
DEPARTMENT OF INFORMATION ENGINEERING

BACHELOR DEGREE IN COMPUTER ENGINEERING

Study and testing of the Falconn++ algorithm

Supervisor Candidate

Prof. Silvestri Francesco Zuech Riccardo

ACADEMIC YEAR 2022-2023

Dissertation date 21/11/2023

Abstract

The problem of nearest-neighbour search (NNS) is one of the most studied topics of data analy-

sis, seeing application in numerous fields, e.g., recommendation systems, web search, machine

learning, and computer vision.

There are several efficient solutions to address the problem of NNS in low dimensions, but

to overcome the ”curse of dimensionality” and build efficient solutions for high dimensions,

researchers have opted to use approximated approaches.

This thesis analyses Falconn++, a locality-sensitive filtering algorithm for the problem of

approximate nearest-neighbour search on angular distance. The strength of Falconn++ lies in a

filtering mechanism based on the theory of concomitants of extreme order statistics (CEOs) that

achieves higher quality candidates compared to previous hashing-based solutions.

iii

iv

Sommario

La classe di problemi di nearest-neighbour search (NNS) è uno degli argomenti più studiati

nell’analisi di dati, con applicazioni in numerosi ambiti quali recommendation systems, web

search, machine learning e computer vision.

Esistono diverse soluzioni efficienti al problema della NNS in basse dimensioni, ma per

costruire soluzioni che affrontino il problema in grandi dimensioni, superando così la ”maledi-

zione delle dimensioni”, la ricerca si è diretta verso approcci approssimati.

In questa tesi analizziamo Falconn++, un algoritmo di locality-sensitive filtering per risol-

vere la classe di problemi di nearest-neighbour approssimato in distanza angolare. La caratteris-

tica principale di Falconn++ è un meccanismo di filtraggio basato sulla teoria dei concomitanti

dell’estremo ordine (CEOs) che garantisce candidati di miglior qualità rispetto alle precedenti

soluzioni basate sull’hashing.

v

vi

Contents

1 Introduction 1

1.1 Locality-sensitive hashing . 3

1.2 Falconn . 3

1.2.1 Multi-probing . 5

1.3 Why Falconn++? . 5

2 Concomitants of Extreme Order statistics 7

2.1 Gaussian random projections . 7

2.2 CEOs for MIPS . 8

2.2.1 Concomitants of normal order statistics 8

2.2.2 Concomitants of extreme order statistics and random projections 9

2.2.3 An algorithm for MIPS . 11

2.3 Connection to Falconn . 13

3 Falconn++ 15

3.1 Locality-sensitive filtering (LSF) . 15

3.2 CEOs property applied to LSF . 16

3.3 Falconn++ . 17

3.3.1 Falconn++ and the unit sphere . 17

3.4 Add-Ons . 18

3.4.1 Scaling . 18

3.4.2 Multi-probing for indexing . 19

3.4.3 Multi-probing for querying . 20

3.4.4 Centering data points . 20

4 Experiments 21

4.1 Parameters selection . 21

4.2 Preparations . 22

4.2.1 Recall value . 23

vii

4.3 Experiment 1: testing the bounds on the optimal heuristics for parameters selection 23

4.3.1 Results discussion . 24

4.4 Experiment 2: testing the limit on improvement by increasing the number of

indexing probes . 27

4.4.1 Results discussion . 28

4.5 Experiment 3: testing the impact of the limit on scaling 31

4.5.1 Results discussion . 32

Bibliography 37

viii

List of Figures

1.1 An illustration of Falconn with r1, r2, r3. h(x) = h(z) = h(q) = r1, h(y) =

−r2 [3] . 4

2.1 A geometric intuition of CEOs: Among 4 Gaussian random vectors r1, r2, r3,

r4, the projections on r1 and r4, the closest and furthest vectors to q, preserve

the most inner product order and inverse order, respectively [8]. 8

2.2 Projections of x and q on D = 5 random Gaussian vectors [10]. 9

2.3 Projection of x and q on D Gaussian random vectors [10]. 10

2.4 Example of application of the CEOs method on solving a MIPS problem [10]. . 13

3.1 A comparison of ρ between Falconn++ and Falconn while fixing c = 1.5 and

varying r; and fixing cr =
√
2 and varying c. [3] 18

4.1 Performance of experiment 1: varyingD while maintaining the optimal heuris-

tic with iProbes. 25

4.2 Data structure size and indexing time for experiment 1: varying D while main-

taining the optimal heuristic with iProbes. 26

4.3 Distance difference for experiment 1: varyingD while maintaining the optimal

heuristic with iProbes. 26

4.4 Performance of experiment 2: increasing the value of iProbes 29

4.5 Data structure size and indexing time for experiment 2: increasing the value of

iProbes . 30

4.6 Distance difference for experiment 2: increasing the value of iProbes 30

4.7 Performance of experiment 3: testing the impact of the limit on scaling. 33

4.8 Data structure size and indexing time for experiment 3: testing the impact of the

limit on scaling. 34

4.9 Distance difference for experiment 3: testing the impact of the limit on scaling. 34

ix

x

Chapter 1

Introduction

The nearest-neighbour problem can be defined as follows: Given a collection of n points, build

a data structure that, when given a query point q, answers with the data point closest to q.

Solutions to this problem are a topic of interest, as we can represent features-rich objects

(e.g., images, products, audio, etc.) as points in Rd and use a distance metric to measure the

similarity between them. When we want the top-k closest data points to q the problem is also

referred to as the k-nearest-neighbour search (k-NNS).

There are several efficient solutions to address the problem of NNS when the dimension d

is low; however, they suffer from space complexity and/or query time being exponential in d,

providing a small improvement over a brute-force linear scanning approach. This problem is

referred to as ”the curse of dimensionality”.

In order to overcome ”the curse of dimensionality”, researchers opted to use approximation,

i.e. the algorithm is allowed to report points that are not necessarily the nearest but whose

distance is at maximum c times the distance from the query to its nearest points. In these cases,

we talk about the problem of approximate nearest-neighbour search (ANNS).

Given the large number of application fields, we want an indexing scheme that is ideal,

possessing the following properties:

• Accurate: the results of a query operation should be very close to the ones returned by the

brute-force linear scan approach.

• Time-efficient: a query operation should take sublinear time in the number of objects,

otherwise it cannot perform better than the brute-force solution

• Space-efficient: the data structure used for indexing should not require exponentially

more space than the dataset itself; ideally, it should be linear in the size of the data set.

For approximate high-dimensional similarity search, one of the most popular indexing meth-

ods is locality-sensitive hashing (LHS).

1

Since we represent objects as points in vector spaces and use the distances between them as

a similarity metric, we want to first spend some words on introducing the two principal distance

measures:

• Euclidean distance: the l2 norm of the difference between two points x,y ∈ Rd, that is:

∥x− y∥2 =

⌜⃓⃓⎷ d∑︂
i=1

|xi − yi|2

Points with a small Euclidean distance from one another are located in the same region of

the space.

• Angular distance: the angle between two objects as viewed from an observer. Points with

a small angular distance are located in the same general direction from the origin.

The angular distance is related to the cosine similarity: given two points x, y ∈ Rd, the

cosine similarity corresponds to their dot product divided by the product of their magni-

tudes.

Cosine similarity := cos θ =
x · y

∥x∥∥y∥
The relation between the angular distance and cosine similarity is as follows:

Angular distance Dθ :=
arccos (cos θ)

π
=

θ

π

When using the cosine similarity to calculate the angular distance, we perform the nor-

malised dot product between x and y.

