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Abstract

Group robotics is one of the key areas of the development of robotic systems. This is
due to the fact that for a wide class of practical tasks, the use of a group of relatively
simple robots is much more efficient than using a single large multi-purpose device. The
modern development of computer technology and communication systems opens up wide
opportunities for the construction of such systems.

The most progressive and effective approach is the implementation of the collective
behavior of robots according to the swarm principle, when each of them interacts only
with neighboring individuals, synchronously exchanging the collected information about
the environment and their condition. Such a group compensates for the weakness of its
detection and communication devices by joining a team.

The problems of introducing group robotics into the modern world are studied in this
thesis. If they combine two concepts, synchronization and swarming, they are called
a swarmalator. In swarmalator systems, the movement of the robots is governed by
differential equations. These equations are solved with the Euler method, where the
location and phase are determined. The Euler method is time-discrete and allows the
integration of first-order differential equations. Therefore, there is a step size to be
chosen.

The main task is to study group movement, which is based on transmitting information
with a definite step size. The step value affects how often the swarmalators share
their location and phase. Three main conclusions are made. The first research is what
happens when varying the step size - is it most optimal to use with small step sizes?
The second conclusion is that when increasing the step size with a small increment or
using randomization of the step size. Such methods are typically, more optimal to use
with a gradual increase in the step size because the convergence time is lower. The third
is when decreasing the step size using a small increment. The results showed that this
method is optimal to use when the step size exceeds 1. The states converge at a rather
large interval, compared with previous results, but at the same time with a large value of
the convergence time.

The values of optimal step sizes are presented and analyzed. As performance criteria, we
consider the computational power that is required, the average convergence time, the
coupling probability and the step size. The behavior of all parameters is graphically
represented in plots. The conclusions are based on the simulations done for the results.
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CHAPTER 1
Introduction

The idea of solving comparatively simple technical problems with a group of synchronized
systems, robots or machines, has long been at the centre of discussion by both artificial
intelligence specialists and robotics.

Probably, the first working results in the form of real projects in the area of group
robotics, which is the creation of systems that interact with each other, appeared in
the last century. As well the concept of synchronicity has appeared and is successfully
developing.

The concept of synchronicity can be seen in nature, in living beings - we encounter it every
single day. For example, flashing fireflies, heartbeat and neurons inside a person. Hence,
synchronicity can be observed not only outside, but also inside, it can be both invisible and
visible. Over time, many scientists began to deal with the topic of synchronization, study
it and formulate mathematical models of synchronization. Subsequently, synchronicity
and asynchronicity began to be applied to various technical systems, such as different
network typologies, communication latency and communication collision avoidance.

Another important concept is swarming. Certain animals of the same type in nature
are grouped. This association takes place based on an instinct laid down by nature. It
helps groups of animals survive in nature, look for food and protect themselves from
dangers. Examples are birds flock and fish school. This concept interested [1], [2], [3]
and [4] scientists and they start to create mathematical models trying to bring swarming
to life. When trying to implement, there are many tasks, such as attraction for grouping
together, but at the same time avoiding collisions exchange. Thus, theoretical models
are gradually being introduced into robotic systems, so new emerging problems such as
mobility, delays and connectivity have to be taken into account.

These two concepts have quite a lot in common. So the synchronicity and swarming are
combined into one general model called the swarmalator [5]. The swarmalator creates a
model, which synchronizes an internal phase and swarm. It is important to note that when
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1. Introduction

the distance between adjacent swarmalators and their phases changes, this is reflected in
the swarmalarors themselves, their phases and their location. This interaction leads to
new system dynamics. Thus, appear new states of swarming. Further, swarmalators start
to be used in technical systems. Accordingly, it is necessary to take into consideration
several limitations of movements, communications and locations. These limitations are
related to physical capabilities, delays, loss of information and accuracy.

However, it should be noted that so far a lot of research in this area remains at the
theoretical, model level [6], [7], [8] and [9]. This is seen in the numerous tasks that are
performed by swarmalators, among which it should be highlighted. Currently, some of the
main challenges are: the task of distributing robots and drones so that communication is
maintained between them and at the same time the desired area is covered; the task of
coordinating the movement of swarmalators and their group movement in the selected
zone; the task of creating different geometric shapes by changing the location of individual
swarms; the task of exchanging messages between robots and drones with each position
and phase change.

Differential equations are given for each swarmalator. These equations determine the
location and phase. There are various mathematical methods for solving differential
equations. The simplest method is the Euler method because it allows the integration
of first-order differential equations but with low accuracy. The concept of the Euler
method is that with each step we find the derivative of the previous location (phase),
which is multiplied by time, which we will later call a step size, and append it to the
current calculation of the location (phase). This calculation is used to find the location of
swarmalators and their phase. However, it is important to mention that each swarmalator
has a coupling probability. This is the probability that the swaramalator has sent its
location and phase [10].

The main task for this project is to choose the optimal value of the step size. The step
size can be either small or large. This can affect the swarmalator in various ways.

We can say that small step size is a fairly sound solution, which in most cases will
ensure maximum convergence for solving the problem. Similarly, updating the system
parameters will occur more often, but will lead to high costs for calculations and the
need for huge computing power because calculations will occur frequently. Although a
large step size can be a good solution, which saves computing power, the results obtained
may be too far from the real value. Additionally, the result depends on the state and
several system parameters of swarmulator as the number of swarmalators, maximum
number of step sizes, speed, and area size.

This thesis simulates various values of step sizes using different concepts such as varying
step sizes, adding a small value to the step size or randomizing the step size.

These concepts are suggested for swarmalators for two reasons:

• minimization of the computational power that is required.
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• decrease in the average convergence time.

For this reason, we have started selecting the optimal step size, which will subsequently
reduce the strain on the wireless network and speed up the work of swarmalators.

The thesis consists of the following chapters:

Chapter 2 represents the state of the art. We start with the description of the oscillators.
We present the general concept as published in nature of synchronization, the beginning
of knowledge and the practical implementation in modern times. Next, we describe the
general concept of swarming, give an overview of the origin of knowledge and a short
description of how it is currently applied. The chapter ends with the characteristics of the
swarmalators and how they began to develop today, based on scientific and methodological
literature.

Chapter 3 gives a brief overview of the swarmalator model. This chapter of the thesis
is based on the theory set out in the previous chapter. So there is a description of the
chosen methodology, and the essence of practical work is described here. All necessary
parameters and states are discussed and presented by formulas and tables.

Chapters 4, 5 and 6 represent the experimental part with the help of simulation tools.
The description begins with a review of the methods that were used during the study.
Additionally, the practical part includes all plots of the states and their behaviours are
shown. We describe three different methods for changing the step size. Finally, the
analysis of the collected information was done for each part of the simulations.

Chapter 7 presents the results and conclusions. In the results, we combine all the results
obtained for all types of simulations, and analyzed them for each state. In conclusions,
we have provided the most optimal step sizes that can be used for various tasks. Each
value will be optimal for a specific type of task.
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CHAPTER 2
State of the art

A brief overview of the state of the art related to this work is given in this chapter.
Firstly, the basic description of the meaning of oscillators. Secondly, we describe the
meaning of swarming. The next section helps us to bring both meanings into a general
concept, which we further call swarmalators [5].

2.1 Oscillators

A general concept in nature

Nature has been creating various biological systems for millions of years, using synchro-
nization in everyday life. One of the most common mentions was about flashing fireflies
and crickets chirping in unison. This process unites and simultaneously protects them in
nature. Scientists also take attention to the heart cells because it has synchronization
and they also mention the synchronized menstrual cycle of every woman [11]. In the
future, this will help humanity understand where life came from and up to the analysis of
human behavior [12]. This suggests that synchronization can be both outside, as example
of nature, and inside, as the menstrual cycle of women. More examples are presented in
the article by R. E. Mirollo and S. H. Strogatz [13].

The beginning of knowledge

One of the initial books on the study of synchronization was the book by the American
scientist N. Wiener. He is the first one who was able to give a way for future scientists to
begin studying the connection between a machine and a living entity using a mathematical
description. [14]

5



2. State of the art

One of the next persons who could describe the synchronization of all biological oscillators
was Winfree [15]. Using two-phase functions, he described the relationship between the
oscillators. The first one is the function of influence, how it affected others, and the
second is the sensitivity function, which determined how the generator itself would receive
signals and its reaction. His description is applicable only in the case when the connection
between the oscillators is weak and it is possible to neglect the changes in the amplitude
of the oscillations. This model allows considering only the dynamics of their phases.

Subsequently, the concept of Winfree was further developed in the book of Kuramoto,
in which he presented a more structured model from the point of view of mathematical
analysis [16]. It became the first book for studying synchronization processes, which
introduced order parameters to quantify a level of synchronization. Kuramoto was also
able to clarify more precisely the populations of interconnected oscillators.

Later, different scientists began to do different studies on all kinds of variations and
generalizations of the model. They began to take into account various factors, such
as frequency distributions, the presence of various noises, the complex configuration of
neighboring connections, and the study of the influence of inertia. Many of them are
presented in books [17], [18], [19] and [20].

Nowadays, scientists focused on learning the issue of networks on splay state stabilization,
which makes it possible to obtain formal guarantees of reliability. In the papers [21],
[22] and [23] authors study the influence of weak and strict desynchronization using the
Lyapunov function. Additionally, various cluster states were received when the coupling
form was changed [24] and [25].

Further, scientists presented results that were robust and reliable for slightly unidentified
network elements, which combined two parameters reliability even [26].

Thus, the states discussed earlier can be effective not only for networks but also for
robotic systems.

Practical implementation

Nowadays, researchers often face synchronization in practice, which sometimes needs to
be achieved or, conversely, desynchronization is required. So, for example, many different
technologies need to process and analyze a huge amount of information. The article
describes big data strategies used in synchrotrons [27].

Also, it describes time synchronization, which is very important to us in everyday life,
because when we use networks to send and receive emails, it is necessary to synchronize
the action so that the new file can be overwritten by an older file. For instance, various
files and databases, all with timestamps. In papers [28] and [29] the synchronization
problem and requirements for cellular technologies are covered.

