
International Journal on Recent and Innovation Trends in Computing and Communication

ISSN: 2321-8169 Volume: 11 Issue: 9

DOI: https://doi.org/10.17762/ijritcc.v11i9.8114

Article Received: 07 July 2023 Revised: 28 August 2023 Accepted: 16 September 2023

 28

IJRITCC | September 2023, Available @ http://www.ijritcc.org

NASLMRP: Design of a Negotiation Aware Service

Level Agreement Model for Resource Provisioning in

Cloud Environments

Pallavi Shelke1, Dr.Rekha Shahapurkar2
1PhD scholar student, CSE deartment , Oriental University,

Indore,Madhya Pradesh,India

pallavishelke12@gmail.com
2Associate professor ,CSE deartment , Oriental University,

Indore,Madhya Pradesh,India

rekhashahapurkar@gmail.com

Abstract—Cloud resource provisioning requires examining tasks, dependencies, deadlines, and capacity distribution. Scalability is hindered

by incomplete or complex models. Comprehensive models with low-to-moderate QoS are unsuitable for real-time scenarios. This research

proposes a Negotiation Aware SLA Model for Resource Provisioning in cloud deployments to address these challenges. In the proposed model,

a task-level SLA maximizes resource allocation fairness and incorporates task dependency for correlated task types. This process's new tasks are

processed by an efficient hierarchical task clustering process. Priority is assigned to each task. For efficient provisioning, an Elephant Herding

Optimization (EHO) model allocates resources to these clusters based on task deadline and make-span levels. The EHO Model suggests a fitness

function that shortens the make-span and raises deadline awareness. Q-Learning is used in the VM-aware negotiation framework for capacity

tuning and task-shifting to post-process allocated tasks for faster task execution with minimal overhead. Because of these operations, the

proposed model outperforms state-of-the-art models in heterogeneous cloud configurations and across multiple task types. The proposed model

outperformed existing models in terms of make-span, deadline hit ratio, 9.2% lower computational cycles, 4.9% lower energy consumption, and

5.4% lower computational complexity, making it suitable for large-scale, real-time task scheduling

Keywords-Resource Provisioning, SLA Negotiation, EHO, VM, Task Shifting, QoS.

I. INTRODUCTION

Resource provisioning is a multidomain task that involves

analysis of task sets in terms of their dependency levels, make-

spans, deadline & originating sources, and mapping these

tasks with cloud VMs via capacity optimizations. Researchers

have proposed a broad range of models with distinct

qualitative and quantitative performance features. A general-

purpose SLA based task scheduling model that combines QoS

aware stations (QST), and task make-span levels [1],is

depicted in figure 1, wherein task dependencies are used to

map different resource types.

Fig 1: A typical SLA based resource provisioning model for different

task types

Such models evaluate task requirements via following

equation 1, wherein task delay, make-span, and other

parameters are considered for comprehensive representation of

different task types.

𝑇𝑅𝑗 = ∑ 𝑓 (𝑀𝑖 , 𝐵𝑖 , 𝐷𝑖 , ∑ 𝐷𝑒𝑝𝑖,𝑘

𝑁𝑡

𝑘=1

) … (1)

𝑁𝑡

𝑖=1

Where, 𝑇𝑅𝑗 represents task requirement for 𝑗𝑡ℎ task out of 𝑁𝑡

tasks, while 𝑀, 𝐵, 𝐷 represents internal task characteristics in

terms of its Memory, Bandwidth & Delay requirements,

𝐷𝑒𝑝𝑖,𝑘 represents dependency information between 𝑖𝑡ℎ&𝑘𝑡ℎ

tasks, and 𝑓 represents a function to evaluate task

requirements w.r.t. different deployment scenarios.Similar to

this, the capacity of different resources is evaluated via

equation 2, which aims at representing VMs capability to

perform task scheduling process with optimum efficiency

levels.

𝐶 = ∑ 𝑓(𝑀𝐼𝑃𝑆𝑖 , 𝑃𝐸𝑖 , 𝐵𝑖 , 𝑀𝑖)

𝑁(𝑉𝑀)

𝑖=1

… (2)

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication

ISSN: 2321-8169 Volume: 11 Issue: 9

DOI: https://doi.org/10.17762/ijritcc.v11i9.8114

Article Received: 07 July 2023 Revised: 28 August 2023 Accepted: 16 September 2023

 29

IJRITCC | September 2023, Available @ http://www.ijritcc.org

Where, 𝑁(𝑉𝑀) represents number of VMs available, while

𝑀𝐼𝑃𝑆 & 𝑃𝐸 expresses the Virtual Machine's capacity as

millions of instructions per second (MIPS)., and For

scheduling reasons, the number of Processing Elements that

are included with the VM.

The behavior of a system can influences by a variety of

external circumstances in a cloud computing setting.

Violations of service level agreements (SLAs) are a major part

of cloud computing since they reduce customer satisfaction

and disrupt cloud providers, which could lead to penalties.

Violations A service level agreement (SLA) may have

happened if any of the following conditions apply:

performance is supplied below the agreed-upon level; services

are offered at proper level on the other hand with considerable

delay; utilizations VM resource varies; or services are not

provided at all. One of the most important parts of using

services is negotiating Service Level Agreements (SLAs).

Consumers and service providers form an alliance throughout

the negotiating process. Convergence during settlement is

influenced by the extent to which information may be shared

throughout this procedure. The current negotiation process

defines the number of parties involved, their respective roles

and duties, the visibility of the agreements reached, the

parameters of each individual negotiation session, and so on.

SLA negotiation is an essential method for preservingthe

integrity of cloud services and fostering trust between cloud

users and suppliers. Cloud parties can establish Quality of

Service (QoS) expectations for mission-critical service-based

operations by outlining them in a Service Level Agreement

(SLA).

