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Abstract. LetΩ ∈ H1(Sn−1) with mean value zero, P and Q be polynomials in n variables with real coefficients
and Q(0) = 0. We prove that ∣∣∣∣p.v.

∫
Rn

ei (P (x)+1/Q(x))Ω(x/|x|)
|x|n dx

∣∣∣∣≤ A∥Ω∥H1(Sn−1)

where A may depend on n, deg(P ) and deg(Q), but not otherwise on the coefficients of P and Q.
The above result answers an open question posed in [13]. Additional boundedness results of similar

nature are also obtained.
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1. Introduction

The study of oscillatory singular integrals has a long-standing history ([1, 4, 7–9, 11, 12]). For the
specific topic considered in this paper, we shall begin with a well-known result of Stein and
Wainger in [12] and its extension by Stein in [10].

Let n ≥ 2, K (x) be a Calderón–Zygmund kernel given by

K (x) = Ω(x/|x|)
|x|n (1)

whereΩ :Sn−1 →C is integrable over the unit sphere Sn−1 with respect to the induced Lebesgue
measure σ and satisfies ∫

Sn−1
Ω(x)dσ(x) = 0. (2)
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For d ∈N, let Pn,d denote the space of real-valued polynomials in n variables whose degrees
do not exceed d . It was proves in [10] that, ifΩ ∈ L∞(Sn−1) and P ∈Pn,d , then∣∣∣∣p.v.

∫
Rn

e i P (x)K (x)dx

∣∣∣∣≤Cn,d∥Ω∥L∞(Sn−1)

where Cn,d is independent of the coefficients of P .
In the recent paper [13] the authors obtained an extension of the above result in which the

phase functions belong to a certain class of rational functions whileΩ is allowed to be in a block
space B 0,0

q (Sn−1). Their result can be described as follows.

Theorem 1 ([13]). Let q > 1 and K (x) be a Calderón–Zygmund kernel given by (1)–(2). Let
P (x),Q(x) ∈Pn,d such that Q(0) = 0 andΩ ∈ B 0,0

q (Sn−1). Then∣∣∣∣p.v.
∫
Rn

e i (P (x)+1/Q(x))K (x)dx

∣∣∣∣≤ A (3)

where A may depend on ∥Ω∥B 0,0
q (Sn−1), n and d but not otherwise on the coefficients of P and Q.

The definition of B 0,ν
q (Sn−1) for ν>−1 and q > 1 can be found in [13]. It had been known that

the bound (3) also holds for allΩ ∈ L logL(Sn−1), which was proved by Folch-Gabayet and Wright
in [5].

Let H 1(Sn−1) denote the Hardy space over the unit sphere. An important question, posed by
the authors of [13], is whether the bound (3) continues to hold under the conditionΩ ∈ H 1(Sn−1)
(with the same phase functions P (x) + 1/Q(x)). This is a very natural question because both
B 0,0

q (Sn−1) and L logL(Sn−1) are proper subspaces of H 1(Sn−1).
Our first result answers the above question in the affirmative.

Theorem 2. Let K (x) be a Calderón–Zygmund kernel given by (1)–(2). Let P (x),Q(x) ∈Pn,d such
that Q(0) = 0. Suppose thatΩ ∈ H 1(Sn−1). Then∣∣∣∣p.v.

∫
Rn

e i (P (x)+1/Q(x))K (x)dx

∣∣∣∣≤ A∥Ω∥H 1(Sn−1) (4)

where A may depend on n and d but not otherwise on the coefficients of P and Q.

As usual, Theorem 2 implies the uniform boundedness of oscillatory singular integral opera-
tors of the following type on L2(Rm):

f → p.v.
∫
Rn

f (u1 −P1(y), . . . ,um −Pm(y))e i /Q(y)|y |−nΩ(y/|y |)dy,

where P1, . . . ,Pm ,Q are polynomials andΩ is a function in H 1(Sn−1) with a zero mean-value. The
proof of Theorem 2 will be given in Section 2.

The general question about whether the condition Q(0) = 0 can be removed is open. But for
deg(Q) ≤ 1, this is known to be the case.

