I N S T I T U T D E F R A N C E Académie des sciences

Comptes Rendus

Mathématique

Faouaz Saasi and Radouan Daher
Equivalence of K-functionals and modulus of smoothness generated by a Dunkl type operator on the interval ($-1,1$)

Volume 361 (2023), p. 1625-1633
https://doi.org/10.5802/crmath. 517
(G) BY \quad This article is licensed under the

Creative Commons Attribution 4.0 International License.
http://creativecommons.org/licenses/by/4.0/

MERSENNE

Equivalence of K-functionals and modulus of smoothness generated by a Dunkl type operator on the interval $(-1,1)$

Faouaz Saasi ${ }^{*, a}$ and Radouan Daher ${ }^{a}$

${ }^{a}$ Department of Mathematics, Laboratory of Topology, Algebra, Geometry, and Discrete Mathematics, Faculty of Sciences Aïn Chock University Hassan II, Casablanca, Morocco
E-mails: sadfaouaz@gmail.com, rjdaher024@gmail.com

Abstract

Our aim in this paper is to show that the modulus of smoothness and the K-functionals constructed from the Sobolev-type space corresponding to the Dunkl operator are equivalent on the interval $(-1,1)$.

Keywords. Fourier-Dunkl series, Dunkl transform, generalized translation operator, K-functionals, modulus of smoothness.
2020 Mathematics Subject Classification. 43A30, 46E35, 33D60.
Manuscript received 17 October 2022, revised 24 March 2023, accepted 25 May 2023.

1. Introduction

As it is well-known, the modulus of smoothness generated by the standard translation is equivalent with the Peetre's K-functional, see e.g. [6, p. 171]. This property is extended to Dunkl translation by E. S. Belkina and S. S. Platonov (see [2]) and Bessel translation in [12]. In this paper, we prove the counterparts of results obtained in [2], i.e., we establish the equivalence between K functionals and modulus of smoothness in the Dunkl context (on ($-1,1$) by using Fourier-Dunkl expansions introduced in [4], instead of Dunkl transform. The orthonormal system associated with this kind of series is a generalization of the trigonometric one (in particular, the periodicity is lost).

Hereinafter the symbol α stands for a real value such that $\alpha>-1$. We consider the Dunkl operator Λ_{α} associated with the reflection group \mathbb{Z}_{2} on \mathbb{R} given by

$$
\Lambda_{\alpha} f(x)=\frac{\mathrm{d}}{\mathrm{~d} x} f(x)+\frac{2 \alpha+1}{x}\left(\frac{f(x)-f(-x)}{2}\right) .
$$

The initial value problem

$$
\left\{\begin{array}{l}
\Lambda_{\alpha} f(x)=i \lambda f(x), \quad \lambda \in \mathbb{R} \\
f(0)=1
\end{array}\right.
$$

[^0]has a unique solution $E_{\alpha}(i \lambda$.$) (called the Dunkl kernel) given by:$
\[

$$
\begin{equation*}
E_{\alpha}(i \lambda x)=j_{\alpha}(\lambda x)+\frac{i \lambda x}{2(\alpha+1)} j_{\alpha+1}(\lambda x), x \in \mathbb{R}, \tag{1}
\end{equation*}
$$

\]

where j_{α} is the normalized Bessel function of the first kind defined by

$$
\begin{equation*}
j_{\alpha}(x)=2^{\alpha} \Gamma(\alpha+1) \frac{J_{\alpha}(x)}{x^{\alpha}} \tag{2}
\end{equation*}
$$

and J_{α} is the Bessel functions of the first kind of order α

$$
J_{\alpha}(x)=\left(\frac{x}{2}\right)^{\alpha} \sum_{n=0}^{\infty} \frac{\left(\frac{i x}{2}\right)^{2 n}}{n!\Gamma(n+\alpha+1)} .
$$

From [15], for all $x \in \mathbb{R}$, we have

$$
\begin{equation*}
\left|E_{\alpha}(i x)\right| \leq 1 \quad \text { and }\left|E_{\alpha}^{\prime}(i x)\right| \leq 1 . \tag{3}
\end{equation*}
$$

Let $L^{p}\left((-1,1), \mathrm{d} \mu_{\alpha}\right), p \geq 1$, denote the Lebesgue spaces on the interval $(-1,1)$ endowed with the norm

$$
\|f\|_{\alpha, p}=\left(\int_{-1}^{1}|f(t)|^{p} \mathrm{~d} \mu_{\alpha}(x)\right)^{\frac{1}{p}}
$$

where $\mathrm{d} \mu_{\alpha}(x)=\left(2^{\alpha+1} \Gamma(\alpha+1)\right)^{-1}|x|^{2 \alpha+1} \mathrm{~d} x$. The Dunkl transform is a generalization of the Fourier transform. It is defined for $f \in L^{1}\left((-1,1), \mathrm{d} \mu_{\alpha}\right)$ by the identity (see $\left.[7,9]\right)$

$$
\mathscr{F}_{\alpha} f(y)=\int_{\mathbb{R}} f(x) E_{\alpha}(-i y x) \mathrm{d} \mu_{\alpha}(x), \quad y \in \mathbb{R} .
$$

The Fourier transform corresponds with the case $\alpha=-1 / 2$ because $E_{-1 / 2}(i x)=\mathrm{e}^{i x}$ and $\mathrm{d} \mu_{-1 / 2}$ is, up to a multiplicative factor, the Lebesgue measure on \mathbb{R}.

