An Analysis of Malicious URL Detection Using Deep Learning

Maruti Patil¹, Dr.Sangram Patil²

¹PhD Scholar, Computer Science & Engineering D.Y. Patil Agriculture & Technical University, Talsande Kolhapur,India Patilmaruti16@gmail.com
²Associate Professor, Computer Science & Engineering D.Y. Patil Agriculture & Technical University, Talsande Kolhapur,India sangrampatil@dyp-atu.org

Abstract— Considerable progress has been achieved in the digital domain, particularly in the online realm where a multitude of activities are being conducted. Cyberattacks, particularly malicious URLs, have emerged as a serious security risk, deceiving users into compromising their systems and resulting in annual losses of billions of dollars. Website security is essential. It is critical to quickly identify dangerous or bad URLs. Blacklists and shallow learning are two techniques that are being investigated in response to the threat posed by malicious URLs and phishing efforts. Historically, blacklists have been used to accomplish this. Techniques based on blacklists have limitations because they can't detect malicious URLs that have newly generated. In order to overcome these challenges, recent research has focused on applying machine learning and deep learning techniques. By automatically discovering complex patterns and representations from unstructured data, deep learning has become a potent tool for recognizing and reducing these risks. The goal of this paper is to present a thorough analysis and structural comprehension of Deep Learning based malware detection systems. The literature review that covers different facets of this subject, like feature representation and algorithm design, is found and examined. Moreover, a precise explanation of the role of deep learning in detecting dangerous URLs is provided.

Keywords- Malicious web sites, Cyberattacks, phishing, Deep Learning

I. INTRODUCTION

Millions of services are made available to people all over the world through the World Wide Web and the technologies that support it. We rely on websites for everything from basic information searches to paying for our purchases. As the Internet evolves and expands, more and more of our activitiesincluding e-commerce, business, social networking, and banking-are now carried out online, increasing the risk of online crime. Consequently, protecting the internet is becoming more and more crucial. The importance of cyber security is rising in today's digital environment. The emergence of numerous types of major cyber-attacks has been linked to the expansion of Internet usage and the development of network technology. Every 39 seconds, there is an occurrence of a web attack somewhere in the world. Cybercriminals now use advanced methods to assault users due to the World Wide Web's growing prominence. These assaults include malware installation on user PCs, phishing and other forms of financial fraud, and shady websites advertising fake items. Designing reliable systems to identify cyber breaches is difficult due to the variety of attack tactics, including hacking attempts, drive-by downloads, SQL injections, and more. Due to the rapid changes in IT technology, the scarcity of security personnel, and the exponential emergence of new security risks, traditional security management platforms have limits. One of the most serious concerns is the production and dissemination of malicious Uniform Resource Locators (URLs).

There are two primary methods for identifying rogue URLs. The first method is a blacklist-based strategy, in which a database of known harmful URLs is updated regularly. This approach is used by well-known commercial systems like Google Safe Browsing, McAfee Site Advisor, and Web sense Threat Seeker. It is successful in recognizing known dangerous URLs but fails to pick up on fresh, previously undiscovered hazardous URLs that constitute a serious threat to consumers. As a result, these systems might not be entirely prepared to shield people from new online threats. The second method is heuristic-based. With better generalization capabilities based on traits or behaviours, it develops and retains signatures of recognized attacks in a blacklist. This approach has drawbacks since attackers can adapt their attacks to avoid detection. This method leaves systems open to previously unknown dangers and renders them incapable of properly identifying new hazardous URLs, jeopardizing user security and safety. The second method involves identifying hazardous URLs using

Artificial Intelligence (AI) methods, specifically Machine Learning (ML) classification models. Due to the fact that it addresses the shortcomings of the previous technique, this strategy has grown in favor over the past ten years. A training set of both harmful and benign URLs is necessary, and numerous attributes connected to the URLs are gathered in order to execute ML-based detection. Once the ML model has been trained on this dataset, it may use what it has learned to reliably classify new URLs and detect those that might be hazardous.

II. LITERATURE REVIEW

Machine learning is used in the Hung Le, Quang Pham, Doyen Sahoo, and Steven C.H. Hoi [1] approach to detect dangerous URLs. Before employing machine learning models like SVMs, the most popular and scalable techniques extract Bag-of-words-like features from the lexical properties of the URL string. There are more elements that experts created to enhance the model's prediction capabilities using Deep Learning. Using the proposed URLNet framework, an end-toend deep learning system, a nonlinear URL embedding for harmful URL detection straight from the URL is constructed. A convolutional neural network is used to train URL embeddings in an optimal framework, specifically for the characters and words that make up the URL string. This method overcomes the limitations of the pre-existing models and enables the model to capture a variety of semantic information types. To address the issue of the excessive number of uncommon terms found in this work, advanced word-embeddings are also suggested. The research highlights a few shortcomings of current methods for detecting fraudulent URLs, but it makes no specific reference of any shortcomings of its suggested URLNet architecture. However, the following are some possible restrictions on the suggested framework: The framework may not perform well on URLs that are significantly different from those in the training data as it may not be able to capture all possible variations in URL structures and semantics. For the suggested methodology to effectively learn the URL embeddings, a substantial volume of training data is needed. Since the system relies on character and word embedding's that are trained on English text, it might not be able to handle URLs in languages other than English.

Tomas RASYMAS, Laurynas DOVYDAITIS [2] analysed on how to identify phishing URLs using machine learning approaches. Many features related to classification are covered in the review, such as word and character level embeddings, third-party features, lexical features, and third-party features. Additionally, the article looks at several neural network topologies—recurrent neural networks, convolutional neural networks, and a combination of the two—to help classify phishing URLs. In contrast to previous research, the paper compares its own method of merging various features and employing deep neural network architecture. The research does not investigate additional potential features that can enhance the model's accuracy; instead, it solely concentrates on three categories of features: lexical, character-level, and word

Bronjon Gogoi, Tasiruddin Ahmed, Arabinda Dutta[3] strategy that combines established blocklist techniques with cutting-edge machine learning (ML) strategies for identifying dangerous URLs. The hybrid strategy tries to improve URL detection by combining the best features of both approaches. The conventional method is a blocklist- or signature-based method that can identify existing harmful URLs. A massive dataset with 2.5 million benign and malicious URLs is used to train and assess the machine learning and deep learning-based method. Precision, recall, and the f1-score are all more than 0.97 in the system that combines deep learning, shallow learning, and traditional blocklist techniques. The suggested system employs CNN, LSTM, and CNN-LSTM as its deep learning models.