Drawing from these considerations, researchers have

developed different mapping models for provisioning

resources to multiple task types. The next section of this text

provides a survey of deployment-specific details, application-

specific benefits, functional restrictions, and potential future

applications for these models [2][3][4]. This review reveals

that current provisioning models are either incomplete or

excessively complex, thus restricting their scalability.

Moreover, most of the comprehensive models showcase low-

to-moderate levels of QoS (Quality of Service), thus cannot be

used for real-time situation. To get around these limitations,

Section 3 examines a novel's design of Negotiation Aware

Service Level Agreement (SLA) Model for Resource

Provisioning for cloud deployments. The examination of the

proposed model was undertaken with regard to make-span,

deadline hit ratio, computational cycles, energy consumption,

and computational complexity in section 4, where it was also

compared with several up-to-date versions. This will assist

readers in validating model’s performance under different use

cases. In other words, the text concludes by offering insights

that are relevant to specific contexts and deployment scenarios

for the proposed model. Additionally, it suggests that fusion

techniques can be applied to enhance the model's performance

in a range of scenarios.

II. LITRATURE REVIEW

The researchers provide a broad range of various task

scheduling models, each with its unique set of internal

working components. For instance, research from[5][6]

suggests using geo-distributed data analytics and a self-

adaptive task scheduling model to estimate high-density data

patterns while mapping workloads to various cloud

architectures. This strategy, however, cannot be used to a

variety of tasks since it is not scalable. The work that is

suggested in[7] recommends employing Multiple Device Co-

Processing of Data-Parallel Kernels to make it easier to apply

the model for task scheduling in scattered settings, overcoming

this challenge. To streamline the process of implementing the

model and reduce the required time and effort, this is done.

Due to this model's potential to predict workload patterns,

capacity pre-emption across all VM types is enhanced. The

Joint Task Scheduling and Containerizing (JTSC) model, the

Genetic Algorithm with Mobility aware Task Scheduling

(GAMTS) model, and the Deep Neural Network Scheduling

(DNNS) model are just a few of the similar models that are

examined in[8][9], among others. The aim of each of these

models is to estimate a broad range of job kinds in real-time

settings. These models allow for the uncomplicated

implementation of scheduling methods for large-scale

applications. The Whale Optimization Algorithm (WOA),

energy, time, and rental cost (ETRC) optimization, and non-

pre-emptive stochastic co-flow scheduling (NPSCS) are all

approaches that are explored in[10][11][12][13] as strategies

to enhance these models' performance on related sets of tasks.

Non-pre-emptive stochastic co-flow scheduling is abbreviated

as NPSCS, while energy, time, and rental cost optimization is

abbreviated as ETRC. These models perform admirably in

scenarios of low complexity, making them appropriate for use

in reducing the detrimental impacts of scheduling errors in

such circumstances. The fact that they have this quality makes

them acceptable for use in large scheduling projects.

Elastic Task Scheduling Scheme[19] , Multi-Task Deep

Reinforcement Learning (MTDRL)[16], Decomposition-based

novel multi-objective evolutionary algorithm[17], “Energy-

Efficient Scheduling (EES)[14] , Spatial Scheduling That

Considers Profit[15], Scaling of Dynamic Voltage and

Frequency[18] and Novel Multi Objective Evolutionary

Algorithm based on These models are all available. These

models, however, are useless for dynamic task sets. The work

in[20] recommends using a Dynamic and Resource Aware

Load Balanced Scheduling Model (DRALBM) to help

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication

ISSN: 2321-8169 Volume: 11 Issue: 9

DOI: https://doi.org/10.17762/ijritcc.v11i9.8114

Article Received: 07 July 2023 Revised: 28 August 2023 Accepted: 16 September 2023

 30

IJRITCC | September 2023, Available @ http://www.ijritcc.org

enhance their performance in situations where jobs are

continually moving, and as a consequence, they are further

enlarged. “Task Scheduling and Microservices based

Computational Offloading” (TSMCO), Deep Neural Networks

(DNN), and Energy-efficient Dynamic Scheduling Scheme

(EDSS) are all proposed in [21][22][23] tofurther optimize

their performance by incorporating high-density feature

extraction under real-time scheduling scenarios. This is carried

out to raise their general effectiveness. The complexity

exhibited by these models renders them unsuitable for time-

sensitive scenarios. Researchers in[24][25][26]suggest Parallel

Processing, Deep Reinforcement Learning (DRL), and Earliest

Deadline First (EDF) as scheduling techniques that are

appropriate for high-velocity applications as a solution to this

problem. The sources provided below have information on

these techniques. Improved real-time functionality forthese

models may be achieved by using processing methods of low

complexity. The authors discuss methods to reduce the costs

of performing interdependent task sets

in[27][28][29][30][31]by combining task duplication, particle

swarm optimization, and heuristics that account for

unoccupied time slots (PSO). Contrarily, these models either

cannot be deployed in a manner that makes them appropriate

for use with real-time cloud jobs or they disobey the

requirements for tasks and virtual machines (VM). Due to

their extreme sensitivity to their surroundings, these models

are also undesirable for use in extensive scheduling projects.

The current provisioning and scheduling models can be

classified as either overly complex or incomplete in their

consideration of multiple task and resource parameters for

scheduling. As a result, their potential to scale under real-time

use cases is limited. Additionally, the majority of thorough

models exhibit low-to-moderate levels of QoS (Quality of

Service), making them unsuitable for usage in real-time

settings. Next section proposes design of a unique Negotiation

Aware Service Level Agreement (SLA) Model for Resource

Provisioning for cloud deployments to get over these

drawbacks. Different parameters were considered to measure

the performance of this model like scheduling scenarios &

validated w.r.t. multiple state-of-the-art models, which will

assist readers to deploy the proposed model for their

functionality-specific use cases

III. PROPOSED NEGOTIATION-AWARE MODEL FOR

SERVICE LEVEL AGREEMENTS IN CLOUD

RESOURCE PROVISIONING (NASLMRP).

