

DIPARTIMENTO DI INGEGNERIA DELL’INFORMAZIONE

CORSO DI LAUREA IN INGEGNERIA INFORMATICA

Towards a Pythonic framework for control and analysis of
magnetic levitation systems

 Relatore: Prof. Damiano Varagnolo

Laureando: Alessandro Lincetto

 Correlatori: PhD Candidate Hans A. Engmark
 PhD Candidate Kiet Tuan Hoang

ANNO ACCADEMICO 2022 – 2023

Data di laurea: 21 Novembre 2023

DIPARTIMENTO
DI INGEGNERIA
DELL’INFORMAZIONE

Ai miei genitori

Paola e Luca

Abstract

Magnetic levitation represents a fascinating technology with applications in various

fields, from scientific research to industry. This thesis focuses on the development of

a Python software framework for the control and analysis of magnetic levitation sys-

tems. We will present the mathematical foundations governing magnetic levitation

and provide an open-source Python implementation available on GitHub. We will

discuss the major challenges in implementing the software in Python, highlighting

the differences compared to MATLAB. Comparisons will be made between simu-

lations performed using the software and results obtained with MATLAB, with an

analysis of the speed differences between the two platforms. One of the key findings

of this research is that Python is fundamentally slower than MATLAB in executing

magnetic levitation simulations. This issue will be examined in detail, and solutions

will be proposed to enhance the performance of the Python software. In particular,

Just-in-time (JIT) compilation techniques will be considered to accelerate code ex-

ecution. This thesis will analyze different approximations for the elliptic functions

ellipk and ellipe used in the software, and compare their accuracy and performance.

In the end, the LQR controller was simulated using MATLAB and Python.

The primary objective of this work is to construct a comprehensive Python frame-

work for the control and analysis of magnetic levitation, with the ambition of con-

tributing to the advancement of research in this field.

Abstract

La levitazione magnetica rappresenta una tecnologia affascinante con applicazioni

in diversi settori, dalla ricerca scientifica all’industria. Questa tesi si concentra sulla

creazione di un software in Python per il controllo e l’analisi della levitazione mag-

netica. Verranno presentati i fondamenti matematici che governano la levitazione

magnetica e verrà fornita un’implementazione Python open-source disponibile su

GitHub. Saranno discussi i principali ostacoli nell’implementazione del software in

Python, evidenziando le differenze rispetto all’uso di MATLAB. Verranno eseguite

comparazioni tra le simulazioni effettuate con il software e i risultati ottenuti con

MATLAB, con un’analisi delle differenze di velocità tra le due piattaforme. Uno

dei principali risultati emersi dalla ricerca è che Python risulta più lento rispetto a

MATLAB nell’esecuzione delle simulazioni di levitazione magnetica. Questo prob-

lema sarà esaminato in dettaglio e saranno proposte soluzioni per migliorare le

prestazioni del software Python. In particolare, verranno considerate le tecniche di

compilazione Just-in-time (JIT) per accelerare l’esecuzione del codice. Questa tesi

analizzerà diverse approssimazioni per le funzioni ellittiche ellipk ed ellipe utilizzate

nel software e ne comparerà l’accuratezza e le prestazioni.

Infine sono state eseguite simulazioni del controllore LQR in MATLAB e in Python.

L’obiettivo principale di questo lavoro è costruire un framework completo in Python

per il controllo e l’analisi della levitazione magnetica, con l’ambizione di contribuire

al progresso della ricerca in questo campo.

Contents

1 Introduction 1

1.1 Overview . 1

1.2 MagLev Project . 2

1.3 My contribution . 3

2 Mathematical models 5

2.1 Calculation of Elliptic Parameter k2 6

2.2 Calculation of Scaling Factor c . 6

2.3 Calculation of Elliptic Integrals . 6

2.4 Calculation of Complete Elliptic Integrals 7

2.5 Calculation of base magnetic field, force and torque 8

2.6 Utility functions . 9

2.6.1 Cartesian to polar function 9

2.6.2 Polar to cartesian . 9

2.6.3 Calculate rotation matrix 10

3 Differences between Python and MATLAB focusing on compila-

tion 11

3.1 Python vs MATLAB: code, structure and data types 11

3.1.1 Syntax . 11

3.1.2 Code structure . 12

3.1.3 Data types . 13

3.2 Compiling . 13

3.2.1 Python compiling . 13

i

3.2.2 MATLAB compiling . 14

3.2.3 Compilation Just in Time (JIT) 15

3.3 ellipk and ellipe functions . 16

3.3.1 Elliptic functions in this project 16

3.3.2 What is an eliptic function? 17

3.3.3 ellipk . 17

3.3.4 ellipe . 17

3.4 Timing simulation . 18

3.5 Solutions for python speed . 20

3.5.1 Numba . 20

3.5.2 Cython . 21

3.5.3 Library optimized . 22

3.5.4 Code parallelization . 22

4 LQR simulation 23

4.1 Introduction to LQR Control . 23

4.2 MagLev’s LQR mathematical foundation 24

4.3 Implementing LQR Control in Python 27

4.3.1 Cost function . 27

4.3.2 Linearization around an equilibrium point 28

4.3.3 Optimal matrix K . 29

4.3.4 Control Signals u(t) . 29

5 Simulation results 31

5.1 Python simulation . 32

5.2 MATLAB simulation . 33

6 Conclusion 37

6.1 Future applications . 37

6.2 Final considerations . 38

ii

Listings

3.1 Time for calculating force and torque for muliple etas 18

3.2 Time for calculating magnetic field 19

3.3 Time for calculating magnetic field 19

3.4 Example of Numba implementation in MagLev Project 20

4.1 Cost function . 27

4.2 Linearization around an equilibrium point 28

4.3 Optimal matrix K . 29

4.4 Control Signals u(t) . 29

iii

iv

List of Figures

1.1 MagLev System . 4

5.1 LQR controller on Python simulation 32

5.2 MagLev system in three-dimensional space 33

5.3 Z coordinate on MATLAB simulation 34

5.4 X(blue) and Y(red) coordinates on MATLAB simulation 34

5.5 α/β parameters on MATLAB simulation 34

v

vi

Chapter 1

Introduction

1.1 Overview

Magnetic levitation technology, also known as ”maglev,” stands as one of the most

incredible innovations in the fields of transportation and technology. It relies on

the fundamental principle of magnet interaction, specifically using magnetic fields

to lift and guide objects without any physical contact with a supporting surface.