In this work, we focus on the problem of nearest-neighbour search on the unit sphere: given

a set of pointsX ⊂ Sd−1 of size n and a query point q ∈ Sd−1, report the point p ∈ X such that

p = argminx∈X∥x− q∥.
The spherical case is important because, by placing ourselves on a unit sphere, the NNS on

Euclidean distance becomes equivalent to the NNS on angular distance [1] and therefore we can

formulate an equivalent definition of our problem where p = argmaxx∈Xx
⊤q.

It is important to keep in mind that placing ourselves on the unit sphere is just a useful

simplification to overlap the Euclidean distance and the angular distance, but in practice we are

not limited to points on a unit sphere, since we can always normalise themwhen strictly working

on angular distance.

We now explore the fundamentals of locality-sensitive hashing and then analyse Falconn [2],

an LSH-based approach for approximate nearest-neighbour search on angular distance. Lastly,

2

we introduce what Falconn++ offers to improve over Falconn [3].

1.1 Locality-sensitive hashing

Locality-sensitive hashing (LSH) is one of the most popular algorithms to perform an approxi-

mate nearest neighbour search in high dimensions, as it boasts a provable sublinear query time

[4].

Given a distance function dist(·,·), the definition of LSH is as follows:

Definition (LSH): For positive reals r, c, p1, p2 with 0 < p2 < p1 ≤ 1, c > 1, a family of

functionsH is called (r, cr, p1, p2)-sensitive if for uniformly chosen h ∈ H and all x, y, q ∈ Rd:

• if dist(x, q) ≤ r then PrH [h(q) = h(x)] ≥ p1

• if dist(y, q) ≥ cr then PrH [h(q) = h(y)] ≤ p2

In order to simplify the notation, from this point on we refer to x as a close point if dist(x, q) ≤ r

and to y as a far away point if dist(y, q) ≥ cr.

The basic LSH method processes a similarity search for a given query q by scanning all

buckets to which q has been hashed and adding all elements from them to a candidate set. Then

the candidate set is scanned to find the top-k closest points to q.

In order to minimise the probability of collision between far away points, a common ap-

proach is to concatenate l = O(logn) different LSH functions to form a new (r, cr, pl1, p
l
2)-

sensitive LSH family. Unfortunately, this also reduces the probability of collision between close

points. As a result, we need L = (1/pl1) hash tables to guarantee a high probability of collision

between close points.

Assuming pl2 = 1/n and ρ = ln(1/p1)/ ln(1/p2), it is necessary to use L = O(nρ) tables

for LSH to answer (c, r)-NN queries with constant probability by computing O(nρ) distances

in O(dnρ) time and using O(nd+ n1+ρ) space [1].

It can be shown that the exponent ρ, governing the complexity of an LSH algorithm, must

be ρ > 1/c2 − o(1) on the Euclidean distance given p2 ≥ 1/n [5].

The main issue with LSH approaches is the resulting indexing space, as different queries

require different values of r, hundreds of hash tables are needed to ensure that the query time is

not affected.

1.2 Falconn

Falconn [2] is an LSH-based solution using a cross-polytope LSH family on angular distance, i.e.

the cosine similarity. Its strength lies in achieving an optimal exponent ρ ∼ 1/c2 [6] and, thanks

3

Figure 1.1: An illustration of Falconn with r1, r2, r3. h(x) = h(z) = h(q) = r1, h(y) = −r2
[3]

to multi-probing, overcoming the bottleneck on indexing space of basic LSH-based solutions.

Given D random vectors ri ∈ Rd, i ∈ [D] whose coordinates are randomly selected from

the standard normal distributionN(0,1) and sgn(·) as the sign function, the cross-polytope LSH
family uses the index of the closest or furthest random vector as the hash value and, in particular,

it uses cosine similarity to locate this vector.

Since we restricted ourselves to the unit sphere, w.l.o.g., we can assume that r1 =

argmaxri

⃓⃓
q⊤ri

⃓⃓
and then h(q) is calculated as follows:

h(q) =

⎧⎨⎩r1, if sgn(q⊤r1) ≥ 0

−r1, otherwise

Essentially, the geometric intuition behind Falconn is that, given D random vectors, if

h(q) = r1 (or h(q) = −r1) then q is closest (or farthest) to r1, as shown in Figure 1.1. If x

and q are similar, then they tend to be closest or farthest to the same random vector and, there-

fore, to be hashed into the same bucket corresponding to that random vector.

Since Falconn also uses the negatives of the D random vectors as hash values, it ends up

with a total of 2D hash buckets for each hash function. Therefore, when using the concatenation

trick discussed in Section 1.1, it builds a total of (2D)l buckets in each hash table.

4

1.2.1 Multi-probing

Multi-probing [7] is a method used to reduce the number of hash tables needed, and therefore

the space occupation, while preserving time efficiency and high collision probability for close

points.

The idea is to use a probing sequence to inspect multiple buckets that are likely to contain

the nearest neighbours of a query q. Given the property of locality-sensitive hashing, if an object

is close to q but not hashed in the same bucket as q, then it must be in a bucket that is ”close by”.

The probing sequence can be independent from the query (e.g. step-wise probing), or it

can be derived from specific characteristics of the query based on how the hash value of q is

computed.

Falconn uses the latter approach, considering the next closest or farthest random vectors to

generate the probing sequence for each hash table [3]. Looking at Figure 1.1, since q is next

closest to −r2, the bucket corresponding to −r2 will be the next probe. In particular, given

a fixed total number qProbes of query probes, Falconn ranks the Gaussian random vectors ri

by computing the distance between the projection values of q on them, therefore constructing

the probing sequence. Taking Figure 1.1 as a reference, the ranking score of r2 for probing is

|q⊤r1| − |q⊤r2|.

1.3 Why Falconn++?

Falconn is an LSH-based approach to ANNS on angular distance with optimal ρ and reduced

indexing space.

Unfortunately, we observe that multi-probing does not scale well on high-recall regimes.

Since in real-world data sets the distance gaps between nearest neighbours are small, we need

a very small approximation factor c. This requirement degrades performance as ρ → 1 for

small values of c. That means qProbes and the number of candidates need to be increased,

consequentially increasing the number of far away points in the probed buckets different from

the query bucket.

To improve Falconn and, in general, any LSH-based solution for ANNS on angular distance,

Falconn++ proposes a locality-sensitive filtering mechanism that can efficiently filter out far-

away points in any bucket before querying. The proposed mechanism is also locality sensitive,

as it filters out far-away points with high probability and close points with low probability.

In particular, Falconn++ uses the theory of concomitants of extreme order statistics to build

a locality-sensitive filtering mechanism for angular distance on top of an approach similar to

Falconn [3], [8].

5

6

Chapter 2

Concomitants of Extreme Order statistics

The Concomitants of Extreme Order statistics (CEOs) is a dimensionality reduction technique

born in the context of the problem of approximate maximum inner product search (MIPS) [8].

The maximum inner product search problem is defined as follows: Given a data set X ⊂ Rd×n

of size n and a query point q ∈ Rd, report the point p ∈ X that has the maximum inner product,

i.e. p = argmaxx∈Xx
⊤q.

Building on the theory of the concomitants of extreme order statistics [9], the CEOs method

uses few projections associated with the extreme values of the query signature to estimate inner

products.

Intuitively, theMIPS problem hasmany points of connection to the NNS problem on angular

distance; in the next chapter, we indeed see how Falconn++ uses the CEOs property to improve

on previous LSH-based solutions for NNS.

In this chapter, we introduce the building blocks of the CEOs technique for MIPS and pro-

vide a high-level intuition on the method; then we also introduce the points of connection with

Falconn and in the next chapter we finally show how it is used in Falconn++.

