
International Journal on Recent and Innovation Trends in Computing and Communication 

ISSN: 2321-8169 Volume: 11 Issue: 10 

DOI: https://doi.org/10.17762/ijritcc.v11i10.8491 

Article Received: 26 July 2023 Revised: 16 September 2023 Accepted: 05 October 2023 

___________________________________________________________________________________________________________________ 

 
    286 
IJRITCC | October 2023, Available @ http://www.ijritcc.org 
 

Sentence Semantic Similarity based Complex 

Network approach for Word Sense Disambiguation 
 

1Gopal Mohadikar, 2Sonu Khapekar, 3Dr. M. K. Kodmelwar, 4Supriya Bhosale, 5Sopan Bapu Kshirsagar, 6Ganesh 

Chandrabhan Shelke 
1Sr. Assistant Professor, Department of Mechanical Engineering, Tolani Maritime Institute, Induri, Pune, India(MS).ORCID ID  0009-0004-

5593-7607 

Email: gmohadikar@gmail.com 
2Affiliation: Nutan Maharashtra Institute of Engineering & Technology, Talegaon(D), Pune, India(MS). 

ORCID ID: 0009-0007-9677-8931 

E-mail: sonukhapekar999@gmail.com 
3Affiliation: Vishwakarma Institute of Information Technology, Pune 

ORCID:0000-0001-5248-528X 

Email: manohar.kodmelwar@viit.ac.in 
4Affiliation: Nutan Maharashtra Institute of Engineering & Technology, Talegaon(D), Pune, India(MS). 

ORCID ID:0000-0002-7847-0681 

Email: supriyabhosale9@gmail.com 
5Affiliation: Nutan Maharashtra Institute of Engineering & Technology, Talegaon(D), Pune, India(MS). 

ORCID ID:0009-0006-0683-5369 

Email:sopankshirsagar02@gmail.com 
6Affiliation: Vishwakarma Institute of Information Technology, Pune. 

ORCID ID: 0009-0009-2297-7748 

Email: ganesh.shelke@viit.ac.in 

 

Abstract 

Word Sense Disambiguation is a branch of Natural Language Processing(NLP) that deals with multi-sense words. The multi-sense words are 

referred to as the polysemous words. The term lexical ambiguity is introduced by the multi-sense words. The existing sense disambiguation module 

works effectively for single sentences with available context information. The word embedding plays a vital role in the process of disambiguation. 

The context-dependent word embedding model is used for disambiguation. The main goal of this research paper is to disambiguate the polysemous 

words by considering available context information. The main identified challenge of disambiguation is the ambiguous word without context 

information. The discussed complex network approach is disambiguating ambiguous sentences by considering the semantic similarities. The 

sentence semantic similarity-based network is constructed for disambiguating ambiguous sentences. The proposed methodology is trained with 

SemCor, Adaptive-Lex, and OMSTI standard lexical resources. The findings state that the discussed methodology is working fine for 

disambiguating large documents where the sense of ambiguous sentences is on the adjacent sentences.  

 

Keywords: word sense disambiguation, semantic similarity, word vector, complex network 

 

1. Introduction 

 

 

Figure 1.1 Complex Network for WSD                         Figure 1.2 S-3 based WSD for large documents 
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Semantic similarity is a fundamental concept in NLP and 

computational linguistics shown in Figure 1.1. It revolves 

around gauging the closeness of meaning between words, 

phrases, or entire texts. This closeness is crucial in various 

applications, such as information retrieval, text summarization, 

question-answering systems, and machine translation [1]. In 

assessing semantic similarity, we consider how similar two 

linguistic units are in meaning, context, or usage. It's not just 

about the words themselves but their meaning and how they 

interact within a given context [2]. For instance, "strong" and 

"powerful" are semantically similar because they share a related 

meaning in most contexts shown in Figure 1.2. Measuring 

semantic similarity often involves mathematical or 

computational models that process linguistic features, word 

embeddings, or other representations to quantify the likeness in 

meaning. Techniques like cosine similarity on word vectors, 

knowledge graph-based methods, and deep learning approaches 

play vital roles in this analysis. One of the popular approaches 

is Word2Vec, which maps words into continuous vector spaces 

based on their co-occurrence patterns in a corpus. Words with 

similar meanings are mapped close to each other in this vector 

space, indicating their semantic similarity. Understanding 

semantic similarity is crucial in many NLP tasks [2][3]. For 

example, in a search engine, if a user searches for "apple fruit," 