The ISCX-URL-2016 dataset, which consists of more than 110,000 URLs, was used by the Emine UCAR, Murat UCAR, Mürsel Ozan İNCETAS[4] to evaluate the effectiveness of their detection system. To differentiate between good and bad URLs, they used deep learning techniques like recurrent and convolutional neural networks. According to the experimental findings, the CNN model detects malicious URLs with a good accuracy rate.

Animesh Bhagwat, Kuldeep Lodhi, Shreyas Dalvi, Umesh Kulkarni [5] reviewed a summary of earlier research into using machine learning algorithms to detect potentially dangerous URLs. Among the significant research that the article cites are: The study by Frank Vanhoenshoven, which used machine learning as the most effective method for tackling the binary classification problem of detecting dangerous URLs.

The study by Abu-Nimeh et al., which evaluated six different classifiers and determined that Random Forest had the lowest mistake rate.

The work by H.B. Kazemian and S. Ahmed, which compared three supervised ML models to two unsupervised ML models and discovered that supervised learning techniques were better appropriate in this situation.

The study by Amruta R. Nagaonkar and Umesh L. Kulkarni, which suggested five different techniques for identifying fraudulent URLs, including host-based and lexical aspects.

The study by Ahmed Abbasi and Hsinchun Chen, which evaluated the system design, accuracy, previous findings, and detection rates of various fraudulent website detection technologies.

The research suggests a supervised learning strategy for machine learning to identify dangerous URLs. The paper employs the following techniques:

A thorough analysis of methods for the discovery of dangerous websites is done.

A prediction model for identifying fake URLs is constructed by contrasting various supervised machine learning methods, such as Random Forest, K-Nearest Neighbor, Support Vector Machine, Decision Tree, and Artificial Neural Network.

The classifier model is trained using a dataset containing a large number of characteristics, and the most important and influential features are chosen to be part of the model.

An add-on for Google Chrome was developed to provide information on whether a website is harmful or not.

Arijit Das, Ankita Das, Anisha Datta, Shukrity Si and Subhas Barman[5] analysed that URLs can be successfully classified as dangerous or benign using deep learning models, more specifically the CNN-LSTM architecture. Deep learning methods solve the drawback of the hard-coded characteristics used in previous efforts by learning from patterns found in such URLs to extract features of their own. The CNN-LSTM design surpasses the simple RNN, simple LSTM, and simple LSTM architectures in a comparative study, with an accuracy of 93.59%. The researcher also examines the study's shortcomings and offers ideas for future research trajectories.

Farhan Douksieh Abdi and Lian Wenjuan [7]practise the simple method of Convolutional Neural Network (CNN) to ascertain whether a URL is safe or not. This algorithm's performance is compared in the paper to that of the Support Vector Machine (SVM) and the Logistic Regression (LR) techniques. The tests performed on 344821 benign URLs and 75643 malicious URLs reveal that the proposed algorithm detects malicious URLs with an accuracy rate of more than 96%. The research finds that the suggested approach can increase the generality of malicious URL detectors and is quick and accurate in identifying new malicious content.

A CyberLen deep learning-based approach is proposed by Yunji Liang, Qiushi Wang, Kang Xiong, Xiaolong Zheng, and Zhiwen Yu [8] to reliably and accurately identify harmful URLs. The system uses a factorization engine (FM) to explore latent interactions between lexical properties and a temporal convolutional network (TCN) to explore long-range correlations between URLs. To lessen the uncertainty of URL tokens, position embedding is used. To train a robust model, an effective wide- and deep-learning technique is suggested. The testing findings demonstrate the superior performance of the suggested approach for the reliable and effective detection of dangerous URLs. A limitation of the proposed system is that its performance has only been evaluated on one dataset; on other datasets, it might exhibit dissimilarities in performance.

Using machine learning and deep learning models, Clayton Johnson, Bishal Khadka, Ram B. Basnet, and Tenzin Doleck[9] look into the identification and categorization of risky URLs. In comparison to common machine learning techniques like Random Forest, CART, and kNN, the study assesses how wellknown deep learning framework models like Fast.ai and Keras-TensorFlow perform on CPU, GPU, and TPU architectures. The researcher's conclusions indicate that firms intending to create URL filter applications or those looking to utilize machine learning to improve their present ones should adopt the Random Forest model. According to the study, some lexical characteristics found in URLs can be used to lower a deployed model's overhead expenses.

The Yuchen Liang, Xiaodan Yan[6] suggests a method for identifying malicious URLs, which have the potential to seriously compromise network security, based on the Deep Bidirectional LSTM model. For comparison, the research also discusses conventional machine learning techniques that categorize harmful websites using lexical features. The results demonstrate that the DBLSTM classifier performs far better than traditional machine learning methods, with a 98.6% accuracy rate. The paper finds that the suggested technique can be utilized to improve network security in the energy internet domain and is effective a[7]t identifying bad URLs.

Table 1: A comparison of various methods for identifying malicious URLs

malicious URLs								
Sr	Paper Title	Technique used	Conclusion					
No								
1	URLNet:	Convolutional	The performance					
	Learning a	Neural	of the various					
	URL	Networks	URLNet					
	Representation	(CNN) are used	variations,					
	with Deep	to train URL	including					
	Learning for	embedding in	character-level,					
	Malicious	an optimized	word-level, and					
1	URL	system and	complete, is					
1/	Detection[1]	extract features	comparable, with					
		similar to	URLNet(complete)					
		words in bags	routinely					
		of words from	outperforming the					
		URL	others. While					
		strings.Utilizing	character-level					
-		cutting-edge	URLNet is more					
		word-	efficient at higher					
		embedding	FPRs, word-level					
in the second se		methods to	URLNet performs					
		address the	better at low FPRs.					
		issue of unusual	Both types'					
		words, which is	advantages are					
		typically seen	combined in					
		in malicious	URLNet(Full).					
		URL detection						
		tasks						
2	Detection of	It uses a	Give 94.4%					
	Phishing	branching	accurate result.					
	URLs	neural network						
		architecture						

International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321-8169 Volume: 11 Issue: 10

Article Received: 12 August 2023 Revised: 10 October 2023 Accepted: 22 October 2023

