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Abstract. The Number Theoretic Transform (NTT) plays a central role in efficient
implementations of cryptographic primitives selected for Post Quantum Cryptography.
Although it certainly exists, academic papers that cite the NTT omit the connection
between the NTT and residues of a polynomial modulo factors of X2d

+1 and mention
only the final expressions of what the NTT computes. This short paper establishes
that connection and, in doing so, elucidates key aspects of computing the NTT. Based
on this, the specific instantiations of the NTT function used in CRYSTALS-Kyber
and CRYSTALS-Dilithium are derived.
Keywords: NTT, Kyber, Dilithium, Post Quantum Cryptography (PQC), Efficient
implementations of PQC

1 Introduction
The NIST [NIS] selected Post Quantum Cryptography algorithms Dilithium [DKL+18] and
Kyber [BDK+18] perform polynomial multiplication in Zq[X]/(X2d + 1), where prime q is
such that a primitive 2(n+1)-th root of unity exists. Both use the NTT [Ber01] to perform
this efficiently and the Kyber specification [ABD+21](Page 5) formulates the expressions
that the NTT computes. However, there is no clear explanation on how those expressions
are connected with residues of a polynomial modulo factors of X2d + 1. In the first two
sections (2 and 3), the link between the NTT and residues of a polynomial modulo factors
of X2d + 1 is established. Based on this, the specific NTT functions used in Kyber and
Dilithium are formulated and the paper concludes by describing why and how the NTT is
used in the efficient implementations of Kyber and Dilithium.

2 Decomposition of X2d + 1 into factors
Let ζ be a primitive 2(n+1)-th root of unity mod prime q. Thus, ζ2(n+1) ≡ 1 (mod q)
and ζ2n ≡ −1 (mod q). Hence, X2d + 1 ≡ X2d − ζ2n (mod q). This provides a way of
factoring X2d + 1 as shown in figure 1 (shown for Kyber, for which d = 8). In general,

X2d−l

− ζsl =
(

X2d−(l+1)
− ζ

sl
2

)(
X2d−(l+1)

+ ζ
sl
2

)
≡
(

X2d−(l+1)
− ζ2n·0+ sl

2

)(
X2d−(l+1)

− ζ2n·1+ sl
2

)
(mod q)

[
since ζ2n

≡ −1 (mod q)
]

Let i = i1i2...il be the bit sequence representing the path, starting from the top, taken to
a particular sl (as part of X2d−l − ζsl , refer figure 1). For example, 0100 is the sequence
for sl = 40 at l = 4. Then, in the equation above, the first factor is the immediate left
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Figure 1: Decomposition of X28 + 1 into factors (for CRYSTALS-Kyber)

lower node (edge labelled bit 0) and the second factor is the immediate right lower node
(edge labelled bit 1). Thus, sl’s in the terms X2d−l − ζsl at any layer l follow the pattern:

s0 =2n

sl+1 =2nil+1 + sl

2 (1)

Therefore,

s1 =2ni1 + 2n−1

s2 =2ni2 + 2n−1i1 + 2n−2

...

sl =2nil + 2n−1il−1 + 2n−2il−2 + ...2n−(l−1)i1 + 2n−l

=2n−(l−1)(2l−1il + 2l−2il−1 + 2l−3il−2 + ...i1) + 2n−l

=2n+1−lBRl(i) + 2n−l (2)

where 1 ≤ l ≤ n and BRl(i) is the l-bit bit-reversal of i = i1i2...il.

3 Reducing a polynomial modulo factors of X2d + 1
Theorem 1. Given a polynomial a ∈ Zq[X]/(X2d + 1) and a factor X2d−l − ζsl (notations
as from the previous section), the coefficient of Xc in the polynomial a mod (X2d−l − ζsl)
(i.e. ∈ Zq[X]/(X2d−l − ζsl)), where 0 ≤ c ≤ (2d−l − 1) is given by

2l−1∑
j=0

a2d−l(j)+cζslj (3)
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Proof. Polynomial a is of the form

a = a0 + a1X + a2X2 + ... + a2d−1X2d−1

As shown before, X2d +1 ≡ X2d −ζ2n ≡
(

X2d−1 − ζ2(n−1)
)(

X2d−1 − ζ2n+2(n−1)
)

(mod q).

