

πi(w⃗
(i,j)
2) + z⃗

(i,j)
2 .

iii) Pj defines shares of next round: Jv⃗(i)Kj = y⃗
(i,j)
1 and

Jγ(v⃗(i))Kj = y⃗
(i,j)
2 .

b) Pi defines r⃗ii ← πi(Jv⃗(i−1)Ki) and s⃗ii ←
πi(Jγ(v⃗(i))Ki).

c) Pi defines shares for next round: Jv⃗(i)Ki =
∑

j r⃗
(i)
ij and

Jγ(v⃗(i))Kj =
∑

j s⃗
(i)
ij .

2. The parties pick fresh random ⟨r⟩ and ⟨r′⟩ ∈ F and reveal
r.

3. The parties check whether ⟨r′⟩ · (
∏n

i=1(r − ⟨v⃗
(k)
i ⟩) −∏n

i=1(r − ⟨v⃗
(0)
i ⟩)) = 0 using standard SPDZ revealing

protocol.
4. If not abort, output ⟨v⃗(k)⟩

Fig. 21: k-party secret-shared shuffle protocol [3]

secret sharing does not lead to a maliciously secure shuffle
protocol. Following the previous discussion, a malicious Pj

may perform an online selective failure attack to learn sensitive
information about the secret permutation provided by Pi. In
particular, Pj may send w⃗

(i,j)
2 = Jγ(v⃗(i−1))Kj − x⃗

(i,j)
2 + e⃗,

where e⃗ = (0, · · · , 0, e, · · · , 0) is a weight-1 error vector with
non-zero element at position q. Therefore, Pj can guess πi(e⃗)

and set Jv⃗(i)Kj ← y⃗
(i,j)
1 − πi(e⃗). For weight-1 vector e⃗, Pj

only needs to guess p such that q = πi(p) to guess πi(e⃗),
with a success probability of 1/n. If the adversary guesses
q = πi(p) correctly, this attack won’t be detected by the
polynomial-based check in step 3 of ΠObliviousShuffle and the
adversary learns information about πi for free. This selective
failure attack proves that [3] cannot achieve full privacy.

F. Attacks to the Eskandarian-Boneh SSS protocol [2]

Eskandarian and Boneh [2] recently proposed an anony-
mous communication protocol with malicious security. The
core of this protocol is a maliciously secure shuffle protocol
adapted from [1]. In order to gain more efficiency, its shuffle
correlation is different from the one in the original CGP
protocol. Nevertheless, we show our attacks discussed in §III
still work to [2] by slight modifications.

Three-party shuffle protocol and our attacks. The three-
party shuffle protocol relies on a new two-party shuffle cor-
relation such that P1 holds random vectors a⃗′2, b⃗2 ∈ Fn and

a random permutation π1 ∈ Sn. P2 holds a random vector
a⃗1 ∈ Fn, a random permutation π2 ∈ Sn, and a vector
∆⃗2 ∈ Fn such that ∆⃗2 = π2(π1(⃗a1) + a⃗′2)− b⃗2. [2] relies on
a third party P3 to compute ∆⃗2. In particular, P1 chooses a
random seed that extends to get π1 ∈ Sn and a⃗′2, b⃗2 ∈ Fn, and
sends the seed to P3, who can use the seed to recover the same
values. Similarly, P2 samples a seed to generate π2, a⃗1 and
gives the seed to P3. P3 computes ∆⃗2 ← π2(π1(⃗a1)+ a⃗′2)− b⃗2
and sends it to P2. P1 and P2 also agree on a secret seed and
generate a permutation π12 ∈ Sn, which is used to hide the
underlying permutation from P3.

Using the above shuffle correlation, P1 and P2 can perform
shuffle over a secret vector Jx⃗K = Jx⃗K1+ Jx⃗K2 shared between
them (P3 does not hold shares). In particular, the shuffle
protocol runs as follows:

• P2 sends z⃗2 ← Jx⃗K2 − a⃗1 to P1.
• P1 sends z⃗1 ← π1(z⃗2+Jx⃗K1)−a⃗′2 to P2, and sets Js⃗K1 ← b⃗2.
• P2 sets Js⃗K2 ← π2(z⃗1) + ∆⃗2.