the search engine should retrieve documents containing "apple 

fruit" but also documents related to "fruit" more broadly. This 

requires a nuanced understanding of semantic similarity. In 

conclusion, semantic similarity is a core concept in the field of 

NLP, enabling computers to comprehend and process language 

more effectively [4]. By measuring the closeness of meanings 

between words and texts, we can enhance various language-

driven applications, ultimately improving how we interact with 

and extract information from vast amounts of textual data. 

Table 1.1 shows the semantic similarity of words with respect 

to semantic score. 

 

Table 1.1 Semantic Similarity of Words 

 

Term 1 Term 2 Semantic Similarity 

Apple Banana High   

Car Bicycle Moderate 

Dog Cat   High    

Book Pen Low 

Planet Galaxy High 

 

In this table, we're comparing different terms and assigning a 

level of semantic similarity. The values (High, Moderate, Low) 

are based on the perceived similarity of the terms in meaning. 

Table 1.2 provides a simple representation of semantic 

similarity. 

 

Table 1.2 Summary of word semantic similarity techniques 

 

Technique Description Advantages Disadvantages Applications 

Jaccard Similarity Compares sets of words or 

tokens 

Simple and easy to 

implement 

Ignores word order Text clustering, document 

similarity 

Cosine Similarity Compares word frequency 

vectors 

Handles high-

dimensional data 

Sensitive to document 

length 

Information retrieval, text 

classification 

Edit Distance Measures edit operations 

needed 

Captures spelling 

similarities 

Sensitive to length 

differences 

Spell checking, 

bioinformatics 

WordNet-Based 

Similarity 

Utilizes WordNet for 

similarity 

Considers semantic 

relationships 

Limited to WordNet's 

coverage 

Semantic search, ontology 

alignment 

Distributional 

Similarity 

Measures similarity based 

on word co-occurrence 

Captures contextual 

relationships 

Sensitive to corpus 

choice 

Sentiment analysis, 

recommendation systems 

Word Embeddings Represents words as vectors 

in a space 

Captures semantic 

relationships 

Data-intensive 

training 

Language translation, 

sentiment analysis 

 

2. Literature Review 

The review of semantic similarity techniques is done with 

respect to the techniques as, 

 

2.1. Cosine Similarity 

Cosine similarity is a widely used metric to measure the 

similarity between two vectors, often applied in NLP for 

assessing semantic similarity. It's particularly valuable in tasks 

like text analysis, document similarity, and recommendation 

systems [5]. 

 

As shown in Figure 2.1, In the context of semantic similarity, 

cosine similarity quantifies the cosine of the angle between two 

non-zero vectors, representing the textual content of interest. 

Let's break down the key components and the working principle 

of cosine similarity. 
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Figure 2.1 Cosine Distance of words 

 

Given two vectors, A and B, cosine similarity is calculated 

using the following formula-1: 

 

Cosine Similarity (A, B) =
A ∗ B

||𝐴|| ∗ ||𝐵||
 (1) 

 Where A*B represents the dot product of vectors A and B. 

∥A∥ * ∥B∥ denotes the Euclidean norms of vectors A and B, 

respectively. 

The cosine similarity ranges from -1 to 1. 1 indicates perfect 

similarity, where the vectors align completely. 0 means no 

similarity, implying the vectors are orthogonal. -1 represents 

perfect dissimilarity, with the vectors pointing in opposite 

directions. 

 

2.2. Jaccard Similarity 

Jaccard Similarity is shown in Figure 2.2, It is a metric used to 

determine the similarity and diversity of sample sets. It 

measures the similarity between two sets by calculating the 

ratio of the intersection of the sets to the union of the sets [6]. 

