
International Journal on Recent and Innovation Trends in Computing and Communication

ISSN: 2321-8169 Volume: 11 Issue: 10

DOI: https://doi.org/10.17762/ijritcc.v11i10.8491

Article Received: 26 July 2023 Revised: 16 September 2023 Accepted: 05 October 2023

 286
IJRITCC | October 2023, Available @ http://www.ijritcc.org

Sentence Semantic Similarity based Complex

Network approach for Word Sense Disambiguation

1Gopal Mohadikar, 2Sonu Khapekar, 3Dr. M. K. Kodmelwar, 4Supriya Bhosale, 5Sopan Bapu Kshirsagar, 6Ganesh

Chandrabhan Shelke
1Sr. Assistant Professor, Department of Mechanical Engineering, Tolani Maritime Institute, Induri, Pune, India(MS).ORCID ID 0009-0004-

5593-7607

Email: gmohadikar@gmail.com
2Affiliation: Nutan Maharashtra Institute of Engineering & Technology, Talegaon(D), Pune, India(MS).

ORCID ID: 0009-0007-9677-8931

E-mail: sonukhapekar999@gmail.com
3Affiliation: Vishwakarma Institute of Information Technology, Pune

ORCID:0000-0001-5248-528X

Email: manohar.kodmelwar@viit.ac.in
4Affiliation: Nutan Maharashtra Institute of Engineering & Technology, Talegaon(D), Pune, India(MS).

ORCID ID:0000-0002-7847-0681

Email: supriyabhosale9@gmail.com
5Affiliation: Nutan Maharashtra Institute of Engineering & Technology, Talegaon(D), Pune, India(MS).

ORCID ID:0009-0006-0683-5369

Email:sopankshirsagar02@gmail.com
6Affiliation: Vishwakarma Institute of Information Technology, Pune.

ORCID ID: 0009-0009-2297-7748

Email: ganesh.shelke@viit.ac.in

Abstract

Word Sense Disambiguation is a branch of Natural Language Processing(NLP) that deals with multi-sense words. The multi-sense words are

referred to as the polysemous words. The term lexical ambiguity is introduced by the multi-sense words. The existing sense disambiguation module

works effectively for single sentences with available context information. The word embedding plays a vital role in the process of disambiguation.

The context-dependent word embedding model is used for disambiguation. The main goal of this research paper is to disambiguate the polysemous

words by considering available context information. The main identified challenge of disambiguation is the ambiguous word without context

information. The discussed complex network approach is disambiguating ambiguous sentences by considering the semantic similarities. The

sentence semantic similarity-based network is constructed for disambiguating ambiguous sentences. The proposed methodology is trained with

SemCor, Adaptive-Lex, and OMSTI standard lexical resources. The findings state that the discussed methodology is working fine for

disambiguating large documents where the sense of ambiguous sentences is on the adjacent sentences.

Keywords: word sense disambiguation, semantic similarity, word vector, complex network

1. Introduction

Figure 1.1 Complex Network for WSD Figure 1.2 S-3 based WSD for large documents

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication

ISSN: 2321-8169 Volume: 11 Issue: 10

DOI: https://doi.org/10.17762/ijritcc.v11i10.8491

Article Received: 26 July 2023 Revised: 16 September 2023 Accepted: 05 October 2023

 287
IJRITCC | October 2023, Available @ http://www.ijritcc.org

Semantic similarity is a fundamental concept in NLP and

computational linguistics shown in Figure 1.1. It revolves

around gauging the closeness of meaning between words,

phrases, or entire texts. This closeness is crucial in various

applications, such as information retrieval, text summarization,

question-answering systems, and machine translation [1]. In

assessing semantic similarity, we consider how similar two

linguistic units are in meaning, context, or usage. It's not just

about the words themselves but their meaning and how they

interact within a given context [2]. For instance, "strong" and

"powerful" are semantically similar because they share a related

meaning in most contexts shown in Figure 1.2. Measuring

semantic similarity often involves mathematical or

computational models that process linguistic features, word

embeddings, or other representations to quantify the likeness in

meaning. Techniques like cosine similarity on word vectors,

knowledge graph-based methods, and deep learning approaches

play vital roles in this analysis. One of the popular approaches

is Word2Vec, which maps words into continuous vector spaces

based on their co-occurrence patterns in a corpus. Words with

similar meanings are mapped close to each other in this vector

space, indicating their semantic similarity. Understanding

semantic similarity is crucial in many NLP tasks [2][3]. For

example, in a search engine, if a user searches for "apple fruit,"

the search engine should retrieve documents containing "apple

fruit" but also documents related to "fruit" more broadly. This

requires a nuanced understanding of semantic similarity. In

conclusion, semantic similarity is a core concept in the field of

NLP, enabling computers to comprehend and process language

more effectively [4]. By measuring the closeness of meanings

between words and texts, we can enhance various language-

driven applications, ultimately improving how we interact with

and extract information from vast amounts of textual data.