Clearly, Js⃗K1+Js⃗K2 = b⃗2+π2(z⃗1)+∆⃗2 = b⃗2+π2(π1(Jx⃗K2−
a⃗1+Jx⃗K1)− a⃗′2)+π2(π1(⃗a1)+ a⃗′2)− b⃗2 = π2◦π1(x⃗). Since P3

knows π1 and π2, P1 and P2 additionally use π12 to shuffle
over each party’s share using π12. In this manner, neither party
knows the underlying permutation. [2] extended the above idea
to shuffle authenticated secret-shared vectors, where MACs are
used to detect possible errors. To check whether any party
deviates from the protocol, P1 and P2 run the MAC check
protocol at the end of the protocol and abort if the check fails.

We show that a similar online-phase attack from §III-B
can be adapted to attack the three-party shuffle protocol over
authenticated secret sharings. Suppose P2 is corrupted. Now
P2 can instead send z⃗2 ← Jx⃗K2 − a⃗1 + e⃗ where e⃗ =
(0, · · · , 0, e, · · · , 0) is a weight-1 error vector with non-zero
element at position q. After receiving z⃗1 from the honest P1,
P2 can guess p with π1(p) = q and subtract e from z⃗1[p] before
setting Js⃗K2. If P2 guessed π1(p) = q correctly, P2 would just
remove the introduced error, and the parties would still share
a well-formed permutated authenticated vector; otherwise, the
protocol would abort from MAC check because the integrity of
the permutated vector is undermined by the introduced errors.
In the above attack, the probability for P2 to guess π1(p)
correctly is 1/n. Also note that the composed permutation
π = π12 ◦π2 ◦π1 and P2 knows π2 and π12, which means P2

can learn π(p) in a successful attack without been caught.

k-party shuffle protocol and our attacks. In a k-party
shuffle correlation, each Pi for i ∈ [1, k] holds a random
permutation πi ∈ Sn and random vectors a⃗, b⃗, a⃗′ ∈ Fn,
and Pk additionally holds a vector ∆⃗k ∈ Fn such that
∆⃗k = πk(· · ·π2(π1(

∑k
i=2 a⃗i)+a⃗′1)+a⃗′2 · · ·+a⃗′k−1)−

∑k−1
i=1 b⃗i.

The Eskandarian-Boneh SSS protocol [2] proposed a can-
didate protocol for generating k-party shuffle correlation by
adapting the CGP correlation generation protocol [1]. The
parties firstly run the CGP shuffle tuple generation protocol
to generate tuple (⃗ai,j , b⃗i,j , ∆⃗i,j) for all i, j ∈ [k], i ̸= j such
that ∆⃗i,j = πi(⃗ai,j) − b⃗i,j , with Pi holding (πi, ∆⃗i,j) and
Pj holding (⃗ai,j , b⃗i,j). The only difference is that [2] replaces
semi-honest OTs in the CGP protocol with maliciously secure
OTs.

20

Using shuffle tuples shared between each pair of two
parties, the parties can jointly generate an k-party shuffle
correlation. In particular, the parties have to produce vectors
a⃗i, b⃗i, a⃗

′
i for each Pi and additionally ∆⃗k for Pk. The k-

party shuffle correlation from the CGP shuffle correlation is
computed as follows:

• a⃗i ← a⃗1,i, b⃗i ← b⃗1,i
• a⃗′i ←

∑
j ̸=i b⃗i,j + ∆⃗i,j + a⃗i+1,j

• ∆⃗k ←
∑

j∈[1,k−1] ∆⃗k,j

Note that here computing a⃗i, b⃗i and ∆⃗k only requires local
computation, but computing a⃗′i is done by adding secrets held
by different parties.

The parties can use such k-party shuffle correlation to
shuffle a secret-shared vector Jx⃗K and output Js⃗K, where
s⃗ = π(x⃗) and π = πk ◦ πk−1 · · · ◦ π1. The protocol uses
k-party shuffle correlation to perform shuffle as follows:

• For each party Pi, where i ̸= 1, computes z⃗i ← Jx⃗Ki − a⃗i
and sends z⃗i to P1.