	1. U.' D	<u>'</u> /11					features to	
	by Using Deep	with several						
	Learning	hidden layers.					indicate the	
	Approach						site's	
	and Multiple						maliciousness	
	Features						level.	
	Combinations				6	Deep	For the purpose	With a 93.59%
	[8]					Approaches	of classifying	accuracy rate, the
3	A Hybrid	a strategy that	The system is			on Malicious	harmful URLs,	CNN-LSTM
	approach	combines deep	trained and tested			URL	the article	architecture trumps
	combining	learning (DL),	2.5 million			Classification	employs three	the other two. The
	blocklists,	machine	malicious and			[5]	distinct	Adam optimizer
	machine	learning (ML),	benign URLs, and				architectures:	was used by the
	learning and	and traditional	It accomplishes		11.1		simple RNN,	authors to train
	deep learning	blocklist	recall, precision,	1	90	IRED.	simple LSTM,	their model over
	for detection	techniques.	and a f1-score of			15 M/20	and CNN-	120 iterations at a
	of	TensorFlow	greater than 0.97.				LSTM.	learning rate of
	malicious	and Keras	greater than 0.97.					0.0001.
	URLs[3]	frameworks are			7	Deen laar in	Equacially, 'a	
	UKLS[5]				7	Deep learning	Especially in	The DNN model,
		used to build				methods for	the NLP	which includes
		deep learning				malicious	method, the	logistic regression
		models, the				URL detection	time frequency-	and L1 (Lasso)
		sklearn			- 1	using	inverse	penalty as feature
		framework is			1	embedding	document	selection, gives the
		used to		6.3		techniques as	frequency (TF-	best results with
		implement deep				Logistic	IDF) vector	96.95% accuracy,
		ML models.				Regression	quantifier uses	99% precision,
4	A DEEP	Deep learning	The CNN model			with Lasso	N-gram	100% recall and
	LEARNING	model CNN,	gives 98%		1	penalty and	parameters for	99% F1 score.
	APPROACH	RNN used to	accuracy for			Random	feature	
	FOR	detect harmful	binary		1	Forest[10]	extraction, in	0
	DETECTION	URLs, The	classification and		1/		this study it is	
	OF	ISCX-URL-	95% for multi-	V	111		proposed based	
	MALICIOUS	2016 dataset is	class classification				on deep	
	URLS[4]	used.	for the detecting				learning to find	
	01005[1]		dangerous URLs.				the path of a	
5	An	This technique	Random Forest is			100	bad URL.	
5	Implemention	employs a	chosen as the		8	Robust	The research	In comparison to
	of a	cross-platform	classifier for the		0	Detection of	suggests a	all baselines, the
	Mechanism	Google Chrome	classification of			Malicious		FM-TCN-SPLD
	for Malicious	extension:				URLs With	CyberLen deep learning-based	
			harmful or benign				method for	solution performs
	URLs	JavaScript in	URLs.			Self-Paced		better with a 5%
	Detection[9]	the extension				Wide & Deep	reliably and	performance
		forwards user-				Learning[11]	effectively	margin.
		entered URLs					identifying	
		to Python for					dangerous	
		feature					URLs. The	
		extraction. A					system uses a	
		serialized					temporal	
		supervised					convolution	
		learning model					network and a	
		evaluates					factorization	
		gathered					machine (FM).	
		0						

International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321-8169 Volume: 11 Issue: 10

Article Received: 12 August 2023 Revised: 10 October 2023 Accepted: 22 October 2023

