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Abstract: 
This paper constructs the compact, detailed and extended models, 
and focuses on the algebraic theoretic strings and language of each 
transition of the finite automata scheme. It was discovered that from 
the initial stage to the final stage of cement production processes, 
each transition or production process can have a particular language. 
In addition, a language scheme is developed for each of the sub-
states (sub-model) that leads to a theoretic study of language scheme 
and semantics of the model. It can be deduced that when represented 
as binary codes, the established schemes in the sub-states can be 
studied as a Boolean algebraic scheme. 
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Introduction  
Model theory deals with the relations between 
the properties of sentences or sets of sentences 
specified in a formal language on one hand, and 
of the mathematical structures or sets of 
structures, which satisfy these sentences upon 
referred to as algebraic theories of fields, rings, 
groups, etc. (Robinson, 1965). 

On the other hand, an algebraic theory is a small 
category T with finite products while an algebra 
for the theory T is a function A : T →Set, 
preserving finite products (Adámek, Rosický, 
Vitale, & Lawvere, 2010). Thus, it can be said 
that there is an interesting relationship between 
algebra and algebraic theory for which algebra is 
a system of constructs based on a defined 
function on sets while an algebraic theory 
represents study of the collection of attributes 
associated with that collection. 

 

Finite Automata 

The term ‘finite automata’ describes a class of 
models of computation that are characterized by 
having finite states. The use of the word 
‘automata’ harks back to the early days of the 
subject in the 1950’s when they were viewed as 
abstract models of real circuits (Lawson, 2005). 
A Finite-State Automaton (plural: automata), or 
simply a State Machine, is conceived as an 
abstract machine that can be in one of a finite 
number of states, the machine is in only one state 
at a time; the state it is in at any given time is 
called the current state. It can change from one 
state to another when initiated by a triggering 
event or condition and this is called a transition. 
A particular Finite State Machine is defined by a 
list of its states, and the triggering condition for 
each transition. 

A typical production system is composed of 
multiple machines and workstations that 
perform various operations on a part of 
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production, and a material handling system that 
interconnect these workstations.  Parts are 
processed to completion by transiting them 
through various machines and workstations 
according to their individual process plan.  After 
processing is complete the parts leave the system 
and proceeds to the next state until the final state 
of production is reached (Yalcin, Tai, & 
Boucher, 2004). 

Typical Production System of Sokoto 
Cement  

The Production Process of Sokoto Cement 
begins from the quarry where the major raw 
material (limestone) is excavated.  After 
geological test and survey has confirmed a 
particular piece of land containing limestone, the 
excavation process begins on the soil.  The 
topmost part of the quarry area contains sand, 
laterite and marl that are removed to properly get 
to the limestone.  Limestone can be categorized 
into two categories; the high grade and the low-
grade limestone, the identification of these 
different grades of limestone can be noticed 
physically.  The high grade is harder and brighter 
while the low grade is darker and softer.  The 
required amount of calcium carbonate to be 
present in a limestone to make it a high grade is 
80% upward while in low grade is 67%- 75% 
(Quality Control Department, CCNN, n.d.). 

The limestone is further crushed in to smaller 
particles that will ease the process of production 
and packed into piles (Fitsum Consultancy, 
2008). It has been shown by Zaid, et al., (2014A) 
that there are four mixing beds in which the 
high-grade limestone is stockpiled in beds 1 and 
2 with different concentration of calcium 
carbonate while the low-grade limestone is piled 
in beds 3 and 4 also with different concentration 
of calcium carbonate.  Here, the limestones in 
the mixing beds are moved to the next stage of 
production by means of a reclaimer and 
conveyer belts to Silos in the Raw Mill where the 
targeted quality concentration mixing of calcium 
carbonate of 74.5% – 75% is carried out. It is at 
this point the raw material is ready for the next 
stage of production, which is the clinker process.  
At this stage the raw material is passed into the 
cyclone where it is preheated (at 6800C), the 

production further proceeds to the rotary kiln 
where the clinker (a grain like substance) is 
produced.  After the production of clinker, it is 
passed into the cooler where it is cooled and 
ready for the next state of production process. 