A good example of the use of synchronization is time synchronization in the underwater
world, for which a new scheme consisting of two stages like TSHL was proposed, where the
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2.2. Swarming

first phase is the stage of evaluation of the skew of clock pulses. Further, the first phase
has the estimated skew and based on this the second phase is the stage of estimating the
displacement of clock pulses [30].

The coupled oscillators can be used in technical systems, robots and nature by using
different communications, like the robot simulation, which is inspired by firefly [31], [32]
and [33].

2.2 Swarming

A general concept in nature

Collective association into a herd, a swarm, or a crowd is inherent in living beings.
Regardless of the size of living beings, they unite with each other. For example, bacteria
[1], insects [2], birds [3] and [4] and larger living creatures.

Swarming usually coordinates a group of objects. The idea itself originated when attention
was drawn to a swarm of birds that are grouped into flocks and exist as a whole. It is
also a good realistic example that helps to study group behavior in practice, to study the
basic facts that can influence swarms [3].

Thus, they can easily adapt to environmental conditions. It is interesting to note that
nature itself is based only on surprisingly simple laws and rules. Based on this, many
scientists are inspired by these characteristics of living beings. Researchers are engaged
in the development of innovative designs [34].

The beginning of knowledge

The mathematical analysis of swarming is a difficult task for scientists. Many swarming
methods have already been presented, one of which can be seen in Reynolds work [35].
He presented a theoretical model of the birds who flock. The boid model, which makes
a simulation, needs to have a matching speed with neighbors, avoid collision and be
close to each of the groups. However, many aspects were not taken into account, such as
turning the head and flapping the wings.

Based on Reynolds work, the scientists proposed a more realistic model that took into
account additional conditions. These included that birds are looking for food and more
thoroughly considered the distance and grouping between the creatures. It was measured
by vectors and a flow diagram of the system was presented, which described the system
cycle for each new position [36].

In the future, studies were conducted at the sheep stage, a multi-stage genetic algorithm
was presented. The algorithm simulates two conditions: the first one - is inheritance
among individual sheep and the second one - is inheritance among sheep herds [37].
Further, the method was tested and presented in the new paper with the calculation
results for simple and multi-stage [38].
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2. State of the art

The centuries-old problem is in the proper tracking and coordination of objects. The
main idea is that the swarm should actuate and feel in the physical world, coordinate a
large number of swarms and thereby increase productivity with an increase in swarms.
The paper describes a few methods, which simultaneously find several goals at the same
time, track them and balance the new optimums [39].

Practical implementation

One of the very first implementations of welding turned out to be the Robot Sheepdog
Project. The work was to control the behavior of the nature of the ducks’ flocking in
practice [40].

Subsequently, the behavior of mobile robots was analyzed by experiments. The paper
simulates a sequential change in the characteristics of sensor systems. When the number
of neighbors increases, the stability of noise and the speed also increase [41].

For a long time, there are such tasks as modeling, functionalities, mechanics, organizations,
apps and others for swarms. Thus, the characteristics and nowadays technologies of
drones and the swarm of drones were discussed [42]. As an example, the speed and
sensors of the quadrocopter were considered.

2.3 Swarmalators - Sync and Swarm

A general concept

Systems that combine two concepts swarm and oscillators are called a swarmalator
system or swarmalator. For the first time, a simple model of the swarmalator system
was proposed by K. O’Keeffe, H. Hong, and S. Strogatz. This system made it possible to
analytically study various states depending on the location and phase of the model [5].

By changing the location and phase, one by one, new stable states were found. The
stable states are possible just because of the stabilizing influence of the phases. Thus,
this interaction between the swarmalators, their locations and places lead to new results.
We can observe new stable swarming states, with stable phases [7].

A. Barcis and C. Bettstetter in their article describe the influence of discrete-time
interactions and temporary coordination. Additionally, they presented the combined
model into a single whole temporal and spatial coordination [43].

In addition, the influence of different probability values, the influence of the distance
between robots, speed and acceleration were analyzed for five different states, the static
and phase wave states: sync, async, phase wave; splintered and active [32].

Further, the swarmalator model is implemented in practice. For instance, such mechanisms
and living beings as robots, bacteria, microswimmers, vinegar eels and colloids, are
described in detail in the review of swarmalators [9] and [44].
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2.3. Swarmalators - Sync and Swarm

The beginning of knowledge

O’Keeffe presents the swarmalator models in the real life [5]. One of the most famous
studies began with frog choruses. The subject of the study was male Japanese tree frogs.
The antisynchronization and wavy antisynchronization were presented and realized in
the mathematical model. The main idea is to study the stability of two-cluster and wavy
antisynchronization [45].

Another example of swarmalaror is myxobacteria. Here presented the mathematical
model that describes the waves, which are formed when passing through "ripple phase".
The article describes the phenomena when the myxobacterial waves pass through each
other without collision. Subsequently, based on experiments, myxobacteria, which is an
oscillator, have a phase of the waves and they depend on the density [46].

Afterwards, an important discovery was made by scientists, they found a connection
between the dynamics of movement and the internal state [47].

Theoretical and practical implementation

The very first step in the development swarmalators was made by Tanaka. The scientist
makes a description of a model with interacting elements. These elements have internal
dynamics, which are related to the internal state [6].

Afterwards, Tanaka and other scientists describe the states and their configurations.
Eventually, it was obtained that the received static states have a hierarchical composition
of clusters [48].

At present, two-way interaction or swarmalator is considered in more detail. The agents
with common opinions moving closer to each other and with various opinions become
further apart [49].

For today in one of the last articles, O’Keeffe and colleagues describe the swarmalators
which are on the ring [7] and [8], additionally, he makes a description of the states and
presents the conditions for the appearance of these states [50]. Further, the scientist
explore the effects of delayed intercommunications on swarming and synchronised models
and identified stable collective states for them [51].

Based on the theoretical knowledge gained over all previous years, many studies of
swarmalators in practice have been conducted. Scientists at first implemented the model
of the swarmalator in the lab. The scientists make a model from the robots [9]. In
addition, the scientists make simulations with the multi-robot systems [43], in which they
took into account the low refresh rate and delays.

For further study, the following parameters were selected: position, limits of the speed,
limits of the acceleration and physical size of robots. These parameters are the most
important because it is necessary to avoid robot collisions and try to minimize the
distance between robots in some cases [10].
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CHAPTER 3
Swarmalators

3.1 Introduction to the model

For this thesis, we need to understand the principle of building the swarmalator model
because in the further parts we will use these concepts for calculations.

Each swarmalator model has a location and an internal phase. We call the location xi

and internal phase θi. Two equations describe how the location and internal phase of
swarmalators change. Each swarmalator i from 1 to N has its own xi and θi.

Main equations:

ẋi =
1

N

N∑

j=1

xj − xi

||xj − xi||
(1 + J cos(θj − θi)) −

xj − xi

||xj − xi||
2

(3.1)

θ̇i =
K

N

N∑

j=1

sin(θj − θi)

∥xj − xi∥
(3.2)

where i = 1, ..., N with two parameters J and K.

In the first case, looking at Equation 3.1: the swarmalator changes its position based on
the position of other swarmalators and their phases.

The coefficient J can be:

• greater than zero: then the swarmalators with similar phases attract each other
and with different phases repel from each other.

• less than zero: then the opposite process occurs, with the same phases repelled,
and with different attracted.
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3. Swarmalators

Table 3.1: Values of parameters J and K for five states: static sync, static async, static
phase wave, splintered phase wave and active phase wave [10].

Static Static Static Splintered Active
sync async phase wave phase wave phase wave

J 0.1 0.1 1 1 1
K 1 -1 0 -0.1 -0.75

In the second case, looking at Equation 3.2: the swarmalator changes its phase based on
the position of other swarmalators and from their phase.

The coefficient K can be:

• greater than zero: then the swarmalators synchronize the phases.

• less than zero: then the neighboring swarmalators maximize their phase difference
and make the desynchronization.

• equal to 0, then the phase is not changing.

We get different states with various values of coefficients J and K (see Table 3.1).

The swarmalators are used in various fields of engineering. In order to be able to control
them, they must exchange their locations and phases using messages. Thus, they must
have a continuous connection all the time.

The discrete time connection is based on the Euler method [52]. The idea of Euler’s
methods is to replace a fragment of the graph with a polyline, but so that the resulting
polyline is as close as possible to the original one.

This method allows integrating first-order differential equations. Its accuracy is low, but
in some cases, for example, in electric drive control systems, it is used quite often. Based
on the Euler’s method, it is easier to understand the algorithms of other, more efficient
methods. The geometric meaning of such method is the approximation of the solution
on the interval by the segment of the tangent drawn to the graph of the solution at the
point. As can be seen on the Fig. 3.1, at each new step, the approximate solution moves
to another member of the solution family. As a result, the sampling error accumulates,
which linearly depends on the step size, see Equation 3.3 for location and Equation 3.4
for internal phase.

x(t + 1) = x(t) + ẋ(t)∆t (3.3)

θ(t + 1) = θ(t) + θ̇(t)∆t (3.4)
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3.4. Simulation tool

In particular, the amount of computational power is determined by the step size. If larger
a step size is taken, it implies that an update of the movement speed and phase update
is calculated less often, and vice versa. A too-large step size, albeit saving computational
effort, would prevent the system from converging.

The optimal step size is unknown and to find the optimal value we consider the following
methods in the work:

• Impact of the varied step size to find the critical values, for which the system stops
converging in a reliable manner.

• Impact of the increment to improve convergence while still partly using large step
sizes.

• Impact of the standard deviation when using randomization of the step sizes.

3.4 Simulation tool

In the previous section, we considered different methods for changing the step size for
five states.

The essence of the computational experiment is that with the help of some computer
program, we conduct a numerical study of the step size for the models under consideration,
varying various incoming parameters.

The method of choice for this tasks is Monte-Carlo simulations. They will be extend
using the statistics software package R [53], for which an implementation of the swar-
malator model is already available from the supervisor. The goal is to work with this
implementation to perform extensive simulations, and extend it to cover the simulations
with increment and standard deviation.

