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1 Abstract

Marine exploration utilizing Remotely Operated Vehicles (ROVs) has become
integral to understanding the oceanic environment. Coordinating multiple ve-
hicles concurrently is a critical aspect of enhancing exploration efficiency. This
thesis focuses on the development and testing of a Model Predictive Control
(MPC) combined controller for an Autonomous Underwater Vehicle (AUV) and
an Uncrewed Surface Vehicle (USV) ROV.

Recognizing the importance of coordinated marine exploration, the research
investigates the implementation of an MPC algorithm to control both AUVs
and USVs simultaneously. The study is conducted in simulated environments
to assess the controller’s performance under varying conditions.

The development process involves designing a versatile MPC controller ca-
pable of effectively coordinating the movements of AUVs and USVs. The goal
is to optimize their trajectories and maintain synchronized exploration patterns
and a stable optical based connection. The unique dynamics of each vehicle type
are considered to ensure adaptability and robust performance in the challenging
underwater environment.

This research contributes to the advancement of marine exploration by ad-
dressing the challenges of coordinating multiple vehicles. The MPC combined
controller offers a possible solution for optimizing exploration missions, provid-
ing a foundation for further developments in autonomous marine systems.
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2 Introduction

2.1 Marine Exploration

In the latest years marine exploration is finding an increasing representation in
research fields, both in naturalistic and technical disciplines. As our knowledge
grows, we need more and more powerful tools and techniques to explore marine
depths, and underwater robotics is the main technology field that nowadays can
help in this expanding area of research.
With great effort, new vehicles and tools are developed to allow us to reach
previously impossible locations and, by doing so, more and more challenges are
faced every day.

2.1.1 Communications Limitation

The aquatic realm heavily restricts the direct communication capabilities with
underwater vehicles, necessitating alternative solutions for remote operability.
To overcome this environmental limitation a solution proposed is to employ a
surface vessel as an intermediary receiver.
In order to do so is mandatory to ensure that the two vehicles can establish a
stable and reliable optic communication line

For this purpose two different ROVs are involved: an underwater one (BlueROV2
Heavy) and a surface one (BlueBoat)

The choice on this two vehicles is made due to their large diffusion in this area
of research and the broad and reliable computational and mathematical docu-
mentation available. Their capability to mount different kind of sophisticated
sensors and operativity tools made them a staple in the marine exploration
environment. It can be operated both in naturalistic scenarios and technical
support and maintainment of complex structures and large vehicles.

This, combined with their small dimensions and weight, sets for the perfect
couple for this experimentation.
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2.1.2 BlueROV2 Heavy - AUV (Autonomous Underwater Vehicle)

The BlueROV2 Heavy is a modular vehicle, customizable with different
thrusters and accessories possible configurations. Thanks to the significant
number of different thrusters, a variety of movements and rotations can be
achieved with speed and precision. The high quality performance of this vehicle
is achieved through an high precision set of sensors equipped to it. Pressure, lo-
cation, orientation, depth and temperature are monitored instant by instant and
provided to the processor, that can elaborate and produce the optimal control
action. For this project is assumed a setup with eight thrusters, four installed
along the z-axis and four in the xy-plane
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2.1.3 BlueBoat - USV (Unmanned Surface Vehicle)

The BlueBoat is a surface vehicle equipped with two surge thrusters on the
x-axis, that can induce sway and yaw movements by providing different push.
It can also be further equipped with different attachments thanks to the several
free slots.
As its underwater counterpart, it is equipped with a high precision set of sensors
to reliably esteem the vehicle’s states and compute the best control inputs.
In the following test it will be assumed the USV’s optic communication receiver
to be mounted underwater, ad the bottom of its center of mass, pointing down-
wards
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3 Mathematical Model

An accurate mathematical model is the most essential part of the development
of an MPC controller. As all the predictions are based on it, a wrong model is
often worst than no model at all. So it is crucial to ensure the most accurate
depiction of the system.