After the clinker is cooled, it is further 
transferred to the cement mill where it takes 
another phase of production. The clinker is 
crushed and mixed with additives into the 
grinder to produce the powder, which is the 
required cement. Although we have the required 
cement but that does not mean that it is the final 
state of production.  The required cement is 
moved to the final state of packaging and bulk 
dispatching which complete the cement 
production process (Quality Control 
Department, CCNN, n.d.). 

Using Finite Automata in Modeling Cement 
Production System 

The idea of using finite automata (FA) in 
modeling the production system of cement is 
strictly based on the fact that the system has 
finite states of production process with a finite 
link from a state to the other expressed in terms 
of machine sequence.  A detailed approach to 
modeling a cement production process should 
include all stages of production and transitions 
from the raw material to the finished cement 
(Garcia & Vidal, 1990). In particular, finite 
automata models have been used to model and 
develop a control for manufacturing systems 
(Kim, Shin, et al., 2010). 

In cement production process, the state of 
production changes after each instruction is 
executed, and each state is completely 
determined by the prior state and the input.  The 
production simply starts at an initial state, 
changes from state to state until it reaches the 
final state (O’Castillo & Tapia, 1999). 

 

Preliminaries 
The paper presents the algebraic theoretic 
applications of the designed models in relation 
to the states/stages to be followed from the 
initial stage to the final stage of the production 
processes of the Sokoto cement. A compact 
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model with its concatenation was developed in 
terms of algebraic language. Similarly, the paper 
constructs some algebraic languages from the 
detailed constructed deterministic finite 
automata model. In the same manner, the paper 
developed languages of the particular 
activity/stage of the main processes (quarry, 
Crushing, Raw Milling, Preheating and Finished 
cement) as extended. In this paper, strings over 
an alphabet of any finite length, concatenation of 
string and the strings that bring the automata to 
an accepting state was considered as words and 
subwords of the language. 

Finite Automata as an Algebraic Model 

The two major elements in a Finite Automata are 
states and inputs, starting with the initial (start) 
state the process can be changed from one state 
to another up to the final state. A model of this 
tye of rule-based recursive action or machine 
where the number of states and inputs are finite 
and can only be in one state at a time is called the 
deterministic finite automata (Gribkoff, 2013), 
This model can be summarized as follows: 

a. A finite set of states. 
b. A finite set of inputs. 
c. A finite set of transitions 

According to (Lawson, 2005), a deterministic 
finite automaton (DFA) consists of; 

1. a finite set of states (often denoted as Q) 

2.  a finite set  of symbols (alphabet) 

3.  a transition function that takes as argument 
a state and a symbol and returns a state (often 
denoted as ) 

4.  a start state (often denoted q0)  

5.  a set of final or accepting states (often 
denoted as F) 

We have q0 Q and F  Q 

So, a DFA is Mathematically represented as a 5-
tuple (Q, , , q0, F). 

The transition function  is a function in Q ×
Q and Q ×  is the set of 2-tuples (q, a) 

with q Q and a   

Gribkoff, (2013), focused on examining real-

world applications of DFAs to gain an 
appreciation of the usefulness of this theoretical 
concept and these applications include protocol 
analysis, text parsing, video game, security 
analysis, CPU control units, natural language 
processing and speech recognition. He also 
ascertained that, mechanical devices are 
frequently designed and implemented using 
DFAs, such as elevators, vending machines, 
mealy machines and traffic lights. According to 
Hopcroft, Motwani, & Ullman, (1979), a 
deterministic finite automaton (DFA) known as 
deterministic finite state machine is a finite state 
machine that accepts/rejects finite strings of 
symbols and only produces a unique 
computation of the automaton for each input 
string. 

Deterministic Finite Automata (DFA) 

If Q = {q0, q1, q2} where q0 is the initial state 
and F = {q1} is the final state. 

The transition function  is a function in Q ×
Q, so if the alphabet = {0,1}, then 

 :(q0,1) = q0  

 :(q0,0) = q2  

This defines the following state diagram and its 
transition table as in table 1. 