Table 1.1 shows the semantic similarity of words with respect

to semantic score.

Table 1.1 Semantic Similarity of Words

Term 1 Term 2 Semantic Similarity

Apple Banana High

Car Bicycle Moderate

Dog Cat High

Book Pen Low

Planet Galaxy High

In this table, we're comparing different terms and assigning a

level of semantic similarity. The values (High, Moderate, Low)

are based on the perceived similarity of the terms in meaning.

Table 1.2 provides a simple representation of semantic

similarity.

Table 1.2 Summary of word semantic similarity techniques

Technique Description Advantages Disadvantages Applications

Jaccard Similarity Compares sets of words or

tokens

Simple and easy to

implement

Ignores word order Text clustering, document

similarity

Cosine Similarity Compares word frequency

vectors

Handles high-

dimensional data

Sensitive to document

length

Information retrieval, text

classification

Edit Distance Measures edit operations

needed

Captures spelling

similarities

Sensitive to length

differences

Spell checking,

bioinformatics

WordNet-Based

Similarity

Utilizes WordNet for

similarity

Considers semantic

relationships

Limited to WordNet's

coverage

Semantic search, ontology

alignment

Distributional

Similarity

Measures similarity based

on word co-occurrence

Captures contextual

relationships

Sensitive to corpus

choice

Sentiment analysis,

recommendation systems

Word Embeddings Represents words as vectors

in a space

Captures semantic

relationships

Data-intensive

training

Language translation,

sentiment analysis

2. Literature Review

The review of semantic similarity techniques is done with

respect to the techniques as,

2.1. Cosine Similarity

Cosine similarity is a widely used metric to measure the

similarity between two vectors, often applied in NLP for

assessing semantic similarity. It's particularly valuable in tasks

like text analysis, document similarity, and recommendation

systems [5].

As shown in Figure 2.1, In the context of semantic similarity,

cosine similarity quantifies the cosine of the angle between two

non-zero vectors, representing the textual content of interest.

Let's break down the key components and the working principle

of cosine similarity.

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication

ISSN: 2321-8169 Volume: 11 Issue: 10

DOI: https://doi.org/10.17762/ijritcc.v11i10.8491

Article Received: 26 July 2023 Revised: 16 September 2023 Accepted: 05 October 2023

 288
IJRITCC | October 2023, Available @ http://www.ijritcc.org

Figure 2.1 Cosine Distance of words

Given two vectors, A and B, cosine similarity is calculated

using the following formula-1:

Cosine Similarity (A, B) =
A ∗ B

||𝐴|| ∗ ||𝐵||
 (1)

 Where A*B represents the dot product of vectors A and B.

∥A∥ * ∥B∥ denotes the Euclidean norms of vectors A and B,

respectively.

The cosine similarity ranges from -1 to 1. 1 indicates perfect

similarity, where the vectors align completely. 0 means no

similarity, implying the vectors are orthogonal. -1 represents

perfect dissimilarity, with the vectors pointing in opposite

directions.

2.2. Jaccard Similarity

Jaccard Similarity is shown in Figure 2.2, It is a metric used to

determine the similarity and diversity of sample sets. It

measures the similarity between two sets by calculating the

ratio of the intersection of the sets to the union of the sets [6].

In the context of semantic similarity, Jaccard Similarity is often

used to compare the similarity of documents or texts based on

the words or terms they contain. The Jaccard Similarity

coefficient (J) is calculated using the following formula-2:

Figure 2.2 Jaccard Similarity based on set theory

𝐽(𝐴, 𝐵)

=
Number of common elements in sets 𝐴 and 𝐵

Number of distinct elements in sets 𝐴 and 𝐵
 (2)

Where:

A and B are the sets being compared, typically representing the

words or terms in two documents.

The numerator represents the count of common elements

(words or terms) in both sets.

The denominator represents the count of distinct elements

(words or terms) across both sets.

A higher Jaccard Similarity coefficient indicates a higher level

of similarity between the sets being compared. Researchers and

practitioners often use Jaccard Similarity in NLP tasks such as

text clustering, document similarity, and information retrieval.

