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Abstract

One of the major fields of development and innovation in our century concerns mobile

robotics, particularly the study of multi-agent system coordination. This type of technol-

ogy can be employed in natural disaster scenarios or critical situations where multi-agent

systems can perform search and rescue missions or environmental monitoring. In this

field, autonomous ground vehicles (UGVs) and unmanned aerial vehicles (UAVs) are used,

which can cooperate with each other. Outdoor environments pose various challenges, and

one of these challenges can be the lack of access to GPS network. For this reason, control

laws that do not rely on GPS information are studied, such as ”bearing-only formation

control,” where agents only perceive relative angles between each other, which can be

calculated using a simple 2D camera.

The purpose of this thesis work is to explore the theory of bearing rigidity applied to forma-

tions of homogeneous agents, specifically quadcopters, using Nonlinear Model Predictive

Control (NMPC) with MATMPC. The thesis aims to explore the differences between dif-

ferent architectures, particularly by implementing a centralized architecture and laying the

groundwork for a possible development of a decentralized architecture. The work demon-

strates how to create the model for NMPC with various agent model variants,different cost

functions, and different formations. ROS2 is used for the implementation of the entire

control ecosystem, and the PX4 platform is used, which provides an excellent low-level

control architecture for managing individual quadcopters. Additionally, the thesis utilizes

the PX4 Software In The Loop (SITL) system to make Gazebo simulations as close to

reality as possible.

Keywords: bearing-only formation control, Nonlinear Model Predictive Control (NMPC),

centralized architecture





Sommario

Uno dei maggior campi di sviluppo e d’innovazione nel nostro secolo riguarda l’ambito

della robotica mobile in particolare lo studio del coordinamento di sistemi multi agenti.

Questo tipo di tecnologia permette di essere impiegata in ambiti di calamità naturali o

situazioni critiche dove i sistemi multi agenti posso operare missioni di search and rescue

o monitoraggio ambientale. In campo vengono impiegati veicoli terrestri autonomi UGV

(Unmanned Ground Vehicle) e veicoli aerei autonomi UAV(Unmanned Aerial Vehicle) che

possono cooperare tra di loro. Gli ambienti esterni presentano diverse problematiche e una

di queste può essere la mancanza di accesso alla rete GPS. Per tale motivo si studiano leggi

di controllo che non impiegano questo tipo di informazioni come bearing-only formation

control dove gli agenti rilevano tra di loro solo angoli relativi, i quali possono essere

calcolati tramite una semplice camera 2D.

Questo lavoro di tesi ha lo scopo di esplorare la teoria della bearing rigidity applicata a

formazioni di agenti omogenei nello specifico quadricotteri sfruttando la tecnologia NMPC

con MATMPC. La tesi va ad esplorare le differenze delle diverse architetture in particolare

va ad implementare una architettura centralizzata e mette giù le basi per un possibile

sviluppo di un’architettura decentralizzata. Il lavoro mostra come è creare il modello per

NMPC con diverse varianti del modello dell’agente (come è stato modellizzato), diversi

funzionali di costo e diverse formazioni. Per l’implementazione viene usato ROS2 per lo

sviluppo dell’intero ecosistema di controllo e viene usata la piattaforma PX4 che mette a

disposizione un ottima architettura di controllo a basso livello per la gestione del singolo

quadricottero. Inoltre la tesi usa il sistema SITL(Software In The Loop) di PX4 per

rendere le simulazioni di Gazebo il più vicine alla realtà.

Keywords: bearing-only formation control, Nonlinear Model Predictive Control (NMPC),

centralized architecture
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Chapter 1

Multi Agent System (MAS)

1.1 Introduction

Nature provides us with examples of collective behavior in certain animals, due to the fact
that the individual is too weak to survive on his own, thus leading it to work in groups.
Through group action, the individual is forced to achieve common goals such as the search
for food (e.g. ants), the defense of territory (e.g. bees) or migrating from one place to
another for the change of season (e.g. ants), for the change of season (e.g. birds)

From these group behaviors, it was observed that certain types of animals or insects
created specific formations to achieve their desired purpose. A well-known example is the
behavior of birds to fly in flocks to reach new places safely.

Observing these interesting behaviors, over time researchers began to study and formulate
theories so that they could be applied to autonomous aircraft’s systems also called multi-
agent autonomous systems (or multi-agent system MAS).

The study of creating and maintaining a formation brought interesting problems to be
solved in order to achieve this. Firstly, an unambiguous way of representing the formation
to be achieved was sought along with all the information of the various agents and the
constraints between them. This led, for example, to the use of Graph Theory and Rigidity
Theory, which made it possible to define a centralized/decentralized control. Once the
formation has been achieved, arise problems such as motion planning, obstacle avoidance
and then defining the optimal way to divide the formation and after joining pre-existing
formations. In addition, there is also how to maximize the efficiency of exploration of a
given area [6].
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(a) Split formation to avoid obstacle (b) Join formations after obstacle

Figure 1.1: Some examples of challenges with formation control. Source: [6]

A well-known behavior studied by researchers concerns animal groups moving together,
known as flocking. This behavior is called emergent behavior and arises when there is
an interaction of individual agents that adhering to a set of simple rules (which is called
Reynolds rules).

Figure 1.2: Flocking of birds. Source: Wikipedia

1.2 Types of formation controller

We can categorize the formation control into four main labels:

• Position-based control: Agents sense their own positions with respect to a global
coordinate system



• Displacement-based control: Agents actively control the displacements of their
neighboring agents. It works under the assumption that each agent is capable of
sensing the relative positions of its neighboring agents in relation to the global
coordinate system

• Distance-based control: Individual agents are assumed to have the ability to
sense the relative positions of their neighboring agents in relation to their own local
coordinate system

• Bearing-based control: Individual agents are assumed to have the capability to
sense the relative bearing of their neighboring agents in relation to their own body
frame

The controllers are divided into their sensing capabilities and interaction level. The
Position-based control relies on strong assumptions that are challenging to realize in real-
ity. Instead, getting off the controllers have weaker assumption than previous controllers
and they are easier to apply in real-world scenarios.

The formation can be addressed through two main approaches:

• Leader-follower: the formation is created followed by a unique leader such as when
the duck’s formation flies together

• Behavior-based [Leaderless]: the formation is created when the agents reach a
common idea, namely they use a consensus protocol

(a) Leaderless formation where all
agents have the same weight in the de-
cision

(b) Leader-follower formation where
the red traingle is the leader instead the
blue circles are followers

Figure 1.3: Leaderless vs leader-follow technique

1.3 Why the bearing formation control [1]

The MAS with rigidity theory has two main tasks:



• Formation control: the goal is to achieve a desired formation

• Network localization: the goal is to localize other agents based only on known
information

These two tasks can be achieved by using two difference based information namely:

• Distance-based control: it uses the distance among agents to archive the tasks

• Bearing-based control: it uses the bearing information to reach the tasks

To obtain these in practice, each agent can use the GPS to obtain its absolute posi-
tion. However, this method is not always viable due to GPS-denied environments, which
typically include indoor or underwater locations, as well as deep space. Furthermore,
GPS accuracy may not match high-accuracy requirements for applications like formation
control.

For these motivations, it is more advantageous to use onboard sensors and local/relative
information to do these tasks (that we cited above). Optical cameras are widely used
as onboard sensors for ground and aerial vehicles to achieve various sensing tasks due to
their low-cost, lightweight and low-power characteristics. The optical camera, in general,
is a bearing-only sensor but it can measure distance thanks to stereo-vision. However it
is more expensive than a standard camera.

Once a target has been identified in an image, its bearing relative to the camera can be
calculated immediately from its pixel coordinate using the pinhole camera model.

The above-mentioned motivation has acquired many interests among researchers, as this
topic has various applications in three distinct areas:

• Bearing-based network localization: the nodes are classified as anchors (the
nodes know their position) and followers (the nodes don’t know their position).
They are capable of measuring the bearings of their neighboring and share this
among them. The objective is to locate the follower nodes using the bearing mea-
surements, utilizing only bearing information and the anchors’ absolute positions

• Bearing-based formation control: the agents are able to obtain the relative
positions of their neighbors and the aim is to reach a desired formation

• Bearing-only formation control: the agents are able to sense the relative bearing
of their neighbors and the objective is the same as Bearing-based formation control



Figure 1.4: Formation control of a little swarm quadcopters

1.4 Goal of thesis

The aim of this thesis is to explore some aspects of the bearing rigidity theory applied to
the formation task. The idea is to study this topic applied to different architectures in-
cluding centralised, decentralised, and distributed and to integrate this theory with a new
control technique called Model Predictive Control (MPC) or in our case Nonlinear Model
Predictive Control (NMPC). We will discuss the theoretical and practical components of
these architectures, utilizing this innovative control tool and considering its advantages,
disadvantages, and restrictions.

In practice, we will develop an internal model system of NMPC to control a homogeneous
triangular formation of three agents. In this specific case, we will work with three quad-
copters to achieve a triangular formation like the desired formation. The whole system
will be controlled by a unique NMPC that will work on an external power computer which
will send the control input to PX4s which will manage the quadcopters (PX4 is a firmware
onboard control of each agent).

After developing all the theories and models, we will test them on Simulink to understand
how the NMPC with our model will behave in an ideal environment. Later on, we will
move from an ideal environment to simulated environments through a Gazebo simulation
where we will implement a control pipeline to handle all the experiments and it has being
implemented with ROS2 framework.

1.5 Thesis structure

Briefly, in the following there is a little resume for each chapter:

• Chapter 2 : we will report all theories that we utilized to develop our thesis. This
includes an examination of modeling the quadrotor in various forms, the bearing
rigidity theory, moving through MPC architectures, and until multi-objective opti-
mization (MOO)



• Chapter 3 : we will explain our design of the internal system model for NMPC with
different aims, the trivial motion controller and finally we will discuss the evolution
of cost functions

• Chapter 4 : we will describe the tools utilized to implement the thesis and how we
connected them together

• Chapter 5 : we will present the findings that we obtained to test the different con-
trollers (we described them in the previous chapter). In addition, the tests were
been conducted before using MATLAB/Simulink and after using ROS 2/Gazebo

• Chapter 6 : we will expose our final conclusions and future enhancements to further
develop the thesis

• Appendices : there will be some insights into particular aspects



Chapter 2

Theory

In this chapter, we have reported the main theories that we have used to develop and use
this thesis. We will start with how to model a quadrotor agent, then we will introduce
some concepts of graph theory together with bearing rigidity theory and finally, we will
explain the main concepts of MPC and NMPC.

2.1 Quadrotor model (Agent)

There are several ways to model a quadrotor agent. In our case, we started by using an
agent model such as a point without mass because the idea was to test the algorithm with
a simplified dynamics. We then derived the equations to describe the full dynamics of a
quadrotor and we incorporated them into the final algorithm.

2.1.1 Quadrotor designed like a point without mass

We denoted the agent A and designed its dynamics as a point without mass and a single
integrator, resulting in the following simplified kinematics [9]:[︃

ṗ

ψ̇

]︃
=

[︃
Rz 0
0 1

]︃ [︃
v
w

]︃
(2.1)

where:

• p ∈ R3 position of A in FW (World Frame)

• ψ ∈ S1 yaw rate of A in FW (World Frame)

• Rz rotation frame on z-axis Rz(ψ) of A

• v ∈ R3 linear velocity in FB (Body frame)
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• w ∈ R angular velocity in FB (Body frame)

Then its state is x =

[︃
p
ψ

]︃
∈ R3 × S1. Lets notice that the model works in the R3 × S1

space.

2.1.2 Quadrotor designed with the whole dynamic in SE(3)

We then designed the above model and proceeded to develop the quadrotor model with
complete dynamics and kinematics, but we neglect gyroscopic effect and inertial effect
due to the rotors and the flapping:

Kinematics:

{︃
ṗW = vW

α̇W = W
B R[ωB]×

(2.2)

Dynamics:

{︃
mp̈W = −mge3 + W

B RFu
B

Jω̇B = −ωB × JωB +MuB (2.3)

where:

• m = quadrotor’s mass

• p = quadrotor’s position in FW

• ṗ,v = quadrotor’s velocity in FW

• p̈ = quadrotor’s acceleration in FW

• ω = quadrotor’s angular velocity in FB

• W
B R = rotation matrix from Body frame to World frame

• F,M = physic matrices of quadrotor

• J = inertial matrix

• u = input vector of spinning rotors in FB

• α =

⎡⎣ϕθ
ψ

⎤⎦ = the vector of Roll (ϕ),Pitch(θ) and Yaw(ψ) is expressed in FW

Now, let’s decide to make the following assumptions:

• The quadrotor works with little angles

• The model has a diagonal inertial matrix, namely J = diag([Jx, Jy, Jz]) and a similar
value on the diagonal



and we considered the following input:

• fc = Fu =

⎡⎣0
0
T

⎤⎦ in FB

• τ c = Mu =

⎡⎣τϕτω
τψ

⎤⎦ in FB

Where T (in the vector force applied to the barycenter fc) represents the thrust force
applied only to the z-axis and τ c is the torque vector applied to all axes.

So, based on the above assumptions, we can simplify the model presented in Equation 2.2,
Equation 2.3:

Kinematics:

{︃
ṗW = vW

α̇W = ωB (2.4)

Dynamics:

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
mp̈W = −mge3 + W

B R

⎡⎣ 0
0
TB

⎤⎦
ω̇B = J−1

⎡⎣τBϕτBθ
τBψ

⎤⎦ (2.5)

In the figure below, we can see a representation of a world frame and a body frame with
its rotation matrix from world to body frame:

Figure 2.1: representation of world and body frame with its rotation matrix



Transformation from SE(3) to R3 × S1 [10]

The quadrotor model evolves in SE(3). However, when working in R3×S1 a transformation
from SE(3) to R3×S1 is required. Therefore, the following maps are introduced to reproject
SE(3) manifold to R3 × S1 using the ZYX Euler angle convention:

TSE : R3 × S2 → R3 × S1 (2.6)

(pSE(3),α) ↦→
[︃
pR3×S1(pSE(3),α)

ψR3×S1(α)

]︃
(2.7)

with the map is defined so:

pR3×S1(pSE(3),α) : R3 × S2 → R3 × S, pR3×S1 = Ry(ψ)Rx(θ)p
SE(3)

ψR3×S1(α) : S2 ↦→ S ψR3×S1 = ψSE(3) (2.8)

where

• pSE(3) the position state in SE(3)

• pR3×S1 the position state in R3 × S1

• α contains ψ and θ which are Pitch and Roll using the ZYX Euler angle convention

• Rx or Ry are rotation matrix for specific axis

So, we can use these maps to move from the SE(3) to the R3×S1 manifold when required.

2.1.3 Bearing and quadrotor

In our case, we have decided that the agents can only sense one measure between them,
which is the bearing among us (defined through edges of the formation graph). The agent
relative bearing (from agent i to agent j and expressed in the body frame of agent i) is
defined as the 3D unit vector:

βij =
W
i R

pj − pi
||pj − pi||

∈ S2 (2.9)

where W
i R represents the rotation matrix from the world frame to the agent frame i (or

the body frame) and eij = pj − pi is the edge between two agents. The bearing vector
represents a rotation in a sphere and its entries are the values of cos(·) on each axis.



(a) Representation of bearing information be-
tween two agents

(b) Representation of bearing information in
3D

Figure 2.2: Bearing representation

2.2 Graph theory

In mathematics, graph theory is the study of graphs which are mathematical structures
that are employed to model the relations among objects. In this context, a graph consists
of vertices representing the entities and the edges representing the connections or commu-
nications between entities.
The graph can be undirected where the edge doesn’t have a direction and vice versa for
directed graphs.

2.2.1 Basic concepts [2]

Definition 2.1 (Graph). An (undirected) graph is a pair G = (V , E) where V = {v1, ..., vn}
is the set of the nodes endowed with a state x and E ⊆ V × V is the set of edges, i.e.
connections between vertices.