In the realm of transportation, magnetic levitation systems offer revolutionary ad-

vantages, including the complete absence of mechanical friction between the vehicle

and the track, enabling incredible speeds and unprecedented efficiency. These sys-

tems are often employed for high-speed trains, such as the renowned maglev train,

which travels at speeds exceeding 500 km/h. Magnetic levitation is also gaining

interest for urban transport applications, with many cities worldwide exploring sus-

pended magnetic public transit projects.

Beyond transportation, magnetic levitation technology finds applications in ar-

eas like scientific research, high-efficiency cooling device manufacturing, and the

aerospace industry.

1

1.2 MagLev Project

In previous projects, a magnetic levitation platform has been created, utilizing a

combination of permanent magnets and electromagnets under the control of a high-

performance Teensy 4.1 microcontroller. The Teensy 4.1 uses an ARM Cortex-M7

processor running at 600 MHz, making it among the fastest microcontrollers avail-

able.

The platform is equipped with eight permanent magnets arranged in a circular

configuration and four solenoids controlled by two A4950 motor drivers. These el-

ements work together to stabilize a magnetic disk suspended in mid-air, referred

to as ”levmag.” Feedback is provided through mangetic measurements from three

TLE493D Hall-effect sensors, integrated in the system.

The platform’s structure is enclosed within a transparent plexiglass frame. The

control electronics are situated in the lower section, while the second section accom-

modates the permanent magnets that generate a static magnetic field to stabilize

the object along the z-axis. The third section is dedicated to the solenoids, which

collaboratively stabilize the object along the x and y axes. Positioned just below

the point of levitation, the upper section contains the Hall-effect sensor, ensuring

accurate position estimation.

The overarching aim of this project, originally conceived by a Norwegian student,

is to transform this platform into an educational control engineering laboratory.

2

1.3 My contribution

In the context of this project, I had to tackle the challenge of translation the MAT-

LAB code into Python, with the primary goal of optimizing the software, improving

overall performance and efficiency. During this process, I noticed significant differ-

ences in simulation times between the two languages, with particular attention

focused on two key functions: ”ellipk” and ”ellipe.”

The most noticeable divergences emerged during the conversion regarding the per-

formance of the ”ellipk” and ”ellipe” functions. Initially, simulations in Python

seemed to require considerably more time than their MATLAB counterparts. This

prompted me to closely examine how these functions were handled in the two lan-

guages, revealing substantial differences in the underlying mathematical operations.

Once the code transposition process was completed, I proceeded with software test-

ing, using a simulation based on a Linear Quadratic Regulator (LQR) controller

to evaluate the effectiveness of the optimizations made to the Python code. This

allowed me to verify how the changes had affected the overall performance of the

control system and ensure that the software adequately met the specific project

requirements.

3

Figure 1.1: MagLev System

4

Chapter 2

Mathematical models

In this chapter, the focus will be on exploring fundamental calculations essential

for the analysis of the magnetic field generated by a cylindrical coil.

First of all I need to compute k2 that represents the nonlinearity of the magnetic

field, providing insights into the geometry of magnetic field lines. The second pa-

rameter that I need is the scaling factor c that normalizes the involved physical

quantities, adapting them to the system’s dimensions.

Eliptic integrals are mathematical tools are used to calculate the complex mag-

netic quantities in the MagLev system. These integrals will be a topic of discussion

several times in this thesis. In this case I have to calculate two types of elliptic

integrals, the ellipe and the ellpik functions [8, 9].

The computation of the elliptic parameter k2, the scaling factor c, complete elliptic

integrals K(k2) and E(k2), and the utility functions will be discussed in detail.

Furthermore the calculations related to the base magnetic field, force, and torque

will be presented below.

5

2.1 Calculation of Elliptic Parameter k2

The elliptic parameter k2, used in magnetic field calculations, is determined by the

Biot-Savart law[12]:

B(r) =
µ0I

4π

∫︂
Rdϕ√︁

1− k2 sin2 ϕ
(2.1)

We introduce k2 as:

k2 =
4Rρ

(R + ρ)2 + (z − z′)2
(2.2)

This k2 represents the ellipticity in elliptic integrals and is used to compute magnetic

fields in cylindrical coordinates.

2.2 Calculation of Scaling Factor c

The scailing factor c is calculated by Biot-Savart’s law. For a coil in cylindrical

coordinates, we define:

c =
µ0NI

4π
√
Rρ

(2.3)

Where N is the coil’s number of windings. This c is the scaling factor used to

compute the magnetic field in cylindrical coordinates.

2.3 Calculation of Elliptic Integrals

Considering again Biot-Savart’s law:

B(r) =
µ0

4π

∫︂
I dl× (r− r′)

|r− r′|3
(2.4)

For a cylindrical coil, we define the elliptic parameter k2 as:

k2 =
4Rρ

(R + ρ)2 + (z − z′)2
(2.5)

Utilizing k2, we express the complete elliptic integrals of the first and second kind

(K(k2) and E(k2)) as:

K(k2) =

∫︂ π
2

0

dϕ√︁
1− k2 sin2 ϕ

(2.6)

E(k2) =

∫︂ π
2

0

√︂
1− k2 sin2 ϕ dϕ (2.7)

6

These are the formulas for the complete elliptic integrals used to compute the mag-

netic field generated by the cylindrical coil.