Reviewing the existing resource provisioning models revealed

that they are either non-comprehensive or have higher

complexity than required, which restricts their ability to scale.

Additionally, the majority of these models exhibit low-to-

moderate levels of QoS (Quality of Service), making them

unsuitable for use in real-time scenarios. This section proposes

a new Negotiation solution to tackle previously mentioned

difficulties by aware Service Level Agreement (SLA) Model

for Resource Provisioning in cloud deployments. Figure 2,

visually represents the workflow of the proposed model,

showcasing the initiation phase. This phase incorporates the

implementation of a task-level Service Level Agreement

(SLA) aimed at optimizing fairness in resource allocation.

Additionally, it takes into account the interdependence of task

types that are interconnected.

An effective hierarchical task clustering process is used to

process the new set of tasks generated by this process. As a

result, all tasks are clustered into priority-level groups. An

Elephant Herding Optimization (EHO) model that takes task

deadline & make-span levels into account, allots these clusters

to resources for effective provisioning operations. Designing a

fitness function that lowers make-span levels while

maintaining higher deadline awareness is advised by the EHO

Model, which assists in improving its scalability &

performance under multiple task types.

The assigned tasks are post-processed using a VM-aware

negotiation framework that employs Q-Learning for efficient

capacity tuning and task-provisioning, enabling quicker task

execution with lower overheads. In the interest of simplicity,

process flow is divided into three distinct sub-modules, each

of which is explained in a separate section of this document.

This approach enables readers to deploy the modules partially

or in their entirety, depending on their specific use cases.

A. Design of an SLA Model for task clustering with

dependency awareness

Initially all tasks and their dependency constraints are

evaluated by an SLA Model, which assists in resequencing of

tasks to obtain higher efficiency levels. To perform

resequencing, a make-span difference is evaluated via

equation 3.1,

𝑀𝑆𝐷𝑖,𝑖+1(𝐼𝑃) = 𝑀𝑆𝑖+1(𝐼𝑃) − 𝑀𝑆𝑖(𝐼𝑃) … (3.1)

Where, 𝑀𝑆𝐷𝑖,𝑖+1(𝐼𝑃) represents Make Span Difference

between task 𝑖 & 𝑖 + 1 , which is coming from the same IP

address. Based on this difference, an MSD Threshold is

evaluated via equation 3.2,

𝑀𝑆𝐷𝑡ℎ =
𝑇𝑆𝐿𝐴

𝑁𝐼𝑃

∑ ∑
𝑀𝑆𝐷𝑗,𝑗+1(𝐼𝑃𝑖)

𝑁𝑇(𝐼𝑃𝑖)

𝑁𝑇(𝐼𝑃𝑖)−1

𝑗=1

𝑁𝐼𝑃

𝑖=1

… (3.2)

Where, 𝑁𝐼𝑃 represents number of unique IP addresses from

which tasks are input for processing & scheduling purposes,

while 𝑇𝑆𝐿𝐴 represents Service Level Agreement timing

threshold, which is set by cloud designers.

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication

ISSN: 2321-8169 Volume: 11 Issue: 9

DOI: https://doi.org/10.17762/ijritcc.v11i9.8114

Article Received: 07 July 2023 Revised: 28 August 2023 Accepted: 16 September 2023

 31

IJRITCC | September 2023, Available @ http://www.ijritcc.org

Tasks with 𝑀𝑆𝐷 > 𝑀𝑆𝐷𝑡ℎ are filtered, and the (𝑖 + 1)𝑡ℎ task

is shifted to the end of scheduling queue, which assists in

maintaining task-SLAs. A task chronology metric is evaluated

for each set of tasks via equation 3.3,

𝑇𝐶𝑀𝑖,𝑗 = 𝐷(𝑖, 𝑗) − 𝐷(𝑗, 𝑖) … (3.3)

Where, 𝑇𝐶𝑀 represents task chronology metric, while 𝐷(𝑖, 𝑗)

represents dependency of task 𝑖 on task 𝑗, which is a binary

flag provided by input task sets. If 𝑇𝐶𝑀 ≥ 0, then the task

sequence is unaltered, else tasks are swapped in order to

maintain dependency correctness.

These tasks are clustered via different clustering processes,

which assists in grouping them into make-span and deadline

aware clusters. After the enforcement of SLA, initial task

sequences are established to facilitate the execution of

incoming tasks from diverse users and machines. However,

these tasks are not bound by any time limits or resource

constraints, which can impede their effectiveness. In this

section, a suggested ensemble pattern analysis model is

presented as a solution to tackle this problem. The model aims

toimprove the execution efficiency of tasks by grouping those

with comparable performance characteristics. In order to

accomplish this goal, equation 4 is utilized to evaluate a novel

task rank metric (TRM).

Where, 𝑇𝑝 is position of the task as decided by the SLA model,

𝐿𝑒𝑛 represents make-span of the task, 𝐵𝑊 represents

bandwidth needed for executing the task, 𝑅𝐴𝑀 represents

RAM needed for task execution, and 𝐷𝐿 represents task

deadlines, while 𝑁 indicates the number of tasks that are in

pipeline for execution process. The TR metric of each task is

inputted into three different models: hierarchical clustering,

kMeans clustering, and FCM. The outcomes of each model are

assessed, and to determine the ideal number of clusters,

Equation 5 is utilized.

