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Abstract. Let Q € H! (§"’1) with mean value zero, P and Q be polynomials in 7 variables with real coefficients
and Q(0) = 0. We prove that

i Q(x/|x])
P(0)+1
P.V.fw ! PA+1/Q(x) L dx| < AlQl g1 (gn-1,

where A may depend on 7, deg(P) and deg(Q), but not otherwise on the coefficients of P and Q.
The above result answers an open question posed in [13]. Additional boundedness results of similar
nature are also obtained.
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1. Introduction

The study of oscillatory singular integrals has a long-standing history ([1, 4, 7-9, 11, 12]). For the
specific topic considered in this paper, we shall begin with a well-known result of Stein and
Wainger in [12] and its extension by Stein in [10].

Let n = 2, K(x) be a Calderé6n-Zygmund kernel given by
_ Q(x/|x])

K=

@

where Q: $"! — C is integrable over the unit sphere $"~! with respect to the induced Lebesgue
measure o and satisfies

fgnil Q(x)do(x) =0. (2)
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For d € N, let 27, ; denote the space of real-valued polynomials in n variables whose degrees
do not exceed d. It was proves in [10] that, if Q € L°S" and Pe Pn.a, then

‘p.v.fw ePOK (x)dx| = Cra | fooign1)

where C,, 4 is independent of the coefficients of P.

In the recent paper [13] the authors obtained an extension of the above result in which the
phase functions belong to a certain class of rational functions while Q is allowed to be in a block
space Bg’o ($"71). Their result can be described as follows.

Theorem 1 ([13]). Let g > 1 and K(x) be a Calderén-Zygmund kernel given by (1)-(2). Let
P(x),Q(x) € Py, g such that Q(0) = 0 and Q € By’ (S"™1). Then

p.v. f ! POITHRMN K (x)dx| < A 3)
IRVI

n and d but not otherwise on the coefficients of P and Q.

where A may depend on ||Q|| BOO(sn-1yr
q

The definition of Bg'v(§”’1) for v> —1and g > 1 can be found in [13]. It had been known that
the bound (3) also holds for all Q € LlogL(S”’l), which was proved by Folch-Gabayet and Wright
in [5].

Let H'(S""!) denote the Hardy space over the unit sphere. An important question, posed by
the authors of [13], is whether the bound (3) continues to hold under the condition Q € H' (5" 1)
(with the same phase functions P(x) + 1/Q(x)). This is a very natural question because both
Bg’o ($" 1 and LlogL(§”‘1) are proper subspaces of HY(s" 1.

Our first result answers the above question in the affirmative.

Theorem 2. Let K(x) be a Calderén-Zygmund kernel given by (1)-(2). Let P(x), Q(x) € 2y, 4 such
that Q(0) = 0. Suppose that Q € H (S"™1). Then

p.v. f ! POITHRM K (x)dx| < AIQ g1 gy 4)
Rn

where A may depend on n and d but not otherwise on the coefficients of P and Q.

As usual, Theorem 2 implies the uniform boundedness of oscillatory singular integral opera-
tors of the following type on L? (R™):

f—>P-V-fo(u1 = P1(}),eees U — P’ Wy Q(y 1 yDdy,

where Py, ..., Py, Q are polynomials and Q is a function in H 1(s"~1) with a zero mean-value. The
proof of Theorem 2 will be given in Section 2.

The general question about whether the condition Q(0) = 0 can be removed is open. But for
deg(Q) < 1, this is known to be the case.

Theorem 3 ([5, 13]). Let K(x) be a Calderon-Zygmund kernel given by (1)-(2). Let P(x) € Py 4
and Q(x) = a+ v-x where a € R and v € R". Suppose that Q € LlogL(S"™!) orQ € 32'0(8”‘1) for
some q>1. Then

p.v. f e/ PO k(xydx| < A (5)
RIZ

where A may depend on n, d and the respective norm of QQ, but not otherwise on a, v and the
coefficients of P.