 

 
Figure 1. Transition Diagram 

 

Table 1. Transition Table 

 

    q0 

  *q1 

    q2 

0      1 

q2 q0 

q1 q1 

q2 q1 

 

The * indicates the final state(s) and in this case 
there is only one final state q1. 

∑

δ

∈ ⊆

∑ δ

δ
∑ → ∑

∈ ∈ ∑

δ
∑ → ∑

δ

δ
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Strings and Language 

A string over Σ is a finite-length sequence of 
elements of Σ, also the set of all strings over Σ is 
denoted by Σ * and for a string x, |x| is the 
length of x. The unique string of length 0 will be 
denoted by ε and will be called the empty or null 
string and a language over Σ is a set of strings 
over Σ and is denoted by L. 

Let w = a1, a2, ..., an be a string over the alphabet 
Σ. The automaton M accepts the string w if a 
sequence of states, r0, r1, ..., rn, exists in Q with 
the following conditions: 

 
The first condition says that the machine starts 
in the start state q0. The second condition says 
that given each character of string w, the 
machine will transit from state to state according 
to the transition function δ. The last condition 
says that the machine accepts w if the last input 
of w causes the machine to halt in one of the 
accepting states. Otherwise, it is said that the 
automaton rejects the string. The set of strings 
M accepted is the language recognized by M and 
this language is denoted by L(M). 

Strings over an Alphabet  

A string of length (n ≥ 0) over an alphabet Σ is 
just an ordered n-tuple of elements of Σ, written 
without punctuation.   

e.g., if Σ = {a, b, c}, then a, ab, aac, and bbac are 
strings over Σ of lengths one, two, three and four 
respectively.  

Σ* = set of all strings over Σ of any finite length.  

Also, there is a unique string of length zero over 
Σ, called the null string (or empty string) and 
denoted (no matter which Σ we are talking 
about). 

Concatenation of Strings  

The concatenation of two strings u, v∈Σ∗ is the 
string uv obtained by joining the strings end-to-
end. 

e.g., if u = ab, v = ra and w = cad, then vu = 

raab, uu = abab and wv = cadra.  

This generalizes to the concatenation of three or 
more strings as uvwuv = abracadabra. The 
length of a string u will be denoted by length (u). 
We make no notational distinction between a 
symbol a ∈Σ and the corresponding string of 
length one over Σ, also since Σ is regarded as null 

string ε a subset of Σ∗, then Σ∗ is never empty, 
as it always contains the, the unique string of 
length zero.  

Note also that for any u,v,w ∈ Σ∗ , uε = u = εu 
and (uv)w = uvw = u(vw) and length(uv) = 
length(u) + length(v).  

Motivation 

(i) If Σ = {a}, then Σ∗ contains ε, a, aa, aaa, aaaa, 
...  

(ii) If Σ = {a, b}, then Σ∗ contains ε, a, b, 
aa, ab, ba, bb, aaa, aab, aba, abb, baa, bab, bba, 
bbb,…  

(iii) If Σ = ∅ (the empty set — the unique set 

with no elements), then Σ∗ = {ε}, the set just 
containing the null string.  

Languages  

A (formal) language L over an alphabet Σ is just 

a set of strings in Σ∗. Thus, any subset L⊆Σ∗ 

determines a language over Σ. The language 
determined by a regular expression r over Σ is 
L(r) = {u∈Σ* | u matches r}.  

Two regular expressions r and s (over the same 
alphabet) are equivalent if and only if L(r) and 
L(s) are equal sets (i.e., have exactly the same 
members).  

There are only finitely many different states that 
a finite automaton can be in. In figure 1.1 there 
are three states, labelled q0, q1, and q2. If we 
think of the elements of Σ as input symbols. 
Thus, all the possible transitions of the finite 
automaton can be specified by giving a finite 
graph whose vertices are the states and whose 
edges have both a direction and a label (drawn 
from Σ). In the example Σ = {0, 1} and the only 
possible transitions from state q0 are q0→q2 

http://en.wikipedia.org/wiki/Formal_language
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and q0→q0. In other words, in state q0 the 
machine can either input the symbol 0 and enter 
state q2, or it can input the symbol 1 and loop to 
same state q0.  