Definition 2.2 (Oriented graph). An oriented graph (also called directed graph or di-
graph) is a type of graph in which the edges have a tail and a head node, representing the
starting and ending points, respectively.

Definition 2.3 (Node neighbors). vi, vi are said to be neighbors if and only if eij ∈ E
hence the set of neighbors of vertex i is denoted as Ni = j ∈ V : (i, j) ∈ E .

Definition 2.4 (Node degree). The number of neighbors of the node i is called the degree
of the node i.

On the graph, we can find some properties which can be described using the matrix
notation:



Definition 2.5 (Node degree matrix). We define the node degree matrix of a (non-
oriented) graph G as the diagonal matrix ∆G ∈ Rn×n with entries the degree of the nodes.
For oriented graphs, we define the diagonal matrices ∆GIN

∈ Rn×n and ∆GOUT
∈ Rn×n

whose elements are, respectively, the in-degrees and out-degrees of the nodes.

Definition 2.6 (Adjacency matrix). The adjacency matrix AG ∈ Rn×n of an undirected
graph without self-loops is defined as:

AG(i, j) =

{︃
1 if (i, j) ∈ E
0 otherwise

(2.10)

whereas for a directed graph without self-loops, it is:

AG(i, j) =

{︃
1 if (i→ j) ∈ E
0 otherwise

(2.11)

Definition 2.7 (Incidence Matrix). We define the incidence matrix DG ∈ Rn×m of an
undirected graph as follows:

DG(i, k) =

{︃
1 if vi ∈ ek
0 otherwise

(2.12)

and, for directed graphs:

DG(i, k) =

⎧⎨⎩
+1 if vi tail ofek
−1 if vi head ofek
0 otherwise

(2.13)

2.2.2 Graph and Formation

Definition 2.8 (Network or formation). A network, denoted as (G,x), is G with its
vertex i ∈ V mapped to xi (state of Ai) namely xi : V ↦→ X . A network may be called
like formation in the context of either formation control or network localization.

Let us consider an orientation of the graph G = (V , E) and the communication among
agents is defined through this graph which has a vertexes set V = {1, ..., N} and an edges
set E ⊆ V × V .

The vertex Vi is an agent instead the edge eij = pi−pj is the communication link between
Ai and Aj where the Ai needs to measure the relative bearing βij =

eij
||eij || to Aj. Here,

|V| = N denotes the number of agents and |E| = m denotes the number of edges.



2.3 Bearing rigidity theory

Bearing rigidity theory studies the conditions where the geometric pattern of a network
can be uniquely determined if the bearing of each edge in the network is fixed. We can
equivalently state that the bearing rigidity studies the conditions where two networks have
the same geometric pattern if they have the same bearing [1]. It is shown in the below
figure:

(a) (b)

Figure 2.3: (a) without the rigidity property (b) with the rigidity property

In the rigidity theory, the structure may exhibit rigidity property or not. A structure is
considered rigid if it can not change its shape with external forces or other perturbation.
The bearing rigidity theory adds the requirement that the structure needs to have the
same bearing information and the property of rigidity at the same moment.
In general, if a structure possesses the rigidity property then preserve the bearing infor-
mation instead and vice versa not (this is depicted in above Figure 2.3).

There are three notions of bearing rigidity:

• Bearing

• Global bearing

• Infinitesimal bearing

that we will see their definition in the next section. However, the third is the most impor-
tant and we will exploit this property to achieve the goal of creating a stable formation.
Unlike of other two, they cannot ensure unique geometric patterns of the network.

2.3.1 Basics definitions [1]

Definition 2.9 (orthogonal projection matrix). For any nonzero vector x ∈ Rd (d ≥ 2),
define an orthogonal projection matrix as

P(x) = Id −
xxT

||x||2
(2.14)

to denote the matrix we can use P(x) = Px.



Definition 2.10 (Bearing equivalency). Two networks (G,X ) and (G,X ′) are bearing
equivalent if P(xi−xj) · (x′i − x′j) = 0 for all i, j ∈ V .

Definition 2.11 (Bearing congruency). Two networks (G,X ) and (G,X ′) are bearing
congruent if P(xi−xj) · (x′i − x′j) = 0 for all i, j ∈ V .

Definition 2.12 (Bearing rigidity). A network (G,X ) is bearing rigid if there exists a
constant ϵ > 0 such that any network (G,X ′) that is bearing equivalent to (G,X ) and
satisfies ||X ′ −X|| < ϵ is also bearing congruent to (G,X ).

Definition 2.13 (Global bearing rigidity). A network (G,X ) is globally bearing rigid if an
arbitrary network that is bearing equivalent to (G,X ) is also bearing congruent to (G,X ).

Let us consider an oriented graph where the intern neighbor bearings can be expressed by
{βei}

m
i=1 and we then define the bearing function:

Definition 2.14 (Bearing function). The bearing function is defined so

βG : X → Rdm (2.15)

βG(X ) =

⎡⎣βei...
βei

⎤⎦ ∈ Rdm (2.16)

so the bearing rigidity matrix can be defined as:

Definition 2.15 (Bearing rigidity matrix). The bearing rigidity matrix is defined as the
Jacobian of the bearing function

BG =
∂βG(X )

∂X
(2.17)

In the end, we introduce δX which is a variation of the configuration X . If βG(X )δX = 0,
then δX is an infinitesimal bearing motion of (G,X ). An infinitesimal bearing motion is
considered trivial if it corresponds only to a translation and a scaling of the entire network.

Definition 2.16 (Infinitesimally bearing rigid). A network is infinitesimally bearing rigid
if all the infinitesimally bearing motions are trivial

2.3.2 Bearing rigidity in R3 × S1

Now, we take all the above definitions and rewrite them for the bearing formation in an
R3 × S1 environment.
We start to define the formation state q = (p,ψ) ∈ (R3 × S1)N that represents the con-
figuration of N agents (Equation 2.1) with qi = (pi, ψi) ∈ R3×S1 being the configuration
of the i-th agent in the group.



Definition 2.17 (Framework R3 × S1 [9]). A framework (or formation) is the triple
(G,p,ψ) (or the pair (G,q)) where pi : V → R3 and ψi : V → S1 map each vertex in V to
a point (pi, ψi) ∈ R3 × S1.

Figure 2.4: Evolution of a formation from random initial position

After defining the concept of the framework, we introduce two important elements to
develop the bearing formation field as we have already seen in the previous section:

• Directed bearing rigidity function

• Directed bearing rigidity matrix

Definition 2.18 (Directed bearing rigidity function [9]). The directed bearing function
associated to a framework (G,q) is the map βG(q) : (R3 × S1)N → (S2)m:

βG(q) = [βe1 . . .βem ] (2.18)

where the notation ei ∈ E is used to represent a directed edge in the graph G according
to any chosen to label.

Before defining the final tool, it is essential to recall the notions of rigidity and global
rigidity in R3 × S1:

Definition 2.19 (Rigidity and roto-flexible in R3×S1 [9]). The R3×S1 framework (G,q)
is rigid if there exists a neighborhood S of q such that

βK|V|
(q)−1 ∩ S = βG(q)

−1 ∩ S (2.19)

where βK|V|
(q)−1 ⊂ R3×S1 denotes the pre-image of the point βK|V|

(q) under the directed
bearing rigidity map.

The R3 × S1 framework (G,q) is roto-flexible in R3 × S1 if there exists an analytic path
η : [0, 1] → (R3 × S1)N such that η(0) = q and

η(t) ∈ βK|V|
(q)−1 − βG(q)

−1∀t ∈ (0, 1]. (2.20)



Definition 2.20 (Bearing equivalent and Bearing congruent R3×S1 frameworks [9]). The
Frameworks (G,p,ψ) and (G, l,µ) are bearing equivalent if

Rz(ψi)
Tpij = Rz(µi)

T lij (2.21)

for ∀(i, j) ∈ E and are bearing congruent if Rz(ψi)
Tpij = Rz(µi)

T lij and Rz(ψj)
Tpji =

Rz(µj)
T lji for ∀(i, j) ∈ V with i ̸= j.

Thanks to the above definitions, we can define the concept of global rigidity concept:

Definition 2.21 (Global Rigidity of R3×S1 Framework [9]). A framework (G,q) is global
rigid in R3 × S1 if every framework which is bearing equivalent to (G,q) is also bearing
congruent to (G,q)

The concept of infinitesimal rigidity is characterized by the kernel of the Jacobian matrix
of the directed bearing rigidity function. Therefore, we present a new tool:

Definition 2.22 (Directed bearing rigidity matrix [9]). The world frame (directed) bear-
ing rigidity matrix is the Jacobian of the bearing function w.r.t the agent configuration
q, that is, the matrix:

WBG =
∂βG(q)

∂q
∈ R3m×4N (2.22)

where its k-th row block associated to edge ek = (i, j) is expressed so:⎡⎣−0− −PijR
T
i

dij⏞ ⏟⏟ ⏞
i

−0− PijR
T
i

dij⏞ ⏟⏟ ⏞
j

−0− −Sβij −0−
⎤⎦ (2.23)

with

• dij = ||pi − pj|| is the distance between two agents

• Pij = I3−βijβTij is the orthogonal projector matrix onto the orthogonal complement
of βij

• S = [[0 0 1]T ]× skew symmetric matrix

• WBG from FW to FB

Therefore, by defining the directed bearing rigidity matrix, we can define the infinitesimal
bearing rigidity and its property through bearing rigidity matrix:

Definition 2.23 (Infinitesimal bearing rigidity in R3×S1 [9]). A R3×S1 framework (G,q)
is infinitesimally bearing rigid if

Null[WBG] = Null[WBKN
]

with KN being the complete directed graph.



Theorem 2.24 (Property of bearing rigidity matrix [9]). A R3 × S1 framework is in-
finitesimally bearing rigid if and only if rk[WBG] = 3|V| − 4.

Thanks for this definition, for an infinitesimally rigid framework in R3 × S1, the 5-
dimensional null space of the bearing rigidity matrix includes three actions corresponding
to:

• WvF - a vector of three rigid-body translations along each axis

• ṡF - a velocity of dilatation relative to a reference point

• ψ̇F - an angular rotation around a vertical axis that passing through a reference
point

These three actions allow us to manage the formation without breaking it during the
flight. For this reason, they are referred to as trivial motions and its set is denoted with
the following symbol M = {WvF , ṡF , ψ̇F}.

(a) Translation (b) Scaling (c) Rotation

Figure 2.5: Trivial motion. Source: [6]

Furthermore, the bearing rigidity matrix relates the changes of the bearing function
βG(expressed in FB) to velocities in the world frame q̇ = (ṗ, ψ̇):

β̇G = WBG(q)

[︃
ṗ

ψ̇

]︃
(2.24)

2.4 Model Predictive Control (MPC) and Nonlinear

Model Predictive Control (NMPC)

In this section, we will explain the main concept of MPC, LQR, NMPC, and the archi-
tecture of MPC.



2.4.1 Model Predictive Control (MPC)

Model predictive control (MPC) is an advanced method of process control that is used
to control a process while satisfying a set of constraints. It relies on dynamic models of
the process that are used to predict future behavior of that model in a time slot called
prediction horizon and the idea is to optimize the control input to minimize a cost function
with an optimal control input. The MPC has the advantage that predicting the future
step of the process by the model that it has and it finds a set of optimal control inputs
(it is as long as the number of prediction horizons).

MPC is based on iterative, finite-horizon optimization of a plant model. At the time t
the current plant state is sampled and a cost-minimizing control strategy is computed,
through numerical algorithms, for a short time horizon in the future [t, t + T ] called
prediction horizon. Only the first step of the control strategy is implemented, then the
plan state is sampled again and the calculations are repeated starting from the new current
state, yielding a new control and a new predicted state path (this is depicted in the below
figure).

Legend

Setpoint

Pred trj 1

Pred trj 2

Pred trj 3

Pred input 1

Pred input 2

Pred input 3

Prediction horizonPast

Sampling
time

k k+1 k+2 k+3 k+4k-4 k-3 k-2 k-1

Figure 2.6: MPC prediction horizon

The main ingredients for MPC are:

• Internal system model

• Cost function

• Initial conditions

• Set of constraints on input and system state



The more basic cost function is defined in the following way:

L(x,xd,u,∆t) =1

2
ex(x(k +Np∆t))

TSex(x(k +Np∆t))+ (2.25)

1

2

Np−1∑︂
l=1

[ex(x(k + l∆t))TQex(x(k + l∆t))+ (2.26)

u(k + l∆t)TRu(k + l∆t)] (2.27)

where

• Q ≥ 0 is the weight matrix on state error

• R > 0 is the weight matrix on control input

• S ≥ 0 is the weight matrix on the final term

• k is the discrete-time

• ∆t is the sampling time

• Np is the length of the prediction horizon

• x(k∆t),u(k∆t) state and input at k-th time

• xd is the desired plant state

and the error is defined so:

ex(x(k + l∆t)) = x(k + l∆t)− xd

2.4.2 MPC vs Linear Quadratic Regulator (LQR)

The Linear Quadratic Regulator (LQR) is the most famous optimal controller. Its goal
is to minimize the cost function through the algebraic Riccati equation that it takes into
account the plant model. The LQR has two approaches:

• Infinite horizon

• Finite horizon

The MPC works with fixed length prediction, often weighted sets of error functions. The
LQR looks at all linear system inputs and provides the transfer function that will re-
duce the total error across the frequency spectrum, trading off state error against input
frequency.

For this reason, LQR has better global stability properties, but MPC often has more
locally optimal and complex performance.

The main differences between MPC and LQR are:



• LQR

– it optimizes the control input across the entire time window and it uses this
optimal control input in the whole time window

– is not able to handle constraints on system state and control input

• MPC

– is an implementation of the Receding Horizon (RH) principle where it optimizes
the control input for a finite control input but it applies only to the first optimal
control input and repeats the process for the next step

– can handle hard constraints on state and control input

2.4.3 Nonlinear Model Predictive Control (NMPC)

The NMPC (Nonlinear MPC) is the extension of MPC that is able to handle to solve an
optimization problem with a nonlinear system. The NMPC is divided into 5 main phases
[7]:

• Define the problem in continuous time, namely Optimal Control Problem (OCP)

• Discretization of optimization problem by integration

• Formalize the nonlinear problem with Karush-Kuhn-Tucker (KKT) conditions and
Newton methods

• Compute derivative through sensitivity

• Solve the Quadratic Programming (QP) with one of several methods

Figure 2.7: NMPC algorithm. Source: Slide course AeMPC [7]



The idea is to resolve the following problem:

u∗ = argmin
u(·)

L(x(t), u(t))

s.t

⎧⎨⎩
x(t0) = x̂0
ẋ(t) = F (x(t), u(t)) t ∈ [t0, tf ]
H(x(t), u(t)) ≤ 0 t ∈ [t0, tf ]

(2.28)

where the system F (·, ·) is a nonlinear system (NMPC internal system model) and the
problem can have a constraint set H(·, ·) with non-linear constraints. Which ones are
defined for a finite horizon that starts from t0 (initial time) to tf (final time).

2.4.4 Architectures with the MAS

In this section, we present the three architectures of NMPC when it is used with the MAS.
We will introduce the main abstract concept for each one and in the end, we will compare
them with advantages and disadvantages.
We will see the following architectures:

• Centralized

• Distributed

• Decentralized

2.4.4.1 Centralized architecture

The first architecture that we see is the centralized. The main concept of this architecture
is that there is a single MPC that computes the set of optimal control inputs for all the
agents and once it has computed them, it sends each control input to the specific agent.
The state of the internal system model is composed of each agent state, for example, if
we have a MAS of 5 agents and each agent state is d dimensions then the state of the
internal system is 5d dimensions.
In most cases, the matrices that describe the MAS, in this type of architecture, are very
large and the NMPC needs a lot of power to optimize them.

In this architecture, it is important to synchronize the communication between the agents
and the MPC, so that the MPC is able to predict the best control input at the right time.
In most cases, in this architecture, the MPC works on an external powerful computer
that is able to receive the information, compute the optimizations, and send the optimal
control input in real time.
The following figure shows the centralized architecture:



MPC for all agents

Agent 1 Agent 2 Agent P...

