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Abstract. The optimal transport map between the standard Gaussian measure and anα-strongly log-concave
probability measure is α−1/2-Lipschitz, as first observed in a celebrated theorem of Caffarelli. In this paper,
we apply two classical covariance inequalities (the Brascamp–Lieb and Cramér–Rao inequalities) to prove a
sharp bound on the Lipschitz constant of the map that arises from entropically regularized optimal transport.
In the limit as the regularization tends to zero, we obtain an elegant and short proof of Caffarelli’s original
result. We also extend Caffarelli’s theorem to the setting in which the Hessians of the log-densities of the
measures are bounded by arbitrary positive definite commuting matrices.

Résumé. La fonction de transport optimale entre la mesure gaussienne standardisée et une mesure de
probabilité α-fortement log-concave estα−1/2-Lipschitz, comme l’a noté Caffarelli dans le célèbre théorème
qui porte désormais son nom. Dans ce travail, nous utilisons deux inégalités de covariance classiques
(l’inégalité de Brascamp–Lieb ainsi de celle de Cramèr–Rao) pour établir une borne optimale sur la constante
de Lipschitz de la fonction de transport associée au transport optimal avec régularisation entropique. En
étudiant le cas limite où l’effet de la régularisation disparait, nous obtenons une démonstration courte et
élegante du théorème de Caffarelli. De surcroît, cette approche nous permet d’étendre la validité du théoreme
de Caffarelli au cas de log-densités dont les hessiens sont contrôlés par des matrices positives définies qui
peuvent être choisies arbitrairement tant qu’elles commutent entre elles.
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1. Introduction

In [6], Caffarelli proved the following seminal result.

Theorem 1 (Caffarelli’s contraction theorem). Let P = exp(−V ) and Q = exp(−W ) have smooth
densities on Rd , with ∇2V ⪯βV I and ∇2W ⪰αW I ≻ 0. Then, the optimal transport map ∇ϕ0 from
P to Q is

√
βV /αW -Lipschitz.

Here, ϕ0 : Rd → R is a convex function, known as a Brenier potential. The optimal transport
map ∇ϕ0 : Rd → Rd pushes forward P to Q, in the sense that if X is a random variable with
law P , then ∇ϕ0(X ) is a random variable with law Q. See Section 2.2 and the textbook [36] for
background on optimal transport.

Caffarelli’s contraction theorem can be used to transfer functional inequalities, such as a
Poincaré inequality, from the standard Gaussian measure onRd to other probability measures [3].
Towards this end, recent works have also constructed and studied alternative Lipschitz transport
maps (e.g. [18, 26–28]), but still the properties of the original optimal transport map remain of
fundamental interest, with many questions unresolved [8, 35].

Indeed, besides the application to functional inequalities, the structural properties of optimal
transport maps play a fundamental role in theoretical and methodological advances in optimal
transport, such as the control of the curvature of the Wasserstein space through the notion
of extendible geodesics [1, 21], the stability of Wasserstein barycenters [7], and the statistical
estimation of optimal transport maps [16].

In applied domains, however, the inauspicious computational and statistical burden of solving
the original optimal transport problem has instead led practitioners to consider entropically
regularized optimal transport, as pioneered by Cuturi in [11]. In addition to its practical merits,
entropic optimal transport enjoys a rich mathematical theory, rooted in its connection to the
classical Schrödinger bridge problem [23], which has led to powerful applications to high-
dimensional probability [12, 14, 22]. As such, it is natural to study the properties of the entropic
analogue of the optimal transport map.

In this paper, we prove a generalization of Caffarelli’s contraction theorem to the setting of
entropic optimal transport. Namely, we study the Hessian of the entropic Brenier potential (see
Section 2.3), which admits a representation as a covariance matrix (Lemma 6). By applying two
well-known inequalities for covariance matrices (the Brascamp–Lieb inequality and the Cramér–
Rao inequality), we quickly deduce a sharp upper bound on the operator norm of the Hessian
which holds for any value ε> 0 of the regularization parameter.