We have the following extension of Theorem 3:
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Theorem 4. LetP(x)€ 2P, 4. Letl €N, h(x) be a nonzero real-valued homogeneous polynomial of
degree | and Q(x) = a+ h(x). Then for every Calderén—-Zygmund kernel K (x) given by (1)-(2) with
anQ(-) in H'(S",

p.v. f e/ POHQW) g (xydx| < A 6)
R}’l

where A may depend on |Q|l g1 (sn-1y, 1, d and | but not otherwise on the coefficients of P(x)
and Q(x).

The proof of Theorem 4 will be given in Section 3.
The following is an important estimate due to E. M. Stein:

Theorem 5. Let Q € LlogL(S"™') and d € N. For every homogeneous polynomial of degree d
on R" P(X) = ¥ |g1=q Aa X", let mp = ¥ |qj=q|aql. Then there exists a constant Cp g > 0 which is
independent of {a,} such that

f [Q(x)]
§Vl—1

What happens if P(x) is a general polynomial instead of a homogeneous polynomial? For
P(x) =Y |qj<d @a X%, the direct analogue of (7), where mp is replaced by ¥ |41<q | acl, is clearly false.
This is due to the fact that, unlike P — mp for homogeneous polynomials of a fixed degree,

Y agx®— Y laql

lal=d lal=d

|P(x)]

mp

log( )‘da(x) <Cpaa (7)

holds whenever mp # 0.

is not a norm on 2, 4| gn-1- To remedy this situation, we can simply replace the above with any
normon %, 4 |§n,1 (e.g. ||l lloo) to arrive at the following extension of Theorem 5:

Theorem 6. Let| |l beanormon2?, 4 |§n_1 . Then there exists a positive constant C which depends
onn,d and | -| only such that
|P(x)]

101 |log| ———
fg S R VTP

holds for allQ € Llog L(S™ 1) and all P € 2, 4 not vanishing identically over S"™!.

log( )‘da(x) < CO+ 12 1ogLisn1) ®)

Since any two norms on a finite dimensional space are equivalent, one recovers (7) when
applying (8) to homogeneous polynomials.

More broadly, results such as Theorem 6 can be framed in terms of functions of finite type and
compactness, as is done in the theorem below.

Theorem 7. Let M be a compact smooth submanifold of R, 0 = g be the induced Lebesgue
measure on M and U be an open subset of R™. Let f € C°(M x U) such that, for every u € U,
f (-, u) does not vanish to infinite order at any point in M. Then, for every compact subset W of U,
there exists a positive constant C = C(M, n, m, f, W) such that

sup | 1Q(Ilog(lf(y, w)hldo(y) = C(A+IQl L10g L) 9)
ueWJM
holds for allQ € Llog L(M).

The proof of Theorem 7 will be based on Malgrange preparation theorem. It will be given
in Section 4 where one will also see how Theorem 6 follows as a simple consequence. As an
application of Theorem 7, we have the following:
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Theorem 8. Ler b € R\{0} and P(x) € 2, 4. Let p € R*, U be an open subset of R and W be a
compact subset of U. Let v € C®(S" 1 x U) such that, for every u € U, w(-,u) does not vanish to
infinite order at any point in S"~. For (x, u) € (R"\{0}) x U, let

®(x, u) = blx|Pw(x/|x], u). (10)
Then for every Calderén—Zygmund kernel K (x) given by (1)-(2) with an Q(-) in Llog L(S"™!),
sup p.V.f e PEFIPW p(dx| < A 1)
uew R™

where A may depend on ||Q ”LlOgL(§n—1) , v, W, n, d and p but not otherwise on b and the coefficients
of P(x).

In the rest of the paper we shall use A < B to mean that A < ¢B for a certain constant ¢ which
depends on some essential parameters only.

