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Abstract— Optimizing farming methods and guaranteeing a steady supply of food depend critically on accurate predictions of crop yields. 

The dynamic temporal changes that occur during crop growth are generally ignored by conventional crop growth models, resulting in less 

precise projections. Using a stacked bidirectional Long Short-Term Memory (LSTM) structure and a 3D Convolutional Neural Network (CNN) 

fusion, we offer a novel neural network model that accounts for temporal oscillations in the crop growth process. The 3D CNN efficiently 

recovers spatial and temporal features from the crop development data, while the bidirectional LSTM cells capture the sequential dependencies 

and allow the model to learn from both past and future temporal information. Our model's prediction accuracy is improved by combining the 

LSTM and 3D CNN layers at the top, which better captures temporal and spatial patterns. We also provide a novel label-related loss function 

that is optimized for agricultural yield forecasting. Because of the relevance of temporal oscillations in crop development and the dynamic 

character of crop growth, a new loss function has been developed. This loss function encourages our model to learn and take advantage of the 

temporal trends, which improves our ability to estimate crop yield. We perform comprehensive experiments on real-world crop growth datasets 

to verify the efficacy of our suggested approach. The outcomes prove that our unified strategy performs far better than both baseline crop 

growth prediction algorithms and cutting-edge applications of deep learning. Improved crop yield prediction accuracy is achieved with the 

integration of temporal variations via the merging of bidirectional LSTM and 3D CNN and a unique loss function. This study helps move the 

science of estimating crop yields forward, which is important for informing agricultural policy and ensuring a steady supply of food. 

Keywords- Crop yield prediction, Machine learning, Deep learning, Neural networking, CNN, RNN, LSTM, Bi GRU, Maxout classifiers. 

 

I.  INTRODUCTION 

Environmental influences, genetic characteristics, 

management strategies, and interactions between these all have 

a role in crop development, which is itself a complicated and 

dynamic process. Temporal fluctuations, which occur constantly 

during the growing season, have a major effect on the growth 

and output of crops [1]. Accurate crop production prediction 

models and optimizing agricultural operations rely on 

understanding and successfully capturing these changes. When 

discussing the dynamic changes and variations that take place 

over the course of time as a crop develops from planting to 

harvesting, we talk about temporal fluctuations. These variations 

can take many forms, from day-to-day weather shifts to annual 

phonological changes in plant growth [2]. Changes in 

environmental conditions, such as temperature, precipitation, 

sunlight, soil moisture, nutrient availability, and insect pressure, 

affect critical growth phases and the final harvest. Temporal 

variations are significant because of their link to agricultural 

efficiency and yield. One way in which prolonged drought stress 

can impair pollination and fruit set, and thus crop output, is by 

reducing flowering time [3]. On the flip side, good weather at 

crucial growth stages might boost yields. The static assumptions 

imposed by conventional yield prediction systems can be relaxed 

when we account for temporal changes in crop growth models. 

Predictive models that account for the dynamic nature of crop 

development are better able to respond to shifting environmental 

conditions and provide more reliable forecasts in the here and 

now. 

From seeding until harvest, crops undergo a wide range of 

physiological and developmental changes that make up a 

complicated biological process. Changes in climate and other 

external factors have a profound effect on crop development and 

production at every stage of this dynamic growth process [4]. 

For optimal agricultural practices, accurate crop production 
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predictions, and food security, knowledge of these temporal 

changes throughout crop growth is essential. Multiple natural 

and anthropogenic causes contribute to the periodic changes in 

crop growth. Temperature, precipitation, sunlight, humidity, and 

wind are just few of the environmental elements that change 

throughout the growing season and have a direct bearing on plant 

growth and yield [5]. Heat waves and cold snaps, for example, 

can hasten or delay the maturation of crops, hence altering the 

time required for key processes like blooming and fruit set. 

Additionally, especially in rained agricultural systems, water and 

nutrient availability in the soil is sensitive to temporal 

fluctuations. Water stress or nutrient deficits brought on by 

droughts or heavy rains at various periods of crop growth can 

cause variations in crop health and output. The genetic makeup 

of the crop also plays a role in the periodic variations [6]. 

