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Abstract

The recent evolution of technology in automation, agriculture, IoT, and aerospace fields
has created a growing demand for mobile robots capable of autonomous operation and
movement to accomplish various tasks. Aerial platforms are expected to play a central
role in the future due to their versatility and swift intervention capabilities. However,
the effective utilization of these platforms faces a significant challenge due to localiza-
tion, which is a vital aspect for their interaction with the surrounding environment.
While GNSS localization systems have established themselves as reliable solutions for
open-space scenarios, the same approach is not viable for indoor settings, where local-
ization remains an open problem as it is witnessed by the lack of extensive literature on
the topic.

In this thesis, we address this challenge by proposing a dependable solution for small
multi-rotor UAVs using a Visual Inertial Odometry localization system. Our KF-based
localization system reconstructs the pose by fusing data from onboard sensors. The pri-
mary source of information stems from the recognition of AprilTags fiducial markers,
strategically placed in known positions to form a “map”.

Building upon prior research and thesis work conducted at our university, we extend
and enhance this system. We begin with a concise introduction, followed by a justi-
fication of our chosen strategies based on the current state of the art. We provide an
overview of the key theoretical, mathematical, and technical aspects that support our
work. These concepts are fundamental to the design of innovative strategies that ad-
dress challenges such as data fusion from different AprilTag recognition and the elim-
ination of misleading measurements. To validate our algorithms and their implemen-
tation, we conduct experimental tests using two distinct platforms by using localiza-
tion accuracy and computational complexity as performance indices to demonstrate the
practical viability of our proposed system.

By tackling the critical issue of indoor localization for aerial platforms, this thesis tries
to give some contribution to the advancement of robotics technology, opening avenues
for enhanced autonomy and efficiency across various domains.
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1
Introduction

Throughout the past few decades, robotics has witnessed remarkable growth
in interest and advancement, captivating the imaginations of scientists, engi-
neers, and the general public. With industrial robots’ controlled precision and
unmanned aerial vehicles’ autonomous mobility, robotics has expanded its hori-
zons, pushing the boundaries of what was once thought possible. While in-
dustrial robotics has succeeded in manufacturing, mobile robotics offers a wide
range of potential applications that extend far beyond factory settings. Despite
being mainly used in the industrial sector to improve productivity, robots cannot
fully replace humans in the future, while could instead ”replace their hands”.
Robotic systems can deal with repetitive, demeaning, dangerous tasks or even
perform duties impossible for humans. In terms of workers’ safety and well-
being, this can have a significant impact.

Industrial robotics and mobile robotics differ in their respective operation do-
mains. While industrial robots perform repetitive tasks with impressive accu-
racy, speed, and efficiency in factories, mobile robotics has the potential to revo-
lutionize numerous fields, despite its still early stage of development. Powered
by sensors, small but powerful onboard computers, and equipped with the abil-
ity to navigate complex environments, mobile robots are expected to become a
common technology in the near future. Further progress could also be achieved
by exploring how these systems can be integrated with emerging artificial intel-
ligence technology and interact with the humans.
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1.1. LOCALIZATION OF AERIAL MOBILE ROBOTS

Several factors may contribute to the aforementioned growth in the usage of
mobile robots. Above all, there has been a significant increase in the demand
automated systems and machines, primarily driven by the need for enhanced
productivity, efficiency, and safety. Mobile robots present the ability to adapt
and perform tasks in ever-changing and challenging conditions, making them
valuable in various sectors such as logistics, healthcare, agriculture, and search
and rescue operations. Additionally, the progress made in sensor technology,
miniaturization, and computing power has allowed the development of compact
and intelligent platforms that can function autonomously, effectively tackling
the challenges posed by unpredictable environments.

1.1 LOCALIZATION OF AERIAL MOBILE ROBOTS

The future of robotics holds great significance for small Unmanned Aerial Ve-
hicle (UAV)s, often more commonly referred to as drones. These compact and
agile flying robots have demonstrated immense potential in various domains
and will certainly play a pivotal role in the future.

There exist several types of these vehicles, built for different purposes and to
work in the most disparate conditions. The first classification is based on the
aerodynamic principle the aircraft exploits. It is fundamental to distinguish be-
tween fixed-wings and spinning-wings vehicles (see figure 1.1). The first typol-
ogy is provided of extended wings able to lift the aircraft in the air thanks to
its moving speed, similarly to airplanes. The second type is lifted by the thrust
generated by one or more propellers. If the vehicle presents a main propeller
responsible for the thrust and the others are used just to compensate for drag
forces acting on the platform, then it is categorized as a helicopter. Otherwise,
if three or more identical rotors are mounted respecting proper geometrical re-
quirements, the aircraft is a multi-copter. More recently, some fixed-spinning
hybrid systems have been also proposed and studied, referred to as Vertical Take-
Off and Landing (VTOL) to bring together the main advantages of the two con-
figurations. However, the most used and widespread UAVs remain for now the
multi-copters, thanks to their simple structural design, versatility and relatively
low costs, making them suitable for a large number of applications.

2



CHAPTER 1. INTRODUCTION

Figure 1.1: Small UAVs classification based on the propulsion system.

Several standards for multi-copter exist, differing for the number of rotors/pro-
pellers and their geometric arrangement (some common configurations are re-
ported in figure 1.2).

UAVs are already in use for various tasks in the most disparate sectors in
outdoor scenarios (see for instance [4], [12], [15]), such as (figure 1.3):

• aerial shooting and recordings;

• surveillance;

• light cargo delivery;

• Internet services;

• precision agriculture.

However, multi-copters could be particularly useful also in restricted space
environments like indoor settings, where the utilization of small UAVs presents
compelling opportunities for a wide range of applications. Consider the pos-
sibilities of autonomous inspection and monitoring tasks within complex in-
frastructures such as warehouses, factories, or even disaster-stricken buildings,
where human access is limited or hazardous. Small UAVs can navigate confined
spaces, capture high-resolution imagery, and relay critical information to aid in
decision-making processes. Furthermore, their potential ability to perform tasks
with precision and efficiency opens avenues for applications in areas such as in-
ventory management, environmental sensing, security, surveillance, and even

3



1.1. LOCALIZATION OF AERIAL MOBILE ROBOTS

Figure 1.2: Typical commercial multi-copter configurations: (a) I-quad, (b) X-
quad, (c) X-hexa, (d) X-octa, (e) I-octa, (f) Y6-hexa.

Figure 1.3: Modern scenarios involving the use of UAVs.
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CHAPTER 1. INTRODUCTION

entertainment and immersive experiences. By harnessing the potential of small
UAVs in restricted space environments enhance productivity, safety, and the
overall human-machine interaction in diverse sectors. For these reasons, multi-
rotor UAVs can be considered as the most representative instance of aerial robots
able to operate indoors, becoming the main actors for this thesis work.

In general, robotics can be regarded as the scientific study of the interplay be-
tween perception and action in autonomous systems. Robots serve as platforms
to apply fundamental principles from control system theory, notably emphasiz-
ing the significance of closed-loop systems. In the case of mobile robots, par-
ticularly UAVs, awareness of their own position and the location of their target
is crucial for task fulfilment. These autonomous systems are typically confined
within controlled and secure workspaces. Such closed environments often im-
pose narrow spaces and limited maneuvering capabilities, necessitating precise
navigation. This becomes even more critical when these robots are designed to
collaborate with human beings or operate in sparsely occupied environments.
Moreover, for tasks requiring high precision, the robot must possess accurate
knowledge of its intended position and the relative pose with respect to its tar-
get. In this context, localization emerges as a key aspect that addresses these
challenges. Localization is defined as the process of determining the precise
position and orientation of a robot relative to its surroundings, representing a
fundamental aspect of robotics. A robust self-localization and mapping system
is indispensable, as it allows the robot to operate effectively and efficiently in
its environment. However, indoor environments pose unique challenges due to
the absence of GPS signals, the presence of obstacles, and the requirement for
precise and reliable localization in confined spaces.

Typically, all the aerial vehicles are equipped with Inertial Measurement Unit
(IMU) and possibly barometers. These sensors can be used to approximately
estimate the position and the orientation of the aircraft with respect to a fixed
reference system. However, since this calculation is performed by integration,
even very small errors in the measurements can produce a drift effect on the esti-
mate, resulting in a completely wrong localization of the platform. This problem
can be overcome by adding another source of information to face the drift effect
introduced by the IMU. Modern aerial robots implement a state estimation sys-
tem based on an Extended Kalman Filter (EKF), i.e. an enhanced Kalman Filter
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adapted to deal also with non-linear dynamic systems. This filter can merge
data coming from different sensors (data fusion) providing a robust estimate of
the pose. Normally, this second source of measurement consists of a Global Po-
sitioning System (GPS) signal. Since this signal is known to quickly degrade in
quality and precision when used indoors, a different method must be adopted
in similar situations.

1.2 STATE OF THE ART

To enable autonomous movement and operation, a multi-rotor UAV must con-
tinually measure or estimate its position and orientation relative to a fixed ref-
erence frame within its workspace, thereby achieving real-time localization. Ex-
tensive literature has addressed the localization problem, proposing various ap-
proaches. However, the majority of studies have predominantly focused on out-
door scenarios, where Global Navigation Satellite System (GNSS) solutions have
become the prevailing choice. In contrast, the challenge of localizing robots op-
erating in indoor environments, where GNSS signals are not feasible due to tem-
porary signal loss or degradation, remains an insufficiently explored domain.
Presently available technologies struggle to offer the high performance and reli-
ability required for precision-demanding indoor tasks, thereby leaving the prob-
lem of localization within small, enclosed spaces as an open challenge that must
be overcome for the maturation of multi-rotor UAV technology.

Numerous alternative sources of pose information have been proposed in the
literature as substitutes for GNSS. Early works considered acoustic [23] and ra-
dio frequency [35] signals, as well as localization methods based on visible light
[30]. However, the standalone application of these localization methods demon-
strated notably low accuracy, limiting their practical utility to a narrow range
of applications. More recent approaches have turned to image/vision systems,
which have gained significant popularity in the literature ([36], [37]), owing to
their increased accuracy and robustness. Vision systems can be mounted on-
board or off-board. Off-board solutions typically entail the use of cost-effective
motion capture camera systems, which offer the highest achievable level of accu-
racy in determining the pose of a mobile platform within their field of view. De-
spite their performance advantages, these localization systems are generally im-
practical for deployment outside laboratory settings because they require an im-

6



CHAPTER 1. INTRODUCTION

portant infrastructure and periodic calibrations, aside from their valuable cost.
Consequently, their predominant usage remains within academic and research
contexts, serving as ground truth for comparative analyses against other local-
ization methods, as exemplified in this thesis work.

For these reasons, the focus is primarily directed towards onboard visual sys-
tems. In this regard, visual-based systems have been employed in conjunction
with other sensor measurements, such as lidars, to implement the Simultaneous
Localization and Mapping (SLAM) algorithm, which has proven particularly ef-
fective for indoor navigation tasks [7]. Another common approach involves the
utilization of fiducial markers [18] strategically designed and placed in advance
within the robot’s workspace at pre-determined positions. This approach was
initially proposed for precise autonomous outdoor landing, requiring higher ac-
curacy than that provided by GNSS systems, utilizing custom fiducial mark-
ers, as demonstrated in [16]. However, more frequently, these fiducial markers
belong to well-established standardized families, such as for the approach de-
scribed in [33], where it is part of a comprehensive visual-servo UAV landing
control strategy. Fiducial markers have also been cleverly employed in [22] for
ground robot tracking by a UAV and in [38] for tracking another UAV, with the
marker directly attached to the target. Moreover, fiducial markers have been
employed in [8] to address the Autonomous Valet Parking (AVP) problem, an on-
going challenge in autonomous driving. Although the adoption of standard-
ized marker families in UAV localization remains relatively uncommon, the re-
cent literature predominantly discusses AprilTags [27], a widely debated type of
fiducial marker. AprilTags offer a robust digital coding system, along with in-
creased resistance to occlusion, warping, and lens distortions. In a recent work
[2], AprilTags are employed to tackle indoor navigation for multi-rotor UAVs,
with a specific focus on developing a new closed-loop control system directly
utilizing visual odometry readings as feedback.

In [13], the utilization of AprilTags to establish a localization system for an au-
tonomous ground robot navigating within a confined environment has been ex-
plored. All fiducial markers are strategically positioned on the ceiling, ensuring
continuous visibility for a camera mounted atop the robot. Leveraging AprilT-
ags detection in conjunction with SLAM algorithms, the ground robot achieves
highly accurate navigation throughout the environment, exhibiting precision in
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every maneuver. However, when applying the same approach to UAVs, new
challenges arise due to the potential variations in flight altitudes. If an UAV
platform is not constrained to a fixed height, the recognition of small markers
becomes increasingly challenging as the distance from the camera increases.

To address the issue of different flight altitudes, several strategies have been
proposed. In [34], the problem is tackled by incorporating multiple smaller
markers within a larger marker or employing distinct fiducial markers with dif-
ferent sizes [21], [3]. In [39], a ground map generated from a simple and repet-
itive pattern of equally sized tags is proposed, requiring the UAV to perform a
complete flight at a constant altitude. Position data is processed using a Kalman
Filter to enhance precision and mitigate noise affecting measurements. Simi-
larly, [26] adopts a framework where a scattered set of fiducial markers (April-
Tags from a standardized family) is strategically placed in predetermined posi-
tions within the area, replacing the need for a ground map. Building upon this
work, [20] improves the localization performance by employing a Visual Inertial
Odometry (VIO) approach, that relies on a (EKF) to fuse IMU measurements
with marker recognition data.

More recent and advanced solutions involve this type of data fusion from var-
ious sources of localization. Given that both cameras and IMUs are typically
mounted on UAVs due to their cost-effectiveness and versatility, several studies
have pursued the fusion of data from these sources. This approach, commonly
referred to as VIO, represents an ideal candidate for indoor localization across
a wide range of autonomous platforms. The combination of these two distinct
sources of information allows for mitigating their respective limitations. The er-
rors introduced by IMU measurements can be rectified by leveraging data from
visual sensors, while operative limits to the UAV flight altitude can be overcome
by relying on two complementary sources of data. Drawing inspiration from
some of these last works, BERTONI ET AL. [5] adopted a similar yet enhanced ap-
proach for two custom multi-rotor aerial robots. Their system enables the robots
to follow prescribed trajectories, incorporating various altitudes while relying on
a dense AprilTags map consisting of markers of different sizes. On the software
side, localization algorithms are implemented within a ROS2 environment, en-
suring a high level of abstraction and code separation across different nodes.

8



CHAPTER 1. INTRODUCTION

1.3 OBJECTIVES AND CONTENTS SUMMARY

The final objective of this thesis is to develop and validate a reliable VO! lo-
calization system for multi-copters able to ensure good performances inside a
small free-space indoor environment.

The localization system considered and implemented in this thesis is VIO pose
estimator based on the recognition of a-priori known fiducial markers placed
inside the workspace to form a ”map” that guides the UAVs inside the environ-
ment. Among all the types of fiducial markers, AprilTags are chosen due to their
simplicity and proven precision [18]. Two different models of multi-copters have
been formerly developed at the C-Square (Computer and Control Engineering lab-
oratory) inside the Dipartimento di Tecnica e Gestione dei Sistemi Industriali (DTG),
headed by the University of Padova. These drones, used for experimental tests,
are provided by a Flight Controller implementing the EKF filter to merge data
from IMU and the AprilTag recognition system.

This work can be intended as the natural pursuance of the former work con-
ducted by PESCANTE [29], which was in turn strongly based on the first work
made by SEGATTINI [32]. In [32] it is exhaustively discussed the design and de-
velopment of a multi-copter (called HR01) adopted for all the following research
on this topic, along with a quad-copter (referred to as QR01). In the same the-
sis, a first simple VIO system is proposed, which relies on an EKF to integrate
the visual data coming from the recognition of the bigger-size tag on the field
with the measurements coming from inertial odometry sensors. In [29], the lo-
calization system is extended and improved, making it able to collect data from
more than one tag per time, and introducing other algorithms to clean and filter
the input data. A simple moving average filter is also added to the localization
pipeline to reduce the noise at high frequency. These improvements made the
resulting state estimation more robust to noise and errors due to bad recognition
of the tags, as the experimental tests performed at the final part of the research
confirmed. The test methodology adopted by PESCANTE [29] is inspired by that
designed and followed by BERTONI ET AL. in [5].

In this thesis, the same problem is again addressed, investigating new strate-
gies or methods that could improve the localization system itself. The objec-
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1.3. OBJECTIVES AND CONTENTS SUMMARY

tive is to design and implement new algorithms that can improve in practice
the results achieved previously. Whenever this appears to be not possible, the
willingness is to show (even possibly prove) why the already adopted strategies
represent the best choice, at least relying on the current literature.
The above-mentioned improvements can be intended both in terms of the qual-
ity of the pose estimation and the efficiency of the algorithms. To this intent,
completely new algorithms have been introduced and other ones upgraded. In
particular, the problem of effectively merging the information of the pose com-
ing from the recognition of different markers (data fusion) and the problem of
excluding less-reliable estimates from the data set (outliers detection and remov-
ing) are studied in deep, by comparing different alternative solutions.
Regarding the pose estimation, the goodness is evaluated considering accuracy
and robustness, comparing them with those achieved in the earlier works. To
this purpose, the methodology for the tests and the experimental setup adopted
in [5] are here again replicated or openly taken as a reference. For what concern
the execution speed, this aspect was never addressed before, therefore it will be
presented here, also by briefly adding performance evaluation of the previous
methods to establish a comparison.