As a byproduct of our analysis, by sending ε↘ 0 and appealing to recent convergence results
for the entropic Brenier potentials [4], we obtain the shortest proof of Caffarelli’s contraction
theorem to date. Notably, our argument allows us to sidestep the regularity of the optimal
transport map, which is a key obstacle in Caffarelli’s original proof and many others in the
literature (see, e.g., [20]).

Recently, in [12] (see also [32]), Fathi, Gozlan, and Prod’homme gave a proof of Caffarelli’s
theorem using a surprising equivalence between Theorem 1 and a statement about Wasserstein
projections, which was discovered through the theory of weak optimal transport [15]. In order to
verify the latter, their proof also used ideas from entropic optimal transport.1 In comparison, we
note that our argument is much more direct.

To further demonstrate the applicability of our technique, in Section 4 we prove a generaliza-
tion of Caffarelli’s result which reveals a remarkable extremal property of optimal transport maps

1In particular, with some effort, a bound on the Hessian of the entropic Brenier potential can also be read off from
their proof.
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between Gaussians. Namely, if ∇2V ⪯ A−1 and ∇2W ⪰ B−1, where A and B are arbitrary commut-
ing positive definite matrices, then the Hessian of the Brenier potential from P to Q is pointwise
upper bounded (in the PSD ordering) by A−1/2B 1/2, the Hessian of the Brenier potential from
N (0, A) to N (0,B). To the best of our knowledge, this result is new.

2. Background

2.1. Assumptions

We study probability measures P , Q on Rd satisfying the following mild regularity assumptions.

Assumption 2 (Regularity conditions). We henceforth refer to the source measure as P and the
target measure as Q. We say that (P,Q) satisfies our regularity conditions if:

(1) P has full support on Rd and Q is supported on a convex subset of Rd . Let ΩQ denote the
interior of the support of Q, so thatΩQ is a convex open set.

(2) P and Q admit positive Lebesgue densities on Rd and ΩQ , which we can therefore be
written exp(−V ) and exp(−W ) respectively for functions V ,W : Rd → R∪ {∞}. We abuse
notation and identify the measures with their densities, thus writing P = exp(−V ) and
Q = exp(−W ).

(3) We assume that V and W are twice continuously differentiable on Rd andΩQ respectively.

Some of these assumptions can be eventually relaxed, but they suffice for the purposes of this
work. Throughout the rest of the paper and for the sake of simplicity, these regularity assumptions
are assumed to hold for the probability measures under consideration.

2.2. Optimal transport without regularization

Let P and Q be probability measures with finite second moment. The optimal transport problem
is the following optimization problem:

minimize
π∈Π(P,Q)

∫
1
2 ∥x − y∥2 dπ(x, y) (1)

where Π(P,Q) is the set of joint probability measures with marginals P and Q. The following
fundamental result characterizes the optimal solution to (1).

Theorem 3 (Brenier’s theorem). Suppose that P admits a density with respect to Lebesgue
measure. Then, there exists a proper, convex, lower semicontinuous function ϕ0 : Rd → R∪ {∞}
such that the optimal transport plan in (1) can be written π0 = (id,∇ϕ0)♯P. The function ϕ0 is
called the Brenier potential, and the mapping ∇ϕ0 is called the optimal transport map from P to
Q. Moreover, the optimal transport map ∇ϕ0 is unique up to P-almost everywhere equality.

The Brenier potential ϕ0 is obtained as the solution to the dual problem

maximize
ϕ∈Γ0

∫ (∥·∥2

2
−ϕ

)
dP +

∫ (∥·∥2

2
−ϕ∗

)
dQ , (2)

where ϕ∗ is the convex conjugate to ϕ, and Γ0 is the set of proper, convex, lower semicontinuous
functions on Rd .

We refer to [36] for further background.
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2.3. Optimal transport with entropic regularization

We recall that entropic optimal transport is the problem that arises when we add the Kullback–
Leibler (KL) divergence, DKL(· ∥ ·), as a regularizer to (1):

minimize
π∈Π(P,Q)

∫
1
2 ∥x − y∥2 dπ(x, y)+εDKL (π∥P ⊗Q) . (3)

The following statement characterizes the solution to (3) [4, 10, 29].