Start by splitting the polynomial into two halves, aL, i.e. a mod (X2d−1 − ζ2(n−1)), and
aR, i.e. a mod (X2d−1 − ζ(2n+2(n−1))).

s1 for aL = 2(n−1) (from equation (2), setting l = 1 and i = 0)
s1 for aR = 2n + 2(n−1) (from equation (2), setting l = 1 and i = 1)

Since X2d−1 ≡ ζs1 mod (X2d−1 − ζs1), aL and aR (each with its respective s1) are

au∈{L,R} =(a0 + ζs1a2d−1) + (a1 + ζs1a2d−1+1)X + ...

+(a2d−1−2 + ζs1a2d−2)X2d−1−2 + (a2d−1−1 + ζs1a2d−1)X2d−1−1

[Spr20] illustrates the first level of splitting a polynomial. The theorem statement is true
for l = 1, as can be verified in the expressions for aL, aR. Let this statement be true for
l ≥ 1. Observe that, due to the structure of the factors in figure 1, step l produces a

mod (X2d−l − ζsl) (refer Appendix A.3) and there are 2l sl’s, each resulting in a residue.
Splitting each of these residue polynomials can be continued until step l = n (refer figure 1).
When splitting for step l + 1, since X2d−(l+1) ≡ ζsl+1 mod (X2d−(l+1) − ζsl+1), coefficient
of Xc′ , where 0 ≤ c′ ≤ (2d−(l+1) − 1), in the resulting reduced polynomial is

Coefficient of Xc′
from step l + (Coefficient of Xc′+2d−(l+1)

from step l)ζsl+1

From equation (3), which is true for l by the induction hypothesis, this becomes
2l−1∑
j=0

a2d−l(j)+c′ζslj +

2l−1∑
j=0

a2d−l(j)+2d−(l+1)+c′ζslj

 ζsl+1

=
2l−1∑
j=0

a2d−l(j)+c′ζslj +

2l−1∑
j=0

a2d−(l+1)(2j+1)+c′ζslj

 ζsl+1

=
2l−1∑
j=0

a2d−(l+1)(2j)+c′ζ
sl
2 2j +

2l−1∑
j=0

a2d−(l+1)(2j+1)+c′ζ
sl
2 2j

 ζsl+1 (4)

Note that sl is even for 1 ≤ l ≤ (n − 1) (i.e. until the last step in this mathematical
induction) and, thus, sl

2 is an integer. Using the fact that ζ is a 2(n+1)-th primitive root of
unity mod q in equation (1),

ζsl+12j = ζ(2nil+1+ sl
2 )2j = ζ2(n+1)il+1jζ

sl
2 2j ≡ ζ

sl
2 2j (mod q) (5)

Using equation (5) in equation (4),
2l−1∑
j=0

a2d−(l+1)(2j)+c′ζsl+12j +
2l−1∑
j=0

a2d−(l+1)(2j+1)+c′ζsl+1(2j+1)

=
2l−1∑
j=0

(
a2d−(l+1)(2j)+c′ζsl+12j + a2d−(l+1)(2j+1)+c′ζsl+1(2j+1)

)

=
2l+1−1∑

j′=0
a2d−(l+1)(j′)+c′ζsl+1j′

Thus, equation (3) is also valid for l + 1.
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Corollary 1. It should be noted that the theorem is equally valid for factors of X2d − 1.
X2d − ζ0 ≡