Depending on the species or variety of crop, growth and yields 

may respond differently to the same set of climatic conditions 

and management strategies. Additional temporal variations in 

crop development can be introduced through human 

interventions and management methods like irrigation 

schedules, fertilization, pest control, and crop rotation. The 

success or failure of a crop depends on the choices and methods 

used by the farmer throughout the season. Accurate crop yield 

predictions necessitate an appreciation for and quantification of 

these temporal changes [7]. The dynamic character of crop 

development is often overlooked by traditional crop growth 

models, which instead presume a static link between inputs and 

outcomes. Including temporal variations in predictive models 

allows us to more accurately capture shifting growth patterns and 

trends, which in turn leads to more accurate yield predictions. 

 

 
 

Figure 1. Crop yield predictions model block diagram 

 

      Integration of temporal fluctuations into crop development 

modeling is a challenging problem, but modern data-driven 

technologies, such as machine learning and deep learning 

techniques, offer intriguing possibilities for doing so [8]. 

Researchers can better capture the intricate temporal correlations 

in crop growth and construct more robust and accurate predictive 

models by making use of big data, time series analysis, and 

cutting-edge algorithms like bidirectional LSTM and 3D CNN 

fusion. This research intends to investigate how advanced deep 

learning techniques can be used to incorporate temporal changes  

in crop development, hence improving agricultural production 

estimates [9]. Our goal is to aid in the development of 

agricultural sciences, decision-making, and environmentally-

friendly food production by utilizing neural networks and 

innovative loss functions designed specifically for crop yield 

estimation. Farmers, politicians, and other stakeholders can use 

this study's findings to improve agricultural practices and lessen 

the effect of climate change on crop production. Using state-of-

the-art deep learning methods including stacked bidirectional 

LSTM and 3D CNN fusion, this research investigates the 

potential for better accounting for time-varying factors in crop 

development models [10]. By leveraging the power of neural 

networks and innovative loss functions tailored for crop yield 

prediction, we aim to improve the accuracy of yield estimations 

and provide valuable insights for sustainable agriculture. In the 

following sections, we will delve into the methodology, 

experimental setup, and results of our proposed approach, 

highlighting its effectiveness in capturing temporal patterns and 

enhancing crop yield predictions [11]. The findings from this 

research will contribute to advancing the field of crop growth 

modeling, facilitating more informed decision-making for 

farmers and policymakers, and ultimately contributing to global 

food security and sustainable agricultural practices. 

II. RELATED WORK 

       When it comes to capturing temporal dependencies and 

patterns in sequential data, a bidirectional Long Short-Term 

Memory (LSTM) neural network is the way to go. An extension 

of the classic LSTM model, bidirectional LSTMs may interpret 

input sequences in both the forward (from the present to the 

future) and backward (from the future to the past) directions. 

Because of this, the model can make predictions at each time 

step that take into account both historical and future information 

[12]. Two LSTM layers, one facing forward and one facing 

backward, make up the bidirectional LSTM architecture. In the 

forward direction, the LSTM layer processes the input sequence 

from the first time step to the last time step, producing a series 

of hidden states that may be used to reconstruct the input 

sequence from beginning to end. However, the input sequence 

is processed in reverse order by the backward LSTM layer, from 

the most recent time step to the earliest. It creates a new hidden 

state sequence that reads from the end of the input sequence 

back to the beginning [13]. Each time step, the forward and 

backward LSTM cells use the input data and the hidden state 

from the previous or next time step, respectively, to determine 

the current hidden state and cell state. At each time step, the 

outputs from the forward and backward LSTM layers are 
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combined to generate a fused representation that can account 

for both historical and prospective information [14]. When the 

task at hand calls for looking at the whole sequence before 

generating any predictions, the bidirectional LSTM architecture 

really shines. It has been successfully implemented in a wide 

range of contexts, including sentiment analysis, machine 

translation, speech recognition, and time series prediction, to 

name a few. Significant progress has been made in sequence-

to-sequence tasks thanks in large part to the use of bidirectional 

LSTMs, which capture bidirectional context to offer a more 

thorough feature representation [15]. Overall, the bidirectional 

LSTM architecture is a potent tool for modeling sequential data, 

and it has found use in a wide variety of settings where it is 

critical to capture bidirectional context for optimal 

performance. 