The following chapters discuss the theoretical foundations, methodologies,
development and improvement of such localization systems culminating in prac-
tical insights and recommendations for future developments.

Chapter 2 starts by illustrating the multi-copter mathematical model and its pose
representation, fixing a reference notation used along the rest of the thesis. Then,
it follows an overview of various other useful technical details on the specific
hardware, including the VIO system.

Chapter 3 contains the main contribution of this thesis, with the analysis of
several new strategies and algorithm candidates to improve the former work.
A preliminary statistical analysis is very briefly discussed, just the promising
methods are then tested in the experimental setup.

Chapter 4 describes the experimental setup, including the flight trajectory for
the two drones and the performance indices adopted. The results of all the var-
ious tests are thereafter reported and discussed, with a particular focus on the

10



CHAPTER 1. INTRODUCTION

improvements achieved.

Chapter 5 finally summarizes all the evidence coming from the tests and briefly
discusses the achieved goals. The thesis ends up with some ideas for future
works on this topic.
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2
Theoretical and technical background

2.1 MODELLING CONCEPTS

In order to design an effective localization system, a fundamental prerequi-
site is to gain a comprehensive understanding of pose representations (i.e. both
position and orientation) of a generic UAV platform, followed by the develop-
ment of a streamlined mathematical model to describe its dynamics and kine-
matics. Equally important is revisiting the process of sensor fusion that ensures
a cohesive integration of data.

2.1.1 UAV POSE REPRESENTATIONS

In order to describe the vehicle’s pose accurately within the 3D space, the
introduction of two distinct reference frames becomes imperative. The first is
the Body Frame ℱ𝐵, with its origin 0𝑏 coinciding precisely with the Center of
Mass (C.O.M) of the vehicle. The second is the World Frame ℱ𝑊 , where the ori-
gin 0𝑏 is a fixed and known position in the working environment. While the
platform’s position is expressed through a 3-dimensional vector identifying the
the position of 0𝑏 in ℱ𝑊 , the orientation of a generic UAV, corresponding to the
relative orientation between ℱ𝐵 and ℱ𝑊 can be mainly represented in three dif-
ferent ways, each possessing its advantages and limitations.

13



2.1. MODELLING CONCEPTS

ROTATION MATRICES

Rotation matrices are widely employed representations for a rigid body’s
pose across diverse fields, spanning robotics, computer vision, and mechan-
ics. Following this convention, the vehicle’s pose is denoted by a pair (pW

B
,RW

B
),

where pW
B
∈ R3 and RW

B
∈ SO(3). Alternatively, the pose can be described en-

tirely by a transformation matrix TW
B
∈ SE(3) = R3 × SO(3). Opting for the

algebraic group SO(3) offers a robust representation, devoid of singularity and
ambiguity concerns. However, due to its redundant nature and computation-
ally intensive demands, it may not be the most suitable choice for mobile agent
orientations.

ROTATIONAL ANGLES

Rotational angles offer an alternative approach for representing the vehicle’s
pose. Under this convention, the pose is characterized by the pair (pW

B
, 𝛼B), with

𝛼B ∈ (S
1)3 ⊂ R3 expressed in radians. This representation is minimalistic and

intuitive. The three angles can be interpreted as Euler Angles, representing the
magnitudes of three elemental rotations around the body frame axes (typically
in sequences 𝑍𝑌𝑋 or 𝑍𝑌𝑍), culminating in the desired overall rotation. Alter-
natively, they can be intended as Aeronautical Angles (pitch, roll, yaw), directly
describing the vehicle’s rotational angles around fixed axes centered in 0𝑏 . Nev-
ertheless, rotational angles may present certain challenges. Euler Angles heavily
rely on the chosen rotation sequence and can encounter singularities, leading to
unfortunate configurations where the angles are not uniquely determined—a
situation known as gimbal lock. Even when opting for aeronautical angles, am-
biguity issues may arise due to sign conventions, making rotational angles less
suitable for advanced applications.

UNIT QUATERNIONS

Quaternions are hyper-complex numbers denoted as 𝑎 + 𝑏i + 𝑐j + 𝑑k and
following the so-called Hamilton rule [9], . When restricting our focus to unit
norm quaternions, this set becomes isomorphic to the S3 sphere and effectively
represents rotations within three-dimensional space. Consequently, the pose
is uniquely identified by the pair (p𝑊

𝐵
, q𝑊

𝐵
), where q𝑊

𝐵
∈ S3. Despite lacking

an intuitive interpretation, the quaternion representation offers significant ad-
vantages. Notably, it is highly convenient due to its absence of singularities, in

14



CHAPTER 2. THEORETICAL AND TECHNICAL BACKGROUND

contrast to other representations. Moreover, quaternion operations entail lower
computational complexity compared to those involving rotation matrices, given
that quaternions are four-element entities as opposed to nine-element objects.

Given the aforementioned considerations, the adoption of quaternions to rep-
resent the platform’s rotation emerges as an appropriate choice in this work. On
the other hand, rotation matrices will find utility in describing certain equations
and for specific operations, even at the implementation level. However, as will
be explored later, transitioning from SO(3) to S3 can lead to problems in certain
contexts due to the Double Coverage Property of quaternions. Specifically, for
any R ∈ SO(3), there exist two quaternions q and −q ∈ S3 that both represent
the same rotation (see [14]). This characteristic of quaternions can introduce
ambiguity and needs careful consideration to avoid potential issues.

2.1.2 STANDARD MULTI-ROTOR MODELLING

Different models for the multi-rotor UAV have been presented in the litera-
ture. Here, the cinematic and dynamical model of a standard n-rotor, viewed
as a rigid body equipped with n propellers spinning around their own axes, is
described using the Newton-Euler approach.

From a kinematic perspective, the pair (v𝑊 ,𝝎𝑊 ) represents the Twist of the
platform, comprising the linear velocity v𝑊 = p¤𝑊 of 0𝑏 expressed with respect
to ℱ𝑊 , and the angular velocity 𝝎𝑊 of ℱ𝑏 with respect to ℱ𝑊 . The relation R̂

𝑊
𝐵 =

R𝑊
𝐵
[𝜔]𝑥 governs the rotational aspect.

From a dynamics viewpoint, the total forces and torques applied to the vehi-
cle can be obtained by considering the action of each propeller individually. The
i-th propeller, 𝑖 = 1 . . . 𝑛, rotates about its own spinning axis û𝑧𝑖 ∈ R

3 passing
through the propeller’s centre 0𝑖 at a speed 𝜔𝑖 controlled by the motors. Pro-
pellers are labelled as either clockwise (CW) or counter-clockwise (CCW) as shown
in figure 2.1. By convention, the sign of the angular velocity is





−𝜔𝑖û𝑧𝑖 for CW propellers

−𝜔𝑖û𝑧𝑖 for CCW propellers
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Figure 2.1: Reference frame convention adopted.

Figure 2.2: Forces and torques acting on the UAV platform.
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CHAPTER 2. THEORETICAL AND TECHNICAL BACKGROUND

and the control variable is defined as 𝑢𝑖 = 𝜔𝑖 |𝜔𝑖 | ∈ R. With reference to figure
2.2, each actuator generates

• a thrust force f𝑖 = 𝑐 𝑓𝑖𝑢𝑖û𝑧𝑖 ∈ R
3 expressed in ℱ𝑏 , where 𝑐 𝑓𝑖 ∈ R is a constant

parameter determined by the mechanical characteristics of the propeller;

• a drag moment 𝜏𝑑
𝑖
= 𝑐𝜏𝑖𝑢𝑖û𝑧𝑖 ∈ R

3 expressed in ℱ𝑏 with direction opposite
to 𝜔® 𝑖 where 𝑐𝜏𝑖 ∈ R is a constant parameter;

• a thrust moment 𝜏𝑡
𝑖
= p𝑖 × f𝑖 ∈ R

3.

By aggregating all forces and torques generated by the propellers, the total
force f𝑐 and the total moment 𝝉𝑖 applied at 0𝑏 and expressed in ℱ𝑏 are given by

f𝑐 =

𝑛∑

𝑖=1

f𝑖 =

𝑛∑

𝑖=1

𝑐 𝑓𝑖 û𝑧𝑖𝑢𝑖 in ℱ𝑊 (2.1)

𝜏𝑐 =

𝑛∑

𝑖=1

(𝜏𝑡𝑖 + 𝜏𝑑𝑖 ) =

𝑛∑

𝑖=1

(𝑐 𝑓𝑖p𝑖 × û𝑧𝑖 + 𝑐𝜏𝑖u𝑧𝑖 )𝑢𝑖 in ℱ𝑊 (2.2)

A shortened notation can be obtained introducing the control input vector u =

[𝑢1 . . . 𝑢𝑛]
𝑇 ∈ R𝑛 and two matrices: the control force input matrix F and the

control moment input matrix M, such that f𝑐 = Fu and 𝜏𝑐 = Mu. Neglecting all
the second order effects the dynamics equations are

𝑚p¥𝑊 = −𝑚𝑔e3 +R𝑊
𝐵 f𝑐 = −𝑚𝑔e3 +R𝑊

𝐵 Fu (2.3)

J𝜔¤ = −𝜔 × J𝜔 + 𝜏𝑐 = −𝜔 × J𝜔 +Mu (2.4)

where 𝑔 ∈ R is the gravitational acceleration, 𝑚 ∈ R is the total mass of the
multi-rotor and J ∈ R3×3 its matrix of inertia. Finally, willing to move to the
quaternion representation for the pose, by employing quaternion algebra, the
final equations of the model are obtained as follows:

p¤𝑊 = v (2.5)

q¤𝑊𝐵 =
1

2
q𝑊𝑏 ◦

(
0

𝜔

)

(2.6)

𝑚p¥𝑊 = −𝑚𝑔e3 +R(q)Fu (2.7)

J𝜔¤ = −𝜔 × J𝜔 +Mu (2.8)

where ◦ denotes the quaternion (or Hamilton’s) product.
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2.1. MODELLING CONCEPTS

2.1.3 EXTENDED KALMAN FILTER AND SENSORS DATA FUSION

The Kalman Filter plays a fundamental role in robots’ localization and nav-
igation. This versatile filtering technique is extensively utilized, even with non-
linear systems, through its extended version (EKF), which enables data fusion
from various sources of measurements.

In general terms, the Kalman filter is employed to achieve an optimal estimate
of a variable that can only be indirectly measured and/or is subject to noisy
disturbances. Introduced by Kalman in [19], it swiftly became a standard tool
for movement tracking and navigation tasks. The filter combines predictions
derived from the system model’s knowledge with the noisy measurements ob-
tained from available sensors. Under certain mathematical requirements con-
cerning the system model, this approach ensures an optimal estimate of the un-
known variable, as in this case, the vehicle pose.
The main equations of the Kalman filter stem two phases known as the predic-
tion phase and the update (or correction) phase. During the prediction phase, the
estimates from the previous time instances are projected to the next time instant
using the provided system model, generating a new estimate of the pose and a
new covariance matrix of the error. In contrast, the subsequent update phase
involves the integration of the estimate obtained in the prediction step with the
measurements collected from the sensors, resulting in a new ”corrected” esti-
mate of the pose and the error covariance matrix. This iterative mechanism em-
powers the estimator to adapt and correct itself continually, converging asymp-
totically to an optimal estimate of the vehicle’s pose, which constitutes part of
the system’s state.

The standard Kalman filter is specifically designed to handle linear systems
affected by white Gaussian noise. The EKF represents its natural evolution, in-
tended to address non-linear systems with measurements affected by more gen-
eral types of disturbances. While the core algorithm of the EKF follows the same
principles as the standard version, there is one crucial difference: the matrices
describing the state transition and noise of the model are linearized prior to the
prediction phase, and in the subsequent update step, certain functions are lin-
earized using the Jacobian matrix.
The EKF’s versatility also enables sensors fusion, allowing for the combination
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CHAPTER 2. THEORETICAL AND TECHNICAL BACKGROUND

of measurements from different sensors, even operating at different sampling
frequencies. When multiple sensors provide measurements of (or some com-
ponents of) the state, this strategy involves evaluating the Kalman Gain contri-
bution independently for each sensor, utilizing distinct measurement matrices
and covariance matrices. Subsequently, the final Kalman gain is determined by
combining the contributions from all the sensors, ensuring consistent updates
of estimates and covariances.
In the context of this localization system, this approach is employed to merge
the IMU measurements with the pose localization obtained from visual odom-
etry. This integration takes place inside the Pixhawk firmware, as elucidated in
[*].

2.2 VISUAL INERTIAL ODOMETRY

The heart of this thesis project revolves around the Visual Inertial Odom-
etry (VIO) localization system. This section elucidates the complexities of the
localization solution, encompassing the process of converting sensor data into
precise position and orientation measurements.

2.2.1 IMU SENSORS AND INERTIAL ODOMETRY

An Inertial Measurement Unit (IMU) is a device equipped with multiple in-
ertial sensors that enable the tracking of a system’s dynamics, capable of moving
with a specific number of degrees of freedom. IMUs are categorized based on
the number of sensors they incorporate, with options ranging from three-axis,
six-axis, to even nine-axis devices.

The current IMU utilized on the two reference platforms is a six-axis IMU,
integrated with the PixHawk flight controller. This device comprises a three-axis
gyroscope and a three-axis accelerometer, providing measurements of angular
velocity and linear acceleration, respectively. These measurements are always
referenced to the body frame ℱ𝑏 . Additionally, the IMU includes a barometer,
serving the purpose of obtaining a rough altitude measurement. However, for
this localization system, the barometer has been deemed non-essential and con-
sequently left unused.
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2.2. VISUAL INERTIAL ODOMETRY

The measurements acquired from accelerometers and gyroscopes can be de-
scribed by the following equations:

�̂�𝑏(𝑡) = 𝜔𝑏(𝑡) + b𝜔 + w𝜔(𝑡) (2.9)

�̂�𝑏(𝑡) = (R
𝑊
𝐵 )

𝑇(p¥𝑏(𝑡) − 𝑔e3) + b𝑎 + w𝑎(𝑡) (2.10)

where �̂�𝑏(𝑡) and �̂�𝑏(𝑡) represent angular velocity and linear acceleration, respec-
tively, expressed with respect to ℱ𝑏 and measured at time 𝑡. The terms 𝜔𝑏(𝑡) and
p¥𝑏(𝑡) stands for the true values of angular velocity and linear acceleration, while
b𝜔 and b𝑎 represent static bias. The vectors w𝜔(𝑡) and w𝑎(𝑡) are time-varying
three-dimensional noise vectors drawn from the distributionN(0,Σ).

As mentioned earlier, counting on IMU measurements only for localization
would not be acceptable, primarily due to the presence of drifting phenomena.
Therefore, an additional source of localization is required to correct the estimates
through Kalman fusion.

2.2.2 VISUAL ODOMETRY AND FIDUCIAL MARKERS

The measurements recorded by the inertial sensors needs to be fused with
the data sourced from visual sensors. The system architecture in use comprises
a sole onboard camera (Raspicam2 for QR01, Intel Realsense D435 for HR01) that is
directed downward towards the floor. Intrinsically, capturing the three-dimensional
movement of an object in space solely from the two-dimensional information
given by the camera is unfeasible. This is the motivation behind Monocular Visual
Odometry (VO) systems such as this one, necessitating the identification of fiducial
markers i.e. pre-positioned elements within the surrounding environment.

Let’s introduce an additional reference frame ℱ𝐶 , centered at 0𝐶 , located in
the on-board camera’s Center of Mass. The vision algorithms that underpin the
fiducial marker detector initially find, for each recognized marker 𝑇𝑖 , with 𝑖 =

1 . . . 𝑛 in the image at each time instance 𝑡, a relative pose (p̂𝐶𝑇𝑖 , R̂
𝐶
𝑇𝑖 ), where p̂𝐶𝑇𝑖 ∈

R3, R̂
𝐶
𝑇𝑖 ∈ SO(3) delineate the transformation from the frame ℱ𝑇𝑖 centered in the

top center of the marker to the camera frame ℱ𝐶 . This is achieved by employing
the perspective view of the detected markers on the image plane (p-plane), along
with the information regarding the known positions of the markers in ℱ𝑊 . This
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Figure 2.3: Reference frames and transformations involved in the VIO localiza-
tion process.

computational challenge is acknowledged in the literature as the Perspective-n-
Point (PnP) problem (see [28]). Subsequently, the fiducial marker detector is able
to supply the camera’s pose (p̂𝑊𝐶 , R̂

𝑊
𝐶 ) through the following equations:

R̂
𝑊
𝐶 (𝑡) = R𝑊

𝑇𝑖
· R̂

𝑇𝑖
𝐶 (𝑡) (2.11)

p̂𝑊𝐶 (𝑡) = R𝑊
𝑇𝑖
· p̂𝑇𝑖

𝐶
(𝑡) + p𝑊𝑇𝑖

(2.12)

Wherein, R̂
𝑇𝑖
𝐶 (𝑡) = (R̂

𝐶
𝑇𝑖 (𝑡))

−1 and p̂
𝑇𝑖
𝐶
(𝑡) = −(R̂

𝐶
𝑇𝑖 (𝑡))

−1 · p̂𝐶𝑇𝑖 (𝑡) are computed by
inverting the affine transformation from marker to camera.