(
X2d−1 − ζ0

)(
X2d−1 − ζ2n

)
(mod q). Thus, s0 = 0 in equation (1), which

gives sl = 2n+1−lBRl(i) and the steps proceed exactly as proven above. This formulation
( (3) with sl’s shown here) is referred to as the cyclic NTT. An elegant relationship between
these, resulting in what is known as twisting, is explained in [Ber07].
Corollary 2. It can be observed, both from figure 1 as well as the steps taken in the
theorem, that at step l + 1, the number of polynomials mod

(
X2d−(l+1) − ζsl+1

)
, each of

which is computed with a particular sl+1 (see equation (4)), is twice that of the number in
step l. However, each of these polynomials has half the number of terms as compared to
the polynomial it was split from in step l. Therefore, the total number of multiplications
to compute polynomials at any step remains constant (2d). Since there are a total of n
steps and n ≤ d, the total number of multiplications is at most d2d. Furthermore, from
equation (4), it can be seen that, when splitting for step l + 1, after multiplication with
a particular sl+1, an addition is performed, implying that the total number of additions
required is the same as the total number of multiplications, i.e. at most d2d. Finally, note
that most papers use the notation Xn + 1, instead of X2d + 1 used here, and the number
of multiplications/additions, expressed with this notation, is n log2 n.
Corollary 3. For the same reason, the total number (number of polynomials ∗ terms
in each polynomial) of terms remains constant at each step l. Implementations use this
property (after reduction modulo q) to perform the above computation in-place.

Figure 2: The Cooley-Tukey [CT65] and Gentleman-Sande [GS66] butterflies

Figure 2 (where [Xt] denotes the coefficient of Xt) illustrates the structure (known as
a butterfly) that results from the operation performed in equation (4). Implementations
use this structure to compute residues of a polynomial modulo degree 1/degree 2 factors
of X2d + 1. The decomposition of a polynomial into a set of such residues is what the
NTT (strictly speaking, equation (3) with sl’s as defined in equation (2) is known as
the Negacyclic NTT) of a polynomial computes. Note that, in practice, when splitting
a polynomial at step l + 1, a single multiplication is enough to compute both resulting
polynomials (i.e. the total multiplications mentioned in corollary 2 is halved to d

2 2d). This
is because sl+1’s for the two polynomials differs by 2n (refer equation (1)). Thus, ζsl+1

for a′
R = (ζsl+1 for a′

L) ζ2n ≡ −ζsl+1 for a′
L (mod q) (as shown in the forward butterfly in

figure 2).
The inverse butterfly (Inverse NTT or NTT −1) reverses the operation of step l + 1 to
produce coefficients of the polynomial (i.e. the one at step l) that was split in two.
Notice that each inversion step produces 2

[
Xc′

]
and 2

[
Xc′+2d−(l+1)

]
. This is corrected

by multiplying all the coefficients by 2−n at the end of the inverse computation.
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4 NIST selected Post Quantum Cryptographic algorithms
NIST [NIS] has selected Kyber for Public-key Encryption and Key-establishment and
Dilithium for Digital Signatures as part of its effort towards Post-Quantum Cryptography.
The NTT plays a central role in the efficient implementations of both Kyber and Dilithium.
The following subsections illustrate the application of equation (3) to these.

4.1 The NTT function for Kyber
For Kyber [ABD+21] d = 8, the prime q = 3329. Since q − 1 = 28 · 13, it has 256-th
primitive roots of unity and, thus, n = 7. Setting n = 7 in equation (2), the sl ’s at l = 7
are

2BR7(i) + 1 , where 0 ≤ i ≤ 127

From equation (3), the residues, a mod (X2 − ζ(2BR7(i)+1)) are 127∑
j=0

a2jζ(2BR7(i)+1)j

+

 127∑
j=0

a2j+1ζ(2BR7(i)+1)j

X (6)

The term on the left (coefficient of X0) is denoted as â2i and the coefficient of X is denoted
as â2i+1. Expression (6) is what is mentioned in [ABD+21](Page 5). Thus, the residues
are