Local information

MPC information (Prediction future state)

Figure 2.8: Centralized MPC technique

2.4.4.2 Distributed architecture

In a distributed architecture, the centralised MPC problem is divided into sub-problems,
where each agent only needs to compute its sub-problem in parallel. Each MPC solves a
sub-problem by using local information and the information obtained from the interactions
between the systems, where the controller can communicate its optimal control input and
the predicted states to other controllers (it is shown in Figure 2.9).
In this way, it is no longer necessary to have a dedicated PC with a large computing power
to achieve a feasible solution as with a centralised problem.

Therefore, each agent (its MPC) shares the following information with other agents

• Output:

– its local state information

– its prediction states

• Input:

– all local state information of other agents (only those linked to it)

– all predicted future states of other agents (only those linked to it)

MPC for
Agent 1

MPC for
Agent 2

MPC for
Agent P

Agent 1 Agent 2 Agent P

...

...

Local information

MPC information (Prediction future states)

Figure 2.9: Distributed MPC technique [8]



Thanks to this exchange of the prediction horizon between the MPCs, the distributed
architecture doesn’t need to compute a centralized feasible solution for the first computa-
tion step.
For the above reason, the MPC is placed onboard of the quadrotor hardware and it doesn’t
need an external PC.

The paper [8] proposes a possible implementation of this strategy.

2.4.4.3 Decentralized technique

The idea of decentralised MPC for the formation of P agents is to divide the MPC problem
into sub-problems, but unlike the distributed technique, there is no exchange of future
states between the agents. It is illustrated in the Figure 2.10:

MPC for
Agent 1

MPC for
Agent 2

MPC for
Agent P

Agent 1 Agent 2 Agent P

...

...

Local information

MPC information(Prediction future state)

Figure 2.10: Decentralized MPC technique [8]

Therefore, each agent (its MPC) shares the following information with other agents

• Output:

– its local state information

• Input:

– all local state information from other agents (only those linked to it)

The key feature of the DMPC (Decentralized MPC) algorithm is that each agent solves
only one sub-problem for its own plan, and each of these sub-problems is solved only once
per time step, without iteration among the MPCs (this is shown in Figure 2.11(a)).

The Figure 2.11(b) shows the required information for subproblems, and we notice that
in the first part, it gets the latest plans of the previous subsystems in order. Instead, in
the second part, it uses the predicted plan solved in the previous step (we can imagine
that it is working in the k-step, so it will use the predicted plane in the k-1-step).



The figures below illustrate the concept of breaking down the problem into subproblems,
as explained earlier:

(a) DMPC procedure flow (b) DMPC Information flow of a single step

Figure 2.11: DMPC algorithm

In the following, we want to present the concept of an algorithm that is proposed in the
paper [11] to implement a decentralized architecture for MPC

Algorithm 1 Decentralized MPC

1: Find a solution to the initial centralized problem.
2: if Solution is not feasible then
3: stop (problem is infeasible)
4: end if
5: Set k = 0
6: Apply control u∗

p(k|k) of each subsystem p and k++
7: for ∀ subsystem p ∈ p = 1, .., P do
8: Compile the plan data from other subsystems ∀q ̸= p
9: Solve the sub-problem p
10: end for

The paper [11] says an important thing about the first step of the Algorithm 1 namely
it is not necessary that the solution must be an optimal solution. Therefore, we can
use also other methods to find a feasible solution.

One possible solution is to start with an initial condition (input and state) that produces
a feasible solution for the first step of the decentralised algorithm. This way we can avoid
the 0-step where it has to compute a feasible solution for the centralised problem.



The paper [12] proposes a decentralised and parallelized algorithm to compute a near-
optimal solution to a specific class of non-linear, non-convex problems under the assump-
tion of no delay or loss of communication.

2.4.4.4 Comparison between the three

Centralized MPC:

• Advantages :

– Design a huge matrix without making new assumptions about the agents

• Disadvantages :

– It needs many resources to compute the optimization

Distributed MPC:

• Advantages :

– The algorithm doesn’t have to compute a feasible solution for a centralized
model

– It uses medium/small matrices to describe the internal system model

• Disadvantages :

– Need to exchange large quantities of data from agents (in the paper [8] choose
to work with one step ahead prediction)

– Likely to find a problem with delay in data exchange (high usage of network
resources)

– Share current states and prediction states

– Store prediction states (implementation side)

Decentralized MPC:

• Advantages :

– The agents exchange a small quantity of data with each other

– Likely to find a problem with delay in data exchange (low usage of network
resources)

– Share only current states

– It uses medium/little matrices to describe the internal system model

• Disadvantages :

– the algorithm proposed by [11] has to compute a feasible solution for the cen-
tralized model (it can be avoided with special assumptions)



2.5 Multi-Objective Optimization (MOO)

The multi-objective optimization is concerned with mathematical optimization prob-
lems involving more than one objective function to be optimized simultaneously. Multi-
objective is a type of vector optimization where optimal decisions need to be taken in the
presence of trade-offs between two o more conflicting objectives. For example, we think
about a car where we want to minimize the production cost while maximizing comfort
and at the same time maximizing performance while minimizing fuel consumption. It is a
hard challenge to satisfy all these objectives and we need to find a balance among them.

We can define the MOO problem using {fi(x)}ni=1 optimization functions [4]:

min /max f1(x), . . . , fn(x) (2.29)

subject to: gj(x), j = 1, . . . ,m x ∈ U (2.30)

where x is the decision variable, x∗ is a solution (also called Pareto optimal), gj is a
constraint of the problem and U is the feasible set of the MOO problem.

We can represent the MOO problem with all feasible solutions using through the Pareto
method which we will explain in the next section.

2.5.1 Pareto frontier [3]

The Pareto frontier allows us to restrict attention to the set of efficient choices, and to
make tradeoffs within this set, rather than considering the full range of every parameter.
The MOO problem described in the Equation 2.29, its set of solutions is called Pareto
front which shows the best trade-offs relations between all objectives.

The main objective of MOO is to find a collection of acceptable optimal solutions known
as the Pareto optimal set or also Pareto efficiency and selects the best answer from the
obtained Pareto set

The Pareto efficient refers to a situation where there is no action that makes one objective
better off without making another worse off. There are three Pareto situations that are
closely related:

• Pareto improvement is a new situation where some objective will gain and no
objective will lose

• Pareto-dominated is a situation where there exists a possible Pareto Improvement
or when one objective function cannot increase without reducing the other objective
functions

• Pareto-efficient/Non dominated is a situation where there isn’t change that
could lead to improved satisfaction for some objective without some other objective
losing. It is equivalent that there isn’t scope for further Pareto improvement.



There are two other important concepts in the Pareto method which are:

• Anchor Point can be obtained through the best of an objective function

• Utopia Point is obtained through the intersection of the maximum/minimum value
of an objective function and the maximum/minimum value of another objective
function.

There is an example with two cost functions f1(x) and f2(x), in the figure below :

Figure 2.12: POF of minimization for two objective functions. Source: [3]

Therefore, once the solution points and the utopia point have been found, the POF’s the
optimal value can be obtained by calculating the shortest Euclidean distance from the
Utopia point.

There are several ways to solve multi-objective optimization problem. In general, the
classical methods can be categorized into three approaches:

• Weighted method

• Goal Programming

• ϵ-Constraint method

2.5.2 Weighted method or scalarization method [4]

The weighted method is based on all objective functions being combined together and
converting them into a single objective function using different coefficients or each function



as a weight factor. The weights are determined before the optimization process and
indicate which task is more important than another.

Through this method, we can rewrite the problem (Equation 2.29) as follows:

F (x) = w1f1(x) + · · ·+ wnfn(x) =
n∑︂
k=1

wkfk(x) (2.31)

with wk ∈ (0, 1)
n∑︂
k=1

wk = 1 (2.32)

the weights wk of the objective function determine the solution of the fitness function F (x)
and how the performance priority. The most difficult part of this method is finding the
appropriate weights for all objectives based on the relative importance of each objective
when there is insufficient information about the desired problem. The problem can be
solved repeatedly with various values for weights coefficients then the decision makers
select the proper solution regarding the importance of each objective function.

The advantages of this method are:

• Efficiency

• Simplicity to apply

• Finding the optimal solutions on the entire Pareto set.

Instead, the disadvantages are:

• Decision-makers need to determine the weights by their intuition/experience or judg-
ment

• Changing the weights may cause big or small changes in the objectives

• The method can not find the appropriate solutions on the non-convex part of the
Pareto set

• There is the possibility of having a number of minimum solutions for a particular
set of weights in which generates various solutions in the Pareto set

In our case, we are lucky because we already know which task has priority over others.

2.5.3 ϵ-Constraint method [4]

The method is based on transforming a multi objective problem into a traditional single
objective problem by choosing one objective as the main objective function and considering
the remaining objective as constraints in the desired optimization problem.



We can rewrite the problem in the Equation 2.29 using this method:

min fi(X); X =

⎡⎣x1. . .
xn

⎤⎦ (2.33)

Subject to:

{︃
gj(X) ≤ 0 j = 1, 2, ...,m

fk(X) ≤ ϵk k = 1, ..., n; k ̸= i

}︃
where ϵ = ϵ1, ϵ2, ..., ϵi−1, ϵi+1, ..., ϵn

Therefore, the Pareto set is generated by solving the optimization problem repeatedly for
different values of ϵ.





Chapter 3

Controllers

In this chapter, we will show the controllers that we used during the thesis. We will
present the classic controller for bearing-only formation, which utilizes the gradient descent
method. Then, we will present various internal system models for NMPC that implement
distinct quadrotor dynamics, control inputs, and objectives.

3.1 Classical bearing-only control for multi-agent for-

mation

As stated in the Section 2.3.2, the bearing rigidity matrix WBG(q) relates the changes of

the bearing function βG (expressed in FB) induced by the world-frame velocities q̇ = (ṗ, ψ̇)
in the framework (or formation):

β̇G = WBG(q)

[︃
ṗ

ψ̇

]︃
(3.1)

Our goal is that a MAS can achieve the desired formation. Therefore, the desired formation
can be expressed through a desired bearing information βdG. We utilize the bearing rigidity
properties for our formation which already discussed in the Section 2.3.2 and the idea is
to bring the bearing error the e(q) = βdG − βG(q) to zero. To accomplish this, we can
formulate the problem as an optimization problem with a quadratic cost function L(q)
regarding the bearing error:

argmin
q

L(q) = argmin
q

1

2
||e(q)||2 (3.2)

33



Therefore, we employ the gradient descent method to achieve this objective:

∇q(L(q)) = ∇q(
1

2
||e(q)||2) (3.3)

= ∇q(
1

2
e(q)Te(q)) (3.4)

=
1

2
ė(q)Te(q) +

1

2
e(q)T ė(q) (3.5)

= ė(q)Te(q) (3.6)

=

[︃
ṗ

ψ̇

]︃T
WBG(q)

Te(q) (3.7)

= −
[︃
ṗ

ψ̇

]︃T
WBG(q)

TβdG (3.8)

After obtaining this result, we replace the term

[︃
ṗ

ψ̇

]︃
with the Equation 2.1, so:

∇q(L(q)) = −
[︃
ṗ

ψ̇

]︃T
WBG(q)

TβdG (3.9)

= −uT
[︃
diag(RT

i )
IN

]︃
WBG(q)

TβdG (3.10)

then we obtained the following control law [9]:

u =

[︃
v
w

]︃
= kc

[︃
diag(dij) 0

0 IN

]︃
BG(q)

TβdG (3.11)

We notice that we can tune the convergence speed though a proportional kc. We will
present the experiments of this controller in Chapter 5. In the next section, we will
formulate the same problem but with an NMPC tool.

3.2 Model for centralized NMPC

In this section, two main internal system models for NMPC are presented:

• model with quadrotor like a singular integrator in a centralized architecture

• model with quadrotor with full complex dynamics

The second internal system model has four different designs with different objectives:

• centralized MAS model with 2 fixed agents and 1 unfixed agent



• centralized MAS with thrust and torque control (3 unfixed agents)

• centralized MAS with thrust and angular velocities control (3 unfixed agents)

• decentralized MAS with thrust and angular velocities control (3 unfixed agents)

For the sake of simplicity, we have opted to control a triangular formation with:

• 3 agents

• Full connected graph

• Leaderless

• Architecture:

– Centralized

– Decentralized

• the graph of sensing and communication is the same

Below the left side there is the representation of the triangular formation, instead the
right side, there is an incidence matrix DG that described the relation among edges and
vertices:

Figure 3.1: Triangle formation with
full connected graph

DG =

⎡⎣ 1 1 −1 0 −1 0
−1 0 1 1 0 −1
0 −1 0 1 1 1

⎤⎦

For the sake of simplicity, all vectors in this study are dependent on time t but this is
only explicitly indicated when necessary, for example, to highlight a time-variant matrix.
In addition, we will note that all models will be non-linear and time-variant due to the
inclusion of the bearing rigidity matrix and the quadrotor model.



3.2.1 Centralized approach with quadrotor modeled as a singu-
lar integrator

We start by defining the state and control input for this model. The objective of this
model is to control a MAS comprising three agents as a single integrator with the bearing
rigidity matrix.

The state of the NMPC internal system model needs the bearing information for all
edges and the states of each agent. The control input that the NMPC has to optimize is
composed of linear and angular velocity around the z-axis for each agent as outlined in
our description in the Equation 2.1:

System state variables:

x =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

β12

β13

β21

β23

β31

β32

p1

ψ1

p2

ψ2

p3

ψ3

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

ẋ =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

β̇12

β̇13

β̇21

β̇23

β̇31

β̇32

ṗ1

ψ̇1

ṗ2

ψ̇2

ṗ3

ψ̇3

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

System inputs:

u =

⎡⎢⎢⎢⎢⎢⎢⎣
v1

v2

v3

w1

w2

w3

⎤⎥⎥⎥⎥⎥⎥⎦

Then, we formulate the subsequent state equation for the entire system:

ẋ = B(x, t)u+ F˜︁β ◦ ˜︂W˜︁w(t) =

[︃
B1(x, t)
B2(x, t)

]︃
u+

[︃
F1

F2

]︃ ˜︁β ◦ ˜︂W˜︁w(t) (3.12)

where ◦ is the Hadamard product or element-wise product.

We start to describe the matrices B1(x, t) and B2(x, t). The first contains a part of
bearing rigidity matrix information (Equation 2.23):

B1(x, t) =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

−P12

d12

P12

d12
R1

2 03×3 03×1 03×1 03×1

−P13

d13
03×3

P13

d13
R1

3 03×1 03×1 03×1
P21

d21
R2

1 −P21

d21
03×3 03×1 03×1 03×1

03×3 −P23

d23

P23

d23
R2

3 03×1 03×1 03×1
P31

d31
R3

1 03×3 −P31

d31
03×1 03×1 03×1

03×3
P32

d32
R3

2 −P32

d32
03×1 03×1 03×1

⎤⎥⎥⎥⎥⎥⎥⎥⎦
(3.13)

where the matrix B1(x, t) ∈ R3m×(3+1)N = R18×12 and the terms are:



• Pij(t) = I3 − βij(t)βij(t)T = Pij is the projection matrix, that is a time variant
matrix

• Ri
j(t) = Rz(ψi(t)− ψj(t)) = Ri

j is the rotation matrix that is a time variant matrix

instead, the second matrix contains the dynamics of agents (Equation 2.1):

B2(x, t) =

⎡⎢⎢⎢⎢⎢⎢⎣
R1 03×3 03×3 03×1 03×1 03×1

01×3 01×3 01×3 1 0 0
03×3 R2 03×3 03×1 03×1 03×1

01×3 01×3 01×3 0 1 0
03×3 03×3 R3 03×1 03×1 03×1

01×3 01×3 01×3 0 0 1

⎤⎥⎥⎥⎥⎥⎥⎦ (3.14)

where the matrix B2(x, t) ∈ R3m×(3+1)N = R12×12. For the reasons above, the NMPC
internal system model, that we design is time-variant and nonlinear.