2. Equivalence of K-functionals and modulus of smoothness generated by a Dunkl type operator on the interval $(-1,1)$.

Let $\left\{\lambda_{n}:=\lambda_{\alpha+1, n}, n \in \mathbb{N}\right\}$ be the increasing sequence of positive zeros of $J_{\alpha+1}$. It is proved in [10] that

$$
\begin{equation*}
\lambda_{n} \leqslant n \pi+\alpha \pi / 2+\pi / 4 \quad \text { for } \alpha>-1 / 2 . \tag{4}
\end{equation*}
$$

In [8] we find the following inequality

$$
\lambda_{n}>\alpha+n \pi-\frac{\pi}{2}+\frac{3}{2}, \quad \alpha>-1, \quad n=1,2, \ldots
$$

then

$$
\begin{equation*}
\lambda_{n}>n, \quad \alpha>-1, \quad n=1,2, \ldots \tag{5}
\end{equation*}
$$

When the range of α is fixed, like $-1<\alpha \leqslant-\frac{1}{2}$ (see Schafheitlin in [18, p. 490]) and no (essential) restriction on n :

$$
\begin{equation*}
n \pi+\alpha \pi / 2+\pi / 4<\lambda_{n}<n \pi \quad\left(-1<\alpha \leqslant-\frac{1}{2}\right) . \tag{6}
\end{equation*}
$$

Let $c_{\alpha}=\pi+\max \{0, \alpha \pi / 2+\pi / 4\}$. Combining (4), (5), and (6) gives

$$
\begin{equation*}
n<\lambda_{n}<c_{\alpha} n \text { for all } \alpha>-1 . \tag{7}
\end{equation*}
$$

The real-valued function $\Im E_{\alpha}(i x)=\frac{x}{2(\alpha+1)} j_{\alpha+1}(x)$ is odd and its zeros are $\left\{\lambda_{n}, n \in \mathbb{Z}\right\}$ where $\lambda_{-n}=-\lambda_{n}$ and $\lambda_{0}=0$.

Theorem 1 in [4] establishes that $\left\{E_{\alpha}\left(i \lambda_{n} x\right)\right\}_{n \in \mathbb{Z}}$ is a complete orthogonal system in $L^{2}\left((-1,1), \mathrm{d} \mu_{\alpha}\right)$. That is to say

$$
\int_{-1}^{1} E_{\alpha}\left(i \lambda_{n} x\right) \overline{E_{\alpha}\left(i \lambda_{m} x\right)} \mathrm{d} \mu_{\alpha}(x)=\left\|E_{\alpha}\left(i \lambda_{n} \cdot\right)\right\|_{2, \alpha}^{2} \delta_{n m}
$$

For each appropriate function f on $(-1,1)$, we define its Fourier series related to the system $\left\{E_{\alpha}\left(i \lambda_{n} x\right)\right\}_{n \in \mathbb{Z}}$, which are called Fourier-Dunkl series, as

$$
f \sim \sum_{n \in \mathbb{Z}} c_{n}(f) E_{\alpha}\left(i \lambda_{n} x\right) \theta_{n}, \quad c_{n}(f)=\int_{-1}^{1} f(y) \overline{E_{\alpha}\left(i \lambda_{n} y\right)} \mathrm{d} \mu_{\alpha}(y) .
$$

and

$$
\theta_{n}=\| E_{\alpha}\left(i \lambda_{n} \cdot \|_{2, \alpha}^{-2} .\right.
$$

We notice that 0 . Ciaurri and his collaborators have studied in [3] the weighted norm convergence of the Fourier-Dunkl series and proved in [5] an uncertainty inequality associated to this system. From [4, Lemma 1] we have

$$
\begin{equation*}
\theta_{n}=\frac{2^{\alpha} \Gamma(\alpha+1)}{\left|j_{\alpha}\left(\lambda_{n}\right)\right|^{2}}, \quad n \in \mathbb{Z} \backslash\{0\} \quad \text { (we recall that } \lambda_{n}:=\lambda_{\alpha+1, n} \text {) } \tag{8}
\end{equation*}
$$

and $\theta_{0}=2^{\alpha+1} \Gamma(\alpha+2)$. The following asymptotic formulas hold for the Bessel function $J_{\alpha}(u)$ ([18, p. 490]):

$$
\begin{equation*}
J_{\alpha}(u)=\sqrt{\frac{2}{\pi u}}\left[\cos \left(u-\frac{\alpha \pi}{2}-\frac{\pi}{4}\right)+O\left(\frac{1}{u}\right)\right], u \rightarrow \infty . \tag{9}
\end{equation*}
$$

Combining (8) and (9) gives

$$
\begin{equation*}
\theta_{n} \sim \pi\left|\lambda_{n}\right|^{2 \alpha+1},|n| \rightarrow \infty . \tag{10}
\end{equation*}
$$