2.1 Gaussian random projections

When talking about random projections, we refer to a technique used to reduce the dimension-

ality of a set of points in the Euclidean space. As a dimensionality reduction technique, it is a

building block for CEOs, and therefore also Falconn++.

Given a set of pointsX ∈ Rd×n and a Gaussian random matrix R ∈ RD×d, whose elements

are randomly sampled from the normal distribution N(0,1), we define the signature of x ∈ X

as the projection of x on the random vectors of the matrix, calculated by Rx.

7

Figure 2.1: A geometric intuition of CEOs: Among 4 Gaussian random vectors r1, r2, r3, r4, the

projections on r1 and r4, the closest and furthest vectors to q, preserve the most inner product

order and inverse order, respectively [8].

2.2 CEOs for MIPS

The CEOs method is built on top of Gaussian RP, as we still applyD Gaussian random projec-

tions to compute the signatures for data and queries. On a high-level intuition, the key difference

lies in using only a subset s ≪ D of projections to estimate inner products. In particular, this

subset s of random projections is associated with the sth extreme values of the query signature.

Looking at Figure 2.1, we get a quick intuition about CEOs: among D random vectors, the

closest and farthest to the query q preserve the best inner product order between data points.

The strength of the CEOs method lies in the usage of only the small selection of s projec-

tions among the D projections of the data signatures (and the sign of these projections of the

query signature), allowing us to precompute and rank inner product estimators for all data before

querying. For example, in Figure 2.1, we can precompute and rank x⊤
j r1, 1 ≤ j ≤ 3 and then

simply return x1 when we find r1 as the closest random vector to q.

2.2.1 Concomitants of normal order statistics

Let (Qi, Xi), i = 1,...,D be independent pairs of variates, ordered by Qi. Then Qi is called the

ith order statistics, while Xi is called the concomitant of the ith order statistics.

In particular, when studying the asymptotic behaviour of the concomitants as D → ∞, we

talk about the theory of concomitants of extreme order statistics.

8

Figure 2.2: Projections of x and q on D = 5 random Gaussian vectors [10].

2.2.2 Concomitants of extreme order statistics and random projections

Since the theory of concomitants of extreme-order statistics is a complex topic, we support the

theoretical discussion with a practical example: Imagine that we have a set of images with

different subjects, e.g., aeroplanes, boats, dogs, etc., and we have a function that maps an image

to a point in R2 based on the subject of the image; then, given a query image q, we can use a

similarity metric, i.e. the inner product, to measure the similarity between the subject of q and

the subjects of other images from the set. Our final goal is to obtain an inner product estimation

process (that is, our similarity metric) between a query image q and another image x that does

not depend directly on q, so we can use it to build an efficient MIPS solver. In a more formal

way: suppose that we have a set of images represented as points in a 2-dimensional space and,

given two points x, q from this set, our goal is to get an estimate of the inner product x⊤q, i.e.,

a similarity metric between image x and q.

Given D Gaussian random vectors ri ∈ Rd and x, q ∈ Rd, let Qi = q⊤ri and Xi = x⊤ri.

For simplicity, assume ∥q∥ = 1.

Therefore, we have:

Qi ∼ N(0, 1), Xi ∼ N(0, ∥x∥2).

Essentially, we project x and q ontoDGaussian random vectors and obtain projection values

as variatesQi andXi, Figure 2.2 describes this operation in our example with the set of images,

where x and q are images of boats.

From the values of Xi, Qi for each Gaussian random vector ri, we construct D bivariate

pairs (Qi, Xi) from N(0, 0, 1, ∥x∥2, ρ) where ρ = x⊤q/∥x∥.
Sorting theD pairs (Qi, Xi) by theQi values, we form the order statistics, whereQ(1) is the

first (maximum) order statistics and X[1] is the concomitant of the first order statistics.

Figure 2.3a represents the situation in our example: we pair the projection values of q and

x on the same random vector ri together and then sort these pairs in descending order by the

value of Qi. We then call first-order statistics the max{Qi} (which we refer to as Q(1) from

now on) and concomitant of the first-order statistics theXi (nowX[1] as above) associated with

9

(a) D = 5: we form the order statistics. (b) D → ∞: we consider the extreme order statistics.

Figure 2.3: Projection of x and q on D Gaussian random vectors [10].

Q(1), essentially the first pair in descending order contains the first-order statistics Q(1) and its

concomitant X[1].

Then, when D is sufficiently large, Q(1) is the extreme order statistics and X[1] is the con-

comitant of the extreme order statistics.

It is provable that when D → ∞ [8]:

E[Q(1)]
D−→

√︁
2 logD, V ar[Q(1)]

D−→ 0

E[X[1]]
D−→ x⊤q

√︁
2 logD, V ar[X[1]]

D−→ ∥x∥2 − (x⊤q)2

Since theGaussian distribution has the property of being symmetric, we can both useX[1] and

−X[D], respectively, the concomitant of the extreme order of the maximum Q(1) and minimum

Q(D).

Furthermore, we can use more concomitants as they are asymptotically independent and

normal [9]:

X[i]
D−→ N(x⊤q

√︁
2 logD, ∥x∥2 − (x⊤q)2) 1 ≤ i ≤ s0

And, as already said, by the Gaussian distribution symmetry, we can use both X[i],−X[D−i+1]

where 1 ≤ i ≤ s0.

In our example, we are now in the situation described in Figure 2.3b: we have a total of

s = 2s0 pairs formed by the s0 maximum extreme order statistics and the s0 minimum extreme

order statistics (and their concomitants).

To achieve our goal, we use those s = 2s0 concomitants to compute an estimate of x⊤q

10

using the following unbiased estimator [8]:

s0∑︂
i=1

X[i] −
s0∑︂
i=1

X[D−i+1]

It is important to note that the estimated value of the inner product x⊤q does not use the

value of the signature of q.

Recalling our example, this process allows us to get an estimate of the similarity between

image x and image q; furthermore, as we see in the next section, this property is also a powerful

tool that allows us, for example, to ”precompute similarity” between images before querying.

2.2.3 An algorithm for MIPS

It is provable that, thanks to the properties of the concomitants of the s0th extreme order applied

toD random projection, we can precompute estimates of all n inner products for any query and

achieve an optimal MIPS solver [8].

In particular, since the estimation process only uses the query signature order and not its

value, after performing Gaussian RP on the data points we can precompute and rank all possible

combinations of s = 2s0 concomitants before querying.

From the above observations it also follows that the assumption of ∥q∥ = 1made in Section

2.2.2 does not bear limitations on the CEOs property, since the estimator does not depend on

the query signature value. Therefore, the CEOs property holds for the general inner product.

Eventually we end up with a O(1) index lookup with recall guarantees: CEOs propose Al-

gorithm 1 for indexing and Algorithm 2 for querying. [8, Section 3].

Algorithm 1 CEOs: Indexing [8, Algorithm 1]

1: procedure INDEXING(Data matrix Xd×n, random Gaussian matrix RD×d)

2: Up-project X into D dimensions by computing X ′ = RX
3: For each pair of sets I, J , each containing distinct s0 projection indexes among D up-

projections and I ∩ J = ∅, partially sort
∑︁

i∈I X
′
i −

∑︁
j∈J X

′
j to add top-k indexes with the

largest values to the list LIJ .