Now, we will describe the second part of the Equation 3.12. The objective is to describe the
−Sβijw present in the bearing rigidity matrix (Equation 2.23) in matrix form. Therefore,

we design the subsequent matrices F =

[︃
F1

F2

]︃
, ˜︁β, ˜︂W and ˜︁w to achieve this aim. We start

from F ∈ R30×18 that contains S = [[0 0 1]T ]× and it is designed as follows:

F1 =

⎡⎢⎢⎢⎢⎢⎢⎣

−S
−S

−S
−S

−S
−S

⎤⎥⎥⎥⎥⎥⎥⎦ ∈ R3m×3m = R18×18 F2 = 012×18 (3.15)

The ˜︁β includes all relative bearing information for the MAS and the ˜︁w includes all angular
velocities for the MAS:

˜︁β =

⎡⎢⎢⎢⎢⎢⎢⎣
β12

β13

β21

β23

β31

β32

⎤⎥⎥⎥⎥⎥⎥⎦ ∈ R18×1 ˜︁w =

⎡⎣w1

w2

w3

⎤⎦ ∈ R3×1 (3.16)



and we design the matrix ˜︂W so:

˜︂W =

[︃
W

012×3

]︃
∈ R30×3 with W =

⎡⎢⎢⎢⎢⎢⎢⎣
13×1

13×1

13×1

13×1

13×1

13×1

⎤⎥⎥⎥⎥⎥⎥⎦ ∈ R18×3 (3.17)

In that way, we are able to incorporate the latter half part of the bearing rigidity matrix
(Equation 2.23) into our system:

ẋ = B(x, t)u+ F˜︁β ◦ ˜︂W˜︁w(t) =

[︃
B1(x, t)
B2(x, t)

]︃
u+

[︃
F1

F2

]︃ ˜︁β ◦ ˜︂W˜︁w(t)⏞ ⏟⏟ ⏞
−SβGw

(3.18)

At this point, we include all elements in the NMPC internal system model which now can
simulate a centralized formation with bearing rigidity. The results of simulations of this
model are shown in the Chapter 5.

3.2.2 Model with quadrotor with full complex dynamics

In this section, we will use the complex quadrotor dynamics in our internal system model
rather than an agent described as a point with mass because this allows us to have a
better simulation of our quadcopter.

3.2.2.1 Centralized MAS model with 2 fixed agents and 1 unfixed agent

We start to define a state and control input for this model. Our objective for this model is
to control a single agent that must establish a formation with two other agents (anchors)
that are fixed in their position. The unfixed agent knows all information about the other
two agents, including their position, velocities, and so on.

We begin by defining the state of our centralized MAS where the NMPC must only have
the state of the unfixed agent because it can control only that. In addition, in the state, we
add the bearing information of two edges with bidirectional orientation. This is necessary
when implementing NMPC to achieve a triangular formation with a single unfixed agent
and no distance constraints. In this case, a constraint on three angles must be imposed:

• Bearing information of agent 1: β12 and β13

• Bearing information of agent 2: β21



• Bearing information of agent 3: β31

Therefore, the state obtained by us is defined as follows:

x =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

β12

β13

β21

β31

p1

α1

v1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
∈ R21×1 ẋ =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

β̇12

β̇13

β̇21

β̇31

ṗ1

α̇1

v̇1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
∈ R21×1 (3.19)

where the meanings of symbols are:

• βij is expressed in FB

• pi,αi,vi are expressed in FW

We assume that the position of the other two agents is known (with little variations) and
constant for the duration of the prediction horizon. As a result, the control input is:

u =

[︃
T1
ω1

]︃
∈ R4×1 where Ti ∈ R and ωi ∈ R3 both in FB (3.20)

and we define the known variables (specifically the linear and angular velocities of anchors)
as follows:

lv =

[︃
v2

v3

]︃
∈ R6×1 (3.21)

The NMPC internal system model is defined as follows:

ẋ(t) = A(x, t)x+ Lv(x, t)lv +B(x, t)u+ ˜︁g + F˜︁β ◦ ˜︂W˜︁w (3.22)

=

[︃
A1(x, t)

A2

]︃
x+ Lv(x, t)lv +

[︃
B1

B2(x, t)

]︃ [︃
T1
ω1

]︃
+ ˜︁g +

[︃
F1

F2

]︃
β ◦ ˜︂W˜︁w (3.23)

where ◦ is the Hadamard product or element-wise product. We distinguish between the
number of unfixed drones and fixed drones as follows:

• N is the number of unfixed agents

• ˜︁N is the number of fixed agents



we build the matrices A(x, t) and Lv(x, t) incorporating the bearing rigidity matrix Equa-
tion 2.23 (m = 4):

A1(x, t) =

⎡⎢⎢⎢⎣
03×18 −P12

d12
RzT

1

03×18 −P13

d13
RzT

1

03×18
P21

d21
RzT

2

03×18
P31

d31
RzT

3

⎤⎥⎥⎥⎦ ∈ R3m×(3m+9N) = R12×21 (3.24)

Lv(x, t) =

⎡⎢⎢⎢⎢⎢⎣
P12

d12
RzT

1 03×3

03×3
P13

d13
RzT

1

−P21

d21
RzT

2 03×3

03×3 −P31

d31
RzT

3

09×3 09×3

⎤⎥⎥⎥⎥⎥⎦ ∈ R(3m+9N)×(3 ˜︁N) = R21×6 (3.25)

with

• Pij(t) = I3 − βij(t)βij(t)T = Pij is the projection matrix, that is a time variant
matrix

• Ri(t) = Rz(ψi(t)) = Ri is the rotation matrix that is a time variant matrix

Instead, the quadrotor model is contained A2 and B1 (Equation 2.4-Equation 2.5):

A2 =

⎡⎣03×12 03×6 I3×3

03×12 03×6 03×3

03×12 03×6 03×3

⎤⎦ ∈ R9N×(3m+9N) = R9×21 (3.26)

B1 = 012×4 B2(x, t) =

⎡⎣ 03×1 03×3

03×1 I3×3

RRPY
1 e3

1
m

03×3

⎤⎦ ∈ R9×4 (3.27)

Now we describe the latter half part of the Equation 2.23 with F ∈ R21×12:

F2 = 09×12 F1 =

⎡⎢⎢⎣
−S

−S
−S

−S

⎤⎥⎥⎦ ∈ R3m×3m = R12×12 (3.28)

we create a vector that includes all bearings information:



β =

⎡⎢⎢⎣
β12

β13

β21

β31

⎤⎥⎥⎦ ∈ R6×1 ˜︁w =

⎡⎣ωz1ωz2
ωz3

⎤⎦ ∈ R3×1 (3.29)

˜︂W =

[︃
W
09×3

]︃
∈ R21×3 with W =

⎡⎢⎢⎣
13×1

13×1

13×1

13×1

⎤⎥⎥⎦ ∈ R12×3 (3.30)

In the end, the vector with gravitational effects on dynamics is defined as follows:

˜︁g =

⎡⎣012×1

06×1

−ge3

⎤⎦ (3.31)

The experiments done using this model are shown in the appendices.

3.2.2.2 Centralized MAS model with thrust and torque control

In this model, we aim to have complete control over all agents. As a result, we include all
bearing information and the state of each agent within the state:

x =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

β12

β13

β21

β23

β31

β32

p1

α1

v1

ω1

p2

α2

v2

ω2

p3

α3

v3

ω3

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

∈ R54×1 ẋ =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

β̇12

β̇13

β̇21

β̇23

β̇31

β̇32

ṗ1

α̇1

v̇1

ω̇1

ṗ2

α̇2

v̇2

ω̇2

ṗ3

α̇3

v̇3

ω̇3

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

∈ R54×1 (3.32)



where:

• βij is expressed in FB

• pi,αi,vi are expressed in FW

• ωi is expressed in FB

In this case, it is necessary for the NMPC to optimize the thrust and torque of any agents;
therefore, the control input is defined as follows:

u =

⎡⎢⎢⎢⎢⎢⎢⎣
T1
τ 1

T2
τ 2

T3
τ 3

⎤⎥⎥⎥⎥⎥⎥⎦ ∈ R12×1 where Ti ∈ R and τ i ∈ R3 both in FB (3.33)

then the update equation is defined as follows:

ẋ = A(x, t)x+B(x, t)u+ ˜︁g + F˜︁β ◦ ˜︂W˜︁w
=

[︃
A1(x, t)

A2

]︃
x+

[︃
B1

B2(x, t)

]︃
⎡⎢⎢⎢⎢⎢⎢⎣
T1
τ 1

T2
τ 2

T3
τ 3

⎤⎥⎥⎥⎥⎥⎥⎦+ ˜︁g +

[︃
F1

F2

]︃
β ◦ ˜︂W˜︁w (3.34)

The first matrix that we design is theA(x, t) which is then split into two separate matrices.
The matrix A1(x, t) contains the first portion of the Equation 2.23:

A1(x, t) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

03×24 −P12

d12
RzT

1 03×9
P12

d12
RzT

1 03×9 03×3 03×3

03×24 −P13

d13
RzT

1 03×9 03×3 03×9
P13

d13
RzT

1 03×3

03×24
P21

d21
RzT

2 03×9 −P21

d21
RzT

2 03×9 03×3 03×3

03×24 03×3 03×9 −P23

d23
RzT

2 03×9
P23

d23
RzT

2 03×3

03×24
P31

d31
RzT

3 03×9 03×3 03×9 −P31

d31
RzT

3 03×3

03×24 03×3 03×9
P32

d32
RzT

3 03×9 −P32

d32
RzT

3 03×3

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
(3.35)

where A1(x, t) ∈ R3m×(3m+12N) = R18×54 with

• Pij(t) = I3 − βij(t)βij(t)T = Pij is the projection matrix, that is a time variant
matrix

• Rz
i (t) = Rz(ψi(t)) = Rz

i is the rotation matrix that is a time variant matrix



Instead, the matrix A2 contains a part of quadrotor kinematics that we previously defined
in Equation 2.4 (the blank spaces represent either zero scalars or matrices. The reason
for this is to highlight the structure of matrices):

A2 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

03×18 03×6 I3×3 03×3

03×18 03×6 03×3 I3×3

06×18 06×6 06×3 06×3

03×18 03×6 03×3 03×3

03×18 03×6 I3×3 03×3

03×18 03×6 03×3 I3×3

06×18 06×6 06×3 06×3

03×18 03×6 03×3 03×3

03×18 03×6 I3×3 03×3

03×18 03×6 03×3 I3×3

06×18 06×6 06×3 06×3

03×18 03×6 03×3 03×3

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(3.36)

where the matrix A2 has dimension R12N×(3m+12N) = R36×54.

Now, it is time to design the matrix B(x, t), which we will divide into two parts. The
first part, B1 is empty because the control input doesn’t update the bearing information
control:

B1 = 018×12 (3.37)

instead, in the matrix B2(x, t) contains the dynamics of all agents as expressed in Equa-
tion 2.5:

B2(x, t) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

03×1 03×3

03×1 03×3

RRPY
1 e3

1
m

03×3

03×1 J−1

03×1 03×3

03×1 03×3

RRPY
2 e3

1
m

03×3

03×1 J−1

03×1 03×3

03×1 03×3

RRPY
3 e3

1
m

03×3

03×1 J−1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(3.38)

which has dimension R36×12.

Now, we will describe the second part of the Equation 3.34 using F ∈ R54×18. It is divided
into two parts. The first part F1 contains the latter half part of the bearing rigidity matrix



in the Equation 2.23:

F1 =

⎡⎢⎢⎢⎢⎢⎢⎣

−S
−S

−S
−S

−S
−S

⎤⎥⎥⎥⎥⎥⎥⎦ ∈ R3m×3m = R18×18 (3.39)

instead F2 is empty:

F2 = 036×18 (3.40)

Now, we define two vectors: the first contains all bearings information, and the second
contains the angular velocity around the z-axis:

β =

⎡⎢⎢⎢⎢⎢⎢⎣
β12

β13

β21

β23

β31

β32

⎤⎥⎥⎥⎥⎥⎥⎦ ∈ R18×1 ˜︁w =

⎡⎣ωz1ωz2
ωz3

⎤⎦ ∈ R3×1 (3.41)

and we design the following matrix in the following manner:

˜︂W =

[︃
W

036×3

]︃
∈ R54×3 with W =

⎡⎢⎢⎢⎢⎢⎢⎣
13×1

13×1

13×1

13×1

13×1

13×1

⎤⎥⎥⎥⎥⎥⎥⎦ ∈ R18×3 (3.42)

As outlined in sections Chapter 3.18 the matrix design was chosen to allow the calcu-
lation of the equation −Sβijw which forms a component of the Equation 2.23 and the
Equation 2.24.



In the end, we define a vector with gravitational effects on agents’ dynamics:

˜︁g =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

018×1

06×1

−ge3
03×1

06×1

−ge3
03×1

06×1

−ge3
03×1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(3.43)

3.2.2.3 Centralized MAS model with thrust and angular velocities control

After simulation and with further explanation provided in the Chapter 5, it is necessary
to adjust the control input for the MAS. The main incentive for this modification is that
the current controller is not sufficiently fast to calculate and transmit the control input to
the flight control PX4. Therefore, we utilize the previously designed structure and modify
the control input.

We begin by defining the state of our centralized MAS and removing the angular velocity
of the agents:

x =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

β12

β13

β21

β23

β31

β32

p1

α1

v1

p2

α2

v2

p3

α3

v3

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

∈ R45×1 ẋ =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

β̇12

β̇13

β̇21

β̇23

β̇31

β̇32

ṗ1

α̇1

v̇1

ṗ2

α̇2

v̇2

ṗ3

α̇3

v̇3

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

∈ R45×1 (3.44)

where:

• βij is expressed in FB

• pi,αi,vi are expressed in FW



We introduce the new control input by substituting torque with angular velocity for each
body axis. Furthermore, we notice that the size of the vector remains unchanged:

u =

⎡⎢⎢⎢⎢⎢⎢⎣
T1
ω1

T2
ω2

T3
ω3

⎤⎥⎥⎥⎥⎥⎥⎦ ∈ R12×1 where Ti ∈ R and ωi ∈ R3 both in FB (3.45)

then we rewrite the update equation (Equation 3.34) with the new control input:

ẋ =A(x, t)x+B(x, t)u+ ˜︁g + F˜︁β ◦ ˜︂W˜︁w
=

[︃
A1(x, t)

A2

]︃
x+

[︃
B1

B2(x, t)

]︃
⎡⎢⎢⎢⎢⎢⎢⎣
T1
ω1

T2
ω2

T3
ω3

⎤⎥⎥⎥⎥⎥⎥⎦+ ˜︁g +

[︃
F1

F2

]︃
β ◦ ˜︂W˜︁w (3.46)

Now, the matrix A(x, t) in partitioned into two matrices with the first matrix A1(x, t)
constructed as follows:

A1(x, t) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

03×24 −P12

d12
RzT

1 03×6
P12

d12
RzT

1 03×6 03×3

03×24 −P13

d13
RzT

1 03×6 03×3 03×6
P13

d13
RzT

1

03×24
P21

d21
RzT

2 03×6 −P21

d21
RzT

2 03×6 03×3

03×24 03×3 03×6 −P23

d23
RzT

2 03×6
P23

d23
RzT

2

03×24
P31

d31
RzT

3 03×6 03×3 03×6 −P31

d31
RzT

3

03×24 03×3 03×6
P32

d32
RzT

3 03×6 −P32

d32
RzT

3

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
(3.47)

were te matrix A1(x, t) has dimension R3m×(3m+12N) = R18×45. Instead, the matrix A2 is
designed as follows:

A2 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

03×18 03×6 I3×3

03×18 03×6 03×3

03×18 03×6 03×3

03×18 03×6 I3×3

03×18 03×6 03×3

03×18 03×6 03×3

03×18 03×6 I3×3

03×18 03×6 03×3

03×18 03×6 03×3

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(3.48)

where A2 has dimension R9N×(3m+12N) = R27×45



After that, we build the matrix B(x, t) which is composed of two matrices:

B1 = 018×12 (3.49)

which one is empty because the control input doesn’t affect the bearing information evo-
lution. Instead, B2(x, t) contains a part of the Equation 2.4 and the Equation 2.5:

B2(x, t) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

03×1 03×3

03×1 I3×3

RRPY
1 e3

1
m

03×3

03×1 03×3

03×1 I3×3

RRPY
2 e3

1
m

03×3

03×1 03×3

03×1 I3×3

RRPY
3 e3

1
m

03×3

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(3.50)

which one has dimension R27×12. Now, we will describe the second part of the Equa-
tion 3.46 with F ∈ R54×18. We divide the matrix into two parts, the first F1 contains the
last part of the bearing rigidity matrix in the Equation 2.23:

F1 =

⎡⎢⎢⎢⎢⎢⎢⎣

−S
−S

−S
−S

−S
−S

⎤⎥⎥⎥⎥⎥⎥⎦ ∈ R3m×3m = R18×18 F2 = 027×18 (3.51)

In the end, we define the matrices that we need to create the last part of the Equation 3.34.
Initially, we define two vectors, which the first contains all information bearings and the
second contains the angular velocity around the z-axis:

β =

⎡⎢⎢⎢⎢⎢⎢⎣
β12

β13

β21

β23

β31

β32

⎤⎥⎥⎥⎥⎥⎥⎦ ∈ R18×1 ˜︁w =

⎡⎣ωz1ωz2
ωz3

⎤⎦ ∈ R3×1 (3.52)

and the matrix ˜︂W is defined as follows:



˜︂W =

[︃
W

027×3

]︃
∈ R45×3 with W =

⎡⎢⎢⎢⎢⎢⎢⎣
13×1

13×1

13×1

13×1

13×1

13×1

⎤⎥⎥⎥⎥⎥⎥⎦ ∈ R18×3 (3.53)

In conclusion, we define a vector with the gravitational effects on dynamics

˜︁g =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

018×1

06×1

−ge3
06×1

−ge3
06×1

−ge3

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
(3.54)

3.3 Model for decentralized NMPC

In this section, we will take some ideas from the paper [10] and Julian’s Ph.D. thesis [13]
with more our clarifications to implement this architecture.