In the context of semantic similarity, Jaccard Similarity is often 

used to compare the similarity of documents or texts based on 

the words or terms they contain. The Jaccard Similarity 

coefficient (J) is calculated using the following formula-2: 

 

 
Figure 2.2 Jaccard Similarity based on set theory 

 

𝐽(𝐴, 𝐵)

=
Number of common elements in sets 𝐴 and 𝐵

Number of distinct elements in sets 𝐴 and 𝐵
 (2) 

 

Where: 

A and B are the sets being compared, typically representing the 

words or terms in two documents. 

The numerator represents the count of common elements 

(words or terms) in both sets. 

The denominator represents the count of distinct elements 

(words or terms) across both sets. 

A higher Jaccard Similarity coefficient indicates a higher level 

of similarity between the sets being compared. Researchers and 

practitioners often use Jaccard Similarity in NLP tasks such as 

text clustering, document similarity, and information retrieval. 

It helps in identifying relationships and similarities between 

different pieces of text, which is valuable in various 
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applications like recommendation systems, text summarization, 

and more. 

It's essential to preprocess the text appropriately before 

calculating the Jaccard Similarity. This preprocessing may 

include removing stop words, stemming or lemmatizing words, 

and converting text to lowercase to ensure accurate similarity 

measurements. 

 

2.3. Word2Vec 

As shown in figure 2.3, Word2Vec is based on the idea that 

words with similar meanings tend to appear in similar contexts 

within a large corpus of text. It learns word embeddings, which 

are vector representations of words, in such a way that 

semantically similar words are closer to each other in the vector 

space [7]. The two main algorithms used for Word2Vec are 

Continuous Bag of Words (CBOW) and Skip-gram. CBOW 

predicts a target word based on its context, while Skip-gram 

predicts the context words given a target word. Both approaches 

result in word embeddings that encode semantic information. 

 

 

 
Figure 2.3 Word2Vector technique 

 

2.4. GloVe 

As shown in Figure 2.4, GloVe, short for Global Vectors for Word Representation, is an unsupervised learning algorithm designed 

to capture semantic similarities between words. It utilizes co-occurrence statistics to represent words in a continuous vector space. 

 

 
Figure 2.4 GloVe Technique 
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The fundamental idea behind GloVe is to establish relationships 

between words based on their co-occurrences within a large 

corpus of text. Co-occurrence is a powerful indicator of 

semantic similarity: words that often appear together are likely 

to have related meanings. GloVe calculates word embeddings 

by constructing a co-occurrence matrix, where each element 

represents how often two words co-occur [8]. The algorithm 

then optimizes these embeddings to minimize the difference 

between the dot product of word vectors and the logarithm of 

their co-occurrence probabilities. Once the training is complete, 

each word is represented as a high-dimensional vector in the 

embedding space. Importantly, words with similar meanings or 

usage patterns are positioned close to each other in this vector 

space. Semantic similarity in GloVe is quantified through 

vector operations. Words with similar meanings will have 

vectors that are close in distance, often measured using cosine 

similarity. The closer the vectors, the more similar the words in 

terms of meaning. Researchers and practitioners use these 

vector representations to solve various NLP tasks, such as 

sentiment analysis, named entity recognition, and machine 

translation. In conclusion, GloVe is a powerful tool for 

capturing semantic similarity in word representations, offering 

a robust foundation for many NLP applications. 

 

2.5. FastText 

FastText is an extension of the Word2Vec model. Instead of 

considering words as the smallest units like Word2Vec, 

FastText views words as bags of character n-grams [9]. This 

approach allows it to generate embeddings for out-of-

vocabulary words and capture subword information. 

2.6. BERT  

BERT (Bidirectional Encoder Representations from 

Transformers) is a revolutionary NLP model that has 

significantly advanced the field of semantic similarity analysis. 

Developed by Google AI in 2018, BERT is designed to 

understand the context and meaning of words in a sentence by 

considering both the left and right context, hence the term 

"bidirectional". 