4: return O((D/s)s) lists LIJ where I, J correspond to the concomitants of the s0 maxi-

mum and minimum order statistics

Let us introduce an example to give a better high-level understanding of how the algorithms

proposed for the optimal MIPS solver work. Recalling the example from Section 2.2.2: suppose

that we have a set of images represented as points in a 2-dimensional spaceX ∈ R2 and we want

to perform a maximum inner product search on the data set for a certain query image q ∈ R2,

that is, a similarity metric between images. The process is divided in two phases:

11

Algorithm 2 CEOs: Querying [8, Algorithm 1]

1: procedure QUERYING(query point q,Data matrix Xd×n, random Gaussian matrix RD×d,

index data structure 1)

2: Up-project q into D dimensions by computing q′ = Rq.
3: Compute the sets I, J , each of s0 projection indexes corresponding to s0 maximum and

minimum values of q′.
4: return the top-k points from the list LIJ .

1. Indexing, Algorithm 1: build a data structure containing estimates of the top-k inner prod-

ucts for any possible future query.

2. Querying, Algorithm 2: return the precomputed top-k for that query from the data struc-

ture.

For the indexing phase, from Algorithm 1 line 2, we start by projecting the data points

(x ∈ X) onto our D random Gaussian vectors ri, obtaining Xi = x⊤ri, where i is the index

of the random Gaussian vector. Then, on line 3, for each possible set of 2s0 different indexes

I and J (such that I ∩ J = ∅), we use the CEOs property discussed in the previous section to

precompute estimates of the top-k inner products for any valid pair (I, J) and save them in a

data structure.

Recalling the content of Section 2.2.2, we precompute estimates for each possible pair (I, J)

because I represents the set of random vector indexes associated with the s0 maximum order

statistics for the projection value of query q on the D Gaussian random vectors, while J repre-

sents the set of random vector indexes associated with the s0 minimum order statistics. Essen-

tially, indexes i ∈ I are the s0 maximum order statistics for Qi = q⊤ri, while indexes j ∈ J

are the s0 minimum order statistics for Qj = q⊤rj . Therefore, since we precompute the top-k

estimation values for each possible pair (I, J) and save them in a data structure, we can im-

mediately obtain an estimate of the top-k inner product values for any query q. Algorithm 2

implements the querying phase using this process: It first up-projects the query point q on the

D Gaussian random vectors to compute the pair (I,J), and then uses the pair (I, J) to return the

associated top-k points from the data structures built in the indexing phase (Algorithm 1).

Look at Figure 2.4 (extending the example introduced in Section 2.2.2): with s0 = 2, the

specific pair I = {1, 3}, J = {2, D − 1} refers to the random vectors r1, r3 as the s0 = 2

maximum order statistics for the projection values of q and to the random vectors r2, rD−1 as

the s0 = 2 minimum order statistics. After computing the pair (I, J) for our query q, we can

directly obtain the estimated value of the top-k(k = 1) inner product x⊤
1 q = 2, since we calculate

it beforehand using the estimator from Section 2.2.2.

12

Figure 2.4: Example of application of the CEOs method on solving a MIPS problem [10].

2.3 Connection to Falconn

Keeping in mind that CEOs is a similarity estimation technique, rather than a hashing one, we

can still see many points of connection with Falconn.

First of all, they both share the usage of random projections; in particular Falconn uses the

top-1 closest or farthest random vector index as the hash value for a query q, while CEOs uses

the projections values of the data set points on the closest and farthest s0 random vectors to

estimate the maximum inner product.

Another point of connection lies in the fact that Falconn’s multi-probing likely probes the

buckets corresponding to the 2s0 random vectors closest or farthest to q. Since the inner product

order is well preserved on the projections onto these 2s0 vectors, applying the CEOs property,

we can keep only a small fraction of number of points with the largest projection values in

Falconn’s buckets [3].

Referring to Figure 1.1, we have a high level intuition of the connection by observing the

following:

• Falconn: If r1 = argmaxri

⃓⃓
q⊤ri

⃓⃓
, then:

– use r1 corresponding to Q(1) index as hash value

– use Q(i) and Q(D−i) as probing buckets where i = 1, ..., s0

• CEOs: If r1 = argmaxri

⃓⃓
q⊤ri

⃓⃓
, then:

– use X[1] = x⊤r1 to estimate x⊤q

– use X[i] and X[D−i] as estimators of x⊤q where i = 1, ..., s0

13

Essentially, Falconn++ builds on top of Falconn’s LSH and then uses the the CEOs property

to construct a locality-sensitive filtering mechanism to further save indexing space while still

keeping a high recall ratio.

Finally, it is important to note that the CEO property works on the general inner product, as

we use this observation in the next chapter.

14

Chapter 3

Falconn++

In the Introduction, we talked about how Falconn++, through usage of a locality-sensitive filter-

ing mechanism, can improve on Falconn’s approach, saving on indexing space and enhancing

query performance.

While still using the same LSH technique of Falconn, on a high level the key difference is

that Falconn++ applies the CEOs property to filter out far away points from each bucket before

querying.

In this chapter, we discuss the concept of locality-sensitive filtering and the role of the CEOs

property. Finally, we introduce Falconn++ as a combination of LSF with CEOs and the cross-

polytope LSH of Falconn and discuss some practical add-ons that significantly improve perfor-

mance.

3.1 Locality-sensitive filtering (LSF)

We call locality-sensitive filtering (LSF) a mechanism that can keep in any hash bucket close

points with high probability and far away points with low probability. The definition of LSF is

as follows [3]:

For positive r, c, q1, q2 ∈ R, 0 < q2 < q1 ≤ 1, c > 1, given x, y in the bucket h(q)where h is

randomly chosen from a LSH family, an LSFmechanism is a filter with the following properties:

• if dist(x,q) ≤ r, then Pr[x is not filtered] ≥ q1

• if dist(y,q) ≥ cr, then Pr[y is filtered] ≤ q2

Applying LSF to the buckets of any (r, cr, p1, p2)-sensitive LSH gives new collision proba-

bilities between data points, e.g., x, y, and query points, e.g., q. In particular, we can state the

following:

15

• Pr[x is not filtered, h(x) = h(q)] ≥ q1p1

• Pr[y is filtered, h(y) = h(q)] ≤ q2p2

On top of this assume that LSF has the property ln(1/q1)/ ln(1/q2) ≤ ρ [3].

In the above statements lies the theoretical strength of Falconn++: after applying locality-

sensitive hashing and filtering, we obtain a lower upper bound on the probability of collision

between far away points (q2p2 < p2).

Obviously, this comes at a cost, as the lower bound on the probability of collision between

close points has also been lowered (q1p1 ≤ p1), forcing us to use a greater number of hash tables

O(1/q1p1) as opposed to the standard LSH O(1/p1). In practice, the additional hash tables

required do not take up more space when indexing, and actually space usage is improved: by

applying our filter after hashing, we remove far away points from the buckets, and, as close

points are often less than far away points, we end up having significantly fewer points in the

buckets of each hash table.

In summary, thanks to the combination of LSH and LSF, we end up with a new ρ′ such that:

ρ′ =
ln(1/q1p1)

ln(1/q2p2)
≤ ρ,

resulting in improvements in query response time and indexing space usage over standard LSH.

3.2 CEOs property applied to LSF

The improvement over standard LSH methods, like Falconn, is not without its challenges, as

our chosen LSF mechanism must have ρ′ ≤ ρ ≈ 1/c2 to be worth the trouble. By using the

CEOs property to build its filtering mechanism, Falconn++ achieves this condition.

Given sufficiently largeD random vectors ri, without loss of generality (recall Section 1.2),

we assume h(q) = r1 = argmaxriq
⊤ri. Let X = x⊤ri, Y = y⊤ri be random variables

corresponding to x, y in the bucket h(q).

From being in the unit sphere (∥x∥, ∥y∥ = 1) and the property of CEOs [8], we have:

X ∼ N(x⊤q
√
2 lnD, 1− (x⊤q)2) Y ∼ N(y⊤q

√
2 lnD, 1− (y⊤q)2)

Exploiting this property, we obtain the following filtering mechanism [3]:

Given a threshold t = (1− r2/2)
√
2 lnD, in each bucket, we keep any point x if x⊤r1 ≥ t

and discard any point y if y⊤r1 ≤ t.