      An advancement of the 2D Convolutional Neural Network, 

a 3D CNN is built to process volumetric data and 

spatiotemporal sequences. 3D convolutional neural networks 

(CNNs) are capable of processing three-dimensional data, such 

as films or medical scans, capturing both spatial and temporal 

information, while 2D CNNs are more suited for image-related 

tasks [16]. In order to extract spatial-temporal properties from 

the input data, a 3D CNN relies on 3D convolutional layers that 

make use of 3D convolutional filters (kernels). To find regional 

trends and associations, these filters can be slid across the data 

in all three dimensions. Non-linear activation functions like 

ReLU are employed to improve computing efficiency and 

translation invariance, whereas pooling layers are utilized to 

minimize spatial dimensions while keeping critical features 

[17]. To learn higher-level representations and to create 

predictions based on the extracted features, fully connected 

(dense) layers are used after the convolutional layers. The 

network's predictions are generated in the final output layer, 

where the number of neurons is tailored to the particular task at 

hand (regression or classification). Overfitting can be avoided 

and the model's robustness increased by include additional 

layers like dropout and batch normalization. To achieve peak 

performance and generalization in 3D CNNs, hyper parameter 

tuning and careful architecture design play crucial roles [18]. 

These networks have shown promise in a variety of 

applications, demonstrating their flexibility and efficacy in 

dealing with spatiotemporal data, such as action detection in 

movies, medical picture analysis, and volumetric data 

processing. 

 
Figure 2. Architecture for bidirectional LSTM 

      3D-CNNs modeled Spatio-temporal data well. 3D-CNNs 

use convolutional neural networks like conventional CNNs since 

they are CNNs. They distinguish themselves by using spatial 

information from individual images and depth convolution to 

find robust properties across sequences of input data. Sequential 

data includes hyperspectral multi-layer point-in-time data 

gathered to identify intra-band characteristics [19]. Figure 3 

displays a trained 3D kernel convolution. Kernel dimensions are 

[ZXY] for time. 

 
Figure 3. Architecture for 3D CNN 

III. METHODOLOGY 

When it comes to capturing and incorporating temporal 

changes during the crop growth process for improved 

agricultural production prediction, the proposed model, Stacked 

Bidirectional LSTM with 3D CNN Fusion, is a powerful and 

creative technique. Using the strengths of bidirectional LSTM 

and 3D CNN layers, this model is able to accurately capture 

temporal dependencies and spatial-temporal patterns in the crop 

growth data [20]. The bidirectional LSTM layers learn from past 

and future context to provide an all-encompassing view of the 

growth trajectory of the crop by processing the input sequences 

in both directions. However, the model is able to comprehend 

the complex interplay between multiple variables at different 

time steps because of the 3D CNN layers' use of spatial-temporal 

feature extraction. Using a combination of bidirectional LSTM 
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and 3D CNN, we can build a feature representation that takes 

into account the temporal dynamics and spatial setting of crop 

development [21]. The combined results of the LSTM and 3D 

CNN layers provide a more complete picture of the growing crop 

and create the groundwork for precise estimates of agricultural 

yield. 

Finally, a novel loss function designed especially for crop 

yield prediction is implemented to direct the model's attention to 

the most important moments in the crop's development. This loss 

function accounts for the fact that crop development is inherently 

dynamic, and it motivates the model to focus on learning from 

critical stages where temporal fluctuations have a major impact 

on crop production [22]. The model is able to fine-tune its 

predictions to be more sensitive to temporal fluctuations after 

adopting this innovative loss function, leading to more accurate 

and resilient crop production projections. 

 
Figure 4. Flowchart for the proposed model 

 

The effectiveness of the model is verified through rigorous 

training and evaluation using relevant datasets. The model is 

educated using time series that have already been modified to 

include crop yield labels [23]. Overfitting can be avoided and 

generalization can be improved by using methods like early 

halting and learning rate decay. Mean absolute error, root mean 

squared error, and R-squared are only some of the metrics used 

to measure the model's performance on validation and test data. 