Every vehicle needs to be described in both its position and orientation, and
to do so, we need at least two different reference frames

Also the input vector needs to be mapped in the forces and momentums
acting on the vehicles. We want do control the AUV with six degrees of freedom
and therefor eight thrusters are equipped on it. The boat, instead, by only
having two dimensional dynamics can be maneuvered with only two parallel
surge thrusters

To reduce the complexity of the calculations, some assumptions are made
on the vehicles

• Symmetry: The vehicles have symmetries that guarantees simpler inertia
calculations along determined axes

• Disturbances: The currents affecting the trajectories are considered con-
stant and irrotational for the simulation

• Damping: The AUV damping is quadratic, while the USV one is linear.
This can be done thanks to the buoyancy of the boat, where the non linear
damping only enhances the stability

• Both vehicles share the same absolute origin for the NED frame, while
each one has it’s own relative BODY frame

• The angular dimensions are expressed through Euler angles. While quater-
nion rotations can be implemented to avoid gimbal lock. they also signifi-
cantly increase the model’s coordinate conversion complexity and are not
implemented in this occasion.

3.1 Reference frames

In order to describe position and attitude of the rov it is necessary to define two
reference frames

• BODY frame: The equations of motion of the ROVs are parametrized
in their BODY frame, which is centered on the vehicle and fixed to its
orientation.
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• NED frame: Its a coordinate reference fixed on the water surface and
pointing at North-East-Down positive directions

3.2 AUV Model

The mathematical model of the AUV is derived from T. I. Fossen’s Handbook
of Marine Craft Hydrodinamics and Motion Control and combines the vehicle’s
rigid body kinetics, hydrostatics and hydrodinamics

MRBν̇ +MAν̇ + CRB(ν)ν + CA(ν)ν +DL(ν)ν +DNL(ν)ν + g(η) = τ

Description Parameter

NED frame position p = [x, y, z]⊤

NED frame Euler angles Θ = [φ, θ, ψ]⊤

NED frame position and orientation η = [p,Θ]⊤

BODY frame linear velocity v = [u, v, w]⊤

BODY frame angular velocity ω = [p, q, r]⊤

BODY frame velocity vector ν = [v, ω]⊤

Gravitational force W

Buoyancy force B

Origin of the body frame CO

Center of Gravity relative to CO CG = [xg, yg, zg]
⊤

Center of Buoyancy relative to CO CB = [xb, yb, zb]
⊤
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ṗ
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=

[

Jq(η)ν

− (MRB +MA)
−1

(CRB(ν)ν + CA(ν)ν +DL(ν)ν +DNL(ν)ν + g(η)− τ)

]

Parameter Description

MRB Inertia matrix
MA Added mass
CRB Rigid body Coriolis centripetal matrix
CA Coriolis centripetal matrix
DL Linear damping
DNL Non-linear damping

The input vector τ must now be mapped into the three forces and momen-
tums acting on the rov through the 8x6 matrix defined by the orientation and
position of the eight thrusters

Te =

















0.7071 0.7071 0.7071 0.7071 0 0 0 0
−0.7071 0.7071 0.7071 −0.7071 0 0 0 0

0 0 0 0 −1 1 1 −1
0.0601 −0.0601 −0.0601 0.0601 −0.2180 −0.2180 0.2180 0.2180
0.0601 0.0601 0.0601 0.0601 0.1200 −0.1200 0.1200 −0.1200
−0.1888 0.1888 −0.1888 0.1888 0 0 0 0
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3.3 USV Model

Due to the nature of it’s behaviour, the BlueBoat can be described by only
two-dimensional dynamics. It’s other three degrees of freedom, pitch, roll and
heave can be approximated as absent in this simulation’s scenario.