2.4 Calculation of Complete Elliptic Integrals

Initiating with Biot-Savart’s law:

B(r) =
µ0

4π

∫︂
I dl× (r− r′)

|r− r′|3
(2.8)

For a cylindrical coil, we define the elliptic parameter k2 as:

k2 =
4Rρ

(R + ρ)2 + (z − z′)2
(2.9)

Utilizing k2, we express the complete elliptic integrals of the first and second kind

(K(k2) and E(k2)) as:

K(k2) =

∫︂ π
2

0

dϕ√︁
1− k2 sin2 ϕ

(2.10)

E(k2) =

∫︂ π
2

0

√︂
1− k2 sin2 ϕ dϕ (2.11)

These integrals are essential in calculating the magnetic field components (Bρ and

Bz) for a cylindrical coil. The final formulas for Bρ and Bz in terms of elliptic

integrals are:

Bρ = −z

ρ
· c ·

√
k2

(︃
K(k2)− ρ2 +R2 + z2

(ρ−R)2 + z2
· E(k2)

)︃
(2.12)

Bz = c ·
√
k2

(︃
K(k2)− ρ2 −R2 + z2

(ρ−R)2 + z2
· E(k2)

)︃
(2.13)

7

2.5 Calculation of base magnetic field, force and

torque

The base magnetic field acts on the MagLev. It is mathematically discretized into

n points, and the total force and torque is the sum of the force and torque acting on

all of these points. To calculate the force and torque the software use two function

described below.

First of all the software implement a function calculate base magnetic field

that calculate the base magnetic field. In detail this function computes the mag-

netic field generated in a magnetic levitation system, taking into account two main

components: permanent magnets and solenoids. For each permanent magnet and

solenoid, the function calculates the local magnetic field based on their positions

and associated current. These local magnetic fields are then summed to obtain the

overall magnetic field. The final result is a representation of the three-dimensional

magnetic field produced by the magnetic levitation system.

There is another function to compute the force and torque called

calculate force and torque. This function start with it extractiion of the phys-

ical dimensions of permanent magnets, that are neccessary on the magnetic field

and subsequent calculations. After that this function use three-dimensional grid for

angular calculations, allowing for a detailed analysis of the position and orientation

of objects within the system. The conversion of polar coordinates to Cartesian co-

ordinates simplifies this analysis.

The function also calculates the local magnetic field based on the objects’ positions

and the currents in solenoids. Furthermore, it determines the tangent vector to the

objects’ trajectories, providing the information for calculating the exerted forces.

In the end it returns two vectors: f , representing the total force acting on the

objects, and t, representing the total torque applied.

8

2.6 Utility functions

There are three functions that are useful for calculating various things in the soft-

ware. The first function, cartesian to polar, allows the conversion from cartesian

coordinates to polar coordinates, returning the polar angle, radial distance, and the

z-coordinate. The second function, polar to cartesian, performs the inverse opera-

tion, converting polar coordinates back to cartesian coordinates. Lastly, the third

function, calculate rotation matrix, computes a rotation matrix based on specific

rotation angles around the x, y, and z axes.

2.6.1 Cartesian to polar function

This function[13] converts cartesian coordinates (x, y, z) into polar coordinates

(ϕ, ρ, z). The first step is the calculation of the polar angle:

ϕ = arctan2(y, x)

After that this function have to calculate the radial distance:

ρ =
√︁

x2 + y2

The coordinate z remains unchanged during conversions between polar and Carte-

sian coordinates because it always represents the vertical height and does not change

regardless of the coordinate system used.

2.6.2 Polar to cartesian

This function[15] converts polar coordinates (ϕ, ρ, z) into cartesian coordinates

(x, y, z). First, the x coordinate needs to be calculated:

x = ρ · cos(ϕ)

After computing x, the next step is to determine the y coordinate:

y = ρ · sin(ϕ)

The coordinate z remains unchanged for the same reason in the previous paragraph.

9

2.6.3 Calculate rotation matrix

This function[6] calculates a rotation matrix R by combining three elementary rota-

tions around the x, y, and z axes. This function that calculates the rotation matrix

is used to describe how a three-dimensional object is rotated around its three prin-

cipal axes: x, y, and z. This matrix represents the geometric transformation that

alters the position and orientation of an object in space. The rotation matrix R is

obtained by multiplying the rotation matrices Rx, Ry, Rz corresponding to rotations

around the x, y, and z axes, respectively:

R = Rz(γ) ·Ry(β) ·Rx(α)

Where: Rotation matrix Rx(α) for rotation around the x axis:

Rx(α) =

⎡⎢⎢⎢⎣
1 0 0

0 cos(α) − sin(α)

0 sin(α) cos(α)

⎤⎥⎥⎥⎦
Rotation matrix Ry(β) for rotation around the y axis:

Ry(β) =

⎡⎢⎢⎢⎣
cos(β) 0 sin(β)

0 1 0

− sin(β) 0 cos(β)

⎤⎥⎥⎥⎦
Rotation matrix Rz(γ) for rotation around the z axis:

Rz(γ) =

⎡⎢⎢⎢⎣
cos(γ) − sin(γ) 0

sin(γ) cos(γ) 0

0 0 1

⎤⎥⎥⎥⎦
The resulting matrix R represents the desired rotation transformation.