Where, 𝐶𝑁 represents cluster number, which assists in

estimation of intra-cluster metric via equation 6,

𝐼𝐶𝑀𝑖 =

√∑ (𝑇𝑅𝑀𝑖 −𝑚
𝑖=1

∑
√∑ (𝑇𝑅𝑀𝑗−

∑ 𝑇𝑅𝑀𝑘
𝑛
𝑘=1

𝑛)2𝑛
𝑗=1

𝑛−1
𝑚
𝑖=1

𝑚
)2

𝑚 − 1
… (6)

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication

ISSN: 2321-8169 Volume: 11 Issue: 9

DOI: https://doi.org/10.17762/ijritcc.v11i9.8114

Article Received: 07 July 2023 Revised: 28 August 2023 Accepted: 16 September 2023

 32

IJRITCC | September 2023, Available @ http://www.ijritcc.org

Where, 𝑚 represents total tasks present in the current cluster

set, while 𝑛 represents total tasks present in other clusters. The

intra cluster metric (ICM) values are arranged in descending

order, which represents higher to lower computation task sets.

These task sets are assigned to respective resources via a EHO

based process.scheduling, the upcoming section of the text

provides an explanation for this.

B.EHO Model design for VM to Task Mapping process

The SLA based model assists in maintaining dependency

awareness along with task-level SLA with relation to various

task types. An optimization procedure using EHO is used to

process these rearranged tasks, that takes into consideration

task deadline and make-span levels. This model works via the

following process,

• Initially, optimization parameters of EHO are initialized

as follows,

o Total size of the optimization Herd (𝐻𝑠𝑖𝑧𝑒)

o The total number of herds utilised for optimisation

(𝑁ℎ𝑒𝑟𝑑𝑠)

o Total number of iterations used for optimization (𝑁𝑖)

o Learning speed of EHO Model (𝐿𝑟)

o Total resources or VMs to be processed for each herd

(𝑁ℎ𝑚)

• For each resource, initialize the following parameters,

o The resource's capability is denoted in terms of millions

of instructions per second (MIPS or M).

o Total processing units (C)

o Available RAM Memory (R)

o Available Bandwidth with the resource (B)

o Total capacity of computation for each resource (CC)

• Scan each herd for all iterations between 1 and 𝑁𝑖 ,

perform following process,

o Initialize a stochastic value of learning rate 𝐿𝑟

o Map the tasks in sequence with stochastic resources

o Calculate herd fitness after stochastic allocation via

following equation 7,

𝑓𝑖 =
∑ 𝑆𝑡𝑎𝑠𝑘

∑ 𝐶𝐶
+

∑ 𝐵𝑊𝑡𝑎𝑠𝑘

∑ 𝐵
+

∑ 𝑅𝐴𝑀𝑡𝑎𝑠𝑘

∑ 𝑅
+

∑ 𝐷𝐿𝑡𝑎𝑠𝑘

∑ 𝐶 ∗
𝑅

𝐵

… (7)

• After an iteration is completed, evaluate fitness threshold

via equation 8,

𝑓𝑡ℎ = ∑
𝑓𝑖 ∗ 𝐿𝑟

𝑁ℎ𝑒𝑟𝑑𝑠

𝑁ℎ𝑒𝑟𝑑𝑠

𝑖=1

… (8)

• Modify herds with 𝑓 ≥ 𝑓𝑡ℎ in the next iteration, while use

other herds directly for fitness evaluation in consecutive

iterations.

Due to inclusion of make-span and task deadline, the process

assists in mapping resources to tasks with better efficiency

levels. But in some cases, VMs are either not used to their full

capacity, or are over burdened with tasks. To avoid such

scenarios, a novel Q-Learning model for VM Provisioning via

capacity tuning process is deployed, and discussed in the next

section of this text.

C. Integration of Q-Learning for VM Provisioning via

capacity tuning process

A Q-Learning based VM Provisioning model is employed to

enhance resource allocation efficiency, by iteratively

optimizing processing parameters. The process followed to

achieve this objective is as follows,

• Let initial capacity for each resource be 𝐼𝐶 , which is

evaluated via equation 9,

𝐼𝐶 = ∑ 𝐶𝐶𝑖 ∗ 𝑅𝐴𝑀𝑖 ∗ 𝑀𝐼𝑃𝑆𝑖

𝐶

𝑖=1

… (9)

• This is evaluated for each resource (or VM), and VM

tasks are assigned depending on the EHO process.

• Once the current task-batch is executed, then VM

utilization factor (𝑉𝑈𝐹) is evaluated via equation 10,

𝑉𝑈𝐹 = ∑ 𝑁𝑐𝑖

𝑁𝑣𝑚

𝑖=1

… (10)

Where, 𝑁𝑣𝑚 represents number of VMs (or resources) that

participated in the resource allocation process, while 𝑁𝑐

represents number of cycles for which each of these VMs were

used to execute the tasks which were assigned to them via the

EHO process.

• Now, increment capacity levels for each of these VMs via

equation 11,

𝐶(𝑁𝑒𝑤) = 𝐶(𝑂𝑙𝑑) (
𝐼𝐶 + 𝑀𝑎𝑥(𝐼𝐶)

𝑀𝑎𝑥(𝐼𝐶)
) … (11)

Where, 𝐶(𝑁𝑒𝑤)& 𝐶(𝑂𝑙𝑑) represents new & old configuration

parameters for each of the VMs, and 𝐶 ∈ (𝑅𝐴𝑀, 𝐶𝐶, 𝑀𝐼𝑃𝑆)

• Using this new configuration process next task-batch, and

estimate new VM utilization factor via equation 10, which

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication

ISSN: 2321-8169 Volume: 11 Issue: 9

DOI: https://doi.org/10.17762/ijritcc.v11i9.8114

Article Received: 07 July 2023 Revised: 28 August 2023 Accepted: 16 September 2023

 33

IJRITCC | September 2023, Available @ http://www.ijritcc.org

assists in identification of VM utilization for current task-

set with current configuration of VMs.