It helps in identifying relationships and similarities between

different pieces of text, which is valuable in various

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication

ISSN: 2321-8169 Volume: 11 Issue: 10

DOI: https://doi.org/10.17762/ijritcc.v11i10.8491

Article Received: 26 July 2023 Revised: 16 September 2023 Accepted: 05 October 2023

 289
IJRITCC | October 2023, Available @ http://www.ijritcc.org

applications like recommendation systems, text summarization,

and more.

It's essential to preprocess the text appropriately before

calculating the Jaccard Similarity. This preprocessing may

include removing stop words, stemming or lemmatizing words,

and converting text to lowercase to ensure accurate similarity

measurements.

2.3. Word2Vec

As shown in figure 2.3, Word2Vec is based on the idea that

words with similar meanings tend to appear in similar contexts

within a large corpus of text. It learns word embeddings, which

are vector representations of words, in such a way that

semantically similar words are closer to each other in the vector

space [7]. The two main algorithms used for Word2Vec are

Continuous Bag of Words (CBOW) and Skip-gram. CBOW

predicts a target word based on its context, while Skip-gram

predicts the context words given a target word. Both approaches

result in word embeddings that encode semantic information.

Figure 2.3 Word2Vector technique

2.4. GloVe

As shown in Figure 2.4, GloVe, short for Global Vectors for Word Representation, is an unsupervised learning algorithm designed

to capture semantic similarities between words. It utilizes co-occurrence statistics to represent words in a continuous vector space.

Figure 2.4 GloVe Technique

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication

ISSN: 2321-8169 Volume: 11 Issue: 10

DOI: https://doi.org/10.17762/ijritcc.v11i10.8491

Article Received: 26 July 2023 Revised: 16 September 2023 Accepted: 05 October 2023

 290
IJRITCC | October 2023, Available @ http://www.ijritcc.org

The fundamental idea behind GloVe is to establish relationships

between words based on their co-occurrences within a large

corpus of text. Co-occurrence is a powerful indicator of

semantic similarity: words that often appear together are likely

to have related meanings. GloVe calculates word embeddings

by constructing a co-occurrence matrix, where each element

represents how often two words co-occur [8]. The algorithm

then optimizes these embeddings to minimize the difference

between the dot product of word vectors and the logarithm of

their co-occurrence probabilities. Once the training is complete,

each word is represented as a high-dimensional vector in the

embedding space. Importantly, words with similar meanings or

usage patterns are positioned close to each other in this vector

space. Semantic similarity in GloVe is quantified through

vector operations. Words with similar meanings will have

vectors that are close in distance, often measured using cosine

similarity. The closer the vectors, the more similar the words in

terms of meaning. Researchers and practitioners use these

vector representations to solve various NLP tasks, such as

sentiment analysis, named entity recognition, and machine

translation. In conclusion, GloVe is a powerful tool for

capturing semantic similarity in word representations, offering

a robust foundation for many NLP applications.

2.5. FastText

FastText is an extension of the Word2Vec model. Instead of

considering words as the smallest units like Word2Vec,

FastText views words as bags of character n-grams [9]. This

approach allows it to generate embeddings for out-of-

vocabulary words and capture subword information.

2.6. BERT

BERT (Bidirectional Encoder Representations from

Transformers) is a revolutionary NLP model that has

significantly advanced the field of semantic similarity analysis.

Developed by Google AI in 2018, BERT is designed to

understand the context and meaning of words in a sentence by

considering both the left and right context, hence the term

"bidirectional".

At its core, BERT is a deep learning model based on the

Transformer architecture. Unlike previous NLP models, BERT

is pre-trained on an extensive corpus of text from the internet,

allowing it to capture a vast amount of linguistic knowledge

[10]. This pre-training phase equips BERT with a rich

understanding of word relationships, sentence structures, and

the nuances of language.

2.7. Doc2Vec

The Doc2Vec algorithm involves training a neural network to

predict words in a similar context, while simultaneously

learning the document vectors. This allows the model to

understand the semantic representation of documents in a

continuous vector space [11]. To measure semantic similarity

between documents using Doc2Vec, you can use various

similarity metrics such as cosine similarity, Euclidean distance,

or Manhattan distance on the document vectors. Table 2.1

shows the summary of semantic similarity techniques with key

features.