10

Chapter 3

Differences between Python and

MATLAB focusing on compilation

In this chapter I describe the main defferences between Python and MATLAB,

in detail I consider the syntax, code structure, data types and in particular the

compilation about this two languages. Forthermore I’ll go into more detail about

the elliptic function (ellipk and ellipe) and the solution about how to solve the

timing compilation about this functions.

3.1 Python vs MATLAB: code, structure and data

types

3.1.1 Syntax

Python and MATLAB exhibit significant differences in their syntax and code struc-

ture. In Python, indentation is a crucial role in the syntax, serving to delimit code

blocks, such as those within loops or functions. In contrast, MATLAB uses the

”end” keyword to signify the end of a code block.

Another difference pertains to curly braces and square brackets. In Python, curly

braces are primarily used to define dictionaries and sets, while MATLAB employs

square brackets [] to define matrices. Regarding the semicolon, in MATLAB, it is

common practice to terminate each statement with a semicolon (;) to suppress out-

11

put, whereas in Python, the semicolon is optional and is often omitted to enhance

code readability.

In string manipulation, Python offers greater flexibility, allowing string concatena-

tion using the + operator. In MATLAB, on the other hand, the strcat() function

is used, or string concatenation can be performed implicitly.

Concerning comments, Python uses the # symbol to denote comment text, whereas

MATLAB utilizes the % symbol for commenting code. Variable assignment differs

between the two languages. In Python, variables can be assigned without explicitly

declaring their type, thanks to dynamic typing. In MATLAB is common practice

to explicitly declare the variable type. This is the main differences between Python

and MATLAB in terms of syntax.

3.1.2 Code structure

In terms of functions, Python and MATLAB have distinct approaches. In Python,

functions are declared using the ”def” keyword, offering a straightforward way to

define and use them. Conversely, in MATLAB, functions are defined using the

”function” keyword, following a more rigid structure.

Python offers a rich array of libraries for file handling, making tasks like reading,

writing, and manipulating files straightforward. In contrast, MATLAB features

built-in functions for reading and writing data to and from files, simplifying file-

related operations within the MATLAB environment.

Regarding object orientation, Python stands out as an object-oriented language,

where everything is treated as an object with associated attributes and methods.

While MATLAB does support objects, it is less oriented toward object-oriented

programming and generally leans more toward procedural programming.

12

3.1.3 Data types

In terms of numeric data types, Python and MATLAB follow distinct approaches.

Python offers greater flexibility in managing numeric data types, allowing a vari-

ety of operations and conversions between different types. In contrast, MATLAB

specializes in handling numeric arrays, with a strong emphasis on compatibility be-

tween matrix dimensions for arithmetic operations.

In the context of lists and arrays, Python features lists that can contain elements of

different types, providing more flexibility in data management. MATLAB primar-

ily relies on numeric matrices, which are homogeneous and require a uniform data

structure.

Concerning dictionaries and similar data structures, Python offers the ”dictionary”

data type that allows for key-value associations, making the management of key-

value data more straightforward. In MATLAB, data structures like ”struct” or

”map” are used for similar purposes, albeit with different syntax.

3.2 Compiling

In this section, I will describe the differences in compilation between Python and

MATLAB. Python[5] is primarily an interpreted language, while MATLAB adopts

ahead-of-time compilation. We will also discuss the use of Just-In-Time (JIT)

compilation in both languages. In the end, I will analyze the compilation of the

ellipk and ellipe functions and discuss some possible solutions to speed up the

compilation.

3.2.1 Python compiling

Python is an interpreted language, it means that Python source code is executed

directly, line by line, by the Python virtual machine, known as the ”interpreter,” as

the program runs. This implies that there’s no need for a separate early translation

of the code into a standalone executable format before execution, as is the case with

some other languages like C or C++. This approach offer two main advantages:

13

Development Flexibility: Since there’s no separate compilation phase required, you

can write, modify, and test Python code directly within your development environ-

ment. This makes Python ideal for rapid prototyping and iterative development.

Ease of Use: Interpretation significantly simplifies the process of writing and debug-

ging code, as you can execute individual statements or blocks of code to immediately

see results.

However, there is a disadvantage. Interpretation tends to be slower than running

highly optimized native code because the interpreter has to analyze and translate

the code on each execution. This can result in reduced performance in applications

that demand intensive computations or high efficiency.

3.2.2 MATLAB compiling

MATLAB primarily uses ahead-of-time compilation so the code written in MAT-

LAB is translated into an intermediate form of code or native code during the

development phase before the program is executed. This process of ahead-of-time

translation often results in an executable file or a library that can be run indepen-

dently of the original source code. This comilation has two advantages:

Pre-execution Optimization: Thanks to ahead-of-time compilation, the code is opti-

mized before the actual program execution. This means that the code can be made

more efficient and faster in advance, tailored to the specifics of the computer’s hard-

ware architecture.

Independence from Source Code: Once the ahead-of-time compilation phase is com-

pleted, the result is an executable file or library that can be distributed and run on

other systems without the need to share the original source code. This simplifies

the distribution of MATLAB-based applications.

However before running a MATLAB program, you need to go through a compilation

process. This can entail some additional planning and longer development times

compared to the direct interpretation commonly found in Python.

14

3.2.3 Compilation Just in Time (JIT)

Just-In-Time (JIT) compilation[7] is an optimization technique used in program-

ming languages to improve code performance. It involves translating and optimizing

source code into native code during program execution. In other words, the code is

not translated entirely in advance but rather during execution. In the JIT compi-

lation there are several positive aspects:

• Dynamic Optimization: JIT compilation allows dynamic optimization of code

based on real-time analysis of execution conditions. This means that the

code can be optimized specifically for the hardware architecture and runtime

conditions.

• Reduced Latency: Since JIT compilation occurs in real-time, it can reduce

latency compared to ahead-of-time compilation, where the compilation phase

must be completed before execution.