The following theorem shows that this filtering mechanism is locality-sensitive [3, Section

3.2 - Theorem 1]:

16

Given sufficiently large D random vectors and c > 1, the proposed filtering mechanism

asymptotically has the following properties:

• if ∥x− q∥ ≤ r, then Pr[x is not filtered] ≥ q1 = 1/2

• if ∥y − q∥ ≥ cr, then Pr[y is not filtered] ≤ q2 = 1
γ
√
2π

exp(−γ2/2) < q1 where γ =
cr(1−1/c2)√

4−c2r2
·
√
2 lnD

Given a sufficiently large number D of random vectors, this LSF mechanism achieves

ln(1/q1)/ ln(1/q2) arbitrarily smaller than 1/c2.

3.3 Falconn++

The Falconn++ algorithm descends from combining the cross-polytope LSH of Falconn with the

LSFmechanism derived from the CEOs property. Essentially, Falconn++ performs hashing like

Falconn, but for each bucket it filters out potentially far away points if their projection values

are smaller than t = (1− r2/2)
√
2 lnD.

From [3, Section 3.2 - Theorem 1], we have:

ln (1/q1) = ln 2,

ln (1/q2) = ln (
√
2π) + ln γ + γ2/2 where γ =

cr(1− 1/c2)√
4− c2r2

·
√
2 lnD

For a largeD, we have ln (1/q2) ≈ γ2/2 = (1−1/c2)2

4/c2r2−1
· lnD. The new exponent ρ′ of Falconn++

is strictly smaller than the exponent ρ of Falconn since:

ρ′ =
ln(1/q1p1)

ln(1/q2p2)
≈

ln 2
lnD

+ 1
4/c2r2−1

(1−1/c2)2

4/c2r2−1
+ 1

4/c2r2−1

≈ 1

1 + (1− 1/c2)2
· 4/c

2r2 − 1

4/r2 − 1
≤ ρ

In particular, for small c, ρ ≈ 1/c2 and ρ′ ≈ 1/2(c2 − 2 + 1/c2).

Figure 3.1 reports a clear gap between Falconn and Falconn++ exponents.

3.3.1 Falconn++ and the unit sphere

Recalling the content of Chapter 1, placing ourselves on the unit sphere is an important special

case, since the Euclidean and angular distance overlap.

However, by normalising the points Falconn++ solves the ANNS problem on angular dis-

tance even outside the unit sphere without any loss of accuracy. Obviously, the overlap between

the Euclidean and the angular distances does not hold outside the unit sphere case.

17

Figure 3.1: A comparison of ρ between Falconn++ and Falconnwhile fixing c = 1.5 and varying
r; and fixing cr =

√
2 and varying c. [3]

3.4 Add-Ons

In this section, we discuss some practical implementations and tricks that improve the perfor-

mance of Falconn++.

3.4.1 Scaling

When introducing Falconn++ and its filtering mechanism in the previous sections, we define a

threshold t = (1 − r2/2)
√
2 lnD that entails an improvement over Falconn in both the use of

index space and the response time to queries. But, as we can see from both intuition and the

formula, the threshold depends on the distance to the nearest neighbour r. This detail makes it

difficult to find a global optimal t because different queries need different values for r.

In order to overcome the difficulty of selecting t, Falconn++ uses a scaling factor 0 < α < 1

to control the fraction of number of points in a bucket [3]. After hashing all the points from the

data set, for any bucket of size B corresponding to the random vector ri, we keep only the

top-(αB) points with the larger projection values x⊤ri in the bucket.

As large buckets correspond to dense areas and smaller buckets to sparse areas around ri,

using a scaling factor α is conceptually similar to selecting different values of t in different

density areas: larger dense buckets get more potentially far away points filtered out than smaller

sparse buckets, mimicking t getting bigger for dense areas (which need small r) and smaller

for sparse areas (which need large r). This makes the LSF mechanism of Falconn++ a data-

dependent approach without a training phase.

Intuitively, we can argue that we do not need to scale small buckets since we risk losing

18

high-quality candidates. From this observation we place a limit on scaling, i.e. giving a lower

bound k (as in top-k ANNS) on the number of points in each bucket. Obviously this entails

increased space usage; however, it achieves a better recall-speed trade-off given the same space

complexity configuration [3].

3.4.2 Multi-probing for indexing

Recalling from Section 1.2.1, multi-probing is based on the intuition that randomly perturbing

a query point q generates many perturbed objects that tend to be close to q and, consequentially,

be hashed into the same bucket with q’s nearest neighbours [7], [11].

Obviously, this intuition is symmetrical: In the reverse case, when we perturb q’s nearest

neighbours, we generate perturbed objects that tend to be hashed into q’s bucket. This property

can be used for indexing by hashing each data set point into multiple ”close” buckets, potentially

improving the query performance.

One downside to applying this technique is pretty obvious: let iProbes be the indexing

equivalent to qProbes, the size of each hash table grows from n to iProbes · n, and therefore

this technique is usually useless in practise. Additionally, we recognise another downside of

this technique in the intuition that high values of iProbes dampen the accuracy of the buckets

by adding points that are increasingly far away.

However, this technique of multi-probing for indexing shines when applied to Falconn++,

which has the capacity to rank and filter out points in its buckets thanks to the CEOs property.

Falconn++ can use the technique to improve the precision of its query responses without

impacting its indexing space usage, as far away points are filtered out. It is easy to note that

the amount of space used remains unchanged: after projecting a point x onto the D Gaussian

random vectors, we add x into the iProbes buckets corresponding to the top-iProbes closest or

furthest random vectors ri to x and then further scale each bucket by iProbes times, this way

keeping the number of points in each hash table to αn[3]. Actually, the situation is trickier when

we apply the limit on scaling technique, and in Chapter 4 we discuss the relation between them.

However, we can recognise a limit to the improvement in query performance achieved by

increasing iProbes: After a certain threshold, the points probed for indexing are likely to be

added to farther and farther buckets, eventually being filtered out with high probability. In

Chapter 4 we see a practical experiment that highlights this behaviour.

In Algorithm 3 we can see a pseudo code implementation of the technique in Falconn++.

19

Algorithm 3Multi-probing for indexing in Falconn++ [3]

1: procedureMULTI-PROBE INDEXING(X,α,D random vectors ri, iProbes)
2: for each x ∈ X do

3: Compute top-iProbes vectors ri s.t.
⃓⃓
x⊤ri

⃓⃓
is largest.

4: Add x to the iProbes buckets corresponding to these iProbes vectors.

5: For each bucket of size B corresponding to ri, keep top-(αB/iProbes) points with the
largest absolute projection values on ri.

3.4.3 Multi-probing for querying

In Section 1.2.1, we see how Falconn builds a query-dependent probing sequences for multi-

probing. In Chapter 2 we see the connection between Falconn and the CEOs technique and

discuss how Falconn likely probes the 2s0 buckets corresponding to the random vectors ri closest

and furthest to the query q on each table.

Falconn++ in his multi-probing criteria for querying is quite similar to Falconn: it uses a

query-dependent probing sequence and probes up to 2s0 buckets corresponding to the random

vectors ri closest and furthest to the query q. But, unlike Falconn, Falconn++ exploits the CEO

property (which asymptotically holds for the 2s0 closest and furthest random vectors to q) by

ranking the probing sequences based on
⃓⃓
q⊤ri

⃓⃓
where ri is the random vector corresponding to

the probing bucket [3].