Description Parameter

NED frame position p = [x, y]⊤

NED frame angle Θ = [ψ]
NED frame position and orientation η = [p,Θ]⊤

BODY frame linear velocity v = [u, v]⊤

BODY frame angular velocity ω = [r]
BODY frame velocity vector ν = [v, ω]⊤

Origin of the body frame CO

NED frame currents [Vx, Vy]
⊤

Actuator configuration matrix B ∈ R3x2

Surge thrusts f = [T1, T2]
⊤

Inertia matrix M = [m1,m2,m3]
Damping matrix D = [d1, d2, d3]

The following mathematical model of the dynamics of the boat is derived
from [1] in the form

η̇ = R(ψ)ν + V (1)

Mν̇ + C(ν)ν +Dν = Bf (2)
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Where M, as the inertia and mass matrix, already includes the hydrodynam-
ics added mass.

The latter model can now be further expanded into

ẋ = u cos(ψ)− v sin(ψ) + Vx (3)

ẏ = u sin(ψ) + v cos(ψ) + Vy (4)

ψ̇ = r (5)

u̇ = Fu(u, v, r) + τu (6)

v̇ = Fv(u, v, r) + τv (7)

ṙ = Fr(u, v, r) + τr (8)

with

Fu(u, v, r) = rv
m2

m1

− u
d1

m1

(9)

Fv(u, v, r) = −u
m1

m2

− v
d2

m2

(10)

Fr(u, v, r) = −r
d3

m3

+ vu
m2 −m1

m3

(11)
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4 Model Predictive Control

To proceed in the experimentation a control approach must be defined. The
most widespread control technique, in all scenarios, marine included, is PID
(Proportional Integral Derivative) control. It requires no specific knowledge of
the system’s model and can handle different kind of control problems. Thanks
to it’s simple and flexible structure it can provide good performance, while hav-
ing low-level computational requirements.

On the other hand, Model Predictive Control (MPC) is a control technique
based on the knowledge of the system’s model and through a step by step simu-
lation and solution of the system’s equations can have enhanced performances,
at the cost of an exponential increase of the computational cost of the control
action. It is so necessary to define and solve an optimization problem, to chose
the ideal system inputs. MPC can also handle dynamic models of the system, by
defining time-varying parameters and incorporating them in the model’s equa-
tions. This allows for a better description of the transitions of the states and
therefor a better adaptation to unexpected (or expected) changes to the model
and the environment.

To evaluate the control action a cost function needs to be defined. It is the
core of the whole problem and should describe the most unwanted scenarios we
might encounter so that the localization of its minima can identify the optimal
control inputs. The more we step away from the target trajectory, the more
costful it will result for the function. This tool can also be utilized to set
bounds for both the states and the inputs. By tuning the coefficients of those
weight we can further control precision and smoothness of the control action
and the system trajectories.

When dealing with two different vehicles it will be required to define two
different cost function, embedded in the same framework, and adapting to each
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other trajectory

4.1 Control Target

This project has two different target for the two ROVs. The solution adopted
was a decentralized control approach. Instead of a single operator tht controls
the movement of both vehicles, each one can recive information about other
vehicle and autonomously calculate its own optimized inputs. The AUV must
reach and follow a target location or path. The USV must follow it on the water
surface, while remaining in range to maintain the optical tether.

While the boat has no freedom of vertical orientation, the AUV must also
remain within a limited depth and oriented towards the bottom of the USV for
the better possible data stream.

4.2 Cost Functions

Do-mpc provides a template for the implementation of the cost functions, to
allow a more clear declaration

J(x, u, z) =
∑N

k=0

(

l(xk, zk, uk, pk, ptvk) + ∆uTkR∆uk
)

+m(xN+1)
Where

• l(xk, zk, uk, pk, ptvk) Lagrangian term: measures the the cost at every time
step of the simulation, up to the control horizon N

• ∆uTkR∆uk Mayer term: it’s the desired set point and the end of the single
time step

• m(xN+1) R-term: it’s a weight on the input vector and allowes a more
smooth control action
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4.2.1 AUV

A good definition of the AUV’s cost function is

J1(x1, u1) = K11 · (xref − x1)
2 +K12 · u

2
1

Where K1 weighs the difference between the state and the target and K2

weighs the input amount, penalizing larger values.