Malicious URLsConvolutional Neuralperformance, and complexity, Random Forest was deemed to be the best model.and specific us the restrictions of these modelsUsing Deep Learning[12]Network (CNN) are two deep learning models employed in the study that produced very accurate results in the identification and classification of harmful URLs.(1)H. Le, Q. Pf a URL Rep Detection," http://arxin (2)10Using Deep Learning to Detect maliciousFor the purpose of identifying approach is a DeepThe DBLSTM classifier outperforms traditional machine learning methods with an accuracy poep(3)B. Gogoi, combining detection of council In Innovations (2)10Using Deep Learning to Detect maliciousThe DBLSTM classifier outperforms traditional machine learning methods with an accuracy poep(3)B. Gogoi, combining detection of council In Innovations (1)10URLs.[6]paper's primary approach is a are four interacting neural network layers, including gates that add or remove information from the cell state, in each LSTM (DBLSTM information from the cell state, in each LSTM cell that makes up the DBLSTM LSTM (DBLSTM[10]Y. Liang, Q "Robusto "Robusto information from the cell state, in each LSTM cell that makes up the DBLSTM[10]Y. Liang, Q "Robusto10URLs," in information from the cell state, in each LSTM (DBLSTM[10]Y. Liang, Q "Robusto10V. Liang, R "						
Classifying Malicious (LSTM) and Convolutional URLs to time, performance, and complexity, Random Forest was deemed to be the best model. performance of and specific us the restrictions of these models Using Deep Learning [12] (CNN) are two deep learning models was deemed to be the best model. (11 H. Le, O. Pf a URL Rep Detection," in the identification and classification of harmful URLs. For the purpose of identifying malicious The DBLSTM classifier outperforms [2] L. A. R an USING M COMPARA Research Jo 10 Using Deep Learning to Detect For the purpose of identifying malicious The DBLSTM classifier outperforms [3] B. Gogoi, combining detection of Council In Innovations 10 Using Deep Learning to Detect For the purpose of identifying malicious The DBLSTM classifier outperforms [4] E. Uçar, "A OF 10 URLs[6] paper's primary approach is a Deep Bidirectional LSTM (DBLSTM) model. There are four information from the cell state, in each LSTM cell that makes up the DBLSTM [8] Y. Liang, Q "Robust De Using Cow Comput S vol. 7, 10.5121/jcs information from the cell state, in each LSTM cell that makes up the DBLSTM [9] C. Joinson, detecting an Wirel Mob no. 4, 10.22667/J	9		-		-	•
Malicious URLsConvolutional Neuralperformance, and complexity, Random Forestand specific us the restrictionsUsing Deep Learning[12]Network (CNN) are two deep learning employed in the study that produced very accurate results in the identification and classification of harmful URLs.(1)H. Le, Q. Pl a URL Rep Detection210Using Deep Learning to Detect maliciousFor the purpose of identifying approach is a DeepThe DBLSTM classifier outperforms traditional machine learning the OF detectional LSTM (DBLSTM)The DBLSTM (2)(3)B. Gogoi, combining detection of council L Innovations detection of classifier outperforms traditional machine learning methods with an accuracy beepThe DBLSTM (2)(4)E. Uçar, "A A OF Mathetion210URLs [6]paper's primary approach is a the are four interacting neural network layers, including gates that add or remove information from the cell state, in each LSTM (DBLSTM Compute(5)A. Bhagwa combining detection of council L Innovation from the cell state, in each LSTM (DBLSTM information from the cell state, in		-	-			
URLs Using Deep Learning[12]Neural Network (CNN) are two deep learning models employed in the study that produced very accurate results in the identification and classification of harmful URLs.complexity, Random Forest was deemed to be the best model.the restrictions of these models10Using Deep Learning to Detect MaliciousFor the purpose of identifying approach is a upproach is a interacting neural networkThe DBLSTM classifier outperforms(2)L. A. Ra USING10Using Deep Learning to Detect MaliciousFor the purpose of identifying approach is a Deep Bidirectional LSTM (DBLSTM)The DBLSTM classifier outperforms(3)B. Gogoi, combining detection of Council In Innovations 2022, Institu doi: 10.11.0410URLs.[6]approach is a upproach is a Deep including gates that add or removeThe DBLSTM (GMLSTM)(3)(6)A. Das, A Approaches model. There are four information from the cell state, in each LSTM cell that makes up the DBLSTM(3)(10)V. Liang, Q(11)V. Liang, Q(12)V. Liang, Q(13)A. Bagwa approach is a upproach is a model. There are four interacting neural network LSTM cell that makes up the DBLSTM(14)LSTM (DBLSTM (D)(15)V. Liang, Q(16)V. Liang, Q(17)V. Liang, Q(18)V. Liang, Q(19)V. Liang, Q(10)V. Li			· · · ·	,	-	
Using Deep Learning[12]Network (CNN) are two deep learning modelsRandom Forest was deemed to be the best model.of these models10Using Deep Learning to Detect MaliciousIn the identifying of identifying Detect maliciousIn the DBLSTM classificarion of harmful URLs.Image and the component of th		Malicious	Convolutional	-		-
Learning[12] (CNN) are two deep learning models was deemed to be the best model. II H. Le, Q. Pi a URL Rep Detection," models employed in the study that produced very accurate results in the identification and classification of harmful URLs. [1] H. Le, Q. Pi a URL Rep Detection," 10 Using Deep Detect For the purpose of identifying of identifying uRLs, the paper's primary approach is a Deep The DBLSTM classifier outperforms [3] B. Gogoi, combining detection of Council In Innovations 10 Using Deep For the purpose of identifying Detect The DBLSTM classifier outperforms [4] E. Uçar, "A OF 10 URLs[6] paper's primary approach is a Deep rate of 98.6%. [5] A. Bagwit Mitigericanal LSTM [4] E. Uçar, "A OF Malicious 10 URLs[6] paper's primary approach is a Deep rate of 98.6%. [5] A. Bagwit Mitigericanal LSTM [6] A. Das, A Approaches [7] F. Douksiel Using Comv Computer S vol. 7, layers, including gates that add or remove information from the cell state, in each LSTM [8] Y. Liang, Q [9] C. Johnson, Q [9] C. Johnson, Q [10] Y. Liang, Q [10] Y. Liang, Q		URLs	Neural	complexity,	the	restrictions