3.4.4 Centering data points

As Falconn++ is an instance of Falconn, it does not perform well when data points are skewed

on specific areas of the sphere; that is because most of the points will be hashed into the same

few buckets. To avoid this occurrence, Falconn++ artificially centers the data points [3].

Taking c =
∑︁

i xi/n as the center of the data set X , we map xi − c to x′
i and therefore

diverge X to the whole sphere, solving the problem.

The main doubt that might arise from using this trick comes from observing that ∥x′
i∥ ̸= 1,

but, as seen in Chapter 2, the asymptotic property of CEOs holds for the general inner product,

and it is not restricted to the unit sphere [8]. Additionally, after centering, argmaxx∈Xx
⊤q =

argmaxx′∈Xx
′⊤q and, therefore, all the previous statements still hold.

20

Chapter 4

Experiments

For all of the experiments in this chapter, we use the C++ implementation of Falconn++, avail-

able at https://github.com/ninhpham/falconnlsf, on the University of Padova’s ”Algo” machine.

In particular, we want to test the characteristic features of the algorithm in three experiments

by observing the following metrics:

• The trade-offs between recall values and query time.

• The trade-offs between recall values and queries answered per second.

• The memory usage of the data structure used.

• The indexing time.

• The average distance difference from the queries between Falconn++ topK and the true

topK for different recall values.

For each experiment, we look at the results of n batches, where each batch represents 20 runs

of the algorithm for a specific parameter selection with qProbes = 1000i, i = 1,...,20 (qProbes

governs the desired recall rate).

As our dataset we use Glove200, available at https://github.com/erikbern/ann-benchmarks/

and set k = 20 in all our experiments. To reduce noise, all results are the average of 3 runs of

the algorithm, and for each run, we extract 1000 points at random from the test set to build our

query set.

4.1 Parameters selection

There are many parameters that contribute to the performance of Falconn++: number of random

vectorsD, scaling factor α, number of tablesL, number of indexing probes iProbes and number

of query probes qProbes [3].

21

First of all, it is important to cite that the implementation of Falconn++ we use concatenates

2 LSH functions and, as each hash function returns 2D hash values, the total number of buckets

on a hash table is 4D2. As we apply multi-probing for indexing, the number of points in each

table is n · iProbes. Additionally, we expect that the iProbes points probed for indexing are

equally distributed in the 4D2 buckets, so each bucket has n · iProbes/4D2 points.

Furthermore, recalling the content of Section 3.4.1, we keep max(k, αB/iProbes) points

in each bucket.

As we want to have approximately k points in each bucket, the optimal heuristic proposed

by Falconn++ is as follows: Set D and iProbes so that k ≈ n · iProbes/4D2 [3]

In order for the LSF property to hold, we also need a sufficiently large D: as we work

on a high-dimensional data set with large d, D ≈ 2⌈log2 d⌉ suffices [3]. The intuition behind

this formula is that approximately we need a random vector for each dimension of the data set;

e.g., if we are working on Glove200, since d = 200, we want D ≈ 28 = 256 as log2(d) ≈
7.64. Obviously, higher values of D and iProbes achieve a better recall-query time trade-off

by sacrificing memory usage, due to the increased size of the hash tables.

In terms of the scaling factor α, thanks to the scaling limit trick, the best performance is

obtained with α = [0.001, 0.1] (converted to percentage 0.1 = 10%)[3].

It is interesting to note that, when α = 1 and iProbes = 1, essentially Falconn++ regresses

to Falconn.

Finally, the values of L and α are used to govern the desired memory usage, while the role

of qProbes is to obtain the desired recall values.

4.2 Preparations

Before we focus on our experiments, we want to spend some words on the steps needed to run

them:

1. We convert the Glove200 data set from the .hdf5 format to .txt using the Python module

”h5py”, by doing so we obtain a train set and test set in R200.

2. The train and test sets must be normalised, as the implementation of Falconn++ we use

works on the unit sphere.

3. We need to extract 3 query sets of 1000 random points from the normalised test set, one

for each run of the experiments.

4. We need to compute the top-k = 20 neighbours for each of our query sets’ points using

the angular distance.

22

After performing the above steps, we have everything we need to proceed with our analyses.

All other instructions to run the implementation of Falconn++ used are available in the relative

repository.

Finally, we want to highlight a tricky notation we later use: when we show a batch’s param-

eter settings, α is expressed as a percentage, so α = 1 means that we keep in our buckets only

the top 1% points (that is α = 0.01 in the usual notation). This is motivated by the fact that the

implementation we use of Falconn++ needs an integer value as the scaling factor α, that is, the

percentage of points kept in each bucket.

4.2.1 Recall value

For each query operation, the recall value is defined as:

#top-k neighbours returned by Falconn++ ∩ #true top-k neighbours

k

In our experiments, we want to observe the query performance by plotting the response time

to the query as a function of the recall value. The recall value is the independent variable since,

in practical applications, we want to achieve a specific recall rate while choosing a parameters

selection that gives us the best query performance (taking into consideration space usage, too).

As mentioned in Section 4.1, for each experiment, we vary qProbes from 1000 to 2000 to

obtain increasing recall values; as qProbes increases, so does the recall value (the more buckets

we probe, the higher the number of candidate points and the more likely it is to find the true

top-k nearest neighbours).

The query performance of each batch is given by the recall-time trade-off for that parameters

selection.

4.3 Experiment 1: testing the bounds on the optimal heuris-

tics for parameters selection

In this first experiment, we want to test the performance of the algorithm when varyingD while

maintaining the optimal heuristic k ≈ n · iProbes/4D2.

In order to do so, we fix the number of hash tables L = 350 and the scaling factor α =

0.01, according to the optimal range proposed in Section 4.1 and use the following 4 batches of

parameter settings:

• Batch1: L = 350, α = 1, iProbes = 1, D = 26 = 64

• Batch2: L = 350, α = 1, iProbes = 1, D = 27 = 128

23

• Batch3: L = 350, α = 1, iProbes = 4, D = 28 = 256

• Batch4: L = 350, α = 1, iProbes = 17, D = 29 = 512

Keep in mind that, when we show a batch’s parameter settings, α is expressed as a percentage.

We predict that higher values of D give better recall-time trade-offs, as a higher number

of Gaussian random vectors translates to closer points in each bucket. Additionally, since we

maintain the heuristic with iProbes ≈ 4kD2/n, we expect to observe the advantages discussed

in Section 3.4.2 for iProbes > 1.

On top of that, we foresee that an optimal value for D is approximately equal to or greater

than the number of dimensions of the points in the dataset, as proposed by the heuristic D ≈
2⌈log2 d⌉ in Section 4.1.

Obviously, we expect to observe a notable increase in space usage, since the total number

of buckets in each hash table is 4D2 and we use iProbes to maintain the optimal heuristic of

having ≈ k points in each bucket.

4.3.1 Results discussion

Figures 4.1, 4.2 and 4.3 report the results of our experiments on varying D while maintaining

the optimal heuristic with iProbes.

Figure 4.1 highlights that, as expected, higher values of D significantly increase the query

performance of Falconn++, particularly in Batch3 and Batch4 whereD ≥ 2⌈log2 d⌉ and where we

get the advantages of using multi-probing for indexing. This point is also proven by 4.3, as we

can see that higher values of D make the average distance difference of the query points from

the true top20 and Falconn++ top20 smaller and smaller.

Figure 4.2(c) shows the drastic growth in space usage that we expected by increasing D,

which is motivated by the interaction between the number of buckets in each hash table being

4D2, the higher values of iProbes used to maintain the optimal heuristic and the limit on scaling.