• P1 computes z⃗′1 ← π1(
∑n

i=2 z⃗i) − a⃗′1 and sends z⃗′1 to P2.
P1 sets its output to Js⃗K1 ← b⃗1.

• For i ∈ [2, k − 1], Pi computes z⃗′i ← πi(z⃗
′
i−1) − a⃗′i and

sends it to Pi+1. Pi sets its output to Js⃗Ki ← b⃗i.
• Pk outputs Js⃗Kk ← πk(z⃗

′
k−1) + ∆⃗k.

To achieve malicious security, [2] uses the above protocol
to simultaneously shuffle authenticated secret-shared vector
⟨s⃗⟩ = (Js⃗K, Jγ(s⃗)K). At the end of the protocol, the parties run
MAC check over the shuffled authenticated vector ⟨s⃗⟩ to check
integrity. As we showed in §III-B, a post-execution check alone
cannot ensure full privacy. Such k-party shuffle protocol is still
leaky due to the online-phase selective failure attack. Besides,
[2] does not check the correctness of correlations used for
shuffling, thus our proposed malicious attacks to the offline
phase (refer to §III-C) still work over [2], which break privacy.
In particular, we have the following offline-phase and online-
phase attacks to the k-party shuffle protocol [2], by slightly
modifying our attacks from §III-B and §III-C.

Offline-phase attacks. [2] does not check the correctness
of correlations in the offline phase, hence we can modify our
offline attacks from §III-C to attack [2].

First, using maliciously secure OT for the CGP correla-
tion generation cannot guarantee full privacy because such
enhanced protocol still suffers from a selective failure attack
from the OT sender via manipulating OT messages (i.e.,
by providing an inconsistent GGM tree), which can leak
information about honest parties’ permutation in a successful
attack (refer to OPV attack in §III-C). In particular, suppose
the adversary corrupts k − 1 parties and we denote the non-
corrupted party as Ph for h ∈ [1, k]. The adversary can provide
non-well-formed GGM trees when running a two-party CGP
shuffle correlation generation protocol with Ph. If the attack
was successful, the parties would still share shuffle tuples
of the correct form. We note that [2] does not check the
correctness of shuffle tuples in the offline phase, thus [2] does
not reveal the information in the offline phase. Nevertheless,
the adversary can still learn whether its offline-phase attack is
successful or not from the online-phase MAC check result. If

the adversary guessed correctly in the selective failure attack,
it could pass the MAC check and learn sensitive information
about the secret permutation πh held by the honest party Ph.

In addition, [2] does not check whether an OPM receiver
provides a valid permutation in the OPM generation protocol.
Therefore, our proposed OPM attack still applies to [2], which
breaks privacy (refer to §III-C). In particular, suppose the
adversary corrupts k − 1 parties and we denote the non-
corrupted party as Ph for h ∈ [1, k]. The adversary, when
playing the role of an OPM receiver with Ph, can run the
OPM attack from §III-C with the honest party Ph, which can
learn n − 1 secret shares and mac shares of Ph. Since the
adversary corrupted the other k − 1 parties, the parties can
now recover n− 1 secrets and their MACs.

Online-phase attacks. The adversary can perform selective
failure attacks in the online shuffle phase. Again, assume the
adversary corrupts k− 1 parties and denote the non-corrupted
party as Ph for h ∈ [1, k]. The adversary can attack as follows:

• Case 1: h = 1. In this case, the adversary, on behalf of
P2, can instead send z⃗2 ← Jx⃗Ki − a⃗i + e⃗ to P1, where
e⃗ = (0, · · · , 0, e, · · · , 0) is a weight-1 error vector with
non-zero element at position q. After receiving z⃗′1 from P1,
the adversary will subtract e from z⃗′1[p] before computing
z⃗′2. In this way, the adversary guesses q = π1(p). Now if
the adversary guessed correctly, the protocol would proceed
normally because the attacker successfully removed the
error; otherwise, the error would still remain in the shuffled
vector, and the protocol would abort from the MAC check.
• Case 2: h ∈ [2, k − 1]. In this case, the adversary can add