2. Proof of Theorem 2

We shall now prove (4) under the assumptions of Theorem 2. By (2) and the atomic decomposi-
tion of H'(S"1) (see [2] and [3]), it suffices to prove that

v [ ety QW/IXD o 1 (12)
P Jn x|

under the assumption that Q(-) is aregular atom on $”1, i.e. Q(-) enjoys the following additional
properties:

(a) supp(Q) < S$" 1N B((y,d) for some {y € S ! and § > 0 where B((y,8) = {yeR":|ly—{ol <

6}; and
(0) Qoo <51
If§ = 1/4, (12) follows from (b) and Theorem 1. Thus, we may assume that 0 < § < 1/4. By using

arotation if necessary, we may also assume that {y = (0,...,0,1). Forany x = (x1,..., X5—1, X5) € R",
we write x = (%, x,,) where ¥ = (x1,...,X,_1). We also extend the definition of Q(-) from $"! to
R”\{0} by using Q(x) = Q(x/|x]). We define Qs : R"\{0} — C by
QOX, x5)
(8%, x,) |
Then Qs(-) is homogeneous of degree 0. It is well-known that, by the theory of Calderén-
Zygmund operators, (2) implies that

Q5(x) = (6" xI™)

fSrH Qs(y)do(y) =0. (13)

Next we will show that [|Qslle < 1. To see this, we assume that Qs(x) # 0 for some x € R"\{0}.
Then
— (621 xn)

= <0.
=167 0]

—Co

By (b) and x, = |(6%, x,)|(1 —17%/2),

n
Q5 ()] < (lL')
6%, x)]

= (516, x)) " (6%, x) 2 + (62 — 1)x2) "2
=57(1+ (6% - (A —n?/2)2)"
=6 (B2 -2 + P Q-2 /)" S 1.
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Let Ps(x) = P(6X,x,) and Qs(x) = Q(6X,x,). Then Ps(-),Qs5(-) € £, 4, deg(Ps) = deg(P),
deg(Qs) = deg(Q) and Qs(0) = Q(0) = 0. It follows from Theorem 1 that

p""f (i (POI+1/Q) @dx' _
n [x]"

pvf i (Ps(0+1/Q5 (1) Q(6%, xpn) 6”_1dx‘
e (6%, x)1"

p.v. f oiPs+1/Qs(0) 2o 4
R" | x["

xX|<A

where A depends on n and d only. This proves Theorem 2.

3. Proof of Theorem 4

First let us recall the following version of van der Corput’s lemma.

Lemma 9.

(i) Let ¢ be a real-valued C* function on [a,b) satisfying |¢® (x)| = 1 for every x € [a, b].
Suppose that k = 2, or that k = 1 and ¢' is monotone on [a, b]. Then there exists a positive
constant cy. such that

b .
f MW qx| < cpA|TVE
a

for all A € R. The constant ci. is independent of A, a, b and ¢.
(ii) Let ¢ and ci be the same as in (i). Ify € C'([a, b)), then

b .
f el/ld’(x)w(x) dx
a

holds for all A € R.

< el YU o qa,mn + 191 o))

We will now give the proof of Theorem 4. Since the case a = 0 is already covered by Theorem 5,
we shall assume that a # 0. Initially we will assume that Q € L®(S"1).

Forwe S™1, let
1/1

a
0=0(w)=|—
@) ‘h(w)
Then
p.v. f e/ POHQWD g (x) dx = f Q) dow)
n Sn*
where
© i Pro)+1 (a+rhwrhy 47
I(w)=[0 e'l 7=11(w)+12(w)+13(w)
where
I (@) :/ae ei(P(rm)+1/(u+h(m)rl))ﬂ
0 r’
Liw) = fﬁe ei(P(rw)+1/(a+h(w)r’))ﬂ
af r
and

(@) = /oo ei(P(rw)+1/(a+h(w)rl))ﬂ
po r

for some suitable constants a and S. Since |I>(w)| < In(f/a), it suffices to show that there exist
0 < a < B such that

Ln_l Q(w)Ij(w)do(w) = O(1) (14)
for j=1and j=3.
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The estimate (14) for j = 3 follows from a slight modification of the proof of Theorem 1 in [5].
Details will be omitted. Below we shall show how to obtain (14) for j = 1 with an appropriate
selection of a.