Furthermore, since the relative position p𝐵
𝐶

and orientation R𝐵
𝐶

between the
body frame and the camera frame are static and known, it becomes feasible to
reconstruct the complete pose as follows:

R̂
𝑊
𝐵 (𝑡) = R̂

𝑊
𝐶 (𝑡) · (R

𝐵
𝐶)
−1 (2.13)

p̂𝑊𝐵 (𝑡) = R̂
𝑊
𝐶 (𝑡) · p

𝐵
𝐶 + p̂𝑊𝐶 (2.14)

All the considered reference frames and their corresponding relative transfor-
mations are illustrated in Figure 2.3.

Fiducial markers that comprise an identifier encoded into their shape or pat-
tern, irrespective of their specific form, are commonly referred to as Tags. Among
the multitude of fiducial marker types proposed in academic literature, the April-
Tags [27] have been adopted due to their well-established precision, dependabil-
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Figure 2.4: Different existing AprilTags families and their patterns.

ity, and rapid recognition capabilities across diverse scenarios (as evidenced in
[17]), in contrast to other widely-known fiducial marker solutions like ARtag and
ArUco. AprilTags comprise different families, differentiated by various param-
eters, including the number of bits allocated for encoding and their distribution.
The AprilTags library features an algorithm for generating patterns for a set
of tags. These patterns encompass black-and-white graphical codes set within
square matrices that are enclosed by a black border (as depicted in Figure 2.4).

The process underlying pose estimation using AprilTags encompasses two
principal stages:

Detection The algorithm analyze the image captured by the camera sensor to
detect elements conforming to the AprilTag model. This is typically ac-
complished through techniques like image segmentation and/or thresh-
olding.

Identification and decoding Upon detecting a potential AprilTag (or multiple),
the algorithm tries to to extract information from the image, including the
ID encoded within it.

After that, if the ID of the recognized tags were registered, the known positions
of the tags in the workplace are retrieved and used for the pose estimation pro-
cess (2.11-2.14).
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2.2.3 APRILTAGS MAP

The localization methodology detailed in this thesis closely follows the ap-
proach outlined in [5]. Accordingly, the same framework for generating an
AprilTag map is employed. This AprilTag map encompasses a substantial ar-
rangement of planar tags, each varying in size. For simplicity, the map’s mark-
ers are positioned on the floor, although in certain scenarios, a ceiling-mounted
configuration could be more advantageous. The selected map follows a dense
pattern, wherein the tags are positioned in close proximity, meticulously ad-
hering to a specific layout that eliminates gaps. This strategy is substantiated by
the intent to initially assess the VO! system’s performance within an optimal en-
vironment abundant in visual cues, thereby facilitating comprehensive spatial
navigation. The adoption of a sparse map is deferred to potential future stages
of research endeavors.

The map features a selection of AprilTags available in four distinct sizes, de-
noted as S, M, L, and XL. This choice stems from the UAV’s operational require-
ment to navigate across various altitudes, where larger markers may become
imperceptible at low altitudes, and smaller ones may prove challenging to de-
tect from higher elevations. Each tag within the map is registered, assigning a
unique identifier encoded within its pattern, thereby establishing a correlation
between the tag’s identity and its corresponding positional information. For
practical utility, the IDs are systematically allocated such that they escalate in
value as the marker’s size decreases. This sequential arrangement is illustrated
in Table 2.1, which provides a comprehensive depiction of the ID ranges along-
side their associated dimensions. A compact tag pattern has been devised to in-
corporate varying marker sizes in a precise configuration, aimed at minimizing
blank spaces, as visualized in Figure 2.5. The final map layout results from the
roto-translation and mirroring operations of this optimized tags pattern. This
pattern is replicated consistently throughout the map in two directions. The
map generated with this procedure can encompass an extensive quantity of tags,
thereby necessitating the utilization of the TagStandard41h12 family, which sup-
ports up to 2115 distinct tags.
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ID Intervals Side length [cm] Label
0 −→ 99 46 XL

100 −→ 399 23 L
400 −→ 999 11.5 M
1000 −→∞ 5.75 S

Table 2.1: Tags numbers, sizes and IDs scheme.

Figure 2.5: AprilTags map basic pattern design.
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2.3 HARDWARE AND SOFTWARE ASPECTS

A standard multirotor system is characterized by four essential components,
delineated as follows:

• An actuation system responsible for generating the requisite forces and
torques that enable the vehicle to execute flight maneuvers as per com-
manded directives.

• A sensing and perception system comprising critical visual and inertial
sensors, essential for capturing and quantifying the UAV’s pose.

• A flight controller tasked with utilizing a control algorithm to furnish the
actuators with appropriate input commands, facilitating adherence to the
designated flight trajectory.

• A companion computer entrusted with labor-intensive data processing
and, if necessary, furnishing trajectory setpoints.

Both the benchmark platforms used in this thesis, namely the custom quadro-
tor QR01 and the hexarotor HR01, adhere to a similar hardware architecture
mirroring the aforementioned organization. Specifically:

• The flight controller is realized relying on the PixHawk platform, with ver-
sion 4 for QR01 and version 6c for HR01.

• The companion computer is represented by a Raspberry PI 4, equipped
with Ubuntu OS and ROS2.

• The sensor unit is constituted by an IMU (ICM-20689), integrated within
the Pixhawk device.

A comprehensive representation of the adopted architecture is visually given
in Figure 2.6.

2.3.1 PIXHAWK FLIGHT CONTROLLER AND PX4 AUTOPILOT

The Pixhawk platform stands as a famous commercial hardware solution for
UAVs, boasting of widespread utilization. Over the years, Pixhawk has been
developed and released in various iterations. The more recent versions encom-
pass an extended sensor board, housing the IMU in addition to the main flight
controller board. Fueled by the PX4 Autopilot firmware, the flight control board
takes charge of comprehensive vehicle behaviour management. In the case of
the quadrotor platform (QR01), Pixhawk version 4 is integrated – a notable and
popular release introduced in 2018. Conversely, the hexarotor platform (HR01)
hosts a more recent version, Pixhawk 6c, representing a significant update not
solely in hardware specifications, but also in terms of firmware enhancements.
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Figure 2.6: Basic scheme of the whole localization and control system.

Pixhawk is officially underpinned by PX4 Autopilot, a well-regarded open-
source autopilot firmware embraced by both academic and industrial circles.
The term ”autopilot” denotes a system endowed with the capacity to autonomously
control and navigate the trajectory of a vehicle or other robotic platforms, elim-
inating the need for human intervention. Accompanying the PX4 framework
is the ground station software named QGroundControl. This software provides
an intuitive graphical user interface (GUI) endowed with a range of function-
alities, enabling trajectory planning and real-time tracking of UAV movement
(albeit primarily tailored for outdoor applications). The architecture of the PX4
firmware is structured into four core layers:

1. The middleware level, housing essential drivers that facilitate interaction
between hardware components (e.g., actuators, Pixhawk sensors, and IMU)
and the internal operating system NuttX. Notably, NuttX is a Real-Time
Operating System (RTOS) designed for embedded microcontrollers, boast-
ing diverse applications.

2. The communication level, encompassing various communication proto-
cols such as:

• MavLink, a lightweight and secure protocol employed for the exchange
of commands and information between a remote ground station pow-
ered by QGroundControl.

• Micro Object Request Broker (uORB), an intrinsic messaging protocol
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Figure 2.7: PX4 Flight controller block scheme, adopting a cascade strategy.

integrated within the PX4 firmware, facilitating streamlined and effi-
cient communication between system modules.

3. A comprehensive application layer packed with a variety of customizable
features.

The application layer comprises the nexus between the flight controller and
the EKF. The flight control algorithm is characterized by a cascade architecture,
the depiction of which can be found in Figure 2.7. This control algorithm en-
compasses, spanning from the inner loop, the following components:

• A simple Proportional (P) controller responsible for linear position, sup-
plemented by an output limiter.

• A Proportional-Integral-Derivative (PID) controller governing linear ve-
locity, comprising an Low-Pass Filter (LPF) within its derivative action.

• Another straightforward Proportional (P) controller for angular position
(attitude).

• A K-PID controller, responsible for regulating angular speed. This consti-
tutes a standard Proportional-Integral-Derivative controller with an addi-
tional tunable gain 𝐾, applied to all three facets of the control loop (pro-
portional, derivative, integral). Additionally, a limiter is incorporated to
prevent wind-up phenomena, and a LPF is invoked to modulate the im-
pact of the derivative action.
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Figure 2.8: PX4 Extended Kalman Filter block scheme, comprising an additional
output predictor.

Feedback for the system state is conveyed as a 3-dimensional vector for po-
sition and a 4-dimensional unit quaternion for rotation. This composite pose
stands as the ultimate outcome of the Kalman fusion process executed by the
EKF algorithm. The EKF is also part of the PX4 application layer and offers
complete configurability. The block scheme for the EKF within the PX4 autopi-
lot framework is depicted in Figure 2.8. Notably, the use of diverse sensors op-
erating at varying sampling frequencies could potentially introduce delays and
induce system instability. To address such problems, the architecture incorpo-
rates an auxiliary output predictor, thereby ensuring estimations free from delay
issues.

2.3.2 RASPBERRY PI AND ROBOT OPERATING SYSTEM 2 (ROS2)

The primary component of the localization system is the companion com-
puter, a Raspberry PI (version 4) hosting an Ubuntu operating system capable of
complete support to the ROS2 library. Robot Operating System (ROS), a widely
adopted open-source framework, offers a suite of libraries specifically created to
support the development of intricate robotic applications. Despite its mislead-
ing nomenclature, ROS does not represent a conventional operating system, but
rather a middleware. The fundamental objective of ROS is to facilitate the cre-
ation of robotic solutions by adopting a modular and highly scalable architec-
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ture. This architecture relieves developers from the burden of managing low-
level communications, enabling them to concentrate on high-level application
development. Several characteristics underpinning its popularity, particularly
within the academic research domain, encompass its status as a real-time peer-
to-peer system, its support for multiple programming languages (including C++
and Python), and its open-source nature, making it freely accessible.

The core concepts of ROS2 can be concisely summarized in the following points:

Nodes ROS2 is grounded in a peer-to-peer communication framework where
the individual peers are designated as ”Nodes”. Each node functions as
an independent process programmed to execute a specific task within the
robotic system. Nodes communicate and exchange information and direc-
tives through messages.

Messages Messages are ”blueprints” defining the data types that nodes can
share. These messages are categorized into different topics, thereby en-
abling each node to choose which types of messages to send and receive.

Topics Nodes can publish on designated topics and/or subscribe to other top-
ics. This mechanism organizes messages more effectively, with topics serv-
ing as asynchronous communication channels. This use of topics pre-
serves ROS2’s intrinsic properties of modularity and scalability, permit-
ting nodes to be added or removed from specific topics without necessi-
tating a complete system reconfiguration.

Bags All the messages exchanged within a ROS2 session can be logged and
stored within ”bags”. These bags function as log files encompassing all
the data transmitted by nodes over the topics specified during recording.
Bags can be ”replayed”, signifying that all the recorded messages are re-
published in a new session. This capability proves useful for recreating
virtually identical scenarios to those captured during recording.

ROS2 represents an enhanced iteration of ROS aimed at overcoming some
of its principal limitations and rendering it more suitable for complex robotic
scenarios, including scenarios that encompass distributed systems structured
within extensive and diverse networks. All the key algorithms and features de-
veloped for this thesis, are actualized through ROS2 nodes. These nodes interact
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directly with each other, while also being capable of interfacing and exchanging
information with the PX4 Autopilot’s application layer. In specific, the quadro-
tor QR01 employs the ROS2 Foxy version, whereas the hexarotor HR01 employs
the latest stable ROS2 version known as Humble¹.

2.3.3 PX4 – ROS2 COMMUNICATION BRIDGE

The use of PX4 Autopilot in conjunction with a ROS2 environment offers
distinct advantages, as it allows for the expansion of PX4’s conventional func-
tionalities through the integration of new capabilities via ROS2 nodes. The piv-
otal factor is establishing a two-way communication channel between the two
systems, each utilizing distinct internal messaging exchange protocols. To over-
come this challenge, PX4 Autopilot features a dedicated PX4-ROS2 bridge. This
bridge serves as a translation layer that facilitates bidirectional conversion be-
tween UORB and ROS2 messages.

The earlier version of PX4 (up to v1.13) employs a bridge with a microRTPS
architecture (depicted in figure 2.9). This architecture encompasses a microRTPS
client embedded in the PX4, located within the Pixhawk board, and a microRTPS
agent running as a process within ROS2. This communication architecture is
used in the QR01 quadcopter setup. It involves an older version of PX4 func-
tioning on a PixHawk 4, communicating with ROS2 Foxy. In contrast, the more
recent PX4 versions (beyond v1.13) adopt a new architecture (illustrated in fig-
ure 2.10), based on the uXRCE-DDS middleware. This newer architecture offers
swifter and more reliable communication between PX4 and ROS2. Analogous
to the previous architecture, it comprises a uXRCE-DDS client within PX4 and
a uXRCE-DDS agent within ROS2. This contemporary bridge is employed in
the HR01 hexacopter setup, which incorporates a modern PX4 version on a Pix-
Hawk 6c, communicating with ROS2 Humble.

For the bridge to function, two ROS2 packages are required and need to be
constructed and installed within the companion computer:

• Px4_msgs, which entails the definition of PX4 messages in the ROS envi-
ronment.

¹for more details on ROS2 versions, see: https://docs.ros.org/en/rolling/Releases.html.
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Figure 2.9: Old PX4 microRTPS bridge for communicating with ROS2.

Figure 2.10: New PX4 uXRCE-DDS bridge for communicating with ROS2.

• Px4_ros_com, which houses the source code of the agent and requires com-
pilation for proper functionality.
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3
Tags processing algorithms for

localization: analysis and
implementation

3.1 OUTLIERS REMOVAL

The VIO system architecture elucidated in Section 2.2 demonstrates the ca-
pability to concurrently recognize multiple AprilTags. In the study conducted
by Bertoni et al. [5], the ultimate pose computation concentrated solely on the
most significant marker (the one with the smallest ID) detected within the scene.
However, the decision to employ an extensive map of various-sized markers re-
sults in the simultaneous derivation of multiple pose estimations. Each of these
estimations corresponds to the outcome of the identification process of an indi-
vidual marker captured by the camera. In order to optimize the utilization of
information furnished by the camera sensor, the final pose estimation should
result from the fusion of data derived from diverse tags. The approach under-
taken in this thesis, initially introduced in Pescante et al. [29], is deeply explored
herein.

Nonetheless, direct averaging of poses originating from distinct tags can be
ineffectual or potentially detrimental. This is predominantly due to the vari-
able extent of uncertainty affecting these measurements. This aspect has already
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been investigated in existing literature (see, for example, [1] and [24]), revealing
that, in general, the error tends to grow as the distance between the tag and
the camera increases. The tag-camera distance is intrinsically influenced by the
flight altitude, exerting a greater impact on smaller-sized tags as opposed to
larger ones. Distance, however, is not the sole factor influencing the precision
of pose estimation from a single marker. Factors such as the camera’s viewing
angle, coupled with unforeseeable phenomena like environmental occlusions,
reflections, and motion blurring, can rapidly degrade the accuracy of the esti-
mation. In certain instances, certain AprilTags might even be confused with
one another, thus resulting in entirely erroneous measurements.

Let’s denote by T𝑇(𝑡) the set of all the UAV’s pose estimates obtained at a cer-
tain time instant 𝑡 and by ℐ𝑇(𝑡) the set of all the marker IDs associated with the
fiducial markers seen at that time 𝑡. All the pose measurements are initially
referred to the camera frame ℱ𝐶 , thus having for each i-th detected tag a pair
(p̂𝐶𝑇𝑖 (𝑡), R̂

𝐶
𝑇𝑖 (𝑡)) ∈ T𝑇(𝑡). Since the transformation from ℱ𝐶 to ℱ𝐵 is known and

fixed, let’s assume for simplicity to progress directly to the set

T𝐵(𝑡) = {(p̂
𝑊
𝑖,𝐵(𝑡), R̂

𝑊
𝑖,𝐵(𝑡)) ∈ SE(3), 𝑖 ∈ ℐ𝑇(𝑡)} (3.1)

referred to the body frame ℱ𝐵 ¹.

In statistics, data points deviating significantly from the central cluster of a
data set are typically referred to as outliers. To enhance the reliability of the sub-
sequent pose estimation averaging process, the initial step entails the removal
of outliers from the original data set. The final objective of this outlier removal
procedure is to identify the subsets ℐ̄𝑇(𝑡) ⊂ ℐ𝑇(𝑡) and T̄ 𝑇(𝑡) ⊂ T𝑇(𝑡) contain-
ing solely those estimates deemed trustworthy, along with their corresponding
IDs. In an ideal scenario, these subsets are attained by optimizing the detec-
tion of outliers while simultaneously minimizing the inadvertent exclusion of
legitimate data points. Given that positions generally exhibit heightened sus-
ceptibility to estimation uncertainty during the marker recognition phase (refer
to López-Cern et al. [24]), the entire process of outlier removal focuses exclusively

¹Subsequently, each time from the notation for simplicity are omitted reference frame indi-
cations, it is assumed to be referring to ℱ𝐵, unless specifically stated otherwise.
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on the positions set
P𝐵(𝑡) = {p̂

𝑊
𝑖,𝐵(𝑡) ∈ R

3, 𝑖 ∈ ℐ𝑇(𝑡)} (3.2)

This section proceeds to elaborate on three distinct well-established statistical
approaches.

