
Fast and Designated-verifier Friendly zk-SNARKs
in the BPK Model

Xudong Zhu1,2, Xuyang Song3, and Yi Deng1,2

1 Key Laboratory of Cyberspace Security Defense, Institute of Information
Engineering, CAS, Beijing, China

2 School of Cyber Security, University of Chinese Academy of Sciences, Beijing, China
3 Anoma

zhuxudong@iie.ac.cn
xuyangsong1012@gmail.com

deng@iie.ac.cn

Abstract. After the pioneering results proposed by Bellare et al in
ASIACRYPT 2016, there have been lots of efforts to construct zero-
knowledge succinct non-interactive arguments of knowledge protocols
(zk-SNARKs) that satisfy subversion zero knowledge (S-ZK) and stan-
dard soundness from the zk-SNARK in the common reference string
(CRS) model. The various constructions could be regarded secure in the
bare public key (BPK) model because of the equivalence between S-ZK
in the CRS model, and uniform non-black-box zero knowledge in the
BPK model has been proved by Abdolmaleki et al. in PKC 2020.

In this study, by leveraging the power of random oracle (RO) model,
we proposed the first publicly verifiable non-uniform ZK zk-SNARK
scheme in the BPK model maintaining comparable efficiency with its
conventional counterpart, which can also be compatible with the well-
known transformation proposed by Bitansky et al. in TCC 2013 to obtain
an efficient designated-verifier zk-SNARK. We achieve this goal by only
adding a constant number of elements into the CRS, and using an un-
conventional but natural method to transform Groth’s zk-SNARK in
EUROCRYPT 2016. In addition, we propose a new speed-up technique
that provides a trade-off. Specifically, if a logarithmic number of elements
are added into the CRS, according to different circuits, the CRS verifica-
tion time in our construction could be approximately 9%− 23% shorter
than that in the conventional counterpart.

Keywords: Subversion zero knowledge · SNARK · Common reference
string · Bare public key · Random oracle · Generic group model.

2 Xudong Zhu et al.

1 Introduction

The proposal of a zero-knowledge argument system [32], especially the non-
interactive zero-knowledge argument system (NIZK) [14], has a significant im-
pact on both cryptography theory research and the application of cryptography.
In the last decade, remarkable progress has been made in research on zero-
knowledge succinct non-interactive arguments of knowledge (zk-SNARKs). Af-
ter various studies [38, 44, 33, 41, 31], Groth constructed an pairing-based zk-
SNARK Groth16 [34] with the best verification efficiency and proof size. How-
ever, many zk-SNARK constructions in the common reference string (CRS)
model, including Groth16, may encounter attacks during the setup process. That
is, the trusted setup necessary for this type of zk-SNARK to be secure is difficult
to achieve in reality. There are many real-life subversion cases, the most well-
known of which have recently attracted increasing interest in constructing cryp-
tographic primitives and protocols secure against active subversion. Although
universal updatable zk-SNARKs [36, 43, 29, 21, 19] and transparent zk-SNARKs
[10, 48, 11, 22, 47, 18, 17] have bypassed the setup subversion, there is still a cer-
tain gap in verification efficiency or proof length between these schemes and
zk-SNARKs with trapdoor in CRS such as Groth16.

An important research line involves improving the existing efficient scheme
that is secure in the CRS model to be secure against parameter-subversion adver-
saries. To study the type of security that needs to be maintained for parameter
subversion, Bellare et al. first formalized the notion of subversion soundness (S-
SND) and subversion zero knowledge (S-ZK) in [9]. They demonstrated that
S-SND and S-ZK cannot be satisfied simultaneously and constructed a NIZK
scheme to demonstrate that a protocol can satisfy soundness and S-ZK. To char-
acterize parameter subversion better, Abdolmaleki et al. proposed some stronger
security definitions in [1] than those proposed in [9]. By adding extra elements
to the CRS of Groth16 and running an additional CRS verification algorithm,
the scheme in [1] improved Groth16 to be knowledge sound and S-ZK under a
knowledge assumption. Fuchsbauer [27] demonstrated that some quadratic arith-
metic program (QAP)-based zk-SNARKs, including Groth16, can be adapted to
achieve knowledge soundness and S-ZK. Specifically, under a new knowledge as-
sumption and with a new reduction technique, Fuchsbauer improved Groth16 to
become a knowledge sound and S-ZK without changing the original CRS in [27].
Then Abdolmaleki et al. proposed an improved version of [1] in [4], they opti-
mized the original version in detail and utilized the same reduction technique as
[27]. In addition, there are some studies about the improvement of zk-SNARKs
to guarantee S-ZK and simulation extractability (SE) simultaneously, such as
[37, 7, 42]. As pointed out in [8], the SE constructions given in [16, 8, 6] can also
satisfy S-ZK, as they use the original CRS of Groth16 to achieve SE and ZK.

To associate the subversion model with the BPK model, Abdolmaleki et al.
[3] proved that S-ZK in the CRS model is equal to the no-auxiliary-string non-
black-box zero knowledge in the BPK model. Deng [24] proposed the individual
simulation technique and constructed a delayed input 2-round zero knowledge
proofs with this technique. In fact, this delayed input 2-round zero knowledge

Fast and Designated-verifier Friendly zk-SNARKs in the BPK Model 3

proofs also show us a framework to construct NIZK in the BPK model. Fauzi
et al. [25] proposed a general theoretical framework to demonstrate that one
could construct a knowledge sound S-ZK NIZK proof from any knowledge sound
subversion witness indistinguishable (S-WI) NIWI proof and keyless verifiably-
extractable generalized extractable one-way functions (VEGOWFs). Addition-
ally, researches on zero-knowledge contingent payment (zkCP) systems [20, 28,
45] showed that in some scenarios, the trust issues could be addressed by lever-
aging a slightly stronger notion of witness indistinguishable (WI). Recently, Ab-
dolmaleki et al. [2] started from LAMASSU construction [5], and for the first
time, showed how one can achieve UC-secure updatable circuit-succinct NIZK.

1.1 Our Contributions

In this paper, we designed a set of protocols for the Groth16 scheme to achieve
better theoretical properties and efficiency improvements. We believe that our
work is a step towards finding an acceptable technique for decentralization in
both theory and practice.

First, we provide a solution to efficiently implement the designated-verifier
subversion-resistant zk-SNARK. Unfortunately, almost all known zk-SNARKs
that are secure in the BPK model are only discussed in the publicly verifiable
setting, and cannot be implemented with the well-known and efficient "LIPs
to designated-verifier zk-SNARK" transformation proposed by Bitansky et al.
in [13] to obtain a very efficient designated-verifier zk-SNARK that could be
just implemented with the standard (generic) group rather than the bilinear
group. Specifically, other subversion-resistant zk-SNARKs require pairing checks
to ensure security. However, when we implement these subversion-resistant zk-
SNARKs in the designated-verifier setting with the "LIPs to designated-verifier
zk-SNARK" transformation, the pairing-check technique never works again be-
cause the elements in the CRS are encoded by the homomorphic encryption
scheme rather than the bilinear group scheme. Our construction is not be affected
by the application scenario, and the "LIPs to designated-verifier zk-SNARK"
transformation could be used to obtain very efficient zk-SNARKs that are secure
in the BPK model and designated-verifier setting directly. At the same time, our
construction could also satisfy the auxiliary-string zero knowledge in the BPK
model, which is a stronger security property than the no-auxiliary-string zero
knowledge satisfied by almost all previous schemes. Following our analysis, we
also point out that the scheme in [37] actually also satisfies this stronger secu-
rity property. Additionally, our approach is modular, and the core idea of our
construction could be used to modify many other schemes that are secure in
the CRS model to be secure in the BPK model, or to replace the pairing checks
in other subversion resistant schemes to obtain schemes with better properties.
In particular, if we combine our technique with a variant construction [16] of
Groth16, we can directly achieve both non-uniform ZK in the BPK model and
SE without adding extra assumptions. Moreover, our solution seems to be able
to smoothly expand from over field to over ring applications as it does not rely
on pairing.

4 Xudong Zhu et al.

Second, we propose a new technique, Compute-with-Help Mechanism, to
speed up the computation of the prover. The essence of our technique is the
division and recursion. This technique provides a trade-off between the size of
the public file and the running time of the prover. Although we only need to add
a constant number of extra elements into the public file to ensure the correct
verification of the elements in the public file, our modified subversion resistant
scheme is still at the cost of efficiency of the prover, just like the previous schemes.
In fact, Abdolmaleki et al. have raised how to design a method for minimizing
the computational complexity of CRS verification as an interesting open ques-
tion in [1]. Fortunately, we found that if we are allowed to add a logarithmic
number of elements into the original public file, we can use our speed-up tech-
nique to reduce some computation done by the prover from the linear level to
the logarithmic level. Moreover, we found that in some cases our new technique
could also be regarded as a speed-up technique to the multi-scalar multipication
(MSM), which is a fundamental computational problem in the field of cryptog-
raphy, especially zk-SNARK. Therefore, we proposed our new technique as an
independent interest.

1.2 Technique Overview

Abdolmaleki et al. proposed a recent work [2] that used the Σ-protocol plus
Fiat-Shamir (FS) technique to verify the well-formness of the updatable CRS
and achieved some good results in the updatable setting. In this study, motivated
by quite different problems, we extend this technique in the BPK setting to deal
with more complex CRS. By carefully designing Σ-protocols and strategies, we
provide the first solution to the very efficient implementation of the designated-
verifier subversion-resistant zk-SNARK. Additionally, we proposed a new speed-
up technique for the zk-SNARK prover.

Our goal is to construct an efficient zk-SNARK that is secure in the BPK
model. Therefore, we consider Groth16 as the starting point due to its good
efficiency. Because S-ZK in the CRS model has been proven equal to the no-
auxiliary-string non-black-box zero knowledge in the BPK model [3], we will
discuss our idea mainly in the BPK model for convenience.

Several studies have been conducted to modify Groth16 to be secure in the
parameter subversion model, such as those in [1, 27, 4]. These constructions have
provided a good way to modify Groth16 to achieve S-ZK. Specifically, we can let
the verifier generate CRS and then let the prover run pairing checks to verify the
well-formness of CRS. However, the zk-SNARKs obtained by this method have
some limitations, e.g., they are not compatible with the well-known and efficient
"LIPs to designated-verifier zk-SNARK" transformation. Moreover, they are all
based on newly proposed knowledge assumptions and therefore do not satisfy
non-uniform ZK. Additionally, the additional CRS verification algorithm always
includes many exponential computations, which are expensive.
A new construction with better application prospects. A natural ques-
tion is how to solve the existing theoretical limitations of the zk-SNARKs that

Fast and Designated-verifier Friendly zk-SNARKs in the BPK Model 5

are secure in the BPK model. To make our scheme be compatible with the effi-
cient "LIPs to designated-verifier zk-SNARK" transformation, we first need to
find a way to remove the dependency on pairing in our scheme. However, these
pairing checks appeared to be necessary in the previous zk-SNARKs to ensure
security in the BPK model. Fortunately, we observed that by utilizing the power
of RO, we could eliminate the need for pairing while simultaneously proving
that our construction satisfies the auxiliary-string zero knowledge in the BPK
model. Specifically, by carefully designing Σ-protocols and strategies, we found
that even the seemingly complex pairing checks for the highly structured CRS
could all be proven by Σ-protocols without compromising the original soundness
of the zk-SNARK. And Σ-protocols could be transformed to be non-interactive
using the Fiat Shamir transformation [26] in the RO model. This means that in
the BPK model, we can eliminate constraints at the conceptual level. Instead of
following the conventional way in which the verifier generates the highly struc-
tured CRS and then the prover computes pairing checks, we try another way
in which the verifier generates the highly structured CRS together with the Σ-
proofs, and the prover verifies the Σ-proofs to ensure all checks pass. In this way,
the trapdoor needed by the simulator could be extracted by the forking lemma
[46] (instead of using the newly proposed knowledge assumption), which still
holds with the auxiliary string. Moreover, the scheme constructed this way will
be very compatible with the "LIPs to designated-verifier zk-SNARK" transfor-
mation, so it will have a very efficient implementation in the designated-verifier
setting.
A new speed-up technique to speed up the CRS verification. The extra
cost of the transformation from security in the CRS model to security in the
BPK model is mainly at the time of the prover. Fortunately, we observed that a
change in conception can bring us more. That is now that we allow the verifier
to generate Σ-proofs in our construction, what happens if the verifier is not
limited to proving only the correctness of pairing checks? In fact, the verifier
who generates the CRS naturally knows extra information about the CRS (e.g.,
knowledge of public key trapdoors that are used to generate the CRS). If we use
the extra power of the verifier fully and let the verifier generate more proofs,
it is desirable to speed up the computation of the prover further. For example,
supposing c is a publicly known field element, n is equal to a power of 2 and the{
gx

i
}
i∈[1,n]

are well-formed, when the prover need to compute gcx+c
2x2+···+cnxn

by O(n) exponentiations, the prover only needs to compute gcx+c
2x2+···+c

n
2 x

n
2

by O
(
n
2

)
exponentiations, and get the

(
gcx+c

2x2+···+c
n
2 x

n
2
)cn2 xn2

together with the proof for the exponential equality relation(
P =

(
gcx+c

2x2+···+c
n
2 x

n
2
)cn2 xn2

, Q = gc
n
2 x

n
2

)

6 Xudong Zhu et al.

from the verifier. By ensuring that this proof is passed, the prover can di-
rectly compute gcx+c

2x2+···+cnxn by just multiplying gcx+c
2x2+···+c

n
2 x

n
2 with(

gcx+c
2x2+···+c

n
2 x

n
2

)cn2 xn2
. Evidently, gcx+c

2x2+···+c
n
2 x

n
2 can also be computed

recursively with the verifier’s help as above. Thus, with the help of the verifier,
the prover can compute gcx+c

2x2+···+cnxn using only O (log n) exponentiations.
The essence of our speed-up technique is to delegate some of the zk-SNARK

prover’s computations in the CRS verification algorithm to the zk-SNARK ver-
ifier. One may doubt the significance of reducing some of the prover’s computa-
tions to increase the verifier’s computations. We need to emphasize that in the
BPK model, the CRS generation algorithm run by the zk-SNARK verifier can be
computed offline and one-shot for a specific relation, while the CRS verification
algorithm needs to be run by each potential zk-SNARK prover. So we are more
concerned about the computations of the zk-SNARK prover in the BPK model.