The sequence $\left\{c_{n}(f), n \in \mathbb{Z}\right\}$ is called the discrete Fourier-Dunkl transform of f. We define the weighted spaces $l^{p}\left(\mathbb{Z},\left(\theta_{n}\right)_{n \in \mathbb{Z}}\right)$ by

$$
l^{p}\left(\mathbb{Z},\left(\theta_{n}\right)_{n \in \mathbb{Z}}\right)=\left\{\left(x_{n}\right)_{n \in \mathbb{Z}}: \mathbb{Z} \longrightarrow \mathbb{C}:\left(\sum_{n \in \mathbb{Z}}\left|x_{n}\right|^{p} \theta_{n}\right)^{1 / p}<+\infty\right\} .
$$

If $f \in L^{2}\left((-1,1), \mathrm{d} \mu_{\alpha}\right)$, then the sequence $\left\{c_{n}(f), n \in \mathbb{Z}\right\}$ belongs to $l^{2}\left(\mathbb{Z},\left(\theta_{n}\right)_{n \in \mathbb{Z}}\right)$ and we have

$$
\begin{equation*}
\|f\|_{2, \alpha}=\sqrt{\sum_{n=-\infty}^{\infty}\left|c_{n}(f)\right|^{2} \theta_{n}} . \tag{11}
\end{equation*}
$$

The Dunkl translation operator of a function f is defined for all $h \in \mathbb{R}$ by (see [1, 13])

$$
\begin{equation*}
\tau_{y}^{\alpha} f(x)=\sum_{n=0}^{\infty} \Lambda_{\alpha}^{n} f(x) \frac{y^{n}}{\gamma_{n, \alpha}}, \quad \alpha>-1 \tag{12}
\end{equation*}
$$

where Λ_{α}^{0} is the identity operator, $\Lambda_{\alpha}^{n+1}=\Lambda_{\alpha}\left(\Lambda_{\alpha}^{n}\right)$, and

$$
\gamma_{n, \alpha}= \begin{cases}2^{2 k} k!(\alpha+1)_{k} & \text { if } n=2 k \\ 2^{2 k+1} k!(\alpha+1)_{k+1} & \text { if } n=2 k+1\end{cases}
$$

The definition (12) is valid only for C^{∞}-functions, and assuming also that the series on the right is convergent. In particular, this can be guaranteed when f is a polynomial, because the operator Λ_{α} applied to a polynomial of degree k generates a polynomial of degree $k-1$, so the series (12) has only a finite number of nonzero summands. In the case $\alpha=-1 / 2$, the translation $\tau_{y}^{\alpha} f$ is just the Taylor expansion of a function f around a fixed point x, that is,

$$
f(x+y)=\sum_{n=0}^{\infty} f^{(n)}(x) \frac{y^{n}}{n!} .
$$

Some properties of the translation operator, including an integral expression, can be found in [11, 14, 16, 17]. For our purposes, we only need the identity [13, formula (4.2.2)]

$$
\begin{equation*}
\tau_{h}^{\alpha}\left(E_{\alpha}(i \lambda x)\right)=E_{\alpha}(i \lambda h) E_{\alpha}(i \lambda x) \text { for all } x, h \in \mathbb{R} . \tag{13}
\end{equation*}
$$

That resembles the classical

$$
e^{\lambda(h+x)}=e^{\lambda h} e^{\lambda x} .
$$

The scalar product in the Hilbert space $L^{2}\left((-1,1), \mathrm{d} \mu_{\alpha}\right)$ obeys the formula

$$
(f, g)=\int_{-1}^{1} f(x) \overline{g(x)} \mathrm{d} \mu_{\alpha}(x) .
$$

We denote by $\mathscr{E}=\mathscr{E}((-1,1))$, the set of all infinitely differentiable with compact support included in the interval $(-1,1)$. By the partial integration one can verify the relation

$$
\begin{equation*}
\int_{-1}^{1} \Lambda_{\alpha} f(x) \overline{g(x)} \mathrm{d} \mu_{\alpha}(x)=\frac{f(1) \overline{g(1)}-f(-1) \overline{g(-1)}}{2^{\alpha+1} \Gamma(\alpha+1)}-\int_{-1}^{1} f(x) \overline{\Lambda_{\alpha} g(x)} \mathrm{d} \mu_{\alpha}(x) . \tag{14}
\end{equation*}
$$

Then for any functions $f, g \in \mathscr{E}$, we have

$$
\begin{equation*}
\left(\Lambda_{\alpha} f, g\right)=-\left(f, \Lambda_{\alpha} g\right) \tag{15}
\end{equation*}
$$

As usual, we endow the space \mathscr{E} with a topology; this turns it into a topological vector space. Let \mathscr{E}^{\prime} stand for the set of generalized functions, i.e., linear continuous functionals on the space \mathscr{E}. We denote the value of a functional $f \in \mathscr{E}^{\prime}$ on a function $\varphi \in \mathscr{E}$ by $\langle f, \varphi\rangle$. The space $L^{2}\left((-1,1), \mathrm{d} \mu_{\alpha}\right)$ is embedded into \mathscr{E}^{\prime}, provided that for $f \in L^{2}\left((-1,1), \mathrm{d} \mu_{\alpha}\right)$ and $\varphi \in \mathscr{E}^{\prime}$ we put

$$
\langle f, \varphi\rangle=\int_{-1}^{1} f(x) \varphi(x) \mathrm{d} \mu_{\alpha}(x)
$$

We can extend the action of Dunkl operator Λ_{α} onto the space of generalized functions \mathscr{E}^{\prime}, putting

$$
\left\langle\Lambda_{\alpha} f, \varphi\right\rangle=-\left\langle f, \Lambda_{\alpha} \varphi\right\rangle, f \in \mathscr{E}^{\prime}, \varphi \in \mathscr{E} .
$$

In particular, the action of the operator $\Lambda_{\alpha} f$ is defined for any function $f \in L^{2}\left((-1,1), \mathrm{d} \mu_{\alpha}\right)$, but, generally speaking, $\Lambda_{\alpha} f$ is a generalized function.