Our control input is ui = [fi,ωi] for the agent Ai and its predicted state can be expressed
as:

qi(t) = qi(0) +

∫︂ t

0

q̇i(τ)dτ (3.55)

vi(t) = vi(0) +

∫︂ t

0

v̇i(τ)dτ (3.56)

pi(t) = pi(0) +

∫︂ t

0

ṗi(τ)dτ (3.57)

for t ∈ [0, Tp] and qi(t) is the agent quaternion. We notice that:

• qi(0) is evaluated from the know Roll and Pitch of Ai and its estimated yaw rel-
ative to the common reference frame available through a decentralized bearing
consensus localization algorithm [9]

• vi(0) is equally measured in Fi using optical flow and inertial sensor fusion



• pi(0) is not available, like an absolute measurement or even estimation, in a frame
common to all agents. But it is not very important because we work in inter-agent
bearings information.

We must find the prediction of bearings information:

βi(t) = [βi1(t), . . . ,βin(t)] (3.58)

which can be computed with the following equation:

βij(t) = RT
i (ψi(t))

pj(t)− pi(t)

d̂ij(t)
(3.59)

To accomplish the prediction, we have to make two important assumptions:
1° ASSUMPTION: At every prediction step, the origin of the predicted position is the
flat frame aligned with Fi. Due to we can estimate the initial position of Aj as

pj(0) = βij(0)d̂ij where d̂ij is an inter-agent distance estimate (3.60)

The position pi(t) and yaw ψi(t) of Ai is determined relative to its current position as a
function of the optimization variables (because the NMPC system incorporates the
dynamics of the drone).
The pj(t) can reasonably be estimated one of two ways:

1. Aj could communicate its predicted path from its previous RTI predictions step to
Ai

2. Ai could assume that Aj is moving as if it were reacting to the desired steering

command Md = [vdF , ψ̇
d

F , ṡ
d
F ]

We decided to use the second manner because the first one is too computationally expen-
sive.

2° ASSUMPTION: the observed quadrotors’ motions over the prediction time are purely
based on the velocity resulting from the desired trivial motion.
If we imagine the operation of a formation, likely, the different components of Md will
have different purposes:

• the linear velocity vdF is used for moving the formation through space. It may be
constant for large periods

• The yaw rate (ψ̇
d

F) and scale rate (ṡdF) of the formation however are likely to use for
marginally corrections the heading and scale of the formation to a desired value.

If we imagine the tasks of a formation:



• the linear velocity vdF is used for moving the formation through space and may be
constant for large periods.

• the yaw and scale rate for the formation however are likely used to marginally correct
the heading and scale of the formation to a desired value

Another important observation is that the large value of ψ̇
d

F and ṡdF at t=0 will not
necessarily imply that large values at the end of the prediction horizon, thus we use a
damped estimate for the predicted future steering commands:

vdF(t) = vdF(0) (3.61)

ψ̇
d

F(t) = ψ̇
d

F(0)e
−t
τ (3.62)

ṡdF(t) = ṡdF(0)e
−t
τ (3.63)

The predicted position ofAj relative to the initial position ofAi can therefore be estimated
by Ai to be (we recall the Equation 3.57)

p̂j(t) = βij d̂ij⏞ ⏟⏟ ⏞
p̂j(0)

+

∫︂ t

0

RT
i (ψi(ϵ))

vF⏟ ⏞⏞ ⏟
vdF(ϵ) + ψ̇

d

F(ϵ)[z0]x(cF(ϵ)− pj(ϵ)) + ṡdF(ϵ)(cF(ϵ)− pj(ϵ))⏞ ⏟⏟ ⏞
vj

dϵ

= p̂j(0) +

∫︂ t

0

RT
i (ψi(ϵ))[v

d
F(0)+

ψ̇
d

F(0)e
−ϵ
τ [z0]x(cF(ϵ)− pj(ϵ)) + ṡdF(0)e

−ϵ
τ (cF(ϵ)− pj(ϵ))]dϵ (3.64)

with

• t ∈ [0, Tp]

• z0 =
[︁
0 0 z0

]︁T
is the altitude at the initial time of prediction (t = 0 is equal to

t0)

• vdF(t) = vdF(0) = const for each prediction step

• guess for d̂ij

where the formation centroid can be estimated at t=0 and evolves as

ċF(t) = Rz(ψF(t))v
d
F(t) (3.65)

concerning the formation centroid at t=0. Given an initial bearing measurement, state
estimate, and future control input, Ai is thus able to estimate pi(t),pj(t) and ψi(t) for all



0 ≤ t ≤ Tp relative to Fi. So, we can use the Equation 3.59 where every agent can predict
the evolution of the formation.

Therefore, in the NMPC system model, we embedded the following equation:

p̂
′

j(t) = RT
i (ψF(t))vF(t) (3.66)

where the NMPC integrates it with a numerical method (for the sake of simplicity, we
have used a forward Euler to give an idea), hence we have:

p̂j(t+ 1) = p̂j(t) +RT
i (ψF(t))vF(t)Ts (3.67)

where Ts is the sampling time of the NMPC.

In the end, we can resume the procedure for the prediction:

1. we have vdF , ψ̇
d

F , ṡ
d
F , initial βi(t), position and velocities of other agents, and a guess

on d̂ij,

2. our goal is to compute the bearing information with the Equation 3.59

3. compute the initial position of agent j with the Equation 3.60

4. compute the initial centroid’s position with the Equation 3.65

5. compute the Equation 3.64 with iteration on integral

6. now, we have p̂j and we can compute the bearing information a new step thought
the Equation 3.59

7. uses the decentralized consensus localization and we find the estimated state of agent
j

8. to find the angular velocity applied on the drone, we use wj(t) = RT
j ψ̇

d

F

9. repeat step 5

In the case of decentralized NMPC in a triangular formation, a likely state of A1 can be:

x1 =
[︁
β12 β13 p1 α1 v1 w1 p̂2 p̂3 cF

]︁T
(3.68)



3.4 Trivial motion controller for formation control

The most straightforward trivial control that we can implement is a PID controller. In
our case, we implemented three distinct PI controllers, one for any trivial motion. We
formalize it as follows:

vF(k) = PvecF (k) + Iv

k∑︂
i=0

ecF (i)∆Ts ecF (k) = cdF − cF (k) ∈ R3

ωzF (k) = PωeψF (k) + Iω

k∑︂
i=0

eψF (i)∆Ts eψF (k) = ψdF − ψF(k) ∈ R

ṡF(k) = PṡesF (k) + Iṡ

k∑︂
i=0

esF (i)∆Ts esF (k) = sdF − sF(k) ∈ R

with Pv, Iv ∈ R3×3 instead Pω, Pṡ, Iω, Iṡ ∈ R. We opted to use a PI controller since at
present, we only need to track step signals. Furthermore, introducing a derivative term
in real experiments may result in a amplified and perturbed response to the noisy signal
and consequently require the implementation of a filter.

The trivial motion controller needs to have the formation state like input and it generates
the trivial motion like output. To achieve this, we need to define two maps:

• Map 1 (M1): convert the agents state x to formation state qF

• Map 2 (M2): map from trivial motion M to linear and angular velocities for each
agent [vi, ωz,i]

N
i=1

A scheme of the trivial motion controller (TMC) with these two maps is depicted in the
figure below:

3-PI controllers
(Trivial motion

controller)

Figure 3.2: Scheme of the trivial motion controller with the transformation maps

In the figure below, we can see the TMC scheme above with a global point of view where
it is connected with NMPC:



3-PI controllers
(Trivial motion

controller)

NMPC

Physical model

QUADROTOR 1

...

QUADROTOR N

Figure 3.3: NMPC and TCM in the control loop

We start to define the formation state like

qF =
[︁
cF ψF sF

]︁T ∈ R5 with cF ∈ R3 (3.69)

instead x ∈ R3m+9N = [xβ xA]
T contains the bearing information xβ and the agents state

xA namely the positions, rotations, and linear velocities of all agents. After formalizing
these concepts, we define the first map that transforms from the state of agents xA to
formation state qF in this way (N is the agent number of formation):

M1 : R9N → R5 (3.70)

xA =

⎡⎣xpxψ
xv

⎤⎦ ↦→ qF =

⎡⎣cF(xp)
ψF(xψ)
sF(xp)

⎤⎦ (3.71)

where xp ∈ R3N , xψ ∈ R3N , xv ∈ R3N and each map is defined as follows:

cF : R3N → R3, xp ↦→ cF =
N∑︂
i

xpi
N

(3.72)

ψF : R3N → R, xψ ↦→ ψF =
N∑︂
i

xψi

N
(3.73)

sF : R3N → R, xp ↦→ sF =
AF

AdF
(3.74)



where:

• xpi is the position of Ai

• xψi
is the yaw of Ai

• AdF is the desired formation area

• AF is the current formation area

For our case, the equation to compute the areas AF and AdF is the fundamental equation
for a triangle’s area.

In the end, we define the second map that transforms the trivial motions M into the
controller input for each agent in R3 × S1 (as defined in the Equation 2.1 or in the
Equation 2.6):

M2 : R5 → R4N (3.75)

M =

⎡⎣WvF
ṡF
ψ̇F

⎤⎦ ↦→

⎡⎢⎢⎢⎢⎢⎢⎣
v1

. . .
vN
ωz,1
. . .
ωz,n

⎤⎥⎥⎥⎥⎥⎥⎦ (3.76)

where the maps are defined as follows:

vi : R5 → R3,M ↦→ vi = vF + ψ̇F [z0]x(cF − pi) + ṡF(cF − pi) (3.77)

ωz,i : R5 → R3,M ↦→ ωz,1 = ψ̇F (3.78)

The Equation 3.77 can be explained so:

• vF represents the linear velocity of the formation that is equal to the linear velocities
of agent i

• ψ̇F [z0]x(cF − pi) represents the formation rotation applied around z-axis with the
distance between the formation barycenter and agent i position that represents the
arm in the vector product

• ṡF(ϵ)(cF(ϵ) − pi) represents the formation scale rate for agent i applied on the
distance between the formation barycenter and agent i position i

3.5 Evolution of the cost functions

In this last section of this chapter, we want to show the evolution of cost function through-
out the thesis project with their reasons.



3.5.1 Cost function for the quadrotor’s simple model

First, we begin with the simplest cost function, namely a quadratic cost function:

L(x,xd,∆t) =1

2
eβ(x(Np∆t))

TSβeβ(x(Np∆t))+

1

2

Np∑︂
k=1

eβ(x(k∆t))
TQβeβ(x(k∆t)) (3.79)

where the error on bearing is designed so eβ(·) = βd−β(·) instead, the matrices have the
following meanings:

• Qβ ≥ 0 is an weighted matrix on bearing error information

• Sβ > 0 is a weighted matrix on bearing error for final term cost

also, we recall that Np denotes the number of steps of the prediction horizon for our
NMPC.

This first cost function achieves our goal of creating the formation. However, the disad-
vantage is that the NMPC continues to put effort into controlling input, resulting this is
a waste of energy. Therefore, we have included an input cost term in the cost function:

L(x,xd,u,∆t) =1

2
eβ(x(Np∆t))

TSβeβ(x(Np∆t))+

1

2

Np∑︂
k=1

eβ(x(k∆t))
TQβeβ(x(k∆t)) + u(k∆t)TRu(k∆t) (3.80)

• R > 0 is a weighted matrix that always allows to penalize the input

These two cost functions are effective for an NMPC problem with the first internal system
model designed in the Section 3.2.1. But to apply the same cost function to a more
complex model as we described above, modifications must be made.