Theorem 3 ([5, 13]). Let K (x) be a Calderón–Zygmund kernel given by (1)–(2). Let P (x) ∈ Pn,d

and Q(x) = a + v · x where a ∈ R and v ∈ Rn . Suppose that Ω ∈ L logL(Sn−1) or Ω ∈ B 0,0
q (Sn−1) for

some q > 1. Then ∣∣∣∣p.v.
∫
Rn

e i (P (x)+1/Q(x))K (x)dx

∣∣∣∣≤ A (5)

where A may depend on n, d and the respective norm of Ω, but not otherwise on a, v and the
coefficients of P.

We have the following extension of Theorem 3:
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Theorem 4. Let P (x) ∈Pn,d . Let l ∈N, h(x) be a nonzero real-valued homogeneous polynomial of
degree l and Q(x) = a +h(x). Then for every Calderón–Zygmund kernel K (x) given by (1)–(2) with
anΩ( · ) in H 1(Sn−1), ∣∣∣∣p.v.

∫
Rn

e i (P (x)+1/Q(x))K (x)dx

∣∣∣∣≤ A (6)

where A may depend on ∥Ω∥H 1(Sn−1), n, d and l but not otherwise on the coefficients of P (x)
and Q(x).

The proof of Theorem 4 will be given in Section 3.
The following is an important estimate due to E. M. Stein:

Theorem 5. Let Ω ∈ L logL(Sn−1) and d ∈ N. For every homogeneous polynomial of degree d
on Rn P (x) =∑

|α|=d aαxα, let mP = ∑
|α|=d |aα|. Then there exists a constant Cn,d ,Ω > 0 which is

independent of {aα} such that∫
Sn−1

|Ω(x)|
∣∣∣∣log

( |P (x)|
mP

)∣∣∣∣dσ(x) ≤Cn,d ,Ω (7)

holds whenever mP ̸= 0.

What happens if P (x) is a general polynomial instead of a homogeneous polynomial? For
P (x) =∑

|α|≤d aαxα, the direct analogue of (7), where mP is replaced by
∑

|α|≤d |aα|, is clearly false.
This is due to the fact that, unlike P → mP for homogeneous polynomials of a fixed degree,∑

|α|≤d
aαxα→ ∑

|α|≤d
|aα|

is not a norm on Pn,d
∣∣
Sn−1 . To remedy this situation, we can simply replace the above with any

norm on Pn,d
∣∣
Sn−1 (e.g. ∥·∥∞) to arrive at the following extension of Theorem 5:

Theorem 6. Let ∥·∥ be a norm on Pn,d
∣∣
Sn−1 . Then there exists a positive constant C which depends

on n,d and ∥·∥ only such that∫
Sn−1

|Ω(y)|
∣∣∣∣log

( |P (x)|
∥P

∣∣
Sn−1∥

)∣∣∣∣dσ(x) ≤C (1+∥Ω∥L logL(Sn−1)) (8)

holds for allΩ ∈ L logL(Sn−1) and all P ∈Pn,d not vanishing identically over Sn−1.

Since any two norms on a finite dimensional space are equivalent, one recovers (7) when
applying (8) to homogeneous polynomials.

More broadly, results such as Theorem 6 can be framed in terms of functions of finite type and
compactness, as is done in the theorem below.

Theorem 7. Let M be a compact smooth submanifold of Rn , σ = σM be the induced Lebesgue
measure on M and U be an open subset of Rm . Let f ∈ C∞(M ×U ) such that, for every u ∈ U ,
f ( · ,u) does not vanish to infinite order at any point in M. Then, for every compact subset W of U ,
there exists a positive constant C =C (M ,n,m, f ,W ) such that

sup
u∈W

∫
M
|Ω(y)| log(| f (y,u)|)|dσ(y) ≤C (1+∥Ω∥L logL(M)) (9)

holds for allΩ ∈ L logL(M).