In fact, in some application scenarios with a large number of provers and
the specific relation, the advantages brought by our speed-up technique are sig-
nificant for the entire system. For example, in an attribute-based anonymous
credential system, there are many users with their credentials presented by the
organization (or issuer), and many service providers with their different access
control requirements. The access control requirement of each service provider
is clearly defined, in other words, the relation that need to be proven to each
service provider is specific. So each service provider only need to run the CRS
generation algorithm offline and one-shot, then to obtain services from a certain
service provider, a large number of users will verify the CRS and prove that they
meet the requirement.

1.3 On Efficiency

Since our new zk-SNARK is closely related to the most efficient known zk-
SNARK of Groth [34], both the Prove and Verify algorithms in our scheme have
almost the same computational complexity as that of Groth16. As we have dis-
cussed in Subsection 1.2, the CRS generation algorithm can be run offline and
one-shot for a specific relation. Thus, we focus on the computational complexity
of the CRS verification algorithm run by zk-SNARK prover. In [1], Abdolmaleki
et al. proposed how to minimize the computational complexity of CRS verifica-
tion as an interesting open question. Unfortunately, not so much optimization
is possible here. The CRS verification algorithm has to have running time at
least linear in the size of the CRS since the zk-SNARK prover has to read the
whole CRS. Thus, the best we can hope is to improve the constant factor, which
is exactly what we did. Combined with our new speed-up technique, the CRS
verification time of our construction could be approximately 9% − 23% shorter
than that of conventional pairing checks (Table 1). Specifically, the efficiency
improvement of our construction is more significant for circuits with a large
proportion of the multiplication gates. For asymptotic comparison, we trans-
form some computations with O(n) complexity into computations with O(log n)
complexity (Table 2).

Fast and Designated-verifier Friendly zk-SNARKs in the BPK Model 7

2 Preliminaries

2.1 Notation

We denote Φ as the empty string. If x is a binary string, |x| represents its
length. If S is a finite set, |S| denotes its size and s ← S denotes picking an
element uniformly from S and assigning it to s. We used λ ∈ N to denote a
security parameter and 1λ to denote its unary representation.

All algorithms were non-uniform and randomized unless otherwise indicated.
We abbreviate "probabilistic polynomial time" to "PPT" for simplicity. By y ←
A (x1, . . .) we denote the operation of running algorithm A on inputs x1, . . . and
omitted coins r to output y. We used P and V for the malicious prover and
verifier, respectively. Generally, any algorithm with a horizontal bar above it
in our study represents a malicious algorithm. A function negl(n) is considered
negligible if it vanishes faster than any inverse polynomial. Sometimes, we abuse
the concept of CRS, and the concept of public key can be called CRS in the
BPK model.

2.2 Bilinear Groups

Following the notation of [34], we work on bilinear groups (p,G1,G2,GT ,e, g, h)
with the following properties:
- G1,G2 and GT are groups of prime order p
- Pairing e : G1 ×G2 → GT is a bilinear map
- g is a generator for G1, h is a generator for G2, and e(g, h) is a generator for
GT
- There are efficient algorithms for computing group operations, evaluating the
bilinear map, deciding membership of the groups, deciding equality of group el-
ements, and sampling generators of the groups. We refer to these operations as
the generic group operations.

It is useful and convenient to use a notation that represents group elements
based on their discrete logarithms. We write [a]1 for ga, [b]2 for hb, and [c]T
for e(g, h)c. For notation g = [1]1, h = [1]2 and e(g, h) = [1]T , whereas the
neutral elements are [0]1, [0]2 and [0]T . We can then use the additive notation
in all groups, and we have[a]i + [b]i = [a+ b]i for i ∈ {1, 2, T}. Given two group
elements [a]1 and [b]2, we define their dot product as [a]1 · [b]2 = [ab]T , which
can be computed efficiently by pairing e.

2.3 Definition of zk-SNARKs in the BPK Model

We define Rλ as the set of possible relations R the relation generator R may
output given 1λ. R may also output some side information, an auxiliary input z,
which is given to the adversary. crs, u, w, τ , and R denote the common reference
string, statement, witness, simulation trapdoor, and relation, respectively.

8 Xudong Zhu et al.

zk-SNARKs

Definition 1. (SNARG). Π = (Setup,P,V) is a succinct noninteractive argu-
ment (SNARG) for Rλ if it satisfies the following three properties:

Completeness: For all λ ∈ N, R ∈ Rλ, (u,w) ∈ R,
Pr [V(R, crs, u, π) = 1 |(crs, τ)← Setup (R) ;π ← P(R, crs, u, w)] = 1.

Computational Soundness: For all λ ∈ N and efficient P,

Pr

[
V(R, crs, u, π) = 1 (R, z)← R

(
1λ
)
; (crs, τ)← Setup (R)

∧u /∈ L (u, π)← P (R, z, crs)

]
= negl(λ).

Succinctness: The length of a proof is given by
|π| = poly(λ)polylog (|u|+ |w|) .

Definition 2. (SNARK). A succinct non-interactive argument of knowledge
(SNARK) is a SNARG that comes together with an extractor χ. Formally, sound-
ness is replaced by knowledge soundness as follows:

Computational Knowledge Soundness: For all λ ∈ N and PPT P, there

exists a PPT extractor χP ,

Pr

[
V(R, crs, u, π) = 1 (R, z)← R

(
1λ
)
; (crs, τ)← Setup (R)

∧(u,w) /∈ R ((u, π);w)← (P||χ
P
) (R, z, crs)

]
= negl(λ).

Definition 3. (Zero-knowledge SNARK). A SNARK for an NP language L with
a corresponding NP relation R is computationally zero knowledge, if there exists
a simulator Sim for all λ ∈ N,(R, z) ← R(1λ), (u,w) ∈ R and every PPT
distinguisher D

Pr[(crs, τ)← Setup(R);π ← P(R, crs, u, w) : D(R, z, crs, τ, π) = 1]

≈ Pr[(crs, τ)← Setup(R);π ← Sim(R, τ, u) : D(R, z, crs, τ, π) = 1]

If we consider the unbounded distinguisher D, we obtain the definition of the
statistic ZK. If we replace the notation ≈ with =, we obtain the definition of a
perfect ZK.

zk-SNARKs in the BPK model
The BPK model can be regarded to work in two phases, the key-registration and
proof phases.

First, the verifier registers public key pk (the honest verifier is supposed to
store the corresponding secret key sk) in public file F in the key-registration
phase. Formally, we regard F as a set, and it is initialized as an empty set Φ.
The following event will occur in this phase:

(R, z)← R
(
1λ
)
, (pk, sk)← V (R) , F = F ∪ pk

Fast and Designated-verifier Friendly zk-SNARKs in the BPK Model 9

We implicitly assumed that the bilinear group parameter is included in R. In
this phase, V outputs (pk, sk) rather than (pk, τ) because instead of the simula-
tion trapdoor, which is denoted as τ and is used to simulate the transcripts, we
regard sk as the public key trapdoor that is used to generate pk and τ . Notably,
τ is not always equal to sk, (e.g., the Groth16 construction’s CRS generation
need (x, α, β, γ, δ); however, as Fuchsbauer has proven in [27], it suffices to know
(x, δ) for simulation).

Second, in the proof phase, by oracle accessing F at the prover’s and verifier’s
will, the prover outputs the proof π on an input (R, u,w), then the verifier verifies
the π on an input (R, u, sk, π).

Specifically, an efficient prover publicly verifiable non-interactive argument
for R in the BPK model includes a set initiated to be F = Φ and a tuple of
probabilistic polynomial algorithms (AddF, CheckF , ProveF , VerifyF , SimF)
such that

– (pk, sk) ← AddF(R) : On input the relation R, this algorithm output the
public key pk and the public key trapdoor sk. It is run by the verifier in the
key-registration phase. Public file F is usually set to F = F ∪ pk.

– 0/1 ← CheckF (R) : This algorithm is run by a prover who has access to
public file F . It outputs 1 if and only all the specified elements in pk are
well-formed.

– π ← ProveF (R, u,w) : On input relation R, statement u, witness w, and
public file F , the algorithm output the argument π.

– 0/1 ← VerifyF (R, u, sk, π) : This algorithm has access to public file F and
output 1 if and only the verification equation holds.

– π ← SimF (R, u, τ) : The simulator inputs statement u and simulation trap-
door τ (which could be computed by the public key trapdoor sk) and returns
argument π.

Definition 4. (Zero knowledge SNARK in the BPK model). With the set F ,
Π = (AddF,CheckF ,ProveF ,VerifyF) is a zero-knowledge SNARK in the BPK
model for an NP language L with a corresponding NP relation R if Π satisfies
the following five properties (the F in each definition is assumed to be initialized
as Φ):

Completeness: for all λ ∈ N, (R, z)← R(1λ), (u,w) ∈ R,

Pr

[
VerifyF (R, u, π) = 1

∣∣∣∣ (pk, sk)← AddF(R);F = F ∪ pk
π ← ProveF (R, u,w)

]
= 1.

Public-key Verifiability: for all λ ∈ N, (R, z)← R(1λ),

Pr
[
CheckF (R) = 1

∣∣∣ (pk, sk)← AddF(R);F = F ∪ pk
]
= 1.

Computational Knowledge Soundness: for all λ ∈ N, (R, z)← R(1λ) and

efficient Prove
F
, there exists a PPT extractor χ

P
,

10 Xudong Zhu et al.

Pr

[
VerifyF (R, u, π) = 1
∧(u,w) /∈ R

∣∣∣∣∣ (pk, sk)← AddF(R);F = F ∪ pk
((u, π);w)←

(
Prove

F ||χF
P

)
(R, z)

]
= negl(λ).

Succinctness: The length of a proof is given by
|π| = poly(λ)polylog(|u|+ |w|).

Computatinal Zero Knowledge: If for all PPT adversaries AddF, there
exists a PPT simulator Sim with access to F and a PPT extractor χ

AddF
, for

every PPT distinguisher DF and for all λ ∈ N, (R, z)← R(1λ), (u,w) ∈ R,

Pr

 (pk, sk)← AddF(R)
F = F ∪ pk

π ← ProveF (R, u,w)

:
DF (R, z, u, sk, π) = 1

∧CheckF (R) = 1

 ≈
Pr

 (pk, sk; τ)← (AddF||χ
AddF

)(R)
F = F ∪ pk

π ← SimF (R, τ, u)

:
DF (R, z, u, sk, π) = 1

∧CheckF (R) = 1

If we consider the unbounded distinguisher DF in the definition of ZK, we
obtain the definition of the statistic ZK in the BPK model. If we replace the
notation ≈ with =, we obtain the definition of a perfect ZK in the BPK model.

3 Classical Transformation

In [9], Bellare et al. concluded (non-subversion) soundness and computa-
tional subversion zero-knowledge (ZK, even if the CRS is not trusted) can be
obtained. According to the results in [3], the notion of sub-ZK in the CRS model
is equivalent to the notion of no auxiliary string (uniform) non-black-box zero
knowledge in the BPK model. In [27], Fuchsbauer claimed that the four well-
known SNARKs constructions [31, 12, 23, 34] in the CRS model can be trans-
formed to satisfy the uniform (and non-black-box) zero-knowledge property in
the BPK model. Moreover, [1, 4] studied the modification of Groth16 to satisfy
the uniform (and non-black-box) zero-knowledge property in the BPK model.

To date, all related works have a common technical core: utilizing the CRS
verification algorithm to ensure that the CRS is well-formed and makes use of
knowledge assumptions for trapdoor extractability. For most SNARKs construc-
tions, there is no natural CRS verification algorithm for the original scheme;
therefore, we need to add extra elements to the CRS while maintaining the
soundness guaranteed. Here, we introduce how Groth16 is transformed into a
zk-SNARK which is secure in the BPK model, similar to the method proposed
in [27].

Fast and Designated-verifier Friendly zk-SNARKs in the BPK Model 11

3.1 CRS in Groth’s zk-SNARK

Here, we introduce the original CRS and trapdoor in Groth16 [34] in de-
tail; however, we omit specific construction details. Recall that after the setup
algorithm in Groth16, we obtain

sk = (α, β, γ, δ, x); τ = (x, δ)

σ1 =

α, β, δ,

{
xi
}n−1
i=0

,

{
βui(x) + αvi(x) + wi(x)

γ

}l
i=0

,{
βui(x) + αvi(x) + wi(x)

δ

}m
i=l+1

,

{
xit(x)

δ

}n−2
i=0

σ2 = (β, γ, δ,

{
xi
}n−1
i=0

)

crs = ([σ1]1 , [σ2]2)

The CRS above is classified according to the group from which each element
comes, but it is convenient for us to classify the elements according to which
party uses each element. The new classification is as follows:

crsp :

[
α, β, δ,

{
xi
}n−1
i=0

,

{
βui(x) + αvi(x) + wi(x)

δ

}m
i=l+1

,

{
xit(x)

δ

}n−2
i=0

]
1[

β, δ,
{
xi
}n−1
i=0

]
2

crsv :

([{
βui(x) + αvi(x) + wi(x)

γ

}l
i=0

]
1

, [γ, δ]2, [αβ]T

)

Notably, Groth argued in [34] that using a new larger CRS that contains
precomputed [ui(x)]1 , [vi(x)]1 , [vi(x)]2 elements for i = 0, . . . ,m rather than[
xi
]
1
,
[
xi
]
2
elements for i = 0, . . . , n − 1 can lead to a construction with faster

prover’s computation. However, in contrast to the CRS verification algorithm
that was used in this study (it was first proposed by [27] with the original CRS)
that requires no extra elements in CRS, O(n) extra elements need to be added to
the CRS to secure the protocol with the new larger CRS in the BPK model [1, 4].
Thus, to ensure fewer extra CRS elements and to describe our technique clearly,
the technology in this study is based on [27]. We need to emphasize that our
technique can be used to replace all existing pairing checks of the scheme which is
secure in the BPK model, including [1, 4], to achieve better theoretical properties
with constant extra cost in the size of the CRS (or even obtain more efficiency
with O(log n) extra cost in the size of the CRS when our Compute-with-Help
Mechanism can be used). This means that by implementing our technique in
the scheme [27], we obtain a zk-SNARK that is secure in the BPK model with
better prover efficiency than [27] and a shorter CRS than [1, 4].