To ensure the right orientation is preserved, the target values for φ and θ

are set to be

φref = atan
(

z1
x2−x1

)

θref = atan
(

z1
y2−y1

)

4.2.2 USV

The USV has a similar cost function, as it only needs to follow the AUV’s path.
It’s main challenge will be a good path-following given it’s limited degrees of
freedom

J2(x2, u2) = K21 · (x1 − x2)
2 +K22 · u

2
2

4.3 do-mpc

This project is developed via python 3 and primarily do mpc package, which is
an open source toolbox for model predictive control, that provides easier solu-
tions for control, esteem and simulation

Here are included the main and more explicatory parts of the code
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4.3.1 Main simulation iterator

for i in range ( n sim ) :

u0 1 = mpc1 .mpc . make step ( x0 1 )
u0 2 = mpc2 .mpc . make step ( x0 2 )

y next 1 = s imulator1 . make step ( u0 1 )
y next 2 = s imulator2 . make step ( u0 2 )

x0 1 = est imator1 . make step ( y next 1 )
x0 2 = est imator2 . make step ( y next 2 )

i f (mpc1 . x s e tp < 5 ) :
l i n e a = l i n e ( i )

ph i 0 = arctan ( x0 1 [ 2 ] / ( x0 2 [ 0 ] − x0 1 [ 0 ] ) )
the ta 0 = arctan ( x0 1 [ 2 ] / ( x0 2 [ 1 ] − x0 1 [ 1 ] ) )

mpc1 . x setp , mpc1 . y setp , mpc1 . z s e t p = l i n e a
mpc1 . ph i s e tp = phi 0
mpc1 . t h e t a s e tp = the ta 0
mpc2 . x s e tp = x0 1 [ 0 ]
mpc2 . y s e tp = x0 1 [ 1 ]
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4.3.2 AUV Controller

mterm = ( x rov [ ’ x ’ ]∗∗2 + x rov [ ’ y ’ ]∗∗2 +
x rov [ ’ z ’ ]∗∗2 + x rov [ ’ phi ’ ]∗∗2 +

( x rov [ ’ theta ’ ] )∗∗2 + x rov [ ’ p s i ’ ]∗∗2 )

lterm = ( ( tvp rov [ ’ x sp ’ ] − x rov [ ’ x ’ ] )∗∗2 +
( tvp rov [ ’ y sp ’ ] − x rov [ ’ y ’ ] )∗∗2 +
( tvp rov [ ’ z sp ’ ] − x rov [ ’ z ’ ] )∗∗2 +
( tvp rov [ ’ ph i sp ’ ] − x rov [ ’ phi ’ ] )∗∗2 +
( tvp rov [ ’ th e ta sp ’ ] − x rov [ ’ theta ’ ] )∗∗2 +
( tvp rov [ ’ p s i s p ’ ] − x rov [ ’ p s i ’ ] )∗∗2

)
s e l f .mpc . s e t r t e rm (

u 1 = 0 . 1 ,
u 2 = 0 . 1 ,
u 3 = 0 . 1 ,
u 4 = 0 . 1 ,
u 5 = 0 . 1 ,
u 6 = 0 . 1 ,
u 7 = 0 . 1 ,
u 8 = 0 . 1 ,

)

4.3.3 USV Controller

mterm = ( x rov [ ’ x ’ ]∗∗2 + x rov [ ’ y ’ ]∗∗2 + x rov [ ’ p s i ’ ]∗∗2 )

lterm = ( ( tvp [ ’ x sp ’ ] − x rov [ ’ x ’ ] )∗∗2 +
( tvp [ ’ y sp ’ ] − x rov [ ’ y ’ ] )∗∗2 +
( tvp [ ’ p s i s p ’ ] − x rov [ ’ p s i ’ ] )∗∗2