The proof of Theorem 7 will be based on Malgrange preparation theorem. It will be given
in Section 4 where one will also see how Theorem 6 follows as a simple consequence. As an
application of Theorem 7, we have the following:
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Theorem 8. Let b ∈ R\{0} and P (x) ∈ Pn,d . Let ρ ∈ R+, U be an open subset of Rm and W be a
compact subset of U . Let ψ ∈ C∞(Sn−1 ×U ) such that, for every u ∈ U , ψ( · ,u) does not vanish to
infinite order at any point in Sn−1. For (x,u) ∈ (Rn\{0})×U , let

Φ(x,u) = b|x|ρψ(x/|x|,u). (10)

Then for every Calderón–Zygmund kernel K (x) given by (1)–(2) with anΩ( · ) in L logL(Sn−1),

sup
u∈W

∣∣∣∣p.v.
∫
Rn

e i (P (x)+1/Φ(x,u))K (x)dx

∣∣∣∣≤ A (11)

where A may depend on ∥Ω∥L logL(Sn−1),ψ, W , n, d andρ but not otherwise on b and the coefficients
of P (x).

In the rest of the paper we shall use A ≲ B to mean that A ≤ cB for a certain constant c which
depends on some essential parameters only.

2. Proof of Theorem 2

We shall now prove (4) under the assumptions of Theorem 2. By (2) and the atomic decomposi-
tion of H 1(Sn−1) (see [2] and [3]), it suffices to prove that∣∣∣∣p.v.

∫
Rn

e i (P (x)+1/Q(x))Ω(x/|x|)
|x|n dx

∣∣∣∣≤ A (12)

under the assumption thatΩ( · ) is a regular atom onSn−1, i.e.Ω( · ) enjoys the following additional
properties:

(a) supp(Ω) ⊆Sn−1∩B(ζ0,δ) for some ζ0 ∈Sn−1 and δ> 0 where B(ζ0,δ) = {y ∈Rn : |y −ζ0| <
δ}; and

(b) ∥Ω∥∞ ≤ δ−n+1.

If δ≥ 1/4, (12) follows from (b) and Theorem 1. Thus, we may assume that 0 < δ< 1/4. By using
a rotation if necessary, we may also assume that ζ0 = (0, . . . ,0,1). For any x = (x1, . . . , xn−1, xn) ∈Rn ,
we write x = (x̃, xn) where x̃ = (x1, . . . , xn−1). We also extend the definition of Ω( · ) from Sn−1 to
Rn\{0} by usingΩ(x) =Ω(x/|x|). We defineΩδ :Rn\{0} →C by

Ωδ(x) = (δn−1|x|n)
Ω(δx̃, xn)

|(δx̃, xn)|n .

Then Ωδ( · ) is homogeneous of degree 0. It is well-known that, by the theory of Calderón–
Zygmund operators, (2) implies that ∫

Sn−1
Ωδ(y)dσ(y) = 0. (13)

Next we will show that ∥Ωδ∥∞ ≲ 1. To see this, we assume that Ωδ(x) ̸= 0 for some x ∈ Rn\{0}.
Then

η :=
∣∣∣∣ (δx̃, xn)

|(δx̃, xn)| −ζ0

∣∣∣∣< δ.

By (b) and xn = |(δx̃, xn)|(1−η2/2),

|Ωδ(x)| ≤
( |x|
|(δx̃, xn)|

)n

= (δ|(δx̃, xn)|)−n(|(δx̃, xn)|2 + (δ2 −1)x2
n

)n/2

= δ−n(
1+ (δ2 −1)(1−η2/2)2)n/2

= δ−n(
δ2(1−η2/2)2 +η2(1−η2/4)

)n/2 ≲ 1.
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Let Pδ(x) = P (δx̃, xn) and Qδ(x) = Q(δx̃, xn). Then Pδ( · ),Qδ( · ) ∈ Pn,d , deg(Pδ) = deg(P ),
deg(Qδ) = deg(Q) and Qδ(0) =Q(0) = 0. It follows from Theorem 1 that∣∣∣∣p.v.

∫
Rn

e i (P (x)+1/Q(x))Ω(x)

|x|n dx

∣∣∣∣= ∣∣∣∣p.v.
∫
Rn

e i (Pδ(x)+1/Qδ(x)) Ω(δx̃, xn)

|(δx̃, xn)|n δ
n−1dx

∣∣∣∣
=

∣∣∣∣p.v.
∫
Rn

e i (Pδ(x)+1/Qδ(x))Ωδ(x)

|x|n dx

∣∣∣∣≤ A

where A depends on n and d only. This proves Theorem 2.