There is a distinguished start state q0, which in 
the graphical representation of a finite 
automaton, the start state is usually indicated by 
means of an unlabelled arrow. The states are 
partitioned into two kinds: accepting states and 
non-accepting states and in the graphical 
representation of a finite automaton, the 
accepting states are indicated by double circles 
round the name of each such state, and the non-
accepting states are indicated using single circles. 
In figure 1 there is only one accepting state q1, 
the other two states are non-accepting. It is also 
allowed for the start state to be accepting. The 
reason for this partitioning of the states into 
‘accepting’ and ‘non-accepting’ has to do with 
the use to which one puts finite automata to 

recognize, that is whether or not a string u ε Σ∗ 
is in a particular language.  

Given u, we begin in the start state of the 
automaton and traverse its graph of transitions, 
using up the symbols in u in the correct order 
reading the string from left to right. If we can use 
up all the symbols in u in this way and reach an 
accepting state, then u is in the language 
‘accepted’ (or ‘recognized’) by this particular 
automaton; otherwise, u is not in that language. 

 

Results and Discussion 
This section presents the results of the paper as 
follows: 

Languages Accepted by the Constructed 
Models 

Definition: The language LM of a finite 
automata M contains all input strings accepted 
by M. 

LM = {strings that bring M to an accepting state} 
and the strings that bring the automata to an 
accepting state are the words of these languages. 

Notations: The following notations are used in 
this paper and defined to be: 

WC: Words and subwords of compact model 

LC: Language of compact model 

WD: Words and subwords of detailed model 

LD: Language of detailed model 

WQ: Words and subwords of extended model of 
quarry stage 

LQ: Language of extended model of quarry stage 

WC&S: Words and subwords of extended model 
of crushing and stockpiling stage 

LC&S: Language of extended model of crushing 
and stockpiling stage 

WR: Words and subwords of extended model of 
raw milling stage 

LR: Language of extended model of raw milling 
stage 

WP: Words and subwords of extended model of 
preheating stage 

LP: Language of extended model of preheating 
stage 

WF: Words and subwords of extended model of 
finished cement stage 

LF: Language of extended model of finished 
cement stage 

Compact Model 

Therefore, modifying the compact model 
constructed in (Zaid, I. et al 2014a) to be as in in 
figure 2 and for clarity, if the impossible 
transitions of the compact model are removed 
and we assign 1 2 3,t a t b and t c= = = . 

 

 
Figure 2. Modified Compact Model 

 

Then, the words and subwords of the model 
can be generated as: 
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   (1) 

and in that case, the language of the compact model is:  

    (2) 

which is an infinite language. 

 

Detailed Model 

Also, for the detailed model of the Sokoto 
cement production system of figure 3, as 
constructed in (Zaid, I. et al 2014b), where there 

are repetitions of transition during raw milling 
and cement milling and by assigning as follows 

1 2 3,t a t b and t c= = =  then, the figure can be 
represented as follows: 

 

 
Figure 3. Modified Detailed Model 

 

     (3) 

So, the language of the detailed automata is given by: 

  (4) 

Which also produce an infinite word and subwords. 
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Extended Model of the Quarry Stage  

If 
1 20 0q and q in figure 3 are considered to be 

quarry state and 0i
q to be re-presented as 0ij

q
where , the state can be expanded as in figure 4 
to be termed as the extended model of the quarry 
stage of the production process denoting 

1i it by a to give the finite automata of the quarry 
stage as follows: 

 

 
Figure 4. Modified Quarry Stage of the 

Extended Model 

  

The words and subwords of the automata are: 

1 1 2 1 4 1 2 5 1 2 6 1 6 1 2 6 7

6 7 8 6 9 1 2 6 9 1 2 6 1 2 6 7 8

1 2 6 7 8

, , , , , , ,
, , , , , , ,

,

Q

A

B

W a a a a a a a a a a a a a a a a a
a a a a a a a a a a a a a a a a a a
a a a a a a

=

     (5) 

 

from which the language of the quarry automata 
is given by: 

     (6) 

 