3.5.2 Cost function for the quadrotor’s complex model in SE(3)

The first step is to introduce a control input error in the cost function which allows NMPC
to determine a control input that can counteract the gravitational force:

eu(·) = ud − u(·) ud =

⎡⎣ud1
. . .
udN

⎤⎦ udi =

⎡⎢⎢⎣
gmi

0
0
0

⎤⎥⎥⎦ (3.81)



The second step is to introduce a cost term relating to the angles of the quadrotor. The
motivation arose when, after some simulation, the NMPC had found a control input
to achieve the desired formation. However, this had the side effect of imposing a 180
degree rotation around the pitch axis for all drones, causing the formation to move toward
negative infinite space. We define the quadrotor’s angles vector for each drone (Roll (ϕ),
Pitch(θ) and Yaw(ψ)) and its angles error:

α =

⎡⎣α1

α2

α3

⎤⎦ αi =

⎡⎣ϕiθi
ψi

⎤⎦ i = 1, ..., n eα = 012 −α (3.82)

Therefore, we have arrived at this updated cost function:

L(x,xd,α,u,∆t) =1

2
eβ(x(Np∆t))

TSβeβ(x(Np∆t))+

1

2
eα(x(Np∆t))

TSαeα(x(Np∆t))+

1

2

Np∑︂
k=1

eβ(x(k∆t))
TQβeβ(x(k∆t))

+ eTα(k∆t)Qαeα(k∆t)

+ eu(k∆t)
TReu(k∆t) (3.83)

where the meaning of new matrices are:

• Qα ≥ 0 is a weighted matrix on angles error

• Sα ≥ 0 is a weighted matrix on angles error for final term cost

Now, we want NMPC to have the capability to generate a control input, which will
maintain the formation at a specific altitude. To accomplish this, a vector is defined that
comprises the altitudes of all agents and another with their altitudes error :

z(·) =

⎡⎣z1(·)z2(·)
z3(·)

⎤⎦ where zi ∈ pi zd =

⎡⎣zd1zd2
zd3

⎤⎦ ez(·) = zd − z(·) (3.84)

where:

• z is the altitude all agents in FB

• zd is the desired altitude for the whole formation express in FB



In addition, a term is included to maintain the linear velocities as close to zero, preventing
the quadrotors from executing aggressive maneuvers:

v(·) =

⎡⎣v1(·)
v2(·)
v3(·)

⎤⎦ ev(·) =

⎡⎣ 0
. . .
0

⎤⎦− v(·) (3.85)

Then, this is the cost function with an error term for altitude positions and linear velocities:

L(x,xd,α, z, zd,u,∆t) =1

2
eβ(x(Np∆t))

TSβeβ(x(Np∆t))+

1

2
ez(x(Np∆t))

TSzez(x(Np∆t))+

1

2
eα(x(Np∆t))

TSαeα(x(Np∆t))+

1

2
ev(x(Np∆t))

TSvev(x(Np∆t))+

1

2

Np∑︂
k=1

eβ(x(k∆t))
TQβeβ(x(k∆t))

+ ez(k∆t)
TQzez(k∆t)

+ eα(k∆t)
TQαeα(k∆t)

+ ev(k∆t)
TQvev(k∆t)

+ eu(k∆t)
TReu(k∆t) (3.86)

where the meaning of new matrices are:

• Qz ≥ 0 is a weighted matrix on altitude error

• Qv ≥ 0 is a weighted matrix on linear velocities error

• Sz ≥ 0 is a weighted matrix on altitude error for final term cost

• Sv ≥ 0 is a weighted matrix on linear velocities for final term cost

3.5.3 Cost function with a trivial motion controller in the con-
trol loop

With the above cost functions, we achieve all our aims for handling a formation task.
However, when we add the trivial motion control into the control loop in addition to
NMPC, then it is necessary to make some adjustments to the cost function. Trivial motion
control handles the three aspects of formation control, namely translation, rotation and
scale of the formation. Therefore, we can omit the angles term and altitude term because
they are redundant. In addition, we need to make a slight change in the definition of the



linear velocity error. Here, we replace the zero vector, representing the desired reference
with the trivial motion velocities (obtained through the second map as specified in the
Equation 3.77) which correspond to the desired linear velocities:

ev(·) = vd − v(·) vd =

⎡⎣vdM,1

. . .
vdM,N

⎤⎦ (3.87)

and we add the term of angular velocities (that we obtained by the second map defined
in the Equation 3.77 and we denote them so ωM

z,i ) into the control input:

eu(·) = ud − u(·) ud =

⎡⎣ud1
. . .
udN

⎤⎦ udi =

⎡⎢⎢⎣
gmi

0
0
wM
z,i

⎤⎥⎥⎦ (3.88)

We assume the trivial motion velocities to be constant for the entire prediction horizon.
Therefore, the following is the final our cost function with new changes:

L(x,xd,u,∆t) =1

2
eβ(x(Np∆t))

TSβeβ(x(Np∆t))+

1

2
ev(x(Np∆t))

TSvev(x(Np∆t))+

1

2

Np∑︂
k=1

eβ(x(k∆t))
TQβeβ(x(k∆t))

+ eTv (k∆t)Qvev(k∆t)

+ eu(k∆t)
TReu(k∆t) (3.89)

The advantage of using this cost function is that we require less information from MAS
compared to the previous cost functions. Another advantage of this one respect the cost
function defined in the Equation 3.86 is that it allows to have a formation with agents
placed at different altitudes with one change on the desired bearing information.

We notice that in this last cost function we have applied the weighted method to resolve
the MOO problem (we explained in the Section 2.5.2) where we have the need to achieve
two tasks:

• Desired formation: it is described through the error of bearing information

• Move the formation: it is described through the error on the velocities given by
TMC

and the desired formation task is more relevant than other.



3.6 NMPC constraint sets

As we saw in the description of the NMPC, it computes a set of control inputs based on
the internal system model and the constraints set on the state and the input. Therefore,
the set of control input that the NMPC finds will satisfy these constraints.

In our case, we decided to use only the set of input constraints because this allows us
to avoid infeasible solutions. We took this decision basis of the theoretical concepts and
after some experiments with state constraints which we carried out. We noticed that if the
constraints were too tight; the NMPC was could not find a feasible solution in most cases.
For example, we put constraints on the quadcopters’s angles because we wanted to avoid
the quadcopters to perform aggressive manoeuvres so we chose ±15◦ as the constraints
on the angles. It was a sensible constraint for us, but it turned out to generate infeasible
solutions.

We understood that in this type of implementation it was not feasible to impose hard
constraints on the state and the only solution was to include the constraints in the cost
function as error terms, namely they appear as weak constraints.

In the end, we have described the input constraints for the internal model system with
the complex dynamics of the quadcopter:

⎡⎣ lb1

. . .
lbN

⎤⎦ ≤

⎡⎣u1

. . .
uN

⎤⎦ ≤

⎡⎣ub1

. . .
ubN

⎤⎦ lbi =

⎡⎢⎢⎣
lbT
lbwx

lbwy

lbwz

⎤⎥⎥⎦ ubi =

⎡⎢⎢⎣
ubT
ubwx

ubwy

ubwz

⎤⎥⎥⎦ (3.90)

where lb refers to ”lower bound” and ub refers to ”upper bound” instead of the subscripts
refer to thrust (T) and angular velocity (wx,wy,wz).

Instead, for the internal model system with the quadcopter’s model as a point with mass
has the same dimension as the definition above but the upper and lower bounds are defined
on the linear velocities (vx,vy,vz) and the angular velocity along the z-axis (wz).





Part II

Experimental approach
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Chapter 4

Implementation

4.1 ROS and Gazebo

4.1.1 ROS

The Robotic Operatic System (or ROS) is a set of software frameworks that define the
components, interfaces, and tools for building advanced robots. It provides services de-
signed for a heterogeneous computer cluster such as hardware abstraction, low-level device
control, implementation of commonly used functionality, message passing between pro-
cesses, and package management. Running sets of ROS-based processes are represented
in a graph architecture where the processes are represented as nodes and communicate
with each other using a publisher/subscriber protocol and a client/services protocol.

Figure 4.1: ROS pipeline

ROS has three main ways of communicating between nodes:

• Topics

• Services

• Actions
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Publisher and subscriber

A publish/subscriber system is one in which there are producers of data (publishers) and
consumers of data (subscribers). The publishers and subscribers know how to contact
each other through the concept of a “topic”, which is a common name so that the entities
can find each other. For example, when you create a publisher, you must also give it a
string that is the name of the topic; the same goes for the subscriber. All publishers and
subscribers that are on the same topic name can communicate directly with each other.
There can be zero or more publishers and zero or more subscribers on a given topic. When
data is published on the topic by any of the publishers, all subscribers in the system will
receive the data.

Figure 4.2: Publisher and subscriber communication. Source: ROS website

Service client/server

The service client/server is a structure that allows a node to make a call to another node
and can receive a response from that call. It is used to get information from another node
that doesn’t take too much time to compute them.

The service consists of two parts:

• Client: it is able to make a call to a server

• Server: it receives a request from clients and it returns a response



Figure 4.3: Service communication. Source: ROS website

Action client/server

Unlike publish/subscribe and service, the actions server is useful to ask information to
processes that they take much time to complete. For example, to send a destination goal
to the navigation stack and while it is completing the task, it returns some intermediate
information like waypoint or other.

4.1.2 Gazebo simulator

Gazebo is an open-source 3D robotics simulation. It offers realistic rendering of environ-
ments, including high-quality lighting, shadows, and textures. It can model sensors that
sense the simulated environment, such as laser range finders, cameras, etc...

(a) (b)

Figure 4.4: Examples of robots in Gazebo simulator

In our case, we will use Gazebo to simulate the flight of a quadcopter. We can see an
example of a quadrotor on Gazebo in the figure below:



Figure 4.5: Simulation of X500 quadcopter in Gazebo environment. Source: PX4
website

4.2 PX4

PX4 is the Professional Autopilot open source that powers all types of vehicles from racing
and cargo drones through to ground vehicles and submersibles. It implements a complete
flight stack on the supported hardware (an example is shown in the figure below).

(a) (b)

Figure 4.6: PX4 showcases. Source: PX4 website

There is a ground control station that is called QGroundControl which allows to load
the PX4 firmware, setting up of vehicle settings, changing different parameters, getting
real-time flight/mission information through either wired or wireless communication and
creating fully autonomous missions.



(a) Interface (b) Mission planning

Figure 4.7: QGroundControl. Source: PX4 website

4.2.1 Chain of controllers

In the Figure 4.8 is depicted the standard cascaded control architecture that is imple-
mented on a PX4 supported hardware. It is composed of:

• Position control in FW

• Velocity control in FW

• Conversion from Acceleration and Yaw control to Attitude control

• Angle control in FB

• Angular rate control in FB

• Mixer that converts torque and thrust in spinning rotors in FB

and these controllers are a mix of P and PID controllers. The PX4 uses an EKF2 to
estimate the state information that it needs them to use the controllers.

Figure 4.8: Cascaded control architecture for quadcopters. Source: PX4 website



We can notice in the figure above that a person can implement any controller in the
chain, such as an offboard controller. It is important that the self-implemented controller
provides the control input at a specific rate and with the correct reference frame.

In our experiments, we implemented the NMPC as an offboard controller with thrust and
angular velocities that it provides for angular rate control. We had tried using an NMPC
with thrust and torque but the controller was not fast enough to achieve the velocities
required by the PX4’s internal controller.

4.2.2 PX4 and ROS2

The ROS-PX4 architecture provides an integration between ROS2 and PX4, allowing
ROS2 subscriber or publisher nodes to interface directly with PX4 uORB topics. This
is provided by the uXRCE-DDS (Micro eXtremely Resource Constrained Data Distribu-
tion Service) communication middleware and in the Figure 4.9 is depicted, the pipeline
implemented in PX4:

Figure 4.9: uXRCE-DDS middleware. Source: PX4 website

The uXRCE-DDS middleware consists of a client running on the PX4 and an agent running
on the companion computer (such as Raspberry). The agent acts as a proxy for the client
to publish and subscribe to topics in the global DDS data space.

Thanks to DDS middleware, a person is able to implement his offboard controller in ROS2
and he places it on a companion computer such as a PC or directly on a quadcopter such
as a Raspberry PI, a PINE64, etc.

4.3 MATMPC [5]

The MATMPC is an open source software built in MATLAB for nonlinear model predictive
control (NMPC). It is designed to facilitate modelling, controlled design and simulation
for a wide class of NMPC applications. MATMPC has a number of algorithmic modules,



including automatic differentiation, direct multiple shooting, condensing, linear quadratic
program (QP) solver and globalization.

MATMPC has been designed to provide state-of-the-art performance while making the
prototyping easy, also with limited programming knowledge. This is achieved by writing
each module directly in MATLAB API for C. As a result, MATMPC modules can be
compiled into MEX functions with performance comparable to plain C/C++ solvers.
MATMPC has been successfully used in operating systems including WINDOWS, LINUX
and OS X.

We decided to use this software because it allows us to implement the controller in MAT-
LAB in the easiest way compared to other software/libraries and also it allows us to try
different solvers to understand which ones are more suitable for our problem.

4.4 Simulink model of the control pipeline

In this section, we see the implementation of the control pipeline on Simulink divided into
the main blocks. In the figure below, we can observe the whole control pipeline, which is
composed of 3 main blocks:

• NMPC block contains the implementation of NMPC

• MAS block contains the N block of the quadcopters’ model

• TMC block contains the 3 PID
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Figure 4.10: The Simulink scheme with NMPC, TMC and MAS physical model



In the Figure 4.11, we can see that the MAS model is composed of three quadcopter
models because we need to simulate three different quadcopter dynamics.
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Figure 4.11: The Simulink scheme of the MAS physical model

The following figure shows how we implemented the quadcopter’s model that we described
in the Equation 2.2 and the Equation 2.2:
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Figure 4.12: The Simulink scheme of an agent physical model

We can see in the figure below how we implemented the TMC on the Simulink model:
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Figure 4.13: The Simulink scheme of the TMC

Finally, we show the rate controller that we have implemented on each quadrotor axis to
handle the NMPC’s control input. The gains we used are shown in the Table A.8 and are
the same as those used by PX4.
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Figure 4.14: Rate controller for the axis x,y,z of the MAS

In the figure above, we can see that the rate controller is implemented as a K-PID. We
add a derivative kick method to avoid the derivative spikes when the setpoint changes.
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4.5 Control pipeline on ROS

In the previous section, we saw the whole ecosystem of controllers and models implemented
in Simulink and how they communicate with each other. Now, we need to translate
and implement that ecosystem in another environment that it allows us to simulate our
systems close to the real world. For this reason, we decided to use the ROS framework
and implement a control pipeline with different objectives and features.

The control pipeline is designed with the goal in mind:

• Adaptable: it can be used with different controllers

• Configurable: it can handle N agents where N is variable

• Centralized/Decentralized: it can be configured with two different architecture

and it is depicted in the Figure 4.16. In origin, we thought the control pipeline to work only
with Simulink model and after it arose the need to work also with NMPC implemented on
C++ ROS2 node. For Simulink reason, we had need to create solution in C++ pipeline
with the goal that it avoided to overload too much the Simulink model. For this reason,
the middleware node clusters the odometry information in 4 main topics and the same for
the control input that received from the NMPC node.

This need could be neglected with the node written in C++ with the implementation of
NMPC, but this solution is born after some tests where the Simulink model is too much
slower to control the formation in the Gazebo environment.
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Figure 4.16: Control pipeline of the whole system

As we can see, the control pipeline is made up of many nodes and each node has a specific
and important task:

• Keepalive node must continue to publish a message to enable the PX4 to receive
offboard’s message. Its flowchart is depicted in the Figure 4.17

• Middleware PX4 node has the goal of taking all the information from the offboard
control PX4 and translate them into information for the control node. The parallel
goal is to take the information from the control node and send them in the correct
way to a specific agent for the whole formation. Its flowchart is depicted in the
Figure 4.18

• NMPC/Control node has to get information from middleware and computes the
control input to control the agents of the formation. Its flowchart is depicted in the
Figure 4.20

• Offboard control node runs for a specific formation’s agent and it has the goal of
managing all input and output message for its PX4 drone. Its flowchart is depicted
in the Figure 4.19

• TMC node has the task of controlling the whole formation and it already imple-
ments the map M1 and M2 that we explained in the 3.4. Its flowchart is depicted
in the Figure 4.21
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Figure 4.17: Flowchart of keepalive node

The keepalive node is very simple to accomplish its task to publish the keep alive message.
This protocol is required by the PX4 architecture in order to enable the PX4 firmware to
receive offboard control input.

4.5.2 Middleware node

The middleware node is at the heart of this control pipeline. Its main objective is divided
into two parts:

• Offboard control -> middleware -> NMPC controller: The middleware node
receives odometry from multiple offboard controllers and it groups them into four
main topics which are:

– positions odometry

– rotation odometry



– linear velocities odometry

– angular velocities odometry

• NMPC controller -> middleware -> offboard control: The middleware re-
ceives a large vector containing the control input for each agent. The middleware
divides the vector into groups, and each group represents a control input for a spe-
cific agent. Once the middleware has finished to divide the vector, it publishes it to
the correct agent’s topic.