The simulation tool used in the work was developed for previous papers. The main idea
of this simulation is to find the values of convergence time. We are taking into account
the fact that the values of the coupling probability and step size are set personally, by the
selection method. The key thing is to pay attention to reducing computing power and
minimizing convergence time. The simulation performed in the R Studio, the method of
choice for this task is Monte-Carlo simulations.

We use several files:

• "std_param.r", where the basic parameters of variables and constants are set.

• "utilities.r", where we calculate the distance between swarmalators.

• "sim_v2.r", where we define the main parameters for the calculation model and
the main functions for the simulations.

17



3. Swarmalators

1 # system parameters

2 NODE_COUNT <- 100

3

4 NUM_STEPS <- 10000

5 DT <- 0.01

6

7 # plot every .. steps

8 PLOT_STEPS <- 10;

9

10 TX_P <- 0.01

11

12 # parameters of the model

13 # following states are supported:

14 STATIC_SYNC <- 1

15 STATIC_ASYNC <- 2

16 STATIC_PHASE_WAVE <- 3

17 SPLINTERED_PHASE_WAVE <- 4

18 ACTIVE_PHASE_WAVE <- 5

Listing 1: Struct interface of "std_param.r".

• "convTime_stepsize.r", where the main parameters of the step sizes, coupling
probabilities and creation of a separate file are set. All calculations of the step
sizes and convergence time for all five states, previously discussed, are written into
a configuration file. This file is generated with a tool and is independent of the
simulations. The same simulation is run many times to find the optimal parameters
and replayed infinitely times.

There are a few global variables, which are used in each simulation. They are specified
in the file "std_param.r". The file contains the basic parameters. Furthermore, we
use "utilities.r" as a source file for "sim_v2.r". Afterwards, the files "std_param.r" and
"sim_v2.r" are used as a source files for "convTime_stepsize.r". Listing 1 shows the main
parameters, which we are more focused on.

Listing 2 is an example of the section of code from "convTime_stepsize.r". The results
obtained are recorded to a file during the calculation named "temp_stepsize.out" and at
the end of the simulation they are written to a file "sim_stepsize.out". Listing 2 shows the
main function "startAnalysis", which according to the specified parameters, will create
a table of calculated values with a given step and convergence time for all five states
separately. To do this, we set the number of steps, the value of the step size, the interval
with which the step will be counted using the loop and the coupling probability value.
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3.4. Simulation tool

1 source( 'sim_v2.r' );

2 source( 'std_param.r' );

3

4 REPETITIONS <- 10;

5 startAnalysis <- function( filename = "sim_stepsize.out" )

6 {

7 file.remove( "temp_stepsize.out" );

8 # delete temp file and save data into it

9 RND_SND <<- 1;

10 ABORT_WHEN_CONVERGED <<- 1;

11 PLOT_STEPS <<- 0;

12 # no plotting

13 USE_MEM <<- MEM_INIT_ZERO;

14 # use memory with random values

15 NUM_STEPS <<- 50000 # number of steps

16 for( stepsize_exp in 1:-1 )

17 # iterate over sending probabilities

18 {

19 for( stepsize_digit in 1:9 )

20 {

21 DT <<- stepsize_digit * 10^-stepsize_exp;

22 TX_P <<- 1; # coupling probability

23

24 # simulation: varying the step size

25

26 # p=1 and step size from 0.1 to 90

27 ...

28 write( c( DT, avg_ct, stddev_ct, min_ct, max_ct ),

29 file="temp_stepsize.out", ncolumns=1+4*5, append=TRUE );

30 # store results in file

31 }

32 }

33 file.remove( filename );

34 file.rename( "temp_stepsize.out", filename );

35 # move simulation results to output file

36 }

Listing 2: Struct interface of "convTime_stepsize.r".
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CHAPTER 4
Impact of step size

In this part of the thesis, we give an overview of the concept and then find the critical
values of the step size, for which the system stops converging in a reliable manner. To
find the values we use a simulation tool.

4.1 Varying the step size

In the section, we consider simulations for which we change the step size. The main
idea is to find the critical values, for which all five states stop to converge: static sync,
static async, static phase wave, splintered phase wave and active phase wave. For
this analysis, simulations are carried out in the interval of the step size from 0.1 to 6 and
the coupling probability varied from a minimum value of 0.1 to a maximum of 1.

We take a look at the convergence time (CT) and the step size ∆t ∈ [0.1; 1], Fig. 4.1a.

Firstly, consider the case when the coupling probability is equal to 1. We can see that
all the graphs are flat on the whole interval. The convergence time is around 30 for
the static sync, static async, active phase wave and around 120 for the static and
splintered phase waves. Important to notice is that the static sync state has an increase
to 350 when ∆t = 1. At the same time, the static phase wave does not converge at the
step size equal to 1, Fig. 4.1a.

Then, we gradually decrease our probability value by 0.1 each time at the same step size
interval and see how the CT of states changes.

When the coupling probability is equal to 0.6 (Fig. 4.1b) and step size ∆t = 0.4 the
active phase wave start to grow significantly and with a step size value of 0.5, the state
assumes a greater convergence time than splintered phase wave. Moreover, when ∆t

is equal to 0.7, 0.8 and 0.9, this state does not converge, and when ∆t = 1 it again
converges with a convergence time close to 1400.
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Figure 4.1: Convergence time with the step size △t for static sync, static async, static
phase wave, splintered phase wave and active phase wave. △t from 0.1 to 1 by 0.1. One
simulation is made for each coupling probability. 100 swarmalators.

Next, the coupling probability is decreased to 0.5. We can notice that when the step size
is equal to 0.6 the splintered phase wave starts to grow with increasing ∆t and reaches
a convergence value equal to 380, Fig. 4.1c.

When the probability value reaches a very small value of 0.2, it can be seen that the
convergence time of the static sync, static async, static phase wave have not changed,
compared with the previous simulations despite the small probability value. What is
important here is that the splintered phase wave increases even at a greater pace after
∆t = 0.3 and stops to converge at step size from 0.7 to 1. Also, the active phase wave

stops to converge completely at a step size greater than 0.3, see Fig. 4.1d.

Cases were considered when we took the step size value from 0.1 to 1. What will happen
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Figure 4.2: Convergence time with step size ∆t for the active phase wave. Coupling
probability p = 1.

to the states if we increase the step size?

One of the simulations turned out to be the most interesting, which is because, with a
probability value of 1, the following results were obtained, presented in Fig. 4.2. As you
can notice previously, all states stop converging at step size value greater than 1, at any
probability. However, at p = 1, the active phase continues to converge. Moreover, the
active phase wave converges until the step size exceeds the value equal to 6 in which the
CT is around 31000.

4.2 Varying the coupling probability

Earlier we looked at how the value of the convergence depends on the step size ∆t. We
use the previous results and build the dependence of convergence time on the coupling
probability when ∆t has a constant value. Referring to the previous calculations, we
study the value of coupling probability p from 0.1 to 1 and take the constant value of ∆t

from 0.1 to 1.

Thus, based on the values obtained, we build a plot for a visual understanding of the
results obtained. When ∆t = 0.1, Fig. 4.3a, all states from 0.1 to 1 converge. It is
important to notice that the value of CTs of static states are not changing much on
the whole interval. The CT is around 150 for the static phase wave and around 80
for the other two static states. If we take our attention on the splintered and active

phase waves, they decrease from 0.1 to 0.6 and after that, the states become flat on
the remaining interval of probabilities. This decline in the convergence time can be
connected with unstable states, which means that the state needs more time to break up
into clusters and adjust the phases. We can assume that splintered phase wave needs
more time because of making gaps, which is particularly slower when the probability is
low.
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(c) ∆t = 0.9

Figure 4.3: Convergence time of the five states when varying the coupling probability p.
Parameters: 100 swarmalators.

Subsequently, we graphically present the results obtained for all five states when the ∆t

will be increased to the value of 0.5, Fig. 4.3b. Analyzing the result obtained, we can
notice that with the given step size value, all static states stop converging with a coupling
probability from 0.1 to 0.2. In addition, the splintered phase wave does not converge
at a single point for a coupling probability equal to 0.1. However, when the probability
value is 0.2 and CT = 895, the splintered phase wave begins to decrease exponentially
to the value of convergence time 135 when p=1. It is also worth paying attention to the
active phase wave, which converges only on the interval of coupling probability between
0.5 and 1. Thus, we can assume that the step size ∆t = 0.5 is the threshold value for all
static states and for the splintered phase wave when the coupling probability is small.

Having done several simulations, increasing the value of the step size, it is worth focusing
on the case when ∆t = 0.9, Fig. 4.3c. The splintered phase wave already stops to
converge at the ∆t = 0.3. If we compare with the previous simulation, it is important to
note that the active phase wave again begins to converge at the step size equal to 0.4.

4.3 Analysis and discussions

In this part, we begin with careful consideration of one simulation in more detail and
repeat it 10 times. This number of simulations is optimal in time and they help us
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Figure 4.4: Convergence time with step size ∆t from 0.1 to 1 for static sync, static async,
static phase wave, splintered phase wave, active phase wave. Coupling probability p =
0.9.

to process and analyze the results for each state. Therefore, our responsibility is to
understand how, with the same selected parameters, the convergence time changes. For
example, we take a few simulations with step size ∆t from 0.1 to 4 and constant coupling
probability p = 0.9.

Fig. 4.4 shows that all states stop converging when the step size becomes more than one,
so further we will consider the step size interval from 0.1 to 1 and see at what values the
states stop converging.

We make 10 simulations and summarize everything in tables. For each ∆t, starting
from 0.1 to 1. In addition, for each state and ∆t, we will calculate the mean value from
the simulations.

Firstly, we take a look at the convergence time with a coupling probability p = 0.9 and
an Euler step size ∆t = 0.1 (see Table 4.1). We can see that for all five states the system
converges into stable patterns. The convergence times are between 70 and 80 for static
sync and async, around 30 for active phase wave, and about 135 for the phase wave
states.