Analogously to Λ_{α}, we can extend the operator τ_{h}^{α} by continuity on the whole space $L^{2}\left((-1,1), \mathrm{d} \mu_{\alpha}\right)$. Indeed, Let P be a vector space generated by the system $\left\{E_{\alpha}\left(i \lambda_{n} x\right)\right\}_{n \in \mathbb{Z}}$ and $f \in P$, then f can be written as $f(x)=\sum_{n=-m}^{m} c_{n} E_{\alpha}\left(i \lambda_{n} x\right) \theta_{n}$. Using (3) and (13) we check easily that

$$
\begin{equation*}
\left\|\tau \tau_{h}^{\alpha} f\right\|_{2, \alpha} \leq\|f\|_{2, \alpha} . \tag{16}
\end{equation*}
$$

As P is a dense subspace of $L^{2}\left((-1,1), \mathrm{d} \mu_{\alpha}\right)$, it follows from (16) that τ_{h}^{α} can be extended by continuity to a bounded operator in $L^{2}\left((-1,1), \mathrm{d} \mu_{\alpha}\right)$. The extended operator is also denoted by τ_{h}^{α}; inequality (16) remains valid for it.

For every function $f \in L^{2}\left((-1,1), \mathrm{d} \mu_{\alpha}\right)$ we define the differences $\Delta_{h}^{m} f$ of order, $m \in \mathbb{N}=$ $\{1,2,3, \ldots\}$, with step $h \in \mathbb{R}$ by the formula $\Delta_{h}^{1} f(t)=\Delta_{h} f(t)=\left(\tau_{h}^{\alpha}-I\right) f(t)$, where I is the identity operator in $L^{2}\left((-1,1), \mathrm{d} \mu_{\alpha}\right)$ and for $m>1$

$$
\Delta_{h}^{m} f(t)=\Delta_{h}\left(\Delta_{h}^{m-1} f(t)\right)=\left(\tau_{h}^{\alpha}-I\right)^{m} f(t)=\sum_{i=0}^{m}(-1)^{m-1}\binom{m}{i}\left(\tau_{h}^{\alpha}\right)^{i} f(t),
$$

where

$$
\left(\tau_{h}^{\alpha}\right)^{0} f(t)=f(t), \quad\left(\tau_{h}^{\alpha}\right)^{i} f(t)=\tau_{h}^{\alpha}\left(\left(\tau_{h}^{\alpha}\right)^{i-1} f(t)\right), \quad i=1,2, \ldots, m .
$$

The moduli of smoothness generated by general translations are defined as follows.

$$
\omega_{m}(f, \delta)_{2, \alpha}:=\sup _{0<h \leq \delta}\left\|\Delta_{h}^{m} f\right\|_{2, \alpha}, \quad \delta>0, \quad f \in L^{2}\left((-1,1), \mathrm{d} \mu_{\alpha}\right) .
$$

Let $W_{2, \alpha}^{m}$ be the Sobolev space constructed by the operator Λ_{α}, i.e.,

$$
W_{2, \alpha}^{m}:=\left\{f \in L^{2}\left((-1,1), \mathrm{d} \mu_{\alpha}\right): \Lambda_{\alpha}^{j} f \in L^{2}\left((-1,1), \mathrm{d} \mu_{\alpha}\right), j=1,2, \ldots, m\right\} .
$$

Then the corresponding K-functional is

$$
K\left(f, t, W_{2, \alpha}^{m}\right):=\inf \left\{\|f-g\|_{2, \alpha}+t\left\|\Lambda_{\alpha}^{m} g\right\|_{2, \alpha}: g \in W_{2, \alpha}^{m}\right\}
$$

where $f \in L^{2}\left((-1,1), \mathrm{d} \mu_{\alpha}\right)$ and $t>0$. For brevity, we denote

$$
K_{m}(f, t)_{2, \alpha}:=K\left(f, t, W_{2, \alpha}^{m}\right) .
$$

The following theorem establishes an equivalence between the modulus of smoothness and the K-functional. It is analogous to the theorem on the equivalence between the modulus of smoothness and the K-functional in classical approximation theory.
Theorem 1. One can find positive numbers $C_{1}=C_{1}(m, \alpha)$ and $C_{2}=C_{2}(m, \alpha)$ which satisfy the inequality

$$
C_{1} \omega_{m}(f, \delta)_{2, \alpha} \leq K_{m}\left(f, \delta^{m}\right)_{2, \alpha} \leq C_{2} \omega_{m}(f, \delta)_{2, \alpha}
$$

where $f \in L^{2}\left((-1,1), \mathrm{d} \mu_{\alpha}\right)$ and $\delta>0$.
Using that $E_{-1 / 2}(i x)=\mathrm{e}^{i x}$, it is easy to check that Theorem 1 reduces to an equivalence between the modulus of smoothness and the K-functional on the basis of Fourier series and usual translation.