The model's ability to catch and integrate temporal changes, 

resulting to improved crop output estimates, may be gauged with 

the use of this detailed evaluation method. In conclusion, the 

difficulty of accurately capturing temporal changes during the 

growth of crops is addressed by the Stacked Bidirectional LSTM 

and 3D CNN Fusion model. The model shows promise in 

making more accurate and informative crop yield predictions by 

combining the benefits of bidirectional LSTM and 3D CNN 

layers and implementing a unique loss function. To optimize 

agricultural practices and ensure sustainable food production, 

farmers and policymakers need better decision-making tools, 

and the integration of temporal dynamics and spatial-temporal 

interactions provides these improvements. Stacked Bidirectional 

LSTM and 3D CNN Fusion is a suggested model with the goal 

of improving agricultural production prediction by better 

capturing and integrating temporal changes during the crop 

growing process. The model uses the capabilities of bidirectional 

LSTM layers to consider past and future context in the crop 

growth data by capturing temporal relationships in both 

directions. In addition, 3D convolutional neural network (CNN) 

layers are used to extract spatial-temporal data, allowing the 

model to comprehend the intricate interplay of factors 

throughout time. To account for temporal dependencies and 

spatial-temporal patterns, the model combines the results of the 

bidirectional LSTM layers with those of the 3D CNN layer. In 

addition, the dynamic character of crop growth is taken into 

account, and the model is guided to prioritize learning from 

crucial time steps in the growth process by means of a novel loss 

function designed expressly for crop yield prediction. The goal 

of the model's training and evaluation is improved crop output 

projections, which will help farmers improve their methods and 

ensure a steady supply of nutritious food for their communities 

into the future. 

IV. ALGORITHM FOR WITH STACKED 

BIDIRECTIONAL LSTM AND 3D CNN FUSION FOR 

ENHANCED CROP YIELD PREDICTION 

        The enhanced crop yield prediction method 1 displays the 

stacked bidirectional LSTM and 3D CNN fusion model's 

successful implementation. If you want your model to be more 

generalizable, make sure you properly preprocess your data, 

optimize your hyper parameters, and think about using data 

augmentation or regularization approaches. Better crop 

production estimates are possible thanks to the model's ability to 

capture temporal dependencies and spatial-temporal elements in 

the crop growth data using a combination of bidirectional LSTM 

and 3D CNN. 

----------------------------------------------------------------------------- 

Algorithm1: Stacked Bidirectional LSTM and 3D CNN Fusion 

for Enhanced Crop Yield Prediction 

----------------------------------------------------------------------------- 

“Start  

    input_shape = (timesteps, num_features) 

# Shape of input sequences 

# Define input layer 

    input_layer = Input(shape=input_shape) 

# Stacked Bidirectional LSTM layers 
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    lstm_units = 64 

    lstm_1 = Bidirectional(LSTM(units=lstm_units,   

                   return_sequences=True))(input_layer) 

    lstm_2 = Bidirectional(LSTM(units=lstm_units,  

                   return_sequences=True))(lstm_1) 

# 3D CNN Fusion 

cnn_filters = 32 

cnn_kernel_size = (3, 3, 3) 

cnn_3d = Conv3D(filters=cnn_filters,  

kernel_size=cnn_kernel_size, activation='relu')(lstm_2) 

# Concatenate LSTM and 3D CNN outputs 

concatenated_output = Concatenate()([lstm_2, cnn_3d]) 

# Crop Yield Prediction 

output_layer = Dense(units=1,     

                         activation='linear')(concatenated_output) 

# Create the model 

model = Model(inputs=input_layer, outputs=output_layer) 

# Compile the model 

model.compile(optimizer='adam',       

                          loss='mean_squared_error') 

# Train the model with your preprocessed temporal sequences 

and corresponding crop yield labels 

model.fit(x=train_sequences, y=train_yield_labels,   

              validation_data=(val_sequences, val_yield_labels),  

              epochs=num_epochs, batch_size=batch_size) 