• Adaptability: JIT compilation can focus on optimizing parts of code that are

frequently executed or resource-intensive, adapting to the program’s needs.

• Performance Improvement: JIT compilation is used to enhance code perfor-

mance, especially in applications that require intensive calculations or rapid

execution.

• Portability: JIT compilation enables writing source code in a high-level lan-

guage and executing it on different platforms without the need for recompi-

lation.

• Flexibility: JIT compilation can be selectively applied only to critical parts

of the code, allowing for development flexibility and reducing complexity.

15

3.3 ellipk and ellipe functions

This section presents the elliptic functions, in particular we will examine the ellipk

function and the ellipe function. Will be presented mathematical formulas of this

functions and the application of this in the MagLev Project. Furthermore will be

presented the reasons why more time was spent on these functions.

3.3.1 Elliptic functions in this project

Let’s thoroughly examine these functions because they are the cause of the Python

code running slower compared to MATLAB. The elliptic fuction are implemented

by the Python library Scipy.special.

In this project, the functions ellipk and ellipe are used within the functions:

calculate magnetic field, calculate base magnetic field,

calculate force and torque, and calculate base magnetic field.

In particular the elliptic function in the calculate magnetic field function are

applied for calculating essential parts of the magnetic field generated by an elec-

tric current system. These functions are necessary to obtain the radial component

(Brho) and the component along the z-axis (Bz) of the magnetic field.

ellipk and ellipe are used in calculate base magnetic field to calculate the

magnetic field from permanent magnets and solenoids in the magnetic levitation

system. These functions are use to determine the magnetic force generated by

these components.

ellipk and ellipe are used in calculate force and torque to calculate forces

and torques due to the magnetic field acting on a thin wire in the magnetic levi-

tation system. These functions help quantify the interaction between the thin wire

and the magnetic field.

In the end this elliptical function are used in calculate base magnetic field to

calculate parts of the magnetic field generated by permanent magnets and solenoids

in the magnetic levitation system that serve for determining how permanent mag-

nets and solenoids contribute to the total magnetic field.

16

3.3.2 What is an eliptic function?

Elliptic functions are mathematical tools used to understand and solve problems

involving shapes similar to ellipses. They are like ”special formulas” that help cal-

culate things like the lengths of curves or areas within ellipses. The complete elliptic

functions of the first and second kind, denoted as K(m)[9] and E(m)[8] respectively,

are examples of these special formulas and each serves a specific purpose.

3.3.3 ellipk

The complete elliptic function of the first kind, denoted as K(m), is defined as the

complete elliptic integral of the first kind:

K(m) =

∫︂ 2π

0

1√︁
1−m sin2(θ)

dθ

In this formula:

• ”m” is a parameter ranging from 0 to 1, which influences the shape of the

ellipse.

• The symbol θ represents the integration angle, varying from 0 to 2π (a full

circle).

• The function K(m) returns a value representing the length of one-quarter of

the ellipse, which is a quarter of the ellipse’s perimeter.

3.3.4 ellipe

The complete elliptic function of the second kind, denoted as E(m), is defined as

the complete elliptic integral of the second kind:

E(m) =

∫︂ 2π

0

√︂
1−m sin2(θ)dθ

In this formula:

• ”m” is a parameter ranging from 0 to 1, which influences the shape of the

ellipse.

17

• - The symbol θ represents the integration angle, varying from 0 to 2π (a full

circle).

• The function E(m) returns a value representing the area of one-quarter of the

ellipse, with a major semi-axis of 1 and a minor semi-axis of
√
1−m2.

3.4 Timing simulation

To understand how long the code takes to calculate the various parameters, we

calculated the actual execution time using the Python library time. Specifically we

analized the execution time of three main parameters: force, torque for multiple

etas and the magnetic field calculation.

1 # Calculate the force and torque for multiple etas

2 etas = np.random.rand (100, 12)

3 u = np.zeros (4)

4 start_time = time.time()

5 for eta in etas:

6 deta = maglevSystem(eta , u, params)

7 end_time = time.time()

8

9 print(end_time - start_time)

Listing 3.1: Time for calculating force and torque for muliple etas

18

1 # Compute and print the execution time for the

calculate_magnetic_field function

2 start_time = time.time()

3 b = calculate_magnetic_field(phi , rho , z, R, l, I, mu0 , N

)

4 end_time = time.time()

5

6 print(f"Execution time: {end_time - start_time} seconds")

Listing 3.2: Time for calculating magnetic field

The result of this time calculation is the seguent:

1 0.23845720291137695

2 Execution time: 0.3296694755554199 seconds

Listing 3.3: Time for calculating magnetic field

19

3.5 Solutions for python speed

In the following section, we will focus on various strategies to optimize Python code

in order to enhance its performance. We will explore the utilization of tools like

Numba[1] and Cython[10], the use of optimized libraries and code parallelization.

3.5.1 Numba

Numba[1] is a Python library that provides an efficient way to improve the perfor-

mance of Python functions through Just-In-Time (JIT) compilation.

Numba works by translating Python code into a format that can be executed more

quickly by the CPU or GPU. It uses a Just-In-Time (JIT) compiler to generate

optimized code.

I will then present an example of possible implementation of Numba in this project.

1 from numba import jit

2

3 @jit

4 def ellipk(x):

5 #implementation of ellipk

6 pass

7

8 @jit

9 def ellipe(x):

10 #implementation of ellipe

11 pass

Listing 3.4: Example of Numba implementation in MagLev Project

20

3.5.2 Cython

Cython[10] is a powerful tool for enhancing the performance of Python, similar to

Numba but with a slightly different approach. It is used to optimize Python code

by compiling it into C or C++ code and then creating native Python module ex-

tensions that can be executed more efficiently. Firstly, it’s necessary to annotate

the Python code with explicit data type declarations, specifying which types of

variables and function arguments will be used. These annotations provide crucial

information to Cython about the nature of data and allow the compiler to generate

highly optimized equivalent C code.