• Now evaluate reward value via equation 12,

𝑟 =
𝑉𝑈𝐹(𝑁𝑒𝑤) − 𝑉𝑈𝐹(𝑂𝑙𝑑) ∗ (1 + 𝐿𝑟)

𝐿𝑟

− 𝑑

∗ 𝑀𝑎𝑥(𝑉𝑈𝐹) … (12)

Where, 𝑑 represents a discount factor, which is evaluated via

equation 13,

𝑑 =
𝑁𝑣𝑚(𝑂𝑙𝑑)

𝑁𝑣𝑚(𝑁𝑒𝑤)
… (13)

• If 𝑟 > 0, that indicates that current configuration of VM is

not sufficient, and it must be incremented via equation 11,

else if 𝑟 < 0, then configuration of VM is reduced via

equation 14,

𝐶(𝑁𝑒𝑤) = 𝐶(𝑂𝑙𝑑) (
𝑀𝑎𝑥(𝐼𝐶) − 𝐼𝐶

𝑀𝑎𝑥(𝐼𝐶)
) … (14)

• This process is repeated for each task-set, until 𝑟 ≠ 0

As a result of this ongoing optimization, the model can

effectively adjust the capacity of VMs to improve their

scheduling abilities. These capabilities are evaluated according

to deadline hit ratio, make-span,computational cycles, energy

consumption, and computational complexity, in this research

work’s subsequent section, Other models also experienced this

evaluation also compared with the proposed model for

validation purposes.

IV. RESULTS AND COMPARISION

According to the description of the proposed model, a

combination of EHO with Q-Learning and SLA enforcement

is capable of including deadline awareness, SLA rules, and

incremental optimization under dependent task types.

Verifying the model's performance, it was assessed based on

its task make-span delay (D), computational cycles needed

(CC), deadline hit ratio (DHR), and energy efficiency (E)

under various VM and task settings. This performance was

evaluated in comparison to DNNS 9, NPS CS 13, and EES 14.

To do this comparison, the Parallel Workloads Archive

(PWA), which can be seen at

https://www.cs.huji.ac.il/labs/parallel/workload 32, was used to

retrieve configurations for various VM & task types and used

with open-source licences. Sandia Ross cluster logs, San

Diego Supercomputer Centre (SDSC) Blue Horizon logs,

Lawrence Livermore National Lab's Linux Cluster Logs,

Potsdam Institute for Climate Impact Research (PIK) IBM

iDataPlex Cluster logs, and Intel Netbatch logs were used for

the assessment process.

The proposed model, NASLMRP was validated using the

Cloud Sim simulator, which aided in the formation of virtual

machines (VMs or resources), job scheduling procedures, and

assessment of the performance of various model parameters.

These datasets were pooled to provide 1 million jobs, which

were tested on 400 virtual machines with standard setups.

Based on this assessment technique, the average make-span

delay (D) for various Number of Tasks (NT) can be observed

from Table 1 as follows,

Table 1. Make-span for different models under multiple task types

NT

D (ms) D (ms) D(ms) D (ms)

DNNS

[9]

NPS CS

[13]
EES [14]

NAS

LMRP

(Proposed

model)

10k 0.12 0.13 0.15 0.05

20k 0.14 0.15 0.18 0.06

30k 0.16 0.17 0.21 0.07

40k 0.18 0.21 0.25 0.09

50k 0.21 0.26 0.3 0.1

60k 0.24 0.32 0.36 0.12

70k 0.29 0.4 0.44 0.15

80k 0.34 0.49 0.53 0.18

90k 0.42 0.6 0.65 0.22

100k 0.52 0.73 0.79 0.27

200k 0.63 0.87 0.94 0.32

300k 0.76 1.02 1.1 0.38

400k 0.89 1.18 1.23 0.43

500k 1 1.31 1.33 0.48

700k 1.13 1.5 1.42 0.53

800k 1.17 1.56 1.48 0.55

900k 1.21 1.62 1.55 0.57

1M 1.26 1.69 1.64 0.6

After evaluating the proposed model and referring to figure 3,

it can be concluded that the model exhibits a performance

improvement of 38.5% when compared to DNNS[9] , 46.1%

faster performance than NPS CS[13] , and 45.5% faster

performance than EES[14], which makes it useful for low-

delay scheduling scenarios. As a result of incorporation of

resource capacity and task make-span levels along with

incremental performance tuning, which assists in identification

of optimal scheduling configurations

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication

ISSN: 2321-8169 Volume: 11 Issue: 9

DOI: https://doi.org/10.17762/ijritcc.v11i9.8114

Article Received: 07 July 2023 Revised: 28 August 2023 Accepted: 16 September 2023

 34

IJRITCC | September 2023, Available @ http://www.ijritcc.org

Figure 3. Make-span for different models under multiple task types

To further estimate model’s performance, its Deadline Hit

Ratio (DHR) was evaluated via figure 3

𝐷𝐻𝑅 =
𝑁𝑡𝑑

𝑇𝑡

… (15)

Where, 𝑁𝑡𝑑
 represents total tasks that were executed before

their deadlines, and 𝑇𝑡 represents count of total tasks which

were given to the cloud for scheduling purposes. This

evaluation resulted in the calculation of DHR in relation to the

count of tasks executed in total is provided in Table 2

displayed below.