a weight-1 error vector into the protocol message z⃗′h−1 and
remove the (permuted) error vector from z⃗′h+1. Specifically,
the adversary, on behalf of Ph−1, can corrupt z⃗′h−1 by
updating z⃗′h−1 = z⃗′h−1 + e⃗ where e⃗ = (0, · · · , 0, e, · · · , 0)
is a weight-1 error vector with non-zero element at position
q. After receiving z⃗′h from Ph on behalf of Ph+1, the
adversary, before computing z⃗′h+1, can remove e from z⃗′h[p]
for p ∈ [m]. In this way, the adversary guesses q = πh(p).
• Case 3: h = k. The adversary can add an error into the

protocol message z⃗′k−1 and remove the (permuted) error
from b⃗k−1. In particular, the adversary, on behalf of Pk−1,
can compute z⃗′k−1 normally but add an error into z⃗′k−1 by
updating z⃗′k−1 ← z⃗′k−1 + e⃗ where e⃗ = (0, · · · , 0, e, · · · , 0)
is a weight-1 error vector with non-zero element at position
q. Then Ph computes Js⃗Kk−1 ← b⃗k−1 normally but update
Js⃗Kh[q] ← Js⃗Kh[q] − e. In this way, the adversary guesses
q = πh(p).

In the above attack, the adversary surrounds the honest par-
ticipant Ph. When playing the predecessor of Ph, A corrupts
one of Ph’s inputs by adding error e. Then, as Ph’s post-
processor, A corrupts the message from Ph by subtracting e
before processing. For either case in the above, the adversary
can learn sensitive information about the secret permutation
held by the honest party Ph in successful attacks.

Summary. Prior offline and online attacks prove that [2] is not
maliciously secure both in correlation generation and shuffle
phases. [2] cannot preserve full privacy due to offline and
online selective failure attacks from a malicious sender(s) and
the OPM attack from a malicious receiver(s).

21

G. Proof of Theorem 1

Let A be any PPT adversary who is allowed to corrupt
either the sender or the receiver. We construct a PPT simulator
S that can simulate the adversary’s view by accessing the
functionality FOT. In the cases where S aborts or terminates
the simulation, S outputs whatever A outputs.

Corrupted receiver. The simulator S emulates FOT and inter-
acts with the adversary A as follows:

• S emulates FOT and receives αi from A for i ∈ [1, h].
S computes α from {αi}i∈[1,h] and sends α to FGenV. S
receives K∗ = {K(i)

1−αi
}i∈[1,h] ∪ {K

(h+1)
1 } from FGenV.

• For i ∈ [1, h], S defines siαa···αi−1αi
= K

(i)
1−αi

and
sh+1
α||1 = K

(h+1)
1 . S sets K1

α1
= s1α1

. Then, for i ∈ [2, h+1],
S computes (si2j , s

i
2j+1) ← G(si−1

j), for j ∈ [0, 2i−1] \
{α1 · · ·αi−1}.

• For i ∈ [1, h + 1], S computes Ki
αi
←

⊕
j∈[0,2i−1] s

i
2j+αi

where αh+1 = 0. S sends {Ki
αi
}i∈[1,h] (as the messages

from FOT) and Kh+1
1 to A.

• Set γj = sh+1
2j+1 for j ∈ [N], and compute τ =

h(γ0, γ1, · · · , γn−1). S sends τ to A.
• S outputs whatever A outputs.

Below we show the simulated execution is indistinguish-
able from the real-world execution. First note that the simulator
S receives K∗ corresponding to OPV key K held by the honest
S, and S computes {Ki

αi
}i∈[1,h+1] in the exact way as the real-

world execution. Similarly, S can compute all right children
in the h+ 1 level using K∗, thus S can compute the exact τ
corresponding to the key K held by the honest sender. Overall,
the above simulation is perfectly indistinguishable from real-
world execution in the FOT-hybrid model.

Corrupted sender. The simulator S for corrupted sender S
emulates FOT and interacts with A as follows:

• S receives OT messages {(Ki
0,K

i
1)}i∈[h], Kh+1

1 and τ
from A.

• S computes K∗ ← F .Puncture∗({Ki
αi
}i∈[h+1], α||0) and

{sj(α)}j∈[2n]\{α||0} ← F ′.FullEval (K,α||0) for each α ∈
[n]. Set γj(α) = s2j+1(α) for j ∈ [n]. Compute τ ′(α) ←
h(γ0(α), · · · , γn−1(α)).