The differences could be due to the various complexity of the patterns that require
different durations to converge. For example, in the splintered phase wave state it takes
a while until the clusters separate from each other and form stable distinct shapes.

In contrast, the patterns for the static sync and async cases are rather regular and simple
and converge quicker. The reason that the active phase wave converges that fast is not
clear, but could be related to the particular metric that determines whether or not a
pattern is already emerged / convergence has already occurred. This sheds light on a
particular weakness of comparing convergence times of different states: Due to their
different nature, no common metric of convergence can be defined, but different states
have their own, individual metric (except that the three static cases use a common
metric). Thus, convergence times also depend on the particular metrics involved which
can affect the validity of the comparison.

Further simulations have to verify the following aspects:
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4. Impact of step size

Table 4.1: Convergence time at ∆t = 0.1 and at coupling probability p = 0.9 for static
sync, static async, static phase wave, splintered phase wave and active phase wave.

Run Static Static Static Splintered Active

number sync async
phase
wave

phase
wave

phase
wave

1 63.07 77.31 149.47 136.26 38.99

2 66.61 84.32 147.53 122.95 33.35

3 69.03 75.59 134.31 166.37 42.03

4 70.36 82.1 118.88 128.28 36.56

5 66.38 3.73 118.32 146.34 32.09

6 77.97 67.21 136.93 117.8 30.38

7 67.11 76.07 133.88 115.42 30.28

8 76.61 71.46 143.54 120.22 37.46

9 78.74 84.85 124.61 166.93 36.72

10 67.23 76.73 143.05 124.87 29.78

Mean 70.31 76.94 135.05 134.54 31.11

• For which values of ∆t do we see convergence?

• Is the convergence time different for these other values?

• If yes, what are the largest ∆t for which the system converges?

• Which values for ∆t are optimal in terms of convergence time?

In the following, we will explain the results of the subsequent simulations: static sync,
static async, static phase wave, splintered phase wave, active phase wave.

Based on the results obtained, we have constructed graphs of the dependence of the
convergence time on the step size. We denoted the maximum, minimum, and average
convergence time for all simulations, Fig. 4.5 for static sync and async, Fig. 4.6 for static,
splintered phase wave and active phase wave.

The convergence time of the static sync state is approximately 70, Fig. 4.5a. It experiences
a small change in convergence only at step size equal to 1, where it exceeds the convergence
time equal to 82.

As for the static async state, see Fig. 4.5b, it is almost constant throughout the interval
and also fluctuates around 75, which is similar to the static sync. The exception is when
the step size value is equal to 0.4. Interestingly, out of all 10 experiments, one value was
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Figure 4.5: Average, max and min value of the convergence time for two static states
with the step size ∆t from 0.1 to 1 and coupling probability p = 0.9. 10 runs for each ∆t.

formed that differs from all the others. In this ∆t, the average value of CT is 80, and in
the third experiment we got a CT greater than 120.

Thus, the largest value of step size for the static sync and async states is 1 at which the
states converge. It seems that the values of CT do not differ much from each other over
the entire interval from 0.1 to 1. Hence, any ∆t value with a given probability p = 0.9
will be an optimal value.

Next, it is worth paying attention to the static phase wave state, since we see in Fig.
4.6a that the average value for the entire interval is approximately 130. However, the
state ceases to converge in the third experiment at a step size equal to 0.9, that is, we
received only 9 experiments for analysis, see Tab. 4.2. Further, when the step size value
is 1, then in the second experiment and the tenth, the state does not converge, Tab. 4.3.
In addition, we have obtained the convergence time values around 4800 and 2100.

That is, already at the value of the step size ∆t = 0.9 and ∆t = 1, in some experiments
the static phase wave already stops to converge. The largest value for the step size is 0.8
in which the state is converge with all previously performed experiments. Speaking about
the optimal values of the step size for a given probability, the best values will be from 0.1
to 0.8.

We also pay attention to the splintered phase wave, in this case, over the step size interval
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4. Impact of step size

Table 4.2: Convergence time at ∆t = 0.9 and at coupling probability p = 0.9 for static
sync, static async, static phase wave, splintered phase wave and active phase wave.

Run Static Static Static Splintered Active

number sync async
phase
wave

phase
wave

phase
wave

1 70.65 82.08 131.49 159.03 116.91

2 70.11 70.65 115.65 181.35 115.92

3 66.33 86.94 NA 155.43 121.32

4 65.52 76.5 168.21 175.95 161.46

5 73.8 64.62 137.97 154.44 126.27

6 73.44 76.23 124.29 151.47 237.78

7 70.29 77.22 134.01 164.97 134.64

8 69.48 69.84 150.3 179.19 212.22

9 68.04 78.12 150.75 172.71 113.04

10 65.16 72.36 115.2 157.23 146.52

Mean 69.28 75.46 136.43 165.18 148.61

from 0.1 to 1, the state approximately grows from 130 to 170 and increases the CT value
by about 5-10 each step, Fig. 4.6b. The state converges on the interval of step size
from 0.1 to 1 in each experiment. When the value of ∆t becomes larger than 1, the
splintered phase wave stops to converge as in previous states.

The behavior of the active phase wave is the most interesting as we see from the graph in
Fig. 4.6c, the smallest convergence value is about 30 at step 0.1, from higher step sizes
the graph begins to grow exponentially, and a stronger growth can be noticed at step
size 0.5, which increases to about 75. A very curious fact is that with a step size value of
0.7, in experiment 7, see Tab. 4.4, the state does not converge.

After that, with an increase in the step size, the active phase wave begins to converge
again and the gap between the values of the CT for each experiment also increases. It
seems quite interesting that the active phase wave does not converge in the intermediate
step value between 0.1 and 1. Thus, the optimal values of the step size are from 0.1 to
1, except for 0.7. But the best case is if we take values where the spread of the CT is
smaller, from 0.1 to 0.5, so we approximately know the value of convergence.

To sum up, from the experiments done, the optimal value of the step size for all states
is the values from 0.1 to 0.6, because with larger step size values, as we have already
noticed, some states begin to diverge, such as the static phase wave, with large step
values and active phase wave at the intermediate point. It also makes no sense to take a
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Table 4.3: Convergence time at ∆t = 1 and at coupling probability p = 0.9 for static
sync, static async, static phase wave, splintered phase wave and active phase wave.

Run Static Static Static Splintered Active

number sync async
phase
wave

phase
wave

phase
wave

1 79.5 76.1 284.2 154.3 125.4

2 80.1 73.5 NA 169.6 98.9

3 76.4 71.3 4845.3 161.8 121.7

4 85.2 74 534 178 87.9

5 89.5 83.4 133.5 156.7 227.5

6 81 77.8 865.6 164.8 161.8

7 90.6 73.6 2108.2 161.3 146

8 81.4 77.1 182.9 148.2 133.6

9 81.3 79.9 155.3 156.2 135.4

10 83 76.9 NA 177.3 121.3

Mean 82.8 76.36 1138.63 162.82 135.95

step size greater than 1, since none of the states converge at the given probability.
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Figure 4.6: Average, max and min value of the convergence time for three phase wave
states with the step size ∆t from 0.1 to 1 and coupling probability p = 0.9. 10 runs for
each ∆t.
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Table 4.4: Convergence time at ∆t = 0.7 and at coupling probability p = 0.9 for static
sync, static async, static phase wave, splintered phase wave and active phase wave.

Run Static Static Static Splintered Active

number sync async
phase
wave

phase
wave

phase
wave

1 59.99 68.25 141.89 138.88 86.52

2 59.64 73.43 139.72 164.29 71.68

3 67.2 75.53 130.69 154 102.97

4 66.64 72.8 125.51 130.83 82.95

5 61.67 73.99 113.47 159.6 106.82

6 75.81 59.92 120.12 150.99 85.19

7 69.44 83.3 127.05 146.72 NA

8 49.49 76.09 134.12 176.12 93.38

9 63.21 73.57 126.98 147.98 74.69

10 69.58 71.54 142.59 166.32 84.7

Mean 64.27 72.84 130.21 153.57 87.66
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CHAPTER 5
Impact of a time-variant step size

In the section, we consider simulations for which we increase and decrease the step size
by a small amount in each step, which we call τ . For instance, τ is equal to 0.00002,
0.0002 and 0.002 for all five states: static sync, static async, static phase wave, splintered
phase wave and active phase wave.

For these simulations, we need to add to line 15 of the code "sim_v2.r" that we subtract
or add an increment from the given step size. The example code specifies the increment
subtraction, see Listing 3. It is mandatory that this value be added to the cycle because,
in this case, we change the step size by a small value, increment τ . Thus, the step size
iterates over steps.

Thus, further simulations have to verify the following aspects:

• How does increasing the step size affect convergence time?

• How does a decrease for the same value of τ affect convergence time?

• For which values of ∆t + τ and ∆t - τ do we see convergence?

• What is the largest step size for which the states converge?

• What is the optimal τ for each state?

5.1 Small increment

On the one hand, we consider the simulation when the step size is decreased by τ=0.00002
and the coupling probability is equal to 1, Fig. 5.1a. As we can notice for all five states
the system converges to stable patterns from 0.1 to 0.9. The convergence times are
between 70 and 80 for static sync and async. These states stop converging when the step
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5. Impact of a time-variant step size

1 sim <- function()

2 # main simulation function

3 {

4 # setup model parameters

5 # A = B = 1 is Strogatz model

6 A <- 1;

7 B <- 1;

8

9 J <- J_LIST[SCENARIO];

10 K <- K_LIST[SCENARIO];

11 ...

12 # iterate over steps

13 for( ti in 1:NUM_STEPS )

14 {

15 DT <- DT - 0.0002; # add increment

16 ...

17 }

18 }

Listing 3: Struct interface of "sim_v2.r" with the step size increase using the increment τ .

size is about 1. For static and splintered phase waves the CT is from 120 to 160. It is
important to see that the static phase wave stops converging when the step size is larger
than 0.9. The most curious result is the active phase wave, see Fig. 5.3b, the CT of the
state is around 25 on the interval from 0.1 to 1. Compared with other states, it does
not stop at the step size equal to 1, that is, it continues to converge till the step size is
about 6. The convergence time reaches a maximum value of 30000 in this step size.