12 Xudong Zhu et al.

3.2 CRS Verification Algorithm

Notably, the CRS can be efficiently verified to be well-formed without adding
extra elements, similar to the method proposed by [27]. The CRS verification
algorithm should be run by the prover before the proof phase begins, and we call
the CRS verification algorithm CV for short. The CV presented below is slightly
different from that presented in [27]. We describe the algorithm in detail below:

CV(R, p,G1,G2,GT , e, g, h, crs)

1. Check whether

[γ]2 6= [0]2; for ζ ∈ {x, α, β, δ, t(x)δ }, [ζ]1 6= [0]1

2. For i = 1, 2, . . . , n− 1 check whether[
xi
]
1
· [1]2 =

[
xi−1

]
1
· [x]2

3. For i = 1, 2, . . . , n− 1 check whether

[1]1 ·
[
xi
]
2
=
[
xi
]
1
· [1]2

4. Check whether

[1]1 · [β]2 = [β]1 · [1]2
[1]1 · [δ]2 = [δ]1 · [1]2

5. For i = 0, 1, . . . , n− 2 check whether[
xit(x)
δ

]
1
· [δ]2 =

[
xi
]
1
·
[∑n−1

j=0 tjx
j
]
2
+
[
xi+1

]
1
·
[
tnx

n−1]
2

6. For i = l + 1, . . . ,m check whether[
βui(x)+αvi(x)+wi(x)

δ

]
1
· [δ]2 =[∑n−1

j=0 ui,jx
j
]
1
· [β]2 + [α]1 ·

[∑n−1
j=0 vi,jx

j
]
2
+
[∑n−1

j=0 wi,jx
j
]
1
· [1]2

7. For i = 0, . . . , l check whether[
βui(x)+αvi(x)+wi(x)

γ

]
1
· [γ]2 =[∑n−1

j=0 ui,jx
j
]
1
· [β]2 + [α]1 ·

[∑n−1
j=0 vi,jx

j
]
2
+
[∑n−1

j=0 wi,jx
j
]
1
· [1]2

8. Check whether

[αβ]T = [α]1 · [β]2

If all checks pass, the checking algorithm outputs 1; otherwise, it outputs 0.
Note that the steps 7 and 8 above aim to verify the elements in crsv, which

will be used only in the verification. Therefore, we can remove these two steps
without compromising the zero-knowledge property in the BPK model. In addi-
tion, check 5 is different from the corresponding check in [27]. For better batching

Fast and Designated-verifier Friendly zk-SNARKs in the BPK Model 13

efficiency, we place both xi and xi+1 in group G1 rather than G2. However, it
seems that this leads to computation of

[∑n−1
j=0 tjx

j
]
2
. In fact, to obtain greater

efficiency, almost all zk-SNARKs are implemented with polynomials, whose in-
terpolation points are nth primitive root of unity modulo p. Thus, we almost
always have tn = 1, t0 = −1 while the other tj = 0, j ∈ [1, n− 1].

While many pairing checks must be performed, one may ask whether the CV
is efficient enough. As Abdolmaleki et al. show in [1], we can compress the number
of pairing computations to a constant via batching techniques. Unfortunately, as
the implementation results shown in [1], even the running times of the batched
CV are approximately the same as the running times of prover algorithm. Recall
that the CV algorithm is run by the prover. Hence, considering this result, we
attempt to find a new technique to optimize the running time of the prover.

4 Sigma-CRS Verification

The previous works that employed classical CRS verification had two flaws.
First, old schemes relied on knowledge assumptions and could only satisfy uni-
form ZK in the BPK model. Second, these schemes were highly dependent
on pairing, which hindered their efficient implementation using the "LIPs to
designated-verifier zk-SNARK" transformation in the designated-verifier setting.
Motivated by these, we also use Groth16 but specially design another method
to achieve the transformation from the CRS model security to the BPK model
security. In the conventional CV transformation, the verifier first generates the
highly structured CRS, and then the prover runs the CV (some pairing checks)
to check whether the CRS is well-formed. Our design requires the verifier to gen-
erate the highly structured CRS and prove the seemingly complex pairing checks
all pass. Thereafter, the prover only needs to compute some exponentiations in
the group to check the proofs instead of performing pairing checks. By this way,
we could directly achieve uniform ZK in the BPK model and intentionally avoid
the need for pairing to support our discussion in Section 7. We define the new
verification algorithm run by the prover the Sigma-CRS verification algorithm
(SCV). From now on, the prover means the prover of the SNARK protocol(that
is, the verifier of Σ-protocol), and the Σ-prover means the prover of Σ-protocol
(that is, the verifier of the SNARK protocol).

Next, we introduce how the verifier proves that the seemingly complex pairing
checks all pass by the Σ-protocol. Clearly, check 1 in the CV is trivial and can
be checked by the prover as before. As for the other checks, only two types of
Σ protocols must be utilized: one is the proof of exponential equality and the
other one is the proof of exponential multiplication.

4.1 Proof for Exponential Equality Relation

Recall that the check 3 in CV is:
For i = 1, 2, . . . , n− 1 check whether

14 Xudong Zhu et al.

[1]1 ·
[
xi
]
2
=
[
xi
]
1
· [1]2

From the respective exponent, if we define the public parameter pp = (G1,G2,
GT ,Zp, p, g, h), we only need to prove that for i ∈ [1, n−1] the relation R3 shown
below holds

R3 =
{(
pp, Pi ∈ G1, Qi ∈ G2;x

i ∈ Zp
)
: Pi = gx

i

∧Qi = hx
i
}

The Protocol 1 denoted by Π3 is a basic Σ-protocol for relation R3. As
shown in Fig.1, this protocol is a public-coin protocol; thus, it can be trans-
formed to be non-interactive by the Fiat-Shamir transformation [26].

Protocol 1 Σ-protocol Π3 for relation R3

Σ-protocol to prove the exponential equality

PUBLIC PARAMETERS:pp
FOR EVERY i ∈ [1, n− 1]

INPUT:(Pi ∈ G1, Qi ∈ G2;x
i ∈ Zp)

Pi = gx
i

∧Qi = hx
i

Prover Verifier

Pick r ∈ Zp
Compute

t1 = gr, t2 = hr

t1,t2−−−−−−−−−−→
Pick e ∈ Zp

e←−−−−−−−−−
Compute
z = exi + r

z−−−−−−−−−→
Check

gz
?
= P ei · t1

hz
?
= Qei · t2

Fig. 1: The Σ-protocol for Relation R3

Theorem 1. Π3 is a three-move public-coin protocol for relation R3. It is per-
fectly complete, unconditionally special sound, and special honest-verifier zero-
knowledge (SHVZK).

As the proof of Theorem 1 is natural, we provide the corresponding proof
in Appendix C.1.

Remark that the check 4 in the CV can also be proven using this type of
Σ-protocol. However, rather than proving that there exist β and δ such that

Fast and Designated-verifier Friendly zk-SNARKs in the BPK Model 15

P = [β]1 ∧Q = [β]2 and P ′ = [δ]1 ∧Q′ = [δ]2, we prove that there exist β and δ
such that P = [β]1 ∧Q = [β]2 ∧ T = [β]T and P ′ = [δ]1 ∧Q′ = [δ]2 ∧ T ′ = [δ]T .
As explained in Subsection 4.3, we must ensure that the exponential of new
elements [β]T and [δ]T added to the CRS is consistent with the exponential of
[β]1, [δ]1. We denote this protocol byΠ4. One may think that the Σ-verifier could
just compute the [β]T and [δ]T by pairing. Note that we intentionally avoided
the need for pairing to support our discussion in Section 7.

4.2 Proof for Exponential Multiplication Relation

Recall that check 2 in the CV is
For i = 1, 2, . . . , n− 1 check whether[

xi
]
1
· [1]2 =

[
xi−1

]
1
· [x]2

From the respective exponents, we just hope to prove for i ∈ [1, n − 1] the
relation R

′

2 as follows:

R
′

2 =

{
(pp, Pi ∈ G1, Qi ∈ G1, T

′ ∈ G2;x ∈ Zp) :

Pi = Qxi ∧ T
′
= hx

}

However, it is not convenient to design the Σ-protocol with this relation.
Therefore, we chose to prove this relation in a more twisty but convenient man-
ner. Our strategy involves proving that there exists x such that T = [x]1 ∧ T

′
=

[x]2 firstly. Recall that this relation is included in relation R3, which has been
proven. Thereafter, for i ∈ [1, n− 1], we can prove that the relation R2 holds.

R2 =

{(
pp, Pi ∈ G1, Qi ∈ G1, T ∈ G1;x

i−1 ∈ Zp
)
:

Pi = T x
i−1

∧Qi = gx
i−1

}

The Protocol 2 denoted by Π2 is a Σ-protocol for relation R2. As shown in
Fig.2, this protocol is a public-coin protocol; thus, it can be transformed to be
non-interactive by the Fiat-Shamir transformation [26].

Theorem 2. Π2 is a three-move public-coin protocol for relation R2. It is per-
fectly complete, unconditionally special sound, and SHVZK.

The proof of Theorem 2 is provided in Appendix C.2.

4.3 Proof for More Complex Pairing Equation

Here, we introduce the method to prove checks 5 and 6 in the CV. Our strat-
egy is to prove that each pairing in checks 5 and 6 is well-formed by using proofs
which are very similar to the protocol for exponential multiplication relation. For
example, we present the protocol Π1

5 which is very similar to Π2 in Appendix
D: Fig.5, to prove the pairing

[
xit(x)
δ

]
1
· [δ]2 is well-formed.

16 Xudong Zhu et al.

Protocol 2 Σ-protocol Π2 for relation R2

Σ-protocol to prove the exponential multiplication

PUBLIC PARAMETERS:pp
FOR EVERY i ∈ [1, n− 1]

INPUT:(Pi =
[
xi
]
1
, Qi =

[
xi−1

]
1
, T = [x]1 ;x

i−1 ∈ Zp)
Pi = T x

i−1

∧Qi = gx
i−1

Prover Verifier

Pick r ∈ Zp
Compute

t = T r, t1 = gr

t,t1−−−−−−−−−→
Pick e ∈ Zp

e←−−−−−−−−−
Compute

z = exi−1 + r
z−−−−−−−−−→

Check
T z

?
= P ei · t

gz
?
= Qei · t1

Fig. 2: The Σ-protocol for Relation R2

For i ∈ [0, n− 2], we prove R1
5 as follows:

R1
5 =

(
pp, Pi ∈ GT , Qi ∈ G1, T ∈ GT ;

xit(x)

δ
∈ Zp

)
:

Pi = T
xit(x)
δ ∧Qi = g

xit(x)
δ

Theorem 3. Π1

5 is a three-move public-coin protocol for relation R1
5. It is per-

fectly complete, unconditionally special sound, and SHVZK.

The proof of Theorem 3 is very similar to the proof of Theorem 2 which
is provided in Appendix C.2, so we omit it here.

Notably, in the relation R1
5, Pi = [xit(x)]T are elements in the group GT ,

which are computed and provided by the Σ-prover. You may wonder why we
did not use Pi = [xit(x)]1 directly, that is because these elements are extra
elements added by the verifier to the original CRS of the Groth16 scheme, which
may compromise the soundness property. Further, [xit(x)]T can be computed by
the prover directly, with the original CRS of the Groth16 scheme. This means
that the extra element [xit(x)]T will not provide more capabilities to the generic
group adversary, and thus will not compromise soundness. In addition, with
P = [xit(x)]T , T is natural to be [δ]T rather than [δ]1; thus, the Σ-protocol
works well.

Fast and Designated-verifier Friendly zk-SNARKs in the BPK Model 17

Now, we introduce how to prove the entire check 5, recall that check 5 in the
CV is

For i = 0, 1, . . . , n− 2 checks whether[
xit(x)
δ

]
1
· [δ]2 =

[
xi
]
1
·
[∑n−1

j=0 tjx
j
]
2
+
[
xi+1

]
1
·
[
tnx

n−1]
2

Evidently, this check is more complex than an exponential equality check or
exponential multiplication check. Our proof strategy includes the following four
steps:

1. For i ∈ [0, n − 2], the verifier adds [δ]T , [x
it(x)]T into the CRS, and then

proves that the tuple
(
[xit(x)]T ,

[
xit(x)
δ

]
1
, [δ]T

)
satisfies the exponential

multiplication relation with the Σ-protocol Π1
5 . Notably, the consistency

between [δ]T and [δ]2 can be proved in Π4, as we have remarked in Subsec-
tion 4.1.

2. For i ∈ [0, n− 2], the verifier adds
[∑n−1

j=0 tjx
j
]
T
,
[
xi
∑n−1
j=0 tjx

j
]
T
into the

CRS, and then proves the tuple
([
xi
∑n−1
j=0 tjx

j
]
T
, [xi]1,

[∑n−1
j=0 tjx

j
]
T

)
sat-

isfies the exponential multiplication relation with the Σ-protocol similar
to Π1

5 , we denote this protocol by Π2
5 . Notably, the consistency between[∑n−1

j=0 tjx
j
]
T

and
[∑n−1

j=0 tjx
j
]
2
can also be proved with an exponential

equality relation Σ-protocol similar to the protocol Π4 (we denote this Σ-
protocol by Π1

0) while the
[∑n−1

j=0 tjx
j
]
2
can be computed via CRS by the

prover who has checked the Π2 and Π3.
3. For i ∈ [0, n− 2], the verifier adds

[
tnx

n−1]
T
,
[
xi+1tnx

n−1]
T
into the CRS,

and then proves that the tuple
([
xi+1tnx

n−1]
T
,
[
xi+1

]
1
,
[
tnx

n−1]
T

)
satisfies

the exponential multiplication relation with the Σ-protocol similar to Π1
5 ,

we denote this protocol by Π3
5 . Notably, the consistency between

[
tnx

n−1]
T

and
[
tnx

n−1]
2
can also be proved with an exponential equality relation Σ-

protocol similar to the protocol Π4 (we denote this Σ-protocol by Π2
0) while

the
[
tnx

n−1]
2
can be computed via CRS by the prover who has checked Π2

and Π3.
4. For i ∈ [0, n− 2], the prover checks whether equation

[xit(x)]T = [xi
n−1∑
j=0

tjx
j]T · [xi+1tnx

n−1]T

holds.