INTERQUARTILE RANGES METHOD

The Interquartile Ranges (IQR) method holds substantial popularity within
statistical practices and offers the advantage of adaptability, especially for data
samples that do not closely resemble a Gaussian distribution. This approach is
traditionally employed with scalar variables; however, its application must be
adjusted in the context of three-dimensional data points. One plausible adap-
tation involves the sequential consideration of each component of the vector
p̂𝑊𝑖,𝐵(𝑡) ∈ R

3 and therefore to work on the sets

P𝑘,𝐵(𝑡) = {�̂� 𝑖,𝑘(𝑡) ∈ R | p̂𝑖(𝑡) = [�̂� 𝑖,1 �̂� 𝑖 ,1 �̂� 𝑖 ,1]
𝑇 ∈ P𝐵(𝑡)} (3.3)

with 𝑘 ∈ {1, 2, 3}.

Denoting by | · | the cardinality of a set, let’s assume |�̂� 𝑖 ,𝑘(𝑡)| ≥ 3,∀𝑘 (otherwise
the outliers removal process itself would be pointless). Assuming to sort the set
�̂� 𝑖,𝑘(𝑡) in ascending order, the three quartiles (refer to figure 3.1) {𝑞1,𝑘 , 𝑞2,𝑘 , 𝑞3,𝑘}

are evaluated such that:

𝑞1,𝑘 signifies the value encountered just beyond the 25% of the ordered data.

𝑞2,𝑘 represents the median value of P𝑘, 𝐵(𝑡).

𝑞3,𝑘 corresponds to the value immediately above the 75% of the sorted data.

Subsequently, the interquartile range (IQR) is determined as 𝑝𝐼𝑄𝑅
𝑘

= 𝑞3,𝑘 − 𝑞1,𝑘 .

The collection of estimates classified as reliable for the k-th component is

P̄ 𝑘,𝐵(𝑡) = {�̂� 𝑖,𝑘(𝑡) ∈ P𝑘,𝐵(𝑡) | 𝑞1,𝑘 − 1.5 · 𝑝
𝐼𝑄𝑅
𝑘

< �̂� 𝑖 ,𝑘(𝑡) < 𝑞3,𝑘 + 1.5 · 𝑝
𝐼𝑄𝑅
𝑘
} (3.4)

Further, the subset of IDs corresponding to estimates contained within P̄ 𝑘,𝐵(𝑡)
is designated as ℐ̄𝑘,𝑇(𝑡). Finally, the refined set of poses is determined by the
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Figure 3.1: Quartiles and interquartile ranges for a Gaussian distribution.

intersection of the subsets yielded by each component, i.e. by

P̄𝐵(𝑡) = P̄1,𝐵(𝑡) ∩ P̄2,𝐵(𝑡) ∩ P̄3,𝐵(𝑡) (3.5)

ℐ̄𝑇(𝑡) = ℐ̄1,𝑇(𝑡) ∩ ℐ̄2,𝑇(𝑡) ∩ ℐ̄3,𝑇(𝑡) (3.6)

For its final implementation, this method will be extended into a weighted
variant, introducing weights for each i-th pose estimate. This extension can
be readily achieved by introducing the concept of weighted quartiles, denoted as
𝑞𝑤

1,𝑘
, 𝑞𝑤

2,𝑘
, 𝑞𝑤

3,𝑘
. These weighted quartiles are computed based on the sequence

of cumulative weights, denoted asW𝑖 =
∑𝑖
𝑘=1

w𝑘 , where w𝑘 ∈ R
𝑛 represents

the vector containing individual weights associated with the corresponding tag
IDs in ℐ𝑇(𝑡). These weights will also play a role during the data fusion phase,
being assigned to each pose estimate in accordance with specific heuristic guide-
lines. These guidelines incorporate a prior assessments of the reliability of each
marker, considering factors such as its size or distance from the camera.

DISTANCE FROM THE MEAN

The approach for outliers removal based on the distance from the mean is a
widely adopted and straightforward method in statistics. With this approach,
the mean of the data samples is computed, and then the distance of each individ-
ual element from the mean is assessed. If this distance exceeds a predetermined
threshold, the element is identified as an outlier and subsequently removed from
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the data set. Typically, the threshold is set at 𝛿 · 𝜎, where 𝜎 represents the stan-
dard deviation of the measurements and 𝛿 ∈ [2, 3] is chosen based on the charac-
teristics of the data distribution. In this context, considering that the data points
correspond to positions p̂𝑖(𝑡) the calculation of the mean can be formulated as
follows:

𝝁(𝑡) =
1

𝑛

𝑛∑

𝑖=1

p̂𝑖(𝑡) (3.7)

Subsequently, the resulting set of cleaned positions is given by

P̄𝐵(𝑡) = {p̂𝑖(𝑡) ∈ P𝐵(𝑡) | ‖ p̂𝑖 − 𝜇(𝑡) ‖< 𝛿 · 𝜎(𝑡)} (3.8)

DISTANCE FROM THE MEDIAN

The technique based on the distance from the median employs the median
rather than the mean, a more robust measure in statistical contexts. The ini-
tial step involves computing the median of the data set, denoted as 𝓜(𝑡) =

median(P𝐵(𝑡)). Subsequently, the focus shifts to determining the Median Abso-
lute Deviation (MAD) of the data set:

𝑀𝐴𝐷(𝑡) = median
(
|P𝐵(𝑡) −ℳ(𝑡)|

)
(3.9)

Sometimes, this MAD can be rescaled (𝑆𝑀𝐴𝐷), where it is multiplied by a con-
stant 𝑐 ∈ R that varies based on the data distribution. This rescaling is intro-
duced to better adapt to the data set’s characteristics, which may align more ef-
fectively with specific distribution types. For data sets influenced by white Gaus-
sian noise, mimicking a Gaussian distribution, 𝑐 ≈ 1.4826, leading to 𝑆𝑀𝐴𝐷(𝑡) =

𝑐 ·𝑀𝐴𝐷(𝑡). Typically, the threshold for outlier detection is set as 𝛿 ·𝑆𝑀𝐴𝐷, with
𝛿 ∈ [2, 3]. Consequently, the refined set of pose estimations will encompass only
those poses that lie within a radius characterized by 𝛿 ·𝑆𝑀𝐴𝐷 from the median:

P̄𝐵(𝑡) = {p̂𝑖(𝑡) ∈ P𝐵(𝑡) | ‖ p̂𝑖 −𝓜(𝑡) ‖< 𝛿 · 𝑆𝑀𝐴𝐷(𝑡)} (3.10)

PRELIMINARY NUMERICAL ASSESSMENT

The three aforementioned outliers removal methods were initially subjected
to some simple numerical tests on MATLAB to assess their suitability for the
application before considering their final implementation in ROS2. These tests
were conducted using predefined sets of samples derived from previous experi-
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mental flights performed in [5]. These data sets of pose estimates were extracted
from several ROS2 bags recorded during past HR01 flights. The algorithms were
conveniently implemented as MATLAB scripts and subjected to testing against
the predefined examples.

During this preliminary and purely qualitative assessment, all three methods
demonstrated the capability to achieve acceptable outlier detection, albeit with
some distinctions. The techniques founded on interquartile ranges exhibited
more consistent results when dealing with larger data sets, particularly when
the data distribution deviated from the Gaussian ideal. Conversely, the meth-
ods relying on distance from the mean and distance from the median exhibited
enhanced effectiveness in scenarios where the algorithms operated with very
limited data sets (𝑛 < 5), necessitating a more assertive response. An illustra-
tion of algorithm application is depicted in Figure 3.2.

3.2 DATA FUSION BY AVERAGING TRANSFORMATIONS

After the removal of outliers from the initial data set, the subsequent task
involves calculating the mean of transformations. In this section the problem
of averaging transformations representing the pose is faced using various ap-
proaches inspired by the existing literature.

To formalize this, the goal of the data fusion phase is to compute a final pose
estimate, denoted as

(
p̂𝑊𝐵 (𝑡), R̂

𝑊
𝐵 (𝑡)

)
(or equivalently

(
p̂𝑊𝐵 (𝑡), q̂

𝑊
𝐵 (𝑡)

)
) by appro-

priately combining the information provided in T𝐵(𝑡)¯ . Achieving this objective
requires addressing both positions and orientations separately. Let’s define

P̄𝐵(𝑡) = {p̂
𝑊
𝑖,𝐵(𝑡) ∈ R

3, 𝑖 ∈ ℐ̄𝑇(𝑡)} (3.11)

ℛ̄𝐵(𝑡) = {R̂
𝑊
𝑖,𝐵(𝑡) ∈ SO(3), 𝑖 ∈ ℐ̄𝑇(𝑡)} (3.12)

having both the same cardinality �̄� ∈ R. While calculating the mean of posi-
tions may be considered a straightforward task, determining the mean of a set
of rotations poses a complex problem to solve, regardless of the chosen repre-
sentation (although certain representations may appear more convenient than
others, particularly from a computational standpoint).
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Figure 3.2: Visual example of an application of the three outliers removal meth-
ods.
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3.2.1 POSITIONS AVERAGING

Averaging positions p̂𝑊𝑖,𝐵(𝑡) ∈ P̄𝐵(𝑡) is a straightforward operation achieved
by employing the conventional Euclidean mean. The estimated UAV position is
calculated as follows:

p̂𝑊𝐵 (𝑡) =
1

�̄�

�̄�∑

𝑖=1

p̂𝑊𝑖,𝐵(𝑡) (3.13)

In the final implementation, this computation naturally extends to the weighted
case, considering associated weights for each position estimate.

3.2.2 ROTATIONS AVERAGING

Within the current body of literature, various methods for averaging rota-
tions have been proposed, each employing a distinct rotation metric (refer to
[14]) and aiming to minimize a unique cost function.

METHOD BASED ON THE CHORDAL L2-MEAN

Consider a set of rotation matrices ℛ = {R1, . . . ,R𝑛}. The Chordal L2-Mean
also known as the Projected Arithmetic Mean, is derived from the following
minimization problem:

R∗ = argmin
Ri ∈ ℛ

𝑛∑

𝑖=1

𝑑𝑐(R𝑖 ,R)
2 ∈ SO(3) (3.14)

Here, it’s defined using the chordal metric for rotations, denoted as
𝑑𝑐(R𝑖 ,R) = ‖ Ri −R ‖𝐹, where ‖ · ‖𝐹 represents the Frobenius Norm.

As proved in [11], if all the rotation matrices R𝑖 are within a convex set ℬ
with a radius less than 𝜋/4, then the unique global Chordal L2-Mean defined in
3.14 also falls within ℬ. Furthermore, its relative cost function is strictly convex
within a certain ball 𝐵 ⊃ ℬ. Under these convexity conditions, the existence of a
global minimum is ensured. In this particular case, also a closed-form algorithm
for solving the problem can be found. A theorem provided in [11] ensures that
if all the rotations R𝑖 lie inside a convex set ℬ of radius less than 𝜋/4 then the
unique global Chordal L2-Mean defined in 3.14 lies also in ℬ and its relative
cost function is strictly convex on some ball 𝐵 ⊃ ℬ. In this case, these convexity
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conditions are enough not only to ensure the existence of a global minimum but
also to find a closed-form algorithm to solve the problem.

The solution to this problem, outlined by Markley et al. in [25], involves utiliz-
ing quaternion representations for rotations. Let Q = (q1 . . . q𝑛) be the collection
of 𝑛 quaternions one-to-one associated with the rotations in ℛ. In this context,
when transitioning from R𝑖 to q𝑖 , the choice of the sign between +q𝑖 and −q𝑖

does not influence the outcome.

The initial step is to construct the symmetric matrix A =
∑�̄�
𝑖=1

q𝑖q
𝑇
𝑖
, 𝐴 ∈ R4×4.

Through eigenvalue decomposition of A, let Λ𝐴 represent the spectrum of A.
The solution to the optimization problem in 3.14 is represented by the eigenvec-
tor v∗ associated with the maximum eigenvalue 𝜆∗, i.e.

q̂𝑊𝐵 (𝑡) = v∗, Av∗ = 𝜆∗v∗ s.t. 𝜆∗ = maxΛ𝐴. (3.15)

METHOD BASED ON THE QUATERNION L2-MEAN

This method, initially introduced and discussed in [11], is grounded in the
utilization of quaternion metrics denoted as 𝑑𝑞(q1, q2) = min

{
‖ q1 − q2 ‖ , ‖ q1 − q2 ‖

}
∈

R. The quaternion L2-mean is given by

q∗ = argmin
q∈S3

�̄�∑

𝑖=1

𝑑𝑞(q𝑖 , q) (3.16)

The minimization problem in 3.16 offers a closed-form solution under spec-
ified conditions concerning the set ℛ of rotations to be averaged. Analogous to
the Chordal L2-Mean, if all rotations reside within a convex set ℬ with a radius
of less than 𝜋

2
, then the unique global quaternion L2-Mean also falls within ℬ.

Moreover, the cost function in 3.16 exhibits strict convexity within a certain ball
𝐵 ⊃ ℬ.

Let’s denote by 𝑑𝑅(R1,R2) =‖ log(R1,R
𝑇
2
) ‖ the Riemannian (or geodesic) dis-

tance between two rotations R1,R2 ∈ SO(3) (an equivalent metrics is defined
also for two quaternions q1, q2 ∈ S

3). Now, given S ∈ SO(3) such that 𝑑∠(R𝑖 , S) <

𝜋/4 ∀R𝑖 ∈ ℛ and let s ∈ S3 represent its quaternion form. For each rotation Ri

one can assume to select the corresponding quaternion q𝑖 with its sign such that
‖ q𝑖 − s ‖2 < ‖ −q𝑖 − s ‖2. Ultimately, the quaternion L2-Mean can be computed
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as

p̂𝑊𝐵 (𝑡) = q∗ =
q̃

‖ q̃ ‖
, q̃ =

�̄�∑

𝑖=1

q𝑖 (3.17)

This method is particularly advantageous due to its low computational com-
plexity; the closed-form solution can be obtained simply by summing all the
quaternions within the sets and subsequently normalizing them. However, spe-
cial attention must be paid to the signs of the quaternion representations of the
rotations. As previously mentioned in Section 2.1.1, this is a consequence of the
Double Coverage Property. The signs must be chosen consistently to minimize
‖ q𝑖 − s ‖2 ∀q𝑖 ∈ Q, ensuring that quaternions lie in the same hemisphere of S3.

METHOD BASED ON THE GEODESIC L2-MEAN (KARCHER MEAN)

The Geodesic L2-Mean, also referred to as the Karcher mean, is the rotation
that resolves the minimization problem:

R∗ = argmin
R ∈ SO(3)

�̄�∑

𝑖=1

𝑑∠(R,Ri)
2, R𝑖 ∈ ℛ (3.18)

While it can benefit from particularly favorable convexity conditions, ensuring
the existence of the global minimum for all R𝑖 ∈ ℬ ,ℬ ⊃ SO(3), there is no
closed-form solution for this problem. In [11], a simple convergent algorithm is
proposed, which is a modified Riemannian Gradient Descent with a fixed unitary
step-size. This method computes the average on so(3), i.e. the tangent space of
SO(3) at the identity R = I, at each step. Then it projects the result back onto
SO(3) using the exponential map². The algorithm is the following.

This algorithm guarantees convergence under the condition that the ball ℬ
has a radius 𝛿 < 𝜋/2, terminating at a geodesic distance 𝑑∠ < 𝜖 · tan(𝛿)/𝛿 from
the mean.

METHOD BASED ON THE GEODESIC L1-MEAN

This last strategy once again employs the geodesic distance to define the cost
function but focuses on the L1-Mean instead. The minimization problem is for-

²See [14] for more details on the tangent space of rotations so(3) and the exponential map,
formally known as Rodrigues’s rotation formula, which links the SO(3)manifold to its Lie Algebra.
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Algorithm 1 Riemannian Gradient Descent for iterative geodesic L2-Mean com-
putation.

R← R1

Choose a tolerance 𝜖 > 0

while∞ do
Compute r =

1

�̄�

∑�̄�
𝑖=1

log(RTRi)
if ‖ r ‖< 𝜖 then

return 𝑅
end if
R← R𝑒r

end while

mulated as follows:

R∗ = argmin
R ∈ SO(3)

�̄�∑

𝑖=1

𝑑∠(R,Ri), R𝑖 ∈ ℛ (3.19)

This approach is intriguing because the L1-Mean is traditionally considered
more robust than the corresponding L2-Mean, as discussed in [6] and similar
sources. However, this method faces challenges related to its weak convexity
and differentiability conditions, and once again, there is no closed-form solution.
Some solutions using Riemannian Gradient Descent, similar to the one provided
for the L2-Mean, have been proposed in the literature. However, in this case,
the approach would lead to a much more complex algorithm due to the need
to perform a line search to compute the step length in the descending gradient
direction. A practical strategy that simplifies the computation is the so-called
Weiszfeld Algorithm, which offers a closed-form step length while still ensuring
convergence in most circumstances. This traditional algorithm has been adapted
to the geodesic L1-Mean case by Hartley et al. [10]. The final algorithm is the
following:

PRELIMINARY NUMERICAL ASSESSMENT

The algorithms outlined above were initially implemented in a MATLAB en-
vironment, and their suitability for the problem was verified, following a pro-
cedure similar to that employed for the OR algorithms. In this case, an example
data set, denoted as Q𝑔𝑒𝑛 , was entirely artificial and randomly generated based
on the model:

q𝑖 = q𝐺 + q𝑒𝑟𝑟 , q𝑖 ∈ Q𝑔𝑒𝑛 (3.20)
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Algorithm 2 Weiszfeld algorithm for iterative geodesic L2-Mean computation.
Initialize the geodesic median with the Karcher Mean S← R∗

𝐿2

Choose a tolerance 𝜖 > 0

while∞ do
Compute v𝑖 = log𝑆(R𝑖) ∀𝑖 {logarithm map centered at S}

𝛿←

∑𝑛
𝑖=1

v𝑖
‖v𝑖 ‖∑𝑛

𝑖=1

1

‖v𝑖 ‖

{Weiszfeld’s step}

if ‖ 𝛿 ‖< 𝜖 then
return S

end if
S← 𝑒𝛿S

end while

Here, q𝑒𝑟𝑟 is the corresponding quaternion representation of 𝛼𝑒𝑟𝑟 ∼ N(0,Σ), a
Gaussian random vector characterizing a random rotation in terms of Euler’s
angles. The covariance matrix Σ was thoughtfully selected to emulate realistic
noise behavior.