(â0 + â1X, â2 + â3X, ...â254 + â255X)

The function, which takes input coefficients (a0, a1, ..., a255) of a polynomial a and produces
(â0, â1, ..., â2i, â2i+1, ..., â255), as expressed in (6), is the NTT function for Kyber, denoted
as NTT(a). This can also be written out in matrix form as

Let N =


1 ζ1·1 ζ1·2 · · · ζ1·127

1 ζ3·1 ζ3·2 · · · ζ3·127

1 ζ5·1 ζ5·2 · · · ζ5·127

...
...

...
. . .

...
1 ζ255·1 ζ255·2 · · · ζ255·127


Then, 

â0
â2BR7(1)
â2BR7(2)

...
â2BR7(127)

 = N


a0
a2
...

a254

 and


â1

â2BR7(1)+1
â2BR7(2)+1

...
â2BR7(127)+1

 = N


a1
a3
...

a255


Notice above that the output coefficients are in bit-reversed order, which is due to the
presence of BRl(i) in the expression for sl ’s. Notice, also, that the NTT matrix, N, is
similar to a Discrete Fourier Transform (DFT) matrix (the NTT is, in fact, a variation of
the DFT defined over a finite field). As would be expected, N has an inverse, given by

N−1 = 2−7


1 1 1 · · · 1

ζ−1·1 ζ−3·1 ζ−5·1 · · · ζ−255·1

ζ−1·2 ζ−3·2 ζ−5·2 · · · ζ−225·2

...
...

...
. . .

...
ζ−1·127 ζ−3·127 ζ−5·127 · · · ζ−255·127


It can easily be shown that N−1N = I.
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4.2 The NTT function for Dilithium
For Dilithium [BDK+21], d = 8, prime q = 8380417. Since q − 1 = 213 · 3 · 11 · 31, it has
512-th primitive roots of unity and, thus, n = 8. Setting n = 8 in equation (2), the sl ’s at
l = 8 are

2BR8(i) + 1 , where 0 ≤ i ≤ 255

From equation (3), the residues, a mod (X − ζ(2BR8(i)+1)) are

255∑
j=0

ajζ(2BR8(i)+1)j (7)

The function, which takes input coefficients (a0, a1, ..., a255) of a polynomial a and produces
(â0, â1, ..., âi, ..., â255), as expressed in (7), is the NTT function for Dilithium, denoted as
NTT(a). This can also be written out in matrix form as

Let N =


1 ζ1·1 ζ1·2 · · · ζ1·255

1 ζ3·1 ζ3·2 · · · ζ3·255

1 ζ5·1 ζ5·2 · · · ζ5·255

...
...

...
. . .

...
1 ζ511·1 ζ511·2 · · · ζ511·255

 Then,


â0

âBR8(1)
âBR8(2)

...
âBR8(255)

 = N


a0
a1
...

a255


The inverse of N is

N−1 = 2−8


1 1 1 · · · 1

ζ−1·1 ζ−3·1 ζ−5·1 · · · ζ−511·1

ζ−1·2 ζ−3·2 ζ−5·2 · · · ζ−511·2

...
...

...
. . .

...
ζ−1·255 ζ−3·255 ζ−5·255 · · · ζ−511·255



5 Properties of the NTT
This section lists important properties of the NTT.

5.1 NTT of the addition of two polynomials
Given two polynomials a and b,

NTT (a ± b) = NTT(a) ± NTT(b)

From equation (3), the coefficient of Xc in the polynomial a ± b mod (X2d−l − ζsl) (i.e.
∈ Zq[X]/(X2d−l − ζsl)), where 0 ≤ c ≤ (2d−l − 1) is given by

2l−1∑
j=0

(
a2d−l(j)+c ± b2d−l(j)+c

)
ζslj

The result trivially follows from associative and distributive properties:

=
2l−1∑
j=0

a2d−l(j)+cζslj ±
2l−1∑
j=0

b2d−l(j)+cζslj
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5.2 NTT of the product of two polynomials
Given two polynomials a and b,

NTT (ab) = NTT(a) ◦ NTT(b)

where ◦ denotes basecase multiplication (refer to Appendix A). This can be proven using
the Chinese Remainder Theorem [BDK+21] [Sei18], which establishes an isomorphism

from the ring Zq[X]/(X2d + 1) to (the product of rings)
127∏
i=0

Zq[X]/(X2 − ζ(2BR7(i)+1)) for

Kyber and to (the product of rings)
255∏
i=0

Zq[X]/(X − ζ(2BR8(i)+1)) for Dilithium. For the

sake of completeness, however, direct proofs are provided for the NTT functions used in
Kyber (A.1) and Dilithium (A.2).

6 NTT and efficient implementations
The previous sections showed the matrix forms of the NTT and its inverse and drew
out their similarity to the DFT. In implementations, however, they are computed using
efficient algorithms. The forward computation proceeds similar to the steps shown in
theorem 1 and the computational structure that arises as a result is referred to as the
Cooley-Tukey (CT) [CT65] butterfly. Similarly, the inverse operation proceeds by reversing
the CT butterfly and the computational structure that arises as a result is referred to as
the Gentleman-Sande [GS66] butterfly. Table 1 shows a comparison of the operational
counts between regular (schoolbook) and NTT based multiplication of two polynomials.

Table 1: Comparison between regular and NTT based multiplication

Operation regular multiplication NTT multiplication
NTT - d

2 2d Mul, d2d Add
(per polynomial)

Multiplication 22d Mul, 2d
(
2d − 1

)
Add Kyber: 2.5 · 2d Mul, 2d Add (A.1)

Dilithium: 2d Mul (A.2)

Inverse NTT - d
2 2d Mul, d2d Add

Total 22d Mul, 2d
(
2d − 1

)
Add Kyber:

( 3
2 d + 2.5

)
2d Mul, (3d + 1) 2d Add

Dilithium:
( 3

2 d + 1
)

2d Mul, 3d · 2d Add

Overall, it is evident that, while regular polynomial multiplication has a complexity of
O(22d), NTT based multiplication has a complexity of O(d2d). Both Kyber and Dilithium
involve numerous polynomial multiplications and additions. In Kyber [ABD+21], for
instance, during key generation, the following computation is performed

As + e

Here A is a matrix, each element of which is a polynomial (i.e. ∈ Zq[X]/(X2d + 1)), while
s and e are column vectors, each element of which is also a polynomial. Although the
performance benefit of NTT based multiplication described above essentially demonstrates
NTT−1 (NTT (a) ◦ NTT (b)), it is not necessary to perform the inverse NTT of the
product. Further optimizations can be achieved by keeping results in the NTT domain
and performing the inverse NTT only when required. Matrix A is generated in the NTT
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domain (denoted as Â). Elements of column vectors, such as s, are converted to the NTT
domain (denoted as ŝ), Then, the expression described above can efficiently be computed
as