 

At its core, BERT is a deep learning model based on the 

Transformer architecture. Unlike previous NLP models, BERT 

is pre-trained on an extensive corpus of text from the internet, 

allowing it to capture a vast amount of linguistic knowledge 

[10]. This pre-training phase equips BERT with a rich 

understanding of word relationships, sentence structures, and 

the nuances of language. 

 

2.7. Doc2Vec 

The Doc2Vec algorithm involves training a neural network to 

predict words in a similar context, while simultaneously 

learning the document vectors. This allows the model to 

understand the semantic representation of documents in a 

continuous vector space [11]. To measure semantic similarity 

between documents using Doc2Vec, you can use various 

similarity metrics such as cosine similarity, Euclidean distance, 

or Manhattan distance on the document vectors. Table 2.1 

shows the summary of semantic similarity techniques with key 

features. 

 

Table 2.1 Summary of Semantic Similarity Models 

 

Technique Description Key Features References 

Cosine Similarity Measures cosine of the angle between vectors Vector-based approach, widely 

used 

[Salton et al., 1975] 

Jaccard 

Similarity 

Compares set intersection and union of terms Good for text data, set-based 

approach 

[Jaccard, 1901] 

Word2Vec Neural network-based word embeddings Captures semantic relationships [Mikolov et al., 2013] 

GloVe Global vectors for word representation Considers global word co-

occurrences 

[Pennington et al., 

2014] 

FastText Word embeddings with subword information Handles out-of-vocabulary 

words 

[Bojanowski et al., 

2017] 

BERT 

Embeddings 

Bidirectional Encoder Representations from 

Transformers 

Deep contextual embeddings [Devlin et al., 2018] 

Doc2Vec Document embeddings using neural networks Captures document-level 

semantics 

[Le and Mikolov, 

2014] 

 

 

 

 

 

http://www.ijritcc.org/


International Journal on Recent and Innovation Trends in Computing and Communication 

ISSN: 2321-8169 Volume: 11 Issue: 10 

DOI: https://doi.org/10.17762/ijritcc.v11i10.8491 

Article Received: 26 July 2023 Revised: 16 September 2023 Accepted: 05 October 2023 

___________________________________________________________________________________________________________________ 

 
    291 
IJRITCC | October 2023, Available @ http://www.ijritcc.org 
 

3. Methodology 

 

 
Figure 3.1 Complex network approach 

 

The discussed model for WSD in large documents works 

concerning the semantic similarity of the sentences. The WSD 

for polysemous words is concerned with semantic similarity 

and context information. The proposed methodology accepts 

large documents as input. The sentence splitting of the 

document is done by assigning a unique identifier to every 

sentence. This sentence is further used as a vertex id. All the 

sentences of the document are represented in vertex space by 

considering individual sentences as the vertex with a unique id. 

The challenge here is how to draw the edges between the vertex 

and what pair of the vertex is selected for the edges. The 

proposed methodology calculates the semantic similarities of 

the vertex of semantic similarity sentences and based on the 

semantic similarity value, the weighted edge is drawn. The 

importance of semantic similarity is in the range of ‘0’ to ‘1’. 

The ‘1’ is very close to the meaning of semantic similarity and 

the value ‘0’ indicates a significantly less semantic similar 

value 

 

3.1. Sentence Semantic Similarity Model 

The above section describes the semantic similarity of the 

words based on the HyperTrees. This section elaborated on the 

calculation of the semantic similarity of the sentences. The 

hypothesis is tested here that we can use the HyperTrees for 

calculating the semantic similarities of the sentences. Based on 

the HyperTrees, the semantic similarity of the sentences is 

calculated. As shown in figure 3.2, the semantic similarity of 

sentence-1, “Let’s go to the bank”, and sentence-2, “Said by 

Anay to Ram for deposit”, is calculated. The semantic 

similarity of every word of sentence 1 to every other word of 

sentence 2 is calculated. It is observed that the semantic 

similarity of the phrase pair ‘bank’ and ‘deposit’ is different. 