Table 3.1 presents the mean and variance of the error obtained from running
all algorithms for 𝑘 = 1, . . . , 100 iterations. The error is computed as 𝑒𝑘 =

𝑑∠(q𝑘 − q𝐺) and is based on a set of 𝑖 = 1, . . . , 20 different rotations for each
iteration, generated according to 3.20. The first three methods exhibit the best
performance, while the approach relying on the geodesic L1-Mean performed
significantly worse. In some instances, it struggled to converge to a finite so-
lution, revealing to be not suitable for a real-world application context. From
a computational perspective, as anticipated, the first two methods, which offer
closed-form solutions, demonstrated significantly faster execution times com-
pared to the last two methods, which can only iteratively solve the problem.
Consequently, it has been decided to exclude the latter two in favor of the for-
mer, particularly considering the limited computational capabilities of the Rasp-
berry PI board on which ROS2 will be deployed. Hence, the two methods based
on geodesic distance will not be integrated into the robotic system and will not
be further considered in the subsequent chapters.
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Chordal L2-Mean Quaternion L2-Mean Geodesic L2-Mean Geodesic L1-Mean
Angular distance
error (radians) 0.018336 ± 8.4447e-05 0.018331 ± 8.4419e-05 0.018330 ± 8.441e-05 0.020642 ± 1.2e-04

Execution time (s) 0.000953 ± 7.8508e-06 0.002049 ± 6.5535e-06 0.18259 ± 0.00554 0.15319 ± 0.00341

Table 3.1: Results of the first rotation averaging algorithms validation in MAT-
LAB.

Figure 3.3: Principal ROS2 nodes constituting the VO system architecture and
their relative topics.

3.3 VO ARCHITECTURE IN ROS2

In this section, the node architecture within ROS2 that implements the en-
tire Visual Odometry (VO) localization procedure is presented. This architecture
comprises three core nodes: a node responsible for serving as a camera driver,
denoted as camera_driver; a fiducial marker detector node called apriltag_ros;
and the visual odometry estimator, named after apriltag_to_visual_odometry
and hereinafter abbreviated as A2VO. Notably, all of these nodes have been im-
plemented in the C++ programming language to optimize performance. The
primary focus of this thesis lies in the development and enhancement of the
A2VO node. For a visual representation of the interactions among these nodes
and the message exchange mechanisms, refer to Figure 3.3.

CAMERA DRIVER NODE

The camera driver is responsible for publishing sensor data from the cap-
tured images to specific topics. Specifically, the topics on which it publishes are:

• sensor_msgs/msg/CameraInfo – provides metadata related to the sensor,
encompassing calibration parameters.

• sensor_msgs/msg/Image – contains the unprocessed image data captured
by the sensor.
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The choice of camera driver may vary depending on the type or model of the
sensor connected to the board. Additionally, it’s crucial to appropriately config-
ure the camera driver, with key configuration parameters being the image reso-
lution and the sampling frequency, often referred to as frames per second (fps).
Opting for a higher resolution can enhance the recognition of AprilTags within
the image, but it might demand greater computational power to process this
information without compromising the sampling frequency. Given the limited
computational capabilities of the companion computer, typically a Raspberry
Pi in this context, it becomes imperative to strike a suitable balance between the
required fps and image resolution.

FIDUCIAL MARKER DETECTOR NODE

This node is responsible for implementing the algorithms related to the de-
tection of April tags, following the procedure outlined in Section 2.2.2. It sub-
scribes to the topics sensor_msgs/msg/CameraInfo and sensor_msgs/msg/Image
to receive messages from the camera driver. It then processes the image data to
detect and recognize April tags. For each detected tag, it computes pose esti-
mates (p̂𝐶𝑇𝑖 (𝑡), R̂

𝐶
𝑇𝑖 (𝑡)) with respect to the camera frame ℱ𝐶 . Subsequently, the

node publishes on the following topics:

• tf2_msgs/msg/TFMessage - This message contains an array of type
geometry_msgs/msg/TransformStamped.msg, where each element describes
the affine transformation between the i-th identified marker ℱT〉 and the
camera frame ℱ𝐶 .

• apriltag_msgs/msg/apriltagDetection – This message contains various
2D and 3D information pertaining to a single identified marker.

Actually, this convention has been subsequently modified by PESCANTE [29].
Instead of continuing to publish on the /tf topic, which is traditionally used by
various sensors and robotics components and may lead to conflicts in future de-
velopment, the node now publishes on a dedicated topic named /tf_vio. To run
apriltag_ros and configure its behavior, a dedicated launch file is provided.
This launch file allows users to set various parameters, including:

• ”family”: This parameter sets the family of AprilTags in use.

• “tag_ids”: It contains an array specifying the subset of tag IDs chosen.

• “tag_frames”: This parameter is an array containing the names of the
frames to be associated one-by-one with the IDs listed in tag_ids (the ar-
rays must have the same length).
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• “tag_sizes”: This parameter is used to specify the side dimension of the
tag to be associated one-by-one with the IDs listed in tag_ids (the arrays
must have the same length).

3.4 A2VO NODE

The node responsible for visual odometry estimation, named
apriltag_to_visual_odometry, subscribes to the tf2_msgs/msg/TFMessage and
apriltag_msgs/msg/apriltagDetection messages provided by apriltag_ros.
These messages contain data regarding the relative transformations between rec-
ognized tags and the camera, represented by the set T𝑇(𝑡). Initially, it calculates
the camera’s pose in relation to the world using Equation 2.11. Actually, in this
specific laboratory setup, this operation involves just an offset compensation of
p𝑊
𝑇𝑖

, since the relative orientation of reference frames ℱ𝑊 and ℱ𝑇𝑖 is coinciding. In
other words, R𝑊

𝑇𝑖
= 𝐼, where 𝐼 represents the identity rotation. After conducting

all the necessary computations, which can encompass the transformation pro-
vided by a single tag (as done in [5]) or all the transformations, the final pose is
determined using Equation 2.14. This estimate is subsequently published on a
specific topic, such as /fmu/vehicle_visual_odometry/in (or
/fmu/in/vehicle_visual_odometry as explained later). It is then transmitted to
PX4 via the PX4-ROS2 bridge to be integrated into the Kalman fusion process.
This node has gone through three different versions. The two older ones are
briefly described in the following sections.

3.4.1 PAST VERSIONS

The initial version, referred to as A2VO-v1, was authored by SEGATTINI [32].
In this version, the pose estimation process relies solely on information provided
by a single tag. Specifically, it selects the tag with the smallest ID, corresponding
to the first AprilTag of the largest size encountered. The rationale for this choice
is detailed in Section 2.2.3. A2VO-v1 subscribes to the following topics:

• ”/tf” - It retrieves pose information from apriltag_ros using a Transform
Listener object.

• ”/fmu/timesync/out” - This topic supplies the elapsed time since PX4’s
boot, facilitating synchronization between ROS2 and the PX4 Autopilot.
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• ”fmu/vehicle_odometry/out” - It receives the most recent vehicle pose es-
timate as output from the Extended Kalman Filter (EKF).

The node publishes data on the following topics:

• ”/tf” -This is used to transmit pose estimate information to a simulation
environment, such as Rviz2.

• ”/apriltag_for_estimation” - Messages on this topic contain a string list-
ing all the marker IDs observed since the start of the flight.

• ”Fmu/vehicle_visual_odometry/in” - This is the most important output of the
node, representing the Visual Odometry (VO) pose estimation sent to the
EKF implemented on PX4.

The central function within the node is named on_timer(), and it is executed
periodically at a frequency of 50Hz. In this function, the primary task is to lo-
cate the transformation related to the largest-sized tag. This search is performed
within a transformations buffer, containing only the most recent transformations
received. The Transform Listener class is employed for this purpose. However, it’s
essential to inspect all the buffers from the head to the tail since the transforma-
tions are not sorted in any specific order. Once the marker is located, its relative
transformation is used to compute the final pose estimate, which is subsequently
published, following the equations outlined in 2.14. A flowchart detailing this
function is provided in Figure 3.4a. A2VO-v1 underwent testing and validation,
as described in [5]. However, the localization precision left room for improve-
ment, prompting the need for enhancements.

PESCANTE [29] subsequently developed a new version of the node, referred
to here as A2VO-v2, with the primary objective of enhancing localization per-
formance. Several improvements were introduced in comparison to the initial
version.

Latency reduction: To reduce latency, the arrival of a /tf message transmit-
ted by apriltag_ros has been synchronized with the subsequent processing
and publication of a visual odometry message. This adjustment involved dis-
continuing the use of the transformations buffer and the Transform Listener
class entirely. Instead, a callback function called tf_callback() is invoked and
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executed each time a /tf message is received. In this function, the transfor-
mation associated with the tag having the smallest ID (representing the largest
tag seen) is straightforward to locate, as all transformations arrive in an array
of type geometry_msgs/msg/TransformStamped.msg sorted in ascending order
based on ID. The algorithm from A2VO-v1, hereafter referred to as JB (Just Big-
ger), remains viable but boasts a simpler and faster implementation that does
not necessitate any loops. As a consequence of this change, the on_timer() func-
tion becomes unnecessary and has consequently been removed. To prevent any
complications stemming from the general use of a /tf topic, A2VO-v2 adopts
the /tf_vio topic, as elaborated upon in Section 3.3.

Better data exploitation: A pivotal shift in approach involves harnessing the
entirety of the information provided by all detected tags, rather than confin-
ing the analysis to just the largest marker. This strategic modification consti-
tutes the initial implementation of the data fusion process, outlined in Section
3.2. Within A2VO-v2, a function named translation_average() has been in-
tegrated to compute the position average, treating it as the barycenter of data
points, as depicted in Figure 3.4c. Complementary to this, the Chordal L2-Mean
is employed for rotations averaging. The key departure from Equation 3.15 lies
in the introduction of weights linked to each individual tag, based on its marker
size. Larger markers receive higher weighting. This same weight-based strat-
egy is extended to the averaging of rotations, conducted using quaternion rep-
resentation. Figure 3.4d illustrates the flowchart of the quaternion_average()
function, which implements the same methodology expounded in Section 3.2.2,
with the addition of the weight factors.

Outlier Identification and Removal: The introduction of a data fusion tech-
nique in the previous version of the node highlighted the need for data cleansing
to mitigate the influence of outliers. In A2VO-v2, three distinct outlier removal
functions have been integrated for this purpose.

• JustBiggerTwo() - This method concentrates solely on the two tags with
the smallest IDs, combining their information. It has been deprecated in
the last version of the node.

• CartesianDistance() - Employing an iterative approach, this method se-
lectively removes data points situated far from the pose estimate generated
downstream of the EKF algorithm and relative to the previous time instant.
This estimate is available by A2VO from the
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fmu/vehicle_odometry/out message. This method has been deprecated
in the last version of the node.

• Interquartile_filter() - The third method introduces the initial version
of the interquartile range approach. It further incorporates the adoption of
an identical set of weights for each marker in the procedure, enabling the
calculation of weighted quartiles. The flowchart outlining this function is
illustrated in Figure 3.4b.

Although the first two techniques exhibited limited effectiveness, the interquar-
tile ranges method demonstrated robustness and a high detection rate, prompt-
ing its inclusion in this thesis work.

Noise reduction at high frequency: The visual odometry estimate produced
by A2VO-v1 was susceptible to pronounced noise and high-frequency fluctua-
tions. To address this issue, a Finite Impulse Response (FIR) filter was intro-
duced to act as a low-pass filter. Such a filter can be described as a moving
average filter with an impulsive response:

𝑦(𝑘) =
1

𝑁

𝑁−1∑

𝑖=0

𝑢(𝑘 − 𝑖) (3.21)

The impulsive response of this filter ends up after 𝑁 sampling periods, corre-
sponding to the filter’s order. Equation 3.21 can be extended to accommodate
weights 𝑤𝑖 associated with 𝑢(𝑘−1), . . . , 𝑢(𝑘−𝑁), yielding the weighted moving
average filter:

𝑦(𝑘) =

∑𝑁−1

𝑖=0
𝑤𝑖 · 𝑢(𝑘 − 1)

∑𝑁−1

𝑖=0
𝑤𝑖

(3.22)

In [29], the weights remained unadjusted, treating all state entries equally (i.e. all
the weights have been set to 1). A more in-depth exploration of the FIR weights
to fine-tune this parametrization is conducted in the experimental portion of
this work (refer to Section 4.3.1). The function responsible for implementing the
FIR filter is straightforward, utilizing the same averaging functions employed
for data fusion to compute the mean in both position and orientation of the last
four VO estimates. These estimates are appropriately stored in a C++ Vector
Object, functioning as a queue for efficient handling.
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on_timer()

_getFrameStrings(All_frame)

for(All_frame)

if(All_frame[i] in the
map)

Apriltag_available_mask[i] = true

for(tag_frames)

if(Apriltag_available_mask[i]==
true)

if(time(t) >
time(t_old)

t = t_old

if(time_start != 0) create and publish
odometry message

NO

YES

YES BREAK

YES

YES

NO

(a)

interquartile_range(t_in)

all_w = sum of all weights in t_in

sort t_in with respect to x,y and z

sorted_t_in[] = [t_in_x, t_in_y,
t_in_z] 

forall(sorted_t_in)

forall(sorted_t_in[i])

w_sum += w_i

if(!(w_sum in [1/8, 7/8]*all_w))

erase the i-th tuple from
sorted_t_in[i]

t_in = intersection(sorted_t_in[i]), i = 1,2,3

YES

(b)
translation_average(t_in)

forall(element in t_in)

p_average += w_i * p_i 

weight_sum += w_i

p_average = p_average/weight_sum

return p_average

(c)

quaternion_average(t_in)

forall(element in t_in)

A = A + w_i * q_i * transpose(q_i)

weight_sum += w_i

A = A/weight_sum

perform eigenvalues decomposition

q_average = eigenvector(largest
eigenvalue)

return q_average

(d)

Figure 3.4: Logical scheme of the A2VO-v1 and A2VO-v2 main functions.
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3.4.2 A2VO NEW VERSION

The new version of the node, named A2VO-v3, maintains the core structure
of the code from A2VO-v2, but it introduces significant expansions and reorga-
nizations within the tf_callback() function. Several functions embodying the
novel techniques outlined in Sections 3.1 and 3.2 have been integrated.

Regarding the functions inherited from A2VO-v2, some remain unchanged,
while others have undergone complete replacements or modifications aimed
at enhancing performance and code clarity. However, an exception to this is
the function implementing the FIR filter, which has remained largely unaltered
from A2V0-v2 due to its limited room for improvement. Notably, this version
leverages the Eigen3 C++ library to a greater extent. Eigen3 is a widely adopted
library for algebra and matrix computations, offering an array of templates and
functions tailored for solving various algebraic problems such as linear systems,
eigenvalue decomposition, and matrix operations. The primary advantage of
this library lies in its remarkable performance and efficiency when compared
to alternative implementations relying on standard C++ classes or less sophisti-
cated mathematical libraries.

Some functions that were originally crafted in A2VO-v2, utilizing loops and
other conventional programming control structures alongside frequent use of
the C++ Vector class and its functions, have undergone partial or complete rewrit-
ing to enhance performance. Given that certain functions within the standard
C++ Vector library entail high computational complexity and are less suited for
this task, reliance on vector class functions has been substantially curtailed. In-
stead, the majority of loops have been substituted with algebraic operations car-
ried out through Eigen3 Vectors and Matrix objects. This strategy offers height-
ened computational efficiency, significantly reducing the computational cost of
algorithms, while aligning the implementation more closely with its mathemat-
ical formulation detailed in Sections 3.1 and 3.2. In practice, Matrix and vector
operations executed using specialized libraries like Eigen3 can markedly out-
perform standard loops and control structures due to several critical factors, in-
cluding:

• Optimized exploitation of memory cache locality.
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A2VO-v3f

/tf_vio

/fmu/timesync/out

/fmu/vehicle_odometry/out

/tf

/fmu/vehicle_visual_odometry/in

A2VO-v3h

/tf_vio

/fmu/out/vehicle_odometry

/tf

/fmu/in/vehicle_visual_odometry

Figure 3.5: Graphical representation of A2VO-v3 and its relative topics used.