Theorem 4 (Entropic optimal transport). Let P and Q be probability measures on Rd and fix
ε> 0. Then there exists a unique solution πε ∈Π(P,Q) to (3). Moreover, πε has the form

πε
(

dx, dy
)= exp

(
fε(x)+ gε(y)− 1

2 ∥x − y∥2

ε

)
P (dx)Q(dy) , (4)

where ( fε, gε) are maximizers for the dual problem

maximize
( f ,g )∈L1(P )×L1(Q)

∫
f dP +

∫
g dQ −ε

Ï
e

(
f (x)+g (y)− 1

2 ∥x−y∥2)
/εdP (x)dQ(y)+ε . (5)

The constraint that πε has marginals P and Q implies the following dual optimality conditions
for ( fε, gε) (see [4, 25] for more details):

fε(x) =−ε log
∫

e
(
gε(y)− 1

2 ∥x−y∥2)
/εdQ(y)

(
x ∈Rd

)
, (6)

gε(y) =−ε log
∫

e
(

fε(x)− 1
2 ∥x−y∥2)

/εdP (x)
(

y ∈Rd
)

. (7)

In particular, fε and gε are smooth. In this work, it is more convenient to work with the entropic
Brenier potentials, defined as (

ϕε,ψε

)
:=

(
1

2
∥ ·∥2 − fε,

1

2
∥ ·∥2 − gε

)
. (8)

Since ( fε, gε) are only unique up to adding a constant to fε and subtracting the same constant
from gε, we fix the normalization convention

∫
fε dP = ∫

gε dQ. Under this condition, it was
shown by Nutz and Wiesel in [4] that we have convergence to the Brenier potential ϕε → ϕ0 as
ε↘ 0; we recall an abbreviated version of the statement for the convenience of the reader:

Theorem 5. For any choice of regularization parameter ε > 0, let (ϕε,ψε) be the unique entropic
Brenier potentials with the normalization condition∫ (

1

2
∥ ·∥2 −ϕε

)
dP =

∫ (
1

2
∥ ·∥2 −ψε

)
dQ .

If (ϕ0,ϕ∗
0 ) are unique, it holds that limε↘0ϕε =ϕ0 in L1(P ) and limε↘0ψε =ϕ∗

0 in L1(Q).

Adopting this new notation, with P = exp(−V ) and Q = exp(−W ), we can rewrite the entropic
optimal plan as

πε
(

dx, dy
)= exp

(
−ϕε(x)+ψε(y)−〈x, y〉

ε
−V (x)−W (y)

)
dx dy .

The entropic Brenier potentials were first introduced to develop a computationally tractable
estimator of the optimal transport map ∇ϕ0 [30,31,34]. Indeed, this is motivated by the following
observation, which acts as an entropic version of Brenier’s theorem. Write πY |X=x

ε for the condi-
tional distribution of Y given X = x for (X ,Y ) ∼ πε, and similarly define πX |Y =y

ε . Then, by [31,
Proposition 1], ∇ϕε is the barycentric projection

∇ϕε(x) =
∫

y dπY |X=x
ε (y) . (9)
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For clarity, we abuse notation and abbreviate πY |X=x
ε by πx

ε and π
X |Y =y
ε by πy

ε when there is no
danger of confusion.

The following lemma is a straightforward computation using (4), (6), and (7).

Lemma 6. It holds that

∇2ϕε(x) = ε−1 CovY ∼πx
ε

(Y ) , and ∇2ψε(y) = ε−1 CovX∼πy
ε

(X ) .

In particular, both ϕε and ψε are convex. Moreover, under our regularity conditions,

∇2
y log

(
1/πx

ε

)
(y) = ε−1∇2ψε(y)+∇2W (y) ,

∇2
x log

(
1/πy

ε

)
(x) = ε−1∇2ϕε(x)+∇2V (x) .

2.4. Covariance inequalities

In our proofs, we make use of the following key inequalities.

Lemma 7. Let P = exp(−V ) be a probability measure on Rd and assume that V is twice continu-
ously differentiable on the interior of its domain. Then, the following hold.

(1) (Brascamp–Lieb inequality) If in addition we assume that P is strictly log-concave, then it
holds that

CovX∼P (X ) ⪯ EX∼P

[(∇2V (X )
)−1

]
.

(2) (Cramér–Rao inequality)

CovX∼P (X ) ⪰ (
EX∼P

[∇2V (X )
])−1

.