• Let I be the set of α such that τ ′(α) = τ , i.e., I = {α ∈
[n] | τ ′(α) = τ}.

• S sends K∗ = {(Ki
0,K

i
1)}i∈[h] ∪ {(0,Kh+1

1)} and I to
FGenV.

The punctured key computed by the functionality is exactly
the key computed in real-world execution. Also, it shows
in [30] (Proof of Theorem 15, [30]) that except with negligible
probability, all choices of α, α′ ∈ I lead to the same vector
s⃗ = (s0, · · · , sn−1). Following this fact, the receiver aborts
in the real protocol execution when τ ′ ̸= τ , which is exactly
the case where α /∈ I . Therefore, the functionality aborts if
and only if the real protocol execution aborts. Overall, the
above simulation is perfectly indistinguishable from real-world
execution in the FOT-hybrid model.

H. Proof of Theorem 2

For any PPT adversary A, we construct a PPT simulator
S that can simulate the adversary’s view by accessing the

functionality FGenM. In the cases where S aborts or terminates
the simulation, S outputs whatever A outputs. In the following,
we prove the security of our protocol for two cases of a
malicious sender and a malicious receiver, respectively.

Corrupted sender. S emulates functionalities FGenV and ran-
dom oracles H1. S interacts with A as follows:

• S receives {Ii,K∗
i }i∈[n] from A by emulating FGenV. S

checks Ver(K∗
i , Ii) = 1 for i ∈ [n]. If any check fails, S

sends abort to A and terminates.
• S receives {ωj}j∈[n] and τ from A by emulating Feq. S

checks local table for simulating random oracle H1 and finds
if there exists an input C such that τ = H1(C). If such C
does not exist or {ωj}j∈[n] does not consiste with C, S just
aborts.

• From {ωj}j∈[n], C, and {Ii,K∗
i }i∈[n], S extracts and up-

dates A’s selective failure attack strategy as follows:
- If |Ii| ≥ 2, S can fully recover the i-th row of OPM

matrix using the following strategy: S randomly samples
two different indexes α, α ∈ Ii. S computes two punc-
tured keys K∗{α},K∗{α′} by calling

K∗{α} ← F ′.Puncture(K∗, α),

K∗{α′} ← F ′.Puncture(K∗, α′),

respectively. S can recover {M(1)
i,j }j∈[n]\{α} using

K∗{α} and M
(1)
i,α using K∗{α′}.

- If |Ii| = 1, S parses Ii = {α} and computes a punctured
key K∗{α}. S computes {M(1)

i,j }j∈[n]\{α} using K∗
α.

Note that in this case, M(1)
i,α is undefined (i.e., M(1)

i,α =⊥).
• From {ωj}j∈[n], C, and M(1), S extracts and updates A’s

selective failure attack strategy as follows: for row i ∈ [n]

and j ∈ [n] such that Ci,j ̸=⊥, if Ci,j ̸= M
(1)
i,j , S updates

Ii ← Ii ∩ {j}.
• S forwards {Ii,K∗

i }i∈[n] to functionality FGenM. If FGenM

returns abort, S sends abort to A. Otherwise, S sends OK
to A by emulating Feq.
• S outputs whatever A outputs.

We first show the view simulated by S is indistinguishable
from real protocol execution. The only message from R to S is
τ . In the real world, the adversary receives the same τ as he
committed if 1) the adversary honestly follows the protocol; 2)
the adversary performs a selective failure attack and succeeds
in the attack. In either case, sending τ back to A in the ideal
world is indistinguishable from real-world execution.