Table 2.1 Summary of Semantic Similarity Models

Technique Description Key Features References

Cosine Similarity Measures cosine of the angle between vectors Vector-based approach, widely

used

[Salton et al., 1975]

Jaccard

Similarity

Compares set intersection and union of terms Good for text data, set-based

approach

[Jaccard, 1901]

Word2Vec Neural network-based word embeddings Captures semantic relationships [Mikolov et al., 2013]

GloVe Global vectors for word representation Considers global word co-

occurrences

[Pennington et al.,

2014]

FastText Word embeddings with subword information Handles out-of-vocabulary

words

[Bojanowski et al.,

2017]

BERT

Embeddings

Bidirectional Encoder Representations from

Transformers

Deep contextual embeddings [Devlin et al., 2018]

Doc2Vec Document embeddings using neural networks Captures document-level

semantics

[Le and Mikolov,

2014]

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication

ISSN: 2321-8169 Volume: 11 Issue: 10

DOI: https://doi.org/10.17762/ijritcc.v11i10.8491

Article Received: 26 July 2023 Revised: 16 September 2023 Accepted: 05 October 2023

 291
IJRITCC | October 2023, Available @ http://www.ijritcc.org

3. Methodology

Figure 3.1 Complex network approach

The discussed model for WSD in large documents works

concerning the semantic similarity of the sentences. The WSD

for polysemous words is concerned with semantic similarity

and context information. The proposed methodology accepts

large documents as input. The sentence splitting of the

document is done by assigning a unique identifier to every

sentence. This sentence is further used as a vertex id. All the

sentences of the document are represented in vertex space by

considering individual sentences as the vertex with a unique id.

The challenge here is how to draw the edges between the vertex

and what pair of the vertex is selected for the edges. The

proposed methodology calculates the semantic similarities of

the vertex of semantic similarity sentences and based on the

semantic similarity value, the weighted edge is drawn. The

importance of semantic similarity is in the range of ‘0’ to ‘1’.

The ‘1’ is very close to the meaning of semantic similarity and

the value ‘0’ indicates a significantly less semantic similar

value

3.1. Sentence Semantic Similarity Model

The above section describes the semantic similarity of the

words based on the HyperTrees. This section elaborated on the

calculation of the semantic similarity of the sentences. The

hypothesis is tested here that we can use the HyperTrees for

calculating the semantic similarities of the sentences. Based on

the HyperTrees, the semantic similarity of the sentences is

calculated. As shown in figure 3.2, the semantic similarity of

sentence-1, “Let’s go to the bank”, and sentence-2, “Said by

Anay to Ram for deposit”, is calculated. The semantic

similarity of every word of sentence 1 to every other word of

sentence 2 is calculated. It is observed that the semantic

similarity of the phrase pair ‘bank’ and ‘deposit’ is different.

The semantic similarity of the word pair ‘bank’ and ‘deposit’ is

0.5882 when calculated individually. The semantic similarity

of the words ‘bank’ and ‘deposit’ in the sentences is 0.3. The

error value 0.12356 needs to be addressed. The S-3 model

generates the semantic similarity of the words based on the

semantic similarity score; the weighted edge is drawn and the

same semantic similarity score is used to disambiguate the

vertex without context information. In the above example, the

semantic similarity score is 0.34 for vertex-1, and vertex-2, and

based on the same, the edge is drawn and the weight value is

represented as a weighted edge, as shown in Figure 3.1.

wup(bank_depositn1 , deposit_accountn1) = 0.3

T1= HyperTrees(bank_depositn1)=[1]*ROOT*n1

<entityn1 <abstractionn6<measuren2<system_of_me

asurementn1<standardn1<medium_of_exchangen1<

moneyn1<fundn1<bank_depositn1

T2= HyperTrees(deposit_accountn1)=[1]*ROOT*n1

<entityn1<abstractionn6<attributen2 <staten2 <rel

ationshipn3 <accountn3<bank_accountn1<savings_a

ccountn1<deposit_accountn1

Lowest_Common_Subsumer(s) =

arg_max(depth(subsumer(T1,T2)))={ subsumer(T1[1], T2[1])

}= { abstractionn6 }

Depth_LCS = depth(abstractionn6) = 3

Depth_1 = min(depth({tree in T1 | tree contains LCS })) = 10

Depth_2 = min(depth({tree in T2 | tree contains LCS })) = 10

Min_score= 2 * Depth_LCS / (Depth_1 + Depth_2) = 2 * 3 /

(10 + 10) = 0.3

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication

ISSN: 2321-8169 Volume: 11 Issue: 10

DOI: https://doi.org/10.17762/ijritcc.v11i10.8491

Article Received: 26 July 2023 Revised: 16 September 2023 Accepted: 05 October 2023

 292
IJRITCC | October 2023, Available @ http://www.ijritcc.org

Figure 3.2 Calculation of Semantic Similarity

4. Result and Discussion

The adaptive methodology for WSD in the large documents

is tested with the RNN-LSTM model. The complex network

approach for the WSD in the large document plays playing

important role. The construction of a complex network of

large documents is done by calculating the semantic

similarity of the sentences. This methodology is the major

contributor to the disambiguation of ambiguous sentences

with a lack of context information. As shown in Figure 4.1.1,

The proposed methodology generates 83% and 80% accuracy

with OMSTI for disambiguating single sentences and large

documents respectively.