The Brascamp–Lieb inequality is classical, and we refer readers to [3, 5, 9] for several proofs.
To make our exposition more self-contained, we provide a proof of the Cramér–Rao inequality in
the appendix.

3. Main theorem

We now state and prove our main theorem.

Theorem 8. Let P = exp(−V ) and Q = exp(−W ).

(1) Suppose that (P,Q) satisfy our regularity assumptions, as well as

∇2V ⪯βV I , and ∇2W ⪰αW I ≻ 0.

Then, for every ε> 0 and all x ∈Rd , the Hessian of the entropic Brenier potential satisfies

∇2ϕε(x) ⪯ 1

2

(√
4βV /αW +ε2β2

V −εβV

)
I .

(2) Suppose that (Q,P ) satisfy our regularity assumptions, as well as

∇2V ⪰αV I ≻ 0, and ∇2W ⪯βW I .

Then, for every ε > 0 and all x ∈ ΩP := int(supp(P )), the Hessian of the entropic Brenier
potential satisfies

∇2ϕε(x) ⪰ 1

2

(√
4αV /βW +ε2α2

V −εαV

)
I .

Observe that as ε↘ 0, we formally expect the following bounds on the Brenier potential:√
αV /βW I ⪯∇2ϕ0(x) ⪯

√
βV /αW I .

In particular, this recovers Caffarelli’s contraction theorem (Theorem 1). We make this intuition
rigorous below by appealing to convergence results for the entropic potentials as the regulariza-
tion parameter ε tends to zero.
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Proof of Theorem 8 - Upper bound. Fix x ∈Rd . Recall from Lemma 6 that

∇2ϕε(x) = ε−1 CovY ∼πx
ε

(Y ) .

By an application of the Brascamp–Lieb inequality, this results in the upper bound

∇2ϕε(x) = ε−1 CovY ∼πx
ε

(Y )

⪯ ε−1EY ∼πx
ε

[(
ε−1∇2ψε(Y )+∇2W (Y )

)−1
]

⪯ EY ∼πx
ε

[(∇2ψε(Y )+εαW I
)−1

]
,

(10)

where in the last inequality we also used the lower bound on the spectrum of ∇2W . Next, using
Lemma 6 and the Cramér–Rao inequality (Lemma 7), we obtain the lower bound

∇2ψε(Y ) = ε−1 CovX∼πY
ε

(X )

⪰ ε−1
(
EX∼πY

ε

[
ε−1∇2ϕε(X )+∇2V (X )

])−1

⪰
(
EX∼πY

ε

[∇2ϕε(X )+εβV I
])−1

,

where we used the upper bound on the spectrum of ∇2V . Combining these inequalities,

∇2ϕε(x) ⪯ EY ∼πx
ε

[((
EX∼πY

ε

[∇2ϕε(X )+εβV I
])−1 +εαW I

)−1]
.

Now, define the quantity

Lε := sup
x∈Rd

λmax
(∇2ϕε(x)

)
.

From (10) and the fact thatψε is convex (Lemma 6), it follows that Lε is finite: Lε ≤ (εαW )−1. Then,
we have shown

λmax
(∇2ϕε(x)

)≤ ((
Lε+εβV

)−1 +εαW

)−1
.

Taking the supremum over x ∈Rd ,

Lε ≤
((

Lε+εβV
)−1 +εαW

)−1
.

Solving the inequality yields

Lε ≤ 1

2

(√
4βV /αW +ε2β2

V −εβV

)
. (11)

Lower bound. The lower bound argument is symmetric, but we give the details for complete-
ness. Using Lemma 6 and the Cramér–Rao inequality (Lemma 7),

∇2ϕε(x) = ε−1 CovY ∼πx
ε

(Y )

⪰ ε−1 (
EY ∼πx

ε

[
ε−1∇2ψε(Y )+∇2W (Y )

])−1

⪰ (
EY ∼πx

ε

[∇2ψε(Y )+εβW I
])−1

.