Additionally, it is important to note that we begin to decrease the probability value each
time and with a value of p = 0.7, all states stop converging with a step size greater than 1,
Fig. 5.1b. As for the active phase, we can notice a peak at a step size equal to 0.8. We
can assume that this is critical for this state, because each time the probability decreases,
the active phase wave takes fewer and fewer values at which it can converge. Reducing
the probability strongly affects the convergence of the active phase wave.

As soon as the probability decreases to 0.2, Fig 5.1c, the coupling probability of signal
transmission becomes very small, then the active phase wave converges on the interval
from 0.1 to 0.7 and after the state does not converge at all. Moreover, with this probability,
the splintered phase wave is already beginning to diverge at a step size from 0.6.

Accordingly, step reduction by increment effects the splintered and active phase waves,
while the convergence time of static states varies slightly. Regardless of the coupling
probability for all five states, a small step value will be the most optimal option, up
to 0.5.
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Figure 5.1: Convergence time of five states when the time-varying step size. Decrease
the step size for τ= 0.00002. Parameters: 100 swarmalators.

On the other hand, we consider the simulation when the step size is increased by
τ=0.00002. With the coupling probability equal to 1, see Fig. 5.2a, the convergence
times are similar for the simulation when we decrease the step size for the same value,
Fig. 5.1a.

However, in this case, the static phase wave stops to converge at step size around 0.8. The
state ends up converging at a smaller step value. Also, the static sync stops converging
earlier, when the step size is around 0.9. This also suggests that the static state converges
at a smaller step size. Looking at the active phase wave in Fig. 5.3a, it again shows the
longest convergence result, that is, it converges to about 5 over the entire range of values.
As we can see from the figure, after unity there is a sharp increase in convergence time,
but not exceeding 500.

Also consider Fig. 5.2b, the case when the coupling probability is equal to 0.6. We
see that the active phase wave already ceases to converge at the step size around 2.
Compared with the previous result, in this simulation, even with a smaller probability,
the state converges with a larger step value. However, such a value of probability is
better for static sync and phase wave because as the coupling probability decreases, the
states increase the values of the step size at which convergence is maintained.

As soon as the coupling probability has decreased to 0.2, Fig. 5.2c, the splintered phase
wave begins to diverge at a step approximately equal to 0.4. In addition, the active
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Figure 5.2: Convergence time of five states when the time-varying step size. Increase the
step size for τ= 0.00002. Parameters: 100 swarmalators.

phase wave stops to converge at the step size of around 0.7 and the value of the CT is
about 2800 at the last point.

Thus, the convergence times of two different simulations are approximately the same
for both cases, when we increase and decrease the step size. On the contrary, the best
convergence results were obtained by decreasing the step size by τ= 0.00002. Firstly,
static sync and async states converge with larger step size with the coupling probability
equal to 1. Secondly, the splintered phase wave keeps the convergence longer with the
same coupling probability.

5.2 Medium increment

Firstly, we consider the simulation when the step size decreased by τ= 0.0002. Fig. 5.4a
shows the step size interval from 0.1 to 10 when the coupling probability is equal to 1. It
can be noted that in the entire interval, except for step 0.1, the static sync and async
converge and the convergence time lies about 60, for the static and splintered phase
waves the CTs are around 130 and for the active phase wave the Cts are about 65. But
with a step greater than 1, the CTs of all states grow rapidly. It reaches about 45000 for
the static sync and 55000 for the async. Two phase waves get the highest value of the
CT around 50000 in step 10. Looking at the active phase wave, we can notice that the
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Figure 5.3: Convergence time of the active phase wave when the time-varying step size.
Decrease and increase the step size for τ . Parameters: 100 swarmalators. Coupling
probability p = 1.

largest value of the CT gets at step size around 10 and is equal to 120000. As the step
increases more than 10, none of the models converge.

As we start to decrease the value of the coupling probability, the splintered and active
phase waves stop to converge at a step size around 1 and another one around 4, Fig. 5.4b.

At the end, the coupling probability is equal to 0.1, Fig. 5.4c. We can notice that the
decrease in probability did not affect the static phases in any way. But the last two phase
waves stopped converging on the entire interval, even with a small step size.

If we compare with the previous simulation with a high coupling probability equal to 1,
Fig. 5.1a, then obviously huge changes can be seen ib this case because the value of
the step size at which all states converge has significantly increased. Additionally, as
soon as the step value was reduced, the convergence of the three static states increased.
In the previous simulation, the convergence of the states stopped at about 1. And in
this case, it already reaches a step value of 10. Talking about the splintered phase wave,
it can be seen that with the same significant growth, at step size about 2, the state
finished converging. In this case, it again reaches the value of step 10. Paying attention
to the active phase wave, it converged at step size around 6, and again the value doubled.
However, with a small step size of about 0.1, this step change is poorly reflected.

Secondly, we consider the simulation when the step size increased by τ= 0.0002 and the
case when the coupling probability is equal to 1, Fig. 5.5a. The convergence times for
static sync and async are between 60 and 120, for static and splintered phase waves are
from 150 and 200. For the active phase wave, the CT is between 30 and 80. As we can
see, the static sync stops to converge at step around 0.9, and the static async and the
splintered phase wave stop to converge with ∆t around 1. The static phase wave diverges
at step 0.7. The active phase wave converges when the value of step size from 0.1 and
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Figure 5.4: Convergence time of five states when the time-varying step size. Increase the
step size for τ= 0.0002. Parameters: 100 swarmalators.

exceeds the value of 1. The convergence continues up to 5 and the convergence time is
about 120, we see the behavior in Fig. 5.3a.

However, when we decrease the coupling probability to 0.8, we can notice in Fig. 5.5b
that the static sync and phase wave continue to converge with a larger step size, around
1 each. But the active phase wave with a lower coupling probability already ceases to
converge at a step size around 3. Compared to the previous result, the step size at which
the state converges has significantly decreased from 5 to 2.

As the probability decreases with each step, there is also a decrease in the ∆t at which
there will be convergence, it is important to note the probability equal to 0.5, we can
see that the active phase wave maximally reduces the size of the step at which the state
converge, the state stops to converge around 1. That is, already at a step size of more
than 0.9 the static phase wave no longer converges, Fig. 5.5c.

Next, we pay attention to a smaller coupling probability equal to 0.3, Fig. 5.5d. In this
case, all states cease to converge at step size from 0.1 to 0.3, important to see because, in
previous experiments, the decrease in probability did not affect the small values of step.
As for the splintered and active phase waves, they cease to converge over the interval
from 0.1 to 0.3 and from 0.1 to 0.4, approximately, because of the probability, which is
too small for counter-rotating subgroups.
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Figure 5.5: Convergence time of five states when the time-varying step size. Increase the
step size for τ= 0.0002. Parameters: 100 swarmalators.

Therefore, with increasing the increment, the optimal probability value will be an
intermediate value that will be less than 0.9, since we noticed the effect of convergence
on static states at the maximum probability value. So as the probability decreases, static
models change their behavior in the best way.

5.3 Large increment

This time we decrease and increased the step size by a slightly larger amount equal
to 0.002.

When we start reducing the step size, none of the states converge at any value. However,
when decreasing the step size by τ= 0.002 and with coupling probability equal to 1, see
Fig. 5.6a, we got that the CT of static sync, static async and active phase wave are
between 75 and 140. The CTs of the static and splintered phase waves are between 150
and 200. Take a look at the static sync and static phase wave which stop to converge at
the step size of about 0.8 with a high probability value. As for the static phase wave and
async, one ceases to converge with the step size around 0.6 and another one around 1. In
Fig. 5.3a we see the active phase wave, which converges till the step size is equal to 5.
The convergence time of the state increase and has a peak of convergence around 500
when ∆t = 2.
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Figure 5.6: Convergence time of five states when the time-varying step size. Decrease
the step size for τ= 0.002. Parameters: 100 swarmalators.

With each time decreasing the coupling probability, it should be noted the case when
p=0.7, Fig. 5.6b. To compare with previous simulations with higher probability, each of
the states reduces the step at which it will converge. Eventually, the splintered and active
phase waves stop to converge at 0.6 and the static async at 0.9. On the contrary, the
static sync and phase waves increase the value of the step at which convergence occurs.
The increase is approximately 0.1 for both of them.

As soon as the coupling probability has decreased to 0.3, Fig. 5.6c, the static phase wave
converges with a larger step size and a lower probability. As we can notice the state
still converge when the step size is equal to 1. In contrast, with decreasing the coupling
probability to 0.3 the splintered and active phase waves do not converge at all over the
entire interval.

Unambiguously, the most optimal coupling probability is the maximum value equal to 1
for all states, because maximum convergence is noted at the maximum step size. However,
if we consider static sync and async separately, then convergence for them is optimal
with a decrease in the probability value, convergence is observed with a larger step size.

40



5.4. Analysis of the coupling probability

5.4 Analysis of the coupling probability

5.4.1 Increased step size

Based on previous simulations, by changing the step size with a varying small τ , it is
worth analyzing how the states behave when the coupling probability changes from 0.1
to 1. In this case, we will take a constant step size ∆t equal to 0.1 and will increase to
the value τ .

At first, τ is equal to 0.00002. Then we gradually increase and the next simulation
considers τ= 0.0002. In the end, we look at the τ equal to 0.002.

The graphs in Fig. 5.7 show the dependence of the convergence time on the coupling
probability for all five states with step size ∆t + τ with ∆t = 0.1. The τ= 0.00002,
Fig. 5.7a. The convergence time of static sync and async are around 60 in the whole
interval of probability, the change in probability, as we can see, does not affect these
two states in any way. As for the active phase wave when the coupling probability is
from 0.1 to 0.3 the value of the CT is larger than the CT of the two previous states and
it is decreasing from 100 to 60. As soon as the step size is greater than 0.3, then the CT
of the state is reduced to 40 for the entire remaining interval. The static phase wave has
a constant value of CT and which is around 190. The fifth state, the splintered phase
wave, is similar in its behavior to the static phase wave on the interval when the coupling
probability is larger than 0.2. While with a low probability, we can notice a decrease in
the function from 410 to 200.