deep learning models employed in the study that produced very accurate results in the identification and classification of harmful URLs.(1)H. Le, Q. Pi a URL Rep Detection, "http://arxiv. (2)10Using Deep Learning to Detect MaliciousFor the purpose of identifying paper's primary approach is a Deep ILSTM (DBLSTM) (DBLSTM)The DBLSTM classifier outperforms(3)B. Gogoi, combining detection of council In Innovations 2022, Institu doi: 10.110910Using Deep Learning to Detect MaliciousFor the purpose of identifying approach is a ISIThe DBLSTM classifier outperforms traditional machine learning methods with an accuracy rate of 98.6%.[4]E. Uear, "A OF MA MOEL10URLs[6]paper's primary approach is a bidirectional LSTM (DBLSTM) model. There are four interacting neural networkThe DBLSTM classifier outperforms[4]E. Uear, "A OF MA MOEL10IRLS, (he approach is a a differentiational LSTM (DBLSTM) model. There are four information from the cell state, in each LSTM cell that makes up the DBLSTM[8]Y. Liang, Q "Robust De Deep Learn 19, no. 2, pi10IRLSTM (DBLSTM Layers, including gates itate, in each LSTM cell that makes up the DBLSTM[10]Y. Liang, Q "Robust De DE DE DE (10)11Hade or remove information from the cell state, in each LSTM (DBLSTM[10]Y. Liang, Q "Robust De DE DE (10)11Had		Using Deep	Network	Random Forest	of tl	hese models
Image:		Learning[12]	(CNN) are two	was deemed to be		
a URL Repemployed in the study that produced very accurate results in the identification and classification of harmful URLs.a URL Rep10Using Deep For the purpose DetectThe DBLSTM classifier outperforms[3] B. Gogi, combining detection of Council In Innovations 2022, Institu10Using Deep DetectFor the purpose of identifying learning to DetectThe DBLSTM classifier outperforms10Using Deep DetectFor the purpose maliciousThe DBLSTM classifier outperforms10URLs[6]paper's primary Deepclassifier rate of 98.6%.11URLs[6]paper's primary Deeplearning methods rate of 98.6%.11URLs[6]paper's primary Deep11URLs[6]paper's primary approach is a model. There are four interacting neural network layers, including gates10USLSTM) model. There at a do r remove information from the cell state, in each LSTM cell that makes up the DBLSTM10USLSTM (IO) Y. Liang at ustate, in each LSTM cell that makes up the DBLSTM10USLSTM (IO) Y. Liang at ustate, in each LSTM cell that makes up the10USLSTM (IO) Y. Liang at ustate, in each LSTM (IO) Y. Liang at ustate, in each LSTM (IO) Y. Liang at URLs," in11URLs," in12URLs," in13Iayers.14URLs," in15URLs," in16Y. Liang A URLs," in17<			deep learning	the best model.		
10 Using Deep in the identification and classification of harmful URLs. The DBLSTM 22 10 Using Deep Learning to Detect For the purpose id identifying of identifying Detect The DBLSTM Combining detection of harmful URLs. 10 Using Deep Learning to Detect For the purpose id identifying betect The DBLSTM Council In Innovations outperforms 10 URLs[6] paper's primary approach is a malicious The DBLSTM Council In Innovations 10 URLs[6] paper's primary approach is a model. There are four interacting neural network Tate of 98.6%. [4] E. Uçar, "A Approaches 10 IDBLSTM [6] A. Bhagwa Implementic [6] A. Bhagwa Implementic 10 URLs[6] paper's primary approach is a model. There are four interacting neural network [8] Y. Liang, Q "Robust De Deep Learning 11 If an add or remove [9] C. Johnson, detecting ar Wirel Mob no. 4, 10.22667/M			models		[1]	
study thatproduced very accurate results in the identification and classification of harmful URLs.http://arxiv.10Using Deep Learning to DetectFor the purpose of identifying DetectThe DBLSTM classifier outperforms[3] B. Gogoi, combining detection of Lounci Int novations 2022, Institu doi: 10.110910Using Deep Learning to DetectFor the purpose of identifying paper's primary Deep Deep Deep ItsTM (DBLSTM)The DBLSTM classifier outperforms traditional machine learning methods (4] E. Uçar, "A OF Malicious10URLs[6]paper's primary approach is a USTM (DBLSTM) interacting neural network layers, including gates that add or remove information from the cell state, in each LSTM cell that makes up the DBLSTM (I0] Y. Liang, a Wirel Mob No. 4, 10.22667/JU10JSLSTM (I0] Y. Liang, a Wirel Mob11Information (I0] Y. Liang, a Wirel Mob URLs," in urel Makes up the logles12URLs," in urel, "in13BLSTM (I0] Y. Liang, a Wirel Mob14URLs," in urel, "in15A. Bhagwa model. There are four interacting no. 4, upper complexes16A. Das, A Approaches17F. Douksid URD18Y. Liang, C Work Make URD19C. Johnson, detecting ar Wirel Mob10Y. Liang, C Wirel Mob11URLs," in URD12LSTM (I0) Y. Liang ar URLs," in13Hat add o			employed in the			-
10Using Deep Learning to URLs[6]For the purpose of identifying approach is a ugars, interacting neural network interacting neural network information from the cell state, in each LSTM (DBLSTM information from the cell state, in each LSTM (DBLSTM information from the cell state, in each LSTM (I0) Y. Liang a ural ayers.[2]L. A. R an USING COMPARA Research DO COMPARA Research DO consisting detection of Council In Innovations (B) A. Bhagwa information from the cell state, in each LSTM (I0) Y. Liang a layers.10Using Deep accuration information from the cell state, in each LSTM (I0) Y. Liang a layers.[2]L. A. R an USING COMPARA Rebust De Deep information from the cell state, in each LSTM (I0) Y. Liang a URLs," in			study that			
10Using Deep Learning to Of identifying DetectThe DBLSTM classifier of identifying classifier(3)B. Gogoi, comining detection of council In Innovations 2022, Institu doi: 10.110210Using Deep Learning to Of identifying DetectFor the purpose of identifying classifierThe DBLSTM classifier outperforms traditional machine doi: 10.1102Council In Innovations 2022, Institu doi: 10.110210URLs, fbe paper's primary Deep Deep Deeprate of 98.6%.[4]E. Uçar, "A Approach is a model. There are four interacting neural network[5]A. Bhagwa model. There are four interacting neural network[6]A. Das, A Approaches10URLs, fiel paper's primary layers, including gates including gates[8]Y. Liang, C Wirel Mob No. 4, model. There are four information from the cell state, in each[9]C. Johnson, detecting a Wirel Mob11LSTM (DBLSTM) model. There are four information from the cell state, in each LSTM cell that makes up the DBLSTM[10]Y. Liang, C (10]10Y. Liang (10]Y. Liang a (10][10]Y. Liang a (10]			produced very		[2]	-