Applying Lemma 6 and the Brascamp–Lieb inequality (Lemma 7),

∇2ψε(Y ) = ε−1 CovX∼πY
ε

(X )

⪯ ε−1EX∼πY
ε

[(
ε−1∇2ϕε(X )+∇2V (X )

)−1
]

⪯ EX∼πY
ε

[(∇2ϕε(X )+εαV I
)−1

]
.

Combining the two inequalities and setting

ℓε := inf
x∈ΩP

λmin
(∇2ϕε(x)

)
,
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we deduce that

ℓε ≥
(
(ℓε+εαV )−1 +εβW

)−1
.

On the other hand, from Lemma 6, we know that ℓε ≥ 0. Solving the inequality then yields

ℓε ≥ 1

2

(√
4αV /βW +ε2α2

V −εαV

)
. □

Next, we rigorously deduce Caffarelli’s contraction theorem from Theorem 8.

Proof of Caffarelli’s contraction (Theorem 1). For every ε > 0, by Theorem 8, we have proven

that ∇2ϕε ⪯ LεI , with Lε as in (11). Equivalently, this can be reformulated as saying that Lε ∥·∥2

2 −ϕε
is convex. Fix some δ> 0; in particular, for ε sufficiently small,

(
p
βV /αW +δ)∥·∥2

2 −ϕε is convex.
Upon passing to a sequence εk ↘ 0, existing results on the convergence of entropic optimal

transport potentials show that ϕεk → ϕ0 in L1(P ) (see Theorem 5). Passing to a further subse-

quence, we obtain ϕεk → ϕ0 (P-almost surely). It follows that
(
p
βV /αW +δ)∥·∥2

2 −ϕ0 is convex for
every δ> 0 (see the remark after [33, Theorem 25.7]), and thus for δ= 0. □

Remark 9. Our main theorem provides both upper and lower bounds for ∇2ϕε. In the case when
ε = 0, the lower bound follows from the upper bound. Indeed, if ϕ0 is the Brenier potential for
the optimal transport from P to Q, then the convex conjugate ϕ∗

0 is the Brenier potential for the
optimal transport from Q to P . By applying Caffarelli’s contraction theorem to ϕ∗

0 and appealing
to convex duality, it yields a lower bound on ∇2ϕ0. However, we are not aware of a method of
deducing the lower bound from the upper bound for positive values of ε.

Remark 10. In Appendix B, by inspecting the Gaussian case, we show that Theorem 8 is sharp
for every ε> 0.

Remark 11. In the proof of Theorem 8, we do not use the full force of the Brascamp–Lieb
inequality. Rather, we use the covariance inequality in Lemma 7 which is a corollary of the usual
Brascamp–Lieb inequality obtained by applying it to linear test functions.

An inspection of the proof of the upper bound in Theorem 8 reveals the following more general
pair of inequalities.

Proposition 12. Let (P,Q) be probability measures satisfying our regularity conditions. Then, for
all x ∈Rd , y ∈ΩQ ,

∇2ϕε(x) ⪯ EY ∼πx
ε

[(∇2ψε(Y )+ε∇2W (Y )
)−1

]
,

∇2ψε(y) ⪰
(
EX∼πy

ε

[∇2ϕε(X )+ε∇2V (X )
])−1

.

In the next section, we use these inequalities to prove a generalization of Caffarelli’s theorem.

4. A generalization to commuting positive definite matrices

In the next result, we replace the main assumptions of Caffarelli’s theorem, namely ∇2V ⪯ βV I
and ∇2W ⪰αW I , by the conditions

∇2V ⪯ A−1 and ∇2W ⪰ B−1 , (12)

where A and B are commuting positive definite matrices. Recall that the Hessian of the Brenier
potential between the Gaussian distributions N (0, A) and N (0,B) is the matrix A−1/2B 1/2 [13].
In light of this observation, the following theorem is sharp for every pair of commuting positive
definite (A,B), and shows that the Brenier potential between Gaussians achieves the largest
possible Hessian among all source and target measures obeying the constraint (12).
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Theorem 13. Let (P,Q) satisfy our regularity conditions as well as the condition (12). Then, the
Hessian of the Brenier potential satisfies the uniform bound: for all x ∈Rd , it holds that

∇2ϕ0(x) ⪯ A−1/2B 1/2 .