Â ◦ ŝ + ê

where ◦ denotes basecase multiplication between an element of Â and an element of ŝ, as
shown in 5.2, and addition of elements is also performed in the NTT domain, as shown
in 5.1. The public key and the secret key are kept in the NTT domain in order that the
en/decryption routines can directly use these without first having to convert into the NTT
domain. Where necessary, an inverse NTT, which has a computational complexity similar
to the NTT, is performed to convert a vector back into its non NTT form. Dilithium
employs similar techniques for efficiently computing polynomial multiplication and these
can be found in its specification [BDK+21].
Note that the multiplications and additions mentioned in table 1 are actually modular
multiplications and additions performed mod prime q. Towards this end, implementations
may represent polynomial coefficients in Montgomery form [Mon85]. Since the primes used
by Kyber and Dilithium are relatively small, the result of the multiplication of any two
polynomial coefficients fits in 32 and 64 bits respectively. This fact is exploited in [Sei18]
to perform signed Montgomery modular arithmetic. Setting β (or R in some literature)
associated with Montgomery arithmetic to 216/232, the method uses operations that take
the lower 16/32 bits of a multiplication, 16/32 bit right shifts, etc. which are efficient on
32/64 bit architectures. Plantard also uses this fact about the size of primes in the proposed
Plantard arithmetic [Pla21]. A variation of this technique is described in [HZZ+22] and
comparisons of the approach are made with Montgomery modular multiplication, Barrett
reduction [Bar87], etc.
Observe (refer to equation (4)) that the 2l residue polynomials at any step l can be
computed (by multiplying coefficients of a particular polynomial with its associated sl,
followed by addition) in parallel. The computational structure of the NTT (and, similarly,
the inverse NTT), therefore, is well suited to Single Instruction Multiple Data (SIMD)
extensions such as AVX2 [Sei18], making implementations even faster.
To conclude, as further reading, the interested reader is encouraged to read literature that
describe methods to use the Cooley–Tukey butterfly also for the inverse NTT [AHKS22]
and the advantages of doing so.
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10 The NTT and residues of a polynomial modulo factors of X2d + 1

A Appendix

The appendix contains proofs of the multiplicative property of the NTT (for both Kyber
and Dilithium) and of successive splitting in 1 resulting in residues a mod (X2d−l − ζsl).

A.1 NTT of ab for Kyber

Using X256 ≡ −1 mod (X256 + 1), the coefficients of the odd and even powers of X in the
product ab (∈ Zq[X]/(X256 +1)) can be written separately. Coefficient of X2j , 0 ≤ j ≤ 127
is given by

p2j ≡
127∑

m=0

(
a2mb∗

2j−2m + a2m+1b∗
2j−2m−1

)
mod (X256 + 1)

where

b∗
k = bk if k ≥ 0

= −b256+k if k < 0

We also derive Em and Om, with m ∈ {0, 1, ..., 128}, as

Em =
127∑
j=0

b∗
2(j−m)ζ

(2BR7(i)+1)(j−m)

=
127∑

j=m

b2(j−m)ζ
(2BR7(i)+1)(j−m) +

m−1∑
j=0

−b2(128+j−m)ζ
(2BR7(i)+1)(j−m)

≡
127∑

j=m

b2(j−m)ζ
(2BR7(i)+1)(j−m) +

m−1∑
j=0

b2(128+j−m)ζ
(2BR7(i)+1)(128+j−m) (mod q)

=
127−m∑

k=0
b2kζ(2BR7(i)+1)(k) +

127∑
k=128−m

b2kζ(2BR7(i)+1)(k) =
127∑
k=0

b2kζ(2BR7(i)+1)(k) = b̂2i

Om =
127∑
j=0

b∗
2(j−m)+1ζ(2BR7(i)+1)(j−m)

=
127∑

j=m

b2(j−m)+1ζ(2BR7(i)+1)(j−m) +
m−1∑
j=0

−b2(128+j−m)+1ζ(2BR7(i)+1)(j−m)

≡
127∑

j=m

b2(j−m)+1ζ(2BR7(i)+1)(j−m) +
m−1∑
j=0

b2(128+j−m)+1ζ(2BR7(i)+1)(128+j−m) (mod q)