After that, the Cython code is written in a .pyx file. This file incorporates both the

original Python code, enriched with type declarations, and additional Cython code

to handle the conversion between Python and C types. When the .pyx file is com-

piled, Cython generates a native Python module, which is a binary file containing

the resulting C code.

In particular, Cython optimization is the elimination of Python’s dynamic type

overhead. In Python standard, variables can dynamically change type during pro-

gram execution. However, Cython allows for the explicit declaration of variable

types. This declaration enables the compiler to generate C code that directly works

with static data types, thus avoiding dynamic type overhead. The result is faster

code, as type checks during execution are no longer required, significantly acceler-

ating performance.

21

3.5.3 Library optimized

For optimizing performance in Python, a fundamental strategy involves the use of

specialized external libraries for calculating elliptic functions such as mpmath[3],

scipy [4], and sympy [11]. These functions play a significant role in numerous sci-

entific and engineering applications, often requiring high precision and, at times,

optimal performance.

Adopting external libraries like mpmath, scipy, and sympy represents a practical

approach to address these specific requirements. The mpmath library, in particular,

offers the ability to perform mathematical calculations with arbitrary precision, en-

suring extremely accurate results. Scipy, on the other hand, provides results with

standard precision but with a highly efficient implementation. Meanwhile, sympy

offers the possibility to obtain exact symbolic expressions for ellipk and ellipe, al-

lowing for sophisticated mathematical manipulations.

3.5.4 Code parallelization

In the process of optimizing the performance of our Python program, one of the

key strategies to consider is parallelization. This technique allows us to make the

most of the available processing resources on our system, speeding up computations

and reducing execution times. Parallelization is particularly useful when we need

to perform independent calculations on a large amount of data, as is the case with

calculations of the elliptic functions ellipk and ellipe.

Implementing parallelization in Python can be achieved using libraries such as mul-

tiprocessing or concurrent.futures. These libraries enable us to divide calculations

into smaller tasks and execute them in parallel on multiple cores or processes of our

computer.

22

Chapter 4

LQR simulation

4.1 Introduction to LQR Control

A LQR controller[14] is designed to optimally regulate linear dynamic systems,

minimizing a quadratic cost function with the aim of bringing the system to the

specified equilibrium point.

To apply the LQR controller, it is necessary to calculate some elements: a state

equation, a cost function, a linearizzation around an equilibrium poin and the op-

timal matrix K.

This controller utilizes the state equation to descri.be how the system evolves over

time without control actions. The cost function specifies control objectives by

weighing state variables and control inputs. Linearization around an equilibrium

point provides an approximate linear representation of the system. Once the opti-

mal matrix K is calculated, the LQR controller generates optimal control signals,

u(t), by using the difference between the current system state and the desired state.

23

4.2 MagLev’s LQR mathematical foundation

Let’s start with the state equation:

ẋ(t) = Ax(t) +Bu(t)

This is the coditions when t → ∞ and It is also where the model is linearized to

obtain the linear model used to find a good LQR gain. Where:

• x(t) represents the state vector of the system.

x(t) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0

0

zeq
...

0

0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
• u(t) represents the control input vector.

u(t) =

⎡⎢⎢⎢⎢⎢⎢⎣
0

0
...

0

⎤⎥⎥⎥⎥⎥⎥⎦
• A is the state dynamics matrix that represents how the system’s state variables

evolve over time in the absence of control inputs. It characterizes the natural

behavior of the system.

A =

⎡⎢⎢⎢⎢⎢⎢⎣
a11 a12 . . . a1n

a21 a22 . . . a2n
...

...
. . .

...

an1 an2 . . . ann

⎤⎥⎥⎥⎥⎥⎥⎦
24

• B is the control input matrix that represents how control inputs affect the

changes in state variables. It describes how the system responds to control

commands.

B =

⎡⎢⎢⎢⎢⎢⎢⎣
b11 b12 . . . b1m

b21 b22 . . . b2m
...

...
. . .

...

bn1 bn2 . . . bnm

⎤⎥⎥⎥⎥⎥⎥⎦
Another important part of LQR controller is the cost function. This cost function

is typically expressed as the sum of squares of state variables and control inputs

weighted by appropriate weight matrices Q and R:

J =

∫︂ ∞

0

(︁
x(t)TQx(t) + u(t)TRu(t)

)︁
dt

1. x(t) represents the state vector of the system at time t. It is the same x(t)

calculated previously.

2. u(t) represents the control input vector at time t. This one is also the same

as u(t) in the state equation.

3. Q is the state error weighting matrix. In this project the matrix Q is the

following:

Q =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1× 107 0 0 0 0 0 0 0

0 1× 107 0 0 0 0 0 0

0 0 1× 107 0 0 0 0 0

0 0 0 1× 101 0 0 0 0

0 0 0 0 1× 101 0 0 0

0 0 0 0 0 1× 102 0 0

0 0 0 0 0 0 1× 102 0

0 0 0 0 0 0 0 1× 103

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
25

4. R is the control signal weighting matrix. For this maglev system the matrix

R is the following:

R =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1× 100 0 0 . . . 0

0 1× 100 0 . . . 0

0 0 1× 100 . . . 0

...
...

...
. . .

...

0 0 0 . . . 1× 100

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
After having linearized the system to an equilibrium point we can move on to

calculate optimal gain matrix K that used to calculate control inputs as follows:

u(t) = −K(x(t)− xequilibrium)− uequilibrium

• K is the gain matrix obtained from the LQR controller.