Recall that check 6 in CV is that for i = l + 1, . . . ,m, checking whether[
βui(x)+αvi(x)+wi(x)

δ

]
1
· [δ]2 =[∑n−1

j=0 ui,jx
j
]
1
· [β]2 + [α]1 ·

[∑n−1
j=0 vi,jx

j
]
2
+
[∑n−1

j=0 wi,jx
j
]
1
· [1]2

18 Xudong Zhu et al.

Using the same strategy introduced above, check 6 in the CV can also be
proved. Particularly,

1. For i ∈ [l + 1,m], by adding [δ]T , [βui(x) + αvi(x) + wi(x)]T into CRS, we
can use Π1

6 to prove that the tuple(
[βui(x) + αvi(x) + wi(x)]T ,

[
βui(x) + αvi(x) + wi(x)

δ

]
1

, [δ]T

)
satisfies the exponential multiplication relation while the consistency be-
tween [δ]T and [δ]2 can be proved in Π4.

2. For i ∈ [l + 1,m], by adding the extra elements [β]T ,
[
β
∑n−1
j=0 ui,jx

j
]
T
, we

can useΠ2
6 to prove that the tuple

([
β
∑n−1
j=0 ui,jx

j
]
T
,
[∑n−1

j=0 ui,jx
j
]
1
, [β]T

)
satisfies the exponential multiplication relation, whereas the consistency be-
tween [β]T and [β]2 can be proved in Π4 and

[∑n−1
j=0 ui,jx

j
]
1
can be com-

puted by the prover who has checked Π2 from CRS.
3. For i ∈ [l+1,m], by adding [α]T ,

[
α
∑n−1
j=0 vi,jx

j
]
T
, we can use Π3

6 to prove

that the tuple
([
α
∑n−1
j=0 vi,jx

j
]
T
,
[∑n−1

j=0 vi,jx
j
]
2
, [α]T

)
satisfies the expo-

nential multiplication relation, whereas
[∑n−1

j=0 vi,jx
j
]
2
can be computed by

the prover who has checked Π2 and Π3 from CRS. We denote the proof for
consistency between [α]T and [α]1 by Π3

0 .
4. For i ∈ [l+1,m], we useΠ4

0 to prove the consistency between
[∑n−1

j=0 wi,jx
j
]
T

and
[∑n−1

j=0 wi,jx
j
]
1
. In Π4

0

[∑n−1
j=0 wi,jx

j
]
1
for i ∈ [l + 1,m] can also be

computed by a prover who has checked Π2 from CRS.
5. For i ∈ [l + 1,m], the prover checks whether equation

[βui(x) + αvi(x) + wi(x)]T = [β

n−1∑
j=0

ui,jx
j]T · [α

n−1∑
j=0

vi,jx
j]T · [

n−1∑
j=0

wi,jx
j]T

holds.

Recall that all Σ-protocols above are public-coin; thus, they can be trans-
formed to be non-interactive by the Fiat-Shamir transformation [26]. Thus, we
can replace all pairing checks that need to be computed by the prover with the
verification of the Σ-protocol. In this study, the computation of

[∑n−1
j=0 ui,jx

j
]
1
,[∑n−1

j=0 vi,jx
j
]
2
,
[∑n−1

j=0 wi,jx
j
]
1
for i ∈ [l + 1,m] can be regarded as being ex-

cluded from the prover’s CV or SCV stage because these computations will also
be performed in the proof stage.

4.4 Batching Techniques

The previous subsections show how to achieve SCV at the cost of adding a
linear number of elements into the CRS. Here, we utilize batching techniques

Fast and Designated-verifier Friendly zk-SNARKs in the BPK Model 19

and present a method for reducing the number of extra elements in the CRS to
a constant value.

As shown in the previous subsections, there are linear (about n or m −
l) number of protocols that need to be run, which also leads to linear extra
elements. Specifically, in addition to the constant number of simple protocols
(e.g., Π1

0 , Π
2
0 , Π

3
0 , Π4), we must run

– Π2, Π3 for every i ∈ [1, n− 1].
– Π1

5 , Π
2
5 , Π

3
5 for every i ∈ [0, n− 2].

– Π1
6 , Π

2
6 , Π

3
6 , Π

4
0 for every i ∈ [l + 1,m].

Next, we will show in detail how to batch these protocols. We can batch Π3

with batching randomness c to obtain batΠ3, as shown in Fig.3. It is clear that
the proof size of batΠ3 is constant.

Protocol 4 Σ-protocol batΠ3

Σ-protocol to prove the batched exponential equality

PUBLIC PARAMETERS:pp
INPUT: for i ∈ [1, n− 1] (Pi =

[
xi
]
1
, Qi =

[
xi
]
2
, c ∈ Zp;xi ∈ Zp)

P = g
∑n−1
i=1 xici−1

, Q = h
∑n−1
i=1 xici−1

Prover Verifier

Pick r ∈ Zp
Compute

t1 = gr, t2 = hr

t1,t2−−−−−−−−−−→
Pick e ∈ Zp

e←−−−−−−−−−
Compute

z = e
(∑n−1

i=1 x
ici−1

)
+ r

z−−−−−−−−−→
Check

gz
?
=
(∏n−1

i=1 P
ci−1

i

)e
· t1

hz
?
=
(∏n−1

i=1 Q
ci−1

i

)e
· t2

Fig. 3: The Batched Σ-protocol for Relation R3

Theorem 4. batΠ3 is a three-move public-coin protocol. It is perfectly complete,
unconditionally special sound, and SHVZK.

The proof of Theorem 4 is provided inAppendix C.3. By similar ways, we
can obtain batΠ2, batΠ1

5 , and batΠ4
0 by batching Π2, Π

1
5 and Π4

0 with indepen-
dent batching randomness, The corresponding protocols are shown inAppendix

20 Xudong Zhu et al.

D: Fig.6, Fig.7, and Fig.8. It is clear that the proof sizes of these protocols
are all constant. Additionally, because the security proofs of the these batching
protocols are similar, we have omitted them for brevity.

In fact, we can treat Π2
5 , Π

3
5 as Π1

5 to obtain batΠ2
5 , batΠ

3
5 and then run

batΠ1
5 , batΠ

2
5 , and batΠ3

5 under the same batching randomness c. Similarly,
Π1

6 , Π
2
6 , Π

3
6 can be batched in the same way to get batΠ1

6 , batΠ
2
6 , and batΠ

3
6 .

Additionally, Π4
0 can be batched as batΠ4

0 as described above. Protocols batΠ1
6 ,

batΠ2
6 , batΠ3

6 , and Π4
0 should be run under the same batching randomness c.

Until now, we only needed a constant number of checks, and we only added a
constant number of extra elements into the CRS of the original scheme.

5 A New Publicly Verifiable zk-SNARK in the BPK
Model

Up to now, we have introduced many sub-protocols in Section 4 to prove
different consistencies. Thus, for the convenience of reviewing them, we summa-
rize them inAppendix A. Thereafter, we present the main zk-SNARK protocol
with SCV, which is based on those sub-protocols, and show that it is secure in
the BPK model.

5.1 Construction

Here, we present a new zk-SNARK ΠSCV−Groth, which is secure in the BPK
model and based closely on Groth16. We implicitly assume that the bilinear
group parameter is included in R. In addition, we assume that each algorithm
checks whether their inputs belong to the correct groups.

Finally, we will describe the main protocol as a non-interactive protocol by
using the Fiat-Shamir transformation [26]. Therefore, we denote the concatena-
tion of the statement, elements in the public file, public input, and proof elements
written by the prover up to a certain point in time by transcript.

On input QAP relation R, we denote our construction by ΠSCV−Groth =
(AddF,CheckF ,ProveF ,VerifyF). We denote the Groth16 scheme by ΠGroth =
(Setup,ProveFGroth,Verify

F
Groth). For a simpler expression, we denote the hash

function byH, regard the pk of our construction as a set, and divide pk into three
parts. We denote the part including group elements in the CRS of Groth16 by
pkOrigin and the other part including only proofs of the Σ-protocols by pkSigma
while the rest is denoted by pkRest. This construction is described in detail as
follows:
Key-registration Phase

1. (pk, sk) ← AddF(R): We set the public file as F = Φ and pk = pkOrigin ∪
pkSigma ∪ pkRest = Φ. Thereafter, the verifier runs AddF(R) to get (pk, sk)
and put the pk into the public file F . The algorithm AddF on input R is
described as follows:
– The verifier runs Setup(R) of Groth16 to get pkOrigin = CRS and sk =

(α, β, γ, δ, x).

Fast and Designated-verifier Friendly zk-SNARKs in the BPK Model 21

– The verifier computes [β]T , [δ]T and runs Π4 non-interactively in the
RO model to obtain proof π4, which proves that there exist β and δ such
that P = [β]1∧Q = [β]2∧T = [β]T and P ′ = [δ]1∧Q′ = [δ]2∧T ′ = [δ]T ,
then set pkRest = pkRest ∪ [β]T ∪ [δ]T , pkSigma = pkSigma ∪ π4.

– Compute the challenges c1 = H(transcript, 0), c2 = H(transcript, 1),
the verifier then runs protocols batΠ2 and batΠ3 (with c1, c2 respectively)
non-interactively in the RO model to generate proofs batπ2 and batπ3,
respectively, which proves that for i = 1, 2, . . . , n− 1[

xi
]
1
· [1]2 =

[
xi−1

]
1
· [x]2; [1]1 ·

[
xi
]
2
=
[
xi
]
1
· [1]2

Set pkSigma = pkSigma ∪ batπ2 ∪ batπ3.
– Compute the challenge c3 = H(transcript, 2), the verifier then computes

and puts the following elements in pkRest:[∑n−2
i=0 x

it(x)ci3

]
T
, [δ]T ;

[∑n−1
j=0 tjx

j
∑n−2
i=0 x

ici3

]
T
,
[∑n−1

j=0 tjx
j
]
T
;[

tnx
n−1∑n−2

i=0 x
i+1ci3

]
T
,
[
tnx

n−1]
T

Under the same c3, by running protocol batΠ1
5 non-interactively in the

RO model to obtain batπ1
5 , the verifier can conform the prover that[∑n−2

i=0 x
it(x)ci3

]
T
is well-formed. Similarly, the verifier can runΠ1

0 , batΠ
2
5

and Π2
0 , batΠ

3
5 non-interactively to obtain π1

0 , batπ
2
5 , π

2
0 , batπ

3
5 and con-

form the prover that
[∑n−1

j=0 tjx
j
∑n−2
i=0 x

ici3

]
T
and

[
tnx

n−1∑n−2
i=0 x

i+1ci3

]
T

are well-formed. Additionally, set pkSigma = pkSigma∪batπ1
5∪π1

0∪batπ2
5∪

π2
0 ∪ batπ3

5 .
– Compute the challenge c4 = H(transcript, 3), the verifier then computes

and puts the following elements in pkRest:[∑m
i=l+1 (βui(x) + αvi(x) + wi(x)) c

i−l−1
4

]
T
, [δ]T ;[∑m

i=l+1

(
β
∑n−1
j=0 ui,jx

j
)
ci−l−14

]
T
, [β]T ;[∑m

i=l+1

(
α
∑n−1
j=0 vi,jx

j
)
ci−l−14

]
T
, [α]T ;[∑m

i=l+1

(∑n−1
j=0 wi,jx

j
)
ci−l−14

]
T

Under the same c4, by running batΠ1
6 , batΠ

2
6 , Π

3
0 , batΠ

3
6 , and batΠ4

0 non-
interactively in the ROmodel to obtain batπ1

6 , batπ
2
6 , π

3
0 , batπ

3
6 , and batπ

4
0 ,

respectively, the verifier can mainly conform the prover that the following
elements are well-formed:[∑m

i=l+1 (βui(x) + αvi(x) + wi(x)) c
i−l−1
4

]
T
;[∑m

i=l+1

(
β
∑n−1
j=0 ui,jx

j
)
ci−l−14

]
T
;
[∑m

i=l+1

(
α
∑n−1
j=0 vi,jx

j
)
ci−l−14

]
T
;[∑m

i=l+1

(∑n−1
j=0 wi,jx

j
)
ci−l−14

]
T

Additionally, set pkSigma = pkSigma∪ batπ1
6 ∪ batπ2

6 ∪π3
0 ∪ batπ3

6 ∪ batπ4
0 .

– Algorithm AddF(R) outputs pk = pkOrigin ∪ pkSigma ∪ pkRest and sk.
2. Set the public file F = Φ ∪ pk.

Proof Phase

22 Xudong Zhu et al.

1. 0/1 ← CheckF (R): The prover runs CheckF (R) to ensure all elements in
pkOrigin are well-formed. Algorithm CheckF on input R includes the follow-
ing steps:
– Check all the proofs in pkSigma with elements in pkOrigin and pkRest. If

all checks pass, the prover continues to run the following steps, otherwise
the prover outputs 0.

– The prover checks whether the following equations hold:[∑n−2
i=0 x

it(x)ci3

]
T
=
[∑n−1

j=0 tjx
j
∑n−2
i=0 x

ici3

]
T
·
[
tnx

n−1∑n−2
i=0 x

i+1ci3

]
T[∑m

i=l+1 (βui(x) + αvi(x) + wi(x)) c
i−l−1
4

]
T
=[∑m

i=l+1

(
β
∑n−1
j=0 ui,jx

j
)
ci−l−14

]
T
·
[∑m

i=l+1

(
α
∑n−1
j=0 vi,jx

j
)
ci−l−14

]
T
·[∑m

i=l+1

(∑n−1
j=0 wi,jx

j
)
ci−l−14

]
T

If the two equations hold, then the elements in pkOrigin are ensured to be
well-formed, algorithm CheckF (R) outputs 1, and the prover continues
to run the following steps. Otherwise, the algorithm outputs 0 and the
prover outputs 0.

2. π ← ProveF (R, u,w): The prover runs ProveFGroth(R, u,w) of Groth16 and
outputs its output π.

3. 0/1← VerifyF (R, u, sk, π): The verifier runs VerifyFGroth(R, u, π) of Groth16
and outputs its output.

5.2 Security Analysis

Theorem 5. Protocol ΠSCV−Groth is a non-interactive argument with perfect
completeness and computational zero-knowledge in the BPK+RO model. It has
computational knowledge soundness in the BPK model against adversaries that
use only the polynomial number of generic bilinear group operations.

Proof. Completeness: The completeness of this construction comes straightly
from the completeness of Groth16.

Public-key Verifiability: The public-key verifiability property comes straig-
htly from the completeness of the Σ-protocols.