The semantic similarity of the word pair ‘bank’ and ‘deposit’ is 

0.5882 when calculated individually. The semantic similarity 

of the words ‘bank’ and ‘deposit’ in the sentences is 0.3. The 

error value 0.12356 needs to be addressed. The S-3 model 

generates the semantic similarity of the words based on the 

semantic similarity score; the weighted edge is drawn and the 

same semantic similarity score is used to disambiguate the 

vertex without context information. In the above example, the 

semantic similarity score is 0.34 for vertex-1, and vertex-2, and 

based on the same, the edge is drawn and the weight value is 

represented as a weighted edge, as shown in Figure 3.1. 

 

wup( bank_deposit$n$1 , deposit_account$n$1 ) = 0.3 

T1= HyperTrees(bank_deposit$n$1)=[1]*ROOT*$n$1 

<entity$n$1 <abstraction$n$6<measure$n$2<system_of_me

asurement$n$1<standard$n$1<medium_of_exchange$n$1<

money$n$1<fund$n$1<bank_deposit$n$1 

T2= HyperTrees(deposit_account$n$1)=[1]*ROOT*$n$1 

<entity$n$1<abstraction$n$6<attribute$n$2 <state$n$2 <rel

ationship$n$3 <account$n$3<bank_account$n$1<savings_a

ccount$n$1<deposit_account$n$1 

Lowest_Common_Subsumer(s) = 

arg_max(depth(subsumer(T1,T2)))={ subsumer(T1[1], T2[1]) 

}= { abstraction$n$6 } 

Depth_LCS = depth( abstraction$n$6 ) = 3 

Depth_1 = min(depth( {tree in T1 | tree contains LCS } )) = 10 

Depth_2 = min(depth( {tree in T2 | tree contains LCS } )) = 10 

Min_score= 2 * Depth_LCS / ( Depth_1 + Depth_2 ) = 2 * 3 / 

(10 + 10) = 0.3 
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Figure 3.2 Calculation of Semantic Similarity 

 

4. Result and Discussion 

The adaptive methodology for WSD in the large documents 

is tested with the RNN-LSTM model. The complex network 

approach for the WSD in the large document plays playing 

important role. The construction of a complex network of 

large documents is done by calculating the semantic 

similarity of the sentences. This methodology is the major 

contributor to the disambiguation of ambiguous sentences 

with a lack of context information. As shown in Figure 4.1.1, 

The proposed methodology generates 83% and 80% accuracy 

with OMSTI for disambiguating single sentences and large 

documents respectively. 

This methodology generates 81.3% and 81.00% accuracy 

while disambiguating single sentences and large documents 

for SemCor shown in Figure 4.1.2. This methodology 

generates 85.39% and 83% accuracy with Adaptive-Lex for 

disambiguating single sentences and large documents 

respectively shown in Figure 4.1.3. As shown in Figure 4.1.4, 

the percentage of improvement is 4.09 for single-sentence 

disambiguation and 3.00% for disambiguating large 

documents. 

 

  
Figure 4.1.1 Result of WSD for OMSTI Figure 4.1.2 Result of WSD for SemCor 

 
 

Figure 4.1.2 Result of WSD for Adaptive-Lex Figure 4.1.1 Comparative Result of WSD 
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5. Conclusion and future work 

WSD is a live problem of NLP, most of the WSD research is 

on a single-sentence disambiguation. The complex network 

approach is a revolutionary methodology for disambiguating 

large documents. In the complex network approach, the 

document is represented with the vertices and based on the 

sentence semantic similarities the semantic score of the 

sentences is calculated. The semantic similarity of the 

sentences is the distance between the vertices. The sentences 

with a lack of context information are disambiguated by 

considering the closest semantic similar sentence. This 

methodology is working fine with the freely available lexical 

resource WordNet. The training of the module is done with 

Adaptive-Lex SemCor and OMSTI. This methodology is 

tested for 1200 sentences in the future maximum sentences 

will be added with the context-dependent dataset. 
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