• xequilibrium represents the desired equilibrium conditions of the system.

• uequilibrium represents the desired equilibrium inputs.

26

4.3 Implementing LQR Control in Python

In this section there are some code snippets for calculating various elements neces-

sary to simulate an LQR controller.

The parts of code that I implemented are the following:

1. The cost function

2. Linearization around an equilibrium point

3. The optimal K matrix

4. Control signals u(t)

4.3.1 Cost function

1 # Matrixes Q and R

2 Q = np.diag ([1e7]*3 + [1e1]*2 + [1e2]*2 + [1e3, 1e2 , 1e2

])

3 R = 1e-0 * np.eye(len(params[’solenoids ’][’r’]))

4

5 # Cost function

6 def cost_function(x, u):

7 return np.dot(x.T, np.dot(Q, x)) + np.dot(u.T, np.dot

(R, u))

Listing 4.1: Cost function

27

4.3.2 Linearization around an equilibrium point

1 def linearizeODE(dx, xLp , uLp):

2 n = len(xLp)

3 m = len(uLp)

4

5 A = np.zeros((n, n))

6 B = np.zeros((n, m))

7

8 delta = 1e-5

9 for k in range(n):

10 delta_vec = np.eye(n)[k] * delta

11 A[:, k] = (dx(xLp + delta_vec , uLp) - dx(xLp -

delta_vec , uLp)) / (2 * delta)

12 A = np.round(A, 5)

13

14 for k in range(m):

15 delta_vec = np.eye(m)[k] * delta

16 B[:, k] = (dx(xLp , uLp + delta_vec) - dx(xLp , uLp

- delta_vec)) / (2 * delta)

17 B = np.round(B, 5)

18

19 return A, B

Listing 4.2: Linearization around an equilibrium point

28

4.3.3 Optimal matrix K

1 # LQR

2 Ared = A[np.ix_([0, 1, 2, 3, 4, 6, 7, 8, 9, 10], [0, 1,

2, 3, 4, 6, 7, 8, 9, 10])]

3 Bred = B[[0, 1, 2, 3, 4, 6, 7, 8, 9, 10], :]

4

5 # Calculation of the optimal gain matrix K

6 Kred = np.round(lqr(Ared , Bred , Q, R), 3)

7 K = np.hstack ([Kred[:, :5], np.zeros((4, 1)), Kred[:,

5:], np.zeros((4, 1))])

Listing 4.3: Optimal matrix K

4.3.4 Control Signals u(t)

1 # Computing control inputs using the optimal gain matrix

K

2 uLp = np.zeros(len(params[’solenoids ’][’r’]))

3 u = -K @ (eta - etaLp) + uLp

Listing 4.4: Control Signals u(t)

29

30

Chapter 5

Simulation results

In this chapter I present the simulation results of the MagLev system.

The Python code in section 5.1 simulate the LQR controller, while the MATLAB

code in section 5.2 use the data from LQR simulation on Python to create a graph-

ical rappresentation of the MagLev system and the LQR controller.

It will be possible to notice that the consistency observed in the results of the two

simulations indicates that the MATLAB code has been accurately translated into

Python code.

In the end of this chapter the table 5.1 represents the parameters that I used in the

previous simulations.

31

5.1 Python simulation

The simulation in the figure 5.1 demonstrates the MagLev system in closed loop

with the LQR controller in Python. In particular, the three lines represents the

response of the three first states of eta, x (blue), y (orange) and z (green).

0.0 0.2 0.4 0.6 0.8 1.0
t

0.00

0.02

0.04

0.06

0.08

et
a

Figure 5.1: LQR controller on Python simulation

32

5.2 MATLAB simulation

In this section is showed a MATLAB simulation about the LQR controller of Ma-

gLev system using the data from previous simulation.

First of all it showed the MagLev system in the three-dimensional space figure 5.2.

The figure 5.3 represents the simulation about the Z coordinate of my system, the

figure 5.4 represents the coordinates about X and Y and the final figure 5.5 is showed

the parameters α and β that are the tilt angles in the X and Y directions.

Figure 5.2: MagLev system in three-dimensional space

33

Figure 5.3: Z coordinate on MATLAB simulation

Figure 5.4: X(blue) and Y(red) coordinates on MATLAB simulation

Figure 5.5: α/β parameters on MATLAB simulation

34

Table 5.1: Simulations parameters

Category Parameter
Value

1 2 3 4

Solenoid

x 0.02 0 -0.02 0

y 0 0.02 0 -0.02

z 0 0 0 0

r 0.01 0.01 0.01 0.01

l 0.02 0.02 0.02 0.02

nw 625

Permanent

x 0.03 0 -0.03 0

y 0 0.03 0 -0.03

z 0 0 0 0

r 0.01 0.01 0.01 0.01

l 0.012 0.012 0.012 0.012

J 1.22

Magnet

coordinate x y z

I 0.195∗0.0252∗

0.25

0.195∗0.0252∗

0.25

0.195∗0.0252∗

0.5

r 0.025

l 0.005

J 1.22

m 0.195

n 50

Physical
g 9.81

µ0 4π × 10−7

35

36

Chapter 6

Conclusion

6.1 Future applications

Looking in to the future, the framework of Maglev system control tool looks promis-

ing. I think to improve this framework it must be implementing (in addition to the

LQR controller) a Model Predictive Control (MPC), PID (Proportional-Integral-

Derivative) and other control system for the MagLev Project.

Furthermore this framework must be optimized applying the techniques mentioned

in section 3.5 for a better user experience. I think also it can be considered other

language to implement this software, for example Julia[2] that is popular scientific

programming language that uses JIT. The long-term goal is to have a working and

optimized framework for the analysis of magnetic levitation control that implements

various control systems and that it is capable of simulating more complex maglev

systems.