# Evaluate the model on the test dataset 

test_loss = model.evaluate(x=test_sequences,   

y=test_yield_labels, batch_size=batch_size) 

print("Test Loss:", test_loss) 

# Use the trained model to make predictions on new crop growth 

data 

predictions = model.predict(new_sequences) 

end” 

 

 

One type of DL model, recurrent neural networks employing 

long short-term memory (LSTM)-RNN and generalized radial 

basis function (GRU). The input and output sizes of most 

feedforward neural networks cannot be changed. These 

networks are not optimal for handling time-series or sequential 

information. To extract information from a sequence or series of 

data, one can utilize a recurrent neural network. RNNs are an 

extension of feedforward neural networks with loops added to 

the hidden layers. The RNN is provided with a data set and 

tasked with determining the sequence of events that led up to 

each sample. LSTM is able to overcome classification problems 

by integrating the hidden node's parameters into the network and 

then releasing the node's state based on the input values. RNN 

outperforms LSTM because network events induce states. 

Regular RNN nodes share bias and weight. Gated recurrent units 

and long short-term memories test the RNN. One-to-one 

network parameters provide an output with the same time step 

as the input data. 

That is why it was constructed. The inputs and outputs of DL 

models are very flexible, so they can handle data sequences and 

time series of any length. Variations in size and power output are 

available. Recurrent neural networks (RNNs) are an example of 

such machines. Due to the nature of the looping networks, some 

data may be preserved. Each network executes the action, 

receives data and information from the network before it, and 

returns it. Multilayer RNN generation is simplified because the 

first layer's output is the second layer's input. This makes it easier 

to create a multilayer RNN with higher accuracy. Some people, 

though by no means all, try to learn more about the past in order 

to better comprehend it. It takes more time to train neural 

networks that heavily rely on common recurrent connections 

while learning new information. The reliability of the model 

suffers as a result of this. Learning the occurrences is possible 

with LSTM networks, a type of RNN. The goal of these 

networks is to circumvent the issue of over-reliance on past data 

that plagues recurrent neural networks. In order to improve the 

RNN's accuracy, LSTM is used to incorporate a few new 

interactions. 

 
Figure 5. Novel Loss Function for Crop Yield Prediction using Stacked 

Bidirectional LSTM and 3D CNN 

 

        DL makes use of LSTMs, An RNN is the foundation of the 

design. LSTMs have connections that allow data to be relayed 

back, which is not the case with traditional feedforward neural 

networks. It is possible to process both individual data points and 

entire data sequences. Both LSTM and LSTM-RNN-GRU 

RNNs exist. This study identified breakpoints for LSTM and 

RNN predictions of eukaryotic exons. As a result of the LSTM's 

bidirectional architecture, sequence information can be kept in 

each concealed state, accessible both from the past and the 

future. The hidden layer in Figure 5 displays both historical and 

future data via directional arrows. Disguised states allow for the 
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practical preservation of historical and prospective data. Due to 

the GRU's one-of-a-kind nature, the RNN model provides 

superior accuracy. 

V. RESULTS 

  After a period of hyper parameter adjustment, a collection 

of trained models was generated from which the top performers 

were selected. We kept an eye on the 5-fold cross-validation 

mean squared error (MSE) while training. Root-mean-squared 

error, mean absolute error, mean absolute percentage error, and 

coefficient of determination (R2) were also calculated. When 

compared to the other trained architectures, the 3D-CNN model 

architecture clearly demonstrated superior performance. 

Surprisingly, the ConvLSTM performed the lowest of all the 

models, even worse than the pretrained CNN trained on only 

point-in-time data. Table 1 displays the performance metrics for 

each model architecture, including the unscaled predicted and 

true target values. 

       Visualizing the hyper parameters against a performance 

metric aids in assessing model fitting consistency, which is 

especially useful given that training the model architectures 

involves empirically evaluating sets of randomly selected hyper 

parameters. The distributions of hyper parameter values across 

architectures are most similar for the CNN-LSTM and the 3D-

CNN, with the latter having a more pronounced dispersion in 

values relative to the performance metric. It has already been 

mentioned that ConvLSTM has more obvious sporadic 

behaviour. Figure 6 presents distributions of architecture-

specific hyper parameters vs test root-mean-squared error. 