3. Proof of Theorem 4

First let us recall the following version of van der Corput’s lemma.

Lemma 9.

(i) Let φ be a real-valued C k function on [a,b] satisfying |φ(k)(x)| ≥ 1 for every x ∈ [a,b].
Suppose that k ≥ 2, or that k = 1 and φ′ is monotone on [a,b]. Then there exists a positive
constant ck such that ∣∣∣∣∫ b

a
e iλφ(x) dx

∣∣∣∣≤ ck |λ|−1/k

for all λ ∈R. The constant ck is independent of λ, a,b and φ.
(ii) Let φ and ck be the same as in (i). If ψ ∈C 1([a,b]), then∣∣∣∣∫ b

a
e iλφ(x)ψ(x)dx

∣∣∣∣≤ ck |λ|−1/k (∥ψ∥L∞([a,b]) +∥ψ′∥L1([a,b]))

holds for all λ ∈R.

We will now give the proof of Theorem 4. Since the case a = 0 is already covered by Theorem 5,
we shall assume that a ̸= 0. Initially we will assume thatΩ ∈ L∞(Sn−1).

For ω ∈Sn−1, let

θ = θ(ω) =
∣∣∣∣ a

h(ω)

∣∣∣∣1/l

.

Then

p.v.
∫
Rn

e i (P (x)+1/Q(x))K (x)dx =
∫
Sn−1

Ω(ω)I (ω)dσ(ω)

where

I (ω) =
∫ ∞

0
e i (P (rω)+1/(a+h(ω)r l )) dr

r
= I1(ω)+ I2(ω)+ I3(ω)

where

I1(ω) =
∫ αθ

0
e i (P (rω)+1/(a+h(ω)r l )) dr

r
,

I2(ω) =
∫ βθ

αθ
e i (P (rω)+1/(a+h(ω)r l )) dr

r

and

I3(ω) =
∫ ∞

βθ
e i (P (rω)+1/(a+h(ω)r l )) dr

r

for some suitable constants α and β. Since |I2(ω)| ≤ ln(β/α), it suffices to show that there exist
0 <α<β such that ∫

Sn−1
Ω(ω)I j (ω)dσ(ω) =O(1) (14)

for j = 1 and j = 3.



1678 Hussain Al-Qassem, Leslie Cheng and Yibiao Pan

The estimate (14) for j = 3 follows from a slight modification of the proof of Theorem 1 in [5].
Details will be omitted. Below we shall show how to obtain (14) for j = 1 with an appropriate
selection of α.

Let

φω(r ) = P (rω)+ 1

a +h(ω)r l
.

In order to apply van der Corput’s lemma, we shall need to obtain appropriate lower bounds for
at least one of the derivatives of φω( · ) near 0. When l = 1, this can be done with any derivative
of φω( · ) whose order exceeds the degree of P ( · ). When l > 1, one needs to be more selective as
demonstrated below.

Let g (t ) = (1± t l )−1. Then, for k = 0,1,2, . . . ,∣∣∣∣ds g (0)

dt s

∣∣∣∣=
{

s! if l
∣∣ s

0 if l ̸ ∣∣ s.

Let k0 ∈N such that k0l > max{deg(P ),1}. By |g (k0l )(0)| = (k0l )! ≥ 1, there exists an α ∈ (0,1) such
that |g (k0l )(0)| ≥ 1/2 for |t | ≤α. By

φω(r ) = P (rω)+a−1g (r /θ),

we have

|φ(k0l )
ω (r )| = (|a|θk0l )−1|g (k0l )(r /θ)|

≥ (2|a|θk0l )−1

for r ∈ (0,αθ].
Let b = min{|a|,1}. If |a| ≥ 1, then∫

(b1/(k0l )αθ,αθ]
e iφω(r ) dr

r
= 0.

If |a| < 1, then b = |a| and by Lemma 9,∣∣∣∣∫
(b1/(k0l )αθ,αθ]

e iφω(r ) dr

r

∣∣∣∣≲ 1

((2|a|θk0l )−1)1/(k0l )
· 1

|a|1/(k0l )αθ
≲ 1.