)
Vx array = np . array ( [ 1 0 , 10∗1 .3 , 1 0 ∗ 0 . 7 ] )
Vy array = np . array ( [ 1 0 , 10∗1 .3 , 1 0 ∗ 0 . 7 ] )

s e l f .mpc . s e t un c e r t a i n t y v a l u e s (Vx = Vx array , Vy = Vy array )
s e l f .mpc . s e t t vp f un ( s e l f . tvp fun )

s e l f .mpc . s e t r t e rm (
u1 = 0 . 1 ,
u2 = 0 . 1 ,

)
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4.3.4 AUV Model

x = s e l f . model . s e t v a r i a b l e ( ’ x ’ , ’ x ’ )
y = s e l f . model . s e t v a r i a b l e ( ’ x ’ , ’ y ’ )
z = s e l f . model . s e t v a r i a b l e ( ’ x ’ , ’ z ’ )
#eu l e r ang l e s
phi = s e l f . model . s e t v a r i a b l e ( ’ x ’ , ’ phi ’ )
theta = s e l f . model . s e t v a r i a b l e ( ’ x ’ , ’ theta ’ )
p s i = s e l f . model . s e t v a r i a b l e ( ’ x ’ , ’ p s i ’ )
#l i n v e l
u = s e l f . model . s e t v a r i a b l e ( ’ x ’ , ’ u ’ )
v = s e l f . model . s e t v a r i a b l e ( ’ x ’ , ’ v ’ )
w = s e l f . model . s e t v a r i a b l e ( ’ x ’ , ’w ’ )
#l i n acc
u dot = s e l f . model . s e t v a r i a b l e ( ’ z ’ , ’ u dot ’ )
v dot = s e l f . model . s e t v a r i a b l e ( ’ z ’ , ’ v dot ’ )
w dot = s e l f . model . s e t v a r i a b l e ( ’ z ’ , ’ w dot ’ )
#ang v e l
p = s e l f . model . s e t v a r i a b l e ( ’ x ’ , ’ p ’ )
q = s e l f . model . s e t v a r i a b l e ( ’ x ’ , ’ q ’ )
r = s e l f . model . s e t v a r i a b l e ( ’ x ’ , ’ r ’ )
#ang acc
p dot = s e l f . model . s e t v a r i a b l e ( ’ z ’ , ’ p dot ’ )
q dot = s e l f . model . s e t v a r i a b l e ( ’ z ’ , ’ q dot ’ )
r do t = s e l f . model . s e t v a r i a b l e ( ’ z ’ , ’ r do t ’ )
#input
u 1 = s e l f . model . s e t v a r i a b l e ( ’ u ’ , ’ u 1 ’ )
u 2 = s e l f . model . s e t v a r i a b l e ( ’ u ’ , ’ u 2 ’ )
u 3 = s e l f . model . s e t v a r i a b l e ( ’ u ’ , ’ u 3 ’ )
u 4 = s e l f . model . s e t v a r i a b l e ( ’ u ’ , ’ u 4 ’ )
u 5 = s e l f . model . s e t v a r i a b l e ( ’ u ’ , ’ u 5 ’ )
u 6 = s e l f . model . s e t v a r i a b l e ( ’ u ’ , ’ u 6 ’ )
u 7 = s e l f . model . s e t v a r i a b l e ( ’ u ’ , ’ u 7 ’ )
u 8 = s e l f . model . s e t v a r i a b l e ( ’ u ’ , ’ u 8 ’ )