Let

=P _ .
Pu(r) (re) + a+ hw)r!

In order to apply van der Corput’s lemma, we shall need to obtain appropriate lower bounds for
at least one of the derivatives of ¢, (-) near 0. When [ = 1, this can be done with any derivative
of ¢, (-) whose order exceeds the degree of P(-). When [ > 1, one needs to be more selective as
demonstrated below.

Let g(1) = 1+ ¢))~". Then, for k=0,1,2,...,

d*g(0)
des

s ifl|s
o ifl)s.
Let ko € N such that kol > max{deg(P), 1}. By |g%0?(0)| = (ko])! = 1, there exists an a € (0,1) such
that |[g%0D (0)| = 1/2 for || < a. By
o (1) =P(rw)+atg(rl0),

we have
95" (1)1 = (alo®h g%  (r16))
= (2alg*h) ™!

for r € (0, a0].
Let b =min{|al,1}.If |al = 1, then

(bY%oD g, ab) r

If|al <1, then b = |a| and by Lemma 9,

f piton 47
(bY koD g9, aB] r

Thus, we always have

< 1 . 1 <1.
~ ((2|a|0k01)—1)1/(k01) |a|l/(k0l)a9 ~

f ei([)w(r)ﬂ 5 1. (15)
(bY koD g9, aB] r
Therefore, it suffices to show that
Q:Hbl/(k()l) ] dr
f Qw) (f e’%(”—)da(w) =0Q). (16)
Sn—l 0 r
Let . )
1)kt h(x))f
4(x) = (5) b (-_a .
Foranywe S" 'and 0<r<afb'®b byo<bh<1,
I
hw)r Sbl/koal( hw) gl) <al<1,
a a
which implies that

IN-1 k-1 IN\j
(1+h(w)r) _OZ(_h(w)r)

lpoy (1) — (P(rw) + q(rw))| = |al ! P P

j=0
ko

l
h(W)r :lal_le_kolrkol_

-1
<lal
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Thus,
agbll(kol) dr agbl/(kol)
f (e _et(P(rw)+q(rw)))_ < |a|—16—kolf rhol-Lgy < gholjg1p < 1,
0 r 0
which immediately gives
(Xebll(kol) dr
f Q) f (e = (P +a09D) = 4o (@) = O(1). a7
Sﬂ—l 0 r

By an inequality on page 334 of [10],

p.v.f e/ POHI g (pydx| < 4,
|X|S(I|[l|1”b”(kol) m;l/l
i.e.
(X|(l\1”h1/(k0”m;1” ) dr
f Q(w)f e PUrO+4ro) —_ 45 (@) = 0(1). (18)
§ﬂ—l 0 r
Trivially, we have
gblf(kol)
/“ pi P+ qron 47 <|in ( |h(@)| ) .
a|a|1/1bl/(kol)mzl/l r my,
It follows from Theorem 5 that
aGbI/(kol) ) dr
f Q) e PUO+qro) — 45 (¢) = O(1). (19)
sn-1 alall/lbl/(kOI)m;”l r

By (17)-(19), we obtain (16). This proves (6) for Q € L®(S"™!). By applying the argument used in
the proof of Theorem 2, one then obtains (6) for Q € H l(s"~1) Details are omitted.