in the identification and classification of harmful URLs.COMPARA Research Jo [Online]. A: classificer outperforms10Using Deep Learning to DetectFor the purpose of identifying DetectThe DBLSTM classifier outperforms[3] B. Gogoi, combining detection of Council In Innovations 2022, Institu doi: 10.110910Using Deep Learning to DetectFor the purpose of identifying paper's primary approach is a Bidirectional LSTM (DBLSTM) interacting neural networkThe DBLSTM classifier outperforms traditional machine learning methods with an accuracy Implementif (DBLSTM) interacting neural networkThe obles classifier outperforms traditional machine learning methods (B10URLs, Ithe paper's primary approach is a model. There are four interacting neural networkImplementif (DBLSTM) interacting neural network10ISIN (DBLSTM) model. There are four interacting neural networkImplementif (DS121/ijcs) including gates11Including gates information from the cell state, in each LSTM cell that makes up the DBLSTMImplementif (D0] Y. Liang a URLs," in			accurate results	AMORA	[2]	
identification and classification of harmful URLs.Research Jo [Online]. A:10Using Deep Learning to DetectFor the purpose of identifying DetectThe DBLSTM classifier outperformsCouncil In Innovations 2022, Institu doi: 10.110910Using Deep Learning to DetectFor the purpose of identifying paper's primary approach is a Bidirectional LSTM (DBLSTM)The DBLSTM classifier outperforms traditional machine learning methods[4]E. Uçar, "A OF10URLs[6]paper's primary approach is a Bidirectional LSTM (DBLSTM)interacting neural network[5]A. Bhagwa model. There are four interacting neural network[6]A. Das, A Approaches10For the purpose paper's primary approach is a beepFor the purpose vith an accuracy Deep[6]A. Das, A Approaches10For paper's primary approach is a paper's primary interacting neural network[6]A. Das, A Approaches10For paper's primary are four interacting neural network[6]A. Das, A Approaches10For paper's including gates[8]Y. Liang, Q "Robust De Deep Learn information from the cell state, in each LSTM cell that makes up the DBLSTM[9]C. Johnson, detecting a Wirel Mob No. 4, 10.22667/JC10Y. Liang a uppers.[10]Y. Liang a URLs," in[10]Y. Liang a URLs," in			in the	a Illuora	11.1	
and classification of harmful URLs.Image: Construct of the second o			identification	No		
Image: classification of harmful URLs.[3] B. Gogoi, combining detection of classifier10Using Deep Learning to DetectFor the purpose of identifying maliciousThe DBLSTM classifierOutperforms001URLs, the Traditional machine using methods[4] E. Uçar, "A0022, Institutional machine using methodspaper's primary approach is a Deepwith an accuracyOF MA0024BidirectionalLSTM[5] A. BhagwaImplementiation of the classifier10URLs[6]paper's primary approach is a Deeprate of 98.6%.[5] A. Bhagwa10UBLSTMIntereating[6] A. Das, A10DBLSTMIncluding gates[7] F. Douksiel10Individual dorremove[8] Y. Liang, Q10State, in each[9] C. Johnson, detecting attact, in each[9] C. Johnson, detecting attact, in each10LSTM cell thatmakes up the10.22667/JM10JBLSTMIntereating attact, in each[1] C. Johnson, detecting attact, in each10LSTM cell thatmakes up the10.22667/JM10JBLSTMIntereating attact, in eachIntereating attact, in each10JSTM cell thatmakes up theIO.22667/JM10JBLSTM[10] Y. Liang attact, in eachIIII PA10JSTM[10] Y. Liang attact, in eachIIII PA10JSTMIIII PAIIII PA10JSTMIIII PA10JSTMIIII PA10JSTMIIII PA10JSTMI			and			
10Using Deep Learning to DetectFor the purpose of identifying maliciousThe DBLSTM classifier outperformsdetection of Council In Innovations10Using Deep Detectmaliciousoutperforms traditional machine learning methods approach is a Deepclassifier outperformsdetection of Council In Innovations10URLs[6]paper's primary approach is a Deeplearning methods with an accuracy rate of 98.6%.[4]E. Uçar, "A OF10URLs[6]paper's primary approach is a USLSTMlearning methods (IS][4]E. Uçar, "A Moff.10URLs[6]paper's primary approach is a USLSTMlearning methods (IS][4]E. Uçar, "A Moff.11(DBLSTM) model. There are four interacting neural network layers, including gates including gates that add or remove inform the cell state, in each LSTM cell that makes up the DBLSTM layers.[6]A. Das, A Approaches12C. Johnson, detecting ar Wirel Mob no. 4, 10.22667/JC[7]F. Liang, C "Robust De Deep Learn 19, no. 2, pr19C. Johnson, detecting ar Wirel Mob no. 4, 10.22667/JC[10]Y. Liang ar URLs," in			classification of		[3]	
10Using Deep Learning to DetectFor the purpose of identifying maliciousThe DBLSTM classifier outperformsdetection of Council In InnovationsMaliciousURLs, the paper's primary approach is a Deeptraditional machine learning methods with an accuracy rate of 98.6%.[4] E. Uçar, "A OF MA https://www [5] A. Bhagwa Implementi [6] A. Das, A Approaches[6] A. Das, A Approaches remove interacting neural network layers, including gates that add or remove information from the cell state, in each LSTM cell that makes up the DBLSTM Igyers.[8] Y. Liang, Q "Robust De Deep Learn 19, no. 2, pr[9] C. Johnson, wirel Mob no. 4, 10.22667/JC[10] Y. Liang ar URLs," in			harmful URLs.			combining
Learning to Detectof identifying maliciousclassifier outperformsCouncil In InnovationsMaliciousURLs, the paper's primary approach is a Deeprate difference(4)E. Uçar, "A OFURLs[6]paper's primary approach is a Deeplearning methods with an accuracy rate of 98.6%.(4)E. Uçar, "A OFISTM (DBLSTM) model. There are four interacting neural network layers, including gates(5)A. Bhagwa https://www Computer S vol. 7, 10.5121/ijcsISTM cell that makes up the DBLSTM layers.(7)F. Douksiel Using Conv Computer S vol. 7, 10.22667/JCURLs," in URLs," in10)2.22667/JC	10	Using Deep		The DBLSTM		detection of
Detectmaliciousoutperforms2022, InstitutionsMaliciousURLs, thetraditional machine2022, Institution:URLs[6]paper's primarylearning methods[4]E. Uçar, "Aapproach is awith an accuracyOFMADeeprate of 98.6%.https://wwwBidirectional[5]A. BhagwaLSTM[6]A. Das, A(DBLSTM)[6]A. Das, Amodel. There[7]F. Douksielare fourincluding gates[8]neural networkvol. 7,layers,including gates[8]that add or"Robust Deremoveinformationfrom the cellstate, in eachLSTM cell thatno. 4,nakes up the10.22667/JCDBLSTM[10]Y. Liang, C[10]V. Liang, ar[10]Y. Liang, C	-					