• Vectorization of calculations through SIMD (Single Instruction, Multiple Data)
operations.

• Parallelism across distinct CPU cores, and in some cases, harnessing GPU
acceleration where feasible.

• Minimized memory allocation for variables and temporary data.

Regarding the topics used and messages exchanged with the other node, the
configuration has remained largely unchanged compared to A2VO-v2. How-
ever, as A2VO-v3 needs to be compatible with both the older hardware/software
architecture used by QR01 and the new architecture used by HR01, two slightly
different versions have been developed. A2VO-v3f denotes the version running
on QR01 on ROS2 Foxy, and its topics are the same as A2VO-v2. On the other
hand, A2VO-v3h designates the version of the node updated for the new archi-
tecture. The only distinction between the two lies in the choice of the exchanged
topics, which have different names and employ different types of messages (see
Figure 3.5). For this reason, the following discussion will consider a general
A2VO-v3, irrespective of the specific architecture or platform in use.

The overall code flow of the tf_callback() function has undergone reor-
ganization. Figure 3.6 provides a logical overview summarizing the principal
steps comprising the routine. The associated .yaml configuration file for the
A2VO node launch has also been restructured to allow for the selection of var-
ious newly implemented methods. Subsequent pages dive into further details
concerning the implementation of data cleaning and data fusion techniques.
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tf_callback()
starts

Extract the
transformations from

the message
JB mode?

Extract the
transformation

associated with the
lower ID tag

Correct the reference
frame and publish the

final estimate

Return

Correct the offset for
each transformation and

prepare the tuple

Limit to big size
class of markers?

keep_bigger_size_filter()

Outliers removal
method

interquartiles_filter()

mean_distance_filter()

median_distance_filter()

Rotations averaging
method

chordalAverage()

quaternionAverage()

translationAverage()

YES

NO

YES

NO

None

Choice

CL2-Mean

QL2-Mean

FIR fir()YES

NO

Figure 3.6: Complete logical scheme of the tf_callback() routine of A2VO-v3.
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OUTLIERS REMOVAL ALGORITHMS IMPLEMENTATION

The process of removing outliers has been expanded and refined by imple-
menting the three strategies discussed in Section 3.1:

• The method based on the distance from the mean DMN-OR is now in-
corporated into the function mean_distance_filter(), which directly ac-
cepts a pointer to the vector of transformations and removes the detected
outliers within it. Because the Eigen3 library lacks statistics functions, an
auxiliary function called standard_deviation() has been introduced to
calculate the standard deviation of the vector of transformations. The al-
gorithm’s flowchart is presented in Figure 3.7a.

• Similarly, the method based on the distance from the median DMD-OR
has been implemented, leveraging the functions provided by the Eigen3
library. However, since Eigen3 does not offer a built-in function to compute
the median, a dedicated function called median() has been developed and
incorporated. The algorithm’s flowchart is outlined in Figure 3.7b.

• The method involving interquartile ranges IQR-OR has also been retained.
However, its implementation has been thoroughly revised and the func-
tion completely rewritten compared to A2VO-v2, aiming to enhance its
speed. Sluggish operations on Vector objects and certain loops have been
replaced with more efficient operations featuring lower asymptotic com-
plexity. This adjustment ensures superior performance, particularly when
handling a substantial set of transformations as input (e.g., when the VO
system detects numerous AprilTags). The flowchart for this updated im-
plementation is provided in Figure 3.7c.

In addition to the aforementioned functions, an additional option has been
integrated into the data cleaning phase in A2VO-v3. This version permits the
system to either consider only the larger-sized tags (OBS-OR) or solely the two
largest sets of tags (TBS-OR) visible at each execution of tf_callback(). This
choice is prompted by two observations made during the initial experimental
validation:

1. When larger-sized tags are in view, the UAV platform is typically flying at
high altitudes. In such situations, smaller tags appear very small within
the camera image, rendering the associated pose estimates more suscepti-
ble to errors and uncertainties.

2. When larger-sized tags are visible at high altitudes, the multitude of smaller
tags becomes less reliable and less significant. Opting to focus solely on
the larger markers helps reduce the computational burden of subsequent
operations, enhancing speed and diminishing latency.
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Both options are implemented within a dedicated function called
keep_bigger_size_filter(). Users can select between OBS-OR and TBS-OR
via a configuration parameter. The flowchart detailing this process is presented
in Figure 3.7d. This technique employs stacks to temporarily organize the trans-
formations based on the size of the associated marker. Subsequently, only the
transformation belonging to the first (or the two first) non-empty buckets is re-
tained, while the rest are discarded. This function is called at the outset of the
code, preceding the execution of other outlier removal functions, and can be
combined with them to create hybrid strategies, as demonstrated in Chapter 4.

3.4.3 DATA FUSION ALGORITHMS IMPLEMENTATION

The implementation of data fusion methods aligns with their theoretical de-
scriptions in Section 3.2. Here are the details:

Position Averaging (POS-AVG) A function to calculate the Center of Mass of
the positions of transformations is provided. While it follows the same
basic formulas, the implementation of the translationAverage() func-
tion has been revised from A2VO-v2 to leverage the Eigen3 library. The
flowchart is depicted in Figure 3.8.

Chordal L2-Mean (CL2-AVG) This method has been implemented within the
chordalAverage() function (which was previously named quaternionAver-
age in A2VO-v2). The new version has been entirely rewritten to rely on
the Eigen3 Library, employing vector and matrix operations that replace
all the loops. An auxiliary function named process_transformations()
has been introduced to facilitate the change in data structure, transition-
ing from Vector of Tuples objects representing transformations used in the
data cleaning phase to Eigen3 Matrix and vector objects used in the data
fusion phase. The flowchart of this function is presented in Figure 3.9a.

Quaternion L2-Mean (QL2-AVG) This method has been implemented in the
quaternionAverage() function, following the equations provided in Sec-
tion 3.2.2. Special attention has been paid to the issue of quaternion signs
arising from the double coverage property. To resolve this problem, for
each rotation q𝑖 ∈ Q, the sign of all the quaternions is determined as the
minimizer between ‖ q𝑖 − q𝐸𝐾𝐹 ‖ and ‖ q𝑖 + q𝐸𝐾𝐹 ‖, where q𝐸𝐾𝐹 represents
the previous EKF estimate (obtained via the fmu/vehicle_odometry/out
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vector {k U k+1}

Return

End

End

OBS

TBS

(d)

Figure 3.7: Logical scheme of the novel outliers removal algorithm implemented
in A2VO-v3.
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POS-AVG function

translationAverage()
starts

Calculate the sum of
the weights w_sum

Calculate
p_avg = (W * P) / w_sum,
P = {positions to average}

Return

Figure 3.8: Graphical representation of the algorithm that performs positions
averaging in A2VO-v3.

message). This computation is delegated to the process_transformations()
function for computational convenience. The flowchart of this function is
depicted in Figure 3.9b.

Regarding the weights used in all averaging operations and applied by IQR-
OR, Chapter 4 addresses two strategies, each employing distinct sets of basic
weights:

Static Weights These weights are statically assigned to the transformations based
on the associated tag size. For each tag size 𝑘 = 1 . . . 4, a different weight
𝑊𝑘 is considered, with larger sizes related to greater weight. These sets
of weights can be chosen to be more extreme, such as using a quadratic
relation, or more balanced, like employing a linear relation. In particular,
two sets of weights will be considered are the following: W1 with 𝑤𝑖 = 4ℎ

and W2 with 𝑤𝑖 = 2ℎ where ℎ = 0, 1, 2, 3 depending on the i-th marker
size i.e., in this order, S, M, L, XL.

Dynamic Weights This approach aims to account for the distance between the
camera and the tag. To achieve this, the static weights are made ”dynamic”
by applying the formula: 𝑤𝑖 = 𝑊𝑘

‖{p𝐶
𝑇𝑖
}𝑖 ‖

.

For further insights into average execution times and the actual computational
complexity of these algorithms, refer to Chapter 4, which discusses the results
of experimental tests.

Regarding the configuration file (.yaml), significant modifications have been
made to accommodate the enhancements and new functionalities. Several pa-
rameters have been either removed or revised, and new ones have been intro-
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CL2-AVG function

chordalAverage()
starts

Build the A matrix as
A = transpose(Q)*diag(W)*Q,
Q = {quaternions to average}

Return

A = A / w_sum

Perform eigenvalue
decomposition of A

Take as results
q_avg = eigenvector associated with the

largest eigenvalue

Calculate the sum of
the weights w_sum

(a)

QL2-AVG function

quaternionAverage()
starts

Evaluate
q_weighted = diag(W)*Q,

Q = {quaternions to average)

Return

Normalize q_avg

Calculate
q_avg = column-wise sum of

q_weighted

(b)

Figure 3.9: Logical scheme of the novel rotations algorithms algorithm imple-
mented in A2VO-v3.
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duced. These newly added parameters serve to facilitate the activation or deacti-
vation of specific functionalities, as well as the selection of algorithms to execute.
The new parameters include:

• chordal_averaging: When set to true the system employs the CL2-AVG
method; otherwise, it uses the QL2-AVG algorithm, which it is also the
default preference.

• dynamic_weighting: When enabled (true), the system introduces dynamic
weights, which are calculated at each time instant using the
get_dynamic_weight function, considering the Euclidean distance between
the camera and markers.

• limit_to_big_sizes: This parameter determines whether to invoke the
keep_bigger_size_filter() function, allowing for consideration of only
the first largest-sized marker set (1) or the first two (2) among all detected
markers at each time instant before proceeding with the outliers removal
process. When set to (0), all estimates are retained and processed.

• outliers_filter_choice: This parameter governs the selection of the out-
liers removal algorithm to execute, including older deprecated functions
from A2VO-v2. When set to (0), the outliers removal procedure is by-
passed.
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4
System testing and validation

4.1 EXPERIMENTAL SETUP

The experiments were conducted within the SPARCS laboratory, located at the
Department of Information Engineering, University of Padova. The laboratory
setup used for these experiments consisted of three crucial elements:

• The multirotor UAVs.

• The Vicon Motion Capture system.

• The Apriltag Map.

Two co-planar multi-rotor platforms were utilized for these experiments: a
custom hexarotor calledHR01 and a smaller custom quadrotor denoted asQR01,
both of them developed at the Dipartimento di Tecnica e Gestione dei Sistemi In-
dustriali (DTG) of the University of Padova. Although these platforms shared a
common hardware and software framework, they differed in terms of actua-
tion, chosen electronic components, dimensions, and weight. These variations
in electro-mechanical components, electronics, and devices allow for a com-
prehensive validation of the developed localization system by accounting for
a wider range of variability in the host system components. Table 4.1 provides
a concise overview of the primary hardware and software components for both
vehicles, emphasizing the distinctions between them. Both UAVs were equipped
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(a) (b)

Figure 4.1: The two star-shaped multi-rotor platforms employed for the experi-
ments, the hexarotor HR01 and the quadrotor QR01.

Platform HR01 QR01
Propellers Tarot 1355 Carbon Propellers 13” 5” Plastic
Chassis Tarot 68o pro (base 695mm) Carbon Fiber airframe (base 250mm)
Motors Tarot 6S 380KV 4008 (brushless PM motors) DR2205 KV2300 (brushless PM motors)
Electronic speed controller (ESC) Holybro Tekko32 ESC (35A) Fully assembled power management board with ESC (custom)
Battery Turnigy 6600mAh 6S Turnigy 2200mAh 4S
Flight Controller PixHawk 6c Pixhawk 4 Mini
Companion computer Raspberry Pi4 model B Raspberry Pi4 model B
Camera Intel RealSense Depth Camera D435 Raspeberry Pi Camera
Radio Control Device RadioLink AT9S pro RadioLink AT9S pro
Weight 3.5kg 0.5kg

Table 4.1: An overview of the major components that characterize the two multi-
rotor UAV platforms used in the experiments.

with a downward-facing camera to capture data from the AprilTags, which con-
stituted the map. This map was positioned on the floor of the flying area within
the SPARCS laboratory and measured 4.9𝑚 × 3.45𝑚. Its generation followed the
pattern detailed in Section 2.2.3. Figure 4.2 showcases the AprilTag map gener-
ated for subsequent experimental tests.

To evaluate the accuracy of the localization system, a more precise reference
for localization is essential. This reference is provided by the Vicon Motion Cap-
ture system, a technology designed for high-precision tracking of both the posi-
tion and orientation of objects or individuals within its three-dimensional field
of view. The Vicon system comprises a network of strategically placed cameras
within the area of interest. These cameras are meticulously calibrated and syn-
chronized to capture synchronized images of the target from various viewing
angles. For proper recognition and tracking by the cameras, the target objects
must be equipped with markers, in this case, small light reflectors. The data
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Figure 4.2: The complete map of dimensions (4.9𝑚 × 3.45𝑚) retained inside the
SPARCS (Space aerial and ground control system) laboratory of the Dipartimento di
Ingegneria dell’informazione, University of Padova.

acquired by the cameras are subsequently processed in real-time through dedi-
cated software, which calculates the comprehensive pose of the target by merg-
ing information obtained from each camera’s perspective.

The Motion Capture system in use within the SPARCS laboratory consists of
ten cameras uniformly positioned around the ceiling border, thereby encircling
the AprilTag map. This system offers sub-millimeter localization accuracy, op-
erating at a frequency of approximately 100Hz. Moreover, it can be integrated
into the ROS network through a dedicated node, allowing it to publish the es-
timated position of the target. These estimates can be either stored or directly
employed to provide input to the EKF and close the feedback control loop of
the UAVs. This operational scenario is commonly referred to as ”off-board local-
ization flight.” Conversely, when the Vicon data is not utilized for the flight of
the multi-rotor platforms (which instead rely on the on-board camera sensor to
complete the feedback loop), it is termed an ”on-board localization flight.” It is
noteworthy that the center O𝑉 of the Vicon’s reference system ℱ𝑉 coincides with
the center O𝑊 of the reference system of the map (referred to as the world frame
ℱ𝑊 ). However, it’s important to note that while the world frame’s z-axis points
downwards through the ground, the Vicon reference system’s z-axis is oriented
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upwards, towards the ceiling.

4.2 EXPERIMENTS DESIGN

This experimental campaign is conducted with the primary objective of as-
sessing and validating the performance of the new localization system under
various conditions, encompassing both stationary and dynamic scenarios. Per-
formance evaluation rests on the localization error, specifically in terms of both
vehicle position and orientation, by comparing the estimates provided by the
Vicon system (serving as the ground truth) with those from the VIO system. To
be precise, at each time instance 𝑡, the errors are computed as follows:

𝑒p(𝑡) =‖ p̂Vicon(𝑡) − p̂VIO(𝑡) ‖ (4.1)

𝑒∠(𝑡) = 𝑑∠
(
R̂

Vicon
(𝑡), R̂

VIO
(𝑡)

)
(4.2)

The errors are often summarized using their mean and standard deviation. The
willingness would be to achieve a significant enhancement compared to the pre-
vious VIO approach validated in [5] (strategy referred to as JB-ALG hereinafter),
both in static and dynamic conditions. The experiments are divided into two
distinct phases.

“Hovering tests”: The initial phase of the experimental campaign exclusively
involves the hexarotor HR01. The primary objective of this set of experiments is
to compare and evaluate the performance of the algorithms detailed in Sections
3.1 and 3.2 to identify the optimal configuration in terms of pose estimation ac-
curacy. During this phase, Vicon pose estimates are employed in the feedback
control loop (off-board localization), with VIO estimates being collected simulta-
neously for subsequent offline performance assessment.To introduce variability,
flights are conducted at different altitudes, each corresponding to varying num-
bers of tags of different sizes. Specifically, the UAV performs hovering flights at
altitudes of 0.8 meters, 1.4 meters, and 2 meters above the ground. Throughout
these flights, the vehicle maintains a constant orientation and zero linear veloc-
ity and acceleration. Six independent tests are executed, with each test initiated
from a distinct position within the map. Notably, the last test, labeled as Lc45, in-
volves the UAV flying over an L-sized marker encircled by smaller markers while
maintaining a yaw angle of 45° with respect ℱ𝑊 (and therefore the underlying
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Test ID Description
XL Take-off over one of the biggest-size markers
Ld Take-off over an L-size marker placed in the diagonal between two XLs
Ls1 Take-off over an L-size marker placed just to the right of an XL one
Ls2 Take-off over an L-size marker placed just above an XL one
Lc Take-off over an L-size marker centred inside a square of six

Lc45 Same position as Lc, but maintaining a yaw angle of 45°

Table 4.2: Description of the take-off position and orientation maintained in each
hovering flight test performed with the HR01.

Figure 4.3: Visual representation of the hovering flights tests take-off positions
inside the map.

tag). This particular test, Lc45, serves the purpose of evaluating the localization
system under diverse conditions and map perspectives. For reference, the six
take-off positions and orientations, along with their respective acronyms used
as identifiers, are concisely summarized in Table 4.2, and a visual representation
is presented in Figure 4.3.