Table 2. DHR levels for different models under multiple task types

NT

 DHR

(%)
DHR(%) DHR(%) DHR (%)

DNNS[9]
NPS

CS[13]
EES[14]

NASLMRP

(Proposed

model)

10k 93.65 93.67 93.44 99.16

20k 93.67 93.7 93.46 99.16

30k 93.7 93.72 93.49 99.17

40k 93.72 93.75 93.52 99.18

50k 93.75 93.78 93.55 99.18

60k 93.78 93.81 93.59 99.18

70k 93.81 93.84 93.61 99.19

80k 93.84 93.87 93.64 99.19

90k 93.87 93.9 93.67 99.2

100k 93.9 93.93 93.7 99.21

200k 93.93 93.96 93.72 99.22

300k 93.96 93.99 93.75 99.23

400k 93.99 94.01 93.78 99.24

500k 94.01 94.04 93.81 99.25

600k 94.04 94.07 93.85 99.25

700k 94.07 94.09 93.89 99.26

800k 94.09 94.12 93.92 99.27

900k 94.12 94.15 93.94 99.27

1M 94.15 94.18 93.97 99.28

Figure 4. DHR levels for different models under multiple task types

The evaluation results depicted in Figure 4, demonstrate that

the proposed model exhibits a 4.8% higher DHR than

DNNS[9], 4.5% higher DHR than NPS CS[13] , and 5.9%

higher DHR than EES[14], which makes it useful for deadline

aware scheduling considerations. This results from being

included of resource capacity with task deadlines and

incremental performance tuning, which assists in identification

of optimal schedulingconfigurations. Similarly, the

computational cycles (CC) needed for execution is evaluated

via equation 16, and represents the efficiency with which tasks

are executed on different resource types.

𝐸 =
𝑁𝐶𝐶𝑜𝑝𝑡

𝑁𝐶𝐶
∗ 𝑁𝑇 … (16)

Where, 𝑁𝐶𝐶𝑜𝑝𝑡 represents ideal cycles which must be used for

execution of tasks, while 𝑁𝐶𝐶 represents actual number of

cycles needed for execution of these tasks. Based on this

evaluation, computational cycles (CC) needed for execution is

tabulated in table 3. as follows,

Table 3 Computational Cycles needed for execution of different task

types

NT

CC CC CC CC

DNNS [9]
NPS CS

[13]
EES [14]

NAS

LMRP

(Propo

sed

model)

10k 152.59 157.04 155.28 141.87

20k 153.8 157.66 156.19 142.76

30k 155 158.28 157.1 143.65

40k 156.2 158.91 158.01 144.53

50k 157.38 159.53 158.91 145.4

60k 158.56 160.16 159.81 146.28

70k 159.75 160.78 160.72 147.16

0

0.5

1

1.5

2

1
0

k

2
0

k

3
0

k

4
0

k

5
0

k

6
0

k

7
0

k

8
0

k

9
0

k

1
0

0
k

2
0

0
k

3
0

0
k

4
0

0
k

5
0

0
k

6
0

0
k

7
0

0
k

8
0

0
k

9
0

0
k

1
M

DNNS [9] NPS CS [13]

EES [14] NAS LMRP 90

92

94

96

98

100

1
0

k

2
0

k

3
0

k

4
0

k

5
0

k

6
0

k

7
0

k

8
0

k

9
0

k

1
0

0
k

2
0

0
k

3
0

0
k

4
0

0
k

5
0

0
k

6
0

0
k

7
0

0
k

8
0

0
k

9
0

0
k

1
M

DNNS [9] NPS CS [13] EES [14] NAS LMRP

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication

ISSN: 2321-8169 Volume: 11 Issue: 9

DOI: https://doi.org/10.17762/ijritcc.v11i9.8114

Article Received: 07 July 2023 Revised: 28 August 2023 Accepted: 16 September 2023

 35

IJRITCC | September 2023, Available @ http://www.ijritcc.org

80k 160.94 161.41 161.63 148.04

90k 162.13 162.03 162.54 148.92

100k 163.32 162.66 163.44 149.79

200k 164.51 163.28 164.35 150.67

300k 165.7 163.91 165.26 151.55

400k 166.89 164.53 166.16 152.43

500k 168.08 165.15 167.07 153.31

600k 169.27 165.78 167.98 154.19

700k 170.46 166.4 168.88 155.07

800k 171.65 167.03 169.79 155.95

900k 172.84 167.65 170.7 156.83

1M 174.04 168.27 171.6 157.71

Figure 5: Computational Cycles needed for execution of different

task types

Upon analyzing the outcomes and referencing figure 5, it

becomes evident that the proposed model consumes 15%

fewer computational cycles in comparison to DNNS[9], 8.3%

lower computational cycles than NPS CS[13] and 12.5% lower

computational cycles than EES[14] , which makes it useful for

computationally efficient scheduling situations. This is

because it incorporates resource capacity with incremental

performance tuning, which assists in identification of optimal

schedulingconfigurations. Similarly, the energy required for

execution of different task types is tabulated in table 4 as

follows,

Table 4. Energy required by different models for the scheduling

process

NT

E (mJ) E (mJ) E (mJ) E (mJ)

DNNS[9]
NPS CS

[13]
EES [14]

NASLMRP

(Proposed

model)

10k 312.81 279.94 187.24 172.95

20k 315.29 281.05 188.34 174.08

30k 317.76 282.16 189.44 175.22

40k 320.2 283.28 190.53 176.33

50k 322.62 284.39 191.62 177.43

60k 325.04 285.5 192.72 178.54

70k 327.48 286.61 193.81 179.65

80k 329.92 287.73 194.9 180.76

90k 332.36 288.84 196 181.88

100k 334.8 289.95 197.09 182.99

200k 337.24 291.07 198.18 184.1

300k 339.68 292.18 199.28 185.22

400k 342.12 293.29 200.37 186.33

500k 344.56 294.4 201.47 187.44

600k 347 295.51 202.56 188.56

700k 349.44 296.63 203.66 189.67

800k 351.88 297.74 204.75 190.78

900k 354.33 298.85 205.84 191.9

1M 356.77 299.97 206.94 193.01

Figure 6. Energy required by different models for the scheduling

process

Based on this assessment and figure 6, it can be seen that the

proposed model uses 24.5%, 18.3%, and 16.5% less

computational energy than DNNS [9], NPS CS [13], and EES

[14], respectively, making it suitable for low energy

scheduling scenarios. This is because incremental performance

tuning combined with the incorporation of resource capacity,

RAM, MIPS, and the number of VMs aids in the identification

of the best scheduling configurations. The proposed model is

useful for large-scale task scheduling application use cases as

a result of these improvements.