As in Theorem 8, the proof technique also yields a lower bound on ∇2ϕ0 under appropriate
assumptions. We omit this result because it is straightforward.

Proof. Let Cε be the smallest constant C ≥ 0 such that ∇2ϕε(x) ⪯ A−1/2B 1/2 +C I for all x ∈Rd . In
light of Theorem 8, Cε is well-defined and finite. Equivalently,

Cε = sup
x∈Rd

sup
e ∈Rd , ∥e∥=1

〈
e,

[∇2ϕε(x)− A−1/2B 1/2] e
〉

.

Let (x,e) achieve the above supremum. Using our assumptions and Proposition 12, we obtain

Cε =
〈

e,
[∇2ϕε(x)− A−1/2B 1/2] e

〉
≤

〈
e,

[(
EY ∼πx

ε
∇2ψε(Y )+εB−1)−1 − A−1/2B 1/2

]
e
〉

≤
〈

e,

[((
A−1/2B 1/2 +CεI +εA−1)−1 +εB−1

)−1 − A−1/2B 1/2
]

e

〉
.

From our assumptions and Theorem 8, we know that the spectrum of Mε := A−1/2B 1/2 +CεI is
bounded away from zero and infinity as ε↘ 0, which justifies the Taylor expansion((

Mε+εA−1)−1 +εB−1
)−1 = (

M−1
ε −εM−1

ε A−1M−1
ε +εB−1 +O

(
ε2))−1

= Mε+εA−1 −εMεB−1Mε+O
(
ε2) I .

Hence,

Cε ≤
〈

e,
[
Mε+εA−1 −εMεB−1Mε+O

(
ε2) I − A−1/2B 1/2] e

〉
≤Cε+ε

〈
e,

[
A−1 −MεB−1Mε

]
e
〉+O

(
ε2)

=Cε − ε
〈

e,
[
2CεA−1/2B−1/2 +C 2

εB−1] e
〉+O

(
ε2) .

This shows that limε↘0 Cε = 0 (otherwise (Cε)ε>0 would have a strictly positive cluster point
which would contradict the above inequality for small enough ε> 0).

By combining this fact with convergence of the entropic Brenier potentials as in the proof of
Theorem 1, we deduce the result. □

Next, we show how our theorem recovers and extends a result of Valdimarsson [35], which was
used to derive new forms of the Brascamp–Lieb inequality.2

Theorem 14. Suppose that

• Ā, B̄ , and G are positive definite matrices;
• Ā ⪯G and B̄ commutes with G;
• P = exp(−Ṽ ) ∗ µ, where ∇2Ṽ ⪯ B̄−1G, ∗ denotes convolution, and µ is an arbitrary

probability measure on Rd ;
• Q = exp(−W ) with ∇2W ⪰ B̄−1/2 Ā−1B̄−1/2.

Then, the Brenier potential satisfies ∇2ϕ0 ⪯G.

Remark 15. Valdimarsson’s original result required that P =N (0, B̄G−1)∗µ.

To prove this result, we check that convolution with any probability measure only makes the
density more log-smooth.

2This is a different Brascamp–Lieb inequality than the one in Lemma 7.
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Lemma 16. Let P̃ ∝ exp(−Ṽ ) be a probability measure, where Ṽ : Rd → R is twice continuously
differentiable. Let P := P̃ ∗µ= exp(−V ) where µ is any probability measure on Rd . Suppose that for
some positive definite matrix A−1, we have ∇2Ṽ ⪯ A−1. Then, ∇2V ⪯ A−1 as well.

Proof. An elementary computation shows that if we define the probability measure

νy (dx) := exp
(−Ṽ (y −x)

)
µ(dx)∫

exp
(−Ṽ (y −x ′)

)
µ(dx ′)

then

∇2V (y) = EX∼νy

[∇2Ṽ (y −X )
]−CovX∼νy

(∇Ṽ (y −X )
)

,

from which the result follows. □

Proof of Theorem 14. Under Lemma 16 and the third assumption, it holds that P ∝ exp(−V )
with ∇2V ⪯ B̄−1G . The other assumptions imply that Q ∝ exp(−W ) with

∇2W ⪰ B̄−1/2 Ā−1B̄−1/2 ⪰ B̄−1/2G−1B̄−1/2 = B̄−1G−1 .