When we consider real even and odd functions the Fourier-Dunkl series can be seen as Fourier-Dini and Fourier-Bessel series respectively. From this fact, applying Theorem 1 to even or odd functions, we can deduce analogs of Theorem 1 for these kinds of series.

3. Proof

Some technical facts are needed to prove our result. They are included in the next lemmas.

Lemma 2.

(i) For $x \in \mathbb{R}$ the following inequality is fulfilled

$$
\left|1-E_{\alpha}(i x)\right| \leq|x|
$$

(ii) For $|x| \geq 1$, there exists a certain constant $c>0$ which depends only on α such that

$$
\left|1-E_{\alpha}(i x)\right| \geq c
$$

Proof. (i). It follows by the estimates provided in (3) together with standard application of Lagrange's mean value theorem.
(ii). The asymptotic formulas (9) imply that $j_{\alpha}(x) \rightarrow 0$ as $|x| \rightarrow \infty$. Consequently, a number $\eta>0$ exists such that with $|x| \geq \eta$ the inequality $\left|j_{\alpha}(x)\right| \leq 1 / 2$ is true. Let

$$
m=\min _{1 \leq|x| \leq \eta}\left|1-j_{\alpha}(x)\right|
$$

With $|x| \geq 1$ we get the inequality $\left|1-j_{\alpha}(x)\right| \geq c$, where $c=\min \{m, 1 / 2\}$. Taking only the reel part of $1-E_{\alpha}\left(i \lambda_{n} x\right)$ gives

$$
c \leq\left|1-j_{\alpha}(x)\right| \leq\left|1-E_{\alpha}\left(i \lambda_{n} x\right)\right| .
$$

Proposition 3. Let $x \in(-1,1)$ and $h \in \mathbb{R}$. If $f \in L^{2}\left((-1,1), \mathrm{d} \mu_{\alpha}\right)$ with

$$
f(x)=\sum_{n \in \mathbb{Z}} c_{n}(f) E_{\alpha}\left(i \lambda_{n} x\right) \theta_{n}
$$

then

$$
\begin{equation*}
\tau_{h}^{\alpha} f(x)=\sum_{n \in \mathbb{Z}} c_{n}(f) E_{\alpha}\left(i \lambda_{n} h\right) E_{\alpha}\left(i \lambda_{n} x\right) \theta_{n} \tag{17}
\end{equation*}
$$

Proof. By product formula (13) of τ_{h}^{α}, we have

$$
\tau_{h}^{\alpha} E_{\alpha}\left(i \lambda_{n} x\right)=E_{\alpha}\left(i \lambda_{n} h\right) E_{\alpha}\left(i \lambda_{n} x\right)
$$

So, for any Dunkl-polynomial function

$$
\mathscr{Q}_{N}(x)=\sum_{n=-N}^{N} c_{n}(f) E_{\alpha}\left(i \lambda_{n} x\right) \theta_{n}
$$

(this can be considered as a generalization of the trigonometric polynomial in the classical case $\alpha=-1 / 2$) since τ_{h}^{α} is linear, we have

$$
\begin{equation*}
\tau_{h}^{\alpha} \mathscr{Q}_{N}(x)=\sum_{n=-N}^{N} c_{n}(f) E_{\alpha}\left(i \lambda_{n} h\right) E_{\alpha}\left(i \lambda_{n} x\right) \theta_{n} . \tag{18}
\end{equation*}
$$

By using the fact that τ_{h}^{α} is extended to a continuous linear operator in $L^{2}\left((-1,1), \mathrm{d} \mu_{\alpha}\right)$ and the set of all polynomials $\mathscr{Q}_{N}(x)$ is everywhere dense in $L^{2}\left((-1,1), \mathrm{d} \mu_{\alpha}\right)$, passage to the limit in (18) gives the desired equality.
Corollary 4. Let $f \in L^{2}\left((-1,1), \mathrm{d} \mu_{\alpha}\right)$ and $h \in \mathbb{R}$, then

$$
\begin{equation*}
\left\|\Delta_{h}^{m} f\right\|_{2, \alpha} \leq 2^{m}\|f\|_{2, \alpha} . \tag{19}
\end{equation*}
$$

Proof. Let $h \in \mathbb{R}$. According to the formula (17), we obtain

$$
\begin{aligned}
c_{n}\left(\Delta_{h}^{1} f\right) & =c_{n}\left(\tau_{h}^{\alpha} f\right)-c_{n}(f) \\
& =\left(E_{\alpha}\left(i \lambda_{n} h\right)-1\right) c_{n}(f) .
\end{aligned}
$$

Using induction with respect to m, we have

$$
\begin{equation*}
c_{n}\left(\Delta_{h}^{m} f\right)=\left(E_{\alpha}\left(i \lambda_{n} h\right)-1\right)^{m} c_{n}(f) . \tag{20}
\end{equation*}
$$

