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Abstract. The last decade has seen an abundance of congruences for bℓ(n), the number of ℓ-regular parti-
tions of n. Notably absent are congruences modulo 4 for b3(n). In this paper, we introduce Ramanujan type
congruences modulo 4 for b3(2n) involving some primes p congruent to 11,13,17,19,23 modulo 24.
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1. Introduction

A partition of a positive integer n is a weakly decreasing sequence of positive integers whose sum
is n. The positive integers in the sequence are called parts. For more on the theory of partitions,
we refer the reader to [1].

For an integer ℓ > 1, a partition is called ℓ-regular if none of its parts is divisible by ℓ. The
number of the ℓ-regular partitions of n is usually denoted by bℓ(n) and its arithmetic properties
were investigated extensively. See, for example, [3–7, 10–12, 17–20, 22]. The generating function
for bℓ(n) is given by

∞∑
n=0

bℓ(n) qn = (qℓ; qℓ)∞
(q ; q)∞

.

Here and throughout q is a complex number with |q | < 1, and the symbol (a; q)∞ denotes the
infinite product

(a; q)∞ =
∞∏

n=0
(1−a qn).

In a recent paper, W. J. Keith and F. Zanello [9] discovered infinite families of Ramanujan type
congruences modulo 2 for b3(2n) involving every prime p with p ≡ 13,17,19,23 (mod 24).
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Theorem 1 (Keith–Zanello). The sequence b3(2n) is lacunary modulo 2. If p ≡ 13,17,19,23
(mod 24) is prime, then

b3
(
2(p2n +pk −24−1)

)≡ 0 (mod 2)

for 1⩽ k ⩽ p −1, where 24−1 is taken modulo p2.

Motivated by the Keith–Zanello result, O. X. M. Yao [23] provided new infinite families of
Ramanujan type congruences modulo 2 for b3(2n) involving every prime p ⩾ 5.

Theorem 2 (Yao). Let p ⩾ 5 be a prime.

(1) If b3

(
p2−1

12

)
≡ 1 (mod 2), then for n,k ⩾ 0

b3

(
2p4k+4 n +2p4k+3 j + p4k+4 −1

12

)
≡ 0 (mod 2)

where 1⩽ j ⩽ p −1 and for n,k ⩾ 0

b3

(
p4k −1

12

)
≡ 1 (mod 2).

(2) If b3

(
p2−1

12

)
≡ 0 (mod 2), then for n,k ⩾ 0 with p ∤ (24n +1)

b3

(
2p6k+2 n + p6k+2 −1

12

)
≡ 0 (mod 2)

and for n,k ⩾ 0

b3

(
p6k −1

12

)
≡ 1 (mod 2).

Very recently, Ballantine, Merca and Radu [2] introduced new infinite Ramanujan type con-
gruences modulo 2 for b3(2n). They complement naturally the results of Keith–Zanello and Yao
and involve primes in the set

P = {
p prime : ∃ j ∈ {1,4,8}, x, y ∈Z, gcd(x, y) = 1 with x2 +216y2 = j p

}
whose Dirichlet density is 1/6.

Theorem 3. For every p ∈P and n ⩾ 0, we have

b3
(
2(p2 n +pα−24−1

p )
)≡ 0 (mod 2),

where 0 ⩽α< p, α ̸= ⌊p/24⌋, and 24−1
p is the inverse of 24 modulo p taken such that 1 ⩽−24−1

p ⩽
p −1.

In this work, motivated by the results on the parity of b3(2n), we investigate Ramanujan type
congruences modulo 4 for b3(2n). We note that congruences modulo 4 for ℓ-regular partitions,
have been studied in [8] for ℓ = 4,5,9, and in [15] for ℓ = 2. However, congruences modulo 4 for
3-regular partitions are missing from the literature.

Theorem 4. For every p ∈ {43,47,59,61,67,89,137,139,157} and n ⩾ 0 we have

b3
(
2(p2 n +pα−24−1

p )
)≡ 0 (mod 4), (1)

where 0⩽α< p, α ̸= ⌊p/24⌋, 24−1
p is the inverse of 24 modulo p taken such that 1⩽−24−1

p ⩽ p −1.
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We conjecture that there are infinitely many primes for which (1) holds. For example, we
verified numerically that, in addition to the primes in Theorem 4, the statement of the theorem
holds for

p ∈ {167,181,229,233,277,331,359,379,401,419,421,431,443,479,499,541,

569,593,599,613,643,647,691,709,719,757,761,787,809,827,829,853,

859,863,877,911,929,953,977,983,1021,1031}.

We were unable to finish the proof of Theorem 4 for these values of p due to computing time
limitations.