Knowledge Soundness: Our construction is similar to that of Groth16
except that we include an efficient algorithm, SCV, and there are some extra
elements in the CRS that may compromise the soundness. In fact, the extra
elements in the CRS include only two parts. One part comprises the elements in
group GT (which are included in pkRest), and the other part is the proof of Σ-
protocol (which are included in pkSigma). Because the elements in pkRest can be
computed by pairing the elements from pkOrigin, the generic adversary cannot
gain any ability improvement. The zero knowledge property of the Σ-protocol
can also ensure that no extra power is given to the adversary. Altogether, we can
complete the SCV without compromising the knowledge soundness of Groth16.
Thus, the proof of knowledge soundness is the same as the proof of knowledge
soundness in [34].

Fast and Designated-verifier Friendly zk-SNARKs in the BPK Model 23

Zero-Knowledge: Notably, the verifier generate the CRS together with the
Σ-proofs and these proofs can be transformed to be non-interactive in the RO
model. Using the forking lemma discussed in [46], if the prover of the Σ-protocol
can find, with non-negligible probability, a valid transcript (a, e, z), the prover
of the Σ-protocol can also find another transcript (a, e′, z′). This yields an ex-
tractor with the expected polynomial time to extract τ = (x, δ) with proba-
bility 1 (note that x is one of the witness in batΠ3, and δ is the witness in
Π4). Simulator SimF (R, u, τ) can run CheckF (R) and output 0 if algorithm
CheckF (R) outputs 0. Thereafter, the simulator chooses r, s ← F and defines
proof π′ = ([A′]1, [B

′]2, [C
′]1) output by SimF (R, τ, u) as follows:

A′ = α+ r B′ = β + s

C ′ =
rs+αs+βr−

∑l
i=0 ai(βui(x)+αvi(x)+wi(x))

δ

If we denote the honestly generated proofs by π = ([A]1, [B]2, [C]1), it is
clear that [A]1, [B]2, [A

′]1, [B
′]2 are uniformly random. From the constant equa-

tion C =
AB−αβ−

∑l
i=0 ai(βui(x)+αvi(x)+wi(x))

δ , we know that [C]1 and [C ′]1 are
uniquely determined by [A]1, [B]2 and [A′]1, [B

′]2, respectively with fixed F .
Thus, the zero knowledge property holds.

Notably, the knowledge assumptions of previous studies that are used to ex-
tract τ do not hold for non-uniform machines. However, our extraction comes
from the forking lemma, which bypasses this limitation. Therefore, our construc-
tion satisfies the auxiliary-string black-box zero knowledge in the BPK model.
In addition, if we combine our Sigma-CRS verification algorithm with a variant
construction [16] of Groth16, we can easily achieve both ZK in the BPK model
and SE without adding extra assumptions.

Following the above analysis, we point out that the scheme in [37] actually
also satisfies (non-uniform) ZK in the BPK model, rather than just S-ZK. In fact,
they include "proof of discrete logarithm" Σ-protocols for each of the simula-
tion trapdoors, while the well-formedness of the public keys are still be checked
with pairings as in other works. Based on the results presented in Section 8,
we can conclude that the main computational cost lies in batching. Therefore,
the method to achieve ZK in the BPK model, as described in [37], is similar
in efficiency to ours. However, as we will discuss in Section 7, achieving the
auxiliary-string zero knowledge property in the BPK model is only one of our
goals, and our construction has remove dependence on pairings at the same time.

6 New Speed-up Technique

Here, we first present a new computation mechanism, Compute-with-Help
Mechanism, and then demonstrate how to use this new technique in our new con-
struction. Interestingly, we found that in the scenario we are about to describe,
our new speed-up technique could also be considered as a speed-up technique
to the multi-scalar multipication (MSM) which is a fundamental computational
problem in the field of cryptography, especially zk-SNARK. So we proposed our
new technique as an independent interest.

24 Xudong Zhu et al.

6.1 Compute-with-Help Mechanism

For a bilinear group (p,G1,G2,GT , e, g, h), we define the public parameter
pp = (G1,G2,GT ,Zp, p, g, h). For a generalized consideration, we also denote
g, h and e(g, h) as g1, g2 and g3, respectively. We assume that CRS

{
gx

i

τ

}
i∈[0,d]

is generated by the honest setup, where τ ∈ {1, 2}. Evidently,
{
gx

i

3

}
i∈[0,d]

can

be computed through pairing. It may appear in cryptography that with the
public parameters pp,

{
gx

i

τ

}
i∈[0,d],τ∈{1,2}

and any n ≤ d degree polynomial

f(X) ∈ F[X], one party has to compute O (n) times exponential multiplica-
tion to obtain gf(x)τ , τ ∈ {1, 2, 3} (this is exactly a MSM computation). However,
we found that for some special polynomials, and with the help of another party
who is knowledgeable about x, element gf(x)τ can be obtained by computing
only O (m) times of exponential multiplication, where m � n. Thus, we call
this speed up technique Computation-with-Help (CWH) mechanism. Note that
in the field of zk-SNARK, the xi in the CRS

{
gx

i

τ

}
i∈[0,d]

are always regarded as

toxic information and should be discarded. However, our CWH technique show
that they are not just toxic information, but also computing accelerators that
could be well utilized.

To demonstrate the technique to achieve CWH, we first need to define a type
of polynomial.

Definition 5. (Self-recursive polynomial (SRP)) We define polynomial f(X) on
field F as a self-recursive polynomial if there exists positive integer m and mono-
mial set {qi(X)}i∈[1,m] such that f(X) = (1 + q1(X)) · · · (1 + qm(X)), where
each monomial qi(X) is a non-zero degree monomial over the field F. We denote
the polynomial set including all the self-recursive polynomials by SRP .

Notably, for a fixed polynomial f(X) ∈ SRP and different choices of field
F, the decomposition of f(X) may not be unique. There could be k correct but
different monomial sets {qji (X)}i∈[1,mj], where j ∈ [1, k], such that polynomial

f(X) can be represented as f(X) =
(
1 + qj1(X)

)
· · ·
(
1 + qjmj (X)

)
. However,

there is no need to require decomposition uniqueness, and the condition that
f(X) ∈ SRP is sufficient for us to utilize our technique.

In protocol 8 (Fig.4), we introduce how the Σ-prover could help the Σ-
verifier to compute gf(x)τ , where τ ∈ {1, 2, 3} when the

{
gx

i

τ

}
i∈[0,d]

have already

been well-formed. We assume that n degree polynomial f(X) ∈ SRP ; thus,
f(X) = (1 + q1(X)) · · · (1 + qm(X)) = (1 + q1(X)) · h(X), where monomials
qi(X) are defined in Zp[X]. Our idea comes from an observation where we found
that if the Σ-verifier computes gh(x)τ by self, the Σ-verifier could just obtain
the gq1(x)h(x)τ and verify its well-formness with the Σ-prover’s help. Finally, the
Σ-verifier computes gf(x)τ by just multiplying gh(x)τ and gq1(x)h(x)τ .

Fast and Designated-verifier Friendly zk-SNARKs in the BPK Model 25

Protocol 8 Compute-with-Help Mechanism ΠCWH

An abstract protocol to introduce the Compute-with-Help Mechanism

PUBLIC PARAMETERS: pp

INPUT:
(
All

{
gx
i

τ

}
i∈[0,d],τ∈{1,2}

, f(X), h(X), q1(X) ∈ F<d[X]; q1(x) ∈ Zp
)

Prover Verifier

Compute T = g
q1(x)h(x)
τ ,

where τ ∈ {1, 2, 3}
Pick r ∈ Zp
Compute

t1 = gr1 , t2 =
(
g
h(x)
τ

)r
T,t1,t2−−−−−−−−−−→

Pick e ∈ Zp
e←−−−−−−−−−

Compute
z = eq1(x) + r

z−−−−−−−−−→
Compute gq1(x)1 with one of the

{
gx
i

1

}
i∈[0,d]

Compute gh(x)τ with
({

gx
i

τ

}
i∈[0,d]

)
Check

gz1
?
=
(
g
q1(x)
1

)e
· t1(

g
h(x)
τ

)z ?
= T e · t2

Compute gf(x)τ by multiplying gh(x)τ and T

Fig. 4: The Compute-with-Help Protocol

Theorem 6. ΠCWH is a three-move public-coin protocol. It is perfectly com-
plete, unconditionally special sound, and SHVZK.

The core component in protocol 8 is the proof of the exponential equality
relation introduced in Subsection 4.1. Because

{
gx

i

1

}
, i ∈ [0, d] are assumed to

be well-formed, the Σ-prover can utilize the exponential equality proof to prove
that for base element g1 and gh(x)τ , the exponentials of gq1(x)1 and T are equal.
Thus, the security proof of this protocol is similar to that of protocol Π3, and
the specific proof of Theorem 6 is given in Appendix C.4.

Notably, while many other computations only take constant time, at most
one group exponential operation is needed to compute gq1(x)1 because q1(x) is
monomial. Thus, the primary expense of the Σ-verifier is the computation of
g
h(x)
τ . Because the polynomial h(X) = (1 + q2(X)) · · · (1 + qm(X)) also belongs

26 Xudong Zhu et al.

to SRP , protocolΠCWH can be called recursivelym times to make the Σ-verifier
obtain g

f(x)
τ with a computational complexity of O(m) rather than O(n). The

size of m is closely related to the polynomial, and for some specific polynomials,
the size ofm can be significantly smaller than n, for example,m = O(log n). This
means that we can utilize the Computation-with-Help mechanism to significantly
improve efficiency in specific situations.

We denote the recursive protocol as ΠRCWH . For the security of ΠRCWH , we
recommend going to Appendix B for some relevant definitions, and we present
the following theorem.

Theorem 7. ΠRCWH is a (2m + 1)-move public-coin protocol. It is perfectly
complete, unconditionally (2, . . . , 2)-special sound, and SHVZK.

Proof. The completeness, (2, . . . , 2)-special soundness, and honest-verifier zero-
knowledge of ΠRCWH follows directly from the completeness, special soundness,
and honest-verifier zero-knowledge of ΠCWH , respectively.

In addition, interactive protocol ΠRCWH can be transformed into a non-
interactive protocol using the Fiat-Shamir transformation [26], and the witness
extended emulation is known to follow from (2, . . . , 2)-special soundness accord-
ing to the generalized forking lemma (Appendix B.2). Recall that to prove
the zero knowledge property of the zk-SNARK in Subsection 5.2, we used the
forking lemma in [46], which yielded an extractor to obtain the simulation trap-
door. Notably, when we plug the CWH protocol in the SCV construction, both
the forking lemma and generalized forking lemma could be used to extract the
specific trapdoor.

6.2 Application in Our Construction

Here, we present a specific application about the Compute-with-Help Mech-
anism introduced in Subsection 6.1. We demonstrate how to use the CWH to
speed up the prover algorithm of the zk-SNARK construction in Subsection 5.

As shown in Subsection 4.4, the computational complexity of the Σ-verifier
(the prover of the main protocol) depends mainly on the final verification, which
includes a linear number of group exponentiations. Therefore, we attempt to
speed up this process and improve the computational complexity of the Σ-
verifier. Notably, in the BPK model, it is crucial to speed up the prover’s algo-
rithm because the verifier’s main computational cost is a one-time computation
of generating the CRS.

As we will discuss in Section 8, the transformation from CV to SCV can
only provide limited optimization. Fortunately, in addition to theoretical contri-
butions, this transformation has inspired us with more ideas. Instead of the way
that the verifier generates the CRS first and then the prover runs the CV (some
pairing checks) to verify whether the CRS is well-formed, our attempt requires
that the verifier generates the CRS and some proofs to prove that the CRS is
well-formed. This means that we let verifier do more things (e.g., generating

Fast and Designated-verifier Friendly zk-SNARKs in the BPK Model 27

extra proofs). Now that we enable the verifier to generate CRS and proofs si-
multaneously in our construction, the verifier can further exploit the knowledge
derived from the CRS generation to produce additional proofs and thus reduce
the computation of the prover. In other words, the verifier could execute the
Compute-with-Help protocol with the prover.

Given that
[
xi
]
1
for i ∈ [1, n − 1] is well-formed (we assume that n − 1 is a

power of 2 without loss of generality), the prover can compute
[∑n−1

i=1 x
ici−1

]
1
in

logarithmic time rather than linear time by utilizing the CWH protocol, where
f(X) =

∑n−1
i=1 X

ici−1. The core of our technique is to utilize the verifier’s knowl-
edge of x. Specifically, when we want to compute G = g

∑n−1
i=1 xici−1

Equivalently,

G = gx+x
2c+···+x

n−1
2 c

n−3
2 ·

(
gx+x

2c+···+x
n−1
2 c

n−3
2

)xn−1
2 c

n−1
2

We observed that the prover only needs to compute

K =

(
gx+x

2c+···+x
n−1
2 c

n−3
2

)cn−1
2

The verifier can help the prover compute and publish P = Kx
n−1
2 together

with an non-interactive exponential equality relation proof that proves there ex-

ists x
n−1
2 such that P = Kx

n−1
2 and Q = gx

n−1
2 in the key-registration phase.

Clearly, this protocol can be recursively called logarithmic time. Thus, the com-
putations of g

∑n−1
i=1 xici−1

2 and g
∑n−1
i=1 xi−1ci−1

3 in batΠ3 and batΠ2
5 , respectively,

can be reduced to be logarithmic. The only cost is that we need to add loga-

rithmic extra elements (e.g., Kx
n−1

2i for i ∈ [1, log(n − 1)] and the logarithmic
number of exponential equality relation proofs) to the CRS.

As our zk-SNARK in the BPK model has excluded the trusted third party,
you may wonder why we could utilize the CWH protocol, which requires trusted
generated reference strings. In fact, the above speed-up process could be regarded
as being run after the related reference strings produced by the verifier (e.g., gτ
powers) in the zk-SNARK have been verified to be well-formed.

7 Efficient Implementation in the Designated-Verifier
Setting

Note that in scenarios where proof transfer is not desired, only a specific
verifier should know if the proof passes verification, such as anonymous transac-
tions in cryptocurrencies. Therefore, we will focus on implementing our scheme
in the designated-verifier setting in this section. To date, we have presented an
efficient publicly verifiable zk-SNARK in the BPK model using bilinear maps.
Although we may have many simple ways to turn publicly verifiable schemes

28 Xudong Zhu et al.

into schemes with designated verifier. We hope that designated-verifier schemes
have unique advantages in efficiency or size, as its application scenarios are more
limited compared to publicly verifiable schemes. So, we aspire to the designated-
verifier schemes that are compatible with the well-known and efficient "LIPs to
designated-verifier zk-SNARK" transformation mentioned in [13]. In [13], Bitan-
sky et al. proposed that a two-move linear-interactive proof can be combined with
pairing-based techniques (or additively homomorphic encryption techniques) to
obtain a publicly verifiable (or designated-verifier) zk-SNARK. What we want
to emphasize is that this efficient designated-verifier transformation is still valid
for the linear non-interactive proofs (NILPs) introduced by Groth16. Unfortu-
nately, this transformation has failed for all current zk-SNARKs in the BPK
model based on Groth16. By comparison, our scheme has removed all the re-
quirements for pairing and can still leverage additively homomorphic encryption
techniques (i.e., Paillier encryption) to obtain a very efficient designated-verifier
zk-SNARK in the BPK model.