”Dynamic trajectories tests”: The subsequent phase of the experimental cam-
paign involves both the HR01 and QR01 aerial platforms, utilizing the optimal
configurations identified during Phase 1. Notably, during this phase, Vicon
pose estimates are collected for comparative purposes but are not employed
for feedback in flight control. Instead, the flight controller relies exclusively
on estimates derived from the onboard camera and the IMU (onboard localiza-
tion). In these tests, both vehicles are tasked with following predefined trajec-
tories designed to assess performance under diverse conditions. Three distinct
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trajectories have been designed for evaluation. These trajectories consist of set
points generated using a fifth-order polynomial (spline) approximation, aiming
to ensure their smoothness. The points are relayed to the PX4 flight controller
through offboard_control, a ROS2 node developed explicitly for this purpose
and fully configurable via a designated .yaml configuration file. The initial two
trajectories, Square (T1) and Steps (T2), have been adapted from previous work
found in [5] and [29]. In the Square trajectory, the vehicle is required to trace
a 2-meter square over the map while maintaining a consistent altitude. In con-
trast, the Steps trajectory involves the vehicle following a constant reference in
the x and y axes while altering its flight altitude along the z-axis. This trajec-
tory resembles the one employed in hovering tests but incorporates variations
in altitude, which occur sequentially as follows: 0.8m, 1m, 1.3m, 1.6m, 1.3m, 1m,
and 0.8m. To facilitate a more comprehensive evaluation of the localization sys-
tem, both the Square and Steps trajectories are subdivided into phases. For the
Square trajectory, each phase (F - forward, R - right, B - backwards, L - left) cor-
responds to one side of the square. For the Steps trajectory, each phase can be
categorized as ascending (as A1, A2, A3) or descending (D1, D2, D3), including
the take-off maneuver (S0). These movements correspond to the transition be-
tween successive altitudes with steps of 0.3m so that the UAV’s height from the
ground varies from 0.7 during S0 to 1.6m before starting to descend. A novel
trajectory, denoted as the S-trajectory (TS), has been introduced, requiring the
vehicle to trace an S-shaped path on the xy plane to ℱ𝑊 , while also varying its
altitude. This trajectory represents the most complex and comprehensive move-
ment within the testing campaign. Multiple tests have been conducted in cor-
respondence to each different path considered. The final performance indices
have been then obtained by averaging all the single tests performed on the same
trajectory. For visual reference, Figure 4.4 provides a graphical depiction of the
three trajectories.

Following the execution of the experiments, the flight data is systematically
collected and archived within ROS2 bags. These data can be readily extracted
using various tools, such as PlotJuggler2, or extracted directly using ROS2 echo
commands and subsequently saved in .csv file format. These .csv files are con-
veniently prepared for importation into MATLAB for subsequent analysis. Spe-
cific topics have been preserved for this purpose:

• /fmu/in/trajectory_setpoints, messages containing the reference tra-
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Figure 4.4: A graphical representation of the three trajectories adopted in the
second phase of the tests. In this order, are shown: Square trajectory (T1), Steps
trajectory (T2), S-trajectory (TS). The orange arrows highlight the prescribed ori-
entation for the vehicles.
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jectory set-points generated by the offboard_control node.

• /fmu/in/vehicle_vicon_odometry, messages containing the pose estimate
provided by the Vicon system.

• /fmu/in/vehicle_visual_odometry, messages published by A2VO con-
taining the pose estimate calculated through VIO localization.

• /fmu/out/vehicle_odometry, messages containing the final vehicle pose
provided at the exit of the EKF.

• tf_vio, output of the apriltag_ros node, necessary to replicate offline the
flight conditions inside simulation.

4.3 RESULTS DISCUSSION

In this section, a comprehensive presentation and analysis of the results de-
rived from the flight experiments will be provided. The emphasis will be placed
on performance metrics, particularly estimation accuracy, for both Phase 1 (hov-
ering flights) and Phase 2 (dynamic trajectory flights). Subsequently, attention will
be directed towards assessing the computational complexity of the algorithms.

4.3.1 PHASE 1: HOVERING FLIGHTS

After having conducted all the hovering tests with the HR01 within the labo-
ratory setup outlined in Section 4.1 with the assistance of Vicon guidance in the
flight control, the VO localization system will be validated by post-processing
the recorded data. This validation will make use of data collected from ROS2
Bags to mimic the original flight conditions within a simulation environment.
Each iteration of the simulation will assess a different algorithm.

Simulations have the objective of comparing various OR methods across the
six take-off and hovering conditions to determine the optimal approach. In order
to maintain fairness in the comparison of algorithms, all other VIO parameters
remain unaltered throughout each simulation. These parameters include:

• Default usage of QL2-AVG as the rotations averaging algorithm.

• Default choice of static W2 as the set of weights.

• The FIR filter remains disabled.
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By varying only the OR method employed, a balanced assessment of the al-
gorithms is ensured. Evaluation of the position component of the pose employs
the Euclidean distance error between the marker-based estimate and the Vicon
estimate, denoted as ‖ e𝑝(𝑡) ‖. For orientation, the geodesic distance between
the two estimates, represented as 𝑒∠(𝑡), is used as the second performance index.
The considered outliers removal algorithms encompass:

• NO-OR (all OR methods disabled)

• DMN-OR
• DMD-OR
• IQR-OR (as implemented in A2VO-v3)

• OBS-OR (only)

• TBS-OR (only) HYB-OR, a hybrid solution involving the sequential exe-
cution of TBS-OR + IQR-OR.

Tables 4.5 presents the mean and standard deviation of errors from the ini-
tial comparison of OR algorithms. Notably, the results corresponding to NO-
OR highlight the poorest performance registered, underlining the significance
of introducing an outliers removal procedure before proceeding with the aver-
aging of transformations.The best outcomes are consistently achieved by meth-
ods focusing solely on larger-sized markers (OBS-OR, TBS-OR, HYB-OR). Ad-
ditionally, the strategy of employing a hybrid approach, which preemptively
removes smaller-sized markers while simultaneously conducting regular out-
liers detection on a restricted sample set, proves to be effective. In terms of Eu-
clidean distance errors, the HYB-OR method consistently yields the best results.
Conversely, for angular distance errors, different methods yield the minimum
values in various test scenarios. Nevertheless, once more, the hybrid approach
demonstrates the most favorable overall performance, considering both the po-
sition and angular errors.

The following step involves the selection of the rotation averaging method
alongside a suitable set of weights. Considered in this analysis are the CL2-Mean
and the QL2-Mean, accompanied by two distinct sets of weights (W1 and W2),
as expounded in Section 3.4.3. Moreover, the alternative strategy of dynamic
weighting is assessed, denoted as D1 and D2 when utilized in conjunction with
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NO-OR DMN-OR DMD-OR IQR-OR OBS-OR TBS-OR HYB-OR
Position error e𝑝(𝑡)

XL 18.03 ± 13.08 13.8 ± 10.46 16.72 ± 13.33 8.88 ± 6.45 3.79 ± 1.94 4.71 ± 2.72 3.34 ± 1.76
Ld 17.14 ± 12.21 14.3 ± 9.93 17.5 ± 11.95 9.11 ± 5.79 4.39 ± 2.46 5.28 ± 2.69 2.95 ± 1.69
Ls1 17.8 ± 12.81 13.61 ± 9.84 16 ± 11.48 8.47 ± 5.97 4.55 ± 2.24 4.59 ± 2.54 3.01 ± 2
Ls2 18.5 ± 13.65 14.65 ± 10.97 18.6 ± 13.28 8 ± 5.61 4.34 ± 3.62 3.26 ± 2.36 2.73 ± 1.76
Lc 16.35 ± 8.08 12.05 ± 5.34 12.62 ± 3.81 7.07 ± 2.44 3.86 ± 1.85 3.21 ± 1.55 3.05 ± 1.2

Lc45 29.35 ± 3.37 23.08 ± 4.11 28.5 ± 6.87 11.21 ± 2.73 5.03 ± 4 4.4 ± 1.73 3.61 ± 1.6
Angular error 𝑒∠(𝑡)

XL 7.82 ± 2.19 5.92 ± 2 6.22 ± 2.68 4.29 ± 1.05 3.88 ± 0.7 3.2 ± 0.4 3.24 ± 0.41
Ld 4.67 ± 2.2 3.52 ± 1.72 4.19 ± 2.15 3.45 ± 1.19 3.72 ± 1.06 4.72 ± 0.99 4 ± 0.68
Ls1 4.95 ± 1.86 4.17 ± 1.18 4.47 ± 1.4 3.77 ± 1.03 5.99 ± 0.63 5.06 ± 0.7 4.5 ± 0.63
Ls2 7.43 ± 2.24 5.33 ± 2.18 5.54 ± 2.77 3.82 ± 1.02 3.05 ± 0.66 3 ± 0.37 3.19 ± 0.47
Lc 4.84 ± 2.8 4.8 ± 1.95 4.62 ± 1.6 4 ± 0.58 4.29 ± 0.22 3.84 ± 0.5 3.98 ± 0.44

Lc45 6.86 ± 1.14 7.75 ± 1.2 7.48 ± 1.19 6.83 ± 0.97 3.8 ± 0.56 5.03 ± 0.55 4.92 ± 0.56

Table 4.3: Comparison of the mean and the standard deviation of the Euclidean
distance error ‖ e𝑝(𝑡) ‖ and the the angular distance error 𝑒∠(𝑡) obtained from
the Phase 1 offline simulations, varying the outliers removal strategy. The errors
are reported in cm and degrees, respectively.

the base sets of weights W1 and W2, respectively. It should be noted that the
selected type of weighting influences not only the averaging of transformations
but also impacts calculations of the quartiles within the IQR-OR algorithm. The
parameters that remain consistent across these simulations encompass:

• HYB-OR as the optimal outliers removal algorithm.

• The FIR filter remains disabled.

Tables 4.4 detail the mean value and standard deviation of errors obtained
during this second comparison of the averaging algorithms. Numerical results
indicate that, in terms of orientation estimate precision, the QL2-AVG algorithm
marginally outperforms CL2-AVG. Interestingly, dynamic weighting demon-
strates limited effectiveness, as its performance closely resembles that of static
weighting. This can be attributed to the fact that the relative differences in dis-
tance between the various recognized tags and the camera are not substantial
enough to significantly impact the estimation process. Regarding position esti-
mate errors, none of the methods exhibit significant superiority over the others.
However, in terms of orientation estimate, the combination QL2-AVG + W2 ap-
pears to offer a more balanced outcome across the results of the six different

70



CHAPTER 4. SYSTEM TESTING AND VALIDATION

CL2+W1 CL2+W2 CL2+D1 CL2+D2 QL2+W1 QL2+W2 QL2+D1 QL2+D2
Position error e𝑝(𝑡)

XL 3.2 ± 1.72 3.34 ± 1.76 3.17 ± 1.67 3.35 ± 1.76 3.2 ± 1.72 3.34 ± 1.76 3.17 ± 1.67 3.35 ± 1.75
Ld 2.92 ± 1.48 2.95 ± 1.69 2.96 ± 1.48 2.93 ± 1.67 2.92 ± 1.48 2.95 ± 1.69 2.94 ± 1.68 2.96 ± 1.48
Ls1 3.45 ± 1.53 3.01 ± 2 3.44 ± 1.54 3.37 ± 2.2 3.45 ± 1.53 3.01 ± 2 3.37 ± 2.2 3.44 ± 1.54
Ls2 3.61 ± 1.88 2.73 ± 1.76 3.58 ± 1.84 2.73 ± 1.74 3.6 ± 1.88 2.73 ± 1.76 3.58 ± 1.84 2.73 ± 1.73
Lc 3.07 ± 1.26 3.03 ± 1.24 3.05 ± 1.28 3.09 ± 1.12 3.07 ± 1.25 3.05 ± 1.2 3.1 ± 1.1 3.05 ± 1.28

Lc45 3.07 ± 1.36 3.6 ± 1.6 2.94 ± 1.31 3.79 ± 1.73 3.07 ± 1.37 3.61 ± 1.6 2.94 ± 1.31 3.79 ± 1.73
Angular error 𝑒∠(𝑡)

XL 4.21 ± 6.73 3.9 ± 8.64 4.16 ± 5.61 3.73 ± 5.75 3.48 ± 0.44 3.24 ± 0.41 3.51 ± 0.44 3.25 ± 0.41
Ld 4.61 ± 6.7 4.5 ± 3.55 4.63 ± 5.83 4.92 ± 7.78 3.94 ± 0.72 4 ± 0.68 4.01 ± 0.67 3.94 ± 0.71
Ls1 6.04 ± 7.48 5.2 ± 7.36 6.14 ± 7.2 5.79 ± 9.96 5.17 ± 0.63 4.5 ± 0.63 4.71 ± 0.64 5.18 ± 0.63
Ls2 3.7 ± 5.45 3.91 ± 6.51 3.61 ± 3.93 3.79 ± 5.67 3.04 ± 0.54 3.19 ± 0.47 3.04 ± 0.54 3.2 ± 0.47
Lc 4.07 ± 0.17 4.82 ± 1.58 4.06 ± 0.17 5.32 ± 1.98 4.05 ± 0.18 3.98 ± 0.44 4.03 ± 0.45 4.06 ± 0.18

Lc45 5.53 ± 7.8 5.85 ± 7.2 5.7 ± 8.55 6.19 ± 7.93 4.44 ± 0.52 4.92 ± 0.56 4.46 ± 0.53 5.02 ± 0.62

Table 4.4: Comparison of the mean and the standard deviation of the Euclidean
distance error ‖ e𝑝(𝑡) ‖ and the the angular distance error 𝑒∠(𝑡) obtained from
the Phase 1 offline simulations, varying the rotations averaging method and the
weighting. The errors are reported in cm and degrees, respectively.

tests performed. Consequently, the configuration QL2-AVG + W2 is selected as
the optimal choice.

The final step involves the evaluation of the FIR filter’s impact while varying
the filter’s order and the set of weights used for its samples. To accomplish this,
the weights are defined as

[
𝑤𝑡−4 𝑤𝑡−3 𝑤𝑡−2 𝑤𝑡−1 𝑤𝑡

]
. The following config-

urations are examined:
• Configuration F0: FIR filter is disabled.

• Configuration F1: FIR filter is enabled, with a 3rd order, and weights are
set to [1, 1, 1].

• Configuration F2: FIR filter is enabled, with a 4th order, and weights are
set to [1, 1, 1, 1].

• Configuration F3: FIR filter is enabled, with a 5th order, and weights are
set to [1, 1, 1, 1, 1].

• Configuration F4: FIR filter is enabled, with a 4th order, and weights are
set to [1, 1, 2, 2].

• Configuration F5: FIR filter is enabled, with a 5th order, and weights are
set to [1, 2, 2, 3, 3].

• Configuration F6: FIR filter is enabled, with a 5th order, and weights are
set to [1, 2, 3, 4, 5].

The remaining configuration parameters are held constant, employing the
HYB-OR algorithm alongside QL2-AVG + W2.

71



4.3. RESULTS DISCUSSION

F0 F1 F2 F3 F4 F5 F6
Position error e𝑝(𝑡)

XL 3.34 ± 1.76 3.07 ± 1.51 3.03 ± 1.47 3 ± 1.44 3.04 ± 1.48 3.01 ± 1.45 3.02 ± 1.46
Ld 2.95 ± 1.69 2.52 ± 1.26 2.44 ± 1.17 2.39 ± 1.12 2.45 ± 1.19 2.4 ± 1.14 2.41 ± 1.15
Ls 3.01 ± 2 2.63 ± 1.66 2.56 ± 1.59 2.51 ± 1.54 2.57 ± 1.61 2.52 ± 1.56 2.54 ± 1.58
Lsu 2.73 ± 1.76 2.35 ± 1.48 2.3 ± 1.42 2.27 ± 1.38 2.31 ± 1.44 2.28 ± 1.4 2.29 ± 1.41
Lc 3.05 ± 1.2 2.82 ± 1.27 2.96 ± 1.38 3.23 ± 1.42 2.88 ± 1.32 3.02 ± 1.36 2.95 ± 1.33

Lc45 3.61 ± 1.6 3.12 ± 1.21 3.03 ± 1.13 2.98 ± 1.08 3.04 ± 1.15 2.99 ± 1.1 3 ± 1.11
Angular error 𝑒∠(𝑡)

XL 3.24 ± 0.41 3.21 ± 0.36 3.21 ± 0.37 3.21 ± 0.38 3.21 ± 0.36 3.21 ± 0.36 3.21 ± 0.36
Ld 4 ± 0.68 3.98 ± 0.55 3.98 ± 0.53 3.97 ± 0.52 3.98 ± 0.53 3.97 ± 0.52 3.97 ± 0.52
Ls 4.5 ± 0.63 4.48 ± 0.49 4.48 ± 0.46 4.48 ± 0.45 4.48 ± 0.47 4.48 ± 0.45 4.48 ± 0.45
Lsu 3.19 ± 0.47 3.16 ± 0.41 3.16 ± 0.41 3.16 ± 0.41 3.16 ± 0.4 3.16 ± 0.4 3.16 ± 0.4
Lc 3.98 ± 0.44 3.99 ± 0.21 4.01 ± 0.21 4.06 ± 0.19 4 ± 0.23 4.02 ± 0.21 4.01 ± 0.21

Lc45 4.92 ± 0.56 4.9 ± 0.46 4.9 ± 0.44 4.9 ± 0.43 4.9 ± 0.43 4.9 ± 0.42 4.9 ± 0.43

Table 4.5: Comparison of the mean and the standard deviation of the Euclidean
distance error ‖ e𝑝(𝑡) ‖ and the the angular distance error 𝑒∠(𝑡) obtained from
the Phase 1 offline simulations, varying the FIR filter’s order and set of weights.
The errors are reported in cm and degrees, respectively.