V. CONCLUSION AND FUTURE WORK

The proposed model is able to fuse SLA, multiple level

clustering, EHO based task scheduling, and Q-Learning based

resource capacity optimizations in order to improve scheduling

performance under heterogeneous & dependent task types.

This performance was evaluated in terms of different

quantitative metrics, and was compared with various state-of-

the-art methods. This comparison revealed that the proposed

0

50

100

150

200

1
0

k

2
0

k

3
0

k

4
0

k

5
0

k

6
0

k

7
0

k

8
0

k

9
0

k

1
0

0
k

2
0

0
k

3
0

0
k

4
0

0
k

5
0

0
k

6
0

0
k

7
0

0
k

8
0

0
k

9
0

0
k

1
M

DNNS [9] NPS CS [13] EES [14] NAS LMRP

0

50

100

150

200

250

300

350

400

1
0

k

2
0

k

3
0

k

4
0

k

5
0

k

6
0

k

7
0

k

8
0

k

9
0

k

1
0

0
k

2
0

0
k

3
0

0
k

4
0

0
k

5
0

0
k

6
0

0
k

7
0

0
k

8
0

0
k

9
0

0
k

1
M

DNNS [9] NPS CS [13] EES [14] NAS LMRP

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication

ISSN: 2321-8169 Volume: 11 Issue: 9

DOI: https://doi.org/10.17762/ijritcc.v11i9.8114

Article Received: 07 July 2023 Revised: 28 August 2023 Accepted: 16 September 2023

 36

IJRITCC | September 2023, Available @ http://www.ijritcc.org

model performs 38.5% faster than DNNS [9], 46.1% faster

than NPS CS [13], and 45.5% faster than EES [14], making it

useful for low-delay scheduling scenarios. This is because

incorporating task make-span and resource capacity levels,

along with incremental performance tuning, helps identify the

best scheduling configurations. The proposed model's higher

deadline hit ratios—4.8% higher DHR than DNNS [9], 4.5%

higher DHR than NPS CS [13], and 5.9% higher DHR than

EES [14]—make it useful for scenarios involving deadline-

conscious scheduling. This is because task deadlines and

resource capacity are combined, and incremental performance

tuning helps identify the best scheduling configurations.

Although it can also be seen that the proposed model needs

15%, 8.3%, and 12.5% fewer computational cycles than

DNNS [9], NPS CS [13], and EES [14], respectively, which

makes it useful for computationally efficient scheduling

scenarios. This is because incremental performance tuning and

resource capacity integration help identify the best scheduling

configurations. While it was discovered that the proposed

model, when compared to DNNS [9], NPS CS [13], and EES

[14], uses 24.5%, 18.3%, and 16.5% less computational

energy, respectively, making it appropriate for low energy

scheduling scenarios. This is because identifying the optimal

scheduling configurations is made easier by combining

incremental performance tuning with the incorporation of

resource capacity, RAM, MIPS, and the number of VMs.

These improvements make the proposed model suitable for

large-scale task scheduling application use cases.

In future, researchers can extend performance of the proposed

model via integration of multiple deep learning models

including Convolutional Neural Networks, Gated Recurrent

Units, Auto Encoders, and Generative Adversarial Networks,

which will assist in task pre-emption for optimization of

scheduling pre-emption capabilities. Researchers can also

integrate different bioinspired models including Grey Wolf

Optimization (GWO), Firefly Optimization (FFO), etc. which

will assist in optimizing & stabilizing performance of the

proposed model under different real-time task types.

REFERENCES

[1] Mahmoud, H., Thabet, M., Khafagy, M. H., & Omara, F. A.,

Multiobjective task scheduling in cloud environment using

decision tree algorithm. IEEE Access, 10, 36140-36151,2022

[2] Chai, R., Li, M., Yang, T., & Chen, Q. (2021). Dynamic

priority-based computation scheduling and offloading for

interdependent tasks: leveraging parallel transmission and

execution. IEEE Transactions on Vehicular Technology, 70(10),

10970-10985.,2021

[3] Alsadie, D., A metaheuristic framework for dynamic virtual

machine allocation with optimized task scheduling in cloud data

centers. IEEE Access, 9, 74218-74233,2021

[4] Lee, Y. S., & Han, T. H., Task parallelism-aware deep neural

network scheduling on multiple hybrid memory cube-based

processing-in-memory. IEEE Access, 9, 68561-68572.,2021

[5] 11.Mao, R., & Aggarwal, V., NPSCS: Non-preemptive

stochastic coflow scheduling with time-indexed LP relaxation.

IEEE Transactions on Network and Service Management, 18(2),

2377-2387.,2021

[6] Aejaz Farooq Ganai, Farida Khursheed. (2023).