Thus, we always have ∣∣∣∣∫
(b1/(k0l )αθ,αθ]

e iφω(r ) dr

r

∣∣∣∣≲ 1. (15)

Therefore, it suffices to show that∫
Sn−1

Ω(ω)

(∫ αθb1/(k0l )

0
e iφω(r ) dr

r

)
dσ(ω) =O(1). (16)

Let

q(x) =
(

1

a

)k0−1∑
j=0

(
−h(x)

a

) j

.

For any ω ∈Sn−1 and 0 < r ≤αθb1/(k0l ), by 0 ≤ b ≤ 1,∣∣∣∣h(ω)r l

a

∣∣∣∣≤ b1/k0αl
(∣∣∣∣h(w)

a

∣∣∣∣θl
)
≤αl < 1,

which implies that

|φω(r )− (P (rω)+q(r w))| = |a|−1
∣∣∣∣(1+ h(w)r l

a

)−1

−
k0−1∑
j=0

(
− h(w)r l

a

) j ∣∣∣∣
≲ |a|−1

∣∣∣∣h(w)r l

a

∣∣∣∣k0

= |a|−1θ−k0l r k0l .
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Thus,∣∣∣∣∫ αθb1/(k0l )

0

(
e iφω(r ) −e i (P (rω)+q(rω))

)dr

r

∣∣∣∣≲ |a|−1θ−k0l
∫ αθb1/(k0l )

0
r k0l−1dr ≲αk0l |a|−1b ≲ 1,

which immediately gives∫
Sn−1

Ω(ω)
∫ αθb1/(k0l )

0

(
e iφω(r ) −e i (P (rω)+q(rω))

)dr

r
dσ(ω) =O(1). (17)

By an inequality on page 334 of [10],∣∣∣∣p.v.
∫
|x|≤α|a|1/l b1/(k0l )m−1/l

h

e i (P (x)+q(x))K (x)dx

∣∣∣∣≤ A,

i.e. ∫
Sn−1

Ω(ω)
∫ α|a|1/l b1/(k0l )m−1/l

h

0
e i (P (rω)+q(rω)) dr

r
dσ(ω) =O(1). (18)

Trivially, we have ∣∣∣∣∫ αθb1/(k0l )

α|a|1/l b1/(k0l )m−1/l
h

e i (P (rω)+q(rω)) dr

r

∣∣∣∣≲ ∣∣∣∣ ln

( |h(ω)|
mh

)∣∣∣∣.
It follows from Theorem 5 that∫

Sn−1
Ω(ω)

∫ αθb1/(k0l )

α|a|1/l b1/(k0l )m−1/l
h

e i (P (rω)+q(rω)) dr

r
dσ(ω) =O(1). (19)

By (17)–(19), we obtain (16). This proves (6) for Ω ∈ L∞(Sn−1). By applying the argument used in
the proof of Theorem 2, one then obtains (6) forΩ ∈ H 1(Sn−1). Details are omitted.

4. Nonvanishing of infinite order

Let M be a smooth k-dimensional submanifold of Rn , f : M → R be a C∞ function and p ∈ M .
We say that f does not vanish to infinite order at p if there is a chart (Up ,ϕ) around p such that
ϕ(p) = 0 and Dα( f ◦ϕ−1)(0) ̸= 0 for someα ∈ (N∪{0})k . For r > 0, let Bk (r ) denote the open ball in
Rk which is centered at the origin and has radius r . We begin with the following:

Lemma 10. Let k,m ∈N, x ∈Rk , y ∈Rm and R > 0. Let g (x, y) ∈C∞(Bk (R)×Bm(R)) such that

∂αg (0,0)

∂xα
̸= 0 (20)

holds for some α ∈ (N ∪ {0})k . Then there exists an r ∈ (0,R/3) such that, for every δ ∈(
0,(max{|α|,1})−1

)
and every C∞ function h :Rk →R which is supported in Bk (r ),

sup
y∈Bm (r )

∫
Bk (r )

|g (x, y)|−δ|h(x)|dx <∞. (21)

Proof. If (20) holds with |α| = 0, i.e. g (0,0) ̸= 0, then (21) follows trivially by continuity.
Now suppose that g (0,0) = 0 and let

l = min

{
|α| :α ∈ (N∪ {0})k and

∂αg (0,0)

∂xα
̸= 0

}
. (22)

By an argument on p. 317 of [10], we may assume that

∂l g (0,0)

∂x l
k

̸= 0.