Next, we take a look at Fig. 5.7b where τ equal to 0.0002. When we increase the step
size and we can see that the active phase wave has a larger increase of the convergence
time equal to 200 with the same probability as previously. A rather strong change can be
seen in the behavior of the splintered phase wave, which at a coupling probability of 0.4
begins to increase to the CT around 500. The state ceases to converge at a value of p
less than 0.2.

Finally, when we increase the step size to 0.002 we can see that the active phase wave
at p = 0.9 starts to be greater than static sync and async states, at p = 0.6 exceeds
the CT of the static phase wave and stops to converge at p = 0.4 with CT around 1000,
Fig. 5.7c. As for the splintered phase wave, it greatly reduces the convergence interval
and ceases to converge at 0.5.

Thus, as soon as we increase the step size value by an insignificant random value τ , this
does not significantly affect the static states, but at the phase waves we can notice that
they sharply increase their values and on the next point of the coupling probability stops
converging.

5.4.2 Decreased step size

In this part, we consider the most interesting case when, with a step size ∆t decrease of
τ= 0.0002, Fig. 5.8. our models continued to converge at a step size equal to 10. Thus,
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Figure 5.7: Convergence time of the five states when varying the coupling probability p

from 0.1 to 1. Increasing the step size by τ . Parameters: 100 swarmalators, ∆t = 0.1.

we analyze how the probability will change in the interval from 0.1 to 1 if we change
the value of the step size ∆t. Firstly, consider the case when ∆t = 0.4. We take such a
value because when the step size is smaller, no state converges. Secondly, we run the
simulation when ∆t = 1 and ultimately we consider a higher value of step size which is
equal to 4.

We take a look at Fig. 5.8a that shows the dependence of the convergence time on the
coupling probability with a constant step size ∆t = 0.4 and τ= 0.0002. The convergence
times are between 60 and 80 for static sync and async, and between 100 and 150 for the
static phase wave. It is important to notice the behavior of the splintered and active
phase waves. The first CT is almost constant over the entire interval of about 140.
However, it ceases to converge when the coupling probability is less than 0.4. On the
second case CT slowly decreases when we increase the coupling probability, where the
CT is from 50 to 160, and the CT = 160 is the critical value with p = 0.2 because the
state stops to converge.

The next step is very interesting because here we increase the step size ∆t which is
equal to 1, and the τ is not changing, Fig. 5.8b. Note that, firstly, the state is already
experiencing difficulties in convergence with a small probability. Also, the splintered
phase wave, on the contrary, increased its convergence, with a lower probability, and
continues to converge, up to p = 0.2. However, the convergence time has increased and
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Figure 5.8: Convergence time of the five states when varying the coupling probability
p from 0.1 to 1. Decreasing the step size ∆t each simulation by the same τ= 0.0002.
Parameters: 100 swarmalators.

reached 1000. As for the active phase wave, it converges only at high probability values
of 0.8, 0.9 and 1.

When the step size ∆t increased to 4, we can notice that static states converge on the
whole interval with any value of coupling probability, Fig. 5.8c. The convergence time is
between 140000 and 160000. As for phase waves, the splintered state is not converged
for any probability values and the active state still converges at maximum probability
values equal to 0.9 and 1.

To sum up, static states converge at any step size increase over the entire probability
interval from 0.1 to 1. Only when the ∆t increases more than 1, the convergence time
values increase significantly. As for the splintered state, as soon as the ∆t becomes
greater than 1, the state ceases to converge at any step value. A fairly good result is
obtained in the intermediate value for this state. The active phase continues to converge,
but each time the probability interval at which it can converge decreases. For this state,
a good result can be reached when the step size is small.
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5.5 Analysis of increment

Based on the simulations, we construct the dependence of the convergence time on the
increment. In this case, we take for comparison a different step size (∆t equal to 0.1, 0.3,
0.7 and 1) from which the increment is subtracted or added.

Fig. 5.9a shows the behavior of the static sync state. We can see that the state converges
on the entire interval with a step size equal to 0.3 and 0.7. The convergence time lies
from 60 to 90 for both steps. As we can notice the static sync with the step size ∆t = 0.1
does not converge on the τ= -0.0002. With the remaining values of the step sizes, the
convergence times are between 60 and 140. However, when increasing the step size to 1,
we can say that the state converges, but only at the initial points. The state stopped to
converge when τ is greater than 0.00002. We get that for this static state, with these τ

values, it is most optimal to choose intermediate values of steps.

Next, we take a look at the static async state, Fig. 5.9b. The behavior of the state is
similar with ∆t equal to 0.3, 0.7 and 1, where the CTs are between 65 and 100. But as
for the step size being equal to 0.1, the state does not converge with τ= -0.0002. The
convergence time gradually increases over the entire interval from 80 to 140. In this case,
the optimal values of the step size are larger than 0.1.

Additionally, we pay attention to the static phase wave, which is shown in Fig. 5.9c.
With the τ values selected, the state does not converge at ∆t = 1 at any point. When
the step size is reduced to 0.7, the state converges when the τ is less than 0.002 with the
CT from 110 to 160. As soon as we reduced the step size to 0.3, we notice a smoother
behavior of the graph, compared to the step size equal to 0.1. For these two step sizes,
the growing convergence times are from 120 to 190. In this case, it is worth paying
attention to the choice of τ , it affects which step is better to choose for this state. For
small τ , 0.7 is optimal, and for larger τ , smaller step size.

The splintered phase wave converges with τ greater than -0.00002 and the step size equal
to 0.1 and 0.3, Fig. 5.9d. The CT is from 120 to 250 for ∆t = 0.1 and from 120 to 190
for ∆t = 0.3. It is interesting to mention that with ∆t = 0.7 the state converges on the
whole interval of τwith the CT around 150. But with the increasing of the step size to 1,
the state converges on the interval of τtill 0.002 with the CT around 160. We can see
that the optimal value of the step is around 0.7.

Finally, the active phase wave has the best convergence with such τ values. At any
chosen step size, the state converges over the entire interval. For the small values of steps
the CTs are around 60 and for larger values around 90.

Thus, when choosing the best step size value for τ , it is worth paying attention to the
step equal to 0.7, because with this value the optimal convergence over the entire interval
for all five states and in addition to this, with a small value of the convergence times.
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Figure 5.9: Convergence time of five states when the step size equal to 1, 0.7, 0.3 and
0.1. Parameters: 100 swarmalators, the coupling probability p = 1, τ is equal to -0.0002,
-0.00002, 0.00002, 0.0002 and 0.002.
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CHAPTER 6
Impact of a random step size

6.1 Randomization of the step sizes

In this section, we explore whether randomization of the step sizes can help the system
to converge. For this reason, we use a random step size following a normal distribution.
It is simple to use, manipulate algebraically and derive formulas. Thus, with the help of
a normal distribution, it is possible to obtain results that can be easily applied.

Three arguments are used in the function rnorm(n, mean = 0, SD = 1), which generates
a vector of random values:

• n: "the number of random variables to generate";

• mean: "mean value, if not specified defaults to 0";

• SD: "the standard deviation, σ", if not specified, standard normal distribution equal
to 1.

The step size depends on our initially selected value, the number of swarmalators, the
number of steps and the standard deviation σ. We concentrate on the most important
factor,which is σ. Thus, we vary the value of the standard deviation and see how it affect
the convergence time of all five states.

We add the variable "DTv" to our code, which consists of the function "rnorm", see
Listing 4. Further, we change the parameters depending on the input values.

A piece of code is presented for a simulation where the standard deviation is equal to 0.01,
Listing 4. The mean value is equal to 0. It is also taken into account that the step size
values can only be strictly positive, which is ensured in line 10. For further simulations
with different values of standard deviation, the same structure of code is used.
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1 ...

2 DTv <- rep(DT,NODE_COUNT)

3 SD <- 0.01

4 ...

5 # simulation main

6 sim <- function()

7 {

8 ...

9 DTv <- DT + rnorm( NODE_COUNT, 0, SD );

10 DTv[DTv <= 0] <- 0.000001; # values greater than 0

11 ...

12 # actually change position and phase

13 coord <- coord + coord_dot*DTv;

14 phase <- phase + phase_dot*DTv;

15 ...

16 }

Listing 4: Struct interface of "sim_v2.r" with the step size randomized using the standard
deviation σ.

The standard deviation shows us how distributed the data is. This is an indicator of
how far each observed value is from the average. We will increase the value of the
standard deviation in each simulation and choose the value at which the most favorable
convergence time occurs. We use values of σ equal to 0, 0.001, 0.005, 0.01, 0.05 and 0.1.

In the following, we consider simulations, when we increase the standard deviation from 0
to 0.1. It is important to notice that the larger our standard deviation, the larger the
spread. Thus, the values of step sizes are completely randomly chosen for all five states:
static sync, static async, static phase wave, splintered phase wave and active phase wave.

Therefore, further simulations have to verify the following aspects:

• How does the increase of the standard deviation affect the convergence time?

• For which values of the step size do we see convergence?

• What is the largest step size for which the states converge?

• What is the optimal σ for each state?

6.1.1 Baseline scenario

Firstly, we consider the "baseline scenario". We have a standard deviation equal to zero.
This shows that there is no variability in our data set at all. Since our data can only

48



6.1. Randomization of the step sizes

have one value, this value represents the mean of the sample. In this case, if all our data
values are the same, there will be no difference.

We take a look at the convergence time with a coupling probability p = 0.9 and an Euler
step size is equal to ∆t + rnorm(100,0,σ), Fig. 6.1a. The convergence times of the static
sync and async are around 80, from 120 to 140 for the static phase wave, between 120
and 170 for the splintered phase wave and from 40 to 160 for the active phase wave. We
can notice that for all five states the system converges to stable patterns up the step size
equal to 1. The exception is the phase waves, the static converges till 0.9 and the active
continues to converge around 2.