Extended Model of the Crushing and 
Stockpiling Stage 

Extending the crushing and stockpiling of figure 
3 as done in the same manner as that of quarry 
stage and taking into consideration some of the 
loops in the activities of stockpiling while 
assigning 21 ,t a= the figure can be represented 
as figure 5 below: 

 
Figure 5. Modified Crushing and 

Stockpiling Stage of the Extended Model 

 
The words and subwords of the crushing and 
stockpiling automata are as follows: 

 

     (7) 

and the language of the automata is as follows: 

     (8) 

 
Extended Model of the Raw Milling Stage 

Extending the Raw milling stage of figure 3 as 
done in the same manner as that of quarry or 
stockpiling stage and taking into consideration 
some of the loops in the activities of Raw-milling 
and assigning 3 41 , 1 ,t a t b= =  the figure can be 
represented as figure 6 below: 

 

 
Figure 6. Modified Raw milling Stage of the 

Extended Model 
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Therefore, the words and subwords of the 
automata are: 

 

     (9) 

 

from which the language of raw milling stage is 
written as:  

 

 (10) 
 

Preheating Stage of the Extended Model 

Extending the Preheating stage of figure 3 as 
done in the same manner as that of quarry or 
stockpiling or raw milling stage and taking into 
consideration that, 

1 1 2 1 3 12 , 2 2t a t b and t c= = = , the figure can be 
depicted as figure 7 below: 

 

 
Figure 7. Modified Preheating Stage of the 

Extended Model 

 

The words and subwords of these automata are: 

     (11) 

 

Therefore, the language of the preheating 
automata is: 

  (12) 

Finished Cement Stage of the Extended 
Model 

Extending the Finished stage of figure 3 as done 
in the same manner as that of quarry or 
stockpiling or raw milling stage and taking into 
consideration the transitions between bulk 
dispatch and packaging of the powdered cement 
as well as, denoting, 

1 1 2 1 3 1 4 13 , 3 , 3 3t a t b t c and t c= = = = , the 
figure can be depicted as figure 8 below: 

 

 
Figure 8. Modified Finished Cement Stage of the Extended Model 

 

Therefore, the words and subwords of the automata are: 

  (13) 
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So, the language of the finished cement automata is; 

     (14) 

 

Union of the Languages  

The unions of these regular languages are given by: 

 (15) 

 

(16)

 

 

Remarks 
1. If represent the times 
taken to transit between these processes 
then, 𝐿𝐿𝑄𝑄 ∪ 𝐿𝐿𝐶𝐶&𝐿𝐿 ∪ 𝐿𝐿𝑅𝑅 ∪ 𝐿𝐿𝑃𝑃 ∪ 𝐿𝐿𝐹𝐹 gives the time 
period of the production cycle. 
2.  If represent the 
quantities transited between production units 
then, 𝐿𝐿𝑄𝑄 ∪ 𝐿𝐿𝐶𝐶&𝐿𝐿 ∪ 𝐿𝐿𝑅𝑅 ∪ 𝐿𝐿𝑃𝑃 ∪ 𝐿𝐿𝐹𝐹 gives the 
quantity produced per production cycle. 
3. Also, 𝐿𝐿𝑄𝑄 ∪ 𝐿𝐿𝐶𝐶&𝐿𝐿 ∪ 𝐿𝐿𝑅𝑅 ∪ 𝐿𝐿𝑃𝑃 ∪ 𝐿𝐿𝐹𝐹 
represent the regular language of the general 
extended model to be considered in further 
research. 

 

Conclusions 
It has been established that the Sokoto cement 
production system can be modeled into an 

automata scheme with interesting algebraic 
theoretic properties that present relevant 
information on both the production mechanism 
viewed as sub-states and the overall performance 
analysis when viewed as compact, detailed and 
extended scheme; In addition, a language 
scheme has been developed for each of the sub-
states (sub-model) leading to a theoretic study of 
regular language scheme (machine learning). 
This has an important application in theoretical 
computer science, data science, cryptography 
and networking as it involves graphs among 
others. 

In further research, these particular extended 
models would be combined into a general 
extended model so as to establish the 
deterministic finite automata for the general 
extended model and its language as well as 
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regular expression for the general model and 
possible represented as binary codes. 
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