x sp = s e l f . model . s e t v a r i a b l e ( ’ tvp ’ , ’ x sp ’ )
y sp = s e l f . model . s e t v a r i a b l e ( ’ tvp ’ , ’ y sp ’ )
z sp = s e l f . model . s e t v a r i a b l e ( ’ tvp ’ , ’ z sp ’ )
ph i sp = s e l f . model . s e t v a r i a b l e ( ’ tvp ’ , ’ ph i sp ’ )
the ta sp = s e l f . model . s e t v a r i a b l e ( ’ tvp ’ , ’ t h e ta sp ’ )
p s i s p = s e l f . model . s e t v a r i a b l e ( ’ tvp ’ , ’ p s i s p ’ )
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s e l f . model . s e t r h s ( ’ x ’ , cos ( p s i )∗ cos ( theta )∗u +
(− s i n ( p s i )∗ cos ( phi ) + cos ( p s i )∗ s i n ( theta )∗ s i n ( phi ) )∗ v +
( s i n ( p s i )∗ s i n ( phi)+cos ( p s i )∗ cos ( phi )∗ s i n ( theta ) )∗w)

s e l f . model . s e t r h s ( ’ y ’ , s i n ( p s i )∗ cos ( theta )∗u +
( cos ( p s i )∗ cos ( phi)+ s i n ( phi )∗ s i n ( theta )∗ s i n ( p s i ) )∗ v +
(−cos ( p s i )∗ s i n ( phi ) + s i n ( theta )∗ s i n ( p s i )∗ cos ( phi ) )∗w)

s e l f . model . s e t r h s ( ’ z ’ , −s i n ( theta )∗u + cos ( theta )∗ s i n ( phi )∗v +
cos ( theta )∗ cos ( phi )∗w)

s e l f . model . s e t r h s ( ’ phi ’ , p + s i n ( phi )∗ tan ( theta )∗q +
cos ( phi )∗ tan ( theta )∗ r )

s e l f . model . s e t r h s ( ’ theta ’ , cos ( phi )∗q − s i n ( phi )∗ r )
s e l f . model . s e t r h s ( ’ p s i ’ , ( s i n ( phi )/ cos ( theta ) )∗ q +

( cos ( phi )/ cos ( theta ) )∗ r )

s e l f . model . s e t r h s ( ’p ’ , p dot )
s e l f . model . s e t r h s ( ’ q ’ , q dot )
s e l f . model . s e t r h s ( ’ r ’ , r do t )

s e l f . model . s e t r h s ( ’u ’ , u dot )
s e l f . model . s e t r h s ( ’ v ’ , v dot )
s e l f . model . s e t r h s ( ’w ’ , w dot )

#a l g e b r a i c equa t i ons f i ( u 1 . . . u 8 )
dynamics = ve r t ca t ( f 1 , f 2 , f 3 , f 4 , f 5 , f 6 )
s e l f . model . s e t a l g ( ’ dynamics ’ , dynamics )
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4.3.5 USV Model

#po s i t i o n
x = s e l f . model . s e t v a r i a b l e ( ’ x ’ , ’ x ’ )
y = s e l f . model . s e t v a r i a b l e ( ’ x ’ , ’ y ’ )

#yaw ang le
p s i = s e l f . model . s e t v a r i a b l e ( ’ x ’ , ’ p s i ’ )

#l i n v e l
u = s e l f . model . s e t v a r i a b l e ( ’ x ’ , ’ u ’ )
v = s e l f . model . s e t v a r i a b l e ( ’ x ’ , ’ v ’ )

#l i n acc
u dot = s e l f . model . s e t v a r i a b l e ( ’ z ’ , ’ u dot ’ )
v dot = s e l f . model . s e t v a r i a b l e ( ’ z ’ , ’ v dot ’ )

#yaw v e l
r = s e l f . model . s e t v a r i a b l e ( ’ x ’ , ’ r ’ )

#yaw acc
r do t = s e l f . model . s e t v a r i a b l e ( ’ z ’ , ’ r do t ’ )

#input
u1 = s e l f . model . s e t v a r i a b l e ( ’ u ’ , ’ u1 ’ )
u2 = s e l f . model . s e t v a r i a b l e ( ’ u ’ , ’ u2 ’ )

#current in i n e r t i a l frame
#Vx = s e l f . model . s e t v a r i a b l e ( ’ p ’ , ’Vx ’ )
#Vy = s e l f . model . s e t v a r i a b l e ( ’ p ’ , ’Vy ’)