Specifically, when we consider using the "LIPs to designated-verifier zk-
SNARK" transformation on Groth16, all elements in the public file are cipher-
texts outputed by an additively homomorphic encryption algorithm and are in a
standard (generic) group rather than bilinear group. The prover then generates
the proof by homomorphic operations on a standard group rather than opera-
tions on a bilinear group. Finally, the verifier verifies the proof by just decrypting
the ciphertexts and directly checking whether the plaintexts satisfy the verifica-
tion equation of NILP. It is evident that the conventional approach (adding pair-
ing checks) to obtain security in the BPK model no longer works because there
is no bilinear group in the construction at all. In addition, with the ciphertexts
in the public file, the prover cannot check the well-formness of the correspond-
ing plaintexts directly because the decryption private key is only owned by the
verifier. Fortunately, compared to the conventional approach, by utilizing the
additive homomorphism property, the Σ-protocols in our SCV technique could
be modified simply and directly to obtain a very efficient designated-verifier
zk-SNARK in the BPK model.

In addition, almost all current SNARK constructions assume that the state-
ments to be proven can be efficiently represented as either Boolean or arithmetic
circuits over finite fields, which rules out the possibility of using more machine-
friendly modulus such as powers of 2, which have proven to improve efficiency in
applications. In recent years, many cryptographic applications have also raised
demands for zero knowledge proofs over ring, such as proofs of fully homomorphic
encryption. In fact, the choice of the prime field Fp is limited by the existence
of groups of matching order for which secure bilinear maps exist. Ganesh et al.
[30] showed that we could overcome such restrictions and enable verifying com-
putations over rings. For the reason that our technique has also removed the
requirement for pairing, it seems that we could obtain a variant of the Groth16
scheme on the rings, which is also secure in the BPK model, by just combining
the Groth16-Like SNARK in [30] with Σ-protocols over rings (the challenge is
required to be selected from the large enough exceptional sets).

Fast and Designated-verifier Friendly zk-SNARKs in the BPK Model 29

8 Implementation

Here, we compare the efficiency of Groth’s zk-SNARK with conventional
CRS verification [27] (which is batched and denoted by Groth-CV), our zk-
SNARK construction (which is batched and denoted by Groth-SCV), and our
zk-SNARK with the CWH technique (which is batched and denoted by Groth-
CV-CWH) during implementation. In particular, because the main efficiency
difference among these schemes comes from the different CRS verification algo-
rithms, we also compare the three CRS verification algorithms from a theoretical
point of view.

Similar to the pre-existing implementation of Groth’s zk-SNARK in the
bellman [39] library, we implemented our zk-SNARKs in the Rust library using
low-level subroutines of bellman. The specific results were measured in a 64-bit
Windows 10 Operating System, which was installed on a standard laptop (Vic-
tus by HP Laptop 16-d0xxx), with an Intel core i5-11400H 2.70 GHz CPU
and 16GB RAM.

Table 1 compares the schemes Groth-CV, Groth-SCV, and Groth-SCV-
CWH. For a circuit with a large proportion of the multiplication gate and sev-
eral choices of n and l, we report several measures including the running time
of CG, CV, P, and V. Additionally, all times are expressed in seconds and all
three protocols are batched. We emphasize that the differences between Groth-
CV, Groth-SCV, and Groth-SCV-CWH only exist in the CRS generation and
CRS verification phases. Thus, the three schemes have the same proof and ver-
ification times. From Table 1, it can be concluded that the difference in the
CRS verification times of Groth-CV and Groth-SCV is extremely small, but
Groth-SCV-CWH does have shorter CRS verification time than Groth-CV.

Table 2 compares the main computation of conventional CRS verification
algorithm, our Sigma-CRS verification algorithm, and our SCV algorithm with
the CWH technique in group G1, G2, GT , and pairing from the asymptotic point
of view. We denote the number of multiplication gates by n and the number of
wires by m. From Table 2, it can be theoretically analyzed that the efficiencies
of the CV and SCV are almost the same. Compared to SCV-CWH, the CV
and SCV should compute 2n − 10 log n more exponential computations in the
group G1. Because m is related to n, we assume that m = cn for convenience,
where c is a constant. If we ignore the relatively small number 10 log n, the PCT
can be presented as PCT = 2n

(5+3c)n−3l = 2
(5+3c)−3 ln

. Thus our technique is
more advantageous when applied to the circuit with more multiplication gates
(note that c decreases as proportion of multiplication gates in all circuit gates
increases). It is also evident that with the same c, the PCT decreases as n
increases with the same l and increases as l becomes larger with the same n.
However, the n is often much larger than l, thus the main factor that determines
the value of PCT is the proportion of multiplication gates.

30 Xudong Zhu et al.

Table 1: Performance of the implementations of the Groth-CV, Groth-SCV,
and Groth-SCV-CWH for different values of n and l.

Groth-CV Groth-SCV Groth-SCV-CWH

Protocol P(s) V(s) CG(s) CV(s) CG(s) CV(s) CG(s) CV(s) PCT

n = 213,l = 26 0.151 0.008 0.898 0.387 2.065 0.350 2.076 0.298 22.9%
n = 214,l = 26 0.285 0.008 1.626 0.707 3.932 0.666 3.943 0.581 17.8%
n = 215,l = 26 0.529 0.008 3.090 1.209 7.650 1.192 7.662 1.017 15.9%
n = 215,l = 210 0.522 0.096 3.197 1.138 7.418 1.114 7.430 0.945 17.0%
n = 216,l = 210 0.977 0.097 6.224 2.212 15.007 2.326 15.020 1.938 12.4%
n = 217,l = 210 1.906 0.096 12.059 4.243 29.510 4.378 29.524 3.844 9.4%
n = 218,l = 210 3.637 0.094 23.241 7.671 58.480 7.555 58.493 6.558 14.5%
n = 219,l = 210 7.525 0.098 48.127 14.682 120.399 15.100 120.414 13.330 9.2%
n = 220,l = 210 14.290 0.096 94.246 27.874 235.155 27.585 235.171 24.246 13.0%

This table show us the specific performance comparison. "CG" in this table implies
the time of the CRS generation process that could be completed offline, while "V"
represents the time of the online verification algorithm. "CV" and "P" denote the
time of the CRS verification process and the time of the proof process, respectively.
"PCT" represents the efficiency improvement rate of the CRS verification in Groth-
SCV-CWH over the CRS verification in Groth-CV. By n and l, we denote the number
of multiplication gates and the length of public input, respectively.

Table 2: CRS verification comparison
G1 Exp G2 Exp GT Exp P

1CV 5n+ 3m− 3l n+m− l \ 15
2SCV 5n+ 3m− 3l n+m− l 23 \

3SCV-CWH 3n+ 10 logn+ 3m− 3l n+m− l 23 \

This table show us the prover’s computational complexity asymptotically in different
protocol. "G1 Exp", "G2 Exp", and "GT Exp" represent the exponential computa-
tion in group G1, G2 and GT , respectively. "P" means the pairing operation. And
we omitted very small constants in columns "G1 Exp" and "G2 Exp".

1 "CV" means the traditional CRS verification algorithm.
2 "SCV" means the Sigma-CRS verification algorithm presented in this work.
3 "SCV-CWH" means our Sigma-CRS verification with the CWH technique in addi-
tion.

Fast and Designated-verifier Friendly zk-SNARKs in the BPK Model 31

References

1. Abdolmaleki, B., Baghery, K., Lipmaa, H., Zając, M.: A subversion-resistant snark.
In: Takagi, T., Peyrin, T. (eds.) Advances in Cryptology – ASIACRYPT 2017. pp.
3–33. Springer International Publishing, Cham (2017)

2. Abdolmaleki, B., Glaeser, N., Ramacher, S., Slamanig, D.: Circuit-
succinct universally-composable nizks with updatable crs. Cryptology
ePrint Archive, Paper 2023/097 (2023), https://eprint.iacr.org/2023/097,
https://eprint.iacr.org/2023/097

3. Abdolmaleki, B., Lipmaa, H., Siim, J., Zając, M.: On qa-nizk in the bpk model. In:
Kiayias, A., Kohlweiss, M., Wallden, P., Zikas, V. (eds.) Public-Key Cryptography
– PKC 2020. pp. 590–620. Springer International Publishing, Cham (2020)

4. Abdolmaleki, B., Lipmaa, H., Siim, J., Zając, M.: On subversion-resistant snarks.
Journal of Cryptology 34(3), 17 (Apr 2021). https://doi.org/10.1007/s00145-021-
09379-y, https://doi.org/10.1007/s00145-021-09379-y

5. Abdolmaleki, B., Ramacher, S., Slamanig, D.: Lift-and-shift: Obtaining simu-
lation extractable subversion and updatable snarks generically. In: Ligatti, J.,
Ou, X., Katz, J., Vigna, G. (eds.) CCS ’20: 2020 ACM SIGSAC Conference
on Computer and Communications Security, Virtual Event, USA, November 9-
13, 2020. pp. 1987–2005. ACM (2020). https://doi.org/10.1145/3372297.3417228,
https://doi.org/10.1145/3372297.3417228

6. Amine, O., Baghery, K., Pindado, Z., Ràfols, C.: Simulation extractable versions
of groth’s zk-snark revisited. Cryptology ePrint Archive, Paper 2020/1306 (2020),
https://eprint.iacr.org/2020/1306, https://eprint.iacr.org/2020/1306

7. Baghery, K.: Subversion-resistant simulation (knowledge) sound nizks. In: Al-
brecht, M. (ed.) Cryptography and Coding. pp. 42–63. Springer International Pub-
lishing, Cham (2019)

8. Baghery, K., Pindado, Z., Ràfols, C.: Simulation extractable versions of groth’s
zk-snark revisited. In: Cryptology and Network Security: 19th International Con-
ference, CANS 2020, Vienna, Austria, December 14–16, 2020, Proceedings. p.
453–461. Springer-Verlag, Berlin, Heidelberg (2020). https://doi.org/10.1007/978-
3-030-65411-5_22, https://doi.org/10.1007/978-3-030-65411-5_22

9. Bellare, M., Fuchsbauer, G., Scafuro, A.: Nizks with an untrusted crs: Security in
the face of parameter subversion. In: Cheon, J.H., Takagi, T. (eds.) Advances in
Cryptology – ASIACRYPT 2016. pp. 777–804. Springer Berlin Heidelberg, Berlin,
Heidelberg (2016)

10. Ben-Sasson, E., Bentov, I., Horesh, Y., Riabzev, M.: Scalable zero knowledge with
no trusted setup. In: Boldyreva, A., Micciancio, D. (eds.) Advances in Cryptology
– CRYPTO 2019. pp. 701–732. Springer International Publishing, Cham (2019)

11. Ben-Sasson, E., Chiesa, A., Riabzev, M., Spooner, N., Virza, M., Ward, N.P.:
Aurora: Transparent succinct arguments for r1cs. In: Ishai, Y., Rijmen, V. (eds.)
Advances in Cryptology – EUROCRYPT 2019. pp. 103–128. Springer International
Publishing, Cham (2019)

12. Ben-Sasson, E., Chiesa, A., Tromer, E., Virza, M.: Succinct Non-Interactive zero
knowledge for a von neumann architecture. In: 23rd USENIX Security Sym-
posium (USENIX Security 14). pp. 781–796. USENIX Association, San Diego,
CA (Aug 2014), https://www.usenix.org/conference/usenixsecurity14/technical-
sessions/presentation/ben-sasson

13. Bitansky, N., Chiesa, A., Ishai, Y., Ostrovsky, R., Paneth, O.: Succinct non-
interactive arguments via linear interactive proofs. In: Sahai, A. (ed.) The-
ory of Cryptography - 10th Theory of Cryptography Conference, TCC 2013,

32 Xudong Zhu et al.

Tokyo, Japan, March 3-6, 2013. Proceedings. Lecture Notes in Computer Science,
vol. 7785, pp. 315–333. Springer (2013). https://doi.org/10.1007/978-3-642-36594-
2_18, https://doi.org/10.1007/978-3-642-36594-2_18

14. Blum, M., Feldman, P., Micali, S.: Non-interactive zero-knowledge and its appli-
cations (extended abstract). In: Simon, J. (ed.) Proceedings of the 20th Annual
ACM Symposium on Theory of Computing, May 2-4, 1988, Chicago, Illinois, USA.
pp. 103–112. ACM, New York (1988)

15. Bootle, J., Cerulli, A., Chaidos, P., Groth, J., Petit, C.: Efficient zero-knowledge
arguments for arithmetic circuits in the discrete log setting. In: Fischlin, M., Coron,
J.S. (eds.) Advances in Cryptology – EUROCRYPT 2016. pp. 327–357. Springer
Berlin Heidelberg, Berlin, Heidelberg (2016)

16. Bowe, S., Gabizon, A.: Making groth’s zk-snark simulation extractable in
the random oracle model. Cryptology ePrint Archive, Paper 2018/187 (2018),
https://eprint.iacr.org/2018/187

17. Bünz, B., Fisch, B., Szepieniec, A.: Transparent snarks from dark compilers. In:
Canteaut, A., Ishai, Y. (eds.) Advances in Cryptology – EUROCRYPT 2020. pp.
677–706. Springer International Publishing, Cham (2020)

18. Bünz, B., Bootle, J., Boneh, D., Poelstra, A., Wuille, P., Maxwell, G.:
Bulletproofs: Short proofs for confidential transactions and more. In: 2018
IEEE Symposium on Security and Privacy (SP). pp. 315–334 (2018).
https://doi.org/10.1109/SP.2018.00020

19. Campanelli, M., Faonio, A., Fiore, D., Querol, A., Rodríguez, H.: Lunar: A toolbox
for more efficient universal and updatable zksnarks and commit-and-prove exten-
sions. In: Tibouchi, M., Wang, H. (eds.) Advances in Cryptology – ASIACRYPT
2021. pp. 3–33. Springer International Publishing, Cham (2021)