=
127−m∑

k=0
b2k+1ζ(2BR7(i)+1)(k) +

127∑
k=128−m

b2k+1ζ(2BR7(i)+1)(k) =
127∑
k=0

b2k+1ζ(2BR7(i)+1)(k) = b̂2i+1

In the third line of the derivations of Em and Om, the fact that ζOdd multiple of 128 ≡ −1
(mod q) is used. Thus, −ζ(2BR7(i)+1)(s) ≡ ζ(2BR7(i)+1)(s+128) (mod q). From equation (6),
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the term p̂2i in the NTT of ab is
127∑
j=0

p2jζ(2BR7(i)+1)j

=
127∑
j=0

127∑
m=0

(
a2mb∗

2j−2m + a2m+1b∗
2j−2m−1

)
ζ(2BR7(i)+1)j

=
127∑

m=0

127∑
j=0

a2mb∗
2j−2mζ(2BR7(i)+1)j +

127∑
m=0

127∑
j=0

a2m+1b∗
2j−2m−1ζ(2BR7(i)+1)j

=
127∑

m=0
a2mζ(2BR7(i)+1)m

127∑
j=0

b∗
2j−2mζ(2BR7(i)+1)(j−m)

+
127∑

m=0
a2m+1ζ(2BR7(i)+1)m

127∑
j=0

b∗
2(j−m−1)+1ζ(2BR7(i)+1)(j−m−1)ζ(2BR7(i)+1)

=
127∑

m=0
a2mζ(2BR7(i)+1)mEm +

127∑
m=0

a2m+1ζ(2BR7(i)+1)mOm+1ζ(2BR7(i)+1)

=â2ib̂2i + â2i+1b̂2i+1ζ(2BR7(i)+1)

Similarly, the coefficient of X2j+1, 0 ≤ j ≤ 127 in the product ab may be written as

p2j+1 ≡
127∑

m=0

(
a2mb∗

2j−2m+1 + a2m+1b∗
2j−2m

)
mod (X256 + 1)

where b∗
k is as defined before. From equation (6), the term p̂2i+1 in the NTT of ab is

127∑
j=0

p2j+1ζ(2BR7(i)+1)j

=
127∑
j=0

127∑
m=0

(
a2mb∗

2j−2m+1 + a2m+1b∗
2j−2m

)
ζ(2BR7(i)+1)j

=
127∑

m=0

127∑
j=0

a2mb∗
2j−2m+1ζ(2BR7(i)+1)j +

127∑
m=0

127∑
j=0

a2m+1b∗
2j−2mζ(2BR7(i)+1)j

=
127∑

m=0
a2mζ(2BR7(i)+1)m

127∑
j=0

b∗
2j−2m+1ζ(2BR7(i)+1)(j−m)

+
127∑

m=0
a2m+1ζ(2BR7(i)+1)m

127∑
j=0

b∗
2j−2mζ(2BR7(i)+1)(j−m)

=
127∑

m=0
a2mζ(2BR7(i)+1)mOm +

127∑
m=0

a2m+1ζ(2BR7(i)+1)mEm

=â2ib̂2i+1 + â2i+1b̂2i

Thus, we have

p̂2i + p̂2i+1X =
(

â2ib̂2i + â2i+1b̂2i+1ζ(2BR7(i)+1)
)

+
(

â2ib̂2i+1 + â2i+1b̂2i

)
X

≡ (â2i + â2i+1X)
(

b̂2i + b̂2i+1X
)

mod (X2 − ζ(2BR7(i)+1))
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Thus, each term p̂2i + p̂2i+1X of the NTT of ab can be obtained by a multiplication of the
corresponding terms of the NTT of a and NTT of b. This is the basecase multiplication
in the NTT of Kyber and, from the expression above, it can be observed to take 5

22d

multiplications and 2d additions (where d = 8).