We take attention to the next simulation when we decrease the coupling probability
to 0.7, Fig. 6.1b Interesting to see that the splintered phase wave converges till the step
size is equal to 1 with a lower probability. At the same time, the active phase wave ceases
to converge at step size 1, when the probability decreases.

At the moment when the coupling probability decreases to 0.2, we can notice that the
splintered and active phase waves reduce the value of the step size at which convergence
is maintained. The first one stops to converge at a step size equal to 0.6 and another one
at 0.7, Fig. 6.1c.

Hence, we can note that for the value when σ= 0, then the most favorable simulation is
with a coupling probability of 0.9, since all states converge at the maximum step size at
this time.

6.1.2 Increasing the spread of the step sizes

Next, we consider a standard deviation equal to 0.005. We increase the observed step
size from the average value. The increase in standard deviation means that the step sizes
are clustered around the mean. We take a look at the convergence time with a maximum
coupling probability p = 1 and an Euler step size is equal to ∆t + rnorm(100,0,σ),
Fig. 6.2a. The CTs of the static sync and async are around 90 and between 120 to 160 for
the static and splintered phase waves. As for the active phase wave, the CT of the state
increases from 20 to 90 when the step size is from 0.1 to 0.5. However, as the step grows
the CT repeats the behavior of the static sync and async. The longest convergence has
the active state which is till 6, Fig. 6.2b. The static phase wave stops to converge earlier
than others at step size 0.8, the static sync at 0.9, and the static async and splintered
at 1.

As the probability decreases, we can notice that the static sync and the splintered phase
wave converge with a lower probability and a larger step size, both stop to converge at a
step equal to 1. On the contrary, the splintered and active phase waves converge only
with a smaller step size and stop to converge at 0.9 and another state at 1, Fig. 6.2c.

To compare with the coupling probability equal to 0.5, the CT of the splintered phase
wave again converge with a higher step size than previously. The state stops to converge at
step size around 1. It is important to look at the active phase wave which is significantly
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Figure 6.1: Convergence time of five states when we consider a "base line scenario" with
no randomization of the step size. Parameters: 100 swarmalators, the standard deviation
equal to zero.

changing. The active state does not converge with the step size larger than 0.4 as we can
see in the Fig. 6.2d but at the step size equal to 1 again appears the convergence.

When the coupling probability decreases to 0.2, see Fig. 6.2e, the convergence ends for
the active phase wave at a smaller step size, which is 0.3. At the same time, the CT of
the splintered phase wave increases and already finishes converging the same way earlier
at the step size equal to 0.7, CT around 3800.

Thus, one of the most optimal solutions for the states is when the probability is equal
to 1 or 0.9, because the states converge at the largest step size, with less convergence
time. As for the minimum probability value, the critical one is when p = 0.6, after which
the step size is already significantly reduced by which the active phase wave converges.

6.1.3 Wider range of the step sizes

In addition, we consider that we have a standard deviation equal to 0.05. We increase
the observed step size from the average value. In these simulations, the step sizes are
clustered around the mean but a little further than in the previous case.

We take a look at the convergence time with a maximum coupling probability p = 1
and an Euler step size equal to ∆t + rnorm(100,0,σ), Fig. 6.3a. The CTs of the static

50



6.1. Randomization of the step sizes

0.2 0.4 0.6 0.8 1
0

100

200

Step size ∆t
C

on
v
er

ge
n
ce

ti
m

e

Static sync

Static async

Static phase wave

Splintered phase wave

Active phase wave

(a) p = 1

2 4 6
0

1

2

3

·104

Step size ∆t

C
on

ve
rg

en
ce

ti
m

e

(b) p = 1, active phase wave

0.2 0.4 0.6 0.8 1
0

200

400

Step size ∆t

C
on

v
er

ge
n
ce

ti
m

e

(c) p = 0.6

0.2 0.4 0.6 0.8 1
0

200

400

600

Step size ∆t

C
on

ve
rg

en
ce

ti
m

e

(d) p = 0.5

0.2 0.4 0.6 0.8 1
0

1,000

2,000

3,000

4,000

Step size ∆t

C
on

v
er

ge
n
ce

ti
m

e

(e) p = 0.2

Figure 6.2: Convergence time of five states when the randomization of the step sizes.
Parameters: 100 swarmalators, the standard deviation equal to 0.005.

sync and async are around 90 and between 120 to 160 for the static and splintered phase
waves. As for the active phase wave, the CT of the state increases from 20 to 90 when
the step size is from 0.1 to 0.5. However, as the step grows the CT repeats the behavior
of the static sync and async. The longest convergence time, which is about 26300, occurs
at the active state with ∆t around 6, Fig. 6.3b. Also the static phase wave stops to
converge earlier than others at a step size around 0.8, the static sync at 0.9, the static
async and splintered stops around 1. It is important to mention that none of the states
converge at σ= 0.05 on step sizes of approximately 0.1 to 0.2.

When the coupling probability increases to 0.7, we see the effect already in the active
phase wave, which ends up converging at a step size of about 2 at the CT of 5465.5,

51



6. Impact of a random step size

Fig. 6.3c. However, the static phase wave on the contrary increases the step size to 2
with decreasing probability.

As soon as we have reduced the coupling probability to 0.4, the active phase wave
stops converging at a step size of about 1 and the convergence time itself has increased
compared to the previous simulation. We also notice the growth of the CT of the
splintered phase wave. The convergence time has increased approximately twice but the
state still converges on the entire interval, Fig. 6.3d.

Next, when the coupling probability is reduced to 0.2, then the active and splintered
phase waves stop to converge at step sizes of about 0.4 and 0.6. The splintered state
reaches a peak of the CT around 2000 at the last point of convergence, Fig. 6.3e.

Thus, by decreasing the coupling probability, we can notice a significant impact on the
splintered and active phase waves. The optimal p is up to 0.4 because then a strong
influence on the states is noticed and they begin to diverge. As for static states, any
probability value will be suitable for them, with the convergence to about 1 for all static
states.

6.2 Changing the coupling probability

In this part, we analyze the dependence of the convergence time on the coupling probability
for a certain step size equal to 0.2, but using different values of standard deviation which
are equal to 0, 0.005 and 0.05.

Firstly, we take a look at Fig. 6.4a, when we have ∆t = 0.2, σ= 0 and the interval of p

from 0.1 to 1. The static states converge over the entire interval with a convergence time
of about 60. For phase wave the CT is about 180. As for the splintered and active phase
waves, the first one has an increase with the coupling probability smaller than 0.2 and
another one does not converge to ∆t around 0.2. The convergence times are from 180 to
700 and from 50 to 70.

As the standard deviation increases to 0.005, the active phase wave begins to converge
over the entire interval, especially with a probability equal to 0.1. But the splintered
phase wave increases even more with a small coupling probability, between 0.1 and 0.2
and reaches the CT = 790, Fig. 6.4b.

If we increase the standard deviation to 0.05, the splintered phase wave experiences an
even greater peak at probability 0.1 the convergence time value already reaches 800. It is
important to notice that the static phase wave experiences an increase in the CT = 300
when p = 1, Fig. 6.4c.

Based on the results obtained, at a step size of about 0.2, the change in standard deviation
affects the phase waves to a greater extent. For all states to converge and the time values
to be the most optimal, it is better to choose σ around 0.005.
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Figure 6.3: Convergence time of five states when the randomization of the step sizes.
Parameters: 100 swarmalators, the standard deviation equal to 0.05.

6.3 Probabilistic dependence at the standard deviation

and various step sizes

From the simulations performed to select the most optimal σ, it turned out that σ=0.005
is the most optimal for a step size of about 0.2. We will conduct further analysis of this σ

and see how it affects the probability when the step size changes, Fig. 6.5.

For the beginning we take a look at the results for ∆t = 0.1, Fig. 6.5a. All states
converge on the whole interval of probability. The CTs of static sync and async are
from 60 to 90. The convergence time of the active phase wave is from 60 to 100 when p

is smaller than 0.3 and around 60 with larger p. As we can see the behavior of the static
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Figure 6.4: Convergence time of five states when the coupling probability p from 0.1 to 1.
Parameters: 100 swarmalators, ∆t = 0.2.

and splintered phase waves is similar with the coupling probability greater than 0.2. In
lower values of probability the static phase wave does not change, but another one state
increases to 280 at p = 0.1.

Next, we increase the step size and ∆t = 0.5, Fig. 6.5b. It can be noted a strong
influence on the splintered and active phase waves. One of them stops converging when
the coupling probability is less than 0.2 with the CT around 1400 and 0.3 for another
one with the CT around 200.

Nonetheless, with an increase in the step size to 0.9 the splintered and active phase waves
again converge on the whole interval of p. Some peaks of time values remain at p = 0.3
with CT around 1700 for both states, Fig. 6.5c.

Thus, the optimum is to take attention to the splintered and active phase waves. For
them it is better to choose small values of ∆t or closer to one, if we take σ= 0.005. The
standard deviation has no visible impact on other static states.

6.4 Analysis of the standard deviation

Based on the simulations, we construct the dependence of the convergence time on the
standard deviation. In this case, we take previous values of σ equal to 0, 0.005, 0.05 and
make additional simulations with σ equal to 0.0001, 0.001 and 0.1. This way we get more
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Figure 6.5: Convergence time of the five states when the randomization of the step size.
Parameters: 100 swarmalators, rnorm(100, 0, 0.005), the standard deviation equal to
0.005.

points to build a graphical dependency. We present each state separately at different
step sizes, which are equal to 0.1, 0.3. 0.7 and 1, Fig. 6.6.

We start with the static sync in Fig. 6.6a. With a step size equal to 0.3 and 0.7, we can
notice convergence over the entire interval and the convergence times are from 60 to 120
and around 70, respectively. At ∆t = 0.1 and ∆t = 1 the state stops converging when σ

greater than 0,01 and 0.05. The convergence times are around 60 and 300 for small and
large step sizes.

We take a look at the static async state, which converges at the steps under consideration
except for ∆t = 0.1, Fig. 6.6b. At step sizes equal to 0.7 and 1, the convergence times
are about 90 over the entire interval of the standard deviation. When reducing the step
size to 0.3, we note that at σ= 0.1 there is a significant increase in the convergence time.
However, if the step size is further reduced to 0.1, the state converges only to σ equal
to 0.01 with the CT around 80.