This methodology generates 81.3% and 81.00% accuracy

while disambiguating single sentences and large documents

for SemCor shown in Figure 4.1.2. This methodology

generates 85.39% and 83% accuracy with Adaptive-Lex for

disambiguating single sentences and large documents

respectively shown in Figure 4.1.3. As shown in Figure 4.1.4,

the percentage of improvement is 4.09 for single-sentence

disambiguation and 3.00% for disambiguating large

documents.

Figure 4.1.1 Result of WSD for OMSTI Figure 4.1.2 Result of WSD for SemCor

Figure 4.1.2 Result of WSD for Adaptive-Lex Figure 4.1.1 Comparative Result of WSD

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication

ISSN: 2321-8169 Volume: 11 Issue: 10

DOI: https://doi.org/10.17762/ijritcc.v11i10.8491

Article Received: 26 July 2023 Revised: 16 September 2023 Accepted: 05 October 2023

 293
IJRITCC | October 2023, Available @ http://www.ijritcc.org

5. Conclusion and future work

WSD is a live problem of NLP, most of the WSD research is

on a single-sentence disambiguation. The complex network

approach is a revolutionary methodology for disambiguating

large documents. In the complex network approach, the

document is represented with the vertices and based on the

sentence semantic similarities the semantic score of the

sentences is calculated. The semantic similarity of the

sentences is the distance between the vertices. The sentences

with a lack of context information are disambiguated by

considering the closest semantic similar sentence. This

methodology is working fine with the freely available lexical

resource WordNet. The training of the module is done with

Adaptive-Lex SemCor and OMSTI. This methodology is

tested for 1200 sentences in the future maximum sentences

will be added with the context-dependent dataset.

References

[1] Correa Jr, Edilson A., Alneu A. Lopes, and Diego R. Amancio.

"Word sense disambiguation: A complex network approach."

Information Sciences 442 (2018): 103-113.

[2] Veronis, Jean, and Nancy Ide. "Word sense disambiguation

with very large neural networks extracted from machine

readable dictionaries." COLING 1990 Volume 2: Papers

presented to the 13th International Conference on

Computational Linguistics. 1990.

[3] Kokane, Chandrakant, et al. "Word Sense Disambiguation: A

Supervised Semantic Similarity based Complex Network

Approach." International Journal of Intelligent Systems and

Applications in Engineering 10.1s (2022): 90-94.

[4] Kokane, Chandrakant D., Sachin D. Babar, and Parikshit N.

Mahalle. "Word Sense Disambiguation for Large Documents

Using Neural Network Model." 2021 12th International

Conference on Computing Communication and Networking

Technologies (ICCCNT). IEEE, 2021.

[5] Salton, Gerard, Anita Wong, and Chung-Shu Yang. "A vector

space model for automatic indexing." Communications of the

ACM 18.11 (1975): 613-620.

[6] Verma, Vijay, and Rajesh Kumar Aggarwal. "A comparative

analysis of similarity measures akin to the Jaccard index in

collaborative recommendations: empirical and theoretical

perspective." Social Network Analysis and Mining 10 (2020):

1-16.

[7] Mikolov, Tomas, et al. "Efficient estimation of word

representations in vector space." arXiv preprint

arXiv:1301.3781 (2013).

[8] Pennington, Jeffrey, Richard Socher, and Christopher D.

Manning. "Glove: Global vectors for word representation."

Proceedings of the 2014 conference on empirical methods in

natural language processing (EMNLP). 2014.

[9] Bojanowski, Piotr, et al. "Enriching word vectors with subword

information." Transactions of the association for computational

linguistics 5 (2017): 135-146.

[10] Devlin, Jacob, et al. "Bert: Pre-training of deep bidirectional

transformers for language understanding." arXiv preprint

arXiv:1810.04805 (2018).

[11] Le, Quoc, and Tomas Mikolov. "Distributed representations of

sentences and documents." International conference on

machine learning. PMLR, 2014.

http://www.ijritcc.org/