Then

$$
c_{n}\left(\Delta_{h}^{m} f\right) \leq 2^{m} c_{n}(f)
$$

Lemma 5. If $f \in \mathscr{E}$, we get

$$
\begin{equation*}
c_{n}\left(\Lambda_{\alpha} f\right)=i \lambda_{n} c_{n}(f) \tag{21}
\end{equation*}
$$

for all $n \in \mathbb{Z}$.
Proof. Let $f \in \mathscr{E}$, we put $c_{n}(f)=\int_{-1}^{1} f(y) \overline{E_{\alpha}\left(i \lambda_{n} y\right)} \mathrm{d} \mu_{\alpha}(y)$. It follows from (15) that

$$
\begin{aligned}
c_{n}\left(\Lambda_{\alpha} f\right) & =\int_{-1}^{1} \Lambda_{\alpha} f(y) E_{\alpha}\left(-i \lambda_{n} y\right) \mathrm{d} \mu_{\alpha}(y), \\
& =-\int_{-1}^{1} f(y) \Lambda_{\alpha} E_{\alpha}\left(-i \lambda_{n} y\right) \mathrm{d} \mu_{\alpha}(y), \\
& =i \lambda_{n} \int_{-1}^{1} f(y) E_{\alpha}\left(-i \lambda_{n} y\right) \mathrm{d} \mu_{\alpha}(y), \\
& =i \lambda_{n} c_{n}(f) .
\end{aligned}
$$

Then the equality (21) is valid in \mathscr{E}.
Remark 6. Using induction with respect to m and Lemma 5, we can see that for all $f \in W_{2, \alpha}^{m}$

$$
\begin{equation*}
c_{n}\left(\Lambda_{\alpha}^{m} f\right)=\left(i \lambda_{n}\right)^{m} c_{n}(f) \tag{22}
\end{equation*}
$$

for all $n \in \mathbb{Z}$ and $m=0,1,2, \ldots$.
Lemma 7. Assume that $\delta>0$ and $f \in W_{2, \alpha}^{m}$. The following inequality is true:

$$
\omega_{m}(f, \delta)_{2, \alpha} \leq \delta^{m}\left\|\Lambda^{m} f\right\|_{2, \alpha}
$$

Proof. Let $h \in(0, \delta]$. According to the formula (20), we have

$$
c_{n}\left(\Delta_{h}^{m} f\right)=\left(E_{\alpha}\left(i \lambda_{n} h\right)-1\right)^{m} c_{n}(f) .
$$

It follows from the Parseval identity (11) and Lemma 2 that

$$
\begin{aligned}
\left\|\Delta_{h}^{m} f\right\|_{2, \alpha}^{2}=\sum_{n \in \mathbb{Z}}\left(1-E_{\alpha}\left(i \lambda_{n} h\right)\right)^{2 m}\left|c_{n}(f)\right|^{2} \theta_{n} & \leq h^{2 m} \sum_{n \in \mathbb{Z}}\left(\frac{1-E_{\alpha}\left(i \lambda_{n} h\right)}{\lambda_{n} h}\right)^{2 m}\left|\lambda_{n}^{m} c_{n}(f)\right|^{2} \theta_{n} \\
& \leq h^{2 m}\left\|\Lambda_{\alpha}^{m} f\right\|_{2, \alpha}^{2} \leq \delta^{2 m}\left\|\Lambda_{\alpha}^{m} f\right\|_{2, \alpha}^{2} .
\end{aligned}
$$

Calculating the supremum with respect to all $h \in(0, \delta]$, we obtain $\omega_{m}(f, \delta)_{2, \alpha} \leq \delta^{m}\left\|\Lambda_{\alpha}^{m} f\right\|_{2, \alpha}$.
Definition 8. For any function $f \in L^{2}\left((-1,1), \mathrm{d} \mu_{\alpha}\right)$ and any number $\sigma>0$, we define the function

$$
\mathscr{P}_{\sigma}(f)(t):=\sum_{n \in \mathbb{Z}} \mathscr{X}_{\sigma}\left(\lambda_{n}\right) c_{n}(f) E_{\alpha}\left(i \lambda_{n} t\right) \theta_{n}
$$

where $\mathscr{X}_{\sigma}(n)$ is the characteristic function defined by

$$
\mathscr{X}_{\sigma}\left(\lambda_{n}\right):= \begin{cases}1 & \text { if }\left|\lambda_{n}\right| \leq \sigma, \\ 0 & \text { if }\left|\lambda_{n}\right|>\sigma .\end{cases}
$$

Proposition 9. Let $\sigma>0$. For any function $f \in L^{2}\left((-1,1), \mathrm{d} \mu_{\alpha}\right)$ the following inequality is true:

$$
\left\|f-\mathscr{P}_{\sigma}(f)\right\|_{2, \alpha} \leq C\left\|\Delta_{\frac{1}{\sigma}}^{m} f\right\|_{2, \alpha} .
$$

Proof. Using the Parseval equality, we obtain

$$
\begin{align*}
\left\|f-\mathscr{P}_{\sigma}(f)\right\|_{2, \alpha}^{2} & =\sum_{n \in \mathbb{Z}}\left(1-\mathscr{X}_{\sigma}\left(\lambda_{n}\right)\right)\left|c_{n}(f)\right|^{2} \theta_{n}, \tag{23}\\
& =\sum_{n \in \mathbb{Z}} \frac{\left(1-\mathscr{X}_{\sigma}\left(\lambda_{n}\right)\right)}{\left(1-E_{\alpha}\left(i \lambda_{n} \sigma^{-1}\right)\right)^{2 m}}\left(1-E_{\alpha}\left(i \lambda_{n} \sigma^{-1}\right)\right)^{2 m}\left|c_{n}(f)\right|^{2} \theta_{n} . \tag{24}
\end{align*}
$$