20. Campanelli, M., Gennaro, R., Goldfeder, S., Nizzardo, L.: Zero-
knowledge contingent payments revisited: Attacks and pay-
ments for services. Association for Computing Machinery, New
York, NY, USA (2017). https://doi.org/10.1145/3133956.3134060,
https://doi.org/10.1145/3133956.3134060

21. Chiesa, A., Hu, Y., Maller, M., Mishra, P., Vesely, P., Ward, N.: Marlin: Pre-
processing zksnarks with universal and updatable srs. Cryptology ePrint Archive,
Paper 2019/1047 (2019), https://eprint.iacr.org/2019/1047

22. Chiesa, A., Ojha, D., Spooner, N.: Fractal: Post-quantum and transparent recursive
proofs from holography. In: Canteaut, A., Ishai, Y. (eds.) Advances in Cryptology –
EUROCRYPT 2020. pp. 769–793. Springer International Publishing, Cham (2020)

23. Danezis, G., Fournet, C., Groth, J., Kohlweiss, M.: Square span programs with
applications to succinct nizk arguments. In: Sarkar, P., Iwata, T. (eds.) Advances in
Cryptology – ASIACRYPT 2014. pp. 532–550. Springer Berlin Heidelberg, Berlin,
Heidelberg (2014)

24. Deng, Y.: Individual simulations. In: Moriai, S., Wang, H. (eds.) Advances in
Cryptology - ASIACRYPT 2020 - 26th International Conference on the Theory
and Application of Cryptology and Information Security, Daejeon, South Korea,
December 7-11, 2020, Proceedings, Part III. Lecture Notes in Computer Science,
vol. 12493, pp. 805–836. Springer (2020). https://doi.org/10.1007/978-3-030-64840-
4_27, https://doi.org/10.1007/978-3-030-64840-4_27

25. Fauzi, P., Lipmaa, H., Siim, J., Zając, M., Ødegaard, A.T.: Verifiably-extractable
owfs and their applications to subversion zero-knowledge. In: Tibouchi, M., Wang,
H. (eds.) Advances in Cryptology – ASIACRYPT 2021. pp. 618–649. Springer
International Publishing, Cham (2021)

Fast and Designated-verifier Friendly zk-SNARKs in the BPK Model 33

26. Fiat, A., Shamir, A.: How to prove yourself: Practical solutions to identification and
signature problems. In: Odlyzko, A.M. (ed.) Advances in Cryptology — CRYPTO’
86. pp. 186–194. Springer Berlin Heidelberg, Berlin, Heidelberg (1987)

27. Fuchsbauer, G.: Subversion-zero-knowledge snarks. In: Abdalla, M., Dahab, R.
(eds.) Public-Key Cryptography – PKC 2018. pp. 315–347. Springer International
Publishing, Cham (2018)

28. Fuchsbauer, G.: Wi is not enough: Zero-knowledge contingent (service) payments
revisited. In: Proceedings of the 2019 ACM SIGSAC Conference on Computer
and Communications Security. p. 49–62. CCS ’19, Association for Computing Ma-
chinery, New York, NY, USA (2019). https://doi.org/10.1145/3319535.3354234,
https://doi.org/10.1145/3319535.3354234

29. Gabizon, A., Williamson, Z.J., Ciobotaru, O.: Plonk: Permutations over lagrange-
bases for oecumenical noninteractive arguments of knowledge. Cryptology ePrint
Archive, Paper 2019/953 (2019), https://eprint.iacr.org/2019/953

30. Ganesh, C., Nitulescu, A., Soria-Vazquez, E.: Rinocchio: Snarks for ring arith-
metic. J. Cryptol. 36(4) (oct 2023). https://doi.org/10.1007/s00145-023-09481-3,
https://doi.org/10.1007/s00145-023-09481-3

31. Gennaro, R., Gentry, C., Parno, B., Raykova, M.: Quadratic span programs and
succinct nizks without pcps. In: Johansson, T., Nguyen, P.Q. (eds.) Advances in
Cryptology – EUROCRYPT 2013. pp. 626–645. Springer Berlin Heidelberg, Berlin,
Heidelberg (2013)

32. Goldwasser, S., Micali, S., Rackoff, C.: The knowledge complexity of inter-
active proof systems. SIAM Journal on Computing 18(1), 186–208 (1989).
https://doi.org/10.1137/0218012

33. Groth, J.: Short pairing-based non-interactive zero-knowledge arguments. In: Abe,
M. (ed.) Advances in Cryptology - ASIACRYPT 2010. pp. 321–340. Springer Berlin
Heidelberg, Berlin, Heidelberg (2010)

34. Groth, J.: On the size of pairing-based non-interactive arguments. In: Fischlin, M.,
Coron, J.S. (eds.) Advances in Cryptology – EUROCRYPT 2016. pp. 305–326.
Springer Berlin Heidelberg, Berlin, Heidelberg (2016)

35. Groth, J., Ishai, Y.: Sub-linear zero-knowledge argument for correctness of a shuffle.
In: Smart, N. (ed.) Advances in Cryptology – EUROCRYPT 2008. pp. 379–396.
Springer Berlin Heidelberg, Berlin, Heidelberg (2008)

36. Groth, J., Kohlweiss, M., Maller, M., Meiklejohn, S., Miers, I.: Updatable and
universal common reference strings with applications to zk-snarks. In: Shacham,
H., Boldyreva, A. (eds.) Advances in Cryptology – CRYPTO 2018. pp. 698–728.
Springer International Publishing, Cham (2018)

37. Groth, J., Maller, M.: Snarky signatures: Minimal signatures of knowledge
from simulation-extractable snarks. In: Katz, J., Shacham, H. (eds.) Advances
in Cryptology - CRYPTO 2017 - 37th Annual International Cryptology Con-
ference, Santa Barbara, CA, USA, August 20-24, 2017, Proceedings, Part II.
Lecture Notes in Computer Science, vol. 10402, pp. 581–612. Springer (2017).
https://doi.org/10.1007/978-3-319-63715-0_20, https://doi.org/10.1007/978-3-
319-63715-0_20

38. Kilian, J.: A note on efficient zero-knowledge proofs and arguments (extended
abstract). In: Kosaraju, S.R., Fellows, M., Wigderson, A., Ellis, J.A. (eds.) Pro-
ceedings of the 24th Annual ACM Symposium on Theory of Computing, May 4-6,
1992, Victoria, British Columbia, Canada. pp. 723–732. ACM, New York (1992)

39. Labs, M.: Bellman : Bellman zksnark library for community with ethereum’s bn256
support, github https://github.com/matter-labs/bellman

34 Xudong Zhu et al.

40. Lindell: Parallel coin-tossing and constant-round secure two-party computation.
Journal of Cryptology 16(3), 143–184 (Jun 2003). https://doi.org/10.1007/s00145-
002-0143-7, https://doi.org/10.1007/s00145-002-0143-7

41. Lipmaa, H.: Progression-free sets and sublinear pairing-based non-interactive zero-
knowledge arguments. In: Cramer, R. (ed.) Theory of Cryptography. pp. 169–189.
Springer Berlin Heidelberg, Berlin, Heidelberg (2012)

42. Lipmaa, H.: A unified framework for non-universal snarks. In: Hanaoka, G.,
Shikata, J., Watanabe, Y. (eds.) Public-Key Cryptography - PKC 2022 - 25th IACR
International Conference on Practice and Theory of Public-Key Cryptography,
Virtual Event, March 8-11, 2022, Proceedings, Part I. Lecture Notes in Computer
Science, vol. 13177, pp. 553–583. Springer (2022). https://doi.org/10.1007/978-3-
030-97121-2_20, https://doi.org/10.1007/978-3-030-97121-2_20

43. Maller, M., Bowe, S., Kohlweiss, M., Meiklejohn, S.: Sonic: Zero-knowledge snarks
from linear-size universal and updateable structured reference strings. Cryptology
ePrint Archive, Paper 2019/099 (2019), https://eprint.iacr.org/2019/099

44. Micali, S.: Computationally sound proofs. SIAM Journal on Computing 30(4),
1253–1298 (2000). https://doi.org/10.1137/S0097539795284959

45. Nguyen, K., Ambrona, M., Abe, M.: Wi is almost enough: Contingent payment all
over again. In: Proceedings of the 2020 ACM SIGSAC Conference on Computer
and Communications Security. p. 641–656. CCS ’20, Association for Computing
Machinery, New York, NY, USA (2020). https://doi.org/10.1145/3372297.3417888,
https://doi.org/10.1145/3372297.3417888

46. Pointcheval, D., Stern, J.: Security proofs for signature schemes. In: Maurer, U.
(ed.) Advances in Cryptology — EUROCRYPT ’96. pp. 387–398. Springer Berlin
Heidelberg, Berlin, Heidelberg (1996)

47. Setty, S.: Spartan: Efficient and general-purpose zksnarks without trusted setup.
In: Micciancio, D., Ristenpart, T. (eds.) Advances in Cryptology – CRYPTO 2020.
pp. 704–737. Springer International Publishing, Cham (2020)

48. Wahby, R.S., Tzialla, I., Shelat, A., Thaler, J., Walfish, M.: Doubly-efficient zk-
snarks without trusted setup. In: 2018 IEEE Symposium on Security and Privacy
(SP). pp. 926–943 (2018). https://doi.org/10.1109/SP.2018.00060

Acknowledgements We would like to thank Xinxuan Zhang, Shunli Ma and
anonymous reviewers for their theoretical guidance and valuable suggestions.

Fast and Designated-verifier Friendly zk-SNARKs in the BPK Model 35

A Sub-protocols Summary

Here, we summarize the sub-protocols which are introduced in Section 4 and
required in our zk-SNARK protocol. Recall that we now have many protocols to
prove different consistencies:

1. Π1
0 : P =

[∑n−1
j=0 tjx

j
]
T
, Q =

[∑n−1
j=0 tjx

j
]
2

2. Π2
0 : P =

[
tnx

n−1]
T
, Q =

[
tnx

n−1]
2

3. Π3
0 : P = [α]T , Q = [α]1

4. batΠ2 : Pi =
[
xi
]
1
, Qi =

[
xi−1

]
1
, T = [x]1 for i ∈ [1, n− 1]

5. batΠ3 : Pi =
[
xi
]
1
, Qi =

[
xi
]
2
for i ∈ [1, n− 1]

6. Π4 : P = [δ]1, Q = [δ]2, T = [δ]T and P = [β]1, Q = [β]2, T = [β]T

7. batΠ1
5 : P =

[∑n−2
i=0 x

it(x)ci
]
T
, Qi =

[
(xit(x))/δ

]
1
, T = [δ]T for i ∈ [0, n−2]

8. batΠ2
5 : P =

[∑n−2
i=0 x

i
∑n−1
j=0 tjx

jci
]
T
, Qi =

[
xi
]
1
, T =

[∑n−1
j=0 tjx

j
]
T

for
i ∈ [0, n− 2]

9. batΠ3
5 : P =

[∑n−2
i=0 x

i+1tnx
n−1ci

]
T
, Qi =

[
xi+1

]
1
, T =

[
tnx

n−1]
T

for
i ∈ [0, n− 2]

10. batΠ1
6 : P =

[∑m
i=l+1(βui(x) + αvi(x) + wi(x))c

i−l−1]
T
, Qi = [(βui(x) +

αvi(x) + wi(x)) /δ]1, T = [δ]T for i ∈ [l + 1,m]

11. batΠ2
6 : P =

[∑m
i=l+1 β

∑n−1
j=0 ui,jx

jci−l−1
]
T
, Qi =

[∑n−1
j=0 ui,jx

j
]
1
, T =

[β]T for i ∈ [l + 1,m]

12. batΠ3
6 : P =

[∑m
i=l+1 α

∑n−1
j=0 vi,jx

jci−l−1
]
T
, Qi =

[∑n−1
j=0 vi,jx

j
]
2
, T =

[α]T for i ∈ [l + 1,m]

13. batΠ4
0 :
[∑m

i=l+1

∑n−1
j=0 wi,jx

jci−l−1
]
T
,Qi =

[∑n−1
j=0 wi,jx

j
]
1
for i ∈ [l+1,m]

Notably, there is a trick that after the computation of
[∑n−1

i=1 x
i−1ci−13

]
1
in

batΠ2
5 , the verifier could also help the prover to compute the

[∑n−1
i=1 x

ici−13

]
1
in

batΠ3
5 by proving the exponential multiplication relation for

([∑n−1
i=1 x

ici−13

]
1
,[∑n−1

i=1 x
i−1ci−13

]
1
, [x]1). However, this trick does not generate any advantage

in term of prover efficiency. This is because with the knowledge of c3, it is
easy to compute

[∑n−1
i=1 x

i−1ci−13

]
1
and

[∑n−1
i=1 x

ici−13

]
1
together through O(n)

exponentiations.

B Definitions

B.1 Witness Extended Emulation

In this appendix subsection, we will introduce the definition of witness
extended emulation. It is another definition of knowledge soundness which has

36 Xudong Zhu et al.

been used for example in [15, 18] and defined in [40, 35]. Informally, A proto-
col is said to have this property if for any prover P there exists an efficient
algorithm, with rewindable oracle access to P , that outputs a transcript and,
if this transcript is accepting then it outputs, with overwhelming probability, a
witness as well. The transcripts generated by this algorithm are required to be
indistinguishable from conversations between P and an honest verifier.

Definition 6. (Statistical witness extended emulation [15]). (P, V) has statisti-
cal witness extended emulation if for all deterministic polynomial time P there
exists an expected polynomial time emulator E such that for all interactive ad-
versaries A

Pr
[
(u, s)← A

(
1λ
)
; tr ←

〈
P (u, s), V (u)

〉
: A(tr) = 1

]
s
≈Pr

[
(u, s)← A

(
1λ
)
; (tr, w)← E〈P (u,s),V (u)〉(u) :

A(tr) = 1 and if tr is accepting then (u,w) ∈ R

]

where the oracle called by E〈P (u,s),V (u)〉 permits rewinding to a specific point and
resuming with fresh randomness for the verifier from this point onwards.

In the definition, s can be interpreted as the state of P , including the ran-
domness. So, whenever P is able to make a convincing argument when in state
s, E can extract a witness. This is why we call it an argument of knowledge.

B.2 Generalized Forking Lemma

In this appendix subsection, we will introduce the generalized forking lemma
which has been formally discussed in [15].