2. Proof of Theorem 4

2.1. Modular forms

As is the case with many proofs of congruences in the literature, we use [13, Lemma 4.5]. For
the conveniece of the reader, we first introduce all necessary notation and the statement of [13,
Lemma 4.5]. This exposition is nearly identical to that in [2].

Let Γ := SL(2,Z), and define

Γ∞ :=
{(

1 b
0 1

)
∈ Γ

}
.

For a positive integer N , we define the congruence subgroup

Γ0(N ) :=
{(

a b
c d

)
∈ Γ : c ≡ 0 (mod N )

}
.

If M is a positive integer, we write R(M) for the set of finite integer sequences r = (rδ1 ,rδ2 , . . . ,rδk
),

where 1 = δ1 < δ2 < ·· · < δk = M are the positive divisors of M . We note for the remainder of
this section we only consider positive divisors of a given integer. Given a positive integer m, we
denote by S24m the set of invertible quadratic residues modulo 24m and, for fixed 0 ⩽ t ⩽ m −1,
we define

Pm,r (t ) :=
{

t s + s −1

24

∑
δ|M

δrδ (mod m) : s ∈ S24m

}
.

Let m, M and N be positive integers. Moreover, let t be an integer such that 0⩽ t ⩽m −1 and
let r = (rδ) ∈ R(M). We set κ := gcd(1−m2,24) and write

∏
δ|M δ|rδ| =: 2s v , where s is a nonnegative

integer and v is odd. Then, we say that the tuple (n, M , N , (rδ), t ) ∈ ∆∗ if and only if all of the
following six conditions are satisfied.

(1) p | m, p prime, implies p | N ;
(2) δ | M , δ⩾ 1 such that rδ ̸= 0 implies δ | mN ;
(3) κN

∑
δ|M rδ

mN
δ ≡ 0 (mod 24);

(4) κN
∑
δ|M rδ ≡ 0 (mod 8);

(5) 24m
gcd(κ(−24t−∑

δ|M δrδ),24m)

∣∣∣N ;

(6) If 2 | m, then (4 | κN and 8 | N s) or (2 | s and 8 | N (1− v)).

Finally, for γ= (
a b
c d

) ∈ Γ, and m and r = (rδ) ∈ R(M) as above, we define

pm,r (γ) := min
d∈{0,...,m−1}

1

24

∑
δ|M

rδ
gcd2(δ(a +κdc),mc)

δm

and for a = (aδ) ∈ R(N ), we define

p∗
a (γ) := 1

24

∑
δ|N

aδ
gcd2(δ,c)

δ
.
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We use the notation ∞∑
n=0

c(n) qn ≡
∞∑

n=0
d(n) qn (mod u)

to mean that c(n) ≡ d(n) (mod u) for all n ⩾ 0. Similarly,
∞∑

n=0
c(n) qn ≡ 0 (mod u)

means c(n) ≡ 0 (mod u) for all n ⩾ 0.

Lemma 5 ([13, Lemma 4.5]). Let u be a positive integer, (m, M , N , t ,r = (rδ)) ∈ ∆∗, a = (aδ) ∈
R(N ). Let {γ1, . . . ,γn} ⊂ Γ be a complete set of representatives of the double cosets in Γ0(N )\Γ/Γ∞.
Assume that pm,r (γi )+p∗

a (γi )⩾ 0 for all 0⩽ i ⩽ n. Let tmin := mint ′∈Pm,r (t ) t ′ and

ν := 1

24

((∑
δ|N

aδ+
∑
δ|M

rδ

)
[Γ : Γ0(N )]− ∑

δ|N
δaδ

)
− 1

24m

∑
δ|M

δrδ−
tmin

m
.

Suppose ∏
δ|M

∞∏
n=1

(1−qδn)rδ =
∞∑

n=0
cr (n)qn .

If
⌊ν⌋∑

n=0
cr (mn + t ′)qn ≡ 0 (mod u), for all t ′ ∈ Pm,r (t ),

then ∞∑
n=0

cr (mn + t ′)qn ≡ 0 (mod u), for all t ′ ∈ Pm,r (t ).

2.2. Proof of Theorem 4

As customary, we use the notation

fi :=
∞∏

k=1
(1−qki ).

From [21], identity (2.18), we have

∞∑
n=0

b3(2n) qn = f2 f3 f8 f 2
12

f 2
1 f4 f6 f24

. (2)

Moreover, since for i ≥ 1, f 2
2i ≡ f 4

i (mod 4), we have

f2i

fi
= f 2

2i

f 4
i

f 3
i

f2i
≡ f 3

i

f2i
(mod 4). (3)

Using (2) and (3), we obtain

∞∑
n=0

b3(2n) qn ≡ f 2
1 f3 f 3

4 f 3
6

f2 f8 f24
(mod 4).