Malicious URLsURLs, the paper's primary approach is a Deeptraditional machine learning methods with an accuracy rate of 98.6%.2022, institu doi: 10.1109[4] E. Uçar, "A OFMA https://www Bidirectional LSTM (DBLSTM) model. There are four interacting neural network layers, including gates[5] A. Bhagwa Implementic [6] A. Das, A Approaches[7] F. Douksiel Using Conv Computer S vol. 7, 10.5121/ijcs including gates[7] F. Douksiel Using Conv Computer S vol. 7, 10.5121/ijcs[8] Y. Liang, Q "Robust De Deep Learn information from the cell state, in each LSTM cell that makes up the DBLSTM layers.[8] Y. Liang and URLs," in URLs," in URLs," in URLs," in URLs," in		•		outperforms		
URLs[6]paper's primary approach is a Deeplearning methods with an accuracy rate of 98.6%.(4) E. Uçar, "A OF[4]E. Uçar, "A OF[5]A. Bhagwa Implementic (DBLSTM)[6]A. Das, A Approaches[7]F. Douksiel Using Conv Computer S vol. 7, layers, including gates[8]Y. Liang, Q "Robust De Deep Learn information from the cell state, in each LSTM cell that makes up the DBLSTM[9]C. Johnson, detecting am Wirel Mob no. 4, makes up the layers.[10]Y. Liang am URLs," in URLs," in		Malicious				
approach is a Deepwith an accuracy rate of 98.6%.OFMA https://wwwBidirectional LSTM (DBLSTM) model. There are four interacting neural network layers, including gates that add or remove[6]A. Bhagwa Implementic [6][7]F. Douksiel Using Conv Computer S vol. 7, 10.5121/ijcs including gates that add or remove[8]Y. Liang, Q "Robust De Deep Learn 19, no. 2, pp[9]C. Johnson, detecting ar Wirel Mob LSTM cell that no. 4, makes up the DBLSTM layers.[9]C. Johnson, detecting ar Wirel Mob no. 4, 10.22667/JC					[4]	
Deep Bidirectional LSTMrate of 98.6%.https://wwwBidirectional LSTM[5] A. Bhagwa Implementa(DBLSTM) model. There are four interacting neural network layers, including gates that add or remove information from the cell state, in each LSTM cell that makes up the DBLSTM[6] A. Das, A Approaches[7] F. Douksiel Using Conv Computer S vol. 7, 10.5121/ijcs[8] Y. Liang, Q "Robust De Deep Learn 19, no. 2, pp[9] C. Johnson, detecting ar Mirel Mob LSTM cell that no. 4, makes up the layers.[10] Y. Liang ar URLs," in					17	
Bidirectional LSTM (DBLSTM) model. There are four interacting neural network[5] A. Bhagwa Implementa [6] A. Das, A Approaches[7] F. Douksiel Using Conv Computer S vol. 7, layers, including gates that add or remove information from the cell state, in each LSTM cell that makes up the DBLSTM layers.[5] A. Bhagwa Implementa [6] A. Das, A Approaches[7] F. Douksiel Using Conv Computer S vol. 7, 10.5121/ijcs[8] Y. Liang, Q "Robust De Deep Learn 19, no. 2, pp[9] C. Johnson, detecting ar Wirel Mob LSTM cell that makes up the UBLSTM layers.[10] Y. Liang ar URLs," in						
LSTM (DBLSTM) model. There are four interacting neural network layers, including gates that add or remove information from the cell state, in each LSTM cell that makes up the DBLSTM layers. LSTM Implementic [6] A. Das, A Approaches vol. 7, 10.5121/ijcs [8] Y. Liang, Q "Robust De Deep Learn 19, no. 2, pp [9] C. Johnson, detecting ar Wirel Mob no. 4, 10.22667/JQ [10] Y. Liang ar URLs," in			-		[5]	
(DBLSTM) model. There are four interacting[6] A. Das, A Approaches[7] F. Douksiel Using Conv Computer S vol. 7, layers, including gates[7] F. Douksiel Using Conv Computer S vol. 7, 10.5121/ijcs[8] Y. Liang, Q "Robust De Deep Learn information from the cell state, in each LSTM cell that makes up the DBLSTM layers.[9] C. Johnson, detecting ar Wirel Mob no. 4, 10.22667/JQ[10] Y. Liang ar URLs," in					10	Implementio
model. There are four interacting neural networkApproaches Using Conv Computer S vol. 7, 10.5121/ijcs including gatesneural network layers, including gates[8] Y. Liang, Q "Robust De Deep Learn 19, no. 2, pr [9] C. Johnson, detecting ar Wirel Mob LSTM cell that makes up the 					[6]	A. Das, A
are four interacting[7] F. Douksiel Using Conv Computer S vol. 7, 10.5121/ijcs including gatesneural network layers, including gates[8] Y. Liang, Q "Robust De Deep Learn 19, no. 2, ppinformation from the cell state, in each LSTM cell that makes up the DBLSTM[9] C. Johnson, detecting ar Wirel Mob no. 4, 10.22667/JQDBLSTM layers.[10] Y. Liang ar URLs," in		2				
interacting neural networkOsing Conv Computer S vol. 7, 10.5121/ijcs including gatesincluding gates that add or remove[8] Y. Liang, Q "Robust De Deep Learn 19, no. 2, ppinformation from the cell state, in each LSTM cell that makes up the DBLSTM[9] C. Johnson, detecting an Wirel Mobility 10.22667/JQDBLSTM layers.[10] Y. Liang an URLs," in		E			[7]	
neural networkvol.layers,10.5121/ijcsincluding gates[8] Y. Liang, Qthat add or"Robust DeremoveDeep Learninformation[9] C. Johnson,from the cell[9] C. Johnson,detecting anstate, in eachWirel MobLSTM cell thatno.makes up the10.22667/JQDBLSTM[10] Y. Liang anlayers.URLs," in					170	
layers,10.5121/ijcsincluding gates[8] Y. Liang, Qthat add or"Robust DeremoveDeep Learninformation[9] C. Johnson,from the cell[9] C. Johnson,state, in eachWirel MobLSTM cell thatno. 4,makes up the10.22667/JQDBLSTM[10] Y. Liang arlayers.URLs," in			C C	277	V	-
including gates that add or remove[8] Y. Liang, Q "Robust De Deep Learn 19, no. 2, ppinformation from the cell state, in each LSTM cell that makes up the DBLSTM layers.[9] C. Johnson, detecting ar Wirel Mob no. 4, 10.22667/JCDBLSTM layers.[10] Y. Liang ar URLs," in						,
that add or remove"Robust De Deep Learn 19, no. 2, ppinformation from the cell state, in each[9] C. Johnson, detecting an Wirel MobLSTM cell that makes up the DBLSTM layers.no. 4, 10.22667/JCDBLSTM layers.[10] Y. Liang an URLs," in					[8]	-
Interface of removeDeep Learn 19, no. 2, ppinformation from the cell state, in each[9] C. Johnson, detecting an Wirel MobileLSTM cell that makes up the DBLSTM layers.no. 4, 10.22667/JCDBLSTM layers.[10] Y. Liang an URLs," in					[0]	
information19, no. 2, ppinformation[9] C. Johnson,from the cell[9] C. Johnson,state, in eachWirel MobLSTM cell thatno. 4,makes up the10.22667/JCDBLSTM[10] Y. Liang arlayers.URLs," in						
from the cell state, in each LSTM cell that makes up the layers.[9] C. Johnson, detecting ar Wirel Mob 10.22667/JCDBLSTM layers.[10] Y. Liang ar URLs," in						-
state, in eachWirel MobLSTM cell thatno. 4,makes up the10.22667/JCDBLSTM[10] Y. Liang arlayers.URLs," in					[9]	
LSTM cell that makes up the DBLSTM layers. LSTM cell that no. 4, 10.22667/JC [10] Y. Liang ar URLs," in						detecting an
makes up the10.22667/JCDBLSTM[10] Y. Liang arlayers.URLs," in			·			
DBLSTM [10] Y. Liang ar layers. URLs," in						
layers. URLs," in			-			
					[10]	-
			layers.]	URLs," in Energy Inter