The important intuition to take is that we can recognise positive feedback caused by the limit

on scaling trick. In each hash table, we have a total of n · iProbes points evenly distributed

in 4D2 buckets (recall Section 4.1). By scaling the buckets, we counterbalance the additional

space usage of multi-probing for indexing. However, since we limit scaling to k and maintain

the optimal heuristic to have≈ k points in each bucket, we instead observe a significant increase

in space usage for higher values of D due to the significantly higher number of buckets in each

hash table. In the next experiments, we further discuss the implications of the limit on scaling

trick.

From the above intuition, we clearly see the reason for the drastic increase in the size of the

data structure from Batch1 to Batch4: we have a small enough α = 0.01 to keep the majority

24

Figure 4.1: Performance of experiment 1: varying D while maintaining the optimal heuristic

with iProbes.

25

Figure 4.2: Data structure size and indexing time for experiment 1: varyingDwhile maintaining

the optimal heuristic with iProbes.

Figure 4.3: Distance difference for experiment 1: varying D while maintaining the optimal

heuristic with iProbes.

26

of the buckets on the threshold of k for each batch and since we maintain the heuristic when we

increase D, we end up with a significantly larger number of buckets of size ≈ k.

Furthermore, Figure 4.2(d) also shows a notable increase in the time required to build the

data structure, whose origin can be explained by the need to build significantly more buckets in

each hash table (recall that each bucket represents a random Gaussian vector).

4.4 Experiment 2: testing the limit on improvement by in-

creasing the number of indexing probes

In this second experiment, we want to test the limit on performance improvement provided by

increasing the indexing probes up a certain threshold, as discussed in Section 3.4.2.

As before, we fix the number of hash tables L = 350 and the scaling factor α = 0.01,

according to the optimal range proposed in Section 4.1. We now use the following 4 batches of

parameter settings:

• Batch1: L = 350, α = 1, iProbes = 2, D = 256

• Batch2: L = 350, α = 1, iProbes = 4, D = 256

• Batch3: L = 350, α = 1, iProbes = 7, D = 256

• Batch4: L = 350, α = 1, iProbes = 10, D = 256

• Batch5: L = 350, α = 1, iProbes = 1, D = 256

As always, keep in mind that, when we show a batch’s parameter settings, α is expressed as a

percentage.

In this experiment, we expect to observe a performance improvement threshold when in-

creasing the number of indexing probes over the value proposed by the optimal heuristic.

We also expect to observe an increased size of the data structure as iProbes increases, for

two intertwined reasons:

• We scale each bucket by α, but as we add more and more points to the buckets due to

multi-probing for indexing while keeping α fixed, we end up with more total points in the

data structure than with lower values of iProbes > 1.

• The limit on scaling trick makes it so that buckets of size smaller than k do not get scaled,

so points probed for indexing in these small buckets do not get scaled.

27

It is interesting to note that these considerations refer specifically to practical implementa-

tions using the scaling factor α; for example, if we were to use the threshold t (Section 3.2), we

might end up with an even smaller increase in space usage (or none at all). However, this is just

an interesting theoretical intuition, as in Section 3.4.1 we see the major problems of using the

threshold method over the scaling one.

Additionally, we use Batch5 with iProbes = 1 as a meaningful comparison, since we ex-

pect to observe an improvement in query performance by using the multi-probing for indexing

technique.

4.4.1 Results discussion

Figures 4.4, 4.5, 4.6 report the results of our experiments on varying iProbes.

In particular, Figure 4.4 proves the following points:

• Using the multi-probing for indexing technique improves the query performance of Fal-

conn++ in general. This follows by comparing the recall - time and queries per second

trade-offs between Batch5 with iProbes = 1 and the other batches.

• There is a limit to the query performance improvement given by increasing iProbes. We

see that Batch 1 and Batch2 achieve higher recall rates than Batch3 and, in particular,

Batch4. Additionally, in Batch4 (iProbes = 10) the algorithm still achieves better recall

values than Batch5 (iProbes = 1) in general, but performsworse than Batch3 (iProbes =

7) and the optimal Batch2 (iProbes = 4) and Batch1 (iProbes = 2). It is interesting

to observe the comparison between Batch2 and Batch1, as both iProbes values can be

considered optimal: we observe that Batch2, with iProbes = 4 on the higher end of the

optimal range, achieves better overall recall rate trade-offs, but asymptotically falls off on

high recall regimes (when qProbes assumes higher values) to Batch1, with iProbes = 2

on the optimal lower end.

Additionally, Figure 4.6 also proves these points, as Batch5 without multi-probing for indexing

achieves the worst mean distance from the query between returned top20 and true top20, while

Batch1 and Batch2 with the optimal values achieve the best one.

In Figure 4.5(c) we observe the expected increase in the size of the data structure. However,

this increase is contained, especially compared to Experiment 1. This behaviour is explained by

the considerations done above. To further deepen the intuition, let us consider the following:

As we fix D and L, the number of hash tables and buckets for each table remains constant, and

using a small value of α = 0.01, we expect a large number of buckets to be scaled to size k.

Then, as the number of indexing probes increases, so does the number of points in each bucket,

and by the limit on scaling, the smaller buckets get progressively bigger (relatively more than

28

Figure 4.4: Performance of experiment 2: increasing the value of iProbes

29

Figure 4.5: Data structure size and indexing time for experiment 2: increasing the value of

iProbes

Figure 4.6: Distance difference for experiment 2: increasing the value of iProbes

30

the larger buckets that get scaled). Essentially, we see an increase in space usage by increasing

iProbes as the buckets become larger and larger, but this increase is contained as the small value

of the scaling factor α counter-balances the growing number of points on larger buckets.

Figure 4.5(d) shows that higher values of iProbes do not drastically impact the indexing

time, suggesting that multi-probing for indexing is not a high time-consuming operation; com-

paring the results with Experiment 1 Figure 4.2(d), we do not see such a spike in indexing time

usage as when increasing the value of D.

4.5 Experiment 3: testing the impact of the limit on scaling

In this last experiment, we focus on the scaling factor α and its relations with the number of

hash tables L and with the multi-probing for indexing technique.

This time, we fix the number of random Gaussian vectors to D = 256, according to the

optimal range proposed in Section 4.1, and use the following 5 batches of parameter settings:

• Batch1: L = 100, α = 13, iProbes = 4, D = 256

• Batch2: L = 100, α = 50, iProbes = 1, D = 256

• Batch3: L = 250, α = 20, iProbes = 1, D = 256

• Batch4: L = 500, α = 10, iProbes = 1, D = 256

• Batch5: L = 500, α = 3, iProbes = 4, D = 256

As always, when we show a batch’s parameter settings α is expressed as a percentage.

These batches are selected with the following relation in mind: α(iProbes · L) = 50, that

follows from these two observations:

1. Applying the scaling factor α to each bucket is equal to scaling each whole hash table. If

each hash table has n points in it, after scaling it has n′ = αn points.

2. By using the multi-probing technique for indexing, each point is hashed into iProbes

buckets instead of just one, e.g., when iProbes = 4 one actual hash table can be seen as

4 hash tables merged compared to Falconn.

We expect a better query performance as L increases and α decreases: having more hash

tables translates to a higher collision probability for close points, and lowerα values further scale

the buckets to only keep the very closest points in them. Additionally, a significant performance

increase is expected in particular in Batch1 and Batch5, as combiningmulti-probing for indexing

with scaling leads to higher-quality candidates for each query.

31

From the two statements above, wewould expect to observe an approximately constant space

usage through the batches. However, we actually predict an increase in space usage caused

by applying the limit on scaling trick. Recalling Section 3.4.1, the limit on scaling technique

prevents small buckets, of size smaller than the desirable k = 20, from being scaled and thus

losing high-quality candidates. Theoretically speaking, without the limit, we could obtain an

approximately constant space usage throughout the 5 batches. However, our final goal is always

the best query performance possible, which is obtained by having buckets with at least k points.