Note that $C_{1} \leq\left|1-E_{\alpha}(i x)\right|$ with $|x| \geq 1$ (see Lemma 2). Hence

$$
\begin{equation*}
\sup _{n \in \mathbb{Z}} \frac{1-\mathscr{X}_{\sigma}\left(\lambda_{n}\right)}{1-E_{\alpha}\left(i \lambda_{n} \sigma^{-1}\right)} \leq \sup _{|x| \geq 1} \frac{1}{1-E_{\alpha}(i x)} \leq \frac{1}{C_{1}} . \tag{25}
\end{equation*}
$$

Relations (24) and (25) give

$$
\left\|f-\mathscr{P}_{\sigma}(f)\right\|_{2, \alpha} \leq C\left\|\Delta_{\frac{1}{\sigma}}^{m} f\right\|_{2, \alpha}
$$

where $C=\frac{1}{C_{1}^{m}}$.
Corollary 10. For any function $f \in L^{2}\left((-1,1), \mathrm{d} \mu_{\alpha}\right)$ the following inequality is true:

$$
\left\|f-\mathscr{P}_{\sigma}(f)\right\|_{2, \alpha} \leq C \omega_{m}\left(f, \frac{1}{\sigma}\right)_{2, \alpha}
$$

Proposition 11. Suppose that $f \in L^{2}\left((-1,1), \mathrm{d} \mu_{\alpha}\right), m \in \mathbb{N}$, and $\sigma>0$. Then we have

$$
\left\|\Lambda_{\alpha}^{m} \mathscr{P}_{\sigma}(f)\right\|_{2, \alpha} \leq C_{3} \sigma^{m}\left\|\Delta_{\frac{1}{\sigma}}^{m} f\right\|_{2, \alpha} .
$$

Proof. Using the Parseval equality, we obtain

$$
\begin{align*}
\left\|\Lambda_{\alpha}^{m} \mathscr{P}_{\sigma}(f)\right\|_{2, \alpha}^{2} & =\sum_{n \in \mathbb{Z}} \lambda_{n}^{2 m} \mathscr{X}_{\sigma}\left(\lambda_{n}\right)\left|c_{n}(f)\right|^{2} \theta_{n}, \tag{26}\\
& =\sigma^{2 m} \sum_{n \in \mathbb{Z}} \frac{\mathscr{X}_{\sigma}\left(\lambda_{n}\right)\left(\lambda_{n} \sigma^{-1}\right)^{2 m}}{\left(1-E_{\alpha}\left(i \lambda_{n} \sigma^{-1}\right)\right)^{2 m}}\left(1-E_{\alpha}\left(i \lambda_{n} \sigma^{-1}\right)\right)^{2 m}\left|c_{n}(f)\right|^{2} \theta_{n} . \tag{27}
\end{align*}
$$

Note that

$$
\begin{equation*}
\sup _{n \in \mathbb{Z}}\left|\frac{\mathscr{X}_{\sigma}\left(\lambda_{n}\right) \lambda_{n} \sigma^{-1}}{1-E_{\alpha}\left(i \lambda_{n} \sigma^{-1}\right)}\right| \leq \sup _{|x| \leq 1}\left|\frac{x}{1-E_{\alpha}(i x)}\right|=C_{2} . \tag{28}
\end{equation*}
$$

Then formula (27) yields

$$
\left\|\Lambda_{\alpha}^{m} \mathscr{P}_{\sigma}(f)\right\|_{2, \alpha} \leq C_{3} \sigma^{m}\left\|\Delta_{\frac{1}{\sigma}}^{m} f\right\|_{2, \alpha}
$$

where $C_{3}=C_{2}^{m}$.
Corollary 12. For any function $f \in L^{2}\left((-1,1), \mathrm{d} \mu_{\alpha}\right)$ the following inequality is true:

$$
\left\|\Lambda_{\alpha}^{m} \mathscr{P}_{\sigma}(f)\right\|_{2, \alpha} \leq C_{3} \sigma^{m} \omega_{m}\left(f, \frac{1}{\sigma}\right)_{2, \alpha}
$$

Proof of Theorem 1.