The remaining question is to show that the ideal world
aborts with indistinguishable probability as the real-world
execution. Since the protocol is designed in FGenV-hybrid
model, the simulator S has already obtained A’s selective
failure attack strategy to each row of the generated OPM. A
may update its strategy in the OPM check protocol. The only
possible approach for A is adding errors into {ωj}j∈[n]. The
simulator has to extract A’s selective failure strategy in the
OPM check and updates {Ii}i∈[n] correspondingly. Note that
S has already obtained all OPV keys from A, thus S can
fully determine row i of the OPM M(1) with |Ii| ≠ 1, and
n − 1 elements for row i with |Ii| = 1. This means S can
recover almost all elements except these undefined ones (they
are at most n). S can extract C that A queries random oracle

22

H1 and compares with M(1) to extract whether A updates
its selective failure attack in the OPM check phase. First, S
checks whether {ωj}j∈[n] is consistent with C. In the real
world, this corresponds to the fact that A sends inconsistent
messages with its committed matrix. In the real world, the
protocol would abort except due to collusion from H1. In the
ideal world, S always aborts when seeing such inconsistency.
The simulation is computationally indistinguishable from real
protocol execution due to the collusion resistance of H1. Sec-
ond, if {ωj}j∈[n] is consistent with C, the simulator can extract
A’s strategy using C and its recovered M. In particular, for
any i, j ∈ [n] with Ci,j ̸=⊥, S checks whether Ci,j ̸= Mi,j .
If true, S updates Ii ← Ii∩{j}. In this manner, S fully extracts
A’s updated attack strategy in the OPM check phase, and
S can simply forward {Ii,K∗

i }i∈[n] to functionality FGenM.
Since S fully extracts A’s selective failure attack strategy, the
ideal world will abort with the same probability as the real
protocol. Overall, the simulator aborts with computationally
indistinguishable probability as the real-world protocol does.

Corrupted receiver. S emulates functionalities FGenV and
random oracles H1. S interacts with A as follows:

• S defines abort← 0.
• For i ∈ [n], S receives A’s input π(i) to FGenV. If n

punctured points correspond to a valid permutation π ∈ Sn,
S forwards π to FGenM and receives {K∗

i }i∈[n] from FGenM.

Otherwise, S sets abort ← 1 and samples Ki
$←− {0, 1}κ

and produces punctured key K∗
i ← F ′.Puncture(Ki, π(i)).

• S samples (ω0, ω1, · · · , ωn−1)
$←− ({0, 1}κ)n and returns

these values to A.
• S emulates Feq and receives τ̃ . S recomputes τ from
{K∗

i }i∈[n], {ωi}i∈[n] and π. S checks whether the recom-
puted value matches the one sent from A. If false, S sets
abort← 1. S sends the τ back to A.

• S outputs whatever A outputs.

The simulated view is indistinguishable from a real proto-
col execution, and the simulation aborting is negligible close
to a real protocol execution. First note when π is not a valid
permutation, the simulator generates PPRF keys for A in the
same way as the ideal functionality FGenV does, thus the
simulation for OPV key generation is indistinguishable from
A no matter π is valid or not.

Another difference is from the way of generating {ωi}i∈[n].
In real protocol execution, {ωi}i∈[n] is computed from the
matrix recovered from n OPV master keys, while in our
simulation S just samples these values randomly. By a hy-
brid argument, one can conclude that the simulated view
is indistinguishable from real protocol execution from the
selective security of F ′. In particular, we show that any PPT
adversary that distinguishes the two executions with proba-
bility ϵ can be used to win the PPRF selective security with
advantage ϵ

n as follows: Construct a sequence of hybrid games
(H0,H1, · · · ,Hn), where Hi represents that the first i protocol
messages are randomly sampled, and the remaining n−i values
are computed from true PPRF outputs. Obviously, H0 is the
real execution and Hn denotes the simulated execution. If the
adversary can distinguish H0 and Hn with advantage ϵ, then it
follows that there exists i such that Pr[Hi]− Pr[Hi+1] ≥ ϵ/n,
which wins the selective security of F ′ with advantage ϵ/n.

It is necessary to argue that S aborts with the same
probability as the real-world execution. In the simulation, S
aborts if 1) π is not well-formed or 2) A does not send back
the correct τ̃ under the condition that π is well-formed. Case 2
is easy to simulate. For case 1, A cannot compute the correct
τ̃ in the real protocol because A must have missed at least two
elements for some columns of its local OPM matrix. In this
case, A can only use a random element for the equality check
in the hope of passing the check by chance. However, this
is infeasible from the security of PPRF and H1. In the ideal
world, the simulator always aborts. Thus, the simulation is
computationally indistinguishable from real-world execution.