By (22) we also have
∂ j g (0,0)

∂x j
k

= 0
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for j = 0,1, . . . , l − 1. Let x̃ = (x1, . . . , xk−1). By Malgrange preparation theorem ([6]), there exist
r ∈ (0,R/3), η0 > 0, a0(x̃, y), . . . , al−1(x̃, y) ∈ C∞(Bk−1(r )×Bm(r )) and c(x, y) ∈ C∞(Bk (r )×Bm(r ))
such that, for all (x, y) ∈ Bk (r )×Bm(r ),

g (x, y) = c(x, y)(x l
k +al−1(x̃, y)x l−1

k +·· ·+a0(x̃, y))

and |c(x, y)| ≥ η0. Thus, for any δ ∈ (0,1/l ) and any C∞ function h(x) supported on Bk (r ),

sup
y∈Bm (r )

∫
Bk (r )

|g (x, y)|−δ|h(x)|dx

≲ sup
y∈Bm (r )

∫
Bk−1(r )

∫
|xk |<r

(x l
k +al−1(x̃, y)x l−1

k +·· ·+a0(x̃, y))−δdxk dx̃ <∞. □

Proof of Theorem 7. Let M be a compact smooth submanifold of Rn and U be an open subset of
Rm . Let f ∈C∞(M ×U ) such that, for every u ∈U , f ( · ,u) does not vanish to infinite order at any
point in M . Suppose that W is a compact subset of U . By Lemma 10 and the compactness of M
and W , there exist δ= δ f ,W > 0 and C =C (M ,n,m, f ,W ) such that

sup
u∈W

∫
M
| f (y,u)|−δdσ(y) ≤C . (23)

For anyΩ ∈ L logL(M) and u ∈W , it follows from (23) that∫
{y∈M : |Ω(y)|<| f (y,u)|−δ/2}

|Ω(y)|| log(| f (y,u)|)|dσ(y)≲
∫

M
| f (y,u)|−δdσ(y)≲ 1.

On the other hand, we have trivially that∫
{y∈M : |Ω(y)|≥| f (y,u)|−δ/2}

|Ω(y)|| log(| f (y,u)|)|dσ(y)≲ ∥Ω∥L logL(M).

Thus (9) holds and the proof of Theorem 7 is now complete. □

Proof of Theorem 6. Let m = dim(Pn,d |Sn−1 ) and p1(x), . . . , pm(x) ∈ Pn,d such that {p j |Sn−1 : 1 ≤
j ≤ m} forms a basis for Pn,d |Sn−1 . Define f :Sn−1 × (Rm\{0}) →R by

f (x,u) =
m∑

j=1
u j p j (x)

for x ∈ Sn−1 and u = (u1, . . . ,um) ∈ Rm\{0}. For each u ∈ Rm\{0}, f ( · ,u) is not identically zero on
Sn−1 which, by real-analyticity, implies that it does not vanish to infinite order at any point in
Sn−1. By Theorem 7,

sup
u∈Sm−1

∫
Sn−1

|Ω(x)|| log(| f (x,u)|)|dσ(x) ≤C (1+∥Ω∥L logL(Sn−1)), (24)

which implies that (8) holds when the norm is given by

m∑
j=1

u j p j
∣∣
Sn−1 →

( m∑
j=1

u2
j

)1/2

.

Since any two norms on Pn,d
∣∣
Sn−1 are equivalent, Theorem 6 is proved. □

Proof of Theorem 8. By assumption and Theorem 7,

sup
u∈W

∫
Sn−1

|Ω(ω)|| log(|ψ(ω,u)|)|dσ(ω) ≤C (1+∥Ω∥L logL(Sn−1)). (25)

One can then adopt the arguments in the proof of Theorem 1 in [5], at times using (25) instead
of (7), to finish the proof. Details are omitted. □
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