The dashed diagonal rectangles represent the asynchronous call that other nodes may
make during the node’s life, such as a new message in a subscribed topic or a called
service.
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Figure 4.18: Flowchart of the middleware node



4.5.3 Offboard control node

The offboard control has the task of controlling the agent and managing the PX4 protocol,
such as checking the keepalive message, when it has to enable or disable the PX4 offboard
feature, which controls it needs to use, etc. If we work in multi-agent system mode, when
we run the whole pipeline, we see that there are more offboard controllers working at the
same moment. This is because each agent needs to have an offboard control with its PX4
firmware.
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Figure 4.19: Flowchart of the offboard control node for an agent



4.5.4 NMPC control node

The NMPC control node is the brain of our pipeline. It has implemented the MATMPC(NMPC)
and it uses the MATMPC to calculate the control input for our formation. It has to per-
form some checks (shown in the Figure 4.20) before publishing the control input to the
middleware node. We also note that the NMPC operates at 100Hz or Ts = 0.01ms.
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Figure 4.20: Flowchart of the NMPC node

4.5.5 TMC node

The Trivial Motion Control (or TMC) node has the task of managing the formation control
with the three trivial motions. It has already implemented the map M1 and M2. In this



way, it has the odometry agent as the input and the output that it sends one to the
NMPC node is the linear and angular velocity of each agent. We also note that the TMC
operates at 20Hz or Ts = 0.05ms
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Figure 4.21: Flowchart of the trivial motion control (TMC) node





Chapter 5

Experiments

5.1 Experiments NMPC - Model with quadrotor like

a singular integrator

In this section, we will refer to ”the first cost function” as the cost function defined in the
Equation 3.79 instead with ”the second cost function” we will refer to the cost function
defined in the Equation 3.80.

5.1.1 Constraint set

Now, we describe the constraints set that we used for the simulations and we refer to the
Section 3.6. In the first moment, we tried the following first input constraint set:

012×1 ≤ u ≤ I12×1 · 5 (5.1)

but after some simulations, we noticed that the NMPC continued to apply an input and
it could not reverse the quadcopters.

To solve these problems, we added a penalising term to the cost function and this new
input constraint set so that the drones were able to reverse:

−I12×1 · 5 ≤ u ≤ I12×1 · 5 (5.2)

All simulations for this internal system model have this setup:

• Np = 10 number of steps of the prediction horizon

• Ts= 0.05 is the sampling time of the whole system

• we used the Forward Euler method as the integration method

81



• the NMPC is implemented though fmincon Matlab function

• theQ andR are diagonal matrices and we refer to them as R=number and Q=number
for simplicity

In the first simulation was activated the first input constraint set (eq (5.1)) instead in the
second simulation was activated the second input constraint set (eq (5.2))

5.1.2 First cost function and First input constraint set
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Figure 5.1: Bearing error and cost function with Q=100

In the figures above, we can see that the bearing error went to zero faster and the cost
function has the same behaviour. This means that our design of the internal system model
described in the Section 3.2.1 worked as we wanted it to.

Figure 5.2: Trajectory and formation of MAS



In the Figure 5.2 the formation has a circular behaviour because there is not a penalization
term on the cost function and we find another confirmation in Figure 5.3 because we can
notice that the control input never went to zero.
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Figure 5.3: Control input for each agent

Furthermore, the figure below gives us a confirmation that the bearing information went
to the desired bearing, hence the MAS has achieved the desired formation.
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Figure 5.4: Bearing vector of each agent



5.1.3 Second cost function and second input constraint set
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Figure 5.5: Bearing error and cost function with Q = 1000 and R=1

The figures above show the similar behaviour in the previous experiment but in this case
in the figure below we can notice that when the agents reached the formation and they
didn’t move any further but they was stationary in a specific point in order to maintain
the desired bearing.

Figure 5.6: Trajectory and formation of MAS with Q = 1000 and R=1

The figure below shows us that the control input went to zero when the bearing error
achieved the zero value or to close it:



0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6 6.5 7 7.5 8 8.5 9 9.5 10

t [s]

-5.5
-4.5
-3.5
-2.5
-1.5
-0.5
0.5
1.5
2.5
3.5
4.5
5.5

Control input agent_1

u
x

u
y

u
z

u
w

lb

ub

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6 6.5 7 7.5 8 8.5 9 9.5 10

t [s]

-5.5
-4.5
-3.5
-2.5
-1.5
-0.5
0.5
1.5
2.5
3.5
4.5
5.5

Control input agent_2

u
x

u
y

u
z

u
w

lb

ub

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6 6.5 7 7.5 8 8.5 9 9.5 10

t [s]

-5.5
-4.5
-3.5
-2.5
-1.5
-0.5
0.5
1.5
2.5
3.5
4.5
5.5

Control input agent_3

u
x

u
y

u
z

u
w

lb

ub

Figure 5.7: Control input for each agent with Q = 1000 and R=1

The figure below gives us a confirmation that the bearing behaviour doesn’t have a negative
effect on the new cost function and the new input constraint set.
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Figure 5.8: Bearing vector of each agent with Q = 1000 and R=1



5.2 Experiments NMPC - Centralized MAS model

with thrust and angular velocities control

In this section, we will look at the experiments done before in Simulink and after in
ROS/Gazebo. The idea is to prove that the model tested in Simulink works with similar
behaviour also in the Gazebo environment. In general, when the Simulink and Gazebo
report the similar behaviour, it means that the Simulink model was well designed and
when we test the model also in the real world, we will not find any unexpected behaviour.
In all experiments both Simulink and Gazebo, the input constraints that we used are
reported in the Table A.4.

Set middleware
configuration

Send TAKEOFF
to all agents

Enable
controllers

Enable
logger

Enable
offboard control

AFTER 60s
Send LANDING

to all agents
Close loggerDisable controller

Figure 5.9: Flowchart of the procedure to do an experiment

For all experiments, we used the same desired bearing (Table A.1) and initial agent po-
sitions (Table A.2). In the Appendix B.2 contains some additional experiments with
different initial agent positions. Also in the Appendix A.1, there are other tables that
containing gains and settings used for these experiments. In the Figure 5.9 shows the pro-
cedure that we have used to simulate the system and retrieve the data from the Gazebo
environment. We can notice in the figure above that the agents in the takeoff reach the
1mt height hence in the Gazebo simulations we decide to bring the agents at 2mt of height
so we show the transient from one height to another.

In addition, the experiment of the internal system model of MAS with 2 fixed agents and 1
free agent, which we described in the Section 3.2.2.1, is located in the Appendix B.2.1 be-
cause we have designed this model to understand the MATMPC limitations implemented
on simulink.

5.2.1 Experiments NMPC without TMC

The following experiments aim to test the NMPC model (designed in the Section 3.2.2.3)
without TMC, using the cost function cited in the Equation 3.86.

Simulink

The weights of the cost function are shown in the Table A.12.



(a) Bearing error

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50 52 54 56 58 60

t [s]

0

20

40

60

80

100

120

140

160

180

200

220

c
o
s
t 
fu

n
c
ti
o
n

Cost function

Cost function

(b) Cost function

Figure 5.10: Bearing error and cost function without TMC

The figures above represent the bearing error (left side) for each edge and the cost function
(right side). We notice that the NMPC is able to minimize the cost function, reducing it
to almost zero. The error is less than 0.05 rad of the interval and it is an acceptable error,
moreover it is also confirmed by the figure below that represents the magnitude error:
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Figure 5.11: Bearing error magnitude

The following figure represents the comparison between the desired bearing and measured
bearing for each the agent’s edges:



Figure 5.12: Bearing vector of each agent without TMC

Figure 5.13: Control input for each agent without TMC

The Figure 5.13 shows the control input for each agent and we notice that the angular
velocity is not zero. This is because the NMPC is trying to bring the bearing error to
zero and the only way to do this is to change the yaw of the agents. Instead, the thrust
is not zero because it has to compensate for the gravitational force. We can see the effect
on linear velocities in the figure below:



Figure 5.14: MAS state without TMC

The Figure 5.15 shows us the trajectory that the agents made to reach the desired forma-
tion through the control of the NMPC:

Figure 5.15: Trajectory and formation of MAS without TMC



ROS 2/Gazebo

We now see the results obtained though the Gazebo environment with the same NMPC
internal model system from the previous Simulink experiment. The weights of the cost
function are shown in the Table A.12 instead of the initial positions are in the Table A.2
and the desired bearings are in the Table A.1.
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Figure 5.16: Bearing error and cost function without TMC

In the figures above, we can see that the NMPC achieves the goal of minimizing the cost
function with a bearing error magnitude less than ±0.05 rad but it is slower than the
above experiment on Simulink in the Figure 5.10(a) and the Figure 5.10(b).
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(a) Bearing error magnitude without TMC (b) Trajectory and formation of MAS without TMC

Figure 5.17: Bearing error magnitude and MAS trajectory without TMC

In the Figure 5.17(a) remains below the value of 0.1 rad which is an acceptable value to
take into account for the value for the desired formation is made. Instead, we notice that



the agents already start at an altitude of 1 mt and reach the 2mt altitude and this is what
we explained at the beginning of the paragraph Section 5.2.

Figure 5.18: Bearing vector of each agent without TMC

We notice in Figure 5.18 that the bearings almost achieve the desired bearing value.

Figure 5.19: Control input for each agent without TMC



and we notice that in the Figure 5.19 the NMPC doesn’t make big change to the thrust
because the agents are already at 1 mt of altitude and the NMPC makes only small
variations in angular velocities.

In the Figure 5.20 we notice that each agent achieves the 2 mt height (we ave wanted to
show the transient from start height to end height) and the linear velocities go to zero
after a first time transient:

Figure 5.20: MAS state without TMC

5.2.2 Experiments NMPC with trivial motion controller (TMC)

The following experiments have the goal to test the NMPC model (designed in the Sec-
tion 3.2.2.3) with TMC using the cost function cited in the Equation 3.89.

Simulink

The Figure 5.21(a) shows us that the NMPC works very well with this TMC because the
bearing errors are below the threshold of ±0.05 and the cost function is went to zero with
a nice transition time and it is depicted on the Figure 5.21(b).
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Figure 5.21: Bearing error and cost function with TMC

In the figure above and in the Figure 5.22(a) show us that there is a pick this because
the formation has not been created and a drone try to get closer to other two agents in
opposite their direction but in a specific moment the NMPC under the control of TMC
has to move the all the agents in the same direction. At that moment, the specific agent
has to change direction and to align with the same direction of other two agents.
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Figure 5.22: Bearing error and MAS trajectory with TMC

The Figure 5.23 shows the bearings behaviour respect to the desired bearing and we notice
that there is a good convergence.



Figure 5.23: Bearing vector of each agent with TMC

In the figure below, we notice that in the initial transition there are some oscillations of
the agents (we notice them on the agents’ angles). This is because in the cost function
there is not a term to manage the angles, so the NMPC is free to move the agents with
aggressive manoeuvres, causing this behaviour.

Figure 5.24: MAS state with TMC



In Figure 5.25 is depicted the error on barycenter position of the formation, the formation
yaw and the formation scale. We notice without difficulty that the TMC is giving the
right control input to NMPC to reduce the errors to (almost) zero:
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Figure 5.25: TMC errors on formation centroid and formation scale

In the Figure 5.26 is depicted the control input that the TMC generates ones instead, in
the Figure 5.27 is depicted the NMPC reference linear velocities and angular velocities
that are found through the second map expressed in the Equation 3.77.
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Figure 5.26: TMC on formation velocities

In the implementation, we set a saturation of ±0.25 on the linear velocities of the agents.
The motivation for this choice is that if the TMC is tuned too much aggressive the NMPC
will not be able to handle these velocities, so the saturation is the better choice to solve
the problem. We can see the effect on the left side of the Figure 5.27:
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Figure 5.27: TMC on agent velocities

ROS 2/Gazebo

Now, we will see the result obtained from the Gazebo experiment of the same system that
we tested above in the Matlab/Simulink environment. The weights of the cost function
are shown in the Table A.12 and instead the initial positions are in the Table A.2 and
the desired bearings are in the Table A.1. In the figure above, we notice that the bearing
error after a transient time achieves a good value close to zero.
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Figure 5.28: Bearing error and cost function with TMC

The bearing error is better than the one obtained in the Simulink environment because
the value is around ±0.01 instead of before being around ±0.05. The cost function has



a peak like in the Simulink experiment and then goes to (almost) zero. We notice that
similar peak behaviour on trend of the bearing error magnitude in the Figure 5.29(a) and
this happens because the cost function has a big value on the bearing term with respect
to others hence it influences the cost function behaviour:
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Figure 5.29: Bearing error and cost function with TMC

The following figure gives us further confirmation that the NMPC achieves the goal of
creating the desired formation controlling the individual agents:

Figure 5.30: Bearing vector of each agent with TMC

The figure below shows the oscillation effect on angles caused by the NMPC control input
(in the Figure 5.32)



Figure 5.31: MAS state with TMC

In addition, we can notice that the linear velocity of the agents which are showed in the
last columns on the right side is almost equal to the linear velocity obtained from the
TMC in the Figure B.24.

Figure 5.32: Control input for each agent with TMC

The behaviour of the TMC control input goes to (almost) zero (the figure below), this
means that the errors on TMC reference are went to (almost) zero and this is true thanks



to the Figure 5.35(a) and the Figure 5.35(b). These show the error went to zero during
the experiment.
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Figure 5.33: TMC control input

Figure 5.34: TMC PI error on formation velocities
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Figure 5.35: Bearing error and cost function with TMC

5.2.3 Comparison between the cost function with Qv 500 vs Qv
250

In this section, we wanted to show the comparison of the cost function described in the
Equation 3.86 with two difference values on Qv. In the figures below show that the Qv

lower than the other result, it is faster than one. This is because the NMPC gives less
relevance to the TMC reference speeds and it can find a better control input to minimize
the bearing error. We can remember that this is a MOO problem that we described in
the Section 2.5.
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Figure 5.36: Comparison of two bearing error magnitudes and cost functions without
TMC with old cost function

The weights of the cost function are shown in the Table A.12 instead of the initial positions
are in the Table A.2 and the desired bearings are in the Table A.1.



5.2.4 Comparison between old cost function vs new cost func-
tion

Instead, in this section we wanted to highlight the difference between using the cost
function defined in the Equation 3.86 (which we will call the ”old cost function”) and the
cost function defined in the Equation 3.89 (which we will call the ”new cost function).
We notice in the Figure 5.37 that the cost functions behave similarly and both achieve
the objective of minimizing the bearing error. This proves us that we were right when in
deciding to remove the redundancy term with TMC that we explained in the Section 3.5.
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Figure 5.37: Comparison of two bearing error magnitudes and cost functions with
different cost functions

The weights of the cost function are shown in the Table A.12 instead the initial positions
are in the Table A.2 and the desired bearings are in the Table A.1.

5.2.5 Change TMC reference setpoint during the flight

In this experiment, we want to test if the trivial motions theory doesn’t destroy a formation
after it has been created. The idea is to change the TMC reference setpoint after 30s of
the simulation. The weights of the cost function are shown in the Table A.12 instead the
initial positions are in the Table A.2 and the desired bearings are in the Table A.1.



(a) Bearing error
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Figure 5.38: Bearing error and cost function with change of TMC reference setpoint

As we can see, the peak that there is in the Figure 5.38(b) proves that there has been
a change on the setpoint in hence an increase of the cost function value. Nevertheless,
in the Figure 5.38(a) there are little perturbations but this proves that the TMC doesn’t
destroy the formation.
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Figure 5.39: Bearing error and MAS trajectory with change of TMC reference setpoint

The same behaviour we can be seen it in the figure above, where the perturbations are
very small:



Figure 5.40: Bearing vector of each agent with change of TMC reference setpoint

The change of setpoint causes a change in the TMC control input (which is shown in the
figure below) that has effects on the NMPC control input in the Figure 5.42

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50 52 54 56

t [s]

-1.75

-1.5

-1.25

-1

-0.75

-0.5

-0.25

0

0.25

0.5

0.75

1

1.25

1.5

1.75

2

2.25

-1.75

-1.5

-1.25

-1

-0.75

-0.5

-0.25

0

0.25

0.5

0.75

1

1.25

1.5

1.75

2

2.25
TMC - Control input

Figure 5.41: TMC control input



Figure 5.42: MAS state with a change of TMC reference setpoint
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Figure 5.43: Comparison between TMC reference velocities and agents velocities

The Figure 5.43 shows a comparison between TMC reference linear velocities and linear
velocities of the agents. This figure gives us an important insight into the trivial motions.
In the Section 2.3.2 we said that the trivial motions are inside the null space of the bearing
rigidity matrix and the TMC has created this reference of trivial motions. However, we
notice in the figure that the NMPC doesn’t follow the TCM reference velocities perfectly
and this creates a small perturbation on the bearing information when there is the change
the setpoint. Therefore, this means that the NMPC has generated a control input that
causes the agents to reach a velocity that is not in the null space of the bearing rigidity
matrix.