#Set po in t
x sp = s e l f . model . s e t v a r i a b l e ( ’ tvp ’ , ’ x sp ’ )
y sp = s e l f . model . s e t v a r i a b l e ( ’ tvp ’ , ’ y sp ’ )
p s i s p = s e l f . model . s e t v a r i a b l e ( ’ tvp ’ , ’ p s i s p ’ )

x 2 = s e l f . model . s e t v a r i a b l e ( ’ tvp ’ , ’ x 2 ’ )
y 2 = s e l f . model . s e t v a r i a b l e ( ’ tvp ’ , ’ y 2 ’ )

#dynamics
tu = (u1 + u2 )∗ s i n ( ang )∗∗2
tv = (u2 − u1 )∗ s i n ( ang )∗ cos ( ang )
t r = (u2 − u1 )∗d∗ cos ( ang )
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s e l f . model . s e t r h s ( ’ x ’ , u∗ cos ( p s i ) − v∗ s i n ( p s i ) + Vx)
s e l f . model . s e t r h s ( ’ y ’ , u∗ s i n ( p s i ) + v∗ cos ( p s i ) + Vy)
s e l f . model . s e t r h s ( ’ p s i ’ , r )

s e l f . model . s e t r h s ( ’u ’ , u dot )
s e l f . model . s e t r h s ( ’ v ’ , v dot )
s e l f . model . s e t r h s ( ’ r ’ , r do t )

f 1 = tu + r ∗v∗ Iy / Ix − u∗Dx/ Ix
f 2 = tv − u∗ Ix / Iy − v∗Dy/ Iy
f 3 = t r − r ∗Dz/ Iz + v∗u∗( Iy−Ix )/ I z

dynamics = ve r t ca t ( f 1 , f 2 , f 3 )
s e l f . model . s e t a l g ( ’ dynamics ’ , dynamics )
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5 Results

One of the main issues faced during this simulations, was MPC’s computation-
ally expensive nature. This scenario is modeled with both linear and non linear
functions thus it requires more powerful hardware to elaborate the solutions.
Some of the most elaborate trajectories were not possible to solve in a home
setup.

In this case the boat is forced to stay still, while the AUV moves away. This
was to test it’s capability to adjust it’s orientation towards the USv. It can be
seen from the blue and orange lines, that the angles increase while the AUV
moves and stabilize when it reaches it’s target coordinates of {5, 0, 10}

Here the AUV is set to have a slow linear trajectory of speed {0.1,-0.1,0.1}
and the USV follows it at a much slower rate. Due to this difference the AUV
during is path, maintains an increasing inclination, in order to remain aligned
with the boat’s line of sight.
To properly follow the path, the USV also increasingly steers to the left, to
match it’s trajectory delay
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In this third test, the path for the AUV is a straight line along the x-
axis. Provided with a greater input, the USV can now properly follow it. The
thrusters provide the same amount of acceleration, so there is no lateral or
angular movement, and the USv can place itsalf in the right spot, despite some
overshoot caused by the surface wave disturbances.

22



6 Conclusions

This thesis’ goal was to set up and test a simulated version of an MPC controller
for two coordinated units, a surface vehicle and an underwater drone. Despite
some hardware limitations on the computational side of the project, the more
simple scenarios simulated showed satisfying results. The boat was able to fol-
low the drone’s reference location with good precision, included situations where
it was affected by constant disturbance waves.
The long computational times prevented more structured simulations and also
diminished the troubleshooting capabilities on the simpler ones, so some inter-
esting conditions to test were left aside.

6.1 Further Work

The data gathered suggest that a more complex and structured version of this
control setup can be developed and tested in a more complex simulated scenarios
and later also in real underwater conditions. Both model were provided with
approximated physical parameters so a real test should be preceded by a more
accurate evaluation of the real values in order to avoid discrepancies between
the real dynamics and the simulated ones
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