III. CONCLUSION.

We have investigated many methods for identifying malicious URLs. With the use of deep learning techniques, we examined the feasibility of accurately identifying dangerous URLs based on the results of this survey. There are several models and methodologies under investigation, and each has benefits and drawbacks. In general, deep learning models, especially those that mix CNN and LSTM architectures, have the potential to improve URL detection systems. However, the performance of these models can vary depending on the dataset and specific use case. Future research may focus on removing the restrictions and enhancing the accuracy and generalizability of these models.

REFERENCES

- H. Le, Q. Pham, D. Sahoo, and S. C. H. Hoi, "URLNet: Learning a URL Representation with Deep Learning for Malicious URL Detection," Feb. 2018, [Online]. Available: http://arxiv.org/abs/1802.03162
- [2] L. A. R and S. Thomas, "DETECTING MALICIOUS URLS USING MACHINE LEARNING TECHNIQUES: A COMPARATIVE LITERATURE REVIEW," International Research Journal of Engineering and Technology, vol. 269, 2008, [Online]. Available: www.irjet.net
- [3] B. Gogoi, T. Ahmed, and A. Dutta, "A Hybrid approach combining blocklists, machine learning and deep learning for detection of malicious URLs," in Proceedings - 3rd IEEE India Council International Subsections Conference: Impactful Innovations for Benefits of Society and Industry, INDISCON 2022, Institute of Electrical and Electronics Engineers Inc., 2022. doi: 10.1109/INDISCON54605.2022.9862909.
- [4] E. Uçar, "A DEEP LEARNING APPROACH FOR DETECTION OF MALICIOUS URLS." [Online]. Available: https://www.researchgate.net/publication/338477987
- [5] A. Bhagwat, S. Dalvi, K. Lodhi, and U. Kulkarni, An Implemention of a Mechanism for Malicious URLs Detection.
- [6] A. Das, A. Das, A. Datta, S. Si, and S. Barman, "Deep Approaches on Malicious URL Classification."
- [7] F. Douksieh Abdi and L. Wenjuan, "Malicious URL Detection Using Convolutional Neural Network," International Journal of Computer Science, Engineering and Information Technology, vol. 7, no. 6, pp. 01–08, Dec. 2017, doi: 10.5121/ijcseit.2017.7601.
- [8] Y. Liang, Q. Wang, K. Xiong, X. Zheng, Z. Yu, and D. Zeng, "Robust Detection of Malicious URLs with Self-Paced Wide & Deep Learning," IEEE Trans Dependable Secure Comput, vol. 19, no. 2, pp. 717–730, 2022, doi: 10.1109/TDSC.2021.3121388.
- [9] C. Johnson, B. Khadka, R. B. Basnet, and T. Doleck, "Towards detecting and classifying malicious urls using deep learning," J Wirel Mob Netw Ubiquitous Comput Dependable Appl, vol. 11, no. 4, pp. 31–48, Dec. 2020, doi: 10.22667/JOWUA.2020.12.31.031.
- [10] Y. Liang and X. Yan, "Using deep learning to detect malicious URLs," in Proceedings - IEEE International Conference on Energy Internet, ICEI 2019, Institute of Electrical and Electronics Engineers Inc., May 2019, pp. 487–492. doi: 10.1109/ICEI.2019.00092.
- [11] Y. Liang and X. Yan, "Using deep learning to detect malicious URLs," in Proceedings - IEEE International Conference on Energy Internet, ICEI 2019, Institute of Electrical and Electronics Engineers Inc., May 2019, pp. 487–492. doi: 10.1109/ICEI.2019.00092.
- [12] T. Rasymas and L. Dovydaitis, "Detection of phishing URLs by using deep learning approach and multiple features

International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321-8169 Volume: 11 Issue: 10

Article Received: 12 August 2023 Revised: 10 October 2023 Accepted: 22 October 2023

combinations," Baltic Journal of Modern Computing, vol. 8, no. 3, pp. 471–483, 2020, doi: 10.22364/BJMC.2020.8.3.06.

- [13] I. Thakur, K. Panda, and S. Kumar, "Deep learning methods for malicious URL detection using embedding techniques as Logistic Regression with Lasso penalty and Random Forest," in PDGC 2022 - 2022 7th International Conference on Parallel, Distributed and Grid Computing, Institute of Electrical and Electronics Engineers Inc., 2022, pp. 181–186. doi: 10.1109/PDGC56933.2022.10053199.
- [14] U. R. Seshasayee, Arun Manoharan Hemprasad Patil Sujatha Rajkumar, vol. 1. 2019.
- [15] A. Assefa and R. Katarya, "Intelligent Phishing Website Detection Using Deep Learning," in 8th International Conference on Advanced Computing and Communication Systems, ICACCS 2022, Institute of Electrical and Electronics Engineers Inc., 2022, pp. 1741–1745. doi: 10.1109/ICACCS54159.2022.9785003.
- [16] M. Aljabri and S. Mirza, "Phishing Attacks Detection using Machine Learning and Deep Learning Models," in Proceedings -2022 7th International Conference on Data Science and Machine Learning Applications, CDMA 2022, Institute of Electrical and Electronics Engineers Inc., 2022, pp. 175–180. doi: 10.1109/CDMA54072.2022.00034.
- [17] P. Rastogi, E. Singh, V. Malik, A. Gupta, and S. Vijh, "Detection of Malicious Cyber Fraud using Machine Learning Techniques," in Proceedings of the Confluence 2022 - 12th International Conference on Cloud Computing, Data Science and Engineering, Institute of Electrical and Electronics Engineers Inc., 2022, pp. 520–524. doi: 10.1109/Confluence52989.2022.9734181.
- [18] Z. Peng, Y. He, Z. Sun, J. Ni, B. Niu, and X. Deng, "Crafting Text Adversarial Examples to Attack the Deep-Learning-based Malicious URL Detection," in IEEE International Conference on Communications, Institute of Electrical and Electronics Engineers Inc., 2022, pp. 3118–3123. doi: 10.1109/ICC45855.2022.9838536.
- [19] D. K. Karnase, "International Journal on Recent and Innovation Trends in Computing and Communication A Review on Malicious URL Detection using Machine Learning Systems," 2018, [Online]. Available: http://www.ijritcc.org

URITES

- [20] H. Le, Q. Pham, D. Sahoo, and S. C. H. Hoi, "URLNet: Learning a URL Representation with Deep Learning for Malicious URL Detection," Feb. 2018, [Online]. Available: http://arxiv.org/abs/1802.03162
- [21] S. Srinivasan, R. Vinayakumar, A. Arunachalam, M. Alazab, and K. P. Soman, "DURLD: Malicious URL detection using deep learning-based character level representations," in Malware Analysis Using Artificial Intelligence and Deep Learning, Springer International Publishing, 2020, pp. 535–554. doi: 10.1007/978-3-030-62582-5_21.
- [22] V. Vundavalli, F. Barsha, M. Masum, H. Shahriar, and H. Haddad, "Malicious URL Detection Using Supervised Machine Learning Techniques," in ACM International Conference Proceeding Series, Association for Computing Machinery, Nov. 2020. doi: 10.1145/3433174.3433592.
- [23] C. Do Xuan, H. Dinh Nguyen, and T. Victor Nikolaevich, "Malicious URL Detection based on Machine Learning," 2020. [Online]. Available: www.ijacsa.thesai.org
- [24] S. Haque, Z. Eberhart, A. Bansal, and C. McMillan, "Semantic Similarity Metrics for Evaluating Source Code Summarization," in IEEE International Conference on Program Comprehension, IEEE Computer Society, 2022, pp. 36–47. doi: 10.1145/nnnnnnnnnnnnnn
- [25] Miss. M. Pohane and Dr. A. A. Bardekar, "Review Paper on Detection of Malicious URLs Using Machine Learning Techniques," Int J Res Appl Sci Eng Technol, vol. 10, no. 3, pp. 2313–2314, Mar. 2022, doi: 10.22214/ijraset.2022.41065.
- [26] M. Aljabri et al., "Detecting Malicious URLs Using Machine Learning Techniques: Review and Research Directions," IEEE Access, vol. 10, pp. 121395–121417, 2022, doi: 10.1109/ACCESS.2022.3222307.
- [27] M. Alazab and S. Fellow, "Malicious URL Detection using Deep Learning."
- [28] Shantanu, B. Janet, and R. Joshua Arul Kumar, "Malicious URL Detection: A Comparative Study," in Proceedings - International Conference on Artificial Intelligence and Smart Systems, ICAIS 2021, Institute of Electrical and Electronics Engineers Inc., Mar. 2021, pp. 1147–1151. doi: 10.1109/ICAIS50930.2021.9396014.