37

6.2 Final considerations

In this experience I had the opportunity to learn more about a magnetic levitation

system and its control. In particular I learned how the magnetic levitation system

available was apparently simple but in reality if you study it thoroughly you discover

that it is an extremely complicated and complex system.

I also had a possibility to study in detail both the control system part (through the

Python implementation of the LQR controller) and the entire compilation process

with the aim of optimizing the simulation software.

I had the opportunity to work with smart people from another country, so I had to

learn to work and communicate constantly in another language.

I also want to thank Professor Damiano Varagnolo, Hans A. Engmark and Kiet

Tuan Hoang for their constant availability which allowed me to contribute to this

project.

38

Bibliography

[1] Inc. Anaconda et al. Compiling Python code with @jit. url: https://numba.

readthedocs.io/en/stable/user/jit.html.

[2] JuliaLang.org contributors. Julia 1.9 Documentation. url: https://docs.

julialang.org/en/v1/.

[3] mpmath.org contributors. Python librari for arbitrary precision floating-point

arithmetic. url: https://mpmath.org/.

[4] scipy.org contributors. Scipy v1.11.3 Manual. url: https://docs.scipy.

org/doc/scipy/.

[5] Python Geeks. Python Compilers. url: https://pythongeeks.org/python-

compilers/.

[6] C. Poole Goldstein H. and J. Safko. “Classical Mechanics, 3rd Edition”. In:

(2002), pp. 142–144.

[7] Java Technology Edition IBM SDK. The JIT compiler. url: https://www.

ibm.com/docs/en/sdk- java- technology/8?topic=reference- jit-

compiler.

[8] The SciPy. scipy.special.ellipe. url: https://docs.scipy.org/doc/scipy/

reference/generated/scipy.special.ellipe.html.

[9] The SciPy. scipy.special.ellipk. url: https://docs.scipy.org/doc/scipy/

reference/generated/scipy.special.ellipk.html.

[10] Cython Development Team. Cython: C-Extensions for Python. url: https:

//cython.org/#documentation.

39

https://numba.readthedocs.io/en/stable/user/jit.html
https://numba.readthedocs.io/en/stable/user/jit.html
https://docs.julialang.org/en/v1/
https://docs.julialang.org/en/v1/
https://mpmath.org/
https://docs.scipy.org/doc/scipy/
https://docs.scipy.org/doc/scipy/
https://pythongeeks.org/python-compilers/
https://pythongeeks.org/python-compilers/
https://www.ibm.com/docs/en/sdk-java-technology/8?topic=reference-jit-compiler
https://www.ibm.com/docs/en/sdk-java-technology/8?topic=reference-jit-compiler
https://www.ibm.com/docs/en/sdk-java-technology/8?topic=reference-jit-compiler
https://docs.scipy.org/doc/scipy/reference/generated/scipy.special.ellipe.html
https://docs.scipy.org/doc/scipy/reference/generated/scipy.special.ellipe.html
https://docs.scipy.org/doc/scipy/reference/generated/scipy.special.ellipk.html
https://docs.scipy.org/doc/scipy/reference/generated/scipy.special.ellipk.html
https://cython.org/#documentation
https://cython.org/#documentation

[11] SymPy Development Team. How to Guides - SymPy 1.12 documentation.

url: https://docs.sympy.org/latest/guides/index.html.

[12] The University of Texas. Biot-Savart Law. url: https : / / farside . ph .

utexas.edu/teaching/355/Surveyhtml/node93.html.

[13] Inc. The MathWorks. Cartesian coordinates to polar or cylindrical. url: https:

//it.mathworks.com/help/matlab/ref/cart2pol.html.

[14] Inc. The MathWorks. Linear-Quadratic Regulator (LQR) design. url: https:

//it.mathworks.com/help/control/ref/lti.lqr.html.

[15] Inc. The MathWorks. Polar or cylindrical coordinates to Cartesian. url:

https://it.mathworks.com/help/matlab/ref/pol2cart.html.

40

https://docs.sympy.org/latest/guides/index.html
https://farside.ph.utexas.edu/teaching/355/Surveyhtml/node93.html
https://farside.ph.utexas.edu/teaching/355/Surveyhtml/node93.html
https://it.mathworks.com/help/matlab/ref/cart2pol.html
https://it.mathworks.com/help/matlab/ref/cart2pol.html
https://it.mathworks.com/help/control/ref/lti.lqr.html
https://it.mathworks.com/help/control/ref/lti.lqr.html
https://it.mathworks.com/help/matlab/ref/pol2cart.html

	Introduction
	Overview
	MagLev Project
	My contribution

	Mathematical models
	Calculation of Elliptic Parameter k2
	Calculation of Scaling Factor c
	Calculation of Elliptic Integrals
	Calculation of Complete Elliptic Integrals
	Calculation of base magnetic field, force and torque
	Utility functions
	Cartesian to polar function
	Polar to cartesian
	Calculate rotation matrix

	Differences between Python and MATLAB focusing on compilation
	Python vs MATLAB: code, structure and data types
	Syntax
	Code structure
	Data types

	Compiling
	Python compiling
	MATLAB compiling
	Compilation Just in Time (JIT)

	ellipk and ellipe functions
	Elliptic functions in this project
	What is an eliptic function?
	ellipk
	ellipe

	Timing simulation
	Solutions for python speed
	Numba
	Cython
	Library optimized
	Code parallelization

	LQR simulation
	Introduction to LQR Control
	MagLev's LQR mathematical foundation
	Implementing LQR Control in Python
	Cost function
	Linearization around an equilibrium point
	Optimal matrix K
	Control Signals u(t)

	Simulation results
	Python simulation
	MATLAB simulation

	Conclusion
	Future applications
	Final considerations