Proof of the inequality $2^{-m} \omega_{m}(f, \delta)_{2, \alpha} \leq K_{m}\left(f, \delta^{m}\right)_{2, \alpha}$.
Let $h \in(0, \delta], g \in W_{2, \alpha}^{m}$. Using Lemma 7 and inequality (19), we obtain

$$
\begin{aligned}
\left\|\Delta_{h}^{m} f\right\|_{2, \alpha} \leq\left\|\Delta_{h}^{m} f-g\right\|_{2, \alpha}+\left\|\Delta_{h}^{m} g\right\|_{2, \alpha} & \leq 2^{m}\|f-g\|_{2, \alpha}+h^{m}\left\|\Lambda_{\alpha}^{m} f\right\|_{2, \alpha} \\
& \leq 2^{m}\left(\|f-g\|_{2, \alpha}+h^{m}\left\|\Lambda_{\alpha}^{m} f\right\|_{2, \alpha}\right)
\end{aligned}
$$

Calculating the supremum with respect to $h \in(0, \delta]$ and the infimum with respect to all possible functions $g \in W_{2, \alpha}^{m}$ we obtain

$$
2^{-m} \omega_{m}(f, \delta)_{2, \alpha} \leq K_{m}\left(f, \delta^{m}\right)_{2, \alpha}
$$

Proof of the inequality $K_{m}\left(f, \delta^{m}\right)_{2, \alpha} \leq C_{1} \omega_{m}(f, \delta)_{2, \alpha}$.
Since $\mathscr{P}_{\sigma}(f) \in W_{2, \alpha}^{m}$ by the definition of a K-functional we have

$$
K_{m}\left(f, \delta^{m}\right)_{2, \alpha} \leq\left\|f-\mathscr{P}_{\sigma}(f)\right\|_{2, \alpha}+\delta^{m}\left\|\Lambda_{\alpha}^{m} \mathscr{P}_{\sigma}(f)\right\|_{2, \alpha}
$$

Using Corollaries 10 and 12, this gives

$$
K_{m}\left(f, \delta^{m}\right)_{2, \alpha} \leq \omega_{m}\left(f, \frac{1}{\sigma}\right)_{2, \alpha}+C_{3}(\delta \sigma)^{n} \omega_{m}\left(f, \frac{1}{\sigma}\right)_{2, \alpha}
$$

Since σ is an arbitrary positive value, choosing $\sigma=1 / \delta$, we obtain the inequality.

Acknowledgements

The authors would like to thank the anonymous referee and J. Faraut, who both found misprints as well as suggested valuable improvements of the text.

References

[1] A. G. Asensi, J. L. Varona, "Appell-Dunkl sequences and Hurwitz-Dunkl zeta functions", J. Math. Anal. Appl. 520 (2023), no. 1, article no. 126870 (40 pages).
[2] E. S. Belkina, S. S. Platonov, "Equivalence of K-functionals and modulus of smoothness constructed by generalized Dunkl translations", Izv. Vyssh. Uchebn. Zaved., Mat. 2008 (2008), no. 8, p. 3-15.
[3] Ó. Ciaurri, M. Pérez, J. M. Reyes, J. L. Varona, "Mean convergence of Fourier-Dunkl series", J. Math. Anal. Appl. 372 (2010), no. 2, p. 470-485.
[4] Ó. Ciaurri, J. L. Varona, "A Whittaker-Shannon-Kotel'nikov sampling theorem related to the Dunkl transform", Proc. Am. Math. Soc. 135 (2007), no. 9, p. 2939-2947.
[5] ——, "An uncertainty inequality for Fourier-Dunkl series", J. Comput. Appl. Math. 233 (2010), no. 6, p. 1499-1504.
[6] R. A. DeVore, G. G. Lorentz, Constructive Approximation, Grundlehren der Mathematischen Wissenschaften, vol. 303, Springer, 1993.
[7] C. F. Dunkl, "Integral kernels with reflection group invariance", Can. J. Math. 43 (1991), no. 6, p. 1213-1227.
[8] E. K. Ifantis, P. D. Siafarikas, "A differential equation for the zeros of Bessel functions", Appl. Anal. 20 (1985), p. 269281.
[9] M. F. E. de Jeu, "The Dunkl transform", Invent. Math. 113 (1993), no. 1, p. 147-162.
[10] A. Laforgia, "Sugli zeri delle funzioni di Bessel", Calcolo 17 (1980), p. 211-220.
[11] Z. Li, J. Liao, "Harmonic analysis associated with the one-dimensional Dunkl transform", Constr. Approx. 37 (2013), no. 2, p. 233-281.
[12] S. S. Platonov, "Bessel harmonic analysis and approximation of functions on the half-line", Izv. Ross. Akad. Nauk, Ser. Mat. 71 (2007), no. 5, p. 149-196, in Russian; translated in Izv. Math.
[13] M. Rosenblum, "Generalized Hermite polynomials and the Bose-like oscillator calculus", in Nonselfadjoint operators and related topics, Operator Theory: Advances and Applications, vol. 73, Birkhäuser, 1994, p. 369-396.
[14] M. Rösler, "Bessel-type signed hypergroups on \mathbb{R}^{\prime}, in Probability measures on groups and related structures. XI (Oberwolfach, 1994), World Scientific, 1994, p. 292-304.
[15] _, "Dunkl operators: Theory and applications", in Orthogonal polynomials and special functions (Leuven, 2002), Lecture Notes in Mathematics, vol. 1817, Springer, 2002, p. 93-135.
[16] -, "A positive radial product formula for the Dunkl kernel", Trans. Am. Math. Soc. 355 (2003), no. 6, p. 24132438.
[17] S. Thangavelu, Y. Xu, "Riesz transform and Riesz potentials for Dunkl transform", J. Comput. Appl. Math. 199 (2007), no. 1, p. 181-195.
[18] G. N. Watson, A treatise on the theory of Bessel functions, Cambridge University Press; Macmillan, 1948.

[^0]: * Corresponding author.