A.2 NTT of ab for Dilithium

Using X256 ≡ −1 mod (X256 + 1), the coefficient of Xj , 0 ≤ j ≤ 255, in the product ab
(∈ Zq[X]/(X256 + 1)) can be written as

pj ≡
255∑

m=0

(
amb∗

j−m

)
mod (X256 + 1)

where

b∗
k = bk if k ≥ 0

= −b256+k if k < 0

From equation (7), the term p̂i in the NTT of ab is

255∑
j=0

pjζ(2BR8(i)+1)j

=
255∑
j=0

255∑
m=0

(
amb∗

j−m

)
ζ(2BR8(i)+1)j

=
255∑

m=0
amζ(2BR8(i)+1)m

255∑
j=0

b∗
j−mζ(2BR8(i)+1)(j−m)

=
255∑

m=0
amζ(2BR8(i)+1)m

 255∑
j=m

bj−mζ(2BR8(i)+1)(j−m) +
m−1∑
j=0

−b256+j−mζ(2BR8(i)+1)(j−m)


≡

255∑
m=0

amζ(2BR8(i)+1)m

 255∑
j=m

bj−mζ(2BR8(i)+1)(j−m) +
m−1∑
j=0

b256+j−mζ(2BR8(i)+1)(256+j−m)

 (mod q)

=
255∑

m=0
amζ(2BR8(i)+1)m

(255−m∑
k=0

bkζ(2BR8(i)+1)(k) +
255∑

k=256−m

bkζ(2BR8(i)+1)(k)

)

=
255∑

m=0
amζ(2BR8(i)+1)m

255∑
k=0

bkζ(2BR8(i)+1)(k)

=âib̂i

In the derivation above, the fact that ζOdd multiple of 256 ≡ −1 (mod q) is used. Thus,
−ζ(2BR8(i)+1)(s) ≡ ζ(2BR8(i)+1)(s+256) (mod q).
Thus, each term p̂i of the NTT of ab can be obtained by a multiplication of the corresponding
terms of the NTT of a and NTT of b. This is the basecase multiplication in the NTT of
Dilithium and, from the expression above, it can be observed to take 2d multiplications
(where d = 8).
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Figure 3: Decomposition into factors, resulting in residues a mod (X2d−l − ζsl)

A.3 Successive residues a mod (X2d−l − ζsl)
The relevant part of the structure of figure 1 for a general sl is shown in figure 3. At l = 1,
splitting of polynomial a produces the residue au, i.e. a mod (X2d−1 − ζs1).

a ≡ f1(X)(X2d−1
− ζs1) + au

At the next step, using X2d−2 ≡ ζs2 mod (X2d−2 − ζs2), au is reduced further as

a ≡ f1(X)(X2d−1
− ζs1) + f2(X)(X2d−2

− ζs2) + a′
u

≡ f1(X)(X2d−2
− ζs′

2)(X2d−2
− ζs2) + f2(X)(X2d−2

− ζs2) + a′
u[

X2d−1
− ζs1 ≡ (X2d−2

− ζs′
2)(X2d−2

− ζs2) (mod q), from decomposition into factors (figures 1, 3)
]

Thus, a′
u is a mod (X2d−2 − ζs2). Similarly, at l = 3, a′

u is reduced further as

a ≡f1(X)(X2d−2
− ζs′

2)(X2d−3
− ζs′

3)(X2d−3
− ζs3) + f2(X)(X2d−3

− ζs′
3)(X2d−3

− ζs3)

+f3(X)(X2d−3
− ζs3) + a′′

u

[
i.e. a′′

u is a mod (X2d−3
− ζs3)

]
Continuing this way, at step l:

a ≡f1(X)(X2d−2
− ζs′

2)(X2d−3
− ζs′

3)...(X2d−l

− ζs′
l)(X2d−l

− ζsl)

+f2(X)(X2d−3
− ζs′

3)(X2d−4
− ζs′

4)...(X2d−l

− ζs′
l)(X2d−l

− ζsl)
+...

+fl−1(X)(X2d−l

− ζs′
l)(X2d−l

− ζsl)

+fl(X)(X2d−l

− ζsl) + a′′′
u

[
i.e. a′′′

u is a mod (X2d−l

− ζsl)
]

Expressions for residues (au, a′
u, etc.) is what the inductive step in theorem 1 obtains.
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