4. Nonvanishing of infinite order

Let M be a smooth k-dimensional submanifold of R”, f: M — R be a C* function and p € M.
We say that f does not vanish to infinite order at p if there is a chart (U, ¢) around p such that
@(p) =0and D¥(fop~1)(0) # 0 for some a € (NU{0}. For r > 0, let B (r) denote the open ball in
R which is centered at the origin and has radius r. We begin with the following:

Lemmal0. Letk,meN, xe [Rk, yeR™ and R > 0. Let g(x, y) € C*° (B (R) x By, (R)) such that
0%g(0,0)
0x®
holds for some a € (N U {0)X. Then there exists an r € (0,R/3) such that, for every & €
(O, (max{|«a|, 1})’1) and every C* function h: R¥ — R which is supported in By(r),

£0 (20)

sup lg(x, y)|_5|h(x)|dx < o0. 21
YEBm (1) J Bi(r)

Proof. If (20) holds with |a| =0, i.e. g(0,0) # 0, then (21) follows trivially by continuity.
Now suppose that g(0,0) =0 and let

0%¢(0,0
l:min{lal:ae(NU{O})kandL)#0}. 22)
ox%

By an argument on p. 317 of [10], we may assume that

d'g(o,

7800y,

OxIIC

By (22) we also have _

0'g0,0 _

j
axk
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for j=0,1,...,I - 1. Let X = (x1,..., Xx—1). By Malgrange preparation theorem ([6]), there exist
r€(0,R/3),m0 >0, ap(x,y),...,a1-1(%,y) € C(Bk-1(r) x B (r)) and c(x, y) € C*(Bk(r) x B (1))
such that, for all (x, y) € By(r) x By, (1),

g, y) = clx, Y (xk + a1 (& Y)xp L+ + (%, 7))

and |c(x, y)| = 1. Thus, for any 6 € (0,1/1) and any C* function k(x) supported on By(r),

sup 1g(x, 1170 h(x)|dx
YEBm ()Y Bi(r)

< sup [ f (x,lc+al_1(7c,y)x,l<_l+-~-+a0(55,y))_5dxkd55<oo. O
YE€Bm (r)JBi—1(r) Jlxg|<r

Proof of Theorem 7. Let M be a compact smooth submanifold of R” and U be an open subset of
R™. Let f € C*°(M x U) such that, for every u € U, f(-, u) does not vanish to infinite order at any
point in M. Suppose that W is a compact subset of U. By Lemma 10 and the compactness of M
and W, there exist 6 = 6f,w >0and C = C(M, n,m, f, W) such that

sup | 1f(ywl?da(y) <C. (23)
uewWJM

For any Q € Llog L(M) and u € W, it follows from (23) that

f 1Q(Iog(l f (3, whIda (y) S/ Ifpwldo(y) S1.
{yeM:1Q()I<If (1) =872} M
On the other hand, we have trivially that
[ Q0 1log £ (7, WDIAo (1) < 19 Liogrin-
{yeM:1Q) =1 f ()| ~0/2}
Thus (9) holds and the proof of Theorem 7 is now complete. O

Proof of Theorem 6. Let m = dim(2?), 4lgn-1) and p1(x), ..., pm(X) € Py, 4 such that {pjlgn-1:1 =
j < m} forms a basis for 2,, 4lgn-1. Define f:S"7! x (R™\{0}) — R by

m
fow=) ujp;jx)

j=1

for x € S ' and u = (uy,..., Uy) € R™\{0}. For each u € R™\{0}, f(-, u) is not identically zero on
S$"~! which, by real-analyticity, implies that it does not vanish to infinite order at any point in
s$"!, By Theorem 7,
sup - 1) Nog(l f (x, wldo (x) = C(L + 12l p1og isn-1))s (24)
uesSm-1JS8"=
which implies that (8) holds when the norm is given by
nm m 1/2
2
2 UjPjlen1 = (Z uj)
j=1 j=1

Since any two norms on &, 4 |§,,,1 are equivalent, Theorem 6 is proved. O
Proof of Theorem 8. By assumption and Theorem 7,

sup 1Q(w)og(ly (w, w)DIdo (w) = CA + Q2 £10g £ (sn-1)- (25)
uew Jsn-1

One can then adopt the arguments in the proof of Theorem 1 in [5], at times using (25) instead
of (7), to finish the proof. Details are omitted. O
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