To use the Lemma 5, we write
∞∑

n=0
c(n)qn := f 2

1 f3 f 3
4 f 3

6

f2 f8 f24
= ∏
δ|M

∞∏
n=1

(1−qδn)rδ .

Thus, with the notation of Lemma 5, we take u = 4, m = p2, M = 24, and

(r1,r2,r3,r4,r6,r8,r12,r24) = (2,−1,1,3,3,−1,0,−1).
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We have κ= 24 and we calculate∑
δ|M

rδ
δ

= 35

12
,

∑
δ|M

rδ = 6,
∑
δ|M

δrδ = 1.

We take N = 24p. It is straightforward to verify that for any t = pα−24−1
p conditions (1)–(6) are

satisfied.
Since

[Γ : Γ0(N )] = N
∏
x|N

(1+x−1),

where the product is taken after all prime divisors of N , we have

[Γ : Γ0(N )] = 48(p +1).

In general, it is nontrivial to find a complete set of representatives for the double cosets
in Γ0(N ) \ Γ/Γ∞. If N is square free, it is shown in [14, Lemma 2.6] that a complete set of
representatives for Γ0(N )\Γ/Γ∞ is given by

AN =
{(

1 0
δ 1

)
: δ | N , δ⩾ 1

}
.

This result has been extended to N such that N /2 is square free in [16, Lemma 4.3]. While for
N = 24p, neither N nor N /2 is square free, when m = p2,κ= 24, and (r1,r2,r3,r4,r6,r8,r12,r24) =
(2,−1,1,3,3,−1,0,−1) we can avoid finding a complete set of representatives all together.

Since for any integers i , j ≥ 1 we have

gcd( j (a +κdc),mc)⩽ gcd(i j (a +κdc),mc)⩽ i gcd( j (a +κdc),mc),

an easy calculation shows that for each γ= (
a b
c d

) ∈ Γ, we have∑
δ|M

rδ
gcd2(δ(a +κdc),mc)

δm
≥ 0,

and thus pm,r (γ) ≥ 0. Hence, we can use a := (aδ)δ|N with aδ = 0 for each δ | N to calculate ⌊ν⌋. It
is clear from the definition of ν in Lemma 5 that

⌊ν⌋ = 12(p +1)−1.

Let
Rp := {pα−24−1

p : 0⩽α< p, α ̸= ⌊p/24⌋}.

For each p, we used Mathematicatm to write the set Rp as

Rp = Pm,r (−24−1
p )∪Pm,r (Ap −24−1

p )

for a minimal A. For example, when p = 43, we have A = 2 and the Mathematicatm calculation
gives

Pm,r (−24−1
p ) = {34,163,206,292,378,421,593,851,894,937,1023,1195,

1238,1281,1324,1367,1453,1496,1539,1668,1754}

and

Pm,r (2 ·43−24−1
p ) = {120,249,335,464,507,550,636,679,722,765,808,980,

1066,1109,1152,1410,1582,1625,1711,1797,1840}.

If α= ⌊43/24⌋ = 1 we have Pm,r (p −24−1
p ) = Pm,r (77) = {77}.

For p ∈ {43,47,139,157} we obtained A = 2 and for p ∈ {59,61,67,89,137} we obtained A = 1.
Moreover, if t∗ = p⌊p/24⌋−24−1

p , then Pm,r (t∗) = {t∗}.
Finally, in each case, we verified that for each t ∈Rp we have

c(p2n + t ) ≡ 0 (mod 4) for 0⩽ n ⩽ 12(p +1)−1.
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Then, [13, Lemma 4.5] implies that, for each

p ∈U := {43,47,59,61,67,89,137,139,157}

we have
c(p2n + t ) ≡ 0 (mod 4) for all n ⩾ 0 and t ∈Rp .

Our calculations show that for each prime p ∈U , we have that

c(p⌊p/24⌋−24−1
p ) ̸≡ 0 (mod 4)

and thus the requirement that α ̸= ⌊p/24⌋ in the statement of Theorem 4 is necessary.

3. Concluding remarks

Several Ramanujan type congruences modulo 4 for b3(2n) involving some primes p with
p ≡ 11,13,17,19,23 (mod 24) have been proved in this paper using modular forms and [13,
Lemma 4.5].

As mentioned in the introduction, we verified the statement of Theorem 4 numerically up to
108 for many more primes equivalent to 11,13,17,19,23 modulo 24. In fact, our computations
suggest that (1) is also true for primes p = 1033 and p = 1153 which are congruent to 1 modulo
24. We did not encounter any primes congruent to 5 or 7 modulo 24 for which (1) holds. We leave
it as an open problem to characterize an infinite family of primes for which the statement of
Theorem 4 holds and to prove the theorem for all these primes.
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