Suppose that we have a (2µ+1)-move public-coin argument with µ challenges,
x1, . . . , xµ in sequence. Let ki ≥ 1 for 1 ≤ i ≤ µ. Consider

∏µ
i=1 ki accepting

transcripts with challenges in the following tree format. The tree has depth µ
and

∏µ
i=1 ki leaves. The root of the tree is labelled with the statement. Each

node of depth i < µ has exactly ki children, each labelled with a distinct value
for the i th challenge xi.

This can be referred to as an (k1, . . . , kµ)-tree of accepting transcripts. All of
our arguments allow a witness to be extracted efficiently from an appropriate tree
of accepting transcripts. This is a natural generalisation of special-soundness for
Σ-protocols, where µ = 1 and k = 2. For simplicity in the following lemma, we
assume that the challenges are chosen uniformly from Zp where |p| = λ, but any
sufficiently large challenge space would suffice. A public-coin protocol is said to
be (unconditionally) (k1, . . . , kµ) special sound if there exists a polynomial time
algorithm that on input a statement x and a (k1, k2, . . . , kµ) tree of accepting
transcripts, outputs a witness w for x.

Lemma 1 (Generalized Forking Lemma [15]). Let (P, V) be a (2µ + 1)-
move, public-coin interactive protocol. Let χ be a witness extraction algorithm

Fast and Designated-verifier Friendly zk-SNARKs in the BPK Model 37

that always succeeds in extracting a witness from an (k1, . . . , kµ)-tree of accept-
ing transcripts in probabilistic polynomial time. Assume that

∏µ
i=1 ki is bounded

above by a polynomial in the security parameter λ. Then (P, V) has witness-
extended emulation.

This lemma show us that the (k1, . . . , kµ)-special soundness property implies
the witness extended emulation property.

C Proofs

C.1 proof of Theorem 1

Proof. Completeness: If the prover run this protocol honestly, then we can do
a simple verification:

P ei · t1 =
(
gx

i
)e
· gr = gex

i+r = gz

Qei · t2 =
(
hx

i
)e
· hr = hex

i+r = hz

So, the completeness property is satisfied.
Special Soundness: We show that there exists an efficient extractor that

on input two accepting transcripts computes a witness for relation R3.
Let (t1, t2, e, z) and (t1, t2, e

′, z′) be two accepting transcripts for distinct
challenges e, e′ ∈ Zq. The fact that they all pass the verification implies the
following equation:

gz = P ei · t1, hz = Qei · t2
gz
′
= P e

′

i · t1, hz
′
= Qe

′

i · t2

Then we have

gz−z
′
= P e−e

′

i = gx
i(e−e′)

hz−z
′
= Qe−e

′

i = hx
i(e−e′)

Thus we get loggPi = loghQi =
z−z′
e−e′ = xi, the soundness of the protocol

follows.
Honest-Verifier Zero-Knowledge:To show that the protocol achieves the

honest-verifier zero-knowledge property, we construct a simulator S to simulate
the view of the verifier V. The simulator S first picks the challenges e ← Zp.
Then S generate z ← Zp and computes

t1 = gz

P ei
, t2 = hz

Qei

We note that the distribution of (t1, t2, e, z) in this simulation is perfectly
indistinguishable from that of a real execution. This is due to the fact that given
random e ∈ Zp, the z is uniformly random both in a real execution and in
simulation. As for t1, t2, they are uniquely determined via verification equations.

38 Xudong Zhu et al.

C.2 Proof of Theorem 2

Proof. Completeness: If the prover run this protocol honestly, then we can do
a simple verification:

P ei · t =
(
T x

i−1
)e
· T r = T ex

i−1+r = T z

Qei · t1 =
(
gx

i−1
)e
· gr = gex

i−1+r = gz

So, the completeness property is satisfied.
Special Soundness: We show that there exists an efficient extractor that

on input two accepting transcripts computes a witness for relation R2.
Let (t, t1, e, z) and (t, t1, e

′, z′) be two accepting transcripts for distinct chal-
lenges e, e′ ∈ Zq. The fact that they all pass the verification implies the following
equation:

T z = P ei · t, gz = Qei · t1
T z
′
= P e

′

i · t, gz
′
= Qe

′

i · t1

Then we have

T z−z
′
= P e−e

′

i

gz−z
′
= Qe−e

′

i

We get logTPi = z−z′
e−e′ , loggQi = z−z′

e−e′ , thus the witness xi−1 = z−z′
e−e′ , the

soundness of the protocol follows.
Honest-Verifier Zero-Knowledge:To show that the protocol achieves the

honest-verifier zero-knowledge property, we construct a simulator S to simulate
the view of the verifier V. The simulator S first picks the challenges e ← Zp.
Then S generate z ← Zp and computes

t = T z

P ei
, t1 = gz

Qei

We note that the distribution of (t, t1, e, z) in this simulation is perfectly
indistinguishable from that of a real execution. This is due to the fact that given
random e ∈ Zp, the z is uniformly random both in a real execution and in
simulation. As for t, t1, they are uniquely determined via verification equations.

C.3 Proof of Theorem 4

Proof. Completeness: If the prover run this protocol honestly, then we can do
a simple verification:(∏n−1

i=1 P
ci−1

i

)e
· t1 = ge(

∑n−1
i=1 xici−1)+r = gz(∏n−1

i=1 Q
ci−1

i

)e
· t2 = he(

∑n−1
i=1 xici−1)+r = hz

Fast and Designated-verifier Friendly zk-SNARKs in the BPK Model 39

So, the completeness property is satisfied.
Special Soundness: We show that there exists an efficient extractor that

on input two accepting transcripts computes a witness.
For one fixed cj , j ∈ [1, n− 1] we let (cj , t1j , t2j , ej , zj) and (cj , t1j , t2j , e

′

j , z
′

j)
be two accepting transcripts for distinct challenges e, e′ ∈ Zq. The fact that they
all pass the verification implies the following equation:

gz =

(∏n−1
i=1 P

ci−1
j

i

)ej
· t1, hz =

(∏n−1
i=1 Q

ci−1
j

i

)ej
· t2

gz
′
=

(∏n−1
i=1 P

ci−1
j

i

)e′j
· t1, hz

′
=

(∏n−1
i=1 Q

ci−1
j

i

)e′j
· t2

Then we have

gz−z
′
= P ej−e

′
j = g

∑n−1
i=1 xici−1

j (ej−e
′
j)

hz−z
′
= Qej−e

′
j = h

∑n−1
i=1 xici−1

j (ej−e
′
j)

Thus we get
∑n−1
i=1 x

ici−1j = z−z′
ej−e

′
j

.

Then, for every cj , j ∈ [1, n− 1] we get∑n−1
i=1 x

ici−11 = z−z′
e1−e

′
1∑n−1

i=1 x
ici−12 = z−z′

e2−e
′
2· · ·∑n−1

i=1 x
ici−1n−1 = z−z′

en−1−e
′
n−1

By the properties of vandermond matrix, we can find the unique solution for
every xi, the soundness of the protocol follows.

Honest-Verifier Zero-Knowledge:To show that the protocol achieves the
honest-verifier zero-knowledge property, we construct a simulator S to simulate
the view of the verifier V. The simulator S first picks the challenges e, c ← Zp.
Then S generate z ← Zp and computes

t1 = gz

(
∏n−1
i=1 P c

i−1
i)

e , t2 = hz

(
∏n−1
i=1 Qc

i−1
i)

e

We note that the distribution of (c, t1, t2, e, z) in this simulation is perfectly
indistinguishable from that of a real execution. This is due to the fact that given
random e, c ∈ Zp, the z is uniformly random both in a real execution and in
simulation. As for t1, t2, they are uniquely determined via verification equations.

C.4 Proof of Theorem 6

Proof. Completeness: If the prover run this protocol honestly, then we can do
a simple verification: (

g
q1(x)
1

)e
· t1 = g

eq1(x)+r
1 = gz1

T e · t2 = g
(eq1(x)+r)h(x)
τ =

(
g
h(x)
τ

)z

40 Xudong Zhu et al.

So, the completeness property is satisfied.
Special Soundness: We show that there exists an efficient extractor that

on input two accepting transcripts computes the witness q1(x).
Let (T, t1, t2, e, z) and (T, t1, t2, e

′, z′) be two accepting transcripts for distinct
challenges e, e′ ∈ Zq. The fact that they all pass the verification implies the
following equation:

gz1 =
(
g
q1(x)
1

)e
· t1,

(
g
h(x)
τ

)z
= T e · t2

gz
′

1 =
(
g
q1(x)
1

)e′
· t1,

(
g
h(x)
τ

)z′
= T e

′ · t2

Then we have

gz−z
′

1 =
(
g
q1(x)
1

)e−e′
= g

q1(x)(e−e′)
1(

g
h(x)
τ

)z−z′
= T e−e

′
= g

q1(x)h(x)(e−e′)
τ

Thus we get log
g
h(x)
τ

T = z−z′
e−e′ = q1(x), the special soundness of the protocol

follows.
Honest-Verifier Zero-Knowledge:To show that the protocol achieves the

honest-verifier zero-knowledge property, we construct a simulator S to simulate
the view of the verifier V. The simulator S first picks the challenges e ← Zp,
Then S generate z ← Zp. It is obvious that the S could compute the gq1(x)1 , gh(x)τ

and T = g
q1(x)h(x)
τ by itself with the public input({

gx
i

τ

}
i∈[0,d],τ∈{1,2}

, h(X), q1(X) ∈ F<d[X]

)
Finally, the S compute

t1 =
gz1(

g
q1(x)
1

)e , t2 =
(gh(x)τ)

z

T e

We note that the distribution of (T, t1, t2, e, z) in this simulation is perfectly
indistinguishable from that of a real execution. This is due to the fact that given
random e ∈ Zp, the z is uniformly random both in a real execution and in sim-
ulation. As for t1, t2 (T is trivial), they are uniquely determined via verification
equations.

D Some Σ-protocol schemes

Fast and Designated-verifier Friendly zk-SNARKs in the BPK Model 41

Protocol 3 Σ-protocol Π1
5 for relation R1

5

Σ-protocol to prove the exponential multiplication

PUBLIC PARAMETERS:pp
FOR EVERY i ∈ [0, n− 2]

INPUT:(pp, Pi =
[
xit(x)

]
T
, Qi =

[
xit(x)
δ

]
1
, T = [δ]T ; x

it(x)
δ
∈ Zp)

Pi = T
xit(x)
δ ∧Qi = g

xit(x)
δ

Prover Verifier

Pick r ∈ Zp
Compute
t = T r

t1 = gr

t,t1−−−−−−−−−→
Pick e ∈ Zp

e←−−−−−−−−−
Compute

z = ex
it(x)
δ

+ r
z−−−−−−−−−→

Check
T z

?
= P ei · t

gz
?
= Qei · t1

Fig. 5: The Σ-protocol for Relation R1
5

42 Xudong Zhu et al.

Protocol 5 Σ-protocol batΠ2

Σ-protocol to prove the batched exponential multiplication
PUBLIC PARAMETERS:pp
INPUT: for i ∈ [1, n− 1]

(Pi =
[
xi
]
1
, Qi =

[
xi−1

]
1
, T = [x]1 , c ∈ Zp;xi−1 ∈ Zp)

∏n−1
i=1 P

ci−1

i = T
∑n−1
i=1 xi−1ci−1

∧
∏n−1
i=1 Q

ci−1

i = g
∑n−1
i=1 xi−1ci−1

Prover Verifier

Pick r ∈ Zp
Compute

t = T r, t1 = gr

t,t1−−−−−−−−−→
Pick e ∈ Zp

e←−−−−−−−−−
Compute

z = e
(∑n−1

i=1 x
i−1ci−1

)
+ r

z−−−−−−−−−→
Check

T z
?
=
(∏n−1

i=1 P
ci−1

i

)e
· t

gz
?
=
(∏n−1

i=1 Q
ci−1

i

)e
· t1

Fig. 6: The Batched Σ-protocol for Relation R2

Fast and Designated-verifier Friendly zk-SNARKs in the BPK Model 43

Protocol 6 Σ-protocol batΠ1
5

The batched exponential multiplication proof with extra elements
PUBLIC PARAMETERS:pp
INPUT: for i ∈ [0, n− 2](

P =
[∑n−2

i=0 x
it(x)ci

]
T
, Qi =

[
xit(x)
δ

]
1
, T = [δ]T , c ∈ Zp; x

it(x)
δ
∈ Zp

)
P = T

∑n−2
i=0

xit(x)
δ

ci ∧
∏n−2
i=0 Q

ci

i = g
∑n−2
i=0

xit(x)
δ

ci

Prover Verifier

Pick r ∈ Zp
Compute

t = T r, t1 = gr

t,t1−−−−−−−−−→
Pick e ∈ Zp

e←−−−−−−−−−
Compute

z = e
(∑n−2

i=0
xit(x)
δ

ci
)
+ r

z−−−−−−−−−→
Check

T z
?
= P e · t

gz
?
=
(∏n−2

i=0 Q
ci

i

)e
· t1

Fig. 7: The Batched Version of Σ-protocol Π1
5

44 Xudong Zhu et al.

Protocol 7 Σ-protocol batΠ4
0

The batched exponential multiplication proof with extra elements
PUBLIC PARAMETERS:pp
INPUT: for i ∈ [l + 1,m](

Pi =
[∑n−1

j=0 wi,jx
j
]
1
, Q =

[∑m
i=l+1 c

i−l−1∑n−1
j=0 wi,jx

j
]
T
, c ∈ Zp;

∑n−1
j=0 wi,jx

j ∈ Zp
)

∏m
i=l+1 (Pi)

ci−l−1

= g
∑m
i=l+1 c

i−l−1∑n−1
j=0 wi,jx

j

∧Q = e(g, h)
∑m
i=l+1 c

i−l−1∑n−1
j=0 wi,jx

j

Prover Verifier

Pick r ∈ Zp
Compute

t1 = gr, t2 = e(g, h)r

t1,t2−−−−−−−−−−→
Pick e ∈ Zp

e←−−−−−−−−−
Compute

z = e
(∑m

i=l+1 c
i−l−1∑n−1

j=0 wi,jx
j
)
+ r

z−−−−−−−−−→
Check

gz
?
=
(∏m

i=l+1 (Pi)
ci−l−1

)e
· t1

e(g, h)z
?
= Qe · t2

Fig. 8: The Batched Version of Σ-protocol Π4
0