By Theorem 13, it holds that ∇2ϕ0 ⪯G . □

Remark 17. It is natural to ask whether Theorem 13 can be obtained by first applying Caffarelli’s
contraction theorem to show that the optimal transport map T̃0 between the measures (A−1/2)♯P
and (B−1/2)♯Q is 1-Lipschitz, and then considering the mapping T0(x) := B 1/2T̃0(A−1/2x). Al-
though T0 is indeed a valid transport mapping from P to Q, under our assumptions ∇T0 is not
guaranteed to be symmetric, so it does not make sense to ask that ∇T0 ⪯ A−1/2B 1/2.

In Valdimarsson’s application to Brascamp–Lieb inequalities, it is crucial that the transport
map T0 is chosen so that ∇T0 is a symmetric positive definite matrix. Symmetry of ∇T0 implies
that T0 is the gradient ∇ϕ0 of a function ϕ0 : Rd → R, and positive definiteness implies that ϕ0

is convex. By Brenier’s theorem, the unique gradient of a convex function that pushes forward P
to Q is the optimal transport map. Thus, it is crucial that we consider the optimal transport map
here; in particular, alternative maps such as the ones in [18, 26] cannot be applied.

5. Discussion

We have proven a generalization of Caffarelli’s celebrated theorem on the Lipschitz properties of
the optimal transport map to the setting of entropic optimal transport using two complementary
covariance inequalities (the Brascamp–Lieb inequality and the Cramér–Rao inequality).

We conjecture that our proof technique can also be used to recover the bounds on the moment
measure mapping in [19], provided that the existence of an “entropic moment measure” can be
established (with convergence towards the true moment measure as the regularization tends to
zero). As this is outside the scope of this work, we do not pursue this question here.
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Appendix A. Proof of the Cramér–Rao lower bound

Proof of Lemma 7, Cramér–Rao inequality. For any smooth and compactly supported test
function h :Rd →R, integration by parts yields

EP∇h =
∫

∇h dP =−
∫

(h∇ lnP ) dP =
∫

(h −EP h) ∇V dP

where we used the fact that EP∇ lnP = 0. Therefore,〈
EP∇h,

(
EP∇2V

)−1
EP∇h

〉
=

∫
(h −EP h)

〈
∇V ,

(
EP∇2V

)−1
EP∇h

〉
dP . (13)

Applying the Cauchy–Schwarz inequality,

(13) ≤
√

(VarP h)
∫ 〈

EP∇h,
(
EP∇2V

)−1
(∇V )⊗2

(
EP∇2V

)−1
EP∇h

〉
dP .

Integration by parts shows that
∫ ∇V ⊗2 dP = ∫ ∇2V dP , and upon rearranging we deduce that

VarP h ≥
〈
EP∇h,

(
EP∇2V

)−1
EP∇h

〉
. (14)

By approximation, this continues to hold for any locally Lipschitz h :Rd →R with EP∥∇h∥ <∞.
Specializing the inequality (14) to h := 〈e, ·〉 for a unit vector e ∈ Rd then recovers the Cramér–

Rao inequality of Lemma 7. □

Appendix B. Gaussian case

Suppose P = N (0, A) and Q = N (0,B) are Gaussians. Then, it is known that the Hessian of the
Brenier potential is given by [13]

∇2ϕ0(x) = A−1/2 (
A1/2B A1/2)1/2

A−1/2 .

If we have

A−1 ⪯βI and B−1 ⪰αI ≻ 0,

then Caffarelli’s contraction theorem (Theorem 1) implies∥∥∇2ϕ0
∥∥

op ≤
√
β/α .

This matches the bound of [2, Lemma 2].
For ε> 0, the upper bound from Theorem 8 implies

∥∇2ϕε∥op ≤ 1

2

(√
4β/α+ε2β2 −εβ

)
. (15)

On the other hand, from [17, 24], it is known that

∇2ϕε(x) = A−1/2
(

A1/2B A1/2 + ε2

4
I

)1/2

A−1/2 − ε

2
A−1 .

In particular, if we take A =β−1I and B =α−1I , then (15) is an equality. Hence, Theorem 8 is sharp
for every ε> 0.
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