Taking into consideration the scaling limit trick, we expect to observe the following be-

haviours:

1. Through batches 2 to 4 the space usage is increased by the increasing number of hash

tables L: as the number of hash tables grows, so does the number of small buckets that

do not get scaled.

2. Between Batch1 and Batch2 the space usage increases as, on average, the multi-probing

for indexing technique makes the buckets that do not get scaled bigger by filling them

with points probed for indexing. The same behaviour is expected between Batch 5 and

Batch4. Recalling the content of Section 4.4 it is interesting to highlight that in Batch1

and Batch5, as we increase iProbes, we also decrease α, this makes it so that the effect

of multi-probing for indexing gets balanced on the bigger buckets (that do get scaled) by

a stricter scaling.

3. When comparing Batch1 to Batch5, we expect a more marked spike in space usage from

Batch2 and Batch4, respectively. This is motivated by the observation that, since Batch4

and Batch5 use L = 500 >> 100, the number of small buckets that do not get scaled is

significantly higher.

4.5.1 Results discussion

Figures 4.7, 4.8 and 4.9 report the results of our last experiment on the scaling factor.

First of all, in Figures 4.7 and 4.9, we can observe that, as predicted, the query performance

increases significantly as the number of hash tables L grows and the scaling factor α decreases.

The query performance improvement is particularly accentuated in Batch1 and Batch5, where

we apply the technique of multi-probing for indexing. Batch1 in high-recall regimes performs

significantly better than batches 2 to 4 with a higher number of hash tables, and Batch5 performs

better than the others overall.

Then from Figure 4.8(c) we observe the expected behaviours in the size of the data structure:

the limit on scaling trick makes the space usage grow with L and iProbes.

32

Figure 4.7: Performance of experiment 3: testing the impact of the limit on scaling.

33

Figure 4.8: Data structure size and indexing time for experiment 3: testing the impact of the

limit on scaling.

Figure 4.9: Distance difference for experiment 3: testing the impact of the limit on scaling.

34

Finally, Figure 4.8(d) shows that the greatest impact on indexing time is obtained by increas-

ing the number of hash tables. Combining this observation with the ones done in Experiment

1 and Experiment 2 for the indexing time, we can conclude that the biggest impact is given

by increasing the number of hash tables L and/or random vectors D, meanwhile, the impact of

multi-probing for indexing, still significant, is contained compared to L and D.

35

36

Bibliography

[1] P. Indyk and R. Motwani, “Approximate nearest neighbors: Towards removing the curse

of dimensionality,” in Proceedings of the Thirtieth Annual ACM Symposium on Theory

of Computing, ser. STOC ’98, Dallas, Texas, USA: Association for Computing Machin-

ery, 1998, pp. 604–613, isbn: 0897919629. doi: 10.1145/276698.276876. [Online].
Available: https://doi.org/10.1145/276698.276876.

[2] A. Andoni, P. Indyk, T. Laarhoven, I. Razenshteyn, and L. Schmidt, “Practical and opti-

mal lsh for angular distance,” in Advances in Neural Information Processing Systems, C.

Cortes, N. Lawrence, D. Lee, M. Sugiyama, and R. Garnett, Eds., vol. 28, Curran Asso-

ciates, Inc., 2015. [Online]. Available: https://proceedings.neurips.cc/paper_
files/paper/2015/file/2823f4797102ce1a1aec05359cc16dd9-Paper.pdf.

[3] N. Pham and T. Liu, Falconn++: A locality-sensitive filtering approach for approximate

nearest neighbor search, 2022. arXiv: 2206.01382 [cs.DS].

[4] P. I. Alexandr Andoni, “Near-optimal hashing algorithms for approximate nearest neigh-

bor in high dimensions,” 2006 47th Annual IEEE Symposium on Foundations of Com-

puter Science (FOCS’06), 2006.

[5] R. O’Donnell, Y. Wu, and Y. Zhou, Optimal lower bounds for locality sensitive hashing

(except when q is tiny), 2009. arXiv: 0912.0250 [cs.DS].

[6] A. Andoni, P. Indyk, T. Laarhoven, I. Razenshteyn, and L. Schmidt, Practical and opti-

mal lsh for angular distance, 2015. arXiv: 1509.02897 [cs.DS].

[7] Q. Lv, W. Josephson, Z. Wang, M. Charikar, and K. Li, “Multi-probe lsh: Efficient in-

dexing for high-dimensional similarity search,” in Proceedings of the 33rd International

Conference on Very Large Data Bases, ser. VLDB ’07, Vienna, Austria: VLDB Endow-

ment, 2007, pp. 950–961, isbn: 9781595936493.

[8] N. Pham, “Simple yet efficient algorithms for maximum inner product search via extreme

order statistics,” in Proceedings of the 27th ACM SIGKDD Conference on Knowledge

Discovery &DataMining, ser. KDD ’21, Virtual Event, Singapore: Association for Com-

37

https://doi.org/10.1145/276698.276876
https://doi.org/10.1145/276698.276876
https://proceedings.neurips.cc/paper_files/paper/2015/file/2823f4797102ce1a1aec05359cc16dd9-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2015/file/2823f4797102ce1a1aec05359cc16dd9-Paper.pdf
https://arxiv.org/abs/2206.01382
https://arxiv.org/abs/0912.0250
https://arxiv.org/abs/1509.02897

putingMachinery, 2021, pp. 1339–1347, isbn: 9781450383325. doi: 10.1145/3447548.
3467345. [Online]. Available: https://doi.org/10.1145/3447548.3467345.

[9] H. A. David and J. Galambos, “The asymptotic theory of concomitants of order statis-

tics,” Journal of Applied Probability, vol. 11, no. 4, pp. 762–770, 1974. doi: 10.2307/
3212559.

[10] N. Pham, Presentation on simple yet efficient algorithms for maximum inner prod-

uct search via extreme order statistics, Presentation slides, 2021. [Online]. Available:

https://github.com/NinhPham/CEOs/blob/master/paper/Slide-KDD21.pdf.

[11] R. Panigrahy, Entropy based nearest neighbor search in high dimensions, 2005. arXiv:

cs/0510019 [cs.DS].

38

https://doi.org/10.1145/3447548.3467345
https://doi.org/10.1145/3447548.3467345
https://doi.org/10.1145/3447548.3467345
https://doi.org/10.2307/3212559
https://doi.org/10.2307/3212559
https://github.com/NinhPham/CEOs/blob/master/paper/Slide-KDD21.pdf
https://arxiv.org/abs/cs/0510019

	Introduction
	Locality-sensitive hashing
	Falconn
	Multi-probing

	Why Falconn++?

	Concomitants of Extreme Order statistics
	Gaussian random projections
	CEOs for MIPS
	Concomitants of normal order statistics
	Concomitants of extreme order statistics and random projections
	An algorithm for MIPS

	Connection to Falconn

	Falconn++
	Locality-sensitive filtering (LSF)
	CEOs property applied to LSF
	Falconn++
	Falconn++ and the unit sphere

	Add-Ons
	Scaling
	Multi-probing for indexing
	Multi-probing for querying
	Centering data points

	Experiments
	Parameters selection
	Preparations
	Recall value

	Experiment 1: testing the bounds on the optimal heuristics for parameters selection
	Results discussion

	Experiment 2: testing the limit on improvement by increasing the number of indexing probes
	Results discussion

	Experiment 3: testing the impact of the limit on scaling
	Results discussion

	Bibliography