Finally, Tables ?? and ?? provide an overview of the mean and variance of the
errors resulting from this last comparison. The tables illustrate that the applica-
tion of the FIR filter can lead to a reduction in estimation error, both in position
and orientation, by up to 20%. Among all the filter orders and sets of weights un-
der consideration, Configuration F3 (a 5th-order filter without weights) exhibits
marginally superior results compared to the other configurations, particularly
in terms of position estimation. Consequently, F3 is selected for the optimal
configuration, reaffirming the effectiveness of the previously adopted strategy
in A2VO-v2 when employing the FIR filter.

4.3.2 PHASE 2: DYNAMIC TRAJECTORY TESTS

In light of the Phase 1 experiments, the optimal configuration for A2VO-v3,
denoted as OPT-ALG encompasses the following settings:

• HYB-OR is the chosen method for removing outliers.

• QL2-AVG is employed as rotations averaging method alongside the static
set of weights W2.

• A 5th-order FIR filter is activated without any additional weighting (F3).
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Phase F R B L

𝑒𝑝

QR JB-ALG 7.40 ± 2.63 9.64 ± 2.88 6.38 ± 2.99 5.71 ± 3.94

OPT-ALG 7.23 ± 1.86 9.72 ± 1.40 8.00 ± 2.27 2.62 ± 1.13

HR JB-ALG 6.78 ± 3.38 8.67 ± 3.61 5.53 ± 2.21 10.27 ± 7.10

OPT-ALG 6.96 ± 1.76 8.45 ± 2.96 5.00 ± 1.98 13.10 ± 8.41

𝑒∠

QR JB-ALG 2.70 ± 0.22 2.29 ± 0.34 2.77 ± 0.26 3.09 ± 0.24

OPT-ALG 2.67 ± 0.12 2.41 ± 0.23 2.66 ± 0.21 2.92 ± 0.15

HR JB-ALG 6.43 ± 2.32 6.72 ± 2.95 5.42 ± 1.87 5.88 ± 3.86

OPT-ALG 4.31 ± 1.17 6.09 ± 2.51 3.70 ± 1.00 5.68 ± 3.41

Table 4.6: Phase 2, trajectory T1 - mean and and standard deviation of the posi-
tion error (in cm) and orientation (in ◦).

This configuration is consistently applied throughout the Phase 2 experi-
ments, enabling a direct comparison of results with those obtained using the
previous JB-ALG algorithm across all three prescribed trajectories.

SQUARE TRAJECTORY

Figure 4.5 visually represents the position estimates for the square trajectory
executed by the HR01. While analogous plots pertain to the QR01, they are omit-
ted here for simplicity. Meanwhile, Table 4.6 provides comprehensive details
on both position and orientation errors in the VIO estimates, effectively high-
lighting the various movements within the trajectory. A detailed examination
of the table reveals a significant improvement in accuracy, particularly concern-
ing orientation estimation. Comparative analysis of error values between the
new OPT-ALG method and the older JB-ALG shows consistent advantages, in-
cluding smaller mean and standard deviation values for 𝑒∠ . Regarding position
estimates, enhanced precision is observed in most cases, although an exception
arises during the L movement of the HR01. This discrepancy may be attributed
to an unfavorable section of the map, diminishing the reliability of smaller tags
in this specific scenario.

STEPS TRAJECTORY

Figure 4.6 provides a graphical depiction of the position estimates for the
square trajectory executed by the HR01 (with the corresponding plots for the
QR01 omitted for conciseness). In Table 4.7, the mean and variance of both posi-
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(a) (b)

(c) (d)

Figure 4.5: Trajectory reference and position estimates produced by the Vicon
system and by the marker-based localization during the first test conducted on
the HR01 platform, executing T1.
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Phase S0 A1 A2 A3 D1 D2 D3

𝑒𝑝

QR JB-ALG 4.67 ± 1.66 8.09 ± 2.65 10.17 ± 4.96 10.72 ± 3.74 9.29 ± 3.98 7.60 ± 2.64 5.34 ± 1.38

OPT-ALG 2.89 ± 1.35 4.00 ± 0.90 4.47 ± 1.29 4.98 ± 1.39 4.31 ± 1.47 3.66 ± 1.23 3.39 ± 1.21

HR JB-ALG 4.48 ± 1.66 6.60 ± 1.66 9.70 ± 2.77 12.85 ± 4.96 9.72 ± 2.76 7.23 ± 1.72 4.81 ± 1.84

OPT-ALG 1.65 ± 0.68 2.88 ± 1.06 3.87 ± 1.18 5.41 ± 1.92 3.93 ± 1.60 2.85 ± 0.83 1.88 ± 0.75

𝑒∠

QR JB-ALG 2.75 ± 0.17 2.54 ± 0.36 3.15 ± 0.45 2.59 ± 0.28 3.18 ± 0.41 2.44 ± 0.43 2.77 ± 0.18

OPT-ALG 2.75 ± 0.15 2.64 ± 0.18 2.92 ± 0.23 2.81 ± 0.23 2.93 ± 0.26 2.60 ± 0.26 2.63 ± 0.19

HR JB-ALG 5.92 ± 1.69 6.23 ± 0.96 6.03 ± 1.42 6.24 ± 1.70 6.22 ± 1.28 6.43 ± 0.90 4.86 ± 1.72

OPT-ALG 3.90 ± 0.64 4.36 ± 0.45 3.45 ± 0.68 3.75 ± 0.73 3.63 ± 0.66 4.45 ± 0.41 3.57 ± 0.66

Table 4.7: Phase 2, trajectory T2 - mean and and standard deviation of the posi-
tion error (in cm) and orientation (in ◦).

tion and orientation errors in the VIO estimates are presented, emphasizing the
distinct movements within the trajectory. A detailed examination of the table re-
veals noticeable enhancements in position estimate accuracy for both UAVs, as
evidenced by substantial reductions in the Euclidean distance error, 𝑒𝑝 , across
all movements. The error is reduced by up to 50% for maneuvers performed at
higher altitudes (A3 and D1) In contrast, improvements in orientation estimates
vary. While the HR01 consistently benefits from reduced orientation errors, the
QR01 experiences mixed results, with error reductions often manifesting in ei-
ther mean values or standard deviations for each movement.

S-TRAJECTORY

Finally, Figure 4.7 presents the graphical depiction of the position estimate
for the S-trajectory in the flight conducted with the HR01. Table 4.8 provides de-
tails on the mean and variance of errors in both position and orientation of the
VIO estimate. From the table, a modest improvement in accuracy is observed
overall for both UAVs. However, it’s noteworthy that the JB-ALG still outper-
forms in terms of orientation estimation for the QR01. In all other cases, there is
a reduction in error, albeit less pronounced compared to the other two trajecto-
ries, especially the steps trajectory. This observation suggests that the proposed
strategy may have limitations in effectiveness when dealing with faster and more
demanding flight dynamics.

4.3.3 NOTES ABOUT ALGORITHMS EXECUTION TIME

The measurement of execution times for the principal algorithms integrated
into A2VO-v3 was performed using inbuilt tools provided by the ROS2 C++ li-
brary. All the execution times relate to complete flight simulations conducted

75



4.3. RESULTS DISCUSSION

(a) (b)

(c) (d)

Figure 4.6: Trajectory reference and position estimates produced by the Vicon
system and by the marker-based localization during the first test conducted on
the HR01 platform, executing T2.

Entire S path

𝑒𝑝

QR JB-ALG 37.35 ± 16.91

OPT-ALG 36.38 ± 15.08

HR JB-ALG 12.65 ± 7.78

OPT-ALG 10.65 ± 5.67

𝑒∠

QR JB-ALG 3.01 ± 3.04

OPT-ALG 3.32 ± 3.28

HR JB-ALG 5.74 ± 2.91

OPT-ALG 5.27 ± 2.30

Table 4.8: Phase 2, trajectory TS - mean and and standard deviation of the posi-
tion error (in cm) and orientation (in ◦).
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(a) (b)

(c) (d)

Figure 4.7: Trajectory reference and position estimates produced by the Vicon
system and by the marker-based localization during the first test conducted on
the HR01 platform, executing TS.

77



4.3. RESULTS DISCUSSION

Figure 4.8: Execution times that have been obtained for each different OR algo-
rithm through simulation over the same complete recorded flight.

offline on a workstation (not on the Raspberry Pi). The simulation environment
runs a ROS2 Humble distribution on Ubuntu 20.04. The times presented below
are not indicative of the real execution times required on the target platform but
rather offer valuable insights into the relative complexity differences among the
exposed algorithms.

The initial simulation aims to compare the performance of each individual
algorithm. This includes both outlier removal methods and averaging meth-
ods, along with their respective implementations. Figure 4.8 provides the mean
values and standard deviations of execution times for each outlier removal algo-
rithm over a full flight simulation. The considered implementations encompass
Pescante’s IQR-OR (from A2VO-v2), DMN-OR,DMD-OR, IQR-OR (A2VO-v3),
OBS-OR (only), TBS-OR (only), and HYB-OR. Figure 4.9a, on the other hand,
presents a comparison of execution times achieved with the two different rota-
tion averaging algorithms (CL2-AVG and QL2-AVG) during the same complete
flight simulation when TBS-OR is applied.

It is unsurprising that the best-performing OR algorithms are those restricting
themselves to the larger classes of tags, including OBS-OR (average of 30.7𝑛𝑠),
TBS-OR (average of 34.8𝑛𝑠), and HYB-OR (average of 95.3𝑛𝑠). Notably, the dis-
parity between the older IQR-OR implementation from A2VO-v2 (1594𝑛𝑠 avg)
and the new one (490𝑛𝑠 avg) confirms the substantial detrimental impact that
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(a) (b)

Figure 4.9: Execution times that have been obtained for each different AVG al-
gorithm (Figure 4.9a) and by measuring the total execution time of the routine
(Figure 4.9b) through simulation over the same complete recorded flight.

using standard C++ classes can have on performance in such tasks. Also note-
worthy is the decrease in complexity as the set of markers for processing is con-
fined to the largest-size classes (as evident in the comparison between the new
IQR-OR version andHYB-OR). When contrasting the performance of CL2-AVG
and QL2-AVG, one can appreciate the lighter computational load of the Quater-
nion 𝐿2-Mean, as previously anticipated in theoretical considerations in Section
3.2.

A final simulation was conducted to compare the total execution time of the
entire tf_callback() routine between theOPT-ALG and JB-ALGmethods. The
results are depicted in Figure 4.9b. It is immediately evident how the complex-
ity of the callback routine has increased with the introduction of OR and AVG
procedures, resulting in a significant increment in total execution time (from an
average of 13.9𝑛𝑠 to 959.5𝑛𝑠). In the pursuit of enhancing and refining the local-
ization system, it is crucial to consider the computational complexity aspects of
the adopted strategies. This consideration becomes even more vital when deal-
ing with hardware-constrained platforms. In dynamic applications like UAV
flights, delays introduced by the addition of new algorithms can lead to system
instability or negate the benefits brought by these new features. Active code op-
timization and the quest for the optimal balance between advanced algorithms
and their computational costs have been essential in achieving the best localiza-
tion performance within the confines of the hardware’s capabilities.
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5
Conclusions and Future Works

This thesis has been centered on the examination and enhancement of a pre-
viously developed Visual-Inertial Odometry (VIO) localization system tailored
for UAVs navigating indoors. This approach relies on recognizing AprilTags sit-
uated on the floor and constructing a dense map for navigation. The primary
contribution of this work lies in the thorough investigation of the challenges
encountered in harnessing data from multiple AprilTag recognitions. It encom-
passes the creation of novel algorithms and the evolution of the ROS2 node,
apriltag_to_visual_odometry, often abbreviated in A2VO-v3, a pivotal com-
ponent in marker-based VIO localization.

Specifically, substantial enhancements have been made to the data pre-processing,
an essential step to eliminate outliers from the estimates generated by the fidu-
cial marker detector. New algorithms have been incorporated, providing the ca-
pability to restrict the system to consider estimates exclusively from the largest-
sized tag sets, resulting in noteworthy enhancements in both accuracy and com-
putational efficiency. Additionally, this work delves into the problem of aver-
aging transformations, exploring an alternative mathematical approach to com-
pute rotation means, thus introducing a more precise and efficient algorithm.
Throughout these advancements, the entire A2VO-v3 codebase has been scruti-
nized and refined, ensuring that the core structure remains unchanged to pre-
serve backward compatibility.
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The validation of this system entailed a meticulously designed series of exper-
iments employing two distinct multi-rotor platforms: the HR01 and the QR01.
These experiments encompassed three distinct flight trajectories, each charac-
terized by varying degrees of static and dynamic maneuvers. This strategic
approach was aimed at evaluating the system’s reliability across diverse con-
ditions. The initial phase of the tests involved controlled hovering flights of
the HR01 over predefined sections of the map. Experiments outcomes obtained
with various algorithms were subsequently compared to pinpoint the optimal
configuration. Subsequently, this optimal configuration was employed in the
second phase of the experiments, wherein both UAV platforms executed flights
along three prescribed reference trajectories: a square trajectory, a vertical steps
trajectory, and a more complex S-shaped trajectory. The evaluation was based
on two performance indices: the Euclidean distance error and angular distance
error computed by contrasting the marker-based localization estimates with the
Vicon-derived estimates, serving as ground truth. Notably, the analysis consid-
ered both the mean value and standard deviation of these errors.

Phase 1 of the tests yielded valuable insights into the localization system’s
performance. A noteworthy confirmation was the system’s independence from
the visible portion of the map, irrespective of the node’s configuration. This
indicates that the achieved results were not contingent on a particularly advan-
tageous UAV position during hovering. The most remarkable accuracy in pose
estimation, encompassing both position and orientation, was attained through
the combined utilization of HYB-OR for outlier removal, QL2-AVG in conjunc-
tion with W2 for rotation averaging, with dynamic weights disabled and the FIR
filter activated. In Phase 2, the newly optimized localization system (OPT-ALG)
was assessed against the legacy localization framework (JB-ALG). This compar-
ison led to two crucial observations:

Hardware Adaptability: The framework upgrade did not favor one platform
over the other. Both UAVs experienced performance enhancements, albeit
not uniformly across identical tests or maneuvers. This suggests that this
approach can be effective with diverse hardware and platforms.

Trajectory Dependency: The improvements were most pronounced in predom-
inantly static flights, such as those in Phase 1 and the steps trajectory, while
dynamic trajectories like the S-trajectory exhibited limited accuracy gains.
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Several factors might contribute to this phenomenon, including motion
blur effects that can compromise the reliability of pose estimates derived
from smaller tags. Additionally, the introduction of the more complex
algorithm in the localization routine might have introduced delays (see
4.3.3). It’s important to note that despite the efforts to optimize the new
algorithms’ computational complexity, the execution time of the new rou-
tine (OPT-ALG) significantly surpassed that of the old routine (JB-ALG).
Future investigations should delve deeper into understanding how these
delays impact localization accuracy and how to mitigate their effects.

5.1 POSSIBLE FUTURE WORKS

This thesis is situated within a broader research endeavor centered on ex-
ploring the interaction between UAVs and humans. The ultimate goal is to facil-
itate the integration of these cutting-edge technologies into industrial and oper-
ational settings in a novel cooperative manner, with a particular emphasis on in-
door applications. Localization represents a pivotal component of this research
project, and the current VIO system can be further refined in the future. Several
potential enhancements emerge from the findings presented in this thesis:

Delay Impact Assessment: Although the presence of an EKF at the end of the
localization pipeline grants a certain level of robustness to the localiza-
tion estimate, investigating the influence of computational load-induced
delays on localization accuracy is essential. The primary sources of de-
lay encompass the A2VO and apriltag_ros nodes and can introduce to
delays in the order of ms. Optimizing the performance of apriltag_ros
by conducting an in-depth examination of the AprilTags recognition and
identification routine, along with associated algorithms, could be highly
beneficial.

Exploring Advanced Fiducial Markers: The possibility of adopting more ad-
vanced types of fiducial markers merits consideration. The extensive lit-
erature on this subject and the continuous evolution of fiducial marker
technology offer opportunities to enhance pose estimate precision and re-
liability. Comparative studies regarding new fiducial marker solutions, as
[17], could yield valuable insights.
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Mitigating Motion Blur Effects: Understanding how motion blur affects pose
estimation during dynamic flight conditions is crucial. Developing strate-
gies to mitigate the adverse effects of motion blur, potentially drawing in-
spiration from [31], could improve accuracy.

Camera Upgrades: Exploring the feasibility of transitioning from rolling shut-
ter to global shutter cameras is advisable. Global shutter cameras can con-
tribute to improving image quality during dynamic flight conditions.

Switch between different configurations: Assessing the viability of dividing the
main algorithm into two or more operational configurations is worthwhile.
A first configuration could be suited for hovering or slow maneuvers de-
manding maximum localization precision, leveraging complex and com-
putationally intensive algorithms. A second configuration, tailored for dy-
namic contexts where speed takes precedence over localization accuracy,
can rely on less sophisticated but more efficient estimation algorithms to
minimize computational costs. The system may be programmed to em-
brace the best configuration depending on the required task.

Ultimately, to extend the applicability of this technology beyond the labora-
tory and into real-world autonomous applications in various contexts, the tran-
sition from a dense map of tags to a more practical and less expensive sparse
map is the next step. This transition would involve reducing the total number
of markers while maintaining robust navigational guidance.
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