Computationally Efficient Holistic Approach for Handwritten

Urdu Recognition using LRCN Model. International Journal of

Intelligent Systems and Applications in Engineering, 11(4s), 536

–. Retrieved from

https://ijisae.org/index.php/IJISAE/article/view/2724

[7] Zhang, Q., Gui, L., Zhu, S., & Lang, X. ,Task offloading and

resource scheduling in hybrid edge-cloud networks. IEEE

Access, 9, 85350-85366.,2021

[8] Chen, X., Cheng, L., Liu, C., Liu, Q., Liu, J., Mao, Y., &

Murphy, J. , A WOA-based optimization approach for task

scheduling in cloud computing systems. IEEE Systems journal,

14(3), 3117-3128.,2020

[9] Gammoudi, A., Benzina, A., Khalgui, M., & Chillet, D., Energy-

efficient scheduling of real-time tasks in reconfigurable

homogeneous multicore platforms. IEEE Transactions on

Systems, Man, and Cybernetics: Systems, 50(12), 5092-

5105.,2018

[10] Yuan, H., Bi, J., & Zhou, M., Profit-sensitive spatial scheduling

of multi-application tasks in distributed green clouds. IEEE

Transactions on Automation Science and Engineering, 17(3),

1097-1106,2019

[11] Qi, Q., Zhang, L., Wang, J., Sun, H., Zhuang, Z., Liao, J., & Yu,

F. R. Scalable parallel task scheduling for autonomous driving

using multi-task deep reinforcement learning. IEEE Transactions

on Vehicular Technology, 69(11), 13861-13874, 2020.

[12] Jiang, E., Wang, L., & Wang, J., Decomposition-based multi-

objective optimization for energy-aware distributed hybrid flow

shop scheduling with multiprocessor tasks. Tsinghua Science

and Technology, 26(5), 646-663.,2021

[13] Kessler, C., Litzinger, S., & Keller, J., Static scheduling of

moldable streaming tasks with task fusion for parallel systems

with DVFS. IEEE Transactions on Computer-Aided Design of

Integrated Circuits and Systems, 39(11), 4166-4178,2020

[14] Chen, L., Zhu, J., Deng, Y., Li, Z., Chen, J., Jiang, X., & Liu,

L., An Elastic Task Scheduling Scheme on Coarse-Grained

Reconfigurable Architectures. IEEE Transactions on Parallel

and Distributed Systems, 32(12), 3066-3080.,2021

[15] Nabi, S., Ibrahim, M., & Jimenez, J. M., DRALBA: Dynamic

and resource aware load balanced scheduling approach for cloud

computing. IEEE Access, 9, 61283-61297,2021

[16] Marahatta, A., Pirbhulal, S., Zhang, F., Parizi, R. M., Choo, K.

K. R., & Liu, Z., Classification-based and energy-efficient

dynamic task scheduling scheme for virtualized cloud data

center. IEEE Transactions on Cloud Computing, 9(4), 1376-

1390,2019.

[17] Chen, Z., Hu, J., Chen, X., Hu, J., Zheng, X., & Min, G.,

Computation offloading and task scheduling for DNN-based

applications in cloud-edge computing. IEEE Access, 8, 115537-

1155472,2020

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication

ISSN: 2321-8169 Volume: 11 Issue: 9

DOI: https://doi.org/10.17762/ijritcc.v11i9.8114

Article Received: 07 July 2023 Revised: 28 August 2023 Accepted: 16 September 2023

 37

IJRITCC | September 2023, Available @ http://www.ijritcc.org

[18] Chaudhary, D. S. ., & Sivakumar, D. S. A. . (2022). Detection

Of Postpartum Hemorrhaged Using Fuzzy Deep Learning

Architecture . Research Journal of Computer Systems and

Engineering, 3(1), 29–34. Retrieved from

https://technicaljournals.org/RJCSE/index.php/journal/article/vie

w/38

[19] Ali, A., & Iqbal, M. M., A cost and energy efficient task

scheduling technique to offload microservices based applications

in mobile cloud computing. IEEE Access, 10, 46633-

46651,2022

[20] Quan, Z., Wang, Z. J., Ye, T., & Guo, S, Task scheduling for

energy consumption constrained parallel applications on

heterogeneous computing systems. IEEE Transactions on

Parallel and Distributed Systems, 31(5), 1165-1182,2019.

[21] Yuan, H., Tang, G., Li, X., Guo, D., Luo, L., & Luo, X. , Online

dispatching and fair scheduling of edge computing tasks: A

learning-based approach. IEEE Internet of Things Journal, 8(19),

14985-14998,2021.

[22] Jiang, X., Sun, J., Tang, Y., & Guan, N., Utilization-tensity

bound for real-time DAG tasks under global EDF scheduling.

IEEE Transactions on Computers, 69(1), 39-50.2019

[23] Orr, M., & Sinnen, O., Integrating task duplication in optimal

task scheduling with communication delays. IEEE Transactions

on Parallel and Distributed Systems, 31(10), 2277-2288, 2020

[24] Wang, Y., & Zuo, X., An effective cloud workflow scheduling

approach combining PSO and idle time slot-aware

rules. IEEE/CAA journal of automatica sinica, 8(5), 1079-

1094.2021

[25] Mrs. Ritika Dhabliya. (2020). Obstacle Detection and Text

Recognition for Visually Impaired Person Based on Raspberry

Pi. International Journal of New Practices in Management and

Engineering, 9(02), 01 - 07.

https://doi.org/10.17762/ijnpme.v9i02.83

[26] Rajesh, M., Analysis and Design of Advance Scalable QoS

Based Resource Provisioning Framework. Recent Trends in

Intensive Computing, 39, 114. 2021

[27] Shelke, P., & Shahapurkar, R., TS2LBDP: Design of an

Improved Task-Side SLA Model for Efficient Task Scheduling

via Bioinspired Deadline-Aware Pattern Analysis. International

Journal of Intelligent Information Technologies (IJIIT), 18(3), 1-

13.,2022

[28] Shelke, P., & Shahapurkar, R., Analysis of time factor with

resource provisioning frameworks in a cloud environment for

improving scheduling performance. International Journal of

Next-Generation Computing, 13(3),2022

[29] Feitelson, D. G., Tsafrir, D., & Krakov, D., Experience with

using the parallel workloads archive. Journal of Parallel and

Distributed Computing, 74(10), 2967-2982,2014

http://www.ijritcc.org/