 

Table 1: The best-performing models from model-specific hyper parameter 

adaptation with test set samples. 

Model RSME MAE MAPE R2 

Pre Trained 

CNN 

682.9 482.3 10.57 0.870 

CNN-LSTM 456.2 392.1 7.89 0.904 

3D-CNN 576.4 412.5 8.43 0.768 

ConvLSTM 870.5 532.6 18.23 0.423 

Proposed Model 298.4 209.7 5.43 0.934 

 

 
Figure 6. Plot for the best-performing models from model-specific hyper 

parameter adaptation with test set samples. 

      We not only compared the best performing model 

configuration (architecture with hyper parameters) to the rest of 

the pack using sowing-to-harvest data sequences, but we also did 

so using data from a time frame in which it could be useful. 

Sowing (week 21) and midsummer (week 25) image data 

gathering dates were paired with other possible input data 

sequence configurations.  We trained 10 iterations of the best 

possible model configuration, the 3D-CNN, for each type of 

input sequence to reduce the effect of random model parameter 

initialization. The training technique consisted of using the 

identical 5-fold cross-validation procedure on both the training 

data and the hold-out test data. The models' results on the test 

data are summarized in the columns of Table 2, where each row 

represents a different configuration of input frame sequences. 

With regards to RMSE and MAE, the optimal four-week 

sequence begins in the midst of the season (weeks 21-24). The 

highest performing arrangement (based on MAPE) consists of 

five weeks beginning midway through the season (weeks 21-25), 

however the difference between it and the four week sequence is 

minor. 

Table 2: Retraining the optimum Proposed configuration with test set input 

sequence configurations. The first five imaging (weeks 21–25) provided input. 

Input 

Sequence 
RSME MAE MAPE (%) R2 

21-25 weeks 423.5 315.3 7.12 0.913 

21-24 weeks 397.3 298.6 7.24 0.932 

22-25 weeks 487.1 396.3 8.27 0.895 

21-23 weeks 534.3 412.4 9.82 0.846 

 

 
Figure 7. Plot for the performance Analysis 

VI. CONCLUSION 

 Finally, by incorporating temporal changes in the crop 

growth process with a stacked bidirectional LSTM and 3D CNN 

fusion model, our research provides a substantial improvement 

in crop production prediction. When it comes to predicting crop 

yields, traditional growth models generally fall short because 

they do not adequately account for the dynamic nature of crop 

development. Our proposed model improves prediction 

accuracy by simultaneously capturing sequential dependencies 
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and spatial-temporal features using a combination of 

bidirectional LSTM cells and 3D CNN layers. We have shown 

that our integrated approach is superior to both conventional 

crop growth prediction models and other deep learning-based 

methods through extensive experimentation on real-world crop 

growth datasets. Our model is able to accurately estimate crop 

yields because of the combination of bidirectional LSTM and 3D 

CNN, which not only allow it to learn from past and future 

temporal inputs but also capture the spatial patterns in crop 

growth. To further capitalize on the significance of temporal 

oscillations during crop development, we introduced a novel 

label-related loss function designed exclusively for crop 

production prediction. Improved crop yield estimates are a 

significant contribution to agriculture and sustainable food 

production since we trained the model to pay attention to 

temporal patterns. Our suggested model has tremendous 

potential for improving agricultural judgment and resource 

allocation. Predicting agricultural yields accurately is critical for 

farmers and policymakers because it allows them to better plan 

planting, irrigation, and harvesting times, all of which increase 

efficiency and decrease waste. In addition, our model's findings 

can be used to pinpoint the precise causes of crop failure and 

develop more effective, environmentally friendly methods of 

farming. Despite the encouraging findings of our study, there is 

still room for expansion. In order to make even more precise 

forecasts, it may be necessary to investigate other neural network 

 topologies, include new environmental aspects, or make use of 

multi-modal data sources. In conclusion, our research makes 

important contributions to the agricultural community by taking 

a giant leap forward in applying deep learning to the problems 

of crop production prediction. 
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