I. Proof of Theorem 3

Let A be the adversary who is allowed to corrupt either S
or R. We construct a PPT simulator S that can simulate the
adversary’s view by accessing the functionality FGenM. In the
cases where S aborts or terminates the simulation, S outputs
whatever A outputs.

Corrupted S. The offline phase is easy to simulate: the simu-
lator uses the existing simulation strategy for OPM generation
and sends a randomly sampled seed s ∈ {0, 1}κ back to A. In
the following, we only focus on the online phase simulation.
For simplicity, we assume the simulator sees the shares held
by the adversary.2

• S samples B randomly sampled {δ⃗(i)} and sends them to
A.

• S receives A’s messages in MAC check protocol. S can
check whether A sends the correct messages since S has all
the necessary information held by S. Therefore, if A sends
the incorrect message in the MAC check, S just aborts.

The view from protocol messages forA is indistinguishable
from the real protocol execution. First, since S works in
exactly the same way as FGenM does, the aborting probability
from FGenM is indistinguishable from real-protocol execution.
The simulation for the online phase is also straightforward
because S has all the shares held by A. This means S knows
A deviates the protocol by checking whether A sends the
correct protocol messages. Therefore, S can always abort with
indistinguishable probability as the real protocol does.

Corrupted R. The simulator S emulates FGenM and interacts
with A as follows:

• Whenever simulating FGenM, S receives {Ki, Ii}i∈[n] from
the adversary A. S randomly samples a permutation π ∈ Sn

and checks π(i) ∈ Ii and Ver(K∗
i , Ii) = 1 for all i ∈ [n]. If

any check fails, S sends abort to A.
• In the online phase, S receives {δ⃗(i)}i∈[n] from A. Now, S

can check whether A adds error e⃗ into {δ⃗(i)}i∈[n]. S then
uses πi to compute πi(e⃗), and uses b⃗(i)−πi(e⃗) to recompute
A’s MAC check share. If the share does not match the MAC
check share from A, S aborts. If A behaves honestly or

2In the proof of SPDZ protocol, the simulator can learn the shares of
corrupted parties by emulating the SPDZ preprocessing functionality. For
example, the simulator for the proof of [35] maintains a database CS to store
the sums of shares of corrupted parties, which is computed by summing up
each corrupted party’s share extracted by the simulator. In the following proof,
we will assume this without further elaboration.

23

A sends the correct MAC check message JmK1, S sends
−JmK1 to A.

In the above simulation, S works exactly as FGenM works,
thus this part of view simulation is indistinguishable from real-
world execution. Second, S can abort with indistinguishable
probability as the real protocol execution by checking whether
A sends the desired message in MAC check. For this part, S
can do the check since it has all available information about A,
thus S can recompute by itself to see whether the simulation
should abort or proceed. Due to repeated execution, when A
passed the check, no matter whether he honestly followed the
protocol or successfully attacked some of the permutations,
the composited permutation is still random in the view of A.
However, this holds with statistical error 2−λ as we shown
in §B.

24

	Introduction
	Preliminary & Background
	Notations
	Permutation
	Puncturable Pseudorandom Functions
	Authenticated Secret Sharing
	Malicious SSS: Protocol Setting and Security Goals
	Security Definition

	Maliciously Secure SSS Protocols & Attacks
	The Semi-honest CGP Protocol
	Maliciously Secure Protocols & Online-phase Attacks
	Maliciously Secure Protocols & Offline-phase Attacks

	Overview of Our Countermeasures
	Our Maliciously Secure SSS Protocol
	Concrete GGM PPRF Instantiation
	Offline Phase Protocol: OPV Setup with Check
	Offline Phase Protocol: OPM Setup with Check
	Online Phase Protocol
	Combine All Together
	Extension and Optimizations

	Implementation and Performance
	Experiment Settings
	Performance of Correlation Generation
	Performance of Shuffle

	Related Work
	Conclusion & Discussion
	Appendix
	Concrete Use Cases Using SSS
	Combinatorial Analysis
	k-party SSS Protocol
	More Details about GBN Decomposition
	Attacks to Laud's SSS protocol laud2021linear
	Attacks to the Eskandarian-Boneh SSS protocol eskandarian2021clarion
	Proof of Theorem 1
	Proof of Theorem 2
	Proof of Theorem 3