5.2.6 Experiments in the laboratory

The pipeline was designed with the idea of doing some experiments in the laboratory. We
did several tests but we had big problems with the MoCap system, drones and other things
because there was not the time to make a good setup and a good tune of the parameters.
The Figure 5.44(b) and the Figure 5.44(a) show the results that we obtained from the last
experiment that we did in the laboratory.
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Figure 5.44: Bearing error and cost function with TMC

In the Figure 5.44(b) shows the cost function doesn’t go to zero but it keeps a value around
350 that the NMPC is not able to minimize it. We find the cause in the Figure 5.44(a)
where it shows us the bearing magnitude error, which doesn’t decrease more than 0.4 rad
which is equal to ≈ 23◦. This is an unacceptable value because it means that the NMPC
is not able to achieve the desired formation.

The causes of this failure to achieve the goal are:

• incorrect tuning of the parameters on the NMPC and TMC

• incorrect physical value of quadrotors

In addition, in the columns on the agent positions of the Figure 5.45 show that the agents
start from positions of 1m (it is the value of the desired altitude) but after they get slowly
off. This is a strange behaviour because at that moment, the NMPC should improve only
the bearing. This fact confirms the likely second point in the list above and in this case
with wrong weights, a MOO problem arose which we explained in the Section 2.5.2.
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Figure 5.45: MAS state with TMC
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Figure 5.46: Control input for each agent with TMC

If we compare the TMC reference velocities (shown in the Figure 5.47) and the linear
velocities of the agents (shown in the Figure 5.45), we will notice that the NMPC is not
able to follow the TMC reference and this causes that the formation state error (shown
in the Figure 5.48) will not go to zero.
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Figure 5.47: TMC PI error on formation velocities
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Figure 5.48: Bearing error and cost function with TMC



Figure 5.49: Trajectory and formation of MAS with TMC



Chapter 6

Conclusions

The contribution of this thesis is to find a way to design an internal system model for
NMPC with embedded the bearing rigidity theory because the goal was to make for-
mation control with NMPC and bring it into a real environment. We investigate the
advantages and disadvantages of different MPC architectures, such as centralized, dis-
tributed, and decentralized architecture. We have designed a control pipeline to manage
all implementation aspects with Gazebo, PX4, and Simulink with important features such
as adaptability, configurability, and managing different architectures.

We began to design a model with simplified quadrotor dynamics and we implemented it on
Simulink and we checked if the concept of the model was correct. After that, we designed
new models with complex quadrotor dynamics with different goals. We implemented them
on Simulink. When we saw that they worked on Simulink, we designed a control pipeline
in order to do the test on the Gazebo with PX4 architecture. We have tested the pipeline
with the NMPC models and we obtained satisfactory results on all gazebo results.

We have tried different cost functions with different goals and we implemented a TMC
in order to manage the formation and reduce the terms in the cost function. During the
study on the cost functions, we faced the problem of MOO problem and we studied how
the NMPC can work with it and which solutions were better for our study case.

The thesis has shown the complexity of using the Nonlinear Model Predictive Control with
centralized bearing-only control and also it has shown its validity because if the NMPC
is complex to tune after finding a good set of parameters, the results that it brings are
very interesting and it compensates for the imprecision of the model without problems.
In addition, the thesis has shown also the big problem of the centralized NMPC namely
it consumes many power resources to compute a feasible solution and it is not feasible to
place it on an embedded computer such as a Raspberry PI.
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6.1 Future improvements

As we saw in the last section of the Chapter 5, the laboratory tests didn’t go well because
of a no-good set of parameters and other little problems on the whole setup. The future
improvements of this thesis should be:

• bring the whole control pipeline in the laboratory and find good parameters set in
order to validate our hypothesis about why the laboratory tests have gone wrong

• implements the bearing-only formation control with NMPC in decentralized archi-
tecture and places an NMPC with its subproblems on each specific agent. So, we
don’t need to have a power-computer to compute the feasible solution anymore

• remove the world frame assumptions in order to see how the control pipeline behaves
and if we introduce a new delay caused by calculating some stuff.

• model the delay on the network to understand how the NMPC behaves



Appendix A

An Appendix numerical values

A.1 Gain and settings tables for the experiments

Bearing Value Bearing Value Bearing Value

β12

⎡⎣0.58120.8137
0

⎤⎦ β21

⎡⎣10
0

⎤⎦ β31

⎡⎣−0.5812
−0.8137

0

⎤⎦
β13

⎡⎣ 0.5812
−0.8137

0

⎤⎦ β23

⎡⎣−1
0
0

⎤⎦ β32

⎡⎣−0.5812
0.8137

0

⎤⎦
Table A.1: Table of desired bearing for the triangular formation

Initial position Value Initial position Value Initial position Value

p1(0)

⎡⎣1.01.0
0

⎤⎦ p2(0)

⎡⎣7.07.0
0

⎤⎦ p3(0)

⎡⎣9.02.0
0

⎤⎦
Table A.2: Table of the agents initial positions during the simulation
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N Init condition Value Init condition Value Init condition Value

1 p1(0)

⎡⎣35
0

⎤⎦ p2(0)

⎡⎣22
0

⎤⎦ p3(0)

⎡⎣−5
−5
0

⎤⎦
α1(0)

⎡⎣00
0

⎤⎦ α2(0)

⎡⎣00
0

⎤⎦ α3(0)

⎡⎣00
0

⎤⎦
2 p1(0)

⎡⎣35
0

⎤⎦ p2(0)

⎡⎣22
0

⎤⎦ p3(0)

⎡⎣−5
−5
0

⎤⎦
α1(0)

⎡⎣ 0
0
pi
3

⎤⎦ α2(0)

⎡⎣ 0
0

−pi
2

⎤⎦ α3(0)

⎡⎣00
0

⎤⎦
Table A.3: Table of the agents initial conditions for extra experiments

In the table above (Table A.3) contains:

1. the change only the quadrotors positions and the initial bearings information for
Simulink and Gazebo experiment

2. the change the quadrotors positions, the quadrotors yaws and the initial bearings
information for Simulink and Gazebo experiment

The following table contains the bound setting on the input during the Simulink and
Gazebo experiments:

Lower bound Upper bound

ui =

⎡⎢⎢⎣
Ti[N ]
ωxi [

rad
s
]

ωyi [
rad
s
]

ωzi [
rad
s
]

⎤⎥⎥⎦ ui =

⎡⎢⎢⎣
0

−1.0
−1.0
1.0

⎤⎥⎥⎦ ui =

⎡⎢⎢⎣
37
1.0
1.0
1.0

⎤⎥⎥⎦
Table A.4: Table of settings on gazebo experiments.



A.1.1 Simulink settings

Exp Qβ Qα Qv Qz R pF sF ψF

1 I · 3500 diag{

⎡⎣500500
0

⎤⎦} I · 100 I · 500 diag{

⎡⎢⎢⎣
10
50
50
25

⎤⎥⎥⎦}

2 I · 1250 diag{

⎡⎣00
0

⎤⎦} I · 50 I · 0 diag{

⎡⎢⎢⎣
10
10
10
10

⎤⎥⎥⎦}
⎡⎣00
1

⎤⎦ 0.3 0

Table A.5: Table of terms weights of cost function during the simulink experiments

Setting Value Setting Value
Tst 0.01 N 20
Ts 0.01 N2 5

Table A.6: Table with NMPC settings of Simulink model

In the Table A.6 and the Table A.10 the symbols have these meanings:

• Tst: Shooting time

• Ts: Sampling time

• N: Number of steps for prediction horizon

• N2: horizon length after partial condensing

Baricenter Yaw Scale
Kp I3*0.225 0.0875 0.25
Ki I3*0.00025 0.0005 0.0025
Kd I3*0 0 0

Table A.7: Table with TMC gains for the Simulink scheme

Roll Pitch Yaw
K I3*3 I3*3 I3*1
Ki I3*0.0024 I3*0.0024 I3*0
Kd I3*0.35 I3*0.35 I3*0.1

Table A.8: Table with rate controllers gains for the Simulink scheme



Setting Value Setting Value
Hessian Gauss Newton QP solver hpipm sparse

Integrator ERK4 Hotstart no
Condensing no ref type 1(Time varying)
Shifting no Nonuniform grid 0
RTI yes

Table A.9: Table with NMPC optimization settings of Simulink model

A.1.2 Gazebo settings

Setting Value Setting Value
Tst 0.01 N 20
Ts 0.01 N2 10

Table A.10: Table with NMPC settings of Gazebo experiment

Baricenter Yaw Scale

Kp diag{

⎡⎣0.250.25
1

⎤⎦} 0.0 0.25

Ki I*0.00025 0.0 0.005
Kd I*0 0 0

Table A.11: Table with TMC gains of the gazebo experiments



Exp Qβ Qα Qv Qz R pF sF

1 I · 5000 diag{

⎡⎣500500
0

⎤⎦} I · 100 I · 500 diag{

⎡⎢⎢⎣
10
50
50
25

⎤⎥⎥⎦}
⎡⎣00
2

⎤⎦ 0.3

2 I · 5000 diag{

⎡⎣500500
0

⎤⎦} I · 500 I · 1000 diag{

⎡⎢⎢⎣
10
50
50
25

⎤⎥⎥⎦}

3 I · 5000 diag{

⎡⎣500500
0

⎤⎦} I · 250 I · 1000 diag{

⎡⎢⎢⎣
10
50
50
25

⎤⎥⎥⎦}

4 I · 3500 diag{

⎡⎣00
0

⎤⎦} I · 500 I · 0 diag{

⎡⎢⎢⎣
10
50
50
25

⎤⎥⎥⎦}
⎡⎣00
2

⎤⎦ 0.3

5 I · 3500 diag{

⎡⎣00
0

⎤⎦} I · 500 I · 0 diag{

⎡⎢⎢⎣
10
50
50
25

⎤⎥⎥⎦}
⎡⎣00
2

⎤⎦ 0.3

6 I · 3500 diag{

⎡⎣00
0

⎤⎦} I · 500 I · 0 diag{

⎡⎢⎢⎣
10
50
50
25

⎤⎥⎥⎦}
⎡⎣00
2

⎤⎦ 0.3

7 I · 3500 diag{

⎡⎣00
0

⎤⎦} I · 500 I · 0 diag{

⎡⎢⎢⎣
10
50
50
25

⎤⎥⎥⎦}
⎡⎣00
2

⎤⎦ 0.3

Table A.12: Table of terms weights of cost function during the gazebo experiments

For the Table A.12 following there is its legend for the experiments:

• 1 - experiment with old cost function with reference altitude of 2 mt without TCM
yaw

• 2 - experiment with old cost function without TMC and with Qv = I · 500

• 3 - experiment with old cost function without TMC and with Qv = I · 250

• 4 - experiment with last cost function with reference altitude of 2 mt without TCM
yaw

• 5 - experiment with last cost function with change of TCM setpoint at 30s of simu-
lation



• 6,7 - extras experiments with different different initial conditions on position and
attitude

A.2 Physical table

Name Value Name Value

g [m
s2
] 9,81 r 1 [m]

[︃
0.174
−0.174

]︃
m [kg] 9.81 r 2 [m]

[︃
−0.174
0.174

]︃
J [kgm2] diag{

⎡⎣0.02160.0216
0.040

⎤⎦} r 3 [m]

[︃
0.174
0.174

]︃
l 0.24607316 r 4 [m]

[︃
−0.174
−0.174

]︃
cf [Ns2] 8.54858e-06 cτ [m] 8.06428e-05

min spinning [ rad
s
] 100 max spinning [ rad

s
] 1000

Table A.13: Table with value for quadrotor’s model

• g: gravitational acceleration

• m: quadrotor’s mass

• l: quadrotor arm length

• r i is the rotor’s position

• J: quadrotor inertial matrix

• cf : constant of trust force

• cτ : constant of drag moment



Appendix B

Extra experiments

B.1 Experiments

B.1.1 Second const function - state vs input disturbance

In this experiment, we carried out two simulations in the first we enabled a disturbance
on the state and the second with a disturbance on the input for few ms. The idea is to
see the behaviour of the NMPC with a Dirac disturbance on the input and on the state.
We had noticed that the perturbations didn’t cause any major problems for the NMPC
and MAS is held the formation even with the disturbance.

The results of the experiments are shown in columns: on the right side is the experiment
with the state disturbance and on the left side there is the experiment with the input
disturbance.
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Figure B.1: Disturbances for the state and the input
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Figure B.2: Bearing error with state vs input disturbance
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Figure B.3: Cost function with state vs input disturbance
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Figure B.4: Control input with state vs input disturbance

(a) MAS position with state disturbance (b) Control input with input disturbance

Figure B.5: MAS position with state vs input disturbance

B.2 Experiments Simulink GZ

In this section we show the experiments with different initial positions but the same desired
bearing or experiment for MAS with 1 free agent and 2 fixed agents.

B.2.1 Experiment on MAS with 1 free agent and 2 fixed agents

In this experiment, we have tested the internal system model described in the Sec-
tion 3.2.2.1 and the figures below show the result that we obtained.
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Figure B.6: Bearing error and cost function

The figures above show that the NMPC brings the cost function to zero and the same
behaviour for the bearings error. This means that the agent has reached the desired
formation and this is confirmed by also the figure below where the bearing magnitude
went to zero.
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Figure B.7: Bearing error and MAS trajectory



Figure B.8: Bearing vector of each agent
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Figure B.9: Control input for each agent
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B.2.2 Experiment 1

In this experiment we have tested the NMPC with TMC but with a new set of initial
positions and bearings information.We can see that this doesn’t cause any problems in
achieving the desired formation. In the Table A.3 there are the value of this new set of
initial positions and in the table Table A.12 there are the gains that we have used. We
have report the simulink experiment and then the gazebo experiment. We don’t add other
comments on these plots because we have already commented extensively in Chapter 5.
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Figure B.11: Bearing error and cost function with TMC
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Figure B.12: Bearing error and MAS trajectory with TMC



Figure B.13: Bearing vector of each agent with TMC

Figure B.14: MAS state with TMC
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Figure B.15: TMC errors on formation centroid and formation scale
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Figure B.16: TMC on formation velocities
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Figure B.17: TMC on agent velocities
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Figure B.18: Bearing error and cost function with TMC
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Figure B.19: Bearing error and cost function with TMC

Figure B.20: Bearing vector of each agent with TMC



Figure B.21: MAS state with TMC

Figure B.22: Control input for each agent with TMC
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Figure B.23: TMC control input

Figure B.24: TMC PI error on formation velocities
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Figure B.25: Bearing error and cost function with TMC

B.2.3 Experiment 2

In this experiment we have tested the NMPC with TMC but with a new set of initial
positions, a new set of initial attitudes and bearings information. We can see that this
doesn’t cause any problems in achieving the desired formation. In the Table A.3 there
are the value of this new set of initial positions and in the table Table A.12 there are
the gains that we have used. We have report the simulink experiment and then the
gazebo experiment. We don’t add other comments on these plots because we have already
commented extensively in Chapter 5.
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Figure B.26: Bearing error and cost function with TMC
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Figure B.27: Bearing error and MAS trajectory with TMC

Figure B.28: Bearing vector of each agent with TMC



Figure B.29: MAS state with TMC
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Figure B.30: TMC errors on formation centroid and formation scale
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Figure B.31: TMC on formation velocities
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Figure B.32: TMC on agent velocities
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(a) Bearing error
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Figure B.33: Bearing error and cost function with TMC
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Figure B.34: Bearing error and cost function with TMC



Figure B.35: Bearing vector of each agent with TMC

Figure B.36: MAS state with TMC



Figure B.37: Control input for each agent with TMC
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Figure B.38: TMC control input



Figure B.39: TMC PI error on formation velocities
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Figure B.40: Bearing error and cost function with TMC
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