Additionally, paying attention to the static phase wave, Fig. 6.6c, it can be noted that it
is similar to the static async, Fig. 6.6b, but with slightly larger values of convergence
time. Furthermore, at a step size ∆t = 1, the state does not converge at any given σ.

Next, we take a look at the convergence of the splintered phase wave, Fig. 6.6d. When the
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∆t = 0.1, the state stops to converge at σ= 0.01 and the convergence time is between 125
and 160. When we increase the step size to 0.3, 0.7 and 1 with any chosen value of the
standard deviation the state converges. The CTs are from 130 to 160 for these ∆t.

Finally, analyzing the active phase wave, we can say that with ∆t = 0.1 the behavior of
the state is similar for all static states, Fig 6.6a, 6.6b and 6.6c. As the step increases,
the state converges over the entire σ interval from 0 to 0.1. When ∆t = 0.3 the state
converges with the CT around 50, when ∆t = 0.7 and ∆t = 1 the CTs are between 70
and 145. At the step size equal to 1, the active state increases at the interval, and at
the ∆t = 0.7 on the contrary decreases and both intersect on the standard deviation of
about 0.03 with CTs around 120.

Thus, analyzing each state separately, for different values of the step size and the
selected σ, we can say that with a small step size of 0.1, none of the models converges on
the entire σ interval from 0.1 to 1. When increasing the step size to 1, the splintered
phase wave does not converge at any point of the σ. As soon as we start to increase the
step size, the static async and phase wave, the splintered and active phase waves are
quite similar in their behavior. Then for all states, it is optimal to choose a step size
around 0.7.
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Figure 6.6: Convergence time of five states when the step size is equal to 1, 0.7, 0.3 and
0.1. Parameters: 100 swarmalators, the coupling probability p = 1, σ is equal to 0, 0.001,
0.0005, 0.01, 0.05 and 0.1.
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CHAPTER 7
Results and conclusions

7.1 Summary of results

In the following, based on the results obtained, which are presented in the previous
chapters of the thesis, we summarize all three different simulations with the impact of
the varied step size, increased or decreased increment and standard deviation.

Fig. 7.1 and 7.2 show different scenarios for choosing a step size for all five states
separately.

Paying attention to the static sync, Fig. 7.1a, with a small step size from 0.1 to 1, when
we vary the step size in different ways, this does not particularly affect the values of the
convergence time and convergence. When we increase the step size with increment τ ,
which is τ= 0.0002, or apply randomization with the standard deviation σ, which
is σ=0.005, the state stops converging at a step size of about 1. But as soon as we
decrease the step size with increment τ , the step size immediately increases significantly,
and the state converges to about 10, Fig. 7.2. The important thing to note is that with
a small ∆t, this static state does not converge and also with a large step size equal to 10,
we see a rather long convergence time compared to the interval of the step size from 0.1
to 1.

Next, we take a look at the static async in Fig. 7.1b. Here, when we increase the step size
with increment τ , or apply randomization of the step size with the standard deviation σ,
with small step sizes, the state converges a little longer than usual. On the contrary,
with large values of CTs, the static async converges faster than with a constant step size.
Also, when we decrease the step size with increment τ , Fig. 7.2, the state converges with
large step size, up to 10, with the same parameters as other simulations with this state,
but it does not converge with small values of step sizes.

Analyzing the static phase wave in Fig. 7.1c, we can note that when we increase the step
size with increment or apply standard deviation, the state converges only with smaller
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step sizes and larger convergence times. Additionally, if the randomization is applied
then the static phase wave converges with larger step sizes, up to 10 as we see in Fig. 7.2.
However, this method of changing the step size is not applicable for small ∆t because
the state diverges to about 0.4.

Of course, it is important to consider the splintered phase wave, Fig. 7.1d, which, when
applied an increment for decreasing or increasing the step size, takes good values starting
from the middle of the interval of ∆t from 0.1 to 1, around 0.6. If we look at the
influence of the standard deviation σ, we can say that very similar behavior as the above
states. Namely, it shows a perfect convergence with large step sizes, but also with large
convergence times, Fig. 7.2.

It seems that one of the most interesting cases that should be paid attention is to the
active phase wave, Fig. 7.1e. With step size from 0.1 to 1, we do not particularly notice
any changes when adding an increment or using the standard deviation for randomization.
When we increase the step size, we can notice that after a step size of about 3, adding an
increment has a positive effect, and the value of the CT decreases. Also, the increment
subtraction reduces the convergence time and converges at a step size of about 10, Fig. 7.2.
As for the use of σ, after a step size of about 1, the time decreases, but this does not
affect the increase in the step size at which the model continues to converge.

To sum up, using the simple ∆t has a positive effect at small values, on the initial interval
of the thesis for all five states. As soon as we start increasing the step size, when adding
or subtracting the increment τ , it has a slight effect on all states, that is, somewhere the
convergence time becomes a little longer, and somewhere a little less, but to a greater
extent, everything depends on the experiment. When the step size increases to about 1,
then definitely all static states and the splintered phase wave cease to converge at a
given step size, and just, in this case, the increment step change has a positive effect on
the convergence of all states. But it is important to note here that it is the increment
subtraction that increases the step size at which the states continue to converge.

7.2 Conclusions

The thesis shows methods such as increment addition or subtraction in each step, as well
as the use of randomization for different step sizes. The results of simulations on the
selection of optimal values for different step sizes are presented in Table 7.1.

Analyzing the results obtained, summarized in Table 7.1, we can say that for small step
sizes, up to 0.2, it is optimal to use all three cases, except for increment subtraction. The
case when a swarmalator shares its location and phase vary often.

As the step size increases, when the step takes an intermediate value, then this is the
optimal situation, in which any case of changing the step size will be optimal (Table 7.1).
In this instance, information is exchanged in the same way, but only the simulators
exchange messages less often. It is used in mechanisms where the exchange of information
every second is not a critical option.

60



7.2. Conclusions

Table 7.1: The step size ∆t for converge states static sync, static async, static phase
wave, splintered phase wave and active phase wave, where ① - for impact of varied step
size, ② - for impact of the increment subtraction, ③ - for the adding increment, ④ - for
the impact of the standard deviation and ✗ - no one state converge.

Step size Static Static Static Splintered Active

∆t sync async phase wave phase wave phase wave

0.1 - 0.2 ① ③ ④ ① ③ ④ ① ③ ④ ① ③ ④ ① ③ ④

0.2 - 0.3 ① ② ③ ④ ① ③ ④ ① ③ ④ ① ③ ④ ① ② ③ ④

0.3 - 0.4 ① ② ③ ④ ① ② ③ ④ ① ③ ④ ① ③ ④ ① ② ③ ④

0.4 - 0.7 ① ② ③ ④ ① ② ③ ④ ① ② ③ ④ ① ② ③ ④ ① ② ③ ④

0.7 - 0.8 ① ② ③ ④ ① ② ③ ④ ① ② ④ ① ② ③ ④ ① ② ③ ④

0.8 - 0.9 ① ② ③ ④ ① ② ③ ④ ① ② ① ② ③ ④ ① ② ③ ④

0.9 - 1 ① ② ① ② ③ ④ ② ① ② ③ ④ ① ② ③ ④

1 - 6 ② ② ② ② ① ② ③ ④

6 - 10 ✗ ✗ ✗ ✗ ②

10 - ... ✗ ✗ ✗ ✗ ✗
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Figure 7.1: Convergence time of five states with the step size. The coupling probability
p = 1.

When the step is increased to values greater than 1 (Table 7.1), which means that sending
messages is rare. We get the following: The states converge only when the increment
is subtracted and also during the active phase wave of long convergence. This means
that this case, the transfer and exchange of information is quite rare. This case can be
suitable for a scenario where the movement of mechanisms does not change much over
time and the exchange of messages may occur less frequently.

Finally, concluding from all the simulations obtained, we can say that as soon as we take
a small step size value, the convergence time will be as fast as possible. But when we
gradually begin to increase the value of the step size, then, accordingly, this causes on
increase in the convergence time. Thus, the convergence time is the time that passes
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Figure 7.2: Convergence time with step size ∆t for the static sync, static asyn, static
phase wave, splintered phase wave and active phase wave. Coupling probability p = 1.
∆t - τ , τ= 0.0002.

from the moment of perception of information to the reaction to it. In other words, it
is the ability to detect, process and respond to the information received. Convergence
time includes perception, information processing, and response. Note that if any of these
processes is disrupted, this will negatively affect the convergence time or the signal will
not be sent, transmitted or received.

To sum up, a wide range of simulations is discussed with the selection of the most optimal
values. Plots for three different parts of simulations are presented. The general idea is
obtained by the most optimal value of the step size, coupling probability, increment and
standard deviation. Due to the results obtained, it is definitely worth paying attention
to the system parameters because the application can be different and for each task, it is
a specific step value will be optimal.

7.3 Further work

The results of the work done have been obtained by simulation. In the further, it would
be interesting to check the optimal step size values in practice. Most of the results
can be checked first indoors without interference and in an open space under different
weather conditions. Hence, we could choose the values that will be optimal under different
conditions.

In addition, by conducting the experiments, it would be interesting to see the effect of
the step size and coupling probability. It will be important to consider how they change
with the same input values because we can only track the coupling probability itself and
see what values are obtained on average during simulations.

In the future, it would be interesting to consider and graphically depict the dependence
of the fixed step size on the coupling probability. The plot will show the values at which
convergence is stable and unstable for five different states.

Similarly, it would be useful to show how the value of the smallest distance between
swarmalators depends on the coupling probability. We could plot the graphical dependence
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of the distance on the probability of signal transmission.

Hence, the goal would be to apply the same methods to the distance as we applied to
the step size in this paper:

1. For the beginning, check the impact of the varied distance.

2. Secondly, check the impact of the increment to increase the distance.

3. Finally, apply the standard deviation to the distance.

4. Subsequently, check these results in practice.
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