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Abstract—Cloud resource provisioning requires examining tasks, dependencies, deadlines, and capacity distribution. Scalability is hindered 

by incomplete or complex models. Comprehensive models with low-to-moderate QoS are unsuitable for real-time scenarios. This research 

proposes a Negotiation Aware SLA Model for Resource Provisioning in cloud deployments to address these challenges. In the proposed model, 

a task-level SLA maximizes resource allocation fairness and incorporates task dependency for correlated task types. This process's new tasks are 

processed by an efficient hierarchical task clustering process. Priority is assigned to each task. For efficient provisioning, an Elephant Herding 

Optimization (EHO) model allocates resources to these clusters based on task deadline and make-span levels. The EHO Model suggests a fitness 

function that shortens the make-span and raises deadline awareness. Q-Learning is used in the VM-aware negotiation framework for capacity 

tuning and task-shifting to post-process allocated tasks for faster task execution with minimal overhead. Because of these operations, the 

proposed model outperforms state-of-the-art models in heterogeneous cloud configurations and across multiple task types. The proposed model 

outperformed existing models in terms of make-span, deadline hit ratio, 9.2% lower computational cycles, 4.9% lower energy consumption, and 

5.4% lower computational complexity, making it suitable for large-scale, real-time task scheduling 

Keywords-Resource Provisioning, SLA Negotiation, EHO, VM, Task Shifting, QoS. 

 

I. INTRODUCTION 

Resource provisioning is a multidomain task that involves 

analysis of task sets in terms of their dependency levels, make-

spans, deadline & originating sources, and mapping these 

tasks with cloud VMs via capacity optimizations. Researchers 

have proposed a broad range of models with distinct 

qualitative and quantitative performance features. A general-

purpose SLA based task scheduling model that combines QoS 

aware stations (QST), and task make-span levels [1],is 

depicted in figure 1, wherein task dependencies are used to 

map different resource types. 

 
Fig 1: A typical SLA based resource provisioning model for different 

task types 

Such models evaluate task requirements via following 

equation 1, wherein task delay, make-span, and other 

parameters are considered for comprehensive representation of 

different task types. 

𝑇𝑅𝑗 = ∑ 𝑓 (𝑀𝑖 , 𝐵𝑖 , 𝐷𝑖 , ∑ 𝐷𝑒𝑝𝑖,𝑘

𝑁𝑡

𝑘=1

) … (1)

𝑁𝑡

𝑖=1

 

Where, 𝑇𝑅𝑗 represents task requirement for 𝑗𝑡ℎ task out of 𝑁𝑡 

tasks, while 𝑀, 𝐵, 𝐷 represents internal task characteristics in 

terms of its Memory, Bandwidth & Delay requirements, 

𝐷𝑒𝑝𝑖,𝑘  represents dependency information between 𝑖𝑡ℎ&𝑘𝑡ℎ 

tasks, and 𝑓  represents a function to evaluate task 

requirements w.r.t. different deployment scenarios.Similar to 

this, the capacity of different resources is evaluated via 

equation 2, which aims at representing VMs capability to 

perform task scheduling process with optimum efficiency 

levels. 

𝐶 = ∑ 𝑓(𝑀𝐼𝑃𝑆𝑖 , 𝑃𝐸𝑖 , 𝐵𝑖 , 𝑀𝑖)

𝑁(𝑉𝑀)

𝑖=1

… (2) 
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Where, 𝑁(𝑉𝑀)  represents number of VMs available, while 

𝑀𝐼𝑃𝑆 & 𝑃𝐸  expresses the Virtual Machine's capacity as 

millions of instructions per second (MIPS)., and For 

scheduling reasons, the number of Processing Elements that 

are included with the VM. 

The behavior of a system can influences by a variety of 

external circumstances in a cloud computing setting. 

Violations of service level agreements (SLAs) are a major part 

of cloud computing since they reduce customer satisfaction 

and disrupt cloud providers, which could lead to penalties. 

Violations A service level agreement (SLA) may have 

happened if any of the following conditions apply: 

performance is supplied below the agreed-upon level; services 

are offered at proper level on the other hand with considerable 

delay; utilizations VM resource varies; or services are not 

provided at all. One of the most important parts of using 

services is negotiating Service Level Agreements (SLAs). 

Consumers and service providers form an alliance throughout 

the negotiating process. Convergence during settlement is 

influenced by the extent to which information may be shared 

throughout this procedure. The current negotiation process 

defines the number of parties involved, their respective roles 

and duties, the visibility of the agreements reached, the 

parameters of each individual negotiation session, and so on. 

SLA negotiation is an essential method for preservingthe 

integrity of cloud services and fostering trust between cloud 

users and suppliers. Cloud parties can establish Quality of 

Service (QoS) expectations for mission-critical service-based 

operations by outlining them in a Service Level Agreement 

(SLA). 

Drawing from these considerations, researchers have 

developed different mapping models for provisioning 

resources to multiple task types. The next section of this text 

provides a survey of deployment-specific details, application-

specific benefits, functional restrictions, and potential future 

applications for these models [2][3][4]. This review reveals 

that current provisioning models are either incomplete or 

excessively complex, thus restricting their scalability. 

Moreover, most of the comprehensive models showcase low-

to-moderate levels of QoS (Quality of Service), thus cannot be 

used for real-time situation. To get around these limitations, 

Section 3 examines a novel's design of Negotiation Aware 

Service Level Agreement (SLA) Model for Resource 

Provisioning for cloud deployments. The examination of the 

proposed model was undertaken with regard to make-span, 

deadline hit ratio, computational cycles, energy consumption, 

and computational complexity in section 4, where it was also 

compared with several up-to-date versions. This will assist 

readers in validating model’s performance under different use 

cases. In other words, the text concludes by offering insights 

that are relevant to specific contexts and deployment scenarios 

for the proposed model. Additionally, it suggests that fusion 

techniques can be applied to enhance the model's performance 

in a range of scenarios. 

II. LITRATURE REVIEW  

The researchers provide a broad range of various task 

scheduling models, each with its unique set of internal 

working components. For instance, research from[5][6] 

suggests using geo-distributed data analytics and a self-

adaptive task scheduling model to estimate high-density data 

patterns while mapping workloads to various cloud 

architectures. This strategy, however, cannot be used to a 

variety of tasks since it is not scalable. The work that is 

suggested in[7] recommends employing Multiple Device Co-

Processing of Data-Parallel Kernels to make it easier to apply 

the model for task scheduling in scattered settings, overcoming 

this challenge. To streamline the process of implementing the 

model and reduce the required time and effort, this is done. 

Due to this model's potential to predict workload patterns, 

capacity pre-emption across all VM types is enhanced. The 

Joint Task Scheduling and Containerizing (JTSC) model, the 

Genetic Algorithm with Mobility aware Task Scheduling 

(GAMTS) model, and the Deep Neural Network Scheduling 

(DNNS) model are just a few of the similar models that are 

examined in[8][9], among others. The aim of each of these 

models is to estimate a broad range of job kinds in real-time 

settings. These models allow for the uncomplicated 

implementation of scheduling methods for large-scale 

applications. The Whale Optimization Algorithm (WOA), 

energy, time, and rental cost (ETRC) optimization, and non-

pre-emptive stochastic co-flow scheduling (NPSCS) are all 

approaches that are explored in[10][11][12][13] as strategies 

to enhance these models' performance on related sets of tasks. 

Non-pre-emptive stochastic co-flow scheduling is abbreviated 

as NPSCS, while energy, time, and rental cost optimization is 

abbreviated as ETRC. These models perform admirably in 

scenarios of low complexity, making them appropriate for use 

in reducing the detrimental impacts of scheduling errors in 

such circumstances. The fact that they have this quality makes 

them acceptable for use in large scheduling projects. 

Elastic Task Scheduling Scheme[19] , Multi-Task Deep 

Reinforcement Learning (MTDRL)[16], Decomposition-based 

novel multi-objective evolutionary algorithm[17], “Energy-

Efficient Scheduling (EES)[14] , Spatial Scheduling That 

Considers Profit[15], Scaling of Dynamic Voltage and 

Frequency[18] and Novel Multi Objective Evolutionary 

Algorithm based on These models are all available. These 

models, however, are useless for dynamic task sets. The work 

in[20] recommends using a Dynamic and Resource Aware 

Load Balanced Scheduling Model (DRALBM) to help 
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enhance their performance in situations where jobs are 

continually moving, and as a consequence, they are further 

enlarged. “Task Scheduling and Microservices based 

Computational Offloading” (TSMCO), Deep Neural Networks 

(DNN), and Energy-efficient Dynamic Scheduling Scheme 

(EDSS) are all proposed in [21][22][23] tofurther optimize 

their performance by incorporating high-density feature 

extraction under real-time scheduling scenarios. This is carried 

out to raise their general effectiveness. The complexity 

exhibited by these models renders them unsuitable for time-

sensitive scenarios. Researchers in[24][25][26]suggest Parallel 

Processing, Deep Reinforcement Learning (DRL), and Earliest 

Deadline First (EDF) as scheduling techniques that are 

appropriate for high-velocity applications as a solution to this 

problem. The sources provided below have information on 

these techniques. Improved real-time functionality forthese 

models may be achieved by using processing methods of low 

complexity. The authors discuss methods to reduce the costs 

of performing interdependent task sets 

in[27][28][29][30][31]by combining task duplication, particle 

swarm optimization, and heuristics that account for 

unoccupied time slots (PSO). Contrarily, these models either 

cannot be deployed in a manner that makes them appropriate 

for use with real-time cloud jobs or they disobey the 

requirements for tasks and virtual machines (VM). Due to 

their extreme sensitivity to their surroundings, these models 

are also undesirable for use in extensive scheduling projects. 

The current provisioning and scheduling models can be 

classified as either overly complex or incomplete in their 

consideration of multiple task and resource parameters for 

scheduling. As a result, their potential to scale under real-time 

use cases is limited. Additionally, the majority of thorough 

models exhibit low-to-moderate levels of QoS (Quality of 

Service), making them unsuitable for usage in real-time 

settings. Next section proposes design of a unique Negotiation 

Aware Service Level Agreement (SLA) Model for Resource 

Provisioning for cloud deployments to get over these 

drawbacks. Different parameters were considered to measure 

the performance of this model like scheduling scenarios & 

validated w.r.t. multiple state-of-the-art models, which will 

assist readers to deploy the proposed model for their 

functionality-specific use cases 

III. PROPOSED NEGOTIATION-AWARE MODEL FOR 

SERVICE LEVEL AGREEMENTS IN CLOUD 

RESOURCE PROVISIONING (NASLMRP). 

Reviewing the existing resource provisioning models revealed 

that they are either non-comprehensive or have higher 

complexity than required, which restricts their ability to scale. 

Additionally, the majority of these models exhibit low-to-

moderate levels of QoS (Quality of Service), making them 

unsuitable for use in real-time scenarios. This section proposes 

a new Negotiation solution to tackle previously mentioned 

difficulties by aware Service Level Agreement (SLA) Model 

for Resource Provisioning in cloud deployments. Figure 2, 

visually represents the workflow of the proposed model, 

showcasing the initiation phase. This phase incorporates the 

implementation of a task-level Service Level Agreement 

(SLA) aimed at optimizing fairness in resource allocation. 

Additionally, it takes into account the interdependence of task 

types that are interconnected. 

An effective hierarchical task clustering process is used to 

process the new set of tasks generated by this process. As a 

result, all tasks are clustered into priority-level groups. An 

Elephant Herding Optimization (EHO) model that takes task 

deadline & make-span levels into account, allots these clusters 

to resources for effective provisioning operations. Designing a 

fitness function that lowers make-span levels while 

maintaining higher deadline awareness is advised by the EHO 

Model, which assists in improving its scalability & 

performance under multiple task types. 

The assigned tasks are post-processed using a VM-aware 

negotiation framework that employs Q-Learning for efficient 

capacity tuning and task-provisioning, enabling quicker task 

execution with lower overheads. In the interest of simplicity, 

process flow is divided into three distinct sub-modules, each 

of which is explained in a separate section of this document. 

This approach enables readers to deploy the modules partially 

or in their entirety, depending on their specific use cases. 

A. Design of an SLA Model for task clustering with 

dependency awareness 

Initially all tasks and their dependency constraints are 

evaluated by an SLA Model, which assists in resequencing of 

tasks to obtain higher efficiency levels. To perform 

resequencing, a make-span difference is evaluated via 

equation 3.1, 

𝑀𝑆𝐷𝑖,𝑖+1(𝐼𝑃) = 𝑀𝑆𝑖+1(𝐼𝑃) − 𝑀𝑆𝑖(𝐼𝑃) … (3.1) 

Where, 𝑀𝑆𝐷𝑖,𝑖+1(𝐼𝑃)  represents Make Span Difference 

between task 𝑖 & 𝑖 + 1 , which is coming from the same IP 

address. Based on this difference, an MSD Threshold is 

evaluated via equation 3.2, 

𝑀𝑆𝐷𝑡ℎ =
𝑇𝑆𝐿𝐴

𝑁𝐼𝑃

∑ ∑
𝑀𝑆𝐷𝑗,𝑗+1(𝐼𝑃𝑖)

𝑁𝑇(𝐼𝑃𝑖)

𝑁𝑇(𝐼𝑃𝑖)−1

𝑗=1

𝑁𝐼𝑃

𝑖=1

… (3.2) 

Where, 𝑁𝐼𝑃  represents number of unique IP addresses from 

which tasks are input for processing & scheduling purposes, 

while 𝑇𝑆𝐿𝐴  represents Service Level Agreement timing 

threshold, which is set by cloud designers. 
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Tasks with 𝑀𝑆𝐷 > 𝑀𝑆𝐷𝑡ℎ are filtered, and the (𝑖 + 1)𝑡ℎ task 

is shifted to the end of scheduling queue, which assists in 

maintaining task-SLAs. A task chronology metric is evaluated 

for each set of tasks via equation 3.3, 

𝑇𝐶𝑀𝑖,𝑗 = 𝐷(𝑖, 𝑗) − 𝐷(𝑗, 𝑖) … (3.3) 

Where, 𝑇𝐶𝑀 represents task chronology metric, while 𝐷(𝑖, 𝑗) 

represents dependency of task 𝑖 on task 𝑗, which is a binary 

flag provided by input task sets. If 𝑇𝐶𝑀 ≥ 0, then the task 

sequence is unaltered, else tasks are swapped in order to 

maintain dependency correctness.  

These tasks are clustered via different clustering processes, 

which assists in grouping them into make-span and deadline 

aware clusters. After the enforcement of SLA, initial task 

sequences are established to facilitate the execution of 

incoming tasks from diverse users and machines. However, 

these tasks are not bound by any time limits or resource 

constraints, which can impede their effectiveness. In this 

section, a suggested ensemble pattern analysis model is 

presented as a solution to tackle this problem. The model aims 

toimprove the execution efficiency of tasks by grouping those 

with comparable performance characteristics. In order to 

accomplish this goal, equation 4 is utilized to evaluate a novel 

task rank metric (TRM). 

 

Where, 𝑇𝑝 is position of the task as decided by the SLA model, 

𝐿𝑒𝑛 represents make-span of the task, 𝐵𝑊  represents 

bandwidth needed for executing the task, 𝑅𝐴𝑀  represents 

RAM needed for task execution, and 𝐷𝐿  represents task 

deadlines, while 𝑁 indicates the number of tasks that are in 

pipeline for execution process. The TR metric of each task is 

inputted into three different models: hierarchical clustering, 

kMeans clustering, and FCM. The outcomes of each model are 

assessed, and to determine the ideal number of clusters, 

Equation 5 is utilized. 

 

Where, 𝐶𝑁  represents cluster number, which assists in 

estimation of intra-cluster metric via equation 6,  

𝐼𝐶𝑀𝑖 =

√∑ (𝑇𝑅𝑀𝑖 −𝑚
𝑖=1

∑
√∑ (𝑇𝑅𝑀𝑗−

∑ 𝑇𝑅𝑀𝑘
𝑛
𝑘=1

𝑛 )2𝑛
𝑗=1

𝑛−1
𝑚
𝑖=1

𝑚
)2

𝑚 − 1
… (6) 
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Where, 𝑚 represents total tasks present in the current cluster 

set, while 𝑛 represents total tasks present in other clusters. The 

intra cluster metric (ICM) values are arranged in descending 

order, which represents higher to lower computation task sets. 

These task sets are assigned to respective resources via a EHO 

based process.scheduling, the upcoming section of the text 

provides an explanation for this. 

B.EHO Model design for VM to Task Mapping process 

The SLA based model assists in maintaining dependency 

awareness along with task-level SLA with relation to various 

task types. An optimization procedure using EHO is used to 

process these rearranged tasks, that takes into consideration 

task deadline and make-span levels. This model works via the 

following process, 

• Initially, optimization parameters of EHO are initialized 

as follows, 

o Total size of the optimization Herd (𝐻𝑠𝑖𝑧𝑒) 

o The total number of herds utilised for optimisation 

(𝑁ℎ𝑒𝑟𝑑𝑠) 

o Total  number of iterations used for optimization (𝑁𝑖) 

o Learning speed of  EHO Model   (𝐿𝑟) 

o Total resources or VMs to be processed for each herd 

(𝑁ℎ𝑚) 

• For each resource, initialize the following parameters, 

o The resource's capability is denoted in terms of millions 

of instructions per second (MIPS or M). 

o Total processing units (C) 

o Available RAM Memory (R) 

o Available Bandwidth with the resource (B) 

o Total capacity of computation for each resource (CC) 

• Scan each herd for all iterations between 1 and 𝑁𝑖 , 

perform following process, 

o Initialize a stochastic value of learning rate 𝐿𝑟 

o Map the tasks in sequence with stochastic resources 

o Calculate herd fitness after stochastic allocation via 

following equation 7, 

𝑓𝑖 =
∑ 𝑆𝑡𝑎𝑠𝑘

∑ 𝐶𝐶
+

∑ 𝐵𝑊𝑡𝑎𝑠𝑘

∑ 𝐵
+

∑ 𝑅𝐴𝑀𝑡𝑎𝑠𝑘

∑ 𝑅
+

∑ 𝐷𝐿𝑡𝑎𝑠𝑘

∑ 𝐶 ∗
𝑅

𝐵

… (7) 

• After an iteration is completed, evaluate fitness threshold 

via equation 8, 

𝑓𝑡ℎ = ∑
𝑓𝑖 ∗ 𝐿𝑟

𝑁ℎ𝑒𝑟𝑑𝑠

𝑁ℎ𝑒𝑟𝑑𝑠

𝑖=1

… (8) 

• Modify herds with 𝑓 ≥ 𝑓𝑡ℎ in the next iteration, while use 

other herds directly for fitness evaluation in consecutive 

iterations.  

Due to inclusion of make-span and task deadline, the process 

assists in mapping resources to tasks with better efficiency 

levels. But in some cases, VMs are either not used to their full 

capacity, or are over burdened with tasks. To avoid such 

scenarios, a novel Q-Learning model for VM Provisioning via 

capacity tuning process is deployed, and discussed in the next 

section of this text. 

C. Integration of Q-Learning for VM Provisioning via 

capacity tuning process 

A Q-Learning based VM Provisioning model is employed to 

enhance resource allocation efficiency, by iteratively 

optimizing processing parameters. The process followed to 

achieve this objective is as follows, 

• Let initial capacity for each resource be 𝐼𝐶 , which is 

evaluated via equation 9, 

𝐼𝐶 = ∑ 𝐶𝐶𝑖 ∗ 𝑅𝐴𝑀𝑖 ∗ 𝑀𝐼𝑃𝑆𝑖

𝐶

𝑖=1

… (9) 

• This is evaluated for each resource (or VM), and VM 

tasks are assigned depending on the EHO process. 

• Once the current task-batch is executed, then VM 

utilization factor (𝑉𝑈𝐹) is evaluated via equation 10, 

𝑉𝑈𝐹 = ∑ 𝑁𝑐𝑖

𝑁𝑣𝑚

𝑖=1

… (10) 

Where, 𝑁𝑣𝑚  represents number of VMs (or resources) that 

participated in the resource allocation process, while 𝑁𝑐 

represents number of cycles for which each of these VMs were 

used to execute the tasks which were assigned to them via the 

EHO process. 

• Now, increment capacity levels for each of these VMs via 

equation 11, 

𝐶(𝑁𝑒𝑤) = 𝐶(𝑂𝑙𝑑) (
𝐼𝐶 + 𝑀𝑎𝑥(𝐼𝐶)

𝑀𝑎𝑥(𝐼𝐶)
) … (11) 

Where, 𝐶(𝑁𝑒𝑤)& 𝐶(𝑂𝑙𝑑) represents new & old configuration 

parameters for each of the VMs, and 𝐶 ∈ (𝑅𝐴𝑀, 𝐶𝐶, 𝑀𝐼𝑃𝑆) 

• Using this new configuration process next task-batch, and 

estimate new VM utilization factor via equation 10, which 

http://www.ijritcc.org/
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assists in identification of VM utilization for current task-

set with current configuration of VMs. 

• Now evaluate reward value via equation 12, 

𝑟 =
𝑉𝑈𝐹(𝑁𝑒𝑤) − 𝑉𝑈𝐹(𝑂𝑙𝑑) ∗ (1 + 𝐿𝑟)

𝐿𝑟

− 𝑑

∗ 𝑀𝑎𝑥(𝑉𝑈𝐹) … (12) 

Where, 𝑑 represents a discount factor, which is evaluated via 

equation 13, 

𝑑 =
𝑁𝑣𝑚(𝑂𝑙𝑑)

𝑁𝑣𝑚(𝑁𝑒𝑤)
… (13) 

• If 𝑟 > 0, that indicates that current configuration of VM is 

not sufficient, and it must be incremented via equation 11, 

else if 𝑟 < 0, then configuration of VM is reduced via 

equation 14, 

𝐶(𝑁𝑒𝑤) = 𝐶(𝑂𝑙𝑑) (
𝑀𝑎𝑥(𝐼𝐶) − 𝐼𝐶

𝑀𝑎𝑥(𝐼𝐶)
) … (14) 

• This process is repeated for each task-set, until 𝑟 ≠ 0 

As a result of this ongoing optimization, the model can 

effectively adjust the capacity of VMs to improve their 

scheduling abilities. These capabilities are evaluated according 

to deadline hit ratio, make-span,computational cycles, energy 

consumption, and computational complexity, in this research 

work’s subsequent section, Other models also experienced this 

evaluation also compared with the proposed model for 

validation purposes. 

IV. RESULTS AND COMPARISION  

According to the description of the proposed model, a 

combination of EHO with Q-Learning and SLA enforcement 

is capable of including deadline awareness, SLA rules, and 

incremental optimization under dependent task types. 

Verifying the model's performance, it was assessed based on 

its task make-span delay (D), computational cycles needed 

(CC), deadline hit ratio (DHR), and energy efficiency (E) 

under various VM and task settings. This performance was 

evaluated in comparison to DNNS 9, NPS CS 13, and EES 14. 

To do this comparison, the Parallel Workloads Archive 

(PWA), which can be seen at 

https://www.cs.huji.ac.il/labs/parallel/workload 32, was used to 

retrieve configurations for various VM & task types and used 

with open-source licences. Sandia Ross cluster logs, San 

Diego Supercomputer Centre (SDSC) Blue Horizon logs, 

Lawrence Livermore National Lab's Linux Cluster Logs, 

Potsdam Institute for Climate Impact Research (PIK) IBM 

iDataPlex Cluster logs, and Intel Netbatch logs were used for 

the assessment process. 

The proposed model, NASLMRP was validated using the 

Cloud Sim simulator, which aided in the formation of virtual 

machines (VMs or resources), job scheduling procedures, and 

assessment of the performance of various model parameters. 

These datasets were pooled to provide 1 million jobs, which 

were tested on 400 virtual machines with standard setups. 

Based on this assessment technique, the average make-span 

delay (D) for various Number of Tasks (NT) can be observed 

from Table 1 as follows, 

Table 1. Make-span for different models under multiple task types 

NT 

D (ms) D (ms) D(ms) D (ms) 

DNNS 

[9] 

NPS CS 

[13] 
EES [14] 

NAS 

LMRP 
   

(Proposed 

model) 

10k 0.12 0.13 0.15 0.05 

20k 0.14 0.15 0.18 0.06 

30k 0.16 0.17 0.21 0.07 

40k 0.18 0.21 0.25 0.09 

50k 0.21 0.26 0.3 0.1 

60k 0.24 0.32 0.36 0.12 

70k 0.29 0.4 0.44 0.15 

80k 0.34 0.49 0.53 0.18 

90k 0.42 0.6 0.65 0.22 

100k 0.52 0.73 0.79 0.27 

200k 0.63 0.87 0.94 0.32 

300k 0.76 1.02 1.1 0.38 

400k 0.89 1.18 1.23 0.43 

500k 1 1.31 1.33 0.48 

700k 1.13 1.5 1.42 0.53 

800k 1.17 1.56 1.48 0.55 

900k 1.21 1.62 1.55 0.57 

1M 1.26 1.69 1.64 0.6 

 

After evaluating the proposed model and referring to figure 3, 

it can be concluded that the model exhibits a performance 

improvement of 38.5% when compared to DNNS[9] , 46.1% 

faster performance than NPS CS[13] , and 45.5% faster 

performance than EES[14], which makes it useful for low-

delay scheduling scenarios. As a result of incorporation of 

resource capacity and task make-span levels along with 

incremental performance tuning, which assists in identification 

of optimal scheduling configurations 
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Figure 3. Make-span for different models under multiple task types 

To further estimate model’s performance, its Deadline Hit 

Ratio (DHR) was evaluated via figure 3 

𝐷𝐻𝑅 =
𝑁𝑡𝑑

𝑇𝑡

… (15) 

Where, 𝑁𝑡𝑑
 represents total tasks that were executed before 

their deadlines, and 𝑇𝑡  represents count of total tasks which 

were given to the cloud for scheduling purposes. This 

evaluation resulted in the calculation of DHR in relation to the 

count of tasks executed in total is provided in Table 2 

displayed below. 

Table 2. DHR levels for different models under multiple task types 

NT 

 DHR 

(%) 
DHR(%) DHR(%) DHR (%) 

 

DNNS[9] 
NPS 

CS[13] 
EES[14] 

NASLMRP 

(Proposed 

model) 

10k  93.65 93.67 93.44 99.16 

20k  93.67 93.7 93.46 99.16 

30k  93.7 93.72 93.49 99.17 

40k  93.72 93.75 93.52 99.18 

50k  93.75 93.78 93.55 99.18 

60k  93.78 93.81 93.59 99.18 

70k  93.81 93.84 93.61 99.19 

80k  93.84 93.87 93.64 99.19 

90k  93.87 93.9 93.67 99.2 

100k  93.9 93.93 93.7 99.21 

200k  93.93 93.96 93.72 99.22 

300k  93.96 93.99 93.75 99.23 

400k  93.99 94.01 93.78 99.24 

500k  94.01 94.04 93.81 99.25 

600k  94.04 94.07 93.85 99.25 

700k  94.07 94.09 93.89 99.26 

800k  94.09 94.12 93.92 99.27 

900k  94.12 94.15 93.94 99.27 

1M  94.15 94.18 93.97 99.28 

 

Figure 4. DHR levels for different models under multiple task types 

The evaluation results depicted in Figure 4, demonstrate that 

the proposed model exhibits a 4.8% higher DHR than 

DNNS[9], 4.5% higher DHR than NPS CS[13] , and 5.9% 

higher DHR than EES[14], which makes it useful for deadline 

aware scheduling considerations. This results from being 

included of resource capacity with task deadlines and 

incremental performance tuning, which assists in identification 

of optimal schedulingconfigurations. Similarly, the 

computational cycles (CC) needed for execution is evaluated 

via equation 16, and represents the efficiency with which tasks 

are executed on different resource types. 

𝐸 =
𝑁𝐶𝐶𝑜𝑝𝑡

𝑁𝐶𝐶
∗ 𝑁𝑇 … (16) 

Where, 𝑁𝐶𝐶𝑜𝑝𝑡 represents ideal cycles which must be used for 

execution of tasks, while 𝑁𝐶𝐶  represents actual number of 

cycles needed for execution of these tasks. Based on this 

evaluation, computational cycles (CC) needed for execution is 

tabulated in table 3. as follows, 

Table 3 Computational Cycles needed for execution of different task 

types 

NT 

CC CC CC CC 

DNNS [9] 
NPS CS 

[13] 
EES [14] 

NAS 

LMRP 

(Propo

sed 

model) 

10k 152.59 157.04 155.28 141.87 

20k 153.8 157.66 156.19 142.76 

30k 155 158.28 157.1 143.65 

40k 156.2 158.91 158.01 144.53 

50k 157.38 159.53 158.91 145.4 

60k 158.56 160.16 159.81 146.28 

70k 159.75 160.78 160.72 147.16 
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80k 160.94 161.41 161.63 148.04 

90k 162.13 162.03 162.54 148.92 

100k 163.32 162.66 163.44 149.79 

200k 164.51 163.28 164.35 150.67 

300k 165.7 163.91 165.26 151.55 

400k 166.89 164.53 166.16 152.43 

500k 168.08 165.15 167.07 153.31 

600k 169.27 165.78 167.98 154.19 

700k 170.46 166.4 168.88 155.07 

800k 171.65 167.03 169.79 155.95 

900k 172.84 167.65 170.7 156.83 

1M 174.04 168.27 171.6 157.71 

Figure 5: Computational Cycles needed for execution of different 

task types 

Upon analyzing the outcomes and referencing figure 5, it 

becomes evident that the proposed model consumes 15% 

fewer computational cycles in comparison to DNNS[9], 8.3% 

lower computational cycles than NPS CS[13] and 12.5% lower 

computational cycles than EES[14] , which makes it useful for 

computationally efficient scheduling situations. This is 

because it incorporates resource capacity with incremental 

performance tuning, which assists in identification of optimal 

schedulingconfigurations. Similarly, the energy required for 

execution of different task types is tabulated in table 4 as 

follows, 

Table 4. Energy required by different models for the scheduling 

process 

NT 

E (mJ) E (mJ) E (mJ) E (mJ) 

DNNS[9] 
NPS CS 

[13] 
EES [14] 

NASLMRP 

(Proposed 

model) 

10k 312.81 279.94 187.24 172.95 

20k 315.29 281.05 188.34 174.08 

30k 317.76 282.16 189.44 175.22 

40k 320.2 283.28 190.53 176.33 

50k 322.62 284.39 191.62 177.43 

60k 325.04 285.5 192.72 178.54 

70k 327.48 286.61 193.81 179.65 

80k 329.92 287.73 194.9 180.76 

90k 332.36 288.84 196 181.88 

100k 334.8 289.95 197.09 182.99 

200k 337.24 291.07 198.18 184.1 

300k 339.68 292.18 199.28 185.22 

400k 342.12 293.29 200.37 186.33 

500k 344.56 294.4 201.47 187.44 

600k 347 295.51 202.56 188.56 

700k 349.44 296.63 203.66 189.67 

800k 351.88 297.74 204.75 190.78 

900k 354.33 298.85 205.84 191.9 

1M 356.77 299.97 206.94 193.01 

 

Figure 6. Energy required by different models for the scheduling 

process 

Based on this assessment and figure 6, it can be seen that the 

proposed model uses 24.5%, 18.3%, and 16.5% less 

computational energy than DNNS [9], NPS CS [13], and EES 

[14], respectively, making it suitable for low energy 

scheduling scenarios. This is because incremental performance 

tuning combined with the incorporation of resource capacity, 

RAM, MIPS, and the number of VMs aids in the identification 

of the best scheduling configurations. The proposed model is 

useful for large-scale task scheduling application use cases as 

a result of these improvements. 

V. CONCLUSION AND FUTURE WORK 

The proposed model is able to fuse SLA, multiple level 

clustering, EHO based task scheduling, and Q-Learning based 

resource capacity optimizations in order to improve scheduling 

performance under heterogeneous & dependent task types. 

This performance was evaluated in terms of different 

quantitative metrics, and was compared with various state-of-

the-art methods. This comparison revealed that the proposed 
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model performs 38.5% faster than DNNS [9], 46.1% faster 

than NPS CS [13], and 45.5% faster than EES [14], making it 

useful for low-delay scheduling scenarios. This is because 

incorporating task make-span and resource capacity levels, 

along with incremental performance tuning, helps identify the 

best scheduling configurations. The proposed model's higher 

deadline hit ratios—4.8% higher DHR than DNNS [9], 4.5% 

higher DHR than NPS CS [13], and 5.9% higher DHR than 

EES [14]—make it useful for scenarios involving deadline-

conscious scheduling. This is because task deadlines and 

resource capacity are combined, and incremental performance 

tuning helps identify the best scheduling configurations. 

Although it can also be seen that the proposed model needs 

15%, 8.3%, and 12.5% fewer computational cycles than 

DNNS [9], NPS CS [13], and EES [14], respectively, which 

makes it useful for computationally efficient scheduling 

scenarios. This is because incremental performance tuning and 

resource capacity integration help identify the best scheduling 

configurations. While it was discovered that the proposed 

model, when compared to DNNS [9], NPS CS [13], and EES 

[14], uses 24.5%, 18.3%, and 16.5% less computational 

energy, respectively, making it appropriate for low energy 

scheduling scenarios. This is because identifying the optimal 

scheduling configurations is made easier by combining 

incremental performance tuning with the incorporation of 

resource capacity, RAM, MIPS, and the number of VMs. 

These improvements make the proposed model suitable for 

large-scale task scheduling application use cases. 

In future, researchers can extend performance of the proposed 

model via integration of multiple deep learning models 

including Convolutional Neural Networks, Gated Recurrent 

Units, Auto Encoders, and Generative Adversarial Networks, 

which will assist in task pre-emption for optimization of 

scheduling pre-emption capabilities. Researchers can also 

integrate different bioinspired models including Grey Wolf 

Optimization (GWO), Firefly Optimization (FFO), etc. which 

will assist in optimizing & stabilizing performance of the 

proposed